Mark ChangeLog
[official-gcc.git] / gcc / jump.c
blob8286948216dc8c8cad8903016eb54e1d50f0651d
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-attr.h"
63 #include "recog.h"
64 #include "function.h"
65 #include "expr.h"
66 #include "real.h"
67 #include "except.h"
68 #include "toplev.h"
70 /* ??? Eventually must record somehow the labels used by jumps
71 from nested functions. */
72 /* Pre-record the next or previous real insn for each label?
73 No, this pass is very fast anyway. */
74 /* Condense consecutive labels?
75 This would make life analysis faster, maybe. */
76 /* Optimize jump y; x: ... y: jumpif... x?
77 Don't know if it is worth bothering with. */
78 /* Optimize two cases of conditional jump to conditional jump?
79 This can never delete any instruction or make anything dead,
80 or even change what is live at any point.
81 So perhaps let combiner do it. */
83 /* Vector indexed by uid.
84 For each CODE_LABEL, index by its uid to get first unconditional jump
85 that jumps to the label.
86 For each JUMP_INSN, index by its uid to get the next unconditional jump
87 that jumps to the same label.
88 Element 0 is the start of a chain of all return insns.
89 (It is safe to use element 0 because insn uid 0 is not used. */
91 static rtx *jump_chain;
93 /* Maximum index in jump_chain. */
95 static int max_jump_chain;
97 /* Indicates whether death notes are significant in cross jump analysis.
98 Normally they are not significant, because of A and B jump to C,
99 and R dies in A, it must die in B. But this might not be true after
100 stack register conversion, and we must compare death notes in that
101 case. */
103 static int cross_jump_death_matters = 0;
105 static int init_label_info PARAMS ((rtx));
106 static void delete_barrier_successors PARAMS ((rtx));
107 static void mark_all_labels PARAMS ((rtx, int));
108 static rtx delete_unreferenced_labels PARAMS ((rtx));
109 static void delete_noop_moves PARAMS ((rtx));
110 static int duplicate_loop_exit_test PARAMS ((rtx));
111 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
112 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
113 static int jump_back_p PARAMS ((rtx, rtx));
114 static int tension_vector_labels PARAMS ((rtx, int));
115 static void delete_computation PARAMS ((rtx));
116 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
117 static int redirect_exp PARAMS ((rtx, rtx, rtx));
118 static void invert_exp_1 PARAMS ((rtx));
119 static int invert_exp PARAMS ((rtx));
120 static void delete_from_jump_chain PARAMS ((rtx));
121 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
122 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
123 static void redirect_tablejump PARAMS ((rtx, rtx));
124 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
125 static int returnjump_p_1 PARAMS ((rtx *, void *));
126 static void delete_prior_computation PARAMS ((rtx, rtx));
128 /* Main external entry point into the jump optimizer. See comments before
129 jump_optimize_1 for descriptions of the arguments. */
130 void
131 jump_optimize (f, cross_jump, noop_moves, after_regscan)
132 rtx f;
133 int cross_jump;
134 int noop_moves;
135 int after_regscan;
137 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
140 /* Alternate entry into the jump optimizer. This entry point only rebuilds
141 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
142 instructions. */
143 void
144 rebuild_jump_labels (f)
145 rtx f;
147 jump_optimize_1 (f, 0, 0, 0, 1, 0);
150 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
152 void
153 jump_optimize_minimal (f)
154 rtx f;
156 jump_optimize_1 (f, 0, 0, 0, 0, 1);
159 /* Delete no-op jumps and optimize jumps to jumps
160 and jumps around jumps.
161 Delete unused labels and unreachable code.
163 If CROSS_JUMP is 1, detect matching code
164 before a jump and its destination and unify them.
165 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
167 If NOOP_MOVES is nonzero, delete no-op move insns.
169 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
170 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
172 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
173 and JUMP_LABEL field for jumping insns.
175 If `optimize' is zero, don't change any code,
176 just determine whether control drops off the end of the function.
177 This case occurs when we have -W and not -O.
178 It works because `delete_insn' checks the value of `optimize'
179 and refrains from actually deleting when that is 0.
181 If MINIMAL is nonzero, then we only perform trivial optimizations:
183 * Removal of unreachable code after BARRIERs.
184 * Removal of unreferenced CODE_LABELs.
185 * Removal of a jump to the next instruction.
186 * Removal of a conditional jump followed by an unconditional jump
187 to the same target as the conditional jump.
188 * Simplify a conditional jump around an unconditional jump.
189 * Simplify a jump to a jump.
190 * Delete extraneous line number notes.
193 static void
194 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
195 mark_labels_only, minimal)
196 rtx f;
197 int cross_jump;
198 int noop_moves;
199 int after_regscan;
200 int mark_labels_only;
201 int minimal;
203 register rtx insn, next;
204 int changed;
205 int old_max_reg;
206 int first = 1;
207 int max_uid = 0;
208 rtx last_insn;
209 enum rtx_code reversed_code;
211 cross_jump_death_matters = (cross_jump == 2);
212 max_uid = init_label_info (f) + 1;
214 /* Leave some extra room for labels and duplicate exit test insns
215 we make. */
216 max_jump_chain = max_uid * 14 / 10;
217 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
219 mark_all_labels (f, cross_jump);
221 /* Keep track of labels used from static data; we don't track them
222 closely enough to delete them here, so make sure their reference
223 count doesn't drop to zero. */
225 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
226 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
227 LABEL_NUSES (XEXP (insn, 0))++;
229 /* Keep track of labels used for marking handlers for exception
230 regions; they cannot usually be deleted. */
232 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
233 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
234 LABEL_NUSES (XEXP (insn, 0))++;
236 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
237 notes and recompute LABEL_NUSES. */
238 if (mark_labels_only)
239 goto end;
241 delete_barrier_successors (f);
243 last_insn = delete_unreferenced_labels (f);
245 if (noop_moves)
246 delete_noop_moves (f);
248 /* If we haven't yet gotten to reload and we have just run regscan,
249 delete any insn that sets a register that isn't used elsewhere.
250 This helps some of the optimizations below by having less insns
251 being jumped around. */
253 if (optimize && ! reload_completed && after_regscan)
254 for (insn = f; insn; insn = next)
256 rtx set = single_set (insn);
258 next = NEXT_INSN (insn);
260 if (set && GET_CODE (SET_DEST (set)) == REG
261 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
262 && REGNO_FIRST_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
263 /* We use regno_last_note_uid so as not to delete the setting
264 of a reg that's used in notes. A subsequent optimization
265 might arrange to use that reg for real. */
266 && REGNO_LAST_NOTE_UID (REGNO (SET_DEST (set))) == INSN_UID (insn)
267 && ! side_effects_p (SET_SRC (set))
268 && ! find_reg_note (insn, REG_RETVAL, 0)
269 /* An ADDRESSOF expression can turn into a use of the internal arg
270 pointer, so do not delete the initialization of the internal
271 arg pointer yet. If it is truly dead, flow will delete the
272 initializing insn. */
273 && SET_DEST (set) != current_function_internal_arg_pointer)
274 delete_insn (insn);
277 /* Now iterate optimizing jumps until nothing changes over one pass. */
278 changed = 1;
279 old_max_reg = max_reg_num ();
280 while (changed)
282 changed = 0;
284 for (insn = f; insn; insn = next)
286 rtx reallabelprev;
287 rtx temp, temp1, temp2 = NULL_RTX;
288 rtx temp4 ATTRIBUTE_UNUSED;
289 rtx nlabel;
290 int this_is_any_uncondjump;
291 int this_is_any_condjump;
292 int this_is_onlyjump;
294 next = NEXT_INSN (insn);
296 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
297 jump. Try to optimize by duplicating the loop exit test if so.
298 This is only safe immediately after regscan, because it uses
299 the values of regno_first_uid and regno_last_uid. */
300 if (after_regscan && GET_CODE (insn) == NOTE
301 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
302 && (temp1 = next_nonnote_insn (insn)) != 0
303 && any_uncondjump_p (temp1)
304 && onlyjump_p (temp1))
306 temp = PREV_INSN (insn);
307 if (duplicate_loop_exit_test (insn))
309 changed = 1;
310 next = NEXT_INSN (temp);
311 continue;
315 if (GET_CODE (insn) != JUMP_INSN)
316 continue;
318 this_is_any_condjump = any_condjump_p (insn);
319 this_is_any_uncondjump = any_uncondjump_p (insn);
320 this_is_onlyjump = onlyjump_p (insn);
322 /* Tension the labels in dispatch tables. */
324 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
325 changed |= tension_vector_labels (PATTERN (insn), 0);
326 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
327 changed |= tension_vector_labels (PATTERN (insn), 1);
329 /* See if this jump goes to another jump and redirect if so. */
330 nlabel = follow_jumps (JUMP_LABEL (insn));
331 if (nlabel != JUMP_LABEL (insn))
332 changed |= redirect_jump (insn, nlabel, 1);
334 if (! optimize || minimal)
335 continue;
337 /* If a dispatch table always goes to the same place,
338 get rid of it and replace the insn that uses it. */
340 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
341 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
343 int i;
344 rtx pat = PATTERN (insn);
345 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
346 int len = XVECLEN (pat, diff_vec_p);
347 rtx dispatch = prev_real_insn (insn);
348 rtx set;
350 for (i = 0; i < len; i++)
351 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
352 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
353 break;
355 if (i == len
356 && dispatch != 0
357 && GET_CODE (dispatch) == JUMP_INSN
358 && JUMP_LABEL (dispatch) != 0
359 /* Don't mess with a casesi insn.
360 XXX according to the comment before computed_jump_p(),
361 all casesi insns should be a parallel of the jump
362 and a USE of a LABEL_REF. */
363 && ! ((set = single_set (dispatch)) != NULL
364 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
365 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
367 redirect_tablejump (dispatch,
368 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
369 changed = 1;
373 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
375 /* Detect jump to following insn. */
376 if (reallabelprev == insn
377 && (this_is_any_condjump || this_is_any_uncondjump)
378 && this_is_onlyjump)
380 next = next_real_insn (JUMP_LABEL (insn));
381 delete_jump (insn);
383 /* Remove the "inactive" but "real" insns (i.e. uses and
384 clobbers) in between here and there. */
385 temp = insn;
386 while ((temp = next_real_insn (temp)) != next)
387 delete_insn (temp);
389 changed = 1;
390 continue;
393 /* Detect a conditional jump going to the same place
394 as an immediately following unconditional jump. */
395 else if (this_is_any_condjump && this_is_onlyjump
396 && (temp = next_active_insn (insn)) != 0
397 && simplejump_p (temp)
398 && (next_active_insn (JUMP_LABEL (insn))
399 == next_active_insn (JUMP_LABEL (temp))))
401 /* Don't mess up test coverage analysis. */
402 temp2 = temp;
403 if (flag_test_coverage && !reload_completed)
404 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
405 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
406 break;
408 if (temp2 == temp)
410 /* Ensure that we jump to the later of the two labels.
411 Consider:
413 if (test) goto L2;
414 goto L1;
417 (clobber return-reg)
419 (use return-reg)
421 If we leave the goto L1, we'll incorrectly leave
422 return-reg dead for TEST true. */
424 temp2 = next_active_insn (JUMP_LABEL (insn));
425 if (!temp2)
426 temp2 = get_last_insn ();
427 if (GET_CODE (temp2) != CODE_LABEL)
428 temp2 = prev_label (temp2);
429 if (temp2 != JUMP_LABEL (temp))
430 redirect_jump (temp, temp2, 1);
432 delete_jump (insn);
433 changed = 1;
434 continue;
438 /* Detect a conditional jump jumping over an unconditional jump. */
440 else if (this_is_any_condjump
441 && reallabelprev != 0
442 && GET_CODE (reallabelprev) == JUMP_INSN
443 && prev_active_insn (reallabelprev) == insn
444 && no_labels_between_p (insn, reallabelprev)
445 && any_uncondjump_p (reallabelprev)
446 && onlyjump_p (reallabelprev))
448 /* When we invert the unconditional jump, we will be
449 decrementing the usage count of its old label.
450 Make sure that we don't delete it now because that
451 might cause the following code to be deleted. */
452 rtx prev_uses = prev_nonnote_insn (reallabelprev);
453 rtx prev_label = JUMP_LABEL (insn);
455 if (prev_label)
456 ++LABEL_NUSES (prev_label);
458 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
460 /* It is very likely that if there are USE insns before
461 this jump, they hold REG_DEAD notes. These REG_DEAD
462 notes are no longer valid due to this optimization,
463 and will cause the life-analysis that following passes
464 (notably delayed-branch scheduling) to think that
465 these registers are dead when they are not.
467 To prevent this trouble, we just remove the USE insns
468 from the insn chain. */
470 while (prev_uses && GET_CODE (prev_uses) == INSN
471 && GET_CODE (PATTERN (prev_uses)) == USE)
473 rtx useless = prev_uses;
474 prev_uses = prev_nonnote_insn (prev_uses);
475 delete_insn (useless);
478 delete_insn (reallabelprev);
479 changed = 1;
482 /* We can now safely delete the label if it is unreferenced
483 since the delete_insn above has deleted the BARRIER. */
484 if (prev_label && --LABEL_NUSES (prev_label) == 0)
485 delete_insn (prev_label);
487 next = NEXT_INSN (insn);
490 /* If we have an unconditional jump preceded by a USE, try to put
491 the USE before the target and jump there. This simplifies many
492 of the optimizations below since we don't have to worry about
493 dealing with these USE insns. We only do this if the label
494 being branch to already has the identical USE or if code
495 never falls through to that label. */
497 else if (this_is_any_uncondjump
498 && (temp = prev_nonnote_insn (insn)) != 0
499 && GET_CODE (temp) == INSN
500 && GET_CODE (PATTERN (temp)) == USE
501 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
502 && (GET_CODE (temp1) == BARRIER
503 || (GET_CODE (temp1) == INSN
504 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
505 /* Don't do this optimization if we have a loop containing
506 only the USE instruction, and the loop start label has
507 a usage count of 1. This is because we will redo this
508 optimization everytime through the outer loop, and jump
509 opt will never exit. */
510 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
511 && temp2 == JUMP_LABEL (insn)
512 && LABEL_NUSES (temp2) == 1))
514 if (GET_CODE (temp1) == BARRIER)
516 emit_insn_after (PATTERN (temp), temp1);
517 temp1 = NEXT_INSN (temp1);
520 delete_insn (temp);
521 redirect_jump (insn, get_label_before (temp1), 1);
522 reallabelprev = prev_real_insn (temp1);
523 changed = 1;
524 next = NEXT_INSN (insn);
527 #ifdef HAVE_trap
528 /* Detect a conditional jump jumping over an unconditional trap. */
529 if (HAVE_trap
530 && this_is_any_condjump && this_is_onlyjump
531 && reallabelprev != 0
532 && GET_CODE (reallabelprev) == INSN
533 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
534 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
535 && prev_active_insn (reallabelprev) == insn
536 && no_labels_between_p (insn, reallabelprev)
537 && (temp2 = get_condition (insn, &temp4))
538 && ((reversed_code = reversed_comparison_code (temp2, insn))
539 != UNKNOWN))
541 rtx new = gen_cond_trap (reversed_code,
542 XEXP (temp2, 0), XEXP (temp2, 1),
543 TRAP_CODE (PATTERN (reallabelprev)));
545 if (new)
547 emit_insn_before (new, temp4);
548 delete_insn (reallabelprev);
549 delete_jump (insn);
550 changed = 1;
551 continue;
554 /* Detect a jump jumping to an unconditional trap. */
555 else if (HAVE_trap && this_is_onlyjump
556 && (temp = next_active_insn (JUMP_LABEL (insn)))
557 && GET_CODE (temp) == INSN
558 && GET_CODE (PATTERN (temp)) == TRAP_IF
559 && (this_is_any_uncondjump
560 || (this_is_any_condjump
561 && (temp2 = get_condition (insn, &temp4)))))
563 rtx tc = TRAP_CONDITION (PATTERN (temp));
565 if (tc == const_true_rtx
566 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
568 rtx new;
569 /* Replace an unconditional jump to a trap with a trap. */
570 if (this_is_any_uncondjump)
572 emit_barrier_after (emit_insn_before (gen_trap (), insn));
573 delete_jump (insn);
574 changed = 1;
575 continue;
577 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
578 XEXP (temp2, 1),
579 TRAP_CODE (PATTERN (temp)));
580 if (new)
582 emit_insn_before (new, temp4);
583 delete_jump (insn);
584 changed = 1;
585 continue;
588 /* If the trap condition and jump condition are mutually
589 exclusive, redirect the jump to the following insn. */
590 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
591 && this_is_any_condjump
592 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
593 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
594 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
595 && redirect_jump (insn, get_label_after (temp), 1))
597 changed = 1;
598 continue;
601 #endif
602 else
604 /* Now that the jump has been tensioned,
605 try cross jumping: check for identical code
606 before the jump and before its target label. */
608 /* First, cross jumping of conditional jumps: */
610 if (cross_jump && condjump_p (insn))
612 rtx newjpos, newlpos;
613 rtx x = prev_real_insn (JUMP_LABEL (insn));
615 /* A conditional jump may be crossjumped
616 only if the place it jumps to follows
617 an opposing jump that comes back here. */
619 if (x != 0 && ! jump_back_p (x, insn))
620 /* We have no opposing jump;
621 cannot cross jump this insn. */
622 x = 0;
624 newjpos = 0;
625 /* TARGET is nonzero if it is ok to cross jump
626 to code before TARGET. If so, see if matches. */
627 if (x != 0)
628 find_cross_jump (insn, x, 2,
629 &newjpos, &newlpos);
631 if (newjpos != 0)
633 do_cross_jump (insn, newjpos, newlpos);
634 /* Make the old conditional jump
635 into an unconditional one. */
636 SET_SRC (PATTERN (insn))
637 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
638 INSN_CODE (insn) = -1;
639 emit_barrier_after (insn);
640 /* Add to jump_chain unless this is a new label
641 whose UID is too large. */
642 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
644 jump_chain[INSN_UID (insn)]
645 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
646 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
648 changed = 1;
649 next = insn;
653 /* Cross jumping of unconditional jumps:
654 a few differences. */
656 if (cross_jump && simplejump_p (insn))
658 rtx newjpos, newlpos;
659 rtx target;
661 newjpos = 0;
663 /* TARGET is nonzero if it is ok to cross jump
664 to code before TARGET. If so, see if matches. */
665 find_cross_jump (insn, JUMP_LABEL (insn), 1,
666 &newjpos, &newlpos);
668 /* If cannot cross jump to code before the label,
669 see if we can cross jump to another jump to
670 the same label. */
671 /* Try each other jump to this label. */
672 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
673 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
674 target != 0 && newjpos == 0;
675 target = jump_chain[INSN_UID (target)])
676 if (target != insn
677 && JUMP_LABEL (target) == JUMP_LABEL (insn)
678 /* Ignore TARGET if it's deleted. */
679 && ! INSN_DELETED_P (target))
680 find_cross_jump (insn, target, 2,
681 &newjpos, &newlpos);
683 if (newjpos != 0)
685 do_cross_jump (insn, newjpos, newlpos);
686 changed = 1;
687 next = insn;
691 /* This code was dead in the previous jump.c! */
692 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
694 /* Return insns all "jump to the same place"
695 so we can cross-jump between any two of them. */
697 rtx newjpos, newlpos, target;
699 newjpos = 0;
701 /* If cannot cross jump to code before the label,
702 see if we can cross jump to another jump to
703 the same label. */
704 /* Try each other jump to this label. */
705 for (target = jump_chain[0];
706 target != 0 && newjpos == 0;
707 target = jump_chain[INSN_UID (target)])
708 if (target != insn
709 && ! INSN_DELETED_P (target)
710 && GET_CODE (PATTERN (target)) == RETURN)
711 find_cross_jump (insn, target, 2,
712 &newjpos, &newlpos);
714 if (newjpos != 0)
716 do_cross_jump (insn, newjpos, newlpos);
717 changed = 1;
718 next = insn;
724 first = 0;
727 /* Delete extraneous line number notes.
728 Note that two consecutive notes for different lines are not really
729 extraneous. There should be some indication where that line belonged,
730 even if it became empty. */
733 rtx last_note = 0;
735 for (insn = f; insn; insn = NEXT_INSN (insn))
736 if (GET_CODE (insn) == NOTE)
738 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
739 /* Any previous line note was for the prologue; gdb wants a new
740 note after the prologue even if it is for the same line. */
741 last_note = NULL_RTX;
742 else if (NOTE_LINE_NUMBER (insn) >= 0)
744 /* Delete this note if it is identical to previous note. */
745 if (last_note
746 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
747 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
749 delete_insn (insn);
750 continue;
753 last_note = insn;
758 end:
759 /* Clean up. */
760 free (jump_chain);
761 jump_chain = 0;
764 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
765 notes whose labels don't occur in the insn any more. Returns the
766 largest INSN_UID found. */
767 static int
768 init_label_info (f)
769 rtx f;
771 int largest_uid = 0;
772 rtx insn;
774 for (insn = f; insn; insn = NEXT_INSN (insn))
776 if (GET_CODE (insn) == CODE_LABEL)
777 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
778 else if (GET_CODE (insn) == JUMP_INSN)
779 JUMP_LABEL (insn) = 0;
780 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
782 rtx note, next;
784 for (note = REG_NOTES (insn); note; note = next)
786 next = XEXP (note, 1);
787 if (REG_NOTE_KIND (note) == REG_LABEL
788 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
789 remove_note (insn, note);
792 if (INSN_UID (insn) > largest_uid)
793 largest_uid = INSN_UID (insn);
796 return largest_uid;
799 /* Delete insns following barriers, up to next label.
801 Also delete no-op jumps created by gcse. */
803 static void
804 delete_barrier_successors (f)
805 rtx f;
807 rtx insn;
808 rtx set;
810 for (insn = f; insn;)
812 if (GET_CODE (insn) == BARRIER)
814 insn = NEXT_INSN (insn);
816 never_reached_warning (insn);
818 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
820 if (GET_CODE (insn) == JUMP_INSN)
822 /* Detect when we're deleting a tablejump; get rid of
823 the jump table as well. */
824 rtx next1 = next_nonnote_insn (insn);
825 rtx next2 = next1 ? next_nonnote_insn (next1) : 0;
826 if (next2 && GET_CODE (next1) == CODE_LABEL
827 && GET_CODE (next2) == JUMP_INSN
828 && (GET_CODE (PATTERN (next2)) == ADDR_VEC
829 || GET_CODE (PATTERN (next2)) == ADDR_DIFF_VEC))
831 delete_insn (insn);
832 insn = next2;
834 else
835 insn = delete_insn (insn);
837 else if (GET_CODE (insn) == NOTE
838 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
839 insn = NEXT_INSN (insn);
840 else
841 insn = delete_insn (insn);
843 /* INSN is now the code_label. */
846 /* Also remove (set (pc) (pc)) insns which can be created by
847 gcse. We eliminate such insns now to avoid having them
848 cause problems later. */
849 else if (GET_CODE (insn) == JUMP_INSN
850 && (set = pc_set (insn)) != NULL
851 && SET_SRC (set) == pc_rtx
852 && SET_DEST (set) == pc_rtx
853 && onlyjump_p (insn))
854 insn = delete_insn (insn);
856 else
857 insn = NEXT_INSN (insn);
861 /* Mark the label each jump jumps to.
862 Combine consecutive labels, and count uses of labels.
864 For each label, make a chain (using `jump_chain')
865 of all the *unconditional* jumps that jump to it;
866 also make a chain of all returns.
868 CROSS_JUMP indicates whether we are doing cross jumping
869 and if we are whether we will be paying attention to
870 death notes or not. */
872 static void
873 mark_all_labels (f, cross_jump)
874 rtx f;
875 int cross_jump;
877 rtx insn;
879 for (insn = f; insn; insn = NEXT_INSN (insn))
880 if (INSN_P (insn))
882 if (GET_CODE (insn) == CALL_INSN
883 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
885 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
886 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
887 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
889 /* Canonicalize the tail recursion label attached to the
890 CALL_PLACEHOLDER insn. */
891 if (XEXP (PATTERN (insn), 3))
893 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
894 XEXP (PATTERN (insn), 3));
895 mark_jump_label (label_ref, insn, cross_jump, 0);
896 XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
899 continue;
902 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
903 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
905 /* When we know the LABEL_REF contained in a REG used in
906 an indirect jump, we'll have a REG_LABEL note so that
907 flow can tell where it's going. */
908 if (JUMP_LABEL (insn) == 0)
910 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
911 if (label_note)
913 /* But a LABEL_REF around the REG_LABEL note, so
914 that we can canonicalize it. */
915 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
916 XEXP (label_note, 0));
918 mark_jump_label (label_ref, insn, cross_jump, 0);
919 XEXP (label_note, 0) = XEXP (label_ref, 0);
920 JUMP_LABEL (insn) = XEXP (label_note, 0);
923 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
925 jump_chain[INSN_UID (insn)]
926 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
927 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
929 if (GET_CODE (PATTERN (insn)) == RETURN)
931 jump_chain[INSN_UID (insn)] = jump_chain[0];
932 jump_chain[0] = insn;
938 /* Delete all labels already not referenced.
939 Also find and return the last insn. */
941 static rtx
942 delete_unreferenced_labels (f)
943 rtx f;
945 rtx final = NULL_RTX;
946 rtx insn;
948 for (insn = f; insn;)
950 if (GET_CODE (insn) == CODE_LABEL
951 && LABEL_NUSES (insn) == 0
952 && LABEL_ALTERNATE_NAME (insn) == NULL)
953 insn = delete_insn (insn);
954 else
956 final = insn;
957 insn = NEXT_INSN (insn);
961 return final;
964 /* Delete various simple forms of moves which have no necessary
965 side effect. */
967 static void
968 delete_noop_moves (f)
969 rtx f;
971 rtx insn, next;
973 for (insn = f; insn;)
975 next = NEXT_INSN (insn);
977 if (GET_CODE (insn) == INSN)
979 register rtx body = PATTERN (insn);
981 /* Detect and delete no-op move instructions
982 resulting from not allocating a parameter in a register. */
984 if (GET_CODE (body) == SET
985 && (SET_DEST (body) == SET_SRC (body)
986 || (GET_CODE (SET_DEST (body)) == MEM
987 && GET_CODE (SET_SRC (body)) == MEM
988 && rtx_equal_p (SET_SRC (body), SET_DEST (body))))
989 && ! (GET_CODE (SET_DEST (body)) == MEM
990 && MEM_VOLATILE_P (SET_DEST (body)))
991 && ! (GET_CODE (SET_SRC (body)) == MEM
992 && MEM_VOLATILE_P (SET_SRC (body))))
993 delete_computation (insn);
995 /* Detect and ignore no-op move instructions
996 resulting from smart or fortuitous register allocation. */
998 else if (GET_CODE (body) == SET)
1000 int sreg = true_regnum (SET_SRC (body));
1001 int dreg = true_regnum (SET_DEST (body));
1003 if (sreg == dreg && sreg >= 0)
1004 delete_insn (insn);
1005 else if (sreg >= 0 && dreg >= 0)
1007 rtx trial;
1008 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
1009 sreg, NULL_PTR, dreg,
1010 GET_MODE (SET_SRC (body)));
1012 if (tem != 0
1013 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
1015 /* DREG may have been the target of a REG_DEAD note in
1016 the insn which makes INSN redundant. If so, reorg
1017 would still think it is dead. So search for such a
1018 note and delete it if we find it. */
1019 if (! find_regno_note (insn, REG_UNUSED, dreg))
1020 for (trial = prev_nonnote_insn (insn);
1021 trial && GET_CODE (trial) != CODE_LABEL;
1022 trial = prev_nonnote_insn (trial))
1023 if (find_regno_note (trial, REG_DEAD, dreg))
1025 remove_death (dreg, trial);
1026 break;
1029 /* Deleting insn could lose a death-note for SREG. */
1030 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
1032 /* Change this into a USE so that we won't emit
1033 code for it, but still can keep the note. */
1034 PATTERN (insn)
1035 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
1036 INSN_CODE (insn) = -1;
1037 /* Remove all reg notes but the REG_DEAD one. */
1038 REG_NOTES (insn) = trial;
1039 XEXP (trial, 1) = NULL_RTX;
1041 else
1042 delete_insn (insn);
1045 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1046 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1047 NULL_PTR, 0,
1048 GET_MODE (SET_DEST (body))))
1050 /* This handles the case where we have two consecutive
1051 assignments of the same constant to pseudos that didn't
1052 get a hard reg. Each SET from the constant will be
1053 converted into a SET of the spill register and an
1054 output reload will be made following it. This produces
1055 two loads of the same constant into the same spill
1056 register. */
1058 rtx in_insn = insn;
1060 /* Look back for a death note for the first reg.
1061 If there is one, it is no longer accurate. */
1062 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1064 if ((GET_CODE (in_insn) == INSN
1065 || GET_CODE (in_insn) == JUMP_INSN)
1066 && find_regno_note (in_insn, REG_DEAD, dreg))
1068 remove_death (dreg, in_insn);
1069 break;
1071 in_insn = PREV_INSN (in_insn);
1074 /* Delete the second load of the value. */
1075 delete_insn (insn);
1078 else if (GET_CODE (body) == PARALLEL)
1080 /* If each part is a set between two identical registers or
1081 a USE or CLOBBER, delete the insn. */
1082 int i, sreg, dreg;
1083 rtx tem;
1085 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1087 tem = XVECEXP (body, 0, i);
1088 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1089 continue;
1091 if (GET_CODE (tem) != SET
1092 || (sreg = true_regnum (SET_SRC (tem))) < 0
1093 || (dreg = true_regnum (SET_DEST (tem))) < 0
1094 || dreg != sreg)
1095 break;
1098 if (i < 0)
1099 delete_insn (insn);
1101 /* Also delete insns to store bit fields if they are no-ops. */
1102 /* Not worth the hair to detect this in the big-endian case. */
1103 else if (! BYTES_BIG_ENDIAN
1104 && GET_CODE (body) == SET
1105 && GET_CODE (SET_DEST (body)) == ZERO_EXTRACT
1106 && XEXP (SET_DEST (body), 2) == const0_rtx
1107 && XEXP (SET_DEST (body), 0) == SET_SRC (body)
1108 && ! (GET_CODE (SET_SRC (body)) == MEM
1109 && MEM_VOLATILE_P (SET_SRC (body))))
1110 delete_insn (insn);
1112 insn = next;
1116 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1117 jump. Assume that this unconditional jump is to the exit test code. If
1118 the code is sufficiently simple, make a copy of it before INSN,
1119 followed by a jump to the exit of the loop. Then delete the unconditional
1120 jump after INSN.
1122 Return 1 if we made the change, else 0.
1124 This is only safe immediately after a regscan pass because it uses the
1125 values of regno_first_uid and regno_last_uid. */
1127 static int
1128 duplicate_loop_exit_test (loop_start)
1129 rtx loop_start;
1131 rtx insn, set, reg, p, link;
1132 rtx copy = 0, first_copy = 0;
1133 int num_insns = 0;
1134 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1135 rtx lastexit;
1136 int max_reg = max_reg_num ();
1137 rtx *reg_map = 0;
1139 /* Scan the exit code. We do not perform this optimization if any insn:
1141 is a CALL_INSN
1142 is a CODE_LABEL
1143 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1144 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1145 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1146 is not valid.
1148 We also do not do this if we find an insn with ASM_OPERANDS. While
1149 this restriction should not be necessary, copying an insn with
1150 ASM_OPERANDS can confuse asm_noperands in some cases.
1152 Also, don't do this if the exit code is more than 20 insns. */
1154 for (insn = exitcode;
1155 insn
1156 && ! (GET_CODE (insn) == NOTE
1157 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1158 insn = NEXT_INSN (insn))
1160 switch (GET_CODE (insn))
1162 case CODE_LABEL:
1163 case CALL_INSN:
1164 return 0;
1165 case NOTE:
1166 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1167 a jump immediately after the loop start that branches outside
1168 the loop but within an outer loop, near the exit test.
1169 If we copied this exit test and created a phony
1170 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1171 before the exit test look like these could be safely moved
1172 out of the loop even if they actually may be never executed.
1173 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1175 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1176 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1177 return 0;
1179 if (optimize < 2
1180 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1181 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1182 /* If we were to duplicate this code, we would not move
1183 the BLOCK notes, and so debugging the moved code would
1184 be difficult. Thus, we only move the code with -O2 or
1185 higher. */
1186 return 0;
1188 break;
1189 case JUMP_INSN:
1190 case INSN:
1191 /* The code below would grossly mishandle REG_WAS_0 notes,
1192 so get rid of them here. */
1193 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1194 remove_note (insn, p);
1195 if (++num_insns > 20
1196 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1197 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1198 return 0;
1199 break;
1200 default:
1201 break;
1205 /* Unless INSN is zero, we can do the optimization. */
1206 if (insn == 0)
1207 return 0;
1209 lastexit = insn;
1211 /* See if any insn sets a register only used in the loop exit code and
1212 not a user variable. If so, replace it with a new register. */
1213 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1214 if (GET_CODE (insn) == INSN
1215 && (set = single_set (insn)) != 0
1216 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1217 || (GET_CODE (reg) == SUBREG
1218 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1219 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1220 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1222 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1223 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1224 break;
1226 if (p != lastexit)
1228 /* We can do the replacement. Allocate reg_map if this is the
1229 first replacement we found. */
1230 if (reg_map == 0)
1231 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1233 REG_LOOP_TEST_P (reg) = 1;
1235 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1239 /* Now copy each insn. */
1240 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1242 switch (GET_CODE (insn))
1244 case BARRIER:
1245 copy = emit_barrier_before (loop_start);
1246 break;
1247 case NOTE:
1248 /* Only copy line-number notes. */
1249 if (NOTE_LINE_NUMBER (insn) >= 0)
1251 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1252 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1254 break;
1256 case INSN:
1257 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1258 if (reg_map)
1259 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1261 mark_jump_label (PATTERN (copy), copy, 0, 0);
1263 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1264 make them. */
1265 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1266 if (REG_NOTE_KIND (link) != REG_LABEL)
1268 if (GET_CODE (link) == EXPR_LIST)
1269 REG_NOTES (copy)
1270 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1271 XEXP (link, 0),
1272 REG_NOTES (copy)));
1273 else
1274 REG_NOTES (copy)
1275 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1276 XEXP (link, 0),
1277 REG_NOTES (copy)));
1280 if (reg_map && REG_NOTES (copy))
1281 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1282 break;
1284 case JUMP_INSN:
1285 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1286 loop_start);
1287 if (reg_map)
1288 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1289 mark_jump_label (PATTERN (copy), copy, 0, 0);
1290 if (REG_NOTES (insn))
1292 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1293 if (reg_map)
1294 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1297 /* If this is a simple jump, add it to the jump chain. */
1299 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1300 && simplejump_p (copy))
1302 jump_chain[INSN_UID (copy)]
1303 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1304 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1306 break;
1308 default:
1309 abort ();
1312 /* Record the first insn we copied. We need it so that we can
1313 scan the copied insns for new pseudo registers. */
1314 if (! first_copy)
1315 first_copy = copy;
1318 /* Now clean up by emitting a jump to the end label and deleting the jump
1319 at the start of the loop. */
1320 if (! copy || GET_CODE (copy) != BARRIER)
1322 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1323 loop_start);
1325 /* Record the first insn we copied. We need it so that we can
1326 scan the copied insns for new pseudo registers. This may not
1327 be strictly necessary since we should have copied at least one
1328 insn above. But I am going to be safe. */
1329 if (! first_copy)
1330 first_copy = copy;
1332 mark_jump_label (PATTERN (copy), copy, 0, 0);
1333 if (INSN_UID (copy) < max_jump_chain
1334 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1336 jump_chain[INSN_UID (copy)]
1337 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1338 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1340 emit_barrier_before (loop_start);
1343 /* Now scan from the first insn we copied to the last insn we copied
1344 (copy) for new pseudo registers. Do this after the code to jump to
1345 the end label since that might create a new pseudo too. */
1346 reg_scan_update (first_copy, copy, max_reg);
1348 /* Mark the exit code as the virtual top of the converted loop. */
1349 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1351 delete_insn (next_nonnote_insn (loop_start));
1353 /* Clean up. */
1354 if (reg_map)
1355 free (reg_map);
1357 return 1;
1360 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1361 notes between START and END out before START. Assume that END is not
1362 such a note. START may be such a note. Returns the value of the new
1363 starting insn, which may be different if the original start was such a
1364 note. */
1367 squeeze_notes (start, end)
1368 rtx start, end;
1370 rtx insn;
1371 rtx next;
1373 for (insn = start; insn != end; insn = next)
1375 next = NEXT_INSN (insn);
1376 if (GET_CODE (insn) == NOTE
1377 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1378 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1379 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1380 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1381 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1382 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1384 if (insn == start)
1385 start = next;
1386 else
1388 rtx prev = PREV_INSN (insn);
1389 PREV_INSN (insn) = PREV_INSN (start);
1390 NEXT_INSN (insn) = start;
1391 NEXT_INSN (PREV_INSN (insn)) = insn;
1392 PREV_INSN (NEXT_INSN (insn)) = insn;
1393 NEXT_INSN (prev) = next;
1394 PREV_INSN (next) = prev;
1399 return start;
1402 /* Compare the instructions before insn E1 with those before E2
1403 to find an opportunity for cross jumping.
1404 (This means detecting identical sequences of insns followed by
1405 jumps to the same place, or followed by a label and a jump
1406 to that label, and replacing one with a jump to the other.)
1408 Assume E1 is a jump that jumps to label E2
1409 (that is not always true but it might as well be).
1410 Find the longest possible equivalent sequences
1411 and store the first insns of those sequences into *F1 and *F2.
1412 Store zero there if no equivalent preceding instructions are found.
1414 We give up if we find a label in stream 1.
1415 Actually we could transfer that label into stream 2. */
1417 static void
1418 find_cross_jump (e1, e2, minimum, f1, f2)
1419 rtx e1, e2;
1420 int minimum;
1421 rtx *f1, *f2;
1423 register rtx i1 = e1, i2 = e2;
1424 register rtx p1, p2;
1425 int lose = 0;
1427 rtx last1 = 0, last2 = 0;
1428 rtx afterlast1 = 0, afterlast2 = 0;
1430 *f1 = 0;
1431 *f2 = 0;
1433 while (1)
1435 i1 = prev_nonnote_insn (i1);
1437 i2 = PREV_INSN (i2);
1438 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1439 i2 = PREV_INSN (i2);
1441 if (i1 == 0)
1442 break;
1444 /* Don't allow the range of insns preceding E1 or E2
1445 to include the other (E2 or E1). */
1446 if (i2 == e1 || i1 == e2)
1447 break;
1449 /* If we will get to this code by jumping, those jumps will be
1450 tensioned to go directly to the new label (before I2),
1451 so this cross-jumping won't cost extra. So reduce the minimum. */
1452 if (GET_CODE (i1) == CODE_LABEL)
1454 --minimum;
1455 break;
1458 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1459 break;
1461 p1 = PATTERN (i1);
1462 p2 = PATTERN (i2);
1464 /* If this is a CALL_INSN, compare register usage information.
1465 If we don't check this on stack register machines, the two
1466 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1467 numbers of stack registers in the same basic block.
1468 If we don't check this on machines with delay slots, a delay slot may
1469 be filled that clobbers a parameter expected by the subroutine.
1471 ??? We take the simple route for now and assume that if they're
1472 equal, they were constructed identically. */
1474 if (GET_CODE (i1) == CALL_INSN
1475 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1476 CALL_INSN_FUNCTION_USAGE (i2)))
1477 lose = 1;
1479 #ifdef STACK_REGS
1480 /* If cross_jump_death_matters is not 0, the insn's mode
1481 indicates whether or not the insn contains any stack-like
1482 regs. */
1484 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1486 /* If register stack conversion has already been done, then
1487 death notes must also be compared before it is certain that
1488 the two instruction streams match. */
1490 rtx note;
1491 HARD_REG_SET i1_regset, i2_regset;
1493 CLEAR_HARD_REG_SET (i1_regset);
1494 CLEAR_HARD_REG_SET (i2_regset);
1496 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1497 if (REG_NOTE_KIND (note) == REG_DEAD
1498 && STACK_REG_P (XEXP (note, 0)))
1499 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1501 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1502 if (REG_NOTE_KIND (note) == REG_DEAD
1503 && STACK_REG_P (XEXP (note, 0)))
1504 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1506 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1508 lose = 1;
1510 done:
1513 #endif
1515 /* Don't allow old-style asm or volatile extended asms to be accepted
1516 for cross jumping purposes. It is conceptually correct to allow
1517 them, since cross-jumping preserves the dynamic instruction order
1518 even though it is changing the static instruction order. However,
1519 if an asm is being used to emit an assembler pseudo-op, such as
1520 the MIPS `.set reorder' pseudo-op, then the static instruction order
1521 matters and it must be preserved. */
1522 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1523 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1524 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1525 lose = 1;
1527 if (lose || GET_CODE (p1) != GET_CODE (p2)
1528 || ! rtx_renumbered_equal_p (p1, p2))
1530 /* The following code helps take care of G++ cleanups. */
1531 rtx equiv1;
1532 rtx equiv2;
1534 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1535 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1536 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1537 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1538 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1539 /* If the equivalences are not to a constant, they may
1540 reference pseudos that no longer exist, so we can't
1541 use them. */
1542 && CONSTANT_P (XEXP (equiv1, 0))
1543 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1545 rtx s1 = single_set (i1);
1546 rtx s2 = single_set (i2);
1547 if (s1 != 0 && s2 != 0
1548 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1550 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1551 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1552 if (! rtx_renumbered_equal_p (p1, p2))
1553 cancel_changes (0);
1554 else if (apply_change_group ())
1555 goto win;
1559 /* Insns fail to match; cross jumping is limited to the following
1560 insns. */
1562 #ifdef HAVE_cc0
1563 /* Don't allow the insn after a compare to be shared by
1564 cross-jumping unless the compare is also shared.
1565 Here, if either of these non-matching insns is a compare,
1566 exclude the following insn from possible cross-jumping. */
1567 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1568 last1 = afterlast1, last2 = afterlast2, ++minimum;
1569 #endif
1571 /* If cross-jumping here will feed a jump-around-jump
1572 optimization, this jump won't cost extra, so reduce
1573 the minimum. */
1574 if (GET_CODE (i1) == JUMP_INSN
1575 && JUMP_LABEL (i1)
1576 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1577 --minimum;
1578 break;
1581 win:
1582 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1584 /* Ok, this insn is potentially includable in a cross-jump here. */
1585 afterlast1 = last1, afterlast2 = last2;
1586 last1 = i1, last2 = i2, --minimum;
1590 if (minimum <= 0 && last1 != 0 && last1 != e1)
1591 *f1 = last1, *f2 = last2;
1594 static void
1595 do_cross_jump (insn, newjpos, newlpos)
1596 rtx insn, newjpos, newlpos;
1598 /* Find an existing label at this point
1599 or make a new one if there is none. */
1600 register rtx label = get_label_before (newlpos);
1602 /* Make the same jump insn jump to the new point. */
1603 if (GET_CODE (PATTERN (insn)) == RETURN)
1605 /* Remove from jump chain of returns. */
1606 delete_from_jump_chain (insn);
1607 /* Change the insn. */
1608 PATTERN (insn) = gen_jump (label);
1609 INSN_CODE (insn) = -1;
1610 JUMP_LABEL (insn) = label;
1611 LABEL_NUSES (label)++;
1612 /* Add to new the jump chain. */
1613 if (INSN_UID (label) < max_jump_chain
1614 && INSN_UID (insn) < max_jump_chain)
1616 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1617 jump_chain[INSN_UID (label)] = insn;
1620 else
1621 redirect_jump (insn, label, 1);
1623 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1624 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1625 the NEWJPOS stream. */
1627 while (newjpos != insn)
1629 rtx lnote;
1631 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1632 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1633 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1634 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1635 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1636 remove_note (newlpos, lnote);
1638 delete_insn (newjpos);
1639 newjpos = next_real_insn (newjpos);
1640 newlpos = next_real_insn (newlpos);
1644 /* Return the label before INSN, or put a new label there. */
1647 get_label_before (insn)
1648 rtx insn;
1650 rtx label;
1652 /* Find an existing label at this point
1653 or make a new one if there is none. */
1654 label = prev_nonnote_insn (insn);
1656 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1658 rtx prev = PREV_INSN (insn);
1660 label = gen_label_rtx ();
1661 emit_label_after (label, prev);
1662 LABEL_NUSES (label) = 0;
1664 return label;
1667 /* Return the label after INSN, or put a new label there. */
1670 get_label_after (insn)
1671 rtx insn;
1673 rtx label;
1675 /* Find an existing label at this point
1676 or make a new one if there is none. */
1677 label = next_nonnote_insn (insn);
1679 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1681 label = gen_label_rtx ();
1682 emit_label_after (label, insn);
1683 LABEL_NUSES (label) = 0;
1685 return label;
1688 /* Return 1 if INSN is a jump that jumps to right after TARGET
1689 only on the condition that TARGET itself would drop through.
1690 Assumes that TARGET is a conditional jump. */
1692 static int
1693 jump_back_p (insn, target)
1694 rtx insn, target;
1696 rtx cinsn, ctarget;
1697 enum rtx_code codei, codet;
1698 rtx set, tset;
1700 if (! any_condjump_p (insn)
1701 || any_uncondjump_p (target)
1702 || target != prev_real_insn (JUMP_LABEL (insn)))
1703 return 0;
1704 set = pc_set (insn);
1705 tset = pc_set (target);
1707 cinsn = XEXP (SET_SRC (set), 0);
1708 ctarget = XEXP (SET_SRC (tset), 0);
1710 codei = GET_CODE (cinsn);
1711 codet = GET_CODE (ctarget);
1713 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1715 codei = reversed_comparison_code (cinsn, insn);
1716 if (codei == UNKNOWN)
1717 return 0;
1720 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1722 codet = reversed_comparison_code (ctarget, target);
1723 if (codei == UNKNOWN)
1724 return 0;
1727 return (codei == codet
1728 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1729 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1732 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1733 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1734 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1735 know whether it's source is floating point or integer comparison. Machine
1736 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1737 to help this function avoid overhead in these cases. */
1738 enum rtx_code
1739 reversed_comparison_code_parts (code, arg0, arg1, insn)
1740 rtx insn, arg0, arg1;
1741 enum rtx_code code;
1743 enum machine_mode mode;
1745 /* If this is not actually a comparison, we can't reverse it. */
1746 if (GET_RTX_CLASS (code) != '<')
1747 return UNKNOWN;
1749 mode = GET_MODE (arg0);
1750 if (mode == VOIDmode)
1751 mode = GET_MODE (arg1);
1753 /* First see if machine description supply us way to reverse the comparison.
1754 Give it priority over everything else to allow machine description to do
1755 tricks. */
1756 #ifdef REVERSIBLE_CC_MODE
1757 if (GET_MODE_CLASS (mode) == MODE_CC
1758 && REVERSIBLE_CC_MODE (mode))
1760 #ifdef REVERSE_CONDITION
1761 return REVERSE_CONDITION (code, mode);
1762 #endif
1763 return reverse_condition (code);
1765 #endif
1767 /* Try few special cases based on the comparison code. */
1768 switch (code)
1770 case GEU:
1771 case GTU:
1772 case LEU:
1773 case LTU:
1774 case NE:
1775 case EQ:
1776 /* It is always safe to reverse EQ and NE, even for the floating
1777 point. Similary the unsigned comparisons are never used for
1778 floating point so we can reverse them in the default way. */
1779 return reverse_condition (code);
1780 case ORDERED:
1781 case UNORDERED:
1782 case LTGT:
1783 case UNEQ:
1784 /* In case we already see unordered comparison, we can be sure to
1785 be dealing with floating point so we don't need any more tests. */
1786 return reverse_condition_maybe_unordered (code);
1787 case UNLT:
1788 case UNLE:
1789 case UNGT:
1790 case UNGE:
1791 /* We don't have safe way to reverse these yet. */
1792 return UNKNOWN;
1793 default:
1794 break;
1797 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1798 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1799 || flag_fast_math)
1800 return reverse_condition (code);
1802 if (GET_MODE_CLASS (mode) == MODE_CC
1803 #ifdef HAVE_cc0
1804 || arg0 == cc0_rtx
1805 #endif
1808 rtx prev;
1809 /* Try to search for the comparison to determine the real mode.
1810 This code is expensive, but with sane machine description it
1811 will be never used, since REVERSIBLE_CC_MODE will return true
1812 in all cases. */
1813 if (! insn)
1814 return UNKNOWN;
1816 for (prev = prev_nonnote_insn (insn);
1817 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1818 prev = prev_nonnote_insn (prev))
1820 rtx set = set_of (arg0, prev);
1821 if (set && GET_CODE (set) == SET
1822 && rtx_equal_p (SET_DEST (set), arg0))
1824 rtx src = SET_SRC (set);
1826 if (GET_CODE (src) == COMPARE)
1828 rtx comparison = src;
1829 arg0 = XEXP (src, 0);
1830 mode = GET_MODE (arg0);
1831 if (mode == VOIDmode)
1832 mode = GET_MODE (XEXP (comparison, 1));
1833 break;
1835 /* We can get past reg-reg moves. This may be usefull for model
1836 of i387 comparisons that first move flag registers around. */
1837 if (REG_P (src))
1839 arg0 = src;
1840 continue;
1843 /* If register is clobbered in some ununderstandable way,
1844 give up. */
1845 if (set)
1846 return UNKNOWN;
1850 /* An integer condition. */
1851 if (GET_CODE (arg0) == CONST_INT
1852 || (GET_MODE (arg0) != VOIDmode
1853 && GET_MODE_CLASS (mode) != MODE_CC
1854 && ! FLOAT_MODE_P (mode)))
1855 return reverse_condition (code);
1857 return UNKNOWN;
1860 /* An wrapper around the previous function to take COMPARISON as rtx
1861 expression. This simplifies many callers. */
1862 enum rtx_code
1863 reversed_comparison_code (comparison, insn)
1864 rtx comparison, insn;
1866 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1867 return UNKNOWN;
1868 return reversed_comparison_code_parts (GET_CODE (comparison),
1869 XEXP (comparison, 0),
1870 XEXP (comparison, 1), insn);
1873 /* Given a comparison, COMPARISON, inside a conditional jump insn, INSN,
1874 return non-zero if it is safe to reverse this comparison. It is if our
1875 floating-point is not IEEE, if this is an NE or EQ comparison, or if
1876 this is known to be an integer comparison.
1878 Use of this function is depreached and you should use
1879 REVERSED_COMPARISON_CODE bits instead.
1883 can_reverse_comparison_p (comparison, insn)
1884 rtx comparison;
1885 rtx insn;
1887 enum rtx_code code;
1889 /* If this is not actually a comparison, we can't reverse it. */
1890 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1891 return 0;
1893 code = reversed_comparison_code (comparison, insn);
1894 if (code == UNKNOWN)
1895 return 0;
1897 /* The code will follow can_reverse_comparison_p with reverse_condition,
1898 so see if it will get proper result. */
1899 return (code == reverse_condition (GET_CODE (comparison)));
1902 /* Given an rtx-code for a comparison, return the code for the negated
1903 comparison. If no such code exists, return UNKNOWN.
1905 WATCH OUT! reverse_condition is not safe to use on a jump that might
1906 be acting on the results of an IEEE floating point comparison, because
1907 of the special treatment of non-signaling nans in comparisons.
1908 Use reversed_comparison_code instead. */
1910 enum rtx_code
1911 reverse_condition (code)
1912 enum rtx_code code;
1914 switch (code)
1916 case EQ:
1917 return NE;
1918 case NE:
1919 return EQ;
1920 case GT:
1921 return LE;
1922 case GE:
1923 return LT;
1924 case LT:
1925 return GE;
1926 case LE:
1927 return GT;
1928 case GTU:
1929 return LEU;
1930 case GEU:
1931 return LTU;
1932 case LTU:
1933 return GEU;
1934 case LEU:
1935 return GTU;
1936 case UNORDERED:
1937 return ORDERED;
1938 case ORDERED:
1939 return UNORDERED;
1941 case UNLT:
1942 case UNLE:
1943 case UNGT:
1944 case UNGE:
1945 case UNEQ:
1946 case LTGT:
1947 return UNKNOWN;
1949 default:
1950 abort ();
1954 /* Similar, but we're allowed to generate unordered comparisons, which
1955 makes it safe for IEEE floating-point. Of course, we have to recognize
1956 that the target will support them too... */
1958 enum rtx_code
1959 reverse_condition_maybe_unordered (code)
1960 enum rtx_code code;
1962 /* Non-IEEE formats don't have unordered conditions. */
1963 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1964 return reverse_condition (code);
1966 switch (code)
1968 case EQ:
1969 return NE;
1970 case NE:
1971 return EQ;
1972 case GT:
1973 return UNLE;
1974 case GE:
1975 return UNLT;
1976 case LT:
1977 return UNGE;
1978 case LE:
1979 return UNGT;
1980 case LTGT:
1981 return UNEQ;
1982 case UNORDERED:
1983 return ORDERED;
1984 case ORDERED:
1985 return UNORDERED;
1986 case UNLT:
1987 return GE;
1988 case UNLE:
1989 return GT;
1990 case UNGT:
1991 return LE;
1992 case UNGE:
1993 return LT;
1994 case UNEQ:
1995 return LTGT;
1997 default:
1998 abort ();
2002 /* Similar, but return the code when two operands of a comparison are swapped.
2003 This IS safe for IEEE floating-point. */
2005 enum rtx_code
2006 swap_condition (code)
2007 enum rtx_code code;
2009 switch (code)
2011 case EQ:
2012 case NE:
2013 case UNORDERED:
2014 case ORDERED:
2015 case UNEQ:
2016 case LTGT:
2017 return code;
2019 case GT:
2020 return LT;
2021 case GE:
2022 return LE;
2023 case LT:
2024 return GT;
2025 case LE:
2026 return GE;
2027 case GTU:
2028 return LTU;
2029 case GEU:
2030 return LEU;
2031 case LTU:
2032 return GTU;
2033 case LEU:
2034 return GEU;
2035 case UNLT:
2036 return UNGT;
2037 case UNLE:
2038 return UNGE;
2039 case UNGT:
2040 return UNLT;
2041 case UNGE:
2042 return UNLE;
2044 default:
2045 abort ();
2049 /* Given a comparison CODE, return the corresponding unsigned comparison.
2050 If CODE is an equality comparison or already an unsigned comparison,
2051 CODE is returned. */
2053 enum rtx_code
2054 unsigned_condition (code)
2055 enum rtx_code code;
2057 switch (code)
2059 case EQ:
2060 case NE:
2061 case GTU:
2062 case GEU:
2063 case LTU:
2064 case LEU:
2065 return code;
2067 case GT:
2068 return GTU;
2069 case GE:
2070 return GEU;
2071 case LT:
2072 return LTU;
2073 case LE:
2074 return LEU;
2076 default:
2077 abort ();
2081 /* Similarly, return the signed version of a comparison. */
2083 enum rtx_code
2084 signed_condition (code)
2085 enum rtx_code code;
2087 switch (code)
2089 case EQ:
2090 case NE:
2091 case GT:
2092 case GE:
2093 case LT:
2094 case LE:
2095 return code;
2097 case GTU:
2098 return GT;
2099 case GEU:
2100 return GE;
2101 case LTU:
2102 return LT;
2103 case LEU:
2104 return LE;
2106 default:
2107 abort ();
2111 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2112 truth of CODE1 implies the truth of CODE2. */
2115 comparison_dominates_p (code1, code2)
2116 enum rtx_code code1, code2;
2118 /* UNKNOWN comparison codes can happen as a result of trying to revert
2119 comparison codes.
2120 They can't match anything, so we have to reject them here. */
2121 if (code1 == UNKNOWN || code2 == UNKNOWN)
2122 return 0;
2124 if (code1 == code2)
2125 return 1;
2127 switch (code1)
2129 case UNEQ:
2130 if (code2 == UNLE || code2 == UNGE)
2131 return 1;
2132 break;
2134 case EQ:
2135 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2136 || code2 == ORDERED)
2137 return 1;
2138 break;
2140 case UNLT:
2141 if (code2 == UNLE || code2 == NE)
2142 return 1;
2143 break;
2145 case LT:
2146 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2147 return 1;
2148 break;
2150 case UNGT:
2151 if (code2 == UNGE || code2 == NE)
2152 return 1;
2153 break;
2155 case GT:
2156 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2157 return 1;
2158 break;
2160 case GE:
2161 case LE:
2162 if (code2 == ORDERED)
2163 return 1;
2164 break;
2166 case LTGT:
2167 if (code2 == NE || code2 == ORDERED)
2168 return 1;
2169 break;
2171 case LTU:
2172 if (code2 == LEU || code2 == NE)
2173 return 1;
2174 break;
2176 case GTU:
2177 if (code2 == GEU || code2 == NE)
2178 return 1;
2179 break;
2181 case UNORDERED:
2182 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2183 || code2 == UNGE || code2 == UNGT)
2184 return 1;
2185 break;
2187 default:
2188 break;
2191 return 0;
2194 /* Return 1 if INSN is an unconditional jump and nothing else. */
2197 simplejump_p (insn)
2198 rtx insn;
2200 return (GET_CODE (insn) == JUMP_INSN
2201 && GET_CODE (PATTERN (insn)) == SET
2202 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2203 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2206 /* Return nonzero if INSN is a (possibly) conditional jump
2207 and nothing more.
2209 Use this function is deprecated, since we need to support combined
2210 branch and compare insns. Use any_condjump_p instead whenever possible. */
2213 condjump_p (insn)
2214 rtx insn;
2216 register rtx x = PATTERN (insn);
2218 if (GET_CODE (x) != SET
2219 || GET_CODE (SET_DEST (x)) != PC)
2220 return 0;
2222 x = SET_SRC (x);
2223 if (GET_CODE (x) == LABEL_REF)
2224 return 1;
2225 else
2226 return (GET_CODE (x) == IF_THEN_ELSE
2227 && ((GET_CODE (XEXP (x, 2)) == PC
2228 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2229 || GET_CODE (XEXP (x, 1)) == RETURN))
2230 || (GET_CODE (XEXP (x, 1)) == PC
2231 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2232 || GET_CODE (XEXP (x, 2)) == RETURN))));
2234 return 0;
2237 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2238 PARALLEL.
2240 Use this function is deprecated, since we need to support combined
2241 branch and compare insns. Use any_condjump_p instead whenever possible. */
2244 condjump_in_parallel_p (insn)
2245 rtx insn;
2247 register rtx x = PATTERN (insn);
2249 if (GET_CODE (x) != PARALLEL)
2250 return 0;
2251 else
2252 x = XVECEXP (x, 0, 0);
2254 if (GET_CODE (x) != SET)
2255 return 0;
2256 if (GET_CODE (SET_DEST (x)) != PC)
2257 return 0;
2258 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2259 return 1;
2260 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2261 return 0;
2262 if (XEXP (SET_SRC (x), 2) == pc_rtx
2263 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2264 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2265 return 1;
2266 if (XEXP (SET_SRC (x), 1) == pc_rtx
2267 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2268 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2269 return 1;
2270 return 0;
2273 /* Return set of PC, otherwise NULL. */
2276 pc_set (insn)
2277 rtx insn;
2279 rtx pat;
2280 if (GET_CODE (insn) != JUMP_INSN)
2281 return NULL_RTX;
2282 pat = PATTERN (insn);
2284 /* The set is allowed to appear either as the insn pattern or
2285 the first set in a PARALLEL. */
2286 if (GET_CODE (pat) == PARALLEL)
2287 pat = XVECEXP (pat, 0, 0);
2288 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2289 return pat;
2291 return NULL_RTX;
2294 /* Return true when insn is an unconditional direct jump,
2295 possibly bundled inside a PARALLEL. */
2298 any_uncondjump_p (insn)
2299 rtx insn;
2301 rtx x = pc_set (insn);
2302 if (!x)
2303 return 0;
2304 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2305 return 0;
2306 return 1;
2309 /* Return true when insn is a conditional jump. This function works for
2310 instructions containing PC sets in PARALLELs. The instruction may have
2311 various other effects so before removing the jump you must verify
2312 onlyjump_p.
2314 Note that unlike condjump_p it returns false for unconditional jumps. */
2317 any_condjump_p (insn)
2318 rtx insn;
2320 rtx x = pc_set (insn);
2321 enum rtx_code a, b;
2323 if (!x)
2324 return 0;
2325 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2326 return 0;
2328 a = GET_CODE (XEXP (SET_SRC (x), 1));
2329 b = GET_CODE (XEXP (SET_SRC (x), 2));
2331 return ((b == PC && (a == LABEL_REF || a == RETURN))
2332 || (a == PC && (b == LABEL_REF || b == RETURN)));
2335 /* Return the label of a conditional jump. */
2338 condjump_label (insn)
2339 rtx insn;
2341 rtx x = pc_set (insn);
2343 if (!x)
2344 return NULL_RTX;
2345 x = SET_SRC (x);
2346 if (GET_CODE (x) == LABEL_REF)
2347 return x;
2348 if (GET_CODE (x) != IF_THEN_ELSE)
2349 return NULL_RTX;
2350 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2351 return XEXP (x, 1);
2352 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2353 return XEXP (x, 2);
2354 return NULL_RTX;
2357 /* Return true if INSN is a (possibly conditional) return insn. */
2359 static int
2360 returnjump_p_1 (loc, data)
2361 rtx *loc;
2362 void *data ATTRIBUTE_UNUSED;
2364 rtx x = *loc;
2365 return x && GET_CODE (x) == RETURN;
2369 returnjump_p (insn)
2370 rtx insn;
2372 if (GET_CODE (insn) != JUMP_INSN)
2373 return 0;
2374 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2377 /* Return true if INSN is a jump that only transfers control and
2378 nothing more. */
2381 onlyjump_p (insn)
2382 rtx insn;
2384 rtx set;
2386 if (GET_CODE (insn) != JUMP_INSN)
2387 return 0;
2389 set = single_set (insn);
2390 if (set == NULL)
2391 return 0;
2392 if (GET_CODE (SET_DEST (set)) != PC)
2393 return 0;
2394 if (side_effects_p (SET_SRC (set)))
2395 return 0;
2397 return 1;
2400 #ifdef HAVE_cc0
2402 /* Return 1 if X is an RTX that does nothing but set the condition codes
2403 and CLOBBER or USE registers.
2404 Return -1 if X does explicitly set the condition codes,
2405 but also does other things. */
2408 sets_cc0_p (x)
2409 rtx x ATTRIBUTE_UNUSED;
2411 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2412 return 1;
2413 if (GET_CODE (x) == PARALLEL)
2415 int i;
2416 int sets_cc0 = 0;
2417 int other_things = 0;
2418 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2420 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2421 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2422 sets_cc0 = 1;
2423 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2424 other_things = 1;
2426 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2428 return 0;
2430 #endif
2432 /* Follow any unconditional jump at LABEL;
2433 return the ultimate label reached by any such chain of jumps.
2434 If LABEL is not followed by a jump, return LABEL.
2435 If the chain loops or we can't find end, return LABEL,
2436 since that tells caller to avoid changing the insn.
2438 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2439 a USE or CLOBBER. */
2442 follow_jumps (label)
2443 rtx label;
2445 register rtx insn;
2446 register rtx next;
2447 register rtx value = label;
2448 register int depth;
2450 for (depth = 0;
2451 (depth < 10
2452 && (insn = next_active_insn (value)) != 0
2453 && GET_CODE (insn) == JUMP_INSN
2454 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2455 && onlyjump_p (insn))
2456 || GET_CODE (PATTERN (insn)) == RETURN)
2457 && (next = NEXT_INSN (insn))
2458 && GET_CODE (next) == BARRIER);
2459 depth++)
2461 /* Don't chain through the insn that jumps into a loop
2462 from outside the loop,
2463 since that would create multiple loop entry jumps
2464 and prevent loop optimization. */
2465 rtx tem;
2466 if (!reload_completed)
2467 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2468 if (GET_CODE (tem) == NOTE
2469 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2470 /* ??? Optional. Disables some optimizations, but makes
2471 gcov output more accurate with -O. */
2472 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2473 return value;
2475 /* If we have found a cycle, make the insn jump to itself. */
2476 if (JUMP_LABEL (insn) == label)
2477 return label;
2479 tem = next_active_insn (JUMP_LABEL (insn));
2480 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2481 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2482 break;
2484 value = JUMP_LABEL (insn);
2486 if (depth == 10)
2487 return label;
2488 return value;
2491 /* Assuming that field IDX of X is a vector of label_refs,
2492 replace each of them by the ultimate label reached by it.
2493 Return nonzero if a change is made.
2494 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2496 static int
2497 tension_vector_labels (x, idx)
2498 register rtx x;
2499 register int idx;
2501 int changed = 0;
2502 register int i;
2503 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2505 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2506 register rtx nlabel = follow_jumps (olabel);
2507 if (nlabel && nlabel != olabel)
2509 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2510 ++LABEL_NUSES (nlabel);
2511 if (--LABEL_NUSES (olabel) == 0)
2512 delete_insn (olabel);
2513 changed = 1;
2516 return changed;
2519 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2520 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2521 in INSN, then store one of them in JUMP_LABEL (INSN).
2522 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2523 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2524 Also, when there are consecutive labels, canonicalize on the last of them.
2526 Note that two labels separated by a loop-beginning note
2527 must be kept distinct if we have not yet done loop-optimization,
2528 because the gap between them is where loop-optimize
2529 will want to move invariant code to. CROSS_JUMP tells us
2530 that loop-optimization is done with.
2532 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2533 two labels distinct if they are separated by only USE or CLOBBER insns. */
2535 void
2536 mark_jump_label (x, insn, cross_jump, in_mem)
2537 register rtx x;
2538 rtx insn;
2539 int cross_jump;
2540 int in_mem;
2542 register RTX_CODE code = GET_CODE (x);
2543 register int i;
2544 register const char *fmt;
2546 switch (code)
2548 case PC:
2549 case CC0:
2550 case REG:
2551 case SUBREG:
2552 case CONST_INT:
2553 case CONST_DOUBLE:
2554 case CLOBBER:
2555 case CALL:
2556 return;
2558 case MEM:
2559 in_mem = 1;
2560 break;
2562 case SYMBOL_REF:
2563 if (!in_mem)
2564 return;
2566 /* If this is a constant-pool reference, see if it is a label. */
2567 if (CONSTANT_POOL_ADDRESS_P (x))
2568 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2569 break;
2571 case LABEL_REF:
2573 rtx label = XEXP (x, 0);
2574 rtx olabel = label;
2575 rtx next;
2577 /* Ignore remaining references to unreachable labels that
2578 have been deleted. */
2579 if (GET_CODE (label) == NOTE
2580 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2581 break;
2583 if (GET_CODE (label) != CODE_LABEL)
2584 abort ();
2586 /* Ignore references to labels of containing functions. */
2587 if (LABEL_REF_NONLOCAL_P (x))
2588 break;
2590 /* If there are other labels following this one,
2591 replace it with the last of the consecutive labels. */
2592 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2594 if (GET_CODE (next) == CODE_LABEL)
2595 label = next;
2596 else if (cross_jump && GET_CODE (next) == INSN
2597 && (GET_CODE (PATTERN (next)) == USE
2598 || GET_CODE (PATTERN (next)) == CLOBBER))
2599 continue;
2600 else if (GET_CODE (next) != NOTE)
2601 break;
2602 else if (! cross_jump
2603 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2604 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2605 /* ??? Optional. Disables some optimizations, but
2606 makes gcov output more accurate with -O. */
2607 || (flag_test_coverage
2608 && NOTE_LINE_NUMBER (next) > 0)))
2609 break;
2612 XEXP (x, 0) = label;
2613 if (! insn || ! INSN_DELETED_P (insn))
2614 ++LABEL_NUSES (label);
2616 if (insn)
2618 if (GET_CODE (insn) == JUMP_INSN)
2619 JUMP_LABEL (insn) = label;
2620 else
2622 /* If we've changed the label, update notes accordingly. */
2623 if (label != olabel)
2625 rtx note;
2627 /* We may have a REG_LABEL note to indicate that this
2628 instruction uses the label. */
2629 note = find_reg_note (insn, REG_LABEL, olabel);
2630 if (note)
2631 XEXP (note, 0) = label;
2633 /* We may also have a REG_EQUAL note to indicate that
2634 a register is being set to the address of the
2635 label. */
2636 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2637 if (note
2638 && GET_CODE (XEXP (note, 0)) == LABEL_REF
2639 && XEXP (XEXP (note, 0), 0) == olabel)
2640 XEXP (XEXP (note, 0), 0) = label;
2643 /* Add a REG_LABEL note for LABEL unless there already
2644 is one. All uses of a label, except for labels
2645 that are the targets of jumps, must have a
2646 REG_LABEL note. */
2647 if (! find_reg_note (insn, REG_LABEL, label))
2648 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2649 REG_NOTES (insn));
2652 return;
2655 /* Do walk the labels in a vector, but not the first operand of an
2656 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2657 case ADDR_VEC:
2658 case ADDR_DIFF_VEC:
2659 if (! INSN_DELETED_P (insn))
2661 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2663 for (i = 0; i < XVECLEN (x, eltnum); i++)
2664 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2665 cross_jump, in_mem);
2667 return;
2669 default:
2670 break;
2673 fmt = GET_RTX_FORMAT (code);
2674 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2676 if (fmt[i] == 'e')
2677 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2678 else if (fmt[i] == 'E')
2680 register int j;
2681 for (j = 0; j < XVECLEN (x, i); j++)
2682 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2687 /* If all INSN does is set the pc, delete it,
2688 and delete the insn that set the condition codes for it
2689 if that's what the previous thing was. */
2691 void
2692 delete_jump (insn)
2693 rtx insn;
2695 register rtx set = single_set (insn);
2697 if (set && GET_CODE (SET_DEST (set)) == PC)
2698 delete_computation (insn);
2701 /* Verify INSN is a BARRIER and delete it. */
2703 void
2704 delete_barrier (insn)
2705 rtx insn;
2707 if (GET_CODE (insn) != BARRIER)
2708 abort ();
2710 delete_insn (insn);
2713 /* Recursively delete prior insns that compute the value (used only by INSN
2714 which the caller is deleting) stored in the register mentioned by NOTE
2715 which is a REG_DEAD note associated with INSN. */
2717 static void
2718 delete_prior_computation (note, insn)
2719 rtx note;
2720 rtx insn;
2722 rtx our_prev;
2723 rtx reg = XEXP (note, 0);
2725 for (our_prev = prev_nonnote_insn (insn);
2726 our_prev && (GET_CODE (our_prev) == INSN
2727 || GET_CODE (our_prev) == CALL_INSN);
2728 our_prev = prev_nonnote_insn (our_prev))
2730 rtx pat = PATTERN (our_prev);
2732 /* If we reach a CALL which is not calling a const function
2733 or the callee pops the arguments, then give up. */
2734 if (GET_CODE (our_prev) == CALL_INSN
2735 && (! CONST_CALL_P (our_prev)
2736 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2737 break;
2739 /* If we reach a SEQUENCE, it is too complex to try to
2740 do anything with it, so give up. */
2741 if (GET_CODE (pat) == SEQUENCE)
2742 break;
2744 if (GET_CODE (pat) == USE
2745 && GET_CODE (XEXP (pat, 0)) == INSN)
2746 /* reorg creates USEs that look like this. We leave them
2747 alone because reorg needs them for its own purposes. */
2748 break;
2750 if (reg_set_p (reg, pat))
2752 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2753 break;
2755 if (GET_CODE (pat) == PARALLEL)
2757 /* If we find a SET of something else, we can't
2758 delete the insn. */
2760 int i;
2762 for (i = 0; i < XVECLEN (pat, 0); i++)
2764 rtx part = XVECEXP (pat, 0, i);
2766 if (GET_CODE (part) == SET
2767 && SET_DEST (part) != reg)
2768 break;
2771 if (i == XVECLEN (pat, 0))
2772 delete_computation (our_prev);
2774 else if (GET_CODE (pat) == SET
2775 && GET_CODE (SET_DEST (pat)) == REG)
2777 int dest_regno = REGNO (SET_DEST (pat));
2778 int dest_endregno
2779 = (dest_regno
2780 + (dest_regno < FIRST_PSEUDO_REGISTER
2781 ? HARD_REGNO_NREGS (dest_regno,
2782 GET_MODE (SET_DEST (pat))) : 1));
2783 int regno = REGNO (reg);
2784 int endregno
2785 = (regno
2786 + (regno < FIRST_PSEUDO_REGISTER
2787 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2789 if (dest_regno >= regno
2790 && dest_endregno <= endregno)
2791 delete_computation (our_prev);
2793 /* We may have a multi-word hard register and some, but not
2794 all, of the words of the register are needed in subsequent
2795 insns. Write REG_UNUSED notes for those parts that were not
2796 needed. */
2797 else if (dest_regno <= regno
2798 && dest_endregno >= endregno)
2800 int i;
2802 REG_NOTES (our_prev)
2803 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2804 REG_NOTES (our_prev));
2806 for (i = dest_regno; i < dest_endregno; i++)
2807 if (! find_regno_note (our_prev, REG_UNUSED, i))
2808 break;
2810 if (i == dest_endregno)
2811 delete_computation (our_prev);
2815 break;
2818 /* If PAT references the register that dies here, it is an
2819 additional use. Hence any prior SET isn't dead. However, this
2820 insn becomes the new place for the REG_DEAD note. */
2821 if (reg_overlap_mentioned_p (reg, pat))
2823 XEXP (note, 1) = REG_NOTES (our_prev);
2824 REG_NOTES (our_prev) = note;
2825 break;
2830 /* Delete INSN and recursively delete insns that compute values used only
2831 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2832 If we are running before flow.c, we need do nothing since flow.c will
2833 delete dead code. We also can't know if the registers being used are
2834 dead or not at this point.
2836 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2837 nothing other than set a register that dies in this insn, we can delete
2838 that insn as well.
2840 On machines with CC0, if CC0 is used in this insn, we may be able to
2841 delete the insn that set it. */
2843 static void
2844 delete_computation (insn)
2845 rtx insn;
2847 rtx note, next;
2849 #ifdef HAVE_cc0
2850 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2852 rtx prev = prev_nonnote_insn (insn);
2853 /* We assume that at this stage
2854 CC's are always set explicitly
2855 and always immediately before the jump that
2856 will use them. So if the previous insn
2857 exists to set the CC's, delete it
2858 (unless it performs auto-increments, etc.). */
2859 if (prev && GET_CODE (prev) == INSN
2860 && sets_cc0_p (PATTERN (prev)))
2862 if (sets_cc0_p (PATTERN (prev)) > 0
2863 && ! side_effects_p (PATTERN (prev)))
2864 delete_computation (prev);
2865 else
2866 /* Otherwise, show that cc0 won't be used. */
2867 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2868 cc0_rtx, REG_NOTES (prev));
2871 #endif
2873 for (note = REG_NOTES (insn); note; note = next)
2875 next = XEXP (note, 1);
2877 if (REG_NOTE_KIND (note) != REG_DEAD
2878 /* Verify that the REG_NOTE is legitimate. */
2879 || GET_CODE (XEXP (note, 0)) != REG)
2880 continue;
2882 delete_prior_computation (note, insn);
2885 delete_insn (insn);
2888 /* Delete insn INSN from the chain of insns and update label ref counts.
2889 May delete some following insns as a consequence; may even delete
2890 a label elsewhere and insns that follow it.
2892 Returns the first insn after INSN that was not deleted. */
2895 delete_insn (insn)
2896 register rtx insn;
2898 register rtx next = NEXT_INSN (insn);
2899 register rtx prev = PREV_INSN (insn);
2900 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2901 register int dont_really_delete = 0;
2902 rtx note;
2904 while (next && INSN_DELETED_P (next))
2905 next = NEXT_INSN (next);
2907 /* This insn is already deleted => return first following nondeleted. */
2908 if (INSN_DELETED_P (insn))
2909 return next;
2911 if (was_code_label)
2912 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2914 /* Don't delete user-declared labels. When optimizing, convert them
2915 to special NOTEs instead. When not optimizing, leave them alone. */
2916 if (was_code_label && LABEL_NAME (insn) != 0)
2918 if (optimize)
2920 const char *name = LABEL_NAME (insn);
2921 PUT_CODE (insn, NOTE);
2922 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2923 NOTE_SOURCE_FILE (insn) = name;
2926 dont_really_delete = 1;
2928 else
2929 /* Mark this insn as deleted. */
2930 INSN_DELETED_P (insn) = 1;
2932 /* If this is an unconditional jump, delete it from the jump chain. */
2933 if (simplejump_p (insn))
2934 delete_from_jump_chain (insn);
2936 /* If instruction is followed by a barrier,
2937 delete the barrier too. */
2939 if (next != 0 && GET_CODE (next) == BARRIER)
2941 INSN_DELETED_P (next) = 1;
2942 next = NEXT_INSN (next);
2945 /* Patch out INSN (and the barrier if any) */
2947 if (! dont_really_delete)
2949 if (prev)
2951 NEXT_INSN (prev) = next;
2952 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2953 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2954 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2957 if (next)
2959 PREV_INSN (next) = prev;
2960 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2961 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2964 if (prev && NEXT_INSN (prev) == 0)
2965 set_last_insn (prev);
2968 /* If deleting a jump, decrement the count of the label,
2969 and delete the label if it is now unused. */
2971 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2973 rtx lab = JUMP_LABEL (insn), lab_next;
2975 if (--LABEL_NUSES (lab) == 0)
2977 /* This can delete NEXT or PREV,
2978 either directly if NEXT is JUMP_LABEL (INSN),
2979 or indirectly through more levels of jumps. */
2980 delete_insn (lab);
2982 /* I feel a little doubtful about this loop,
2983 but I see no clean and sure alternative way
2984 to find the first insn after INSN that is not now deleted.
2985 I hope this works. */
2986 while (next && INSN_DELETED_P (next))
2987 next = NEXT_INSN (next);
2988 return next;
2990 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2991 && GET_CODE (lab_next) == JUMP_INSN
2992 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2993 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2995 /* If we're deleting the tablejump, delete the dispatch table.
2996 We may not be able to kill the label immediately preceeding
2997 just yet, as it might be referenced in code leading up to
2998 the tablejump. */
2999 delete_insn (lab_next);
3003 /* Likewise if we're deleting a dispatch table. */
3005 if (GET_CODE (insn) == JUMP_INSN
3006 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3007 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3009 rtx pat = PATTERN (insn);
3010 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
3011 int len = XVECLEN (pat, diff_vec_p);
3013 for (i = 0; i < len; i++)
3014 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
3015 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
3016 while (next && INSN_DELETED_P (next))
3017 next = NEXT_INSN (next);
3018 return next;
3021 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
3022 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
3023 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3024 if (REG_NOTE_KIND (note) == REG_LABEL
3025 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
3026 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
3027 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
3028 delete_insn (XEXP (note, 0));
3030 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
3031 prev = PREV_INSN (prev);
3033 /* If INSN was a label and a dispatch table follows it,
3034 delete the dispatch table. The tablejump must have gone already.
3035 It isn't useful to fall through into a table. */
3037 if (was_code_label
3038 && NEXT_INSN (insn) != 0
3039 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3040 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
3041 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
3042 next = delete_insn (NEXT_INSN (insn));
3044 /* If INSN was a label, delete insns following it if now unreachable. */
3046 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
3048 register RTX_CODE code;
3049 while (next != 0
3050 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
3051 || code == NOTE || code == BARRIER
3052 || (code == CODE_LABEL && INSN_DELETED_P (next))))
3054 if (code == NOTE
3055 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
3056 next = NEXT_INSN (next);
3057 /* Keep going past other deleted labels to delete what follows. */
3058 else if (code == CODE_LABEL && INSN_DELETED_P (next))
3059 next = NEXT_INSN (next);
3060 else
3061 /* Note: if this deletes a jump, it can cause more
3062 deletion of unreachable code, after a different label.
3063 As long as the value from this recursive call is correct,
3064 this invocation functions correctly. */
3065 next = delete_insn (next);
3069 return next;
3072 /* Advance from INSN till reaching something not deleted
3073 then return that. May return INSN itself. */
3076 next_nondeleted_insn (insn)
3077 rtx insn;
3079 while (INSN_DELETED_P (insn))
3080 insn = NEXT_INSN (insn);
3081 return insn;
3084 /* Delete a range of insns from FROM to TO, inclusive.
3085 This is for the sake of peephole optimization, so assume
3086 that whatever these insns do will still be done by a new
3087 peephole insn that will replace them. */
3089 void
3090 delete_for_peephole (from, to)
3091 register rtx from, to;
3093 register rtx insn = from;
3095 while (1)
3097 register rtx next = NEXT_INSN (insn);
3098 register rtx prev = PREV_INSN (insn);
3100 if (GET_CODE (insn) != NOTE)
3102 INSN_DELETED_P (insn) = 1;
3104 /* Patch this insn out of the chain. */
3105 /* We don't do this all at once, because we
3106 must preserve all NOTEs. */
3107 if (prev)
3108 NEXT_INSN (prev) = next;
3110 if (next)
3111 PREV_INSN (next) = prev;
3114 if (insn == to)
3115 break;
3116 insn = next;
3119 /* Note that if TO is an unconditional jump
3120 we *do not* delete the BARRIER that follows,
3121 since the peephole that replaces this sequence
3122 is also an unconditional jump in that case. */
3125 /* We have determined that INSN is never reached, and are about to
3126 delete it. Print a warning if the user asked for one.
3128 To try to make this warning more useful, this should only be called
3129 once per basic block not reached, and it only warns when the basic
3130 block contains more than one line from the current function, and
3131 contains at least one operation. CSE and inlining can duplicate insns,
3132 so it's possible to get spurious warnings from this. */
3134 void
3135 never_reached_warning (avoided_insn)
3136 rtx avoided_insn;
3138 rtx insn;
3139 rtx a_line_note = NULL;
3140 int two_avoided_lines = 0;
3141 int contains_insn = 0;
3143 if (! warn_notreached)
3144 return;
3146 /* Scan forwards, looking at LINE_NUMBER notes, until
3147 we hit a LABEL or we run out of insns. */
3149 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3151 if (GET_CODE (insn) == CODE_LABEL)
3152 break;
3153 else if (GET_CODE (insn) == NOTE /* A line number note? */
3154 && NOTE_LINE_NUMBER (insn) >= 0)
3156 if (a_line_note == NULL)
3157 a_line_note = insn;
3158 else
3159 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3160 != NOTE_LINE_NUMBER (insn));
3162 else if (INSN_P (insn))
3163 contains_insn = 1;
3165 if (two_avoided_lines && contains_insn)
3166 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3167 NOTE_LINE_NUMBER (a_line_note),
3168 "will never be executed");
3171 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3172 NLABEL as a return. Accrue modifications into the change group. */
3174 static void
3175 redirect_exp_1 (loc, olabel, nlabel, insn)
3176 rtx *loc;
3177 rtx olabel, nlabel;
3178 rtx insn;
3180 register rtx x = *loc;
3181 register RTX_CODE code = GET_CODE (x);
3182 register int i;
3183 register const char *fmt;
3185 if (code == LABEL_REF)
3187 if (XEXP (x, 0) == olabel)
3189 rtx n;
3190 if (nlabel)
3191 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3192 else
3193 n = gen_rtx_RETURN (VOIDmode);
3195 validate_change (insn, loc, n, 1);
3196 return;
3199 else if (code == RETURN && olabel == 0)
3201 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3202 if (loc == &PATTERN (insn))
3203 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3204 validate_change (insn, loc, x, 1);
3205 return;
3208 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3209 && GET_CODE (SET_SRC (x)) == LABEL_REF
3210 && XEXP (SET_SRC (x), 0) == olabel)
3212 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3213 return;
3216 fmt = GET_RTX_FORMAT (code);
3217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3219 if (fmt[i] == 'e')
3220 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3221 else if (fmt[i] == 'E')
3223 register int j;
3224 for (j = 0; j < XVECLEN (x, i); j++)
3225 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3230 /* Similar, but apply the change group and report success or failure. */
3232 static int
3233 redirect_exp (olabel, nlabel, insn)
3234 rtx olabel, nlabel;
3235 rtx insn;
3237 rtx *loc;
3239 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3240 loc = &XVECEXP (PATTERN (insn), 0, 0);
3241 else
3242 loc = &PATTERN (insn);
3244 redirect_exp_1 (loc, olabel, nlabel, insn);
3245 if (num_validated_changes () == 0)
3246 return 0;
3248 return apply_change_group ();
3251 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3252 the modifications into the change group. Return false if we did
3253 not see how to do that. */
3256 redirect_jump_1 (jump, nlabel)
3257 rtx jump, nlabel;
3259 int ochanges = num_validated_changes ();
3260 rtx *loc;
3262 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3263 loc = &XVECEXP (PATTERN (jump), 0, 0);
3264 else
3265 loc = &PATTERN (jump);
3267 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3268 return num_validated_changes () > ochanges;
3271 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3272 jump target label is unused as a result, it and the code following
3273 it may be deleted.
3275 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3276 RETURN insn.
3278 The return value will be 1 if the change was made, 0 if it wasn't
3279 (this can only occur for NLABEL == 0). */
3282 redirect_jump (jump, nlabel, delete_unused)
3283 rtx jump, nlabel;
3284 int delete_unused;
3286 register rtx olabel = JUMP_LABEL (jump);
3288 if (nlabel == olabel)
3289 return 1;
3291 if (! redirect_exp (olabel, nlabel, jump))
3292 return 0;
3294 /* If this is an unconditional branch, delete it from the jump_chain of
3295 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3296 have UID's in range and JUMP_CHAIN is valid). */
3297 if (jump_chain && (simplejump_p (jump)
3298 || GET_CODE (PATTERN (jump)) == RETURN))
3300 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3302 delete_from_jump_chain (jump);
3303 if (label_index < max_jump_chain
3304 && INSN_UID (jump) < max_jump_chain)
3306 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3307 jump_chain[label_index] = jump;
3311 JUMP_LABEL (jump) = nlabel;
3312 if (nlabel)
3313 ++LABEL_NUSES (nlabel);
3315 /* If we're eliding the jump over exception cleanups at the end of a
3316 function, move the function end note so that -Wreturn-type works. */
3317 if (olabel && nlabel
3318 && NEXT_INSN (olabel)
3319 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3320 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3321 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3323 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3324 delete_insn (olabel);
3326 return 1;
3329 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3330 Accrue the modifications into the change group. */
3332 static void
3333 invert_exp_1 (insn)
3334 rtx insn;
3336 register RTX_CODE code;
3337 rtx x = pc_set (insn);
3339 if (!x)
3340 abort ();
3341 x = SET_SRC (x);
3343 code = GET_CODE (x);
3345 if (code == IF_THEN_ELSE)
3347 register rtx comp = XEXP (x, 0);
3348 register rtx tem;
3349 enum rtx_code reversed_code;
3351 /* We can do this in two ways: The preferable way, which can only
3352 be done if this is not an integer comparison, is to reverse
3353 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3354 of the IF_THEN_ELSE. If we can't do either, fail. */
3356 reversed_code = reversed_comparison_code (comp, insn);
3358 if (reversed_code != UNKNOWN)
3360 validate_change (insn, &XEXP (x, 0),
3361 gen_rtx_fmt_ee (reversed_code,
3362 GET_MODE (comp), XEXP (comp, 0),
3363 XEXP (comp, 1)),
3365 return;
3368 tem = XEXP (x, 1);
3369 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3370 validate_change (insn, &XEXP (x, 2), tem, 1);
3372 else
3373 abort ();
3376 /* Invert the jump condition of conditional jump insn, INSN.
3378 Return 1 if we can do so, 0 if we cannot find a way to do so that
3379 matches a pattern. */
3381 static int
3382 invert_exp (insn)
3383 rtx insn;
3385 invert_exp_1 (insn);
3386 if (num_validated_changes () == 0)
3387 return 0;
3389 return apply_change_group ();
3392 /* Invert the condition of the jump JUMP, and make it jump to label
3393 NLABEL instead of where it jumps now. Accrue changes into the
3394 change group. Return false if we didn't see how to perform the
3395 inversion and redirection. */
3398 invert_jump_1 (jump, nlabel)
3399 rtx jump, nlabel;
3401 int ochanges;
3403 ochanges = num_validated_changes ();
3404 invert_exp_1 (jump);
3405 if (num_validated_changes () == ochanges)
3406 return 0;
3408 return redirect_jump_1 (jump, nlabel);
3411 /* Invert the condition of the jump JUMP, and make it jump to label
3412 NLABEL instead of where it jumps now. Return true if successful. */
3415 invert_jump (jump, nlabel, delete_unused)
3416 rtx jump, nlabel;
3417 int delete_unused;
3419 /* We have to either invert the condition and change the label or
3420 do neither. Either operation could fail. We first try to invert
3421 the jump. If that succeeds, we try changing the label. If that fails,
3422 we invert the jump back to what it was. */
3424 if (! invert_exp (jump))
3425 return 0;
3427 if (redirect_jump (jump, nlabel, delete_unused))
3429 /* An inverted jump means that a probability taken becomes a
3430 probability not taken. Subtract the branch probability from the
3431 probability base to convert it back to a taken probability. */
3433 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3434 if (note)
3435 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3437 return 1;
3440 if (! invert_exp (jump))
3441 /* This should just be putting it back the way it was. */
3442 abort ();
3444 return 0;
3447 /* Delete the instruction JUMP from any jump chain it might be on. */
3449 static void
3450 delete_from_jump_chain (jump)
3451 rtx jump;
3453 int index;
3454 rtx olabel = JUMP_LABEL (jump);
3456 /* Handle unconditional jumps. */
3457 if (jump_chain && olabel != 0
3458 && INSN_UID (olabel) < max_jump_chain
3459 && simplejump_p (jump))
3460 index = INSN_UID (olabel);
3461 /* Handle return insns. */
3462 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3463 index = 0;
3464 else
3465 return;
3467 if (jump_chain[index] == jump)
3468 jump_chain[index] = jump_chain[INSN_UID (jump)];
3469 else
3471 rtx insn;
3473 for (insn = jump_chain[index];
3474 insn != 0;
3475 insn = jump_chain[INSN_UID (insn)])
3476 if (jump_chain[INSN_UID (insn)] == jump)
3478 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3479 break;
3484 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3486 If the old jump target label (before the dispatch table) becomes unused,
3487 it and the dispatch table may be deleted. In that case, find the insn
3488 before the jump references that label and delete it and logical successors
3489 too. */
3491 static void
3492 redirect_tablejump (jump, nlabel)
3493 rtx jump, nlabel;
3495 register rtx olabel = JUMP_LABEL (jump);
3496 rtx *notep, note, next;
3498 /* Add this jump to the jump_chain of NLABEL. */
3499 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3500 && INSN_UID (jump) < max_jump_chain)
3502 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3503 jump_chain[INSN_UID (nlabel)] = jump;
3506 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3508 next = XEXP (note, 1);
3510 if (REG_NOTE_KIND (note) != REG_DEAD
3511 /* Verify that the REG_NOTE is legitimate. */
3512 || GET_CODE (XEXP (note, 0)) != REG
3513 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3514 notep = &XEXP (note, 1);
3515 else
3517 delete_prior_computation (note, jump);
3518 *notep = next;
3522 PATTERN (jump) = gen_jump (nlabel);
3523 JUMP_LABEL (jump) = nlabel;
3524 ++LABEL_NUSES (nlabel);
3525 INSN_CODE (jump) = -1;
3527 if (--LABEL_NUSES (olabel) == 0)
3529 delete_labelref_insn (jump, olabel, 0);
3530 delete_insn (olabel);
3534 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3535 If we found one, delete it and then delete this insn if DELETE_THIS is
3536 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3538 static int
3539 delete_labelref_insn (insn, label, delete_this)
3540 rtx insn, label;
3541 int delete_this;
3543 int deleted = 0;
3544 rtx link;
3546 if (GET_CODE (insn) != NOTE
3547 && reg_mentioned_p (label, PATTERN (insn)))
3549 if (delete_this)
3551 delete_insn (insn);
3552 deleted = 1;
3554 else
3555 return 1;
3558 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3559 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3561 if (delete_this)
3563 delete_insn (insn);
3564 deleted = 1;
3566 else
3567 return 1;
3570 return deleted;
3573 /* Like rtx_equal_p except that it considers two REGs as equal
3574 if they renumber to the same value and considers two commutative
3575 operations to be the same if the order of the operands has been
3576 reversed.
3578 ??? Addition is not commutative on the PA due to the weird implicit
3579 space register selection rules for memory addresses. Therefore, we
3580 don't consider a + b == b + a.
3582 We could/should make this test a little tighter. Possibly only
3583 disabling it on the PA via some backend macro or only disabling this
3584 case when the PLUS is inside a MEM. */
3587 rtx_renumbered_equal_p (x, y)
3588 rtx x, y;
3590 register int i;
3591 register RTX_CODE code = GET_CODE (x);
3592 register const char *fmt;
3594 if (x == y)
3595 return 1;
3597 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3598 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3599 && GET_CODE (SUBREG_REG (y)) == REG)))
3601 int reg_x = -1, reg_y = -1;
3602 int word_x = 0, word_y = 0;
3604 if (GET_MODE (x) != GET_MODE (y))
3605 return 0;
3607 /* If we haven't done any renumbering, don't
3608 make any assumptions. */
3609 if (reg_renumber == 0)
3610 return rtx_equal_p (x, y);
3612 if (code == SUBREG)
3614 reg_x = REGNO (SUBREG_REG (x));
3615 word_x = SUBREG_WORD (x);
3617 if (reg_renumber[reg_x] >= 0)
3619 reg_x = reg_renumber[reg_x] + word_x;
3620 word_x = 0;
3624 else
3626 reg_x = REGNO (x);
3627 if (reg_renumber[reg_x] >= 0)
3628 reg_x = reg_renumber[reg_x];
3631 if (GET_CODE (y) == SUBREG)
3633 reg_y = REGNO (SUBREG_REG (y));
3634 word_y = SUBREG_WORD (y);
3636 if (reg_renumber[reg_y] >= 0)
3638 reg_y = reg_renumber[reg_y];
3639 word_y = 0;
3643 else
3645 reg_y = REGNO (y);
3646 if (reg_renumber[reg_y] >= 0)
3647 reg_y = reg_renumber[reg_y];
3650 return reg_x >= 0 && reg_x == reg_y && word_x == word_y;
3653 /* Now we have disposed of all the cases
3654 in which different rtx codes can match. */
3655 if (code != GET_CODE (y))
3656 return 0;
3658 switch (code)
3660 case PC:
3661 case CC0:
3662 case ADDR_VEC:
3663 case ADDR_DIFF_VEC:
3664 return 0;
3666 case CONST_INT:
3667 return INTVAL (x) == INTVAL (y);
3669 case LABEL_REF:
3670 /* We can't assume nonlocal labels have their following insns yet. */
3671 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3672 return XEXP (x, 0) == XEXP (y, 0);
3674 /* Two label-refs are equivalent if they point at labels
3675 in the same position in the instruction stream. */
3676 return (next_real_insn (XEXP (x, 0))
3677 == next_real_insn (XEXP (y, 0)));
3679 case SYMBOL_REF:
3680 return XSTR (x, 0) == XSTR (y, 0);
3682 case CODE_LABEL:
3683 /* If we didn't match EQ equality above, they aren't the same. */
3684 return 0;
3686 default:
3687 break;
3690 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3692 if (GET_MODE (x) != GET_MODE (y))
3693 return 0;
3695 /* For commutative operations, the RTX match if the operand match in any
3696 order. Also handle the simple binary and unary cases without a loop.
3698 ??? Don't consider PLUS a commutative operator; see comments above. */
3699 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3700 && code != PLUS)
3701 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3702 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3703 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3704 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3705 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3706 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3707 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3708 else if (GET_RTX_CLASS (code) == '1')
3709 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3711 /* Compare the elements. If any pair of corresponding elements
3712 fail to match, return 0 for the whole things. */
3714 fmt = GET_RTX_FORMAT (code);
3715 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3717 register int j;
3718 switch (fmt[i])
3720 case 'w':
3721 if (XWINT (x, i) != XWINT (y, i))
3722 return 0;
3723 break;
3725 case 'i':
3726 if (XINT (x, i) != XINT (y, i))
3727 return 0;
3728 break;
3730 case 's':
3731 if (strcmp (XSTR (x, i), XSTR (y, i)))
3732 return 0;
3733 break;
3735 case 'e':
3736 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3737 return 0;
3738 break;
3740 case 'u':
3741 if (XEXP (x, i) != XEXP (y, i))
3742 return 0;
3743 /* fall through. */
3744 case '0':
3745 break;
3747 case 'E':
3748 if (XVECLEN (x, i) != XVECLEN (y, i))
3749 return 0;
3750 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3751 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3752 return 0;
3753 break;
3755 default:
3756 abort ();
3759 return 1;
3762 /* If X is a hard register or equivalent to one or a subregister of one,
3763 return the hard register number. If X is a pseudo register that was not
3764 assigned a hard register, return the pseudo register number. Otherwise,
3765 return -1. Any rtx is valid for X. */
3768 true_regnum (x)
3769 rtx x;
3771 if (GET_CODE (x) == REG)
3773 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3774 return reg_renumber[REGNO (x)];
3775 return REGNO (x);
3777 if (GET_CODE (x) == SUBREG)
3779 int base = true_regnum (SUBREG_REG (x));
3780 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3781 return SUBREG_WORD (x) + base;
3783 return -1;
3786 /* Optimize code of the form:
3788 for (x = a[i]; x; ...)
3790 for (x = a[i]; x; ...)
3792 foo:
3794 Loop optimize will change the above code into
3796 if (x = a[i])
3797 for (;;)
3798 { ...; if (! (x = ...)) break; }
3799 if (x = a[i])
3800 for (;;)
3801 { ...; if (! (x = ...)) break; }
3802 foo:
3804 In general, if the first test fails, the program can branch
3805 directly to `foo' and skip the second try which is doomed to fail.
3806 We run this after loop optimization and before flow analysis. */
3808 /* When comparing the insn patterns, we track the fact that different
3809 pseudo-register numbers may have been used in each computation.
3810 The following array stores an equivalence -- same_regs[I] == J means
3811 that pseudo register I was used in the first set of tests in a context
3812 where J was used in the second set. We also count the number of such
3813 pending equivalences. If nonzero, the expressions really aren't the
3814 same. */
3816 static int *same_regs;
3818 static int num_same_regs;
3820 /* Track any registers modified between the target of the first jump and
3821 the second jump. They never compare equal. */
3823 static char *modified_regs;
3825 /* Record if memory was modified. */
3827 static int modified_mem;
3829 /* Called via note_stores on each insn between the target of the first
3830 branch and the second branch. It marks any changed registers. */
3832 static void
3833 mark_modified_reg (dest, x, data)
3834 rtx dest;
3835 rtx x;
3836 void *data ATTRIBUTE_UNUSED;
3838 int regno;
3839 unsigned int i;
3841 if (GET_CODE (dest) == SUBREG)
3842 dest = SUBREG_REG (dest);
3844 if (GET_CODE (dest) == MEM)
3845 modified_mem = 1;
3847 if (GET_CODE (dest) != REG)
3848 return;
3850 regno = REGNO (dest);
3851 if (regno >= FIRST_PSEUDO_REGISTER)
3852 modified_regs[regno] = 1;
3853 /* Don't consider a hard condition code register as modified,
3854 if it is only being set. thread_jumps will check if it is set
3855 to the same value. */
3856 else if (GET_MODE_CLASS (GET_MODE (dest)) != MODE_CC
3857 || GET_CODE (x) != SET
3858 || ! rtx_equal_p (dest, SET_DEST (x))
3859 || HARD_REGNO_NREGS (regno, GET_MODE (dest)) != 1)
3860 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3861 modified_regs[regno + i] = 1;
3864 /* F is the first insn in the chain of insns. */
3866 void
3867 thread_jumps (f, max_reg, flag_before_loop)
3868 rtx f;
3869 int max_reg;
3870 int flag_before_loop;
3872 /* Basic algorithm is to find a conditional branch,
3873 the label it may branch to, and the branch after
3874 that label. If the two branches test the same condition,
3875 walk back from both branch paths until the insn patterns
3876 differ, or code labels are hit. If we make it back to
3877 the target of the first branch, then we know that the first branch
3878 will either always succeed or always fail depending on the relative
3879 senses of the two branches. So adjust the first branch accordingly
3880 in this case. */
3882 rtx label, b1, b2, t1, t2;
3883 enum rtx_code code1, code2;
3884 rtx b1op0, b1op1, b2op0, b2op1;
3885 int changed = 1;
3886 int i;
3887 int *all_reset;
3888 enum rtx_code reversed_code1, reversed_code2;
3890 /* Allocate register tables and quick-reset table. */
3891 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3892 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3893 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3894 for (i = 0; i < max_reg; i++)
3895 all_reset[i] = -1;
3897 while (changed)
3899 changed = 0;
3901 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3903 rtx set;
3904 rtx set2;
3906 /* Get to a candidate branch insn. */
3907 if (GET_CODE (b1) != JUMP_INSN
3908 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3909 continue;
3911 memset (modified_regs, 0, max_reg * sizeof (char));
3912 modified_mem = 0;
3914 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3915 num_same_regs = 0;
3917 label = JUMP_LABEL (b1);
3919 /* Look for a branch after the target. Record any registers and
3920 memory modified between the target and the branch. Stop when we
3921 get to a label since we can't know what was changed there. */
3922 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3924 if (GET_CODE (b2) == CODE_LABEL)
3925 break;
3927 else if (GET_CODE (b2) == JUMP_INSN)
3929 /* If this is an unconditional jump and is the only use of
3930 its target label, we can follow it. */
3931 if (any_uncondjump_p (b2)
3932 && onlyjump_p (b2)
3933 && JUMP_LABEL (b2) != 0
3934 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3936 b2 = JUMP_LABEL (b2);
3937 continue;
3939 else
3940 break;
3943 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3944 continue;
3946 if (GET_CODE (b2) == CALL_INSN)
3948 modified_mem = 1;
3949 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3950 if (call_used_regs[i] && ! fixed_regs[i]
3951 && i != STACK_POINTER_REGNUM
3952 && i != FRAME_POINTER_REGNUM
3953 && i != HARD_FRAME_POINTER_REGNUM
3954 && i != ARG_POINTER_REGNUM)
3955 modified_regs[i] = 1;
3958 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3961 /* Check the next candidate branch insn from the label
3962 of the first. */
3963 if (b2 == 0
3964 || GET_CODE (b2) != JUMP_INSN
3965 || b2 == b1
3966 || !any_condjump_p (b2)
3967 || !onlyjump_p (b2))
3968 continue;
3969 set = pc_set (b1);
3970 set2 = pc_set (b2);
3972 /* Get the comparison codes and operands, reversing the
3973 codes if appropriate. If we don't have comparison codes,
3974 we can't do anything. */
3975 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3976 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3977 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3978 reversed_code1 = code1;
3979 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3980 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3981 else
3982 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3984 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3985 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3986 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3987 reversed_code2 = code2;
3988 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3989 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3990 else
3991 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3993 /* If they test the same things and knowing that B1 branches
3994 tells us whether or not B2 branches, check if we
3995 can thread the branch. */
3996 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3997 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3998 && (comparison_dominates_p (code1, code2)
3999 || comparison_dominates_p (code1, reversed_code2)))
4002 t1 = prev_nonnote_insn (b1);
4003 t2 = prev_nonnote_insn (b2);
4005 while (t1 != 0 && t2 != 0)
4007 if (t2 == label)
4009 /* We have reached the target of the first branch.
4010 If there are no pending register equivalents,
4011 we know that this branch will either always
4012 succeed (if the senses of the two branches are
4013 the same) or always fail (if not). */
4014 rtx new_label;
4016 if (num_same_regs != 0)
4017 break;
4019 if (comparison_dominates_p (code1, code2))
4020 new_label = JUMP_LABEL (b2);
4021 else
4022 new_label = get_label_after (b2);
4024 if (JUMP_LABEL (b1) != new_label)
4026 rtx prev = PREV_INSN (new_label);
4028 if (flag_before_loop
4029 && GET_CODE (prev) == NOTE
4030 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
4032 /* Don't thread to the loop label. If a loop
4033 label is reused, loop optimization will
4034 be disabled for that loop. */
4035 new_label = gen_label_rtx ();
4036 emit_label_after (new_label, PREV_INSN (prev));
4038 changed |= redirect_jump (b1, new_label, 1);
4040 break;
4043 /* If either of these is not a normal insn (it might be
4044 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
4045 have already been skipped above.) Similarly, fail
4046 if the insns are different. */
4047 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
4048 || recog_memoized (t1) != recog_memoized (t2)
4049 || ! rtx_equal_for_thread_p (PATTERN (t1),
4050 PATTERN (t2), t2))
4051 break;
4053 t1 = prev_nonnote_insn (t1);
4054 t2 = prev_nonnote_insn (t2);
4060 /* Clean up. */
4061 free (modified_regs);
4062 free (same_regs);
4063 free (all_reset);
4066 /* This is like RTX_EQUAL_P except that it knows about our handling of
4067 possibly equivalent registers and knows to consider volatile and
4068 modified objects as not equal.
4070 YINSN is the insn containing Y. */
4073 rtx_equal_for_thread_p (x, y, yinsn)
4074 rtx x, y;
4075 rtx yinsn;
4077 register int i;
4078 register int j;
4079 register enum rtx_code code;
4080 register const char *fmt;
4082 code = GET_CODE (x);
4083 /* Rtx's of different codes cannot be equal. */
4084 if (code != GET_CODE (y))
4085 return 0;
4087 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4088 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4090 if (GET_MODE (x) != GET_MODE (y))
4091 return 0;
4093 /* For floating-point, consider everything unequal. This is a bit
4094 pessimistic, but this pass would only rarely do anything for FP
4095 anyway. */
4096 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4097 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_fast_math)
4098 return 0;
4100 /* For commutative operations, the RTX match if the operand match in any
4101 order. Also handle the simple binary and unary cases without a loop. */
4102 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4103 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4104 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4105 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4106 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4107 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4108 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4109 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4110 else if (GET_RTX_CLASS (code) == '1')
4111 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4113 /* Handle special-cases first. */
4114 switch (code)
4116 case REG:
4117 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4118 return 1;
4120 /* If neither is user variable or hard register, check for possible
4121 equivalence. */
4122 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4123 || REGNO (x) < FIRST_PSEUDO_REGISTER
4124 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4125 return 0;
4127 if (same_regs[REGNO (x)] == -1)
4129 same_regs[REGNO (x)] = REGNO (y);
4130 num_same_regs++;
4132 /* If this is the first time we are seeing a register on the `Y'
4133 side, see if it is the last use. If not, we can't thread the
4134 jump, so mark it as not equivalent. */
4135 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4136 return 0;
4138 return 1;
4140 else
4141 return (same_regs[REGNO (x)] == (int) REGNO (y));
4143 break;
4145 case MEM:
4146 /* If memory modified or either volatile, not equivalent.
4147 Else, check address. */
4148 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4149 return 0;
4151 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4153 case ASM_INPUT:
4154 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4155 return 0;
4157 break;
4159 case SET:
4160 /* Cancel a pending `same_regs' if setting equivalenced registers.
4161 Then process source. */
4162 if (GET_CODE (SET_DEST (x)) == REG
4163 && GET_CODE (SET_DEST (y)) == REG)
4165 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4167 same_regs[REGNO (SET_DEST (x))] = -1;
4168 num_same_regs--;
4170 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4171 return 0;
4173 else
4175 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4176 return 0;
4179 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4181 case LABEL_REF:
4182 return XEXP (x, 0) == XEXP (y, 0);
4184 case SYMBOL_REF:
4185 return XSTR (x, 0) == XSTR (y, 0);
4187 default:
4188 break;
4191 if (x == y)
4192 return 1;
4194 fmt = GET_RTX_FORMAT (code);
4195 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4197 switch (fmt[i])
4199 case 'w':
4200 if (XWINT (x, i) != XWINT (y, i))
4201 return 0;
4202 break;
4204 case 'n':
4205 case 'i':
4206 if (XINT (x, i) != XINT (y, i))
4207 return 0;
4208 break;
4210 case 'V':
4211 case 'E':
4212 /* Two vectors must have the same length. */
4213 if (XVECLEN (x, i) != XVECLEN (y, i))
4214 return 0;
4216 /* And the corresponding elements must match. */
4217 for (j = 0; j < XVECLEN (x, i); j++)
4218 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4219 XVECEXP (y, i, j), yinsn) == 0)
4220 return 0;
4221 break;
4223 case 'e':
4224 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4225 return 0;
4226 break;
4228 case 'S':
4229 case 's':
4230 if (strcmp (XSTR (x, i), XSTR (y, i)))
4231 return 0;
4232 break;
4234 case 'u':
4235 /* These are just backpointers, so they don't matter. */
4236 break;
4238 case '0':
4239 case 't':
4240 break;
4242 /* It is believed that rtx's at this level will never
4243 contain anything but integers and other rtx's,
4244 except for within LABEL_REFs and SYMBOL_REFs. */
4245 default:
4246 abort ();
4249 return 1;