Mark ChangeLog
[official-gcc.git] / gcc / function.c
blob7e1c90f6117f70637f7c0e728526ce89cca851ca
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "basic-block.h"
55 #include "obstack.h"
56 #include "toplev.h"
57 #include "hash.h"
58 #include "ggc.h"
59 #include "tm_p.h"
61 #ifndef TRAMPOLINE_ALIGNMENT
62 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
63 #endif
65 #ifndef LOCAL_ALIGNMENT
66 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
67 #endif
69 #if !defined (PREFERRED_STACK_BOUNDARY) && defined (STACK_BOUNDARY)
70 #define PREFERRED_STACK_BOUNDARY STACK_BOUNDARY
71 #endif
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #define SYMBOL__MAIN __main
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
92 during rtl generation. If they are different register numbers, this is
93 always true. It may also be true if
94 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
95 generation. See fix_lexical_addr for details. */
97 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
98 #define NEED_SEPARATE_AP
99 #endif
101 /* Nonzero if function being compiled doesn't contain any calls
102 (ignoring the prologue and epilogue). This is set prior to
103 local register allocation and is valid for the remaining
104 compiler passes. */
105 int current_function_is_leaf;
107 /* Nonzero if function being compiled doesn't contain any instructions
108 that can throw an exception. This is set prior to final. */
110 int current_function_nothrow;
112 /* Nonzero if function being compiled doesn't modify the stack pointer
113 (ignoring the prologue and epilogue). This is only valid after
114 life_analysis has run. */
115 int current_function_sp_is_unchanging;
117 /* Nonzero if the function being compiled is a leaf function which only
118 uses leaf registers. This is valid after reload (specifically after
119 sched2) and is useful only if the port defines LEAF_REGISTERS. */
120 int current_function_uses_only_leaf_regs;
122 /* Nonzero once virtual register instantiation has been done.
123 assign_stack_local uses frame_pointer_rtx when this is nonzero. */
124 static int virtuals_instantiated;
126 /* These variables hold pointers to functions to create and destroy
127 target specific, per-function data structures. */
128 void (*init_machine_status) PARAMS ((struct function *));
129 void (*free_machine_status) PARAMS ((struct function *));
130 /* This variable holds a pointer to a function to register any
131 data items in the target specific, per-function data structure
132 that will need garbage collection. */
133 void (*mark_machine_status) PARAMS ((struct function *));
135 /* Likewise, but for language-specific data. */
136 void (*init_lang_status) PARAMS ((struct function *));
137 void (*save_lang_status) PARAMS ((struct function *));
138 void (*restore_lang_status) PARAMS ((struct function *));
139 void (*mark_lang_status) PARAMS ((struct function *));
140 void (*free_lang_status) PARAMS ((struct function *));
142 /* The FUNCTION_DECL for an inline function currently being expanded. */
143 tree inline_function_decl;
145 /* The currently compiled function. */
146 struct function *cfun = 0;
148 /* Global list of all compiled functions. */
149 struct function *all_functions = 0;
151 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
152 static varray_type prologue;
153 static varray_type epilogue;
155 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
156 in this function. */
157 static varray_type sibcall_epilogue;
159 /* In order to evaluate some expressions, such as function calls returning
160 structures in memory, we need to temporarily allocate stack locations.
161 We record each allocated temporary in the following structure.
163 Associated with each temporary slot is a nesting level. When we pop up
164 one level, all temporaries associated with the previous level are freed.
165 Normally, all temporaries are freed after the execution of the statement
166 in which they were created. However, if we are inside a ({...}) grouping,
167 the result may be in a temporary and hence must be preserved. If the
168 result could be in a temporary, we preserve it if we can determine which
169 one it is in. If we cannot determine which temporary may contain the
170 result, all temporaries are preserved. A temporary is preserved by
171 pretending it was allocated at the previous nesting level.
173 Automatic variables are also assigned temporary slots, at the nesting
174 level where they are defined. They are marked a "kept" so that
175 free_temp_slots will not free them. */
177 struct temp_slot
179 /* Points to next temporary slot. */
180 struct temp_slot *next;
181 /* The rtx to used to reference the slot. */
182 rtx slot;
183 /* The rtx used to represent the address if not the address of the
184 slot above. May be an EXPR_LIST if multiple addresses exist. */
185 rtx address;
186 /* The alignment (in bits) of the slot. */
187 int align;
188 /* The size, in units, of the slot. */
189 HOST_WIDE_INT size;
190 /* The type of the object in the slot, or zero if it doesn't correspond
191 to a type. We use this to determine whether a slot can be reused.
192 It can be reused if objects of the type of the new slot will always
193 conflict with objects of the type of the old slot. */
194 tree type;
195 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
196 tree rtl_expr;
197 /* Non-zero if this temporary is currently in use. */
198 char in_use;
199 /* Non-zero if this temporary has its address taken. */
200 char addr_taken;
201 /* Nesting level at which this slot is being used. */
202 int level;
203 /* Non-zero if this should survive a call to free_temp_slots. */
204 int keep;
205 /* The offset of the slot from the frame_pointer, including extra space
206 for alignment. This info is for combine_temp_slots. */
207 HOST_WIDE_INT base_offset;
208 /* The size of the slot, including extra space for alignment. This
209 info is for combine_temp_slots. */
210 HOST_WIDE_INT full_size;
213 /* This structure is used to record MEMs or pseudos used to replace VAR, any
214 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
215 maintain this list in case two operands of an insn were required to match;
216 in that case we must ensure we use the same replacement. */
218 struct fixup_replacement
220 rtx old;
221 rtx new;
222 struct fixup_replacement *next;
225 struct insns_for_mem_entry {
226 /* The KEY in HE will be a MEM. */
227 struct hash_entry he;
228 /* These are the INSNS which reference the MEM. */
229 rtx insns;
232 /* Forward declarations. */
234 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
235 int, struct function *));
236 static rtx assign_stack_temp_for_type PARAMS ((enum machine_mode,
237 HOST_WIDE_INT, int, tree));
238 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
239 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
240 enum machine_mode, enum machine_mode,
241 int, unsigned int, int,
242 struct hash_table *));
243 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
244 enum machine_mode,
245 struct hash_table *));
246 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int,
247 struct hash_table *));
248 static struct fixup_replacement
249 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
250 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
251 int, int));
252 static void fixup_var_refs_insns_with_hash
253 PARAMS ((struct hash_table *, rtx,
254 enum machine_mode, int));
255 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
256 int, int));
257 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
258 struct fixup_replacement **));
259 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, int));
260 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, int));
261 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
262 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
263 static void instantiate_decls PARAMS ((tree, int));
264 static void instantiate_decls_1 PARAMS ((tree, int));
265 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
266 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
267 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
268 static void delete_handlers PARAMS ((void));
269 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
270 struct args_size *));
271 #ifndef ARGS_GROW_DOWNWARD
272 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
273 tree));
274 #endif
275 static rtx round_trampoline_addr PARAMS ((rtx));
276 static rtx adjust_trampoline_addr PARAMS ((rtx));
277 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
278 static void reorder_blocks_0 PARAMS ((rtx));
279 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
280 static tree blocks_nreverse PARAMS ((tree));
281 static int all_blocks PARAMS ((tree, tree *));
282 static tree *get_block_vector PARAMS ((tree, int *));
283 /* We always define `record_insns' even if its not used so that we
284 can always export `prologue_epilogue_contains'. */
285 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
286 static int contains PARAMS ((rtx, varray_type));
287 #ifdef HAVE_return
288 static void emit_return_into_block PARAMS ((basic_block, rtx));
289 #endif
290 static void put_addressof_into_stack PARAMS ((rtx, struct hash_table *));
291 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
292 struct hash_table *));
293 static void purge_single_hard_subreg_set PARAMS ((rtx));
294 #ifdef HAVE_epilogue
295 static void keep_stack_depressed PARAMS ((rtx));
296 #endif
297 static int is_addressof PARAMS ((rtx *, void *));
298 static struct hash_entry *insns_for_mem_newfunc PARAMS ((struct hash_entry *,
299 struct hash_table *,
300 hash_table_key));
301 static unsigned long insns_for_mem_hash PARAMS ((hash_table_key));
302 static bool insns_for_mem_comp PARAMS ((hash_table_key, hash_table_key));
303 static int insns_for_mem_walk PARAMS ((rtx *, void *));
304 static void compute_insns_for_mem PARAMS ((rtx, rtx, struct hash_table *));
305 static void mark_temp_slot PARAMS ((struct temp_slot *));
306 static void mark_function_status PARAMS ((struct function *));
307 static void mark_function_chain PARAMS ((void *));
308 static void prepare_function_start PARAMS ((void));
309 static void do_clobber_return_reg PARAMS ((rtx, void *));
310 static void do_use_return_reg PARAMS ((rtx, void *));
312 /* Pointer to chain of `struct function' for containing functions. */
313 struct function *outer_function_chain;
315 /* Given a function decl for a containing function,
316 return the `struct function' for it. */
318 struct function *
319 find_function_data (decl)
320 tree decl;
322 struct function *p;
324 for (p = outer_function_chain; p; p = p->next)
325 if (p->decl == decl)
326 return p;
328 abort ();
331 /* Save the current context for compilation of a nested function.
332 This is called from language-specific code. The caller should use
333 the save_lang_status callback to save any language-specific state,
334 since this function knows only about language-independent
335 variables. */
337 void
338 push_function_context_to (context)
339 tree context;
341 struct function *p, *context_data;
343 if (context)
345 context_data = (context == current_function_decl
346 ? cfun
347 : find_function_data (context));
348 context_data->contains_functions = 1;
351 if (cfun == 0)
352 init_dummy_function_start ();
353 p = cfun;
355 p->next = outer_function_chain;
356 outer_function_chain = p;
357 p->fixup_var_refs_queue = 0;
359 if (save_lang_status)
360 (*save_lang_status) (p);
362 cfun = 0;
365 void
366 push_function_context ()
368 push_function_context_to (current_function_decl);
371 /* Restore the last saved context, at the end of a nested function.
372 This function is called from language-specific code. */
374 void
375 pop_function_context_from (context)
376 tree context ATTRIBUTE_UNUSED;
378 struct function *p = outer_function_chain;
379 struct var_refs_queue *queue;
380 struct var_refs_queue *next;
382 cfun = p;
383 outer_function_chain = p->next;
385 current_function_decl = p->decl;
386 reg_renumber = 0;
388 restore_emit_status (p);
390 if (restore_lang_status)
391 (*restore_lang_status) (p);
393 /* Finish doing put_var_into_stack for any of our variables
394 which became addressable during the nested function. */
395 for (queue = p->fixup_var_refs_queue; queue; queue = next)
397 next = queue->next;
398 fixup_var_refs (queue->modified, queue->promoted_mode,
399 queue->unsignedp, 0);
400 free (queue);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context ()
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (f)
422 struct function *f;
424 /* f->expr->forced_labels is used by code generation. */
425 /* f->emit->regno_reg_rtx is used by code generation. */
426 /* f->varasm is used by code generation. */
427 /* f->eh->eh_return_stub_label is used by code generation. */
429 if (free_lang_status)
430 (*free_lang_status) (f);
431 free_stmt_status (f);
434 /* Clear out all parts of the state in F that can safely be discarded
435 after the function has been compiled, to let garbage collection
436 reclaim the memory. */
438 void
439 free_after_compilation (f)
440 struct function *f;
442 struct temp_slot *ts;
443 struct temp_slot *next;
445 free_eh_status (f);
446 free_expr_status (f);
447 free_emit_status (f);
448 free_varasm_status (f);
450 if (free_machine_status)
451 (*free_machine_status) (f);
453 if (f->x_parm_reg_stack_loc)
454 free (f->x_parm_reg_stack_loc);
456 for (ts = f->x_temp_slots; ts; ts = next)
458 next = ts->next;
459 free (ts);
461 f->x_temp_slots = NULL;
463 f->arg_offset_rtx = NULL;
464 f->return_rtx = NULL;
465 f->internal_arg_pointer = NULL;
466 f->x_nonlocal_labels = NULL;
467 f->x_nonlocal_goto_handler_slots = NULL;
468 f->x_nonlocal_goto_handler_labels = NULL;
469 f->x_nonlocal_goto_stack_level = NULL;
470 f->x_cleanup_label = NULL;
471 f->x_return_label = NULL;
472 f->x_save_expr_regs = NULL;
473 f->x_stack_slot_list = NULL;
474 f->x_rtl_expr_chain = NULL;
475 f->x_tail_recursion_label = NULL;
476 f->x_tail_recursion_reentry = NULL;
477 f->x_arg_pointer_save_area = NULL;
478 f->x_clobber_return_insn = NULL;
479 f->x_context_display = NULL;
480 f->x_trampoline_list = NULL;
481 f->x_parm_birth_insn = NULL;
482 f->x_last_parm_insn = NULL;
483 f->x_parm_reg_stack_loc = NULL;
484 f->fixup_var_refs_queue = NULL;
485 f->original_arg_vector = NULL;
486 f->original_decl_initial = NULL;
487 f->inl_last_parm_insn = NULL;
488 f->epilogue_delay_list = NULL;
491 /* Allocate fixed slots in the stack frame of the current function. */
493 /* Return size needed for stack frame based on slots so far allocated in
494 function F.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
498 HOST_WIDE_INT
499 get_func_frame_size (f)
500 struct function *f;
502 #ifdef FRAME_GROWS_DOWNWARD
503 return -f->x_frame_offset;
504 #else
505 return f->x_frame_offset;
506 #endif
509 /* Return size needed for stack frame based on slots so far allocated.
510 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
511 the caller may have to do that. */
512 HOST_WIDE_INT
513 get_frame_size ()
515 return get_func_frame_size (cfun);
518 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
519 with machine mode MODE.
521 ALIGN controls the amount of alignment for the address of the slot:
522 0 means according to MODE,
523 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
524 positive specifies alignment boundary in bits.
526 We do not round to stack_boundary here.
528 FUNCTION specifies the function to allocate in. */
530 static rtx
531 assign_stack_local_1 (mode, size, align, function)
532 enum machine_mode mode;
533 HOST_WIDE_INT size;
534 int align;
535 struct function *function;
537 register rtx x, addr;
538 int bigend_correction = 0;
539 int alignment;
541 if (align == 0)
543 tree type;
545 if (mode == BLKmode)
546 alignment = BIGGEST_ALIGNMENT;
547 else
548 alignment = GET_MODE_ALIGNMENT (mode);
550 /* Allow the target to (possibly) increase the alignment of this
551 stack slot. */
552 type = type_for_mode (mode, 0);
553 if (type)
554 alignment = LOCAL_ALIGNMENT (type, alignment);
556 alignment /= BITS_PER_UNIT;
558 else if (align == -1)
560 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
561 size = CEIL_ROUND (size, alignment);
563 else
564 alignment = align / BITS_PER_UNIT;
566 #ifdef FRAME_GROWS_DOWNWARD
567 function->x_frame_offset -= size;
568 #endif
570 /* Ignore alignment we can't do with expected alignment of the boundary. */
571 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
572 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
574 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
575 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
577 /* Round frame offset to that alignment.
578 We must be careful here, since FRAME_OFFSET might be negative and
579 division with a negative dividend isn't as well defined as we might
580 like. So we instead assume that ALIGNMENT is a power of two and
581 use logical operations which are unambiguous. */
582 #ifdef FRAME_GROWS_DOWNWARD
583 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset, alignment);
584 #else
585 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset, alignment);
586 #endif
588 /* On a big-endian machine, if we are allocating more space than we will use,
589 use the least significant bytes of those that are allocated. */
590 if (BYTES_BIG_ENDIAN && mode != BLKmode)
591 bigend_correction = size - GET_MODE_SIZE (mode);
593 /* If we have already instantiated virtual registers, return the actual
594 address relative to the frame pointer. */
595 if (function == cfun && virtuals_instantiated)
596 addr = plus_constant (frame_pointer_rtx,
597 (frame_offset + bigend_correction
598 + STARTING_FRAME_OFFSET));
599 else
600 addr = plus_constant (virtual_stack_vars_rtx,
601 function->x_frame_offset + bigend_correction);
603 #ifndef FRAME_GROWS_DOWNWARD
604 function->x_frame_offset += size;
605 #endif
607 x = gen_rtx_MEM (mode, addr);
609 function->x_stack_slot_list
610 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
612 return x;
615 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
616 current function. */
619 assign_stack_local (mode, size, align)
620 enum machine_mode mode;
621 HOST_WIDE_INT size;
622 int align;
624 return assign_stack_local_1 (mode, size, align, cfun);
627 /* Allocate a temporary stack slot and record it for possible later
628 reuse.
630 MODE is the machine mode to be given to the returned rtx.
632 SIZE is the size in units of the space required. We do no rounding here
633 since assign_stack_local will do any required rounding.
635 KEEP is 1 if this slot is to be retained after a call to
636 free_temp_slots. Automatic variables for a block are allocated
637 with this flag. KEEP is 2 if we allocate a longer term temporary,
638 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
639 if we are to allocate something at an inner level to be treated as
640 a variable in the block (e.g., a SAVE_EXPR).
642 TYPE is the type that will be used for the stack slot. */
644 static rtx
645 assign_stack_temp_for_type (mode, size, keep, type)
646 enum machine_mode mode;
647 HOST_WIDE_INT size;
648 int keep;
649 tree type;
651 int align;
652 struct temp_slot *p, *best_p = 0;
654 /* If SIZE is -1 it means that somebody tried to allocate a temporary
655 of a variable size. */
656 if (size == -1)
657 abort ();
659 if (mode == BLKmode)
660 align = BIGGEST_ALIGNMENT;
661 else
662 align = GET_MODE_ALIGNMENT (mode);
664 if (! type)
665 type = type_for_mode (mode, 0);
667 if (type)
668 align = LOCAL_ALIGNMENT (type, align);
670 /* Try to find an available, already-allocated temporary of the proper
671 mode which meets the size and alignment requirements. Choose the
672 smallest one with the closest alignment. */
673 for (p = temp_slots; p; p = p->next)
674 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
675 && ! p->in_use
676 && objects_must_conflict_p (p->type, type)
677 && (best_p == 0 || best_p->size > p->size
678 || (best_p->size == p->size && best_p->align > p->align)))
680 if (p->align == align && p->size == size)
682 best_p = 0;
683 break;
685 best_p = p;
688 /* Make our best, if any, the one to use. */
689 if (best_p)
691 /* If there are enough aligned bytes left over, make them into a new
692 temp_slot so that the extra bytes don't get wasted. Do this only
693 for BLKmode slots, so that we can be sure of the alignment. */
694 if (GET_MODE (best_p->slot) == BLKmode)
696 int alignment = best_p->align / BITS_PER_UNIT;
697 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
699 if (best_p->size - rounded_size >= alignment)
701 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
702 p->in_use = p->addr_taken = 0;
703 p->size = best_p->size - rounded_size;
704 p->base_offset = best_p->base_offset + rounded_size;
705 p->full_size = best_p->full_size - rounded_size;
706 p->slot = gen_rtx_MEM (BLKmode,
707 plus_constant (XEXP (best_p->slot, 0),
708 rounded_size));
709 p->align = best_p->align;
710 p->address = 0;
711 p->rtl_expr = 0;
712 p->type = best_p->type;
713 p->next = temp_slots;
714 temp_slots = p;
716 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
717 stack_slot_list);
719 best_p->size = rounded_size;
720 best_p->full_size = rounded_size;
724 p = best_p;
727 /* If we still didn't find one, make a new temporary. */
728 if (p == 0)
730 HOST_WIDE_INT frame_offset_old = frame_offset;
732 p = (struct temp_slot *) xmalloc (sizeof (struct temp_slot));
734 /* We are passing an explicit alignment request to assign_stack_local.
735 One side effect of that is assign_stack_local will not round SIZE
736 to ensure the frame offset remains suitably aligned.
738 So for requests which depended on the rounding of SIZE, we go ahead
739 and round it now. We also make sure ALIGNMENT is at least
740 BIGGEST_ALIGNMENT. */
741 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
742 abort();
743 p->slot = assign_stack_local (mode,
744 (mode == BLKmode
745 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
746 : size),
747 align);
749 p->align = align;
751 /* The following slot size computation is necessary because we don't
752 know the actual size of the temporary slot until assign_stack_local
753 has performed all the frame alignment and size rounding for the
754 requested temporary. Note that extra space added for alignment
755 can be either above or below this stack slot depending on which
756 way the frame grows. We include the extra space if and only if it
757 is above this slot. */
758 #ifdef FRAME_GROWS_DOWNWARD
759 p->size = frame_offset_old - frame_offset;
760 #else
761 p->size = size;
762 #endif
764 /* Now define the fields used by combine_temp_slots. */
765 #ifdef FRAME_GROWS_DOWNWARD
766 p->base_offset = frame_offset;
767 p->full_size = frame_offset_old - frame_offset;
768 #else
769 p->base_offset = frame_offset_old;
770 p->full_size = frame_offset - frame_offset_old;
771 #endif
772 p->address = 0;
773 p->next = temp_slots;
774 temp_slots = p;
777 p->in_use = 1;
778 p->addr_taken = 0;
779 p->rtl_expr = seq_rtl_expr;
780 p->type = type;
782 if (keep == 2)
784 p->level = target_temp_slot_level;
785 p->keep = 0;
787 else if (keep == 3)
789 p->level = var_temp_slot_level;
790 p->keep = 0;
792 else
794 p->level = temp_slot_level;
795 p->keep = keep;
798 /* We may be reusing an old slot, so clear any MEM flags that may have been
799 set from before. */
800 RTX_UNCHANGING_P (p->slot) = 0;
801 MEM_IN_STRUCT_P (p->slot) = 0;
802 MEM_SCALAR_P (p->slot) = 0;
803 MEM_VOLATILE_P (p->slot) = 0;
805 /* If we know the alias set for the memory that will be used, use
806 it. If there's no TYPE, then we don't know anything about the
807 alias set for the memory. */
808 if (type)
809 MEM_ALIAS_SET (p->slot) = get_alias_set (type);
810 else
811 MEM_ALIAS_SET (p->slot) = 0;
813 /* If a type is specified, set the relevant flags. */
814 if (type != 0)
816 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
817 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
818 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
821 return p->slot;
824 /* Allocate a temporary stack slot and record it for possible later
825 reuse. First three arguments are same as in preceding function. */
828 assign_stack_temp (mode, size, keep)
829 enum machine_mode mode;
830 HOST_WIDE_INT size;
831 int keep;
833 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
836 /* Assign a temporary of given TYPE.
837 KEEP is as for assign_stack_temp.
838 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
839 it is 0 if a register is OK.
840 DONT_PROMOTE is 1 if we should not promote values in register
841 to wider modes. */
844 assign_temp (type, keep, memory_required, dont_promote)
845 tree type;
846 int keep;
847 int memory_required;
848 int dont_promote ATTRIBUTE_UNUSED;
850 enum machine_mode mode = TYPE_MODE (type);
851 #ifndef PROMOTE_FOR_CALL_ONLY
852 int unsignedp = TREE_UNSIGNED (type);
853 #endif
855 if (mode == BLKmode || memory_required)
857 HOST_WIDE_INT size = int_size_in_bytes (type);
858 rtx tmp;
860 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
861 problems with allocating the stack space. */
862 if (size == 0)
863 size = 1;
865 /* Unfortunately, we don't yet know how to allocate variable-sized
866 temporaries. However, sometimes we have a fixed upper limit on
867 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
868 instead. This is the case for Chill variable-sized strings. */
869 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
870 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
871 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
872 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
874 tmp = assign_stack_temp_for_type (mode, size, keep, type);
875 return tmp;
878 #ifndef PROMOTE_FOR_CALL_ONLY
879 if (! dont_promote)
880 mode = promote_mode (type, mode, &unsignedp, 0);
881 #endif
883 return gen_reg_rtx (mode);
886 /* Combine temporary stack slots which are adjacent on the stack.
888 This allows for better use of already allocated stack space. This is only
889 done for BLKmode slots because we can be sure that we won't have alignment
890 problems in this case. */
892 void
893 combine_temp_slots ()
895 struct temp_slot *p, *q;
896 struct temp_slot *prev_p, *prev_q;
897 int num_slots;
899 /* We can't combine slots, because the information about which slot
900 is in which alias set will be lost. */
901 if (flag_strict_aliasing)
902 return;
904 /* If there are a lot of temp slots, don't do anything unless
905 high levels of optimizaton. */
906 if (! flag_expensive_optimizations)
907 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
908 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
909 return;
911 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
913 int delete_p = 0;
915 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
916 for (q = p->next, prev_q = p; q; q = prev_q->next)
918 int delete_q = 0;
919 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
921 if (p->base_offset + p->full_size == q->base_offset)
923 /* Q comes after P; combine Q into P. */
924 p->size += q->size;
925 p->full_size += q->full_size;
926 delete_q = 1;
928 else if (q->base_offset + q->full_size == p->base_offset)
930 /* P comes after Q; combine P into Q. */
931 q->size += p->size;
932 q->full_size += p->full_size;
933 delete_p = 1;
934 break;
937 /* Either delete Q or advance past it. */
938 if (delete_q)
940 prev_q->next = q->next;
941 free (q);
943 else
944 prev_q = q;
946 /* Either delete P or advance past it. */
947 if (delete_p)
949 if (prev_p)
950 prev_p->next = p->next;
951 else
952 temp_slots = p->next;
954 else
955 prev_p = p;
959 /* Find the temp slot corresponding to the object at address X. */
961 static struct temp_slot *
962 find_temp_slot_from_address (x)
963 rtx x;
965 struct temp_slot *p;
966 rtx next;
968 for (p = temp_slots; p; p = p->next)
970 if (! p->in_use)
971 continue;
973 else if (XEXP (p->slot, 0) == x
974 || p->address == x
975 || (GET_CODE (x) == PLUS
976 && XEXP (x, 0) == virtual_stack_vars_rtx
977 && GET_CODE (XEXP (x, 1)) == CONST_INT
978 && INTVAL (XEXP (x, 1)) >= p->base_offset
979 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
980 return p;
982 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
983 for (next = p->address; next; next = XEXP (next, 1))
984 if (XEXP (next, 0) == x)
985 return p;
988 /* If we have a sum involving a register, see if it points to a temp
989 slot. */
990 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
991 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
992 return p;
993 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
994 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
995 return p;
997 return 0;
1000 /* Indicate that NEW is an alternate way of referring to the temp slot
1001 that previously was known by OLD. */
1003 void
1004 update_temp_slot_address (old, new)
1005 rtx old, new;
1007 struct temp_slot *p;
1009 if (rtx_equal_p (old, new))
1010 return;
1012 p = find_temp_slot_from_address (old);
1014 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1015 is a register, see if one operand of the PLUS is a temporary
1016 location. If so, NEW points into it. Otherwise, if both OLD and
1017 NEW are a PLUS and if there is a register in common between them.
1018 If so, try a recursive call on those values. */
1019 if (p == 0)
1021 if (GET_CODE (old) != PLUS)
1022 return;
1024 if (GET_CODE (new) == REG)
1026 update_temp_slot_address (XEXP (old, 0), new);
1027 update_temp_slot_address (XEXP (old, 1), new);
1028 return;
1030 else if (GET_CODE (new) != PLUS)
1031 return;
1033 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1034 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1035 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1036 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1037 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1038 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1039 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1040 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1042 return;
1045 /* Otherwise add an alias for the temp's address. */
1046 else if (p->address == 0)
1047 p->address = new;
1048 else
1050 if (GET_CODE (p->address) != EXPR_LIST)
1051 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1053 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1057 /* If X could be a reference to a temporary slot, mark the fact that its
1058 address was taken. */
1060 void
1061 mark_temp_addr_taken (x)
1062 rtx x;
1064 struct temp_slot *p;
1066 if (x == 0)
1067 return;
1069 /* If X is not in memory or is at a constant address, it cannot be in
1070 a temporary slot. */
1071 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1072 return;
1074 p = find_temp_slot_from_address (XEXP (x, 0));
1075 if (p != 0)
1076 p->addr_taken = 1;
1079 /* If X could be a reference to a temporary slot, mark that slot as
1080 belonging to the to one level higher than the current level. If X
1081 matched one of our slots, just mark that one. Otherwise, we can't
1082 easily predict which it is, so upgrade all of them. Kept slots
1083 need not be touched.
1085 This is called when an ({...}) construct occurs and a statement
1086 returns a value in memory. */
1088 void
1089 preserve_temp_slots (x)
1090 rtx x;
1092 struct temp_slot *p = 0;
1094 /* If there is no result, we still might have some objects whose address
1095 were taken, so we need to make sure they stay around. */
1096 if (x == 0)
1098 for (p = temp_slots; p; p = p->next)
1099 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1100 p->level--;
1102 return;
1105 /* If X is a register that is being used as a pointer, see if we have
1106 a temporary slot we know it points to. To be consistent with
1107 the code below, we really should preserve all non-kept slots
1108 if we can't find a match, but that seems to be much too costly. */
1109 if (GET_CODE (x) == REG && REG_POINTER (x))
1110 p = find_temp_slot_from_address (x);
1112 /* If X is not in memory or is at a constant address, it cannot be in
1113 a temporary slot, but it can contain something whose address was
1114 taken. */
1115 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1117 for (p = temp_slots; p; p = p->next)
1118 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1119 p->level--;
1121 return;
1124 /* First see if we can find a match. */
1125 if (p == 0)
1126 p = find_temp_slot_from_address (XEXP (x, 0));
1128 if (p != 0)
1130 /* Move everything at our level whose address was taken to our new
1131 level in case we used its address. */
1132 struct temp_slot *q;
1134 if (p->level == temp_slot_level)
1136 for (q = temp_slots; q; q = q->next)
1137 if (q != p && q->addr_taken && q->level == p->level)
1138 q->level--;
1140 p->level--;
1141 p->addr_taken = 0;
1143 return;
1146 /* Otherwise, preserve all non-kept slots at this level. */
1147 for (p = temp_slots; p; p = p->next)
1148 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1149 p->level--;
1152 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1153 with that RTL_EXPR, promote it into a temporary slot at the present
1154 level so it will not be freed when we free slots made in the
1155 RTL_EXPR. */
1157 void
1158 preserve_rtl_expr_result (x)
1159 rtx x;
1161 struct temp_slot *p;
1163 /* If X is not in memory or is at a constant address, it cannot be in
1164 a temporary slot. */
1165 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1166 return;
1168 /* If we can find a match, move it to our level unless it is already at
1169 an upper level. */
1170 p = find_temp_slot_from_address (XEXP (x, 0));
1171 if (p != 0)
1173 p->level = MIN (p->level, temp_slot_level);
1174 p->rtl_expr = 0;
1177 return;
1180 /* Free all temporaries used so far. This is normally called at the end
1181 of generating code for a statement. Don't free any temporaries
1182 currently in use for an RTL_EXPR that hasn't yet been emitted.
1183 We could eventually do better than this since it can be reused while
1184 generating the same RTL_EXPR, but this is complex and probably not
1185 worthwhile. */
1187 void
1188 free_temp_slots ()
1190 struct temp_slot *p;
1192 for (p = temp_slots; p; p = p->next)
1193 if (p->in_use && p->level == temp_slot_level && ! p->keep
1194 && p->rtl_expr == 0)
1195 p->in_use = 0;
1197 combine_temp_slots ();
1200 /* Free all temporary slots used in T, an RTL_EXPR node. */
1202 void
1203 free_temps_for_rtl_expr (t)
1204 tree t;
1206 struct temp_slot *p;
1208 for (p = temp_slots; p; p = p->next)
1209 if (p->rtl_expr == t)
1211 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1212 needs to be preserved. This can happen if a temporary in
1213 the RTL_EXPR was addressed; preserve_temp_slots will move
1214 the temporary into a higher level. */
1215 if (temp_slot_level <= p->level)
1216 p->in_use = 0;
1217 else
1218 p->rtl_expr = NULL_TREE;
1221 combine_temp_slots ();
1224 /* Mark all temporaries ever allocated in this function as not suitable
1225 for reuse until the current level is exited. */
1227 void
1228 mark_all_temps_used ()
1230 struct temp_slot *p;
1232 for (p = temp_slots; p; p = p->next)
1234 p->in_use = p->keep = 1;
1235 p->level = MIN (p->level, temp_slot_level);
1239 /* Push deeper into the nesting level for stack temporaries. */
1241 void
1242 push_temp_slots ()
1244 temp_slot_level++;
1247 /* Likewise, but save the new level as the place to allocate variables
1248 for blocks. */
1250 #if 0
1251 void
1252 push_temp_slots_for_block ()
1254 push_temp_slots ();
1256 var_temp_slot_level = temp_slot_level;
1259 /* Likewise, but save the new level as the place to allocate temporaries
1260 for TARGET_EXPRs. */
1262 void
1263 push_temp_slots_for_target ()
1265 push_temp_slots ();
1267 target_temp_slot_level = temp_slot_level;
1270 /* Set and get the value of target_temp_slot_level. The only
1271 permitted use of these functions is to save and restore this value. */
1274 get_target_temp_slot_level ()
1276 return target_temp_slot_level;
1279 void
1280 set_target_temp_slot_level (level)
1281 int level;
1283 target_temp_slot_level = level;
1285 #endif
1287 /* Pop a temporary nesting level. All slots in use in the current level
1288 are freed. */
1290 void
1291 pop_temp_slots ()
1293 struct temp_slot *p;
1295 for (p = temp_slots; p; p = p->next)
1296 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1297 p->in_use = 0;
1299 combine_temp_slots ();
1301 temp_slot_level--;
1304 /* Initialize temporary slots. */
1306 void
1307 init_temp_slots ()
1309 /* We have not allocated any temporaries yet. */
1310 temp_slots = 0;
1311 temp_slot_level = 0;
1312 var_temp_slot_level = 0;
1313 target_temp_slot_level = 0;
1316 /* Retroactively move an auto variable from a register to a stack slot.
1317 This is done when an address-reference to the variable is seen. */
1319 void
1320 put_var_into_stack (decl)
1321 tree decl;
1323 register rtx reg;
1324 enum machine_mode promoted_mode, decl_mode;
1325 struct function *function = 0;
1326 tree context;
1327 int can_use_addressof;
1328 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1329 int usedp = (TREE_USED (decl)
1330 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1332 context = decl_function_context (decl);
1334 /* Get the current rtl used for this object and its original mode. */
1335 reg = (TREE_CODE (decl) == SAVE_EXPR
1336 ? SAVE_EXPR_RTL (decl)
1337 : DECL_RTL_IF_SET (decl));
1339 /* No need to do anything if decl has no rtx yet
1340 since in that case caller is setting TREE_ADDRESSABLE
1341 and a stack slot will be assigned when the rtl is made. */
1342 if (reg == 0)
1343 return;
1345 /* Get the declared mode for this object. */
1346 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1347 : DECL_MODE (decl));
1348 /* Get the mode it's actually stored in. */
1349 promoted_mode = GET_MODE (reg);
1351 /* If this variable comes from an outer function,
1352 find that function's saved context. */
1353 if (context != current_function_decl && context != inline_function_decl)
1354 for (function = outer_function_chain; function; function = function->next)
1355 if (function->decl == context)
1356 break;
1358 /* If this is a variable-size object with a pseudo to address it,
1359 put that pseudo into the stack, if the var is nonlocal. */
1360 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1361 && GET_CODE (reg) == MEM
1362 && GET_CODE (XEXP (reg, 0)) == REG
1363 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1365 reg = XEXP (reg, 0);
1366 decl_mode = promoted_mode = GET_MODE (reg);
1369 can_use_addressof
1370 = (function == 0
1371 && optimize > 0
1372 /* FIXME make it work for promoted modes too */
1373 && decl_mode == promoted_mode
1374 #ifdef NON_SAVING_SETJMP
1375 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1376 #endif
1379 /* If we can't use ADDRESSOF, make sure we see through one we already
1380 generated. */
1381 if (! can_use_addressof && GET_CODE (reg) == MEM
1382 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1383 reg = XEXP (XEXP (reg, 0), 0);
1385 /* Now we should have a value that resides in one or more pseudo regs. */
1387 if (GET_CODE (reg) == REG)
1389 /* If this variable lives in the current function and we don't need
1390 to put things in the stack for the sake of setjmp, try to keep it
1391 in a register until we know we actually need the address. */
1392 if (can_use_addressof)
1393 gen_mem_addressof (reg, decl);
1394 else
1395 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1396 decl_mode, volatilep, 0, usedp, 0);
1398 else if (GET_CODE (reg) == CONCAT)
1400 /* A CONCAT contains two pseudos; put them both in the stack.
1401 We do it so they end up consecutive.
1402 We fixup references to the parts only after we fixup references
1403 to the whole CONCAT, lest we do double fixups for the latter
1404 references. */
1405 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1406 tree part_type = type_for_mode (part_mode, 0);
1407 rtx lopart = XEXP (reg, 0);
1408 rtx hipart = XEXP (reg, 1);
1409 #ifdef FRAME_GROWS_DOWNWARD
1410 /* Since part 0 should have a lower address, do it second. */
1411 put_reg_into_stack (function, hipart, part_type, part_mode,
1412 part_mode, volatilep, 0, 0, 0);
1413 put_reg_into_stack (function, lopart, part_type, part_mode,
1414 part_mode, volatilep, 0, 0, 0);
1415 #else
1416 put_reg_into_stack (function, lopart, part_type, part_mode,
1417 part_mode, volatilep, 0, 0, 0);
1418 put_reg_into_stack (function, hipart, part_type, part_mode,
1419 part_mode, volatilep, 0, 0, 0);
1420 #endif
1422 /* Change the CONCAT into a combined MEM for both parts. */
1423 PUT_CODE (reg, MEM);
1424 set_mem_attributes (reg, decl, 1);
1426 /* The two parts are in memory order already.
1427 Use the lower parts address as ours. */
1428 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1429 /* Prevent sharing of rtl that might lose. */
1430 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1431 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1432 if (usedp)
1434 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1435 promoted_mode, 0);
1436 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1437 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1440 else
1441 return;
1443 if (current_function_check_memory_usage)
1444 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK, VOIDmode,
1445 3, XEXP (reg, 0), Pmode,
1446 GEN_INT (GET_MODE_SIZE (GET_MODE (reg))),
1447 TYPE_MODE (sizetype),
1448 GEN_INT (MEMORY_USE_RW),
1449 TYPE_MODE (integer_type_node));
1452 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1453 into the stack frame of FUNCTION (0 means the current function).
1454 DECL_MODE is the machine mode of the user-level data type.
1455 PROMOTED_MODE is the machine mode of the register.
1456 VOLATILE_P is nonzero if this is for a "volatile" decl.
1457 USED_P is nonzero if this reg might have already been used in an insn. */
1459 static void
1460 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1461 original_regno, used_p, ht)
1462 struct function *function;
1463 rtx reg;
1464 tree type;
1465 enum machine_mode promoted_mode, decl_mode;
1466 int volatile_p;
1467 unsigned int original_regno;
1468 int used_p;
1469 struct hash_table *ht;
1471 struct function *func = function ? function : cfun;
1472 rtx new = 0;
1473 unsigned int regno = original_regno;
1475 if (regno == 0)
1476 regno = REGNO (reg);
1478 if (regno < func->x_max_parm_reg)
1479 new = func->x_parm_reg_stack_loc[regno];
1481 if (new == 0)
1482 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1484 PUT_CODE (reg, MEM);
1485 PUT_MODE (reg, decl_mode);
1486 XEXP (reg, 0) = XEXP (new, 0);
1487 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1488 MEM_VOLATILE_P (reg) = volatile_p;
1490 /* If this is a memory ref that contains aggregate components,
1491 mark it as such for cse and loop optimize. If we are reusing a
1492 previously generated stack slot, then we need to copy the bit in
1493 case it was set for other reasons. For instance, it is set for
1494 __builtin_va_alist. */
1495 if (type)
1497 MEM_SET_IN_STRUCT_P (reg,
1498 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1499 MEM_ALIAS_SET (reg) = get_alias_set (type);
1501 if (used_p)
1502 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1505 /* Make sure that all refs to the variable, previously made
1506 when it was a register, are fixed up to be valid again.
1507 See function above for meaning of arguments. */
1509 static void
1510 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1511 struct function *function;
1512 rtx reg;
1513 tree type;
1514 enum machine_mode promoted_mode;
1515 struct hash_table *ht;
1517 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1519 if (function != 0)
1521 struct var_refs_queue *temp;
1523 temp
1524 = (struct var_refs_queue *) xmalloc (sizeof (struct var_refs_queue));
1525 temp->modified = reg;
1526 temp->promoted_mode = promoted_mode;
1527 temp->unsignedp = unsigned_p;
1528 temp->next = function->fixup_var_refs_queue;
1529 function->fixup_var_refs_queue = temp;
1531 else
1532 /* Variable is local; fix it up now. */
1533 fixup_var_refs (reg, promoted_mode, unsigned_p, ht);
1536 static void
1537 fixup_var_refs (var, promoted_mode, unsignedp, ht)
1538 rtx var;
1539 enum machine_mode promoted_mode;
1540 int unsignedp;
1541 struct hash_table *ht;
1543 tree pending;
1544 rtx first_insn = get_insns ();
1545 struct sequence_stack *stack = seq_stack;
1546 tree rtl_exps = rtl_expr_chain;
1548 /* If there's a hash table, it must record all uses of VAR. */
1549 if (ht)
1551 if (stack != 0)
1552 abort ();
1553 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp);
1554 return;
1557 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1558 stack == 0);
1560 /* Scan all pending sequences too. */
1561 for (; stack; stack = stack->next)
1563 push_to_full_sequence (stack->first, stack->last);
1564 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1565 stack->next != 0);
1566 /* Update remembered end of sequence
1567 in case we added an insn at the end. */
1568 stack->last = get_last_insn ();
1569 end_sequence ();
1572 /* Scan all waiting RTL_EXPRs too. */
1573 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1575 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1576 if (seq != const0_rtx && seq != 0)
1578 push_to_sequence (seq);
1579 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1580 end_sequence ();
1585 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1586 some part of an insn. Return a struct fixup_replacement whose OLD
1587 value is equal to X. Allocate a new structure if no such entry exists. */
1589 static struct fixup_replacement *
1590 find_fixup_replacement (replacements, x)
1591 struct fixup_replacement **replacements;
1592 rtx x;
1594 struct fixup_replacement *p;
1596 /* See if we have already replaced this. */
1597 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1600 if (p == 0)
1602 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1603 p->old = x;
1604 p->new = 0;
1605 p->next = *replacements;
1606 *replacements = p;
1609 return p;
1612 /* Scan the insn-chain starting with INSN for refs to VAR
1613 and fix them up. TOPLEVEL is nonzero if this chain is the
1614 main chain of insns for the current function. */
1616 static void
1617 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel)
1618 rtx insn;
1619 rtx var;
1620 enum machine_mode promoted_mode;
1621 int unsignedp;
1622 int toplevel;
1624 while (insn)
1626 /* fixup_var_refs_insn might modify insn, so save its next
1627 pointer now. */
1628 rtx next = NEXT_INSN (insn);
1630 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1631 the three sequences they (potentially) contain, and process
1632 them recursively. The CALL_INSN itself is not interesting. */
1634 if (GET_CODE (insn) == CALL_INSN
1635 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1637 int i;
1639 /* Look at the Normal call, sibling call and tail recursion
1640 sequences attached to the CALL_PLACEHOLDER. */
1641 for (i = 0; i < 3; i++)
1643 rtx seq = XEXP (PATTERN (insn), i);
1644 if (seq)
1646 push_to_sequence (seq);
1647 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0);
1648 XEXP (PATTERN (insn), i) = get_insns ();
1649 end_sequence ();
1654 else if (INSN_P (insn))
1655 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel);
1657 insn = next;
1661 /* Look up the insns which reference VAR in HT and fix them up. Other
1662 arguments are the same as fixup_var_refs_insns.
1664 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1665 because the hash table will point straight to the interesting insn
1666 (inside the CALL_PLACEHOLDER). */
1667 static void
1668 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp)
1669 struct hash_table *ht;
1670 rtx var;
1671 enum machine_mode promoted_mode;
1672 int unsignedp;
1674 struct insns_for_mem_entry *ime = (struct insns_for_mem_entry *)
1675 hash_lookup (ht, var, /*create=*/0, /*copy=*/0);
1676 rtx insn_list = ime->insns;
1678 while (insn_list)
1680 rtx insn = XEXP (insn_list, 0);
1682 if (INSN_P (insn))
1683 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, 0);
1685 insn_list = XEXP (insn_list, 1);
1690 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1691 the insn under examination, VAR is the variable to fix up
1692 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1693 TOPLEVEL is nonzero if this is the main insn chain for this
1694 function. */
1695 static void
1696 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel)
1697 rtx insn;
1698 rtx var;
1699 enum machine_mode promoted_mode;
1700 int unsignedp;
1701 int toplevel;
1703 rtx call_dest = 0;
1704 rtx set, prev, prev_set;
1705 rtx note;
1707 /* Remember the notes in case we delete the insn. */
1708 note = REG_NOTES (insn);
1710 /* If this is a CLOBBER of VAR, delete it.
1712 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1713 and REG_RETVAL notes too. */
1714 if (GET_CODE (PATTERN (insn)) == CLOBBER
1715 && (XEXP (PATTERN (insn), 0) == var
1716 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1717 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1718 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1720 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1721 /* The REG_LIBCALL note will go away since we are going to
1722 turn INSN into a NOTE, so just delete the
1723 corresponding REG_RETVAL note. */
1724 remove_note (XEXP (note, 0),
1725 find_reg_note (XEXP (note, 0), REG_RETVAL,
1726 NULL_RTX));
1728 /* In unoptimized compilation, we shouldn't call delete_insn
1729 except in jump.c doing warnings. */
1730 PUT_CODE (insn, NOTE);
1731 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1732 NOTE_SOURCE_FILE (insn) = 0;
1735 /* The insn to load VAR from a home in the arglist
1736 is now a no-op. When we see it, just delete it.
1737 Similarly if this is storing VAR from a register from which
1738 it was loaded in the previous insn. This will occur
1739 when an ADDRESSOF was made for an arglist slot. */
1740 else if (toplevel
1741 && (set = single_set (insn)) != 0
1742 && SET_DEST (set) == var
1743 /* If this represents the result of an insn group,
1744 don't delete the insn. */
1745 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1746 && (rtx_equal_p (SET_SRC (set), var)
1747 || (GET_CODE (SET_SRC (set)) == REG
1748 && (prev = prev_nonnote_insn (insn)) != 0
1749 && (prev_set = single_set (prev)) != 0
1750 && SET_DEST (prev_set) == SET_SRC (set)
1751 && rtx_equal_p (SET_SRC (prev_set), var))))
1753 /* In unoptimized compilation, we shouldn't call delete_insn
1754 except in jump.c doing warnings. */
1755 PUT_CODE (insn, NOTE);
1756 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1757 NOTE_SOURCE_FILE (insn) = 0;
1759 else
1761 struct fixup_replacement *replacements = 0;
1762 rtx next_insn = NEXT_INSN (insn);
1764 if (SMALL_REGISTER_CLASSES)
1766 /* If the insn that copies the results of a CALL_INSN
1767 into a pseudo now references VAR, we have to use an
1768 intermediate pseudo since we want the life of the
1769 return value register to be only a single insn.
1771 If we don't use an intermediate pseudo, such things as
1772 address computations to make the address of VAR valid
1773 if it is not can be placed between the CALL_INSN and INSN.
1775 To make sure this doesn't happen, we record the destination
1776 of the CALL_INSN and see if the next insn uses both that
1777 and VAR. */
1779 if (call_dest != 0 && GET_CODE (insn) == INSN
1780 && reg_mentioned_p (var, PATTERN (insn))
1781 && reg_mentioned_p (call_dest, PATTERN (insn)))
1783 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1785 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1787 PATTERN (insn) = replace_rtx (PATTERN (insn),
1788 call_dest, temp);
1791 if (GET_CODE (insn) == CALL_INSN
1792 && GET_CODE (PATTERN (insn)) == SET)
1793 call_dest = SET_DEST (PATTERN (insn));
1794 else if (GET_CODE (insn) == CALL_INSN
1795 && GET_CODE (PATTERN (insn)) == PARALLEL
1796 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1797 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1798 else
1799 call_dest = 0;
1802 /* See if we have to do anything to INSN now that VAR is in
1803 memory. If it needs to be loaded into a pseudo, use a single
1804 pseudo for the entire insn in case there is a MATCH_DUP
1805 between two operands. We pass a pointer to the head of
1806 a list of struct fixup_replacements. If fixup_var_refs_1
1807 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1808 it will record them in this list.
1810 If it allocated a pseudo for any replacement, we copy into
1811 it here. */
1813 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1814 &replacements);
1816 /* If this is last_parm_insn, and any instructions were output
1817 after it to fix it up, then we must set last_parm_insn to
1818 the last such instruction emitted. */
1819 if (insn == last_parm_insn)
1820 last_parm_insn = PREV_INSN (next_insn);
1822 while (replacements)
1824 struct fixup_replacement *next;
1826 if (GET_CODE (replacements->new) == REG)
1828 rtx insert_before;
1829 rtx seq;
1831 /* OLD might be a (subreg (mem)). */
1832 if (GET_CODE (replacements->old) == SUBREG)
1833 replacements->old
1834 = fixup_memory_subreg (replacements->old, insn, 0);
1835 else
1836 replacements->old
1837 = fixup_stack_1 (replacements->old, insn);
1839 insert_before = insn;
1841 /* If we are changing the mode, do a conversion.
1842 This might be wasteful, but combine.c will
1843 eliminate much of the waste. */
1845 if (GET_MODE (replacements->new)
1846 != GET_MODE (replacements->old))
1848 start_sequence ();
1849 convert_move (replacements->new,
1850 replacements->old, unsignedp);
1851 seq = gen_sequence ();
1852 end_sequence ();
1854 else
1855 seq = gen_move_insn (replacements->new,
1856 replacements->old);
1858 emit_insn_before (seq, insert_before);
1861 next = replacements->next;
1862 free (replacements);
1863 replacements = next;
1867 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1868 But don't touch other insns referred to by reg-notes;
1869 we will get them elsewhere. */
1870 while (note)
1872 if (GET_CODE (note) != INSN_LIST)
1873 XEXP (note, 0)
1874 = walk_fixup_memory_subreg (XEXP (note, 0), insn, 1);
1875 note = XEXP (note, 1);
1879 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1880 See if the rtx expression at *LOC in INSN needs to be changed.
1882 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1883 contain a list of original rtx's and replacements. If we find that we need
1884 to modify this insn by replacing a memory reference with a pseudo or by
1885 making a new MEM to implement a SUBREG, we consult that list to see if
1886 we have already chosen a replacement. If none has already been allocated,
1887 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1888 or the SUBREG, as appropriate, to the pseudo. */
1890 static void
1891 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements)
1892 register rtx var;
1893 enum machine_mode promoted_mode;
1894 register rtx *loc;
1895 rtx insn;
1896 struct fixup_replacement **replacements;
1898 register int i;
1899 register rtx x = *loc;
1900 RTX_CODE code = GET_CODE (x);
1901 register const char *fmt;
1902 register rtx tem, tem1;
1903 struct fixup_replacement *replacement;
1905 switch (code)
1907 case ADDRESSOF:
1908 if (XEXP (x, 0) == var)
1910 /* Prevent sharing of rtl that might lose. */
1911 rtx sub = copy_rtx (XEXP (var, 0));
1913 if (! validate_change (insn, loc, sub, 0))
1915 rtx y = gen_reg_rtx (GET_MODE (sub));
1916 rtx seq, new_insn;
1918 /* We should be able to replace with a register or all is lost.
1919 Note that we can't use validate_change to verify this, since
1920 we're not caring for replacing all dups simultaneously. */
1921 if (! validate_replace_rtx (*loc, y, insn))
1922 abort ();
1924 /* Careful! First try to recognize a direct move of the
1925 value, mimicking how things are done in gen_reload wrt
1926 PLUS. Consider what happens when insn is a conditional
1927 move instruction and addsi3 clobbers flags. */
1929 start_sequence ();
1930 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1931 seq = gen_sequence ();
1932 end_sequence ();
1934 if (recog_memoized (new_insn) < 0)
1936 /* That failed. Fall back on force_operand and hope. */
1938 start_sequence ();
1939 sub = force_operand (sub, y);
1940 if (sub != y)
1941 emit_insn (gen_move_insn (y, sub));
1942 seq = gen_sequence ();
1943 end_sequence ();
1946 #ifdef HAVE_cc0
1947 /* Don't separate setter from user. */
1948 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1949 insn = PREV_INSN (insn);
1950 #endif
1952 emit_insn_before (seq, insn);
1955 return;
1957 case MEM:
1958 if (var == x)
1960 /* If we already have a replacement, use it. Otherwise,
1961 try to fix up this address in case it is invalid. */
1963 replacement = find_fixup_replacement (replacements, var);
1964 if (replacement->new)
1966 *loc = replacement->new;
1967 return;
1970 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1972 /* Unless we are forcing memory to register or we changed the mode,
1973 we can leave things the way they are if the insn is valid. */
1975 INSN_CODE (insn) = -1;
1976 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1977 && recog_memoized (insn) >= 0)
1978 return;
1980 *loc = replacement->new = gen_reg_rtx (promoted_mode);
1981 return;
1984 /* If X contains VAR, we need to unshare it here so that we update
1985 each occurrence separately. But all identical MEMs in one insn
1986 must be replaced with the same rtx because of the possibility of
1987 MATCH_DUPs. */
1989 if (reg_mentioned_p (var, x))
1991 replacement = find_fixup_replacement (replacements, x);
1992 if (replacement->new == 0)
1993 replacement->new = copy_most_rtx (x, var);
1995 *loc = x = replacement->new;
1996 code = GET_CODE (x);
1998 break;
2000 case REG:
2001 case CC0:
2002 case PC:
2003 case CONST_INT:
2004 case CONST:
2005 case SYMBOL_REF:
2006 case LABEL_REF:
2007 case CONST_DOUBLE:
2008 return;
2010 case SIGN_EXTRACT:
2011 case ZERO_EXTRACT:
2012 /* Note that in some cases those types of expressions are altered
2013 by optimize_bit_field, and do not survive to get here. */
2014 if (XEXP (x, 0) == var
2015 || (GET_CODE (XEXP (x, 0)) == SUBREG
2016 && SUBREG_REG (XEXP (x, 0)) == var))
2018 /* Get TEM as a valid MEM in the mode presently in the insn.
2020 We don't worry about the possibility of MATCH_DUP here; it
2021 is highly unlikely and would be tricky to handle. */
2023 tem = XEXP (x, 0);
2024 if (GET_CODE (tem) == SUBREG)
2026 if (GET_MODE_BITSIZE (GET_MODE (tem))
2027 > GET_MODE_BITSIZE (GET_MODE (var)))
2029 replacement = find_fixup_replacement (replacements, var);
2030 if (replacement->new == 0)
2031 replacement->new = gen_reg_rtx (GET_MODE (var));
2032 SUBREG_REG (tem) = replacement->new;
2034 /* The following code works only if we have a MEM, so we
2035 need to handle the subreg here. We directly substitute
2036 it assuming that a subreg must be OK here. We already
2037 scheduled a replacement to copy the mem into the
2038 subreg. */
2039 XEXP (x, 0) = tem;
2040 return;
2042 else
2043 tem = fixup_memory_subreg (tem, insn, 0);
2045 else
2046 tem = fixup_stack_1 (tem, insn);
2048 /* Unless we want to load from memory, get TEM into the proper mode
2049 for an extract from memory. This can only be done if the
2050 extract is at a constant position and length. */
2052 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2053 && GET_CODE (XEXP (x, 2)) == CONST_INT
2054 && ! mode_dependent_address_p (XEXP (tem, 0))
2055 && ! MEM_VOLATILE_P (tem))
2057 enum machine_mode wanted_mode = VOIDmode;
2058 enum machine_mode is_mode = GET_MODE (tem);
2059 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2061 #ifdef HAVE_extzv
2062 if (GET_CODE (x) == ZERO_EXTRACT)
2064 wanted_mode
2065 = insn_data[(int) CODE_FOR_extzv].operand[1].mode;
2066 if (wanted_mode == VOIDmode)
2067 wanted_mode = word_mode;
2069 #endif
2070 #ifdef HAVE_extv
2071 if (GET_CODE (x) == SIGN_EXTRACT)
2073 wanted_mode = insn_data[(int) CODE_FOR_extv].operand[1].mode;
2074 if (wanted_mode == VOIDmode)
2075 wanted_mode = word_mode;
2077 #endif
2078 /* If we have a narrower mode, we can do something. */
2079 if (wanted_mode != VOIDmode
2080 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2082 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2083 rtx old_pos = XEXP (x, 2);
2084 rtx newmem;
2086 /* If the bytes and bits are counted differently, we
2087 must adjust the offset. */
2088 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2089 offset = (GET_MODE_SIZE (is_mode)
2090 - GET_MODE_SIZE (wanted_mode) - offset);
2092 pos %= GET_MODE_BITSIZE (wanted_mode);
2094 newmem = gen_rtx_MEM (wanted_mode,
2095 plus_constant (XEXP (tem, 0), offset));
2096 MEM_COPY_ATTRIBUTES (newmem, tem);
2098 /* Make the change and see if the insn remains valid. */
2099 INSN_CODE (insn) = -1;
2100 XEXP (x, 0) = newmem;
2101 XEXP (x, 2) = GEN_INT (pos);
2103 if (recog_memoized (insn) >= 0)
2104 return;
2106 /* Otherwise, restore old position. XEXP (x, 0) will be
2107 restored later. */
2108 XEXP (x, 2) = old_pos;
2112 /* If we get here, the bitfield extract insn can't accept a memory
2113 reference. Copy the input into a register. */
2115 tem1 = gen_reg_rtx (GET_MODE (tem));
2116 emit_insn_before (gen_move_insn (tem1, tem), insn);
2117 XEXP (x, 0) = tem1;
2118 return;
2120 break;
2122 case SUBREG:
2123 if (SUBREG_REG (x) == var)
2125 /* If this is a special SUBREG made because VAR was promoted
2126 from a wider mode, replace it with VAR and call ourself
2127 recursively, this time saying that the object previously
2128 had its current mode (by virtue of the SUBREG). */
2130 if (SUBREG_PROMOTED_VAR_P (x))
2132 *loc = var;
2133 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements);
2134 return;
2137 /* If this SUBREG makes VAR wider, it has become a paradoxical
2138 SUBREG with VAR in memory, but these aren't allowed at this
2139 stage of the compilation. So load VAR into a pseudo and take
2140 a SUBREG of that pseudo. */
2141 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2143 replacement = find_fixup_replacement (replacements, var);
2144 if (replacement->new == 0)
2145 replacement->new = gen_reg_rtx (promoted_mode);
2146 SUBREG_REG (x) = replacement->new;
2147 return;
2150 /* See if we have already found a replacement for this SUBREG.
2151 If so, use it. Otherwise, make a MEM and see if the insn
2152 is recognized. If not, or if we should force MEM into a register,
2153 make a pseudo for this SUBREG. */
2154 replacement = find_fixup_replacement (replacements, x);
2155 if (replacement->new)
2157 *loc = replacement->new;
2158 return;
2161 replacement->new = *loc = fixup_memory_subreg (x, insn, 0);
2163 INSN_CODE (insn) = -1;
2164 if (! flag_force_mem && recog_memoized (insn) >= 0)
2165 return;
2167 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2168 return;
2170 break;
2172 case SET:
2173 /* First do special simplification of bit-field references. */
2174 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2175 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2176 optimize_bit_field (x, insn, 0);
2177 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2178 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2179 optimize_bit_field (x, insn, NULL_PTR);
2181 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2182 into a register and then store it back out. */
2183 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2184 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2185 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2186 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2187 > GET_MODE_SIZE (GET_MODE (var))))
2189 replacement = find_fixup_replacement (replacements, var);
2190 if (replacement->new == 0)
2191 replacement->new = gen_reg_rtx (GET_MODE (var));
2193 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2194 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2197 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2198 insn into a pseudo and store the low part of the pseudo into VAR. */
2199 if (GET_CODE (SET_DEST (x)) == SUBREG
2200 && SUBREG_REG (SET_DEST (x)) == var
2201 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2202 > GET_MODE_SIZE (GET_MODE (var))))
2204 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2205 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2206 tem)),
2207 insn);
2208 break;
2212 rtx dest = SET_DEST (x);
2213 rtx src = SET_SRC (x);
2214 #ifdef HAVE_insv
2215 rtx outerdest = dest;
2216 #endif
2218 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2219 || GET_CODE (dest) == SIGN_EXTRACT
2220 || GET_CODE (dest) == ZERO_EXTRACT)
2221 dest = XEXP (dest, 0);
2223 if (GET_CODE (src) == SUBREG)
2224 src = XEXP (src, 0);
2226 /* If VAR does not appear at the top level of the SET
2227 just scan the lower levels of the tree. */
2229 if (src != var && dest != var)
2230 break;
2232 /* We will need to rerecognize this insn. */
2233 INSN_CODE (insn) = -1;
2235 #ifdef HAVE_insv
2236 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var)
2238 /* Since this case will return, ensure we fixup all the
2239 operands here. */
2240 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2241 insn, replacements);
2242 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2243 insn, replacements);
2244 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2245 insn, replacements);
2247 tem = XEXP (outerdest, 0);
2249 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2250 that may appear inside a ZERO_EXTRACT.
2251 This was legitimate when the MEM was a REG. */
2252 if (GET_CODE (tem) == SUBREG
2253 && SUBREG_REG (tem) == var)
2254 tem = fixup_memory_subreg (tem, insn, 0);
2255 else
2256 tem = fixup_stack_1 (tem, insn);
2258 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2259 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2260 && ! mode_dependent_address_p (XEXP (tem, 0))
2261 && ! MEM_VOLATILE_P (tem))
2263 enum machine_mode wanted_mode;
2264 enum machine_mode is_mode = GET_MODE (tem);
2265 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2267 wanted_mode = insn_data[(int) CODE_FOR_insv].operand[0].mode;
2268 if (wanted_mode == VOIDmode)
2269 wanted_mode = word_mode;
2271 /* If we have a narrower mode, we can do something. */
2272 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2274 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2275 rtx old_pos = XEXP (outerdest, 2);
2276 rtx newmem;
2278 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2279 offset = (GET_MODE_SIZE (is_mode)
2280 - GET_MODE_SIZE (wanted_mode) - offset);
2282 pos %= GET_MODE_BITSIZE (wanted_mode);
2284 newmem = gen_rtx_MEM (wanted_mode,
2285 plus_constant (XEXP (tem, 0),
2286 offset));
2287 MEM_COPY_ATTRIBUTES (newmem, tem);
2289 /* Make the change and see if the insn remains valid. */
2290 INSN_CODE (insn) = -1;
2291 XEXP (outerdest, 0) = newmem;
2292 XEXP (outerdest, 2) = GEN_INT (pos);
2294 if (recog_memoized (insn) >= 0)
2295 return;
2297 /* Otherwise, restore old position. XEXP (x, 0) will be
2298 restored later. */
2299 XEXP (outerdest, 2) = old_pos;
2303 /* If we get here, the bit-field store doesn't allow memory
2304 or isn't located at a constant position. Load the value into
2305 a register, do the store, and put it back into memory. */
2307 tem1 = gen_reg_rtx (GET_MODE (tem));
2308 emit_insn_before (gen_move_insn (tem1, tem), insn);
2309 emit_insn_after (gen_move_insn (tem, tem1), insn);
2310 XEXP (outerdest, 0) = tem1;
2311 return;
2313 #endif
2315 /* STRICT_LOW_PART is a no-op on memory references
2316 and it can cause combinations to be unrecognizable,
2317 so eliminate it. */
2319 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2320 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2322 /* A valid insn to copy VAR into or out of a register
2323 must be left alone, to avoid an infinite loop here.
2324 If the reference to VAR is by a subreg, fix that up,
2325 since SUBREG is not valid for a memref.
2326 Also fix up the address of the stack slot.
2328 Note that we must not try to recognize the insn until
2329 after we know that we have valid addresses and no
2330 (subreg (mem ...) ...) constructs, since these interfere
2331 with determining the validity of the insn. */
2333 if ((SET_SRC (x) == var
2334 || (GET_CODE (SET_SRC (x)) == SUBREG
2335 && SUBREG_REG (SET_SRC (x)) == var))
2336 && (GET_CODE (SET_DEST (x)) == REG
2337 || (GET_CODE (SET_DEST (x)) == SUBREG
2338 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2339 && GET_MODE (var) == promoted_mode
2340 && x == single_set (insn))
2342 rtx pat, last;
2344 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2345 if (replacement->new)
2346 SET_SRC (x) = replacement->new;
2347 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2348 SET_SRC (x) = replacement->new
2349 = fixup_memory_subreg (SET_SRC (x), insn, 0);
2350 else
2351 SET_SRC (x) = replacement->new
2352 = fixup_stack_1 (SET_SRC (x), insn);
2354 if (recog_memoized (insn) >= 0)
2355 return;
2357 /* INSN is not valid, but we know that we want to
2358 copy SET_SRC (x) to SET_DEST (x) in some way. So
2359 we generate the move and see whether it requires more
2360 than one insn. If it does, we emit those insns and
2361 delete INSN. Otherwise, we an just replace the pattern
2362 of INSN; we have already verified above that INSN has
2363 no other function that to do X. */
2365 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2366 if (GET_CODE (pat) == SEQUENCE)
2368 last = emit_insn_before (pat, insn);
2370 /* INSN might have REG_RETVAL or other important notes, so
2371 we need to store the pattern of the last insn in the
2372 sequence into INSN similarly to the normal case. LAST
2373 should not have REG_NOTES, but we allow them if INSN has
2374 no REG_NOTES. */
2375 if (REG_NOTES (last) && REG_NOTES (insn))
2376 abort ();
2377 if (REG_NOTES (last))
2378 REG_NOTES (insn) = REG_NOTES (last);
2379 PATTERN (insn) = PATTERN (last);
2381 PUT_CODE (last, NOTE);
2382 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2383 NOTE_SOURCE_FILE (last) = 0;
2385 else
2386 PATTERN (insn) = pat;
2388 return;
2391 if ((SET_DEST (x) == var
2392 || (GET_CODE (SET_DEST (x)) == SUBREG
2393 && SUBREG_REG (SET_DEST (x)) == var))
2394 && (GET_CODE (SET_SRC (x)) == REG
2395 || (GET_CODE (SET_SRC (x)) == SUBREG
2396 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2397 && GET_MODE (var) == promoted_mode
2398 && x == single_set (insn))
2400 rtx pat, last;
2402 if (GET_CODE (SET_DEST (x)) == SUBREG)
2403 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn, 0);
2404 else
2405 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2407 if (recog_memoized (insn) >= 0)
2408 return;
2410 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2411 if (GET_CODE (pat) == SEQUENCE)
2413 last = emit_insn_before (pat, insn);
2415 /* INSN might have REG_RETVAL or other important notes, so
2416 we need to store the pattern of the last insn in the
2417 sequence into INSN similarly to the normal case. LAST
2418 should not have REG_NOTES, but we allow them if INSN has
2419 no REG_NOTES. */
2420 if (REG_NOTES (last) && REG_NOTES (insn))
2421 abort ();
2422 if (REG_NOTES (last))
2423 REG_NOTES (insn) = REG_NOTES (last);
2424 PATTERN (insn) = PATTERN (last);
2426 PUT_CODE (last, NOTE);
2427 NOTE_LINE_NUMBER (last) = NOTE_INSN_DELETED;
2428 NOTE_SOURCE_FILE (last) = 0;
2430 else
2431 PATTERN (insn) = pat;
2433 return;
2436 /* Otherwise, storing into VAR must be handled specially
2437 by storing into a temporary and copying that into VAR
2438 with a new insn after this one. Note that this case
2439 will be used when storing into a promoted scalar since
2440 the insn will now have different modes on the input
2441 and output and hence will be invalid (except for the case
2442 of setting it to a constant, which does not need any
2443 change if it is valid). We generate extra code in that case,
2444 but combine.c will eliminate it. */
2446 if (dest == var)
2448 rtx temp;
2449 rtx fixeddest = SET_DEST (x);
2451 /* STRICT_LOW_PART can be discarded, around a MEM. */
2452 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2453 fixeddest = XEXP (fixeddest, 0);
2454 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2455 if (GET_CODE (fixeddest) == SUBREG)
2457 fixeddest = fixup_memory_subreg (fixeddest, insn, 0);
2458 promoted_mode = GET_MODE (fixeddest);
2460 else
2461 fixeddest = fixup_stack_1 (fixeddest, insn);
2463 temp = gen_reg_rtx (promoted_mode);
2465 emit_insn_after (gen_move_insn (fixeddest,
2466 gen_lowpart (GET_MODE (fixeddest),
2467 temp)),
2468 insn);
2470 SET_DEST (x) = temp;
2474 default:
2475 break;
2478 /* Nothing special about this RTX; fix its operands. */
2480 fmt = GET_RTX_FORMAT (code);
2481 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2483 if (fmt[i] == 'e')
2484 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements);
2485 else if (fmt[i] == 'E')
2487 register int j;
2488 for (j = 0; j < XVECLEN (x, i); j++)
2489 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2490 insn, replacements);
2495 /* Given X, an rtx of the form (SUBREG:m1 (MEM:m2 addr)),
2496 return an rtx (MEM:m1 newaddr) which is equivalent.
2497 If any insns must be emitted to compute NEWADDR, put them before INSN.
2499 UNCRITICAL nonzero means accept paradoxical subregs.
2500 This is used for subregs found inside REG_NOTES. */
2502 static rtx
2503 fixup_memory_subreg (x, insn, uncritical)
2504 rtx x;
2505 rtx insn;
2506 int uncritical;
2508 int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
2509 rtx addr = XEXP (SUBREG_REG (x), 0);
2510 enum machine_mode mode = GET_MODE (x);
2511 rtx result;
2513 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2514 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
2515 && ! uncritical)
2516 abort ();
2518 if (BYTES_BIG_ENDIAN)
2519 offset += (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2520 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode)));
2521 addr = plus_constant (addr, offset);
2522 if (!flag_force_addr && memory_address_p (mode, addr))
2523 /* Shortcut if no insns need be emitted. */
2524 return change_address (SUBREG_REG (x), mode, addr);
2525 start_sequence ();
2526 result = change_address (SUBREG_REG (x), mode, addr);
2527 emit_insn_before (gen_sequence (), insn);
2528 end_sequence ();
2529 return result;
2532 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2533 Replace subexpressions of X in place.
2534 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2535 Otherwise return X, with its contents possibly altered.
2537 If any insns must be emitted to compute NEWADDR, put them before INSN.
2539 UNCRITICAL is as in fixup_memory_subreg. */
2541 static rtx
2542 walk_fixup_memory_subreg (x, insn, uncritical)
2543 register rtx x;
2544 rtx insn;
2545 int uncritical;
2547 register enum rtx_code code;
2548 register const char *fmt;
2549 register int i;
2551 if (x == 0)
2552 return 0;
2554 code = GET_CODE (x);
2556 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2557 return fixup_memory_subreg (x, insn, uncritical);
2559 /* Nothing special about this RTX; fix its operands. */
2561 fmt = GET_RTX_FORMAT (code);
2562 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2564 if (fmt[i] == 'e')
2565 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn, uncritical);
2566 else if (fmt[i] == 'E')
2568 register int j;
2569 for (j = 0; j < XVECLEN (x, i); j++)
2570 XVECEXP (x, i, j)
2571 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn, uncritical);
2574 return x;
2577 /* For each memory ref within X, if it refers to a stack slot
2578 with an out of range displacement, put the address in a temp register
2579 (emitting new insns before INSN to load these registers)
2580 and alter the memory ref to use that register.
2581 Replace each such MEM rtx with a copy, to avoid clobberage. */
2583 static rtx
2584 fixup_stack_1 (x, insn)
2585 rtx x;
2586 rtx insn;
2588 register int i;
2589 register RTX_CODE code = GET_CODE (x);
2590 register const char *fmt;
2592 if (code == MEM)
2594 register rtx ad = XEXP (x, 0);
2595 /* If we have address of a stack slot but it's not valid
2596 (displacement is too large), compute the sum in a register. */
2597 if (GET_CODE (ad) == PLUS
2598 && GET_CODE (XEXP (ad, 0)) == REG
2599 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2600 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2601 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2602 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2603 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2604 #endif
2605 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2606 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2607 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2608 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2610 rtx temp, seq;
2611 if (memory_address_p (GET_MODE (x), ad))
2612 return x;
2614 start_sequence ();
2615 temp = copy_to_reg (ad);
2616 seq = gen_sequence ();
2617 end_sequence ();
2618 emit_insn_before (seq, insn);
2619 return change_address (x, VOIDmode, temp);
2621 return x;
2624 fmt = GET_RTX_FORMAT (code);
2625 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2627 if (fmt[i] == 'e')
2628 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2629 else if (fmt[i] == 'E')
2631 register int j;
2632 for (j = 0; j < XVECLEN (x, i); j++)
2633 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2636 return x;
2639 /* Optimization: a bit-field instruction whose field
2640 happens to be a byte or halfword in memory
2641 can be changed to a move instruction.
2643 We call here when INSN is an insn to examine or store into a bit-field.
2644 BODY is the SET-rtx to be altered.
2646 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2647 (Currently this is called only from function.c, and EQUIV_MEM
2648 is always 0.) */
2650 static void
2651 optimize_bit_field (body, insn, equiv_mem)
2652 rtx body;
2653 rtx insn;
2654 rtx *equiv_mem;
2656 register rtx bitfield;
2657 int destflag;
2658 rtx seq = 0;
2659 enum machine_mode mode;
2661 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2662 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2663 bitfield = SET_DEST (body), destflag = 1;
2664 else
2665 bitfield = SET_SRC (body), destflag = 0;
2667 /* First check that the field being stored has constant size and position
2668 and is in fact a byte or halfword suitably aligned. */
2670 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2671 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2672 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2673 != BLKmode)
2674 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2676 register rtx memref = 0;
2678 /* Now check that the containing word is memory, not a register,
2679 and that it is safe to change the machine mode. */
2681 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2682 memref = XEXP (bitfield, 0);
2683 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2684 && equiv_mem != 0)
2685 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2686 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2687 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2688 memref = SUBREG_REG (XEXP (bitfield, 0));
2689 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2690 && equiv_mem != 0
2691 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2692 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2694 if (memref
2695 && ! mode_dependent_address_p (XEXP (memref, 0))
2696 && ! MEM_VOLATILE_P (memref))
2698 /* Now adjust the address, first for any subreg'ing
2699 that we are now getting rid of,
2700 and then for which byte of the word is wanted. */
2702 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2703 rtx insns;
2705 /* Adjust OFFSET to count bits from low-address byte. */
2706 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2707 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2708 - offset - INTVAL (XEXP (bitfield, 1)));
2710 /* Adjust OFFSET to count bytes from low-address byte. */
2711 offset /= BITS_PER_UNIT;
2712 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2714 offset += SUBREG_WORD (XEXP (bitfield, 0)) * UNITS_PER_WORD;
2715 if (BYTES_BIG_ENDIAN)
2716 offset -= (MIN (UNITS_PER_WORD,
2717 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2718 - MIN (UNITS_PER_WORD,
2719 GET_MODE_SIZE (GET_MODE (memref))));
2722 start_sequence ();
2723 memref = change_address (memref, mode,
2724 plus_constant (XEXP (memref, 0), offset));
2725 insns = get_insns ();
2726 end_sequence ();
2727 emit_insns_before (insns, insn);
2729 /* Store this memory reference where
2730 we found the bit field reference. */
2732 if (destflag)
2734 validate_change (insn, &SET_DEST (body), memref, 1);
2735 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2737 rtx src = SET_SRC (body);
2738 while (GET_CODE (src) == SUBREG
2739 && SUBREG_WORD (src) == 0)
2740 src = SUBREG_REG (src);
2741 if (GET_MODE (src) != GET_MODE (memref))
2742 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2743 validate_change (insn, &SET_SRC (body), src, 1);
2745 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2746 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2747 /* This shouldn't happen because anything that didn't have
2748 one of these modes should have got converted explicitly
2749 and then referenced through a subreg.
2750 This is so because the original bit-field was
2751 handled by agg_mode and so its tree structure had
2752 the same mode that memref now has. */
2753 abort ();
2755 else
2757 rtx dest = SET_DEST (body);
2759 while (GET_CODE (dest) == SUBREG
2760 && SUBREG_WORD (dest) == 0
2761 && (GET_MODE_CLASS (GET_MODE (dest))
2762 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2763 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2764 <= UNITS_PER_WORD))
2765 dest = SUBREG_REG (dest);
2767 validate_change (insn, &SET_DEST (body), dest, 1);
2769 if (GET_MODE (dest) == GET_MODE (memref))
2770 validate_change (insn, &SET_SRC (body), memref, 1);
2771 else
2773 /* Convert the mem ref to the destination mode. */
2774 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2776 start_sequence ();
2777 convert_move (newreg, memref,
2778 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2779 seq = get_insns ();
2780 end_sequence ();
2782 validate_change (insn, &SET_SRC (body), newreg, 1);
2786 /* See if we can convert this extraction or insertion into
2787 a simple move insn. We might not be able to do so if this
2788 was, for example, part of a PARALLEL.
2790 If we succeed, write out any needed conversions. If we fail,
2791 it is hard to guess why we failed, so don't do anything
2792 special; just let the optimization be suppressed. */
2794 if (apply_change_group () && seq)
2795 emit_insns_before (seq, insn);
2800 /* These routines are responsible for converting virtual register references
2801 to the actual hard register references once RTL generation is complete.
2803 The following four variables are used for communication between the
2804 routines. They contain the offsets of the virtual registers from their
2805 respective hard registers. */
2807 static int in_arg_offset;
2808 static int var_offset;
2809 static int dynamic_offset;
2810 static int out_arg_offset;
2811 static int cfa_offset;
2813 /* In most machines, the stack pointer register is equivalent to the bottom
2814 of the stack. */
2816 #ifndef STACK_POINTER_OFFSET
2817 #define STACK_POINTER_OFFSET 0
2818 #endif
2820 /* If not defined, pick an appropriate default for the offset of dynamically
2821 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2822 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2824 #ifndef STACK_DYNAMIC_OFFSET
2826 /* The bottom of the stack points to the actual arguments. If
2827 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2828 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2829 stack space for register parameters is not pushed by the caller, but
2830 rather part of the fixed stack areas and hence not included in
2831 `current_function_outgoing_args_size'. Nevertheless, we must allow
2832 for it when allocating stack dynamic objects. */
2834 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2835 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2836 ((ACCUMULATE_OUTGOING_ARGS \
2837 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2838 + (STACK_POINTER_OFFSET)) \
2840 #else
2841 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2842 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2843 + (STACK_POINTER_OFFSET))
2844 #endif
2845 #endif
2847 /* On most machines, the CFA coincides with the first incoming parm. */
2849 #ifndef ARG_POINTER_CFA_OFFSET
2850 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2851 #endif
2853 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had
2854 its address taken. DECL is the decl for the object stored in the
2855 register, for later use if we do need to force REG into the stack.
2856 REG is overwritten by the MEM like in put_reg_into_stack. */
2859 gen_mem_addressof (reg, decl)
2860 rtx reg;
2861 tree decl;
2863 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2864 REGNO (reg), decl);
2866 /* If the original REG was a user-variable, then so is the REG whose
2867 address is being taken. Likewise for unchanging. */
2868 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2869 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2871 PUT_CODE (reg, MEM);
2872 XEXP (reg, 0) = r;
2873 if (decl)
2875 tree type = TREE_TYPE (decl);
2877 PUT_MODE (reg, DECL_MODE (decl));
2878 MEM_VOLATILE_P (reg) = TREE_SIDE_EFFECTS (decl);
2879 MEM_SET_IN_STRUCT_P (reg, AGGREGATE_TYPE_P (type));
2880 MEM_ALIAS_SET (reg) = get_alias_set (decl);
2882 if (TREE_USED (decl) || DECL_INITIAL (decl) != 0)
2883 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), 0);
2885 else
2887 /* We have no alias information about this newly created MEM. */
2888 MEM_ALIAS_SET (reg) = 0;
2890 fixup_var_refs (reg, GET_MODE (reg), 0, 0);
2893 return reg;
2896 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2898 void
2899 flush_addressof (decl)
2900 tree decl;
2902 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2903 && DECL_RTL (decl) != 0
2904 && GET_CODE (DECL_RTL (decl)) == MEM
2905 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2906 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2907 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2910 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2912 static void
2913 put_addressof_into_stack (r, ht)
2914 rtx r;
2915 struct hash_table *ht;
2917 tree decl, type;
2918 int volatile_p, used_p;
2920 rtx reg = XEXP (r, 0);
2922 if (GET_CODE (reg) != REG)
2923 abort ();
2925 decl = ADDRESSOF_DECL (r);
2926 if (decl)
2928 type = TREE_TYPE (decl);
2929 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2930 && TREE_THIS_VOLATILE (decl));
2931 used_p = (TREE_USED (decl)
2932 || (TREE_CODE (decl) != SAVE_EXPR
2933 && DECL_INITIAL (decl) != 0));
2935 else
2937 type = NULL_TREE;
2938 volatile_p = 0;
2939 used_p = 1;
2942 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2943 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
2946 /* List of replacements made below in purge_addressof_1 when creating
2947 bitfield insertions. */
2948 static rtx purge_bitfield_addressof_replacements;
2950 /* List of replacements made below in purge_addressof_1 for patterns
2951 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
2952 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
2953 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
2954 enough in complex cases, e.g. when some field values can be
2955 extracted by usage MEM with narrower mode. */
2956 static rtx purge_addressof_replacements;
2958 /* Helper function for purge_addressof. See if the rtx expression at *LOC
2959 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
2960 the stack. If the function returns FALSE then the replacement could not
2961 be made. */
2963 static bool
2964 purge_addressof_1 (loc, insn, force, store, ht)
2965 rtx *loc;
2966 rtx insn;
2967 int force, store;
2968 struct hash_table *ht;
2970 rtx x;
2971 RTX_CODE code;
2972 int i, j;
2973 const char *fmt;
2974 bool result = true;
2976 /* Re-start here to avoid recursion in common cases. */
2977 restart:
2979 x = *loc;
2980 if (x == 0)
2981 return true;
2983 code = GET_CODE (x);
2985 /* If we don't return in any of the cases below, we will recurse inside
2986 the RTX, which will normally result in any ADDRESSOF being forced into
2987 memory. */
2988 if (code == SET)
2990 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
2991 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
2992 return result;
2995 else if (code == ADDRESSOF && GET_CODE (XEXP (x, 0)) == MEM)
2997 /* We must create a copy of the rtx because it was created by
2998 overwriting a REG rtx which is always shared. */
2999 rtx sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3000 rtx insns;
3002 if (validate_change (insn, loc, sub, 0)
3003 || validate_replace_rtx (x, sub, insn))
3004 return true;
3006 start_sequence ();
3007 sub = force_operand (sub, NULL_RTX);
3008 if (! validate_change (insn, loc, sub, 0)
3009 && ! validate_replace_rtx (x, sub, insn))
3010 abort ();
3012 insns = gen_sequence ();
3013 end_sequence ();
3014 emit_insn_before (insns, insn);
3015 return true;
3018 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3020 rtx sub = XEXP (XEXP (x, 0), 0);
3021 rtx sub2;
3023 if (GET_CODE (sub) == MEM)
3025 sub2 = gen_rtx_MEM (GET_MODE (x), copy_rtx (XEXP (sub, 0)));
3026 MEM_COPY_ATTRIBUTES (sub2, sub);
3027 sub = sub2;
3029 else if (GET_CODE (sub) == REG
3030 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3032 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3034 int size_x, size_sub;
3036 if (!insn)
3038 /* When processing REG_NOTES look at the list of
3039 replacements done on the insn to find the register that X
3040 was replaced by. */
3041 rtx tem;
3043 for (tem = purge_bitfield_addressof_replacements;
3044 tem != NULL_RTX;
3045 tem = XEXP (XEXP (tem, 1), 1))
3046 if (rtx_equal_p (x, XEXP (tem, 0)))
3048 *loc = XEXP (XEXP (tem, 1), 0);
3049 return true;
3052 /* See comment for purge_addressof_replacements. */
3053 for (tem = purge_addressof_replacements;
3054 tem != NULL_RTX;
3055 tem = XEXP (XEXP (tem, 1), 1))
3056 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3058 rtx z = XEXP (XEXP (tem, 1), 0);
3060 if (GET_MODE (x) == GET_MODE (z)
3061 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3062 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3063 abort ();
3065 /* It can happen that the note may speak of things
3066 in a wider (or just different) mode than the
3067 code did. This is especially true of
3068 REG_RETVAL. */
3070 if (GET_CODE (z) == SUBREG && SUBREG_WORD (z) == 0)
3071 z = SUBREG_REG (z);
3073 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3074 && (GET_MODE_SIZE (GET_MODE (x))
3075 > GET_MODE_SIZE (GET_MODE (z))))
3077 /* This can occur as a result in invalid
3078 pointer casts, e.g. float f; ...
3079 *(long long int *)&f.
3080 ??? We could emit a warning here, but
3081 without a line number that wouldn't be
3082 very helpful. */
3083 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3085 else
3086 z = gen_lowpart (GET_MODE (x), z);
3088 *loc = z;
3089 return true;
3092 /* Sometimes we may not be able to find the replacement. For
3093 example when the original insn was a MEM in a wider mode,
3094 and the note is part of a sign extension of a narrowed
3095 version of that MEM. Gcc testcase compile/990829-1.c can
3096 generate an example of this siutation. Rather than complain
3097 we return false, which will prompt our caller to remove the
3098 offending note. */
3099 return false;
3102 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3103 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3105 /* Don't even consider working with paradoxical subregs,
3106 or the moral equivalent seen here. */
3107 if (size_x <= size_sub
3108 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3110 /* Do a bitfield insertion to mirror what would happen
3111 in memory. */
3113 rtx val, seq;
3115 if (store)
3117 rtx p = PREV_INSN (insn);
3119 start_sequence ();
3120 val = gen_reg_rtx (GET_MODE (x));
3121 if (! validate_change (insn, loc, val, 0))
3123 /* Discard the current sequence and put the
3124 ADDRESSOF on stack. */
3125 end_sequence ();
3126 goto give_up;
3128 seq = gen_sequence ();
3129 end_sequence ();
3130 emit_insn_before (seq, insn);
3131 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3132 insn, ht);
3134 start_sequence ();
3135 store_bit_field (sub, size_x, 0, GET_MODE (x),
3136 val, GET_MODE_SIZE (GET_MODE (sub)),
3137 GET_MODE_ALIGNMENT (GET_MODE (sub)));
3139 /* Make sure to unshare any shared rtl that store_bit_field
3140 might have created. */
3141 unshare_all_rtl_again (get_insns ());
3143 seq = gen_sequence ();
3144 end_sequence ();
3145 p = emit_insn_after (seq, insn);
3146 if (NEXT_INSN (insn))
3147 compute_insns_for_mem (NEXT_INSN (insn),
3148 p ? NEXT_INSN (p) : NULL_RTX,
3149 ht);
3151 else
3153 rtx p = PREV_INSN (insn);
3155 start_sequence ();
3156 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3157 GET_MODE (x), GET_MODE (x),
3158 GET_MODE_SIZE (GET_MODE (sub)),
3159 GET_MODE_SIZE (GET_MODE (sub)));
3161 if (! validate_change (insn, loc, val, 0))
3163 /* Discard the current sequence and put the
3164 ADDRESSOF on stack. */
3165 end_sequence ();
3166 goto give_up;
3169 seq = gen_sequence ();
3170 end_sequence ();
3171 emit_insn_before (seq, insn);
3172 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3173 insn, ht);
3176 /* Remember the replacement so that the same one can be done
3177 on the REG_NOTES. */
3178 purge_bitfield_addressof_replacements
3179 = gen_rtx_EXPR_LIST (VOIDmode, x,
3180 gen_rtx_EXPR_LIST
3181 (VOIDmode, val,
3182 purge_bitfield_addressof_replacements));
3184 /* We replaced with a reg -- all done. */
3185 return true;
3189 else if (validate_change (insn, loc, sub, 0))
3191 /* Remember the replacement so that the same one can be done
3192 on the REG_NOTES. */
3193 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3195 rtx tem;
3197 for (tem = purge_addressof_replacements;
3198 tem != NULL_RTX;
3199 tem = XEXP (XEXP (tem, 1), 1))
3200 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3202 XEXP (XEXP (tem, 1), 0) = sub;
3203 return true;
3205 purge_addressof_replacements
3206 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3207 gen_rtx_EXPR_LIST (VOIDmode, sub,
3208 purge_addressof_replacements));
3209 return true;
3211 goto restart;
3213 give_up:;
3214 /* else give up and put it into the stack */
3217 else if (code == ADDRESSOF)
3219 put_addressof_into_stack (x, ht);
3220 return true;
3222 else if (code == SET)
3224 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3225 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3226 return result;
3229 /* Scan all subexpressions. */
3230 fmt = GET_RTX_FORMAT (code);
3231 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3233 if (*fmt == 'e')
3234 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3235 else if (*fmt == 'E')
3236 for (j = 0; j < XVECLEN (x, i); j++)
3237 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3240 return result;
3243 /* Return a new hash table entry in HT. */
3245 static struct hash_entry *
3246 insns_for_mem_newfunc (he, ht, k)
3247 struct hash_entry *he;
3248 struct hash_table *ht;
3249 hash_table_key k ATTRIBUTE_UNUSED;
3251 struct insns_for_mem_entry *ifmhe;
3252 if (he)
3253 return he;
3255 ifmhe = ((struct insns_for_mem_entry *)
3256 hash_allocate (ht, sizeof (struct insns_for_mem_entry)));
3257 ifmhe->insns = NULL_RTX;
3259 return &ifmhe->he;
3262 /* Return a hash value for K, a REG. */
3264 static unsigned long
3265 insns_for_mem_hash (k)
3266 hash_table_key k;
3268 /* K is really a RTX. Just use the address as the hash value. */
3269 return (unsigned long) k;
3272 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3274 static bool
3275 insns_for_mem_comp (k1, k2)
3276 hash_table_key k1;
3277 hash_table_key k2;
3279 return k1 == k2;
3282 struct insns_for_mem_walk_info {
3283 /* The hash table that we are using to record which INSNs use which
3284 MEMs. */
3285 struct hash_table *ht;
3287 /* The INSN we are currently proessing. */
3288 rtx insn;
3290 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3291 to find the insns that use the REGs in the ADDRESSOFs. */
3292 int pass;
3295 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3296 that might be used in an ADDRESSOF expression, record this INSN in
3297 the hash table given by DATA (which is really a pointer to an
3298 insns_for_mem_walk_info structure). */
3300 static int
3301 insns_for_mem_walk (r, data)
3302 rtx *r;
3303 void *data;
3305 struct insns_for_mem_walk_info *ifmwi
3306 = (struct insns_for_mem_walk_info *) data;
3308 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3309 && GET_CODE (XEXP (*r, 0)) == REG)
3310 hash_lookup (ifmwi->ht, XEXP (*r, 0), /*create=*/1, /*copy=*/0);
3311 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3313 /* Lookup this MEM in the hashtable, creating it if necessary. */
3314 struct insns_for_mem_entry *ifme
3315 = (struct insns_for_mem_entry *) hash_lookup (ifmwi->ht,
3317 /*create=*/0,
3318 /*copy=*/0);
3320 /* If we have not already recorded this INSN, do so now. Since
3321 we process the INSNs in order, we know that if we have
3322 recorded it it must be at the front of the list. */
3323 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3324 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3325 ifme->insns);
3328 return 0;
3331 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3332 which REGs in HT. */
3334 static void
3335 compute_insns_for_mem (insns, last_insn, ht)
3336 rtx insns;
3337 rtx last_insn;
3338 struct hash_table *ht;
3340 rtx insn;
3341 struct insns_for_mem_walk_info ifmwi;
3342 ifmwi.ht = ht;
3344 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3345 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3346 if (INSN_P (insn))
3348 ifmwi.insn = insn;
3349 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3353 /* Helper function for purge_addressof called through for_each_rtx.
3354 Returns true iff the rtl is an ADDRESSOF. */
3355 static int
3356 is_addressof (rtl, data)
3357 rtx *rtl;
3358 void *data ATTRIBUTE_UNUSED;
3360 return GET_CODE (*rtl) == ADDRESSOF;
3363 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3364 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3365 stack. */
3367 void
3368 purge_addressof (insns)
3369 rtx insns;
3371 rtx insn;
3372 struct hash_table ht;
3374 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3375 requires a fixup pass over the instruction stream to correct
3376 INSNs that depended on the REG being a REG, and not a MEM. But,
3377 these fixup passes are slow. Furthermore, most MEMs are not
3378 mentioned in very many instructions. So, we speed up the process
3379 by pre-calculating which REGs occur in which INSNs; that allows
3380 us to perform the fixup passes much more quickly. */
3381 hash_table_init (&ht,
3382 insns_for_mem_newfunc,
3383 insns_for_mem_hash,
3384 insns_for_mem_comp);
3385 compute_insns_for_mem (insns, NULL_RTX, &ht);
3387 for (insn = insns; insn; insn = NEXT_INSN (insn))
3388 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3389 || GET_CODE (insn) == CALL_INSN)
3391 if (! purge_addressof_1 (&PATTERN (insn), insn,
3392 asm_noperands (PATTERN (insn)) > 0, 0, &ht))
3393 /* If we could not replace the ADDRESSOFs in the insn,
3394 something is wrong. */
3395 abort ();
3397 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, &ht))
3399 /* If we could not replace the ADDRESSOFs in the insn's notes,
3400 we can just remove the offending notes instead. */
3401 rtx note;
3403 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3405 /* If we find a REG_RETVAL note then the insn is a libcall.
3406 Such insns must have REG_EQUAL notes as well, in order
3407 for later passes of the compiler to work. So it is not
3408 safe to delete the notes here, and instead we abort. */
3409 if (REG_NOTE_KIND (note) == REG_RETVAL)
3410 abort ();
3411 if (for_each_rtx (&note, is_addressof, NULL))
3412 remove_note (insn, note);
3417 /* Clean up. */
3418 hash_table_free (&ht);
3419 purge_bitfield_addressof_replacements = 0;
3420 purge_addressof_replacements = 0;
3422 /* REGs are shared. purge_addressof will destructively replace a REG
3423 with a MEM, which creates shared MEMs.
3425 Unfortunately, the children of put_reg_into_stack assume that MEMs
3426 referring to the same stack slot are shared (fixup_var_refs and
3427 the associated hash table code).
3429 So, we have to do another unsharing pass after we have flushed any
3430 REGs that had their address taken into the stack.
3432 It may be worth tracking whether or not we converted any REGs into
3433 MEMs to avoid this overhead when it is not needed. */
3434 unshare_all_rtl_again (get_insns ());
3437 /* Convert a SET of a hard subreg to a set of the appropriet hard
3438 register. A subroutine of purge_hard_subreg_sets. */
3440 static void
3441 purge_single_hard_subreg_set (pattern)
3442 rtx pattern;
3444 rtx reg = SET_DEST (pattern);
3445 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3446 int word = 0;
3448 while (GET_CODE (reg) == SUBREG)
3450 word += SUBREG_WORD (reg);
3451 reg = SUBREG_REG (reg);
3454 if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
3456 reg = gen_rtx_REG (mode, REGNO (reg) + word);
3457 SET_DEST (pattern) = reg;
3461 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3462 only such SETs that we expect to see are those left in because
3463 integrate can't handle sets of parts of a return value register.
3465 We don't use alter_subreg because we only want to eliminate subregs
3466 of hard registers. */
3468 void
3469 purge_hard_subreg_sets (insn)
3470 rtx insn;
3472 for (; insn; insn = NEXT_INSN (insn))
3474 if (INSN_P (insn))
3476 rtx pattern = PATTERN (insn);
3477 switch (GET_CODE (pattern))
3479 case SET:
3480 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3481 purge_single_hard_subreg_set (pattern);
3482 break;
3483 case PARALLEL:
3485 int j;
3486 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3488 rtx inner_pattern = XVECEXP (pattern, 0, j);
3489 if (GET_CODE (inner_pattern) == SET
3490 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3491 purge_single_hard_subreg_set (inner_pattern);
3494 break;
3495 default:
3496 break;
3502 /* Pass through the INSNS of function FNDECL and convert virtual register
3503 references to hard register references. */
3505 void
3506 instantiate_virtual_regs (fndecl, insns)
3507 tree fndecl;
3508 rtx insns;
3510 rtx insn;
3511 unsigned int i;
3513 /* Compute the offsets to use for this function. */
3514 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3515 var_offset = STARTING_FRAME_OFFSET;
3516 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3517 out_arg_offset = STACK_POINTER_OFFSET;
3518 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3520 /* Scan all variables and parameters of this function. For each that is
3521 in memory, instantiate all virtual registers if the result is a valid
3522 address. If not, we do it later. That will handle most uses of virtual
3523 regs on many machines. */
3524 instantiate_decls (fndecl, 1);
3526 /* Initialize recognition, indicating that volatile is OK. */
3527 init_recog ();
3529 /* Scan through all the insns, instantiating every virtual register still
3530 present. */
3531 for (insn = insns; insn; insn = NEXT_INSN (insn))
3532 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3533 || GET_CODE (insn) == CALL_INSN)
3535 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3536 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3537 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3538 if (GET_CODE (insn) == CALL_INSN)
3539 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3540 NULL_RTX, 0);
3543 /* Instantiate the stack slots for the parm registers, for later use in
3544 addressof elimination. */
3545 for (i = 0; i < max_parm_reg; ++i)
3546 if (parm_reg_stack_loc[i])
3547 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3549 /* Now instantiate the remaining register equivalences for debugging info.
3550 These will not be valid addresses. */
3551 instantiate_decls (fndecl, 0);
3553 /* Indicate that, from now on, assign_stack_local should use
3554 frame_pointer_rtx. */
3555 virtuals_instantiated = 1;
3558 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3559 all virtual registers in their DECL_RTL's.
3561 If VALID_ONLY, do this only if the resulting address is still valid.
3562 Otherwise, always do it. */
3564 static void
3565 instantiate_decls (fndecl, valid_only)
3566 tree fndecl;
3567 int valid_only;
3569 tree decl;
3571 /* Process all parameters of the function. */
3572 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3574 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3576 instantiate_decl (DECL_RTL (decl), size, valid_only);
3578 /* If the parameter was promoted, then the incoming RTL mode may be
3579 larger than the declared type size. We must use the larger of
3580 the two sizes. */
3581 size = MAX (GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl))), size);
3582 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3585 /* Now process all variables defined in the function or its subblocks. */
3586 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3589 /* Subroutine of instantiate_decls: Process all decls in the given
3590 BLOCK node and all its subblocks. */
3592 static void
3593 instantiate_decls_1 (let, valid_only)
3594 tree let;
3595 int valid_only;
3597 tree t;
3599 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3600 if (DECL_RTL_SET_P (t))
3601 instantiate_decl (DECL_RTL (t),
3602 int_size_in_bytes (TREE_TYPE (t)),
3603 valid_only);
3605 /* Process all subblocks. */
3606 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3607 instantiate_decls_1 (t, valid_only);
3610 /* Subroutine of the preceding procedures: Given RTL representing a
3611 decl and the size of the object, do any instantiation required.
3613 If VALID_ONLY is non-zero, it means that the RTL should only be
3614 changed if the new address is valid. */
3616 static void
3617 instantiate_decl (x, size, valid_only)
3618 rtx x;
3619 HOST_WIDE_INT size;
3620 int valid_only;
3622 enum machine_mode mode;
3623 rtx addr;
3625 /* If this is not a MEM, no need to do anything. Similarly if the
3626 address is a constant or a register that is not a virtual register. */
3628 if (x == 0 || GET_CODE (x) != MEM)
3629 return;
3631 addr = XEXP (x, 0);
3632 if (CONSTANT_P (addr)
3633 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3634 || (GET_CODE (addr) == REG
3635 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3636 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3637 return;
3639 /* If we should only do this if the address is valid, copy the address.
3640 We need to do this so we can undo any changes that might make the
3641 address invalid. This copy is unfortunate, but probably can't be
3642 avoided. */
3644 if (valid_only)
3645 addr = copy_rtx (addr);
3647 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3649 if (valid_only && size >= 0)
3651 unsigned HOST_WIDE_INT decl_size = size;
3653 /* Now verify that the resulting address is valid for every integer or
3654 floating-point mode up to and including SIZE bytes long. We do this
3655 since the object might be accessed in any mode and frame addresses
3656 are shared. */
3658 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3659 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3660 mode = GET_MODE_WIDER_MODE (mode))
3661 if (! memory_address_p (mode, addr))
3662 return;
3664 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3665 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3666 mode = GET_MODE_WIDER_MODE (mode))
3667 if (! memory_address_p (mode, addr))
3668 return;
3671 /* Put back the address now that we have updated it and we either know
3672 it is valid or we don't care whether it is valid. */
3674 XEXP (x, 0) = addr;
3677 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3678 is a virtual register, return the requivalent hard register and set the
3679 offset indirectly through the pointer. Otherwise, return 0. */
3681 static rtx
3682 instantiate_new_reg (x, poffset)
3683 rtx x;
3684 HOST_WIDE_INT *poffset;
3686 rtx new;
3687 HOST_WIDE_INT offset;
3689 if (x == virtual_incoming_args_rtx)
3690 new = arg_pointer_rtx, offset = in_arg_offset;
3691 else if (x == virtual_stack_vars_rtx)
3692 new = frame_pointer_rtx, offset = var_offset;
3693 else if (x == virtual_stack_dynamic_rtx)
3694 new = stack_pointer_rtx, offset = dynamic_offset;
3695 else if (x == virtual_outgoing_args_rtx)
3696 new = stack_pointer_rtx, offset = out_arg_offset;
3697 else if (x == virtual_cfa_rtx)
3698 new = arg_pointer_rtx, offset = cfa_offset;
3699 else
3700 return 0;
3702 *poffset = offset;
3703 return new;
3706 /* Given a pointer to a piece of rtx and an optional pointer to the
3707 containing object, instantiate any virtual registers present in it.
3709 If EXTRA_INSNS, we always do the replacement and generate
3710 any extra insns before OBJECT. If it zero, we do nothing if replacement
3711 is not valid.
3713 Return 1 if we either had nothing to do or if we were able to do the
3714 needed replacement. Return 0 otherwise; we only return zero if
3715 EXTRA_INSNS is zero.
3717 We first try some simple transformations to avoid the creation of extra
3718 pseudos. */
3720 static int
3721 instantiate_virtual_regs_1 (loc, object, extra_insns)
3722 rtx *loc;
3723 rtx object;
3724 int extra_insns;
3726 rtx x;
3727 RTX_CODE code;
3728 rtx new = 0;
3729 HOST_WIDE_INT offset = 0;
3730 rtx temp;
3731 rtx seq;
3732 int i, j;
3733 const char *fmt;
3735 /* Re-start here to avoid recursion in common cases. */
3736 restart:
3738 x = *loc;
3739 if (x == 0)
3740 return 1;
3742 code = GET_CODE (x);
3744 /* Check for some special cases. */
3745 switch (code)
3747 case CONST_INT:
3748 case CONST_DOUBLE:
3749 case CONST:
3750 case SYMBOL_REF:
3751 case CODE_LABEL:
3752 case PC:
3753 case CC0:
3754 case ASM_INPUT:
3755 case ADDR_VEC:
3756 case ADDR_DIFF_VEC:
3757 case RETURN:
3758 return 1;
3760 case SET:
3761 /* We are allowed to set the virtual registers. This means that
3762 the actual register should receive the source minus the
3763 appropriate offset. This is used, for example, in the handling
3764 of non-local gotos. */
3765 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3767 rtx src = SET_SRC (x);
3769 /* We are setting the register, not using it, so the relevant
3770 offset is the negative of the offset to use were we using
3771 the register. */
3772 offset = - offset;
3773 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3775 /* The only valid sources here are PLUS or REG. Just do
3776 the simplest possible thing to handle them. */
3777 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3778 abort ();
3780 start_sequence ();
3781 if (GET_CODE (src) != REG)
3782 temp = force_operand (src, NULL_RTX);
3783 else
3784 temp = src;
3785 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3786 seq = get_insns ();
3787 end_sequence ();
3789 emit_insns_before (seq, object);
3790 SET_DEST (x) = new;
3792 if (! validate_change (object, &SET_SRC (x), temp, 0)
3793 || ! extra_insns)
3794 abort ();
3796 return 1;
3799 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3800 loc = &SET_SRC (x);
3801 goto restart;
3803 case PLUS:
3804 /* Handle special case of virtual register plus constant. */
3805 if (CONSTANT_P (XEXP (x, 1)))
3807 rtx old, new_offset;
3809 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3810 if (GET_CODE (XEXP (x, 0)) == PLUS)
3812 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3814 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3815 extra_insns);
3816 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3818 else
3820 loc = &XEXP (x, 0);
3821 goto restart;
3825 #ifdef POINTERS_EXTEND_UNSIGNED
3826 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3827 we can commute the PLUS and SUBREG because pointers into the
3828 frame are well-behaved. */
3829 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3830 && GET_CODE (XEXP (x, 1)) == CONST_INT
3831 && 0 != (new
3832 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3833 &offset))
3834 && validate_change (object, loc,
3835 plus_constant (gen_lowpart (ptr_mode,
3836 new),
3837 offset
3838 + INTVAL (XEXP (x, 1))),
3840 return 1;
3841 #endif
3842 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3844 /* We know the second operand is a constant. Unless the
3845 first operand is a REG (which has been already checked),
3846 it needs to be checked. */
3847 if (GET_CODE (XEXP (x, 0)) != REG)
3849 loc = &XEXP (x, 0);
3850 goto restart;
3852 return 1;
3855 new_offset = plus_constant (XEXP (x, 1), offset);
3857 /* If the new constant is zero, try to replace the sum with just
3858 the register. */
3859 if (new_offset == const0_rtx
3860 && validate_change (object, loc, new, 0))
3861 return 1;
3863 /* Next try to replace the register and new offset.
3864 There are two changes to validate here and we can't assume that
3865 in the case of old offset equals new just changing the register
3866 will yield a valid insn. In the interests of a little efficiency,
3867 however, we only call validate change once (we don't queue up the
3868 changes and then call apply_change_group). */
3870 old = XEXP (x, 0);
3871 if (offset == 0
3872 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3873 : (XEXP (x, 0) = new,
3874 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3876 if (! extra_insns)
3878 XEXP (x, 0) = old;
3879 return 0;
3882 /* Otherwise copy the new constant into a register and replace
3883 constant with that register. */
3884 temp = gen_reg_rtx (Pmode);
3885 XEXP (x, 0) = new;
3886 if (validate_change (object, &XEXP (x, 1), temp, 0))
3887 emit_insn_before (gen_move_insn (temp, new_offset), object);
3888 else
3890 /* If that didn't work, replace this expression with a
3891 register containing the sum. */
3893 XEXP (x, 0) = old;
3894 new = gen_rtx_PLUS (Pmode, new, new_offset);
3896 start_sequence ();
3897 temp = force_operand (new, NULL_RTX);
3898 seq = get_insns ();
3899 end_sequence ();
3901 emit_insns_before (seq, object);
3902 if (! validate_change (object, loc, temp, 0)
3903 && ! validate_replace_rtx (x, temp, object))
3904 abort ();
3908 return 1;
3911 /* Fall through to generic two-operand expression case. */
3912 case EXPR_LIST:
3913 case CALL:
3914 case COMPARE:
3915 case MINUS:
3916 case MULT:
3917 case DIV: case UDIV:
3918 case MOD: case UMOD:
3919 case AND: case IOR: case XOR:
3920 case ROTATERT: case ROTATE:
3921 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3922 case NE: case EQ:
3923 case GE: case GT: case GEU: case GTU:
3924 case LE: case LT: case LEU: case LTU:
3925 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3926 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3927 loc = &XEXP (x, 0);
3928 goto restart;
3930 case MEM:
3931 /* Most cases of MEM that convert to valid addresses have already been
3932 handled by our scan of decls. The only special handling we
3933 need here is to make a copy of the rtx to ensure it isn't being
3934 shared if we have to change it to a pseudo.
3936 If the rtx is a simple reference to an address via a virtual register,
3937 it can potentially be shared. In such cases, first try to make it
3938 a valid address, which can also be shared. Otherwise, copy it and
3939 proceed normally.
3941 First check for common cases that need no processing. These are
3942 usually due to instantiation already being done on a previous instance
3943 of a shared rtx. */
3945 temp = XEXP (x, 0);
3946 if (CONSTANT_ADDRESS_P (temp)
3947 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3948 || temp == arg_pointer_rtx
3949 #endif
3950 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3951 || temp == hard_frame_pointer_rtx
3952 #endif
3953 || temp == frame_pointer_rtx)
3954 return 1;
3956 if (GET_CODE (temp) == PLUS
3957 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3958 && (XEXP (temp, 0) == frame_pointer_rtx
3959 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3960 || XEXP (temp, 0) == hard_frame_pointer_rtx
3961 #endif
3962 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3963 || XEXP (temp, 0) == arg_pointer_rtx
3964 #endif
3966 return 1;
3968 if (temp == virtual_stack_vars_rtx
3969 || temp == virtual_incoming_args_rtx
3970 || (GET_CODE (temp) == PLUS
3971 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3972 && (XEXP (temp, 0) == virtual_stack_vars_rtx
3973 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
3975 /* This MEM may be shared. If the substitution can be done without
3976 the need to generate new pseudos, we want to do it in place
3977 so all copies of the shared rtx benefit. The call below will
3978 only make substitutions if the resulting address is still
3979 valid.
3981 Note that we cannot pass X as the object in the recursive call
3982 since the insn being processed may not allow all valid
3983 addresses. However, if we were not passed on object, we can
3984 only modify X without copying it if X will have a valid
3985 address.
3987 ??? Also note that this can still lose if OBJECT is an insn that
3988 has less restrictions on an address that some other insn.
3989 In that case, we will modify the shared address. This case
3990 doesn't seem very likely, though. One case where this could
3991 happen is in the case of a USE or CLOBBER reference, but we
3992 take care of that below. */
3994 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
3995 object ? object : x, 0))
3996 return 1;
3998 /* Otherwise make a copy and process that copy. We copy the entire
3999 RTL expression since it might be a PLUS which could also be
4000 shared. */
4001 *loc = x = copy_rtx (x);
4004 /* Fall through to generic unary operation case. */
4005 case SUBREG:
4006 case STRICT_LOW_PART:
4007 case NEG: case NOT:
4008 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4009 case SIGN_EXTEND: case ZERO_EXTEND:
4010 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4011 case FLOAT: case FIX:
4012 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4013 case ABS:
4014 case SQRT:
4015 case FFS:
4016 /* These case either have just one operand or we know that we need not
4017 check the rest of the operands. */
4018 loc = &XEXP (x, 0);
4019 goto restart;
4021 case USE:
4022 case CLOBBER:
4023 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4024 go ahead and make the invalid one, but do it to a copy. For a REG,
4025 just make the recursive call, since there's no chance of a problem. */
4027 if ((GET_CODE (XEXP (x, 0)) == MEM
4028 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4030 || (GET_CODE (XEXP (x, 0)) == REG
4031 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4032 return 1;
4034 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4035 loc = &XEXP (x, 0);
4036 goto restart;
4038 case REG:
4039 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4040 in front of this insn and substitute the temporary. */
4041 if ((new = instantiate_new_reg (x, &offset)) != 0)
4043 temp = plus_constant (new, offset);
4044 if (!validate_change (object, loc, temp, 0))
4046 if (! extra_insns)
4047 return 0;
4049 start_sequence ();
4050 temp = force_operand (temp, NULL_RTX);
4051 seq = get_insns ();
4052 end_sequence ();
4054 emit_insns_before (seq, object);
4055 if (! validate_change (object, loc, temp, 0)
4056 && ! validate_replace_rtx (x, temp, object))
4057 abort ();
4061 return 1;
4063 case ADDRESSOF:
4064 if (GET_CODE (XEXP (x, 0)) == REG)
4065 return 1;
4067 else if (GET_CODE (XEXP (x, 0)) == MEM)
4069 /* If we have a (addressof (mem ..)), do any instantiation inside
4070 since we know we'll be making the inside valid when we finally
4071 remove the ADDRESSOF. */
4072 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4073 return 1;
4075 break;
4077 default:
4078 break;
4081 /* Scan all subexpressions. */
4082 fmt = GET_RTX_FORMAT (code);
4083 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4084 if (*fmt == 'e')
4086 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4087 return 0;
4089 else if (*fmt == 'E')
4090 for (j = 0; j < XVECLEN (x, i); j++)
4091 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4092 extra_insns))
4093 return 0;
4095 return 1;
4098 /* Optimization: assuming this function does not receive nonlocal gotos,
4099 delete the handlers for such, as well as the insns to establish
4100 and disestablish them. */
4102 static void
4103 delete_handlers ()
4105 rtx insn;
4106 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4108 /* Delete the handler by turning off the flag that would
4109 prevent jump_optimize from deleting it.
4110 Also permit deletion of the nonlocal labels themselves
4111 if nothing local refers to them. */
4112 if (GET_CODE (insn) == CODE_LABEL)
4114 tree t, last_t;
4116 LABEL_PRESERVE_P (insn) = 0;
4118 /* Remove it from the nonlocal_label list, to avoid confusing
4119 flow. */
4120 for (t = nonlocal_labels, last_t = 0; t;
4121 last_t = t, t = TREE_CHAIN (t))
4122 if (DECL_RTL (TREE_VALUE (t)) == insn)
4123 break;
4124 if (t)
4126 if (! last_t)
4127 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4128 else
4129 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4132 if (GET_CODE (insn) == INSN)
4134 int can_delete = 0;
4135 rtx t;
4136 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4137 if (reg_mentioned_p (t, PATTERN (insn)))
4139 can_delete = 1;
4140 break;
4142 if (can_delete
4143 || (nonlocal_goto_stack_level != 0
4144 && reg_mentioned_p (nonlocal_goto_stack_level,
4145 PATTERN (insn))))
4146 delete_insn (insn);
4152 max_parm_reg_num ()
4154 return max_parm_reg;
4157 /* Return the first insn following those generated by `assign_parms'. */
4160 get_first_nonparm_insn ()
4162 if (last_parm_insn)
4163 return NEXT_INSN (last_parm_insn);
4164 return get_insns ();
4167 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4168 Crash if there is none. */
4171 get_first_block_beg ()
4173 register rtx searcher;
4174 register rtx insn = get_first_nonparm_insn ();
4176 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4177 if (GET_CODE (searcher) == NOTE
4178 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4179 return searcher;
4181 abort (); /* Invalid call to this function. (See comments above.) */
4182 return NULL_RTX;
4185 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4186 This means a type for which function calls must pass an address to the
4187 function or get an address back from the function.
4188 EXP may be a type node or an expression (whose type is tested). */
4191 aggregate_value_p (exp)
4192 tree exp;
4194 int i, regno, nregs;
4195 rtx reg;
4197 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4199 if (TREE_CODE (type) == VOID_TYPE)
4200 return 0;
4201 if (RETURN_IN_MEMORY (type))
4202 return 1;
4203 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4204 and thus can't be returned in registers. */
4205 if (TREE_ADDRESSABLE (type))
4206 return 1;
4207 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4208 return 1;
4209 /* Make sure we have suitable call-clobbered regs to return
4210 the value in; if not, we must return it in memory. */
4211 reg = hard_function_value (type, 0, 0);
4213 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4214 it is OK. */
4215 if (GET_CODE (reg) != REG)
4216 return 0;
4218 regno = REGNO (reg);
4219 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4220 for (i = 0; i < nregs; i++)
4221 if (! call_used_regs[regno + i])
4222 return 1;
4223 return 0;
4226 /* Assign RTL expressions to the function's parameters.
4227 This may involve copying them into registers and using
4228 those registers as the RTL for them. */
4230 void
4231 assign_parms (fndecl)
4232 tree fndecl;
4234 register tree parm;
4235 register rtx entry_parm = 0;
4236 register rtx stack_parm = 0;
4237 CUMULATIVE_ARGS args_so_far;
4238 enum machine_mode promoted_mode, passed_mode;
4239 enum machine_mode nominal_mode, promoted_nominal_mode;
4240 int unsignedp;
4241 /* Total space needed so far for args on the stack,
4242 given as a constant and a tree-expression. */
4243 struct args_size stack_args_size;
4244 tree fntype = TREE_TYPE (fndecl);
4245 tree fnargs = DECL_ARGUMENTS (fndecl);
4246 /* This is used for the arg pointer when referring to stack args. */
4247 rtx internal_arg_pointer;
4248 /* This is a dummy PARM_DECL that we used for the function result if
4249 the function returns a structure. */
4250 tree function_result_decl = 0;
4251 #ifdef SETUP_INCOMING_VARARGS
4252 int varargs_setup = 0;
4253 #endif
4254 rtx conversion_insns = 0;
4255 struct args_size alignment_pad;
4257 /* Nonzero if the last arg is named `__builtin_va_alist',
4258 which is used on some machines for old-fashioned non-ANSI varargs.h;
4259 this should be stuck onto the stack as if it had arrived there. */
4260 int hide_last_arg
4261 = (current_function_varargs
4262 && fnargs
4263 && (parm = tree_last (fnargs)) != 0
4264 && DECL_NAME (parm)
4265 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4266 "__builtin_va_alist")));
4268 /* Nonzero if function takes extra anonymous args.
4269 This means the last named arg must be on the stack
4270 right before the anonymous ones. */
4271 int stdarg
4272 = (TYPE_ARG_TYPES (fntype) != 0
4273 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4274 != void_type_node));
4276 current_function_stdarg = stdarg;
4278 /* If the reg that the virtual arg pointer will be translated into is
4279 not a fixed reg or is the stack pointer, make a copy of the virtual
4280 arg pointer, and address parms via the copy. The frame pointer is
4281 considered fixed even though it is not marked as such.
4283 The second time through, simply use ap to avoid generating rtx. */
4285 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4286 || ! (fixed_regs[ARG_POINTER_REGNUM]
4287 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4288 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4289 else
4290 internal_arg_pointer = virtual_incoming_args_rtx;
4291 current_function_internal_arg_pointer = internal_arg_pointer;
4293 stack_args_size.constant = 0;
4294 stack_args_size.var = 0;
4296 /* If struct value address is treated as the first argument, make it so. */
4297 if (aggregate_value_p (DECL_RESULT (fndecl))
4298 && ! current_function_returns_pcc_struct
4299 && struct_value_incoming_rtx == 0)
4301 tree type = build_pointer_type (TREE_TYPE (fntype));
4303 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4305 DECL_ARG_TYPE (function_result_decl) = type;
4306 TREE_CHAIN (function_result_decl) = fnargs;
4307 fnargs = function_result_decl;
4310 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4311 parm_reg_stack_loc = (rtx *) xcalloc (max_parm_reg, sizeof (rtx));
4313 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4314 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4315 #else
4316 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4317 #endif
4319 /* We haven't yet found an argument that we must push and pretend the
4320 caller did. */
4321 current_function_pretend_args_size = 0;
4323 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4325 struct args_size stack_offset;
4326 struct args_size arg_size;
4327 int passed_pointer = 0;
4328 int did_conversion = 0;
4329 tree passed_type = DECL_ARG_TYPE (parm);
4330 tree nominal_type = TREE_TYPE (parm);
4331 int pretend_named;
4333 /* Set LAST_NAMED if this is last named arg before some
4334 anonymous args. */
4335 int last_named = ((TREE_CHAIN (parm) == 0
4336 || DECL_NAME (TREE_CHAIN (parm)) == 0)
4337 && (stdarg || current_function_varargs));
4338 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4339 most machines, if this is a varargs/stdarg function, then we treat
4340 the last named arg as if it were anonymous too. */
4341 int named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4343 if (TREE_TYPE (parm) == error_mark_node
4344 /* This can happen after weird syntax errors
4345 or if an enum type is defined among the parms. */
4346 || TREE_CODE (parm) != PARM_DECL
4347 || passed_type == NULL)
4349 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4350 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4351 TREE_USED (parm) = 1;
4352 continue;
4355 /* For varargs.h function, save info about regs and stack space
4356 used by the individual args, not including the va_alist arg. */
4357 if (hide_last_arg && last_named)
4358 current_function_args_info = args_so_far;
4360 /* Find mode of arg as it is passed, and mode of arg
4361 as it should be during execution of this function. */
4362 passed_mode = TYPE_MODE (passed_type);
4363 nominal_mode = TYPE_MODE (nominal_type);
4365 /* If the parm's mode is VOID, its value doesn't matter,
4366 and avoid the usual things like emit_move_insn that could crash. */
4367 if (nominal_mode == VOIDmode)
4369 SET_DECL_RTL (parm, const0_rtx);
4370 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4371 continue;
4374 /* If the parm is to be passed as a transparent union, use the
4375 type of the first field for the tests below. We have already
4376 verified that the modes are the same. */
4377 if (DECL_TRANSPARENT_UNION (parm)
4378 || (TREE_CODE (passed_type) == UNION_TYPE
4379 && TYPE_TRANSPARENT_UNION (passed_type)))
4380 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4382 /* See if this arg was passed by invisible reference. It is if
4383 it is an object whose size depends on the contents of the
4384 object itself or if the machine requires these objects be passed
4385 that way. */
4387 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4388 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4389 || TREE_ADDRESSABLE (passed_type)
4390 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4391 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4392 passed_type, named_arg)
4393 #endif
4396 passed_type = nominal_type = build_pointer_type (passed_type);
4397 passed_pointer = 1;
4398 passed_mode = nominal_mode = Pmode;
4401 promoted_mode = passed_mode;
4403 #ifdef PROMOTE_FUNCTION_ARGS
4404 /* Compute the mode in which the arg is actually extended to. */
4405 unsignedp = TREE_UNSIGNED (passed_type);
4406 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4407 #endif
4409 /* Let machine desc say which reg (if any) the parm arrives in.
4410 0 means it arrives on the stack. */
4411 #ifdef FUNCTION_INCOMING_ARG
4412 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4413 passed_type, named_arg);
4414 #else
4415 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4416 passed_type, named_arg);
4417 #endif
4419 if (entry_parm == 0)
4420 promoted_mode = passed_mode;
4422 #ifdef SETUP_INCOMING_VARARGS
4423 /* If this is the last named parameter, do any required setup for
4424 varargs or stdargs. We need to know about the case of this being an
4425 addressable type, in which case we skip the registers it
4426 would have arrived in.
4428 For stdargs, LAST_NAMED will be set for two parameters, the one that
4429 is actually the last named, and the dummy parameter. We only
4430 want to do this action once.
4432 Also, indicate when RTL generation is to be suppressed. */
4433 if (last_named && !varargs_setup)
4435 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4436 current_function_pretend_args_size, 0);
4437 varargs_setup = 1;
4439 #endif
4441 /* Determine parm's home in the stack,
4442 in case it arrives in the stack or we should pretend it did.
4444 Compute the stack position and rtx where the argument arrives
4445 and its size.
4447 There is one complexity here: If this was a parameter that would
4448 have been passed in registers, but wasn't only because it is
4449 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4450 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4451 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4452 0 as it was the previous time. */
4454 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4455 locate_and_pad_parm (promoted_mode, passed_type,
4456 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4458 #else
4459 #ifdef FUNCTION_INCOMING_ARG
4460 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4461 passed_type,
4462 pretend_named) != 0,
4463 #else
4464 FUNCTION_ARG (args_so_far, promoted_mode,
4465 passed_type,
4466 pretend_named) != 0,
4467 #endif
4468 #endif
4469 fndecl, &stack_args_size, &stack_offset, &arg_size,
4470 &alignment_pad);
4473 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4475 if (offset_rtx == const0_rtx)
4476 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4477 else
4478 stack_parm = gen_rtx_MEM (promoted_mode,
4479 gen_rtx_PLUS (Pmode,
4480 internal_arg_pointer,
4481 offset_rtx));
4483 set_mem_attributes (stack_parm, parm, 1);
4486 /* If this parameter was passed both in registers and in the stack,
4487 use the copy on the stack. */
4488 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4489 entry_parm = 0;
4491 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4492 /* If this parm was passed part in regs and part in memory,
4493 pretend it arrived entirely in memory
4494 by pushing the register-part onto the stack.
4496 In the special case of a DImode or DFmode that is split,
4497 we could put it together in a pseudoreg directly,
4498 but for now that's not worth bothering with. */
4500 if (entry_parm)
4502 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4503 passed_type, named_arg);
4505 if (nregs > 0)
4507 current_function_pretend_args_size
4508 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4509 / (PARM_BOUNDARY / BITS_PER_UNIT)
4510 * (PARM_BOUNDARY / BITS_PER_UNIT));
4512 /* Handle calls that pass values in multiple non-contiguous
4513 locations. The Irix 6 ABI has examples of this. */
4514 if (GET_CODE (entry_parm) == PARALLEL)
4515 emit_group_store (validize_mem (stack_parm), entry_parm,
4516 int_size_in_bytes (TREE_TYPE (parm)),
4517 TYPE_ALIGN (TREE_TYPE (parm)));
4519 else
4520 move_block_from_reg (REGNO (entry_parm),
4521 validize_mem (stack_parm), nregs,
4522 int_size_in_bytes (TREE_TYPE (parm)));
4524 entry_parm = stack_parm;
4527 #endif
4529 /* If we didn't decide this parm came in a register,
4530 by default it came on the stack. */
4531 if (entry_parm == 0)
4532 entry_parm = stack_parm;
4534 /* Record permanently how this parm was passed. */
4535 DECL_INCOMING_RTL (parm) = entry_parm;
4537 /* If there is actually space on the stack for this parm,
4538 count it in stack_args_size; otherwise set stack_parm to 0
4539 to indicate there is no preallocated stack slot for the parm. */
4541 if (entry_parm == stack_parm
4542 || (GET_CODE (entry_parm) == PARALLEL
4543 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4544 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4545 /* On some machines, even if a parm value arrives in a register
4546 there is still an (uninitialized) stack slot allocated for it.
4548 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4549 whether this parameter already has a stack slot allocated,
4550 because an arg block exists only if current_function_args_size
4551 is larger than some threshold, and we haven't calculated that
4552 yet. So, for now, we just assume that stack slots never exist
4553 in this case. */
4554 || REG_PARM_STACK_SPACE (fndecl) > 0
4555 #endif
4558 stack_args_size.constant += arg_size.constant;
4559 if (arg_size.var)
4560 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4562 else
4563 /* No stack slot was pushed for this parm. */
4564 stack_parm = 0;
4566 /* Update info on where next arg arrives in registers. */
4568 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4569 passed_type, named_arg);
4571 /* If we can't trust the parm stack slot to be aligned enough
4572 for its ultimate type, don't use that slot after entry.
4573 We'll make another stack slot, if we need one. */
4575 unsigned int thisparm_boundary
4576 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4578 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4579 stack_parm = 0;
4582 /* If parm was passed in memory, and we need to convert it on entry,
4583 don't store it back in that same slot. */
4584 if (entry_parm != 0
4585 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4586 stack_parm = 0;
4588 /* When an argument is passed in multiple locations, we can't
4589 make use of this information, but we can save some copying if
4590 the whole argument is passed in a single register. */
4591 if (GET_CODE (entry_parm) == PARALLEL
4592 && nominal_mode != BLKmode && passed_mode != BLKmode)
4594 int i, len = XVECLEN (entry_parm, 0);
4596 for (i = 0; i < len; i++)
4597 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4598 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4599 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4600 == passed_mode)
4601 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4603 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4604 DECL_INCOMING_RTL (parm) = entry_parm;
4605 break;
4609 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4610 in the mode in which it arrives.
4611 STACK_PARM is an RTX for a stack slot where the parameter can live
4612 during the function (in case we want to put it there).
4613 STACK_PARM is 0 if no stack slot was pushed for it.
4615 Now output code if necessary to convert ENTRY_PARM to
4616 the type in which this function declares it,
4617 and store that result in an appropriate place,
4618 which may be a pseudo reg, may be STACK_PARM,
4619 or may be a local stack slot if STACK_PARM is 0.
4621 Set DECL_RTL to that place. */
4623 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4625 /* If a BLKmode arrives in registers, copy it to a stack slot.
4626 Handle calls that pass values in multiple non-contiguous
4627 locations. The Irix 6 ABI has examples of this. */
4628 if (GET_CODE (entry_parm) == REG
4629 || GET_CODE (entry_parm) == PARALLEL)
4631 int size_stored
4632 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4633 UNITS_PER_WORD);
4635 /* Note that we will be storing an integral number of words.
4636 So we have to be careful to ensure that we allocate an
4637 integral number of words. We do this below in the
4638 assign_stack_local if space was not allocated in the argument
4639 list. If it was, this will not work if PARM_BOUNDARY is not
4640 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4641 if it becomes a problem. */
4643 if (stack_parm == 0)
4645 stack_parm
4646 = assign_stack_local (GET_MODE (entry_parm),
4647 size_stored, 0);
4648 set_mem_attributes (stack_parm, parm, 1);
4651 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4652 abort ();
4654 /* Handle calls that pass values in multiple non-contiguous
4655 locations. The Irix 6 ABI has examples of this. */
4656 if (GET_CODE (entry_parm) == PARALLEL)
4657 emit_group_store (validize_mem (stack_parm), entry_parm,
4658 int_size_in_bytes (TREE_TYPE (parm)),
4659 TYPE_ALIGN (TREE_TYPE (parm)));
4660 else
4661 move_block_from_reg (REGNO (entry_parm),
4662 validize_mem (stack_parm),
4663 size_stored / UNITS_PER_WORD,
4664 int_size_in_bytes (TREE_TYPE (parm)));
4666 SET_DECL_RTL (parm, stack_parm);
4668 else if (! ((! optimize
4669 && ! DECL_REGISTER (parm)
4670 && ! DECL_INLINE (fndecl))
4671 || TREE_SIDE_EFFECTS (parm)
4672 /* If -ffloat-store specified, don't put explicit
4673 float variables into registers. */
4674 || (flag_float_store
4675 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4676 /* Always assign pseudo to structure return or item passed
4677 by invisible reference. */
4678 || passed_pointer || parm == function_result_decl)
4680 /* Store the parm in a pseudoregister during the function, but we
4681 may need to do it in a wider mode. */
4683 register rtx parmreg;
4684 unsigned int regno, regnoi = 0, regnor = 0;
4686 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4688 promoted_nominal_mode
4689 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4691 parmreg = gen_reg_rtx (promoted_nominal_mode);
4692 mark_user_reg (parmreg);
4694 /* If this was an item that we received a pointer to, set DECL_RTL
4695 appropriately. */
4696 if (passed_pointer)
4698 SET_DECL_RTL (parm,
4699 gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4700 parmreg));
4701 set_mem_attributes (DECL_RTL (parm), parm, 1);
4703 else
4705 SET_DECL_RTL (parm, parmreg);
4706 maybe_set_unchanging (DECL_RTL (parm), parm);
4709 /* Copy the value into the register. */
4710 if (nominal_mode != passed_mode
4711 || promoted_nominal_mode != promoted_mode)
4713 int save_tree_used;
4714 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4715 mode, by the caller. We now have to convert it to
4716 NOMINAL_MODE, if different. However, PARMREG may be in
4717 a different mode than NOMINAL_MODE if it is being stored
4718 promoted.
4720 If ENTRY_PARM is a hard register, it might be in a register
4721 not valid for operating in its mode (e.g., an odd-numbered
4722 register for a DFmode). In that case, moves are the only
4723 thing valid, so we can't do a convert from there. This
4724 occurs when the calling sequence allow such misaligned
4725 usages.
4727 In addition, the conversion may involve a call, which could
4728 clobber parameters which haven't been copied to pseudo
4729 registers yet. Therefore, we must first copy the parm to
4730 a pseudo reg here, and save the conversion until after all
4731 parameters have been moved. */
4733 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4735 emit_move_insn (tempreg, validize_mem (entry_parm));
4737 push_to_sequence (conversion_insns);
4738 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4740 /* TREE_USED gets set erroneously during expand_assignment. */
4741 save_tree_used = TREE_USED (parm);
4742 expand_assignment (parm,
4743 make_tree (nominal_type, tempreg), 0, 0);
4744 TREE_USED (parm) = save_tree_used;
4745 conversion_insns = get_insns ();
4746 did_conversion = 1;
4747 end_sequence ();
4749 else
4750 emit_move_insn (parmreg, validize_mem (entry_parm));
4752 /* If we were passed a pointer but the actual value
4753 can safely live in a register, put it in one. */
4754 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4755 && ! ((! optimize
4756 && ! DECL_REGISTER (parm)
4757 && ! DECL_INLINE (fndecl))
4758 || TREE_SIDE_EFFECTS (parm)
4759 /* If -ffloat-store specified, don't put explicit
4760 float variables into registers. */
4761 || (flag_float_store
4762 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE)))
4764 /* We can't use nominal_mode, because it will have been set to
4765 Pmode above. We must use the actual mode of the parm. */
4766 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4767 mark_user_reg (parmreg);
4768 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4770 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4771 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4772 push_to_sequence (conversion_insns);
4773 emit_move_insn (tempreg, DECL_RTL (parm));
4774 SET_DECL_RTL (parm,
4775 convert_to_mode (GET_MODE (parmreg),
4776 tempreg,
4777 unsigned_p));
4778 emit_move_insn (parmreg, DECL_RTL (parm));
4779 conversion_insns = get_insns();
4780 did_conversion = 1;
4781 end_sequence ();
4783 else
4784 emit_move_insn (parmreg, DECL_RTL (parm));
4785 SET_DECL_RTL (parm, parmreg);
4786 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4787 now the parm. */
4788 stack_parm = 0;
4790 #ifdef FUNCTION_ARG_CALLEE_COPIES
4791 /* If we are passed an arg by reference and it is our responsibility
4792 to make a copy, do it now.
4793 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4794 original argument, so we must recreate them in the call to
4795 FUNCTION_ARG_CALLEE_COPIES. */
4796 /* ??? Later add code to handle the case that if the argument isn't
4797 modified, don't do the copy. */
4799 else if (passed_pointer
4800 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4801 TYPE_MODE (DECL_ARG_TYPE (parm)),
4802 DECL_ARG_TYPE (parm),
4803 named_arg)
4804 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4806 rtx copy;
4807 tree type = DECL_ARG_TYPE (parm);
4809 /* This sequence may involve a library call perhaps clobbering
4810 registers that haven't been copied to pseudos yet. */
4812 push_to_sequence (conversion_insns);
4814 if (!COMPLETE_TYPE_P (type)
4815 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4816 /* This is a variable sized object. */
4817 copy = gen_rtx_MEM (BLKmode,
4818 allocate_dynamic_stack_space
4819 (expr_size (parm), NULL_RTX,
4820 TYPE_ALIGN (type)));
4821 else
4822 copy = assign_stack_temp (TYPE_MODE (type),
4823 int_size_in_bytes (type), 1);
4824 set_mem_attributes (copy, parm, 1);
4826 store_expr (parm, copy, 0);
4827 emit_move_insn (parmreg, XEXP (copy, 0));
4828 if (current_function_check_memory_usage)
4829 emit_library_call (chkr_set_right_libfunc,
4830 LCT_CONST_MAKE_BLOCK, VOIDmode, 3,
4831 XEXP (copy, 0), Pmode,
4832 GEN_INT (int_size_in_bytes (type)),
4833 TYPE_MODE (sizetype),
4834 GEN_INT (MEMORY_USE_RW),
4835 TYPE_MODE (integer_type_node));
4836 conversion_insns = get_insns ();
4837 did_conversion = 1;
4838 end_sequence ();
4840 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4842 /* In any case, record the parm's desired stack location
4843 in case we later discover it must live in the stack.
4845 If it is a COMPLEX value, store the stack location for both
4846 halves. */
4848 if (GET_CODE (parmreg) == CONCAT)
4849 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4850 else
4851 regno = REGNO (parmreg);
4853 if (regno >= max_parm_reg)
4855 rtx *new;
4856 int old_max_parm_reg = max_parm_reg;
4858 /* It's slow to expand this one register at a time,
4859 but it's also rare and we need max_parm_reg to be
4860 precisely correct. */
4861 max_parm_reg = regno + 1;
4862 new = (rtx *) xrealloc (parm_reg_stack_loc,
4863 max_parm_reg * sizeof (rtx));
4864 memset ((char *) (new + old_max_parm_reg), 0,
4865 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4866 parm_reg_stack_loc = new;
4869 if (GET_CODE (parmreg) == CONCAT)
4871 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4873 regnor = REGNO (gen_realpart (submode, parmreg));
4874 regnoi = REGNO (gen_imagpart (submode, parmreg));
4876 if (stack_parm != 0)
4878 parm_reg_stack_loc[regnor]
4879 = gen_realpart (submode, stack_parm);
4880 parm_reg_stack_loc[regnoi]
4881 = gen_imagpart (submode, stack_parm);
4883 else
4885 parm_reg_stack_loc[regnor] = 0;
4886 parm_reg_stack_loc[regnoi] = 0;
4889 else
4890 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4892 /* Mark the register as eliminable if we did no conversion
4893 and it was copied from memory at a fixed offset,
4894 and the arg pointer was not copied to a pseudo-reg.
4895 If the arg pointer is a pseudo reg or the offset formed
4896 an invalid address, such memory-equivalences
4897 as we make here would screw up life analysis for it. */
4898 if (nominal_mode == passed_mode
4899 && ! did_conversion
4900 && stack_parm != 0
4901 && GET_CODE (stack_parm) == MEM
4902 && stack_offset.var == 0
4903 && reg_mentioned_p (virtual_incoming_args_rtx,
4904 XEXP (stack_parm, 0)))
4906 rtx linsn = get_last_insn ();
4907 rtx sinsn, set;
4909 /* Mark complex types separately. */
4910 if (GET_CODE (parmreg) == CONCAT)
4911 /* Scan backwards for the set of the real and
4912 imaginary parts. */
4913 for (sinsn = linsn; sinsn != 0;
4914 sinsn = prev_nonnote_insn (sinsn))
4916 set = single_set (sinsn);
4917 if (set != 0
4918 && SET_DEST (set) == regno_reg_rtx [regnoi])
4919 REG_NOTES (sinsn)
4920 = gen_rtx_EXPR_LIST (REG_EQUIV,
4921 parm_reg_stack_loc[regnoi],
4922 REG_NOTES (sinsn));
4923 else if (set != 0
4924 && SET_DEST (set) == regno_reg_rtx [regnor])
4925 REG_NOTES (sinsn)
4926 = gen_rtx_EXPR_LIST (REG_EQUIV,
4927 parm_reg_stack_loc[regnor],
4928 REG_NOTES (sinsn));
4930 else if ((set = single_set (linsn)) != 0
4931 && SET_DEST (set) == parmreg)
4932 REG_NOTES (linsn)
4933 = gen_rtx_EXPR_LIST (REG_EQUIV,
4934 stack_parm, REG_NOTES (linsn));
4937 /* For pointer data type, suggest pointer register. */
4938 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4939 mark_reg_pointer (parmreg,
4940 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4942 /* If something wants our address, try to use ADDRESSOF. */
4943 if (TREE_ADDRESSABLE (parm))
4945 /* If we end up putting something into the stack,
4946 fixup_var_refs_insns will need to make a pass over
4947 all the instructions. It looks throughs the pending
4948 sequences -- but it can't see the ones in the
4949 CONVERSION_INSNS, if they're not on the sequence
4950 stack. So, we go back to that sequence, just so that
4951 the fixups will happen. */
4952 push_to_sequence (conversion_insns);
4953 put_var_into_stack (parm);
4954 conversion_insns = get_insns ();
4955 end_sequence ();
4958 else
4960 /* Value must be stored in the stack slot STACK_PARM
4961 during function execution. */
4963 if (promoted_mode != nominal_mode)
4965 /* Conversion is required. */
4966 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4968 emit_move_insn (tempreg, validize_mem (entry_parm));
4970 push_to_sequence (conversion_insns);
4971 entry_parm = convert_to_mode (nominal_mode, tempreg,
4972 TREE_UNSIGNED (TREE_TYPE (parm)));
4973 if (stack_parm)
4975 /* ??? This may need a big-endian conversion on sparc64. */
4976 stack_parm = change_address (stack_parm, nominal_mode,
4977 NULL_RTX);
4979 conversion_insns = get_insns ();
4980 did_conversion = 1;
4981 end_sequence ();
4984 if (entry_parm != stack_parm)
4986 if (stack_parm == 0)
4988 stack_parm
4989 = assign_stack_local (GET_MODE (entry_parm),
4990 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
4991 set_mem_attributes (stack_parm, parm, 1);
4994 if (promoted_mode != nominal_mode)
4996 push_to_sequence (conversion_insns);
4997 emit_move_insn (validize_mem (stack_parm),
4998 validize_mem (entry_parm));
4999 conversion_insns = get_insns ();
5000 end_sequence ();
5002 else
5003 emit_move_insn (validize_mem (stack_parm),
5004 validize_mem (entry_parm));
5006 if (current_function_check_memory_usage)
5008 push_to_sequence (conversion_insns);
5009 emit_library_call (chkr_set_right_libfunc, LCT_CONST_MAKE_BLOCK,
5010 VOIDmode, 3, XEXP (stack_parm, 0), Pmode,
5011 GEN_INT (GET_MODE_SIZE (GET_MODE
5012 (entry_parm))),
5013 TYPE_MODE (sizetype),
5014 GEN_INT (MEMORY_USE_RW),
5015 TYPE_MODE (integer_type_node));
5017 conversion_insns = get_insns ();
5018 end_sequence ();
5020 SET_DECL_RTL (parm, stack_parm);
5023 /* If this "parameter" was the place where we are receiving the
5024 function's incoming structure pointer, set up the result. */
5025 if (parm == function_result_decl)
5027 tree result = DECL_RESULT (fndecl);
5029 SET_DECL_RTL (result,
5030 gen_rtx_MEM (DECL_MODE (result), DECL_RTL (parm)));
5032 set_mem_attributes (DECL_RTL (result), result, 1);
5036 /* Output all parameter conversion instructions (possibly including calls)
5037 now that all parameters have been copied out of hard registers. */
5038 emit_insns (conversion_insns);
5040 last_parm_insn = get_last_insn ();
5042 current_function_args_size = stack_args_size.constant;
5044 /* Adjust function incoming argument size for alignment and
5045 minimum length. */
5047 #ifdef REG_PARM_STACK_SPACE
5048 #ifndef MAYBE_REG_PARM_STACK_SPACE
5049 current_function_args_size = MAX (current_function_args_size,
5050 REG_PARM_STACK_SPACE (fndecl));
5051 #endif
5052 #endif
5054 #ifdef STACK_BOUNDARY
5055 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5057 current_function_args_size
5058 = ((current_function_args_size + STACK_BYTES - 1)
5059 / STACK_BYTES) * STACK_BYTES;
5060 #endif
5062 #ifdef ARGS_GROW_DOWNWARD
5063 current_function_arg_offset_rtx
5064 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5065 : expand_expr (size_diffop (stack_args_size.var,
5066 size_int (-stack_args_size.constant)),
5067 NULL_RTX, VOIDmode, EXPAND_MEMORY_USE_BAD));
5068 #else
5069 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5070 #endif
5072 /* See how many bytes, if any, of its args a function should try to pop
5073 on return. */
5075 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5076 current_function_args_size);
5078 /* For stdarg.h function, save info about
5079 regs and stack space used by the named args. */
5081 if (!hide_last_arg)
5082 current_function_args_info = args_so_far;
5084 /* Set the rtx used for the function return value. Put this in its
5085 own variable so any optimizers that need this information don't have
5086 to include tree.h. Do this here so it gets done when an inlined
5087 function gets output. */
5089 current_function_return_rtx
5090 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5091 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5094 /* Indicate whether REGNO is an incoming argument to the current function
5095 that was promoted to a wider mode. If so, return the RTX for the
5096 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5097 that REGNO is promoted from and whether the promotion was signed or
5098 unsigned. */
5100 #ifdef PROMOTE_FUNCTION_ARGS
5103 promoted_input_arg (regno, pmode, punsignedp)
5104 unsigned int regno;
5105 enum machine_mode *pmode;
5106 int *punsignedp;
5108 tree arg;
5110 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5111 arg = TREE_CHAIN (arg))
5112 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5113 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5114 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5116 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5117 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5119 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5120 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5121 && mode != DECL_MODE (arg))
5123 *pmode = DECL_MODE (arg);
5124 *punsignedp = unsignedp;
5125 return DECL_INCOMING_RTL (arg);
5129 return 0;
5132 #endif
5134 /* Compute the size and offset from the start of the stacked arguments for a
5135 parm passed in mode PASSED_MODE and with type TYPE.
5137 INITIAL_OFFSET_PTR points to the current offset into the stacked
5138 arguments.
5140 The starting offset and size for this parm are returned in *OFFSET_PTR
5141 and *ARG_SIZE_PTR, respectively.
5143 IN_REGS is non-zero if the argument will be passed in registers. It will
5144 never be set if REG_PARM_STACK_SPACE is not defined.
5146 FNDECL is the function in which the argument was defined.
5148 There are two types of rounding that are done. The first, controlled by
5149 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5150 list to be aligned to the specific boundary (in bits). This rounding
5151 affects the initial and starting offsets, but not the argument size.
5153 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5154 optionally rounds the size of the parm to PARM_BOUNDARY. The
5155 initial offset is not affected by this rounding, while the size always
5156 is and the starting offset may be. */
5158 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5159 initial_offset_ptr is positive because locate_and_pad_parm's
5160 callers pass in the total size of args so far as
5161 initial_offset_ptr. arg_size_ptr is always positive.*/
5163 void
5164 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5165 initial_offset_ptr, offset_ptr, arg_size_ptr,
5166 alignment_pad)
5167 enum machine_mode passed_mode;
5168 tree type;
5169 int in_regs ATTRIBUTE_UNUSED;
5170 tree fndecl ATTRIBUTE_UNUSED;
5171 struct args_size *initial_offset_ptr;
5172 struct args_size *offset_ptr;
5173 struct args_size *arg_size_ptr;
5174 struct args_size *alignment_pad;
5177 tree sizetree
5178 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5179 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5180 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5182 #ifdef REG_PARM_STACK_SPACE
5183 /* If we have found a stack parm before we reach the end of the
5184 area reserved for registers, skip that area. */
5185 if (! in_regs)
5187 int reg_parm_stack_space = 0;
5189 #ifdef MAYBE_REG_PARM_STACK_SPACE
5190 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5191 #else
5192 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5193 #endif
5194 if (reg_parm_stack_space > 0)
5196 if (initial_offset_ptr->var)
5198 initial_offset_ptr->var
5199 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5200 ssize_int (reg_parm_stack_space));
5201 initial_offset_ptr->constant = 0;
5203 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5204 initial_offset_ptr->constant = reg_parm_stack_space;
5207 #endif /* REG_PARM_STACK_SPACE */
5209 arg_size_ptr->var = 0;
5210 arg_size_ptr->constant = 0;
5211 alignment_pad->var = 0;
5212 alignment_pad->constant = 0;
5214 #ifdef ARGS_GROW_DOWNWARD
5215 if (initial_offset_ptr->var)
5217 offset_ptr->constant = 0;
5218 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5219 initial_offset_ptr->var);
5221 else
5223 offset_ptr->constant = -initial_offset_ptr->constant;
5224 offset_ptr->var = 0;
5226 if (where_pad != none
5227 && (!host_integerp (sizetree, 1)
5228 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5229 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5230 SUB_PARM_SIZE (*offset_ptr, sizetree);
5231 if (where_pad != downward)
5232 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5233 if (initial_offset_ptr->var)
5234 arg_size_ptr->var = size_binop (MINUS_EXPR,
5235 size_binop (MINUS_EXPR,
5236 ssize_int (0),
5237 initial_offset_ptr->var),
5238 offset_ptr->var);
5240 else
5241 arg_size_ptr->constant = (-initial_offset_ptr->constant
5242 - offset_ptr->constant);
5244 #else /* !ARGS_GROW_DOWNWARD */
5245 if (!in_regs
5246 #ifdef REG_PARM_STACK_SPACE
5247 || REG_PARM_STACK_SPACE (fndecl) > 0
5248 #endif
5250 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5251 *offset_ptr = *initial_offset_ptr;
5253 #ifdef PUSH_ROUNDING
5254 if (passed_mode != BLKmode)
5255 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5256 #endif
5258 /* Pad_below needs the pre-rounded size to know how much to pad below
5259 so this must be done before rounding up. */
5260 if (where_pad == downward
5261 /* However, BLKmode args passed in regs have their padding done elsewhere.
5262 The stack slot must be able to hold the entire register. */
5263 && !(in_regs && passed_mode == BLKmode))
5264 pad_below (offset_ptr, passed_mode, sizetree);
5266 if (where_pad != none
5267 && (!host_integerp (sizetree, 1)
5268 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5269 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5271 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5272 #endif /* ARGS_GROW_DOWNWARD */
5275 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5276 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5278 static void
5279 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5280 struct args_size *offset_ptr;
5281 int boundary;
5282 struct args_size *alignment_pad;
5284 tree save_var = NULL_TREE;
5285 HOST_WIDE_INT save_constant = 0;
5287 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5289 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5291 save_var = offset_ptr->var;
5292 save_constant = offset_ptr->constant;
5295 alignment_pad->var = NULL_TREE;
5296 alignment_pad->constant = 0;
5298 if (boundary > BITS_PER_UNIT)
5300 if (offset_ptr->var)
5302 offset_ptr->var =
5303 #ifdef ARGS_GROW_DOWNWARD
5304 round_down
5305 #else
5306 round_up
5307 #endif
5308 (ARGS_SIZE_TREE (*offset_ptr),
5309 boundary / BITS_PER_UNIT);
5310 offset_ptr->constant = 0; /*?*/
5311 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5312 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5313 save_var);
5315 else
5317 offset_ptr->constant =
5318 #ifdef ARGS_GROW_DOWNWARD
5319 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5320 #else
5321 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5322 #endif
5323 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5324 alignment_pad->constant = offset_ptr->constant - save_constant;
5329 #ifndef ARGS_GROW_DOWNWARD
5330 static void
5331 pad_below (offset_ptr, passed_mode, sizetree)
5332 struct args_size *offset_ptr;
5333 enum machine_mode passed_mode;
5334 tree sizetree;
5336 if (passed_mode != BLKmode)
5338 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5339 offset_ptr->constant
5340 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5341 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5342 - GET_MODE_SIZE (passed_mode));
5344 else
5346 if (TREE_CODE (sizetree) != INTEGER_CST
5347 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5349 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5350 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5351 /* Add it in. */
5352 ADD_PARM_SIZE (*offset_ptr, s2);
5353 SUB_PARM_SIZE (*offset_ptr, sizetree);
5357 #endif
5359 /* Walk the tree of blocks describing the binding levels within a function
5360 and warn about uninitialized variables.
5361 This is done after calling flow_analysis and before global_alloc
5362 clobbers the pseudo-regs to hard regs. */
5364 void
5365 uninitialized_vars_warning (block)
5366 tree block;
5368 register tree decl, sub;
5369 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5371 if (warn_uninitialized
5372 && TREE_CODE (decl) == VAR_DECL
5373 /* These warnings are unreliable for and aggregates
5374 because assigning the fields one by one can fail to convince
5375 flow.c that the entire aggregate was initialized.
5376 Unions are troublesome because members may be shorter. */
5377 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5378 && DECL_RTL (decl) != 0
5379 && GET_CODE (DECL_RTL (decl)) == REG
5380 /* Global optimizations can make it difficult to determine if a
5381 particular variable has been initialized. However, a VAR_DECL
5382 with a nonzero DECL_INITIAL had an initializer, so do not
5383 claim it is potentially uninitialized.
5385 We do not care about the actual value in DECL_INITIAL, so we do
5386 not worry that it may be a dangling pointer. */
5387 && DECL_INITIAL (decl) == NULL_TREE
5388 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5389 warning_with_decl (decl,
5390 "`%s' might be used uninitialized in this function");
5391 if (extra_warnings
5392 && TREE_CODE (decl) == VAR_DECL
5393 && DECL_RTL (decl) != 0
5394 && GET_CODE (DECL_RTL (decl)) == REG
5395 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5396 warning_with_decl (decl,
5397 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5399 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5400 uninitialized_vars_warning (sub);
5403 /* Do the appropriate part of uninitialized_vars_warning
5404 but for arguments instead of local variables. */
5406 void
5407 setjmp_args_warning ()
5409 register tree decl;
5410 for (decl = DECL_ARGUMENTS (current_function_decl);
5411 decl; decl = TREE_CHAIN (decl))
5412 if (DECL_RTL (decl) != 0
5413 && GET_CODE (DECL_RTL (decl)) == REG
5414 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5415 warning_with_decl (decl,
5416 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5419 /* If this function call setjmp, put all vars into the stack
5420 unless they were declared `register'. */
5422 void
5423 setjmp_protect (block)
5424 tree block;
5426 register tree decl, sub;
5427 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5428 if ((TREE_CODE (decl) == VAR_DECL
5429 || TREE_CODE (decl) == PARM_DECL)
5430 && DECL_RTL (decl) != 0
5431 && (GET_CODE (DECL_RTL (decl)) == REG
5432 || (GET_CODE (DECL_RTL (decl)) == MEM
5433 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5434 /* If this variable came from an inline function, it must be
5435 that its life doesn't overlap the setjmp. If there was a
5436 setjmp in the function, it would already be in memory. We
5437 must exclude such variable because their DECL_RTL might be
5438 set to strange things such as virtual_stack_vars_rtx. */
5439 && ! DECL_FROM_INLINE (decl)
5440 && (
5441 #ifdef NON_SAVING_SETJMP
5442 /* If longjmp doesn't restore the registers,
5443 don't put anything in them. */
5444 NON_SAVING_SETJMP
5446 #endif
5447 ! DECL_REGISTER (decl)))
5448 put_var_into_stack (decl);
5449 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5450 setjmp_protect (sub);
5453 /* Like the previous function, but for args instead of local variables. */
5455 void
5456 setjmp_protect_args ()
5458 register tree decl;
5459 for (decl = DECL_ARGUMENTS (current_function_decl);
5460 decl; decl = TREE_CHAIN (decl))
5461 if ((TREE_CODE (decl) == VAR_DECL
5462 || TREE_CODE (decl) == PARM_DECL)
5463 && DECL_RTL (decl) != 0
5464 && (GET_CODE (DECL_RTL (decl)) == REG
5465 || (GET_CODE (DECL_RTL (decl)) == MEM
5466 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5467 && (
5468 /* If longjmp doesn't restore the registers,
5469 don't put anything in them. */
5470 #ifdef NON_SAVING_SETJMP
5471 NON_SAVING_SETJMP
5473 #endif
5474 ! DECL_REGISTER (decl)))
5475 put_var_into_stack (decl);
5478 /* Return the context-pointer register corresponding to DECL,
5479 or 0 if it does not need one. */
5482 lookup_static_chain (decl)
5483 tree decl;
5485 tree context = decl_function_context (decl);
5486 tree link;
5488 if (context == 0
5489 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5490 return 0;
5492 /* We treat inline_function_decl as an alias for the current function
5493 because that is the inline function whose vars, types, etc.
5494 are being merged into the current function.
5495 See expand_inline_function. */
5496 if (context == current_function_decl || context == inline_function_decl)
5497 return virtual_stack_vars_rtx;
5499 for (link = context_display; link; link = TREE_CHAIN (link))
5500 if (TREE_PURPOSE (link) == context)
5501 return RTL_EXPR_RTL (TREE_VALUE (link));
5503 abort ();
5506 /* Convert a stack slot address ADDR for variable VAR
5507 (from a containing function)
5508 into an address valid in this function (using a static chain). */
5511 fix_lexical_addr (addr, var)
5512 rtx addr;
5513 tree var;
5515 rtx basereg;
5516 HOST_WIDE_INT displacement;
5517 tree context = decl_function_context (var);
5518 struct function *fp;
5519 rtx base = 0;
5521 /* If this is the present function, we need not do anything. */
5522 if (context == current_function_decl || context == inline_function_decl)
5523 return addr;
5525 for (fp = outer_function_chain; fp; fp = fp->next)
5526 if (fp->decl == context)
5527 break;
5529 if (fp == 0)
5530 abort ();
5532 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5533 addr = XEXP (XEXP (addr, 0), 0);
5535 /* Decode given address as base reg plus displacement. */
5536 if (GET_CODE (addr) == REG)
5537 basereg = addr, displacement = 0;
5538 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5539 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5540 else
5541 abort ();
5543 /* We accept vars reached via the containing function's
5544 incoming arg pointer and via its stack variables pointer. */
5545 if (basereg == fp->internal_arg_pointer)
5547 /* If reached via arg pointer, get the arg pointer value
5548 out of that function's stack frame.
5550 There are two cases: If a separate ap is needed, allocate a
5551 slot in the outer function for it and dereference it that way.
5552 This is correct even if the real ap is actually a pseudo.
5553 Otherwise, just adjust the offset from the frame pointer to
5554 compensate. */
5556 #ifdef NEED_SEPARATE_AP
5557 rtx addr;
5559 if (fp->x_arg_pointer_save_area == 0)
5560 fp->x_arg_pointer_save_area
5561 = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, fp);
5563 addr = fix_lexical_addr (XEXP (fp->x_arg_pointer_save_area, 0), var);
5564 addr = memory_address (Pmode, addr);
5566 base = gen_rtx_MEM (Pmode, addr);
5567 MEM_ALIAS_SET (base) = get_frame_alias_set ();
5568 base = copy_to_reg (base);
5569 #else
5570 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5571 base = lookup_static_chain (var);
5572 #endif
5575 else if (basereg == virtual_stack_vars_rtx)
5577 /* This is the same code as lookup_static_chain, duplicated here to
5578 avoid an extra call to decl_function_context. */
5579 tree link;
5581 for (link = context_display; link; link = TREE_CHAIN (link))
5582 if (TREE_PURPOSE (link) == context)
5584 base = RTL_EXPR_RTL (TREE_VALUE (link));
5585 break;
5589 if (base == 0)
5590 abort ();
5592 /* Use same offset, relative to appropriate static chain or argument
5593 pointer. */
5594 return plus_constant (base, displacement);
5597 /* Return the address of the trampoline for entering nested fn FUNCTION.
5598 If necessary, allocate a trampoline (in the stack frame)
5599 and emit rtl to initialize its contents (at entry to this function). */
5602 trampoline_address (function)
5603 tree function;
5605 tree link;
5606 tree rtlexp;
5607 rtx tramp;
5608 struct function *fp;
5609 tree fn_context;
5611 /* Find an existing trampoline and return it. */
5612 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5613 if (TREE_PURPOSE (link) == function)
5614 return
5615 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5617 for (fp = outer_function_chain; fp; fp = fp->next)
5618 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5619 if (TREE_PURPOSE (link) == function)
5621 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5622 function);
5623 return adjust_trampoline_addr (tramp);
5626 /* None exists; we must make one. */
5628 /* Find the `struct function' for the function containing FUNCTION. */
5629 fp = 0;
5630 fn_context = decl_function_context (function);
5631 if (fn_context != current_function_decl
5632 && fn_context != inline_function_decl)
5633 for (fp = outer_function_chain; fp; fp = fp->next)
5634 if (fp->decl == fn_context)
5635 break;
5637 /* Allocate run-time space for this trampoline
5638 (usually in the defining function's stack frame). */
5639 #ifdef ALLOCATE_TRAMPOLINE
5640 tramp = ALLOCATE_TRAMPOLINE (fp);
5641 #else
5642 /* If rounding needed, allocate extra space
5643 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5644 #ifdef TRAMPOLINE_ALIGNMENT
5645 #define TRAMPOLINE_REAL_SIZE \
5646 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5647 #else
5648 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5649 #endif
5650 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5651 fp ? fp : cfun);
5652 #endif
5654 /* Record the trampoline for reuse and note it for later initialization
5655 by expand_function_end. */
5656 if (fp != 0)
5658 rtlexp = make_node (RTL_EXPR);
5659 RTL_EXPR_RTL (rtlexp) = tramp;
5660 fp->x_trampoline_list = tree_cons (function, rtlexp,
5661 fp->x_trampoline_list);
5663 else
5665 /* Make the RTL_EXPR node temporary, not momentary, so that the
5666 trampoline_list doesn't become garbage. */
5667 rtlexp = make_node (RTL_EXPR);
5669 RTL_EXPR_RTL (rtlexp) = tramp;
5670 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5673 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5674 return adjust_trampoline_addr (tramp);
5677 /* Given a trampoline address,
5678 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5680 static rtx
5681 round_trampoline_addr (tramp)
5682 rtx tramp;
5684 #ifdef TRAMPOLINE_ALIGNMENT
5685 /* Round address up to desired boundary. */
5686 rtx temp = gen_reg_rtx (Pmode);
5687 temp = expand_binop (Pmode, add_optab, tramp,
5688 GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1),
5689 temp, 0, OPTAB_LIB_WIDEN);
5690 tramp = expand_binop (Pmode, and_optab, temp,
5691 GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT),
5692 temp, 0, OPTAB_LIB_WIDEN);
5693 #endif
5694 return tramp;
5697 /* Given a trampoline address, round it then apply any
5698 platform-specific adjustments so that the result can be used for a
5699 function call . */
5701 static rtx
5702 adjust_trampoline_addr (tramp)
5703 rtx tramp;
5705 tramp = round_trampoline_addr (tramp);
5706 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5707 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5708 #endif
5709 return tramp;
5712 /* Put all this function's BLOCK nodes including those that are chained
5713 onto the first block into a vector, and return it.
5714 Also store in each NOTE for the beginning or end of a block
5715 the index of that block in the vector.
5716 The arguments are BLOCK, the chain of top-level blocks of the function,
5717 and INSNS, the insn chain of the function. */
5719 void
5720 identify_blocks ()
5722 int n_blocks;
5723 tree *block_vector, *last_block_vector;
5724 tree *block_stack;
5725 tree block = DECL_INITIAL (current_function_decl);
5727 if (block == 0)
5728 return;
5730 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5731 depth-first order. */
5732 block_vector = get_block_vector (block, &n_blocks);
5733 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5735 last_block_vector = identify_blocks_1 (get_insns (),
5736 block_vector + 1,
5737 block_vector + n_blocks,
5738 block_stack);
5740 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5741 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5742 if (0 && last_block_vector != block_vector + n_blocks)
5743 abort ();
5745 free (block_vector);
5746 free (block_stack);
5749 /* Subroutine of identify_blocks. Do the block substitution on the
5750 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5752 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5753 BLOCK_VECTOR is incremented for each block seen. */
5755 static tree *
5756 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5757 rtx insns;
5758 tree *block_vector;
5759 tree *end_block_vector;
5760 tree *orig_block_stack;
5762 rtx insn;
5763 tree *block_stack = orig_block_stack;
5765 for (insn = insns; insn; insn = NEXT_INSN (insn))
5767 if (GET_CODE (insn) == NOTE)
5769 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5771 tree b;
5773 /* If there are more block notes than BLOCKs, something
5774 is badly wrong. */
5775 if (block_vector == end_block_vector)
5776 abort ();
5778 b = *block_vector++;
5779 NOTE_BLOCK (insn) = b;
5780 *block_stack++ = b;
5782 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5784 /* If there are more NOTE_INSN_BLOCK_ENDs than
5785 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5786 if (block_stack == orig_block_stack)
5787 abort ();
5789 NOTE_BLOCK (insn) = *--block_stack;
5792 else if (GET_CODE (insn) == CALL_INSN
5793 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5795 rtx cp = PATTERN (insn);
5797 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5798 end_block_vector, block_stack);
5799 if (XEXP (cp, 1))
5800 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5801 end_block_vector, block_stack);
5802 if (XEXP (cp, 2))
5803 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5804 end_block_vector, block_stack);
5808 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5809 something is badly wrong. */
5810 if (block_stack != orig_block_stack)
5811 abort ();
5813 return block_vector;
5816 /* Identify BLOCKs referenced by more than one
5817 NOTE_INSN_BLOCK_{BEG,END}, and create duplicate blocks. */
5819 void
5820 reorder_blocks ()
5822 tree block = DECL_INITIAL (current_function_decl);
5823 varray_type block_stack;
5825 if (block == NULL_TREE)
5826 return;
5828 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5830 /* Prune the old trees away, so that they don't get in the way. */
5831 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5832 BLOCK_CHAIN (block) = NULL_TREE;
5834 reorder_blocks_0 (get_insns ());
5835 reorder_blocks_1 (get_insns (), block, &block_stack);
5837 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5839 VARRAY_FREE (block_stack);
5842 /* Helper function for reorder_blocks. Process the insn chain beginning
5843 at INSNS. Recurse for CALL_PLACEHOLDER insns. */
5845 static void
5846 reorder_blocks_0 (insns)
5847 rtx insns;
5849 rtx insn;
5851 for (insn = insns; insn; insn = NEXT_INSN (insn))
5853 if (GET_CODE (insn) == NOTE)
5855 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5857 tree block = NOTE_BLOCK (insn);
5858 TREE_ASM_WRITTEN (block) = 0;
5861 else if (GET_CODE (insn) == CALL_INSN
5862 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5864 rtx cp = PATTERN (insn);
5865 reorder_blocks_0 (XEXP (cp, 0));
5866 if (XEXP (cp, 1))
5867 reorder_blocks_0 (XEXP (cp, 1));
5868 if (XEXP (cp, 2))
5869 reorder_blocks_0 (XEXP (cp, 2));
5874 static void
5875 reorder_blocks_1 (insns, current_block, p_block_stack)
5876 rtx insns;
5877 tree current_block;
5878 varray_type *p_block_stack;
5880 rtx insn;
5882 for (insn = insns; insn; insn = NEXT_INSN (insn))
5884 if (GET_CODE (insn) == NOTE)
5886 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5888 tree block = NOTE_BLOCK (insn);
5889 /* If we have seen this block before, copy it. */
5890 if (TREE_ASM_WRITTEN (block))
5892 block = copy_node (block);
5893 NOTE_BLOCK (insn) = block;
5895 BLOCK_SUBBLOCKS (block) = 0;
5896 TREE_ASM_WRITTEN (block) = 1;
5897 BLOCK_SUPERCONTEXT (block) = current_block;
5898 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5899 BLOCK_SUBBLOCKS (current_block) = block;
5900 current_block = block;
5901 VARRAY_PUSH_TREE (*p_block_stack, block);
5903 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5905 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5906 VARRAY_POP (*p_block_stack);
5907 BLOCK_SUBBLOCKS (current_block)
5908 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5909 current_block = BLOCK_SUPERCONTEXT (current_block);
5912 else if (GET_CODE (insn) == CALL_INSN
5913 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5915 rtx cp = PATTERN (insn);
5916 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5917 if (XEXP (cp, 1))
5918 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5919 if (XEXP (cp, 2))
5920 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5925 /* Reverse the order of elements in the chain T of blocks,
5926 and return the new head of the chain (old last element). */
5928 static tree
5929 blocks_nreverse (t)
5930 tree t;
5932 register tree prev = 0, decl, next;
5933 for (decl = t; decl; decl = next)
5935 next = BLOCK_CHAIN (decl);
5936 BLOCK_CHAIN (decl) = prev;
5937 prev = decl;
5939 return prev;
5942 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
5943 non-NULL, list them all into VECTOR, in a depth-first preorder
5944 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
5945 blocks. */
5947 static int
5948 all_blocks (block, vector)
5949 tree block;
5950 tree *vector;
5952 int n_blocks = 0;
5954 while (block)
5956 TREE_ASM_WRITTEN (block) = 0;
5958 /* Record this block. */
5959 if (vector)
5960 vector[n_blocks] = block;
5962 ++n_blocks;
5964 /* Record the subblocks, and their subblocks... */
5965 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
5966 vector ? vector + n_blocks : 0);
5967 block = BLOCK_CHAIN (block);
5970 return n_blocks;
5973 /* Return a vector containing all the blocks rooted at BLOCK. The
5974 number of elements in the vector is stored in N_BLOCKS_P. The
5975 vector is dynamically allocated; it is the caller's responsibility
5976 to call `free' on the pointer returned. */
5978 static tree *
5979 get_block_vector (block, n_blocks_p)
5980 tree block;
5981 int *n_blocks_p;
5983 tree *block_vector;
5985 *n_blocks_p = all_blocks (block, NULL);
5986 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
5987 all_blocks (block, block_vector);
5989 return block_vector;
5992 static int next_block_index = 2;
5994 /* Set BLOCK_NUMBER for all the blocks in FN. */
5996 void
5997 number_blocks (fn)
5998 tree fn;
6000 int i;
6001 int n_blocks;
6002 tree *block_vector;
6004 /* For SDB and XCOFF debugging output, we start numbering the blocks
6005 from 1 within each function, rather than keeping a running
6006 count. */
6007 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6008 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6009 next_block_index = 1;
6010 #endif
6012 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6014 /* The top-level BLOCK isn't numbered at all. */
6015 for (i = 1; i < n_blocks; ++i)
6016 /* We number the blocks from two. */
6017 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6019 free (block_vector);
6021 return;
6024 /* Allocate a function structure and reset its contents to the defaults. */
6025 static void
6026 prepare_function_start ()
6028 cfun = (struct function *) xcalloc (1, sizeof (struct function));
6030 init_stmt_for_function ();
6031 init_eh_for_function ();
6033 cse_not_expected = ! optimize;
6035 /* Caller save not needed yet. */
6036 caller_save_needed = 0;
6038 /* No stack slots have been made yet. */
6039 stack_slot_list = 0;
6041 current_function_has_nonlocal_label = 0;
6042 current_function_has_nonlocal_goto = 0;
6044 /* There is no stack slot for handling nonlocal gotos. */
6045 nonlocal_goto_handler_slots = 0;
6046 nonlocal_goto_stack_level = 0;
6048 /* No labels have been declared for nonlocal use. */
6049 nonlocal_labels = 0;
6050 nonlocal_goto_handler_labels = 0;
6052 /* No function calls so far in this function. */
6053 function_call_count = 0;
6055 /* No parm regs have been allocated.
6056 (This is important for output_inline_function.) */
6057 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6059 /* Initialize the RTL mechanism. */
6060 init_emit ();
6062 /* Initialize the queue of pending postincrement and postdecrements,
6063 and some other info in expr.c. */
6064 init_expr ();
6066 /* We haven't done register allocation yet. */
6067 reg_renumber = 0;
6069 init_varasm_status (cfun);
6071 /* Clear out data used for inlining. */
6072 cfun->inlinable = 0;
6073 cfun->original_decl_initial = 0;
6074 cfun->original_arg_vector = 0;
6076 #ifdef STACK_BOUNDARY
6077 cfun->stack_alignment_needed = STACK_BOUNDARY;
6078 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6079 #else
6080 cfun->stack_alignment_needed = 0;
6081 cfun->preferred_stack_boundary = 0;
6082 #endif
6084 /* Set if a call to setjmp is seen. */
6085 current_function_calls_setjmp = 0;
6087 /* Set if a call to longjmp is seen. */
6088 current_function_calls_longjmp = 0;
6090 current_function_calls_alloca = 0;
6091 current_function_contains_functions = 0;
6092 current_function_is_leaf = 0;
6093 current_function_nothrow = 0;
6094 current_function_sp_is_unchanging = 0;
6095 current_function_uses_only_leaf_regs = 0;
6096 current_function_has_computed_jump = 0;
6097 current_function_is_thunk = 0;
6099 current_function_returns_pcc_struct = 0;
6100 current_function_returns_struct = 0;
6101 current_function_epilogue_delay_list = 0;
6102 current_function_uses_const_pool = 0;
6103 current_function_uses_pic_offset_table = 0;
6104 current_function_cannot_inline = 0;
6106 /* We have not yet needed to make a label to jump to for tail-recursion. */
6107 tail_recursion_label = 0;
6109 /* We haven't had a need to make a save area for ap yet. */
6110 arg_pointer_save_area = 0;
6112 /* No stack slots allocated yet. */
6113 frame_offset = 0;
6115 /* No SAVE_EXPRs in this function yet. */
6116 save_expr_regs = 0;
6118 /* No RTL_EXPRs in this function yet. */
6119 rtl_expr_chain = 0;
6121 /* Set up to allocate temporaries. */
6122 init_temp_slots ();
6124 /* Indicate that we need to distinguish between the return value of the
6125 present function and the return value of a function being called. */
6126 rtx_equal_function_value_matters = 1;
6128 /* Indicate that we have not instantiated virtual registers yet. */
6129 virtuals_instantiated = 0;
6131 /* Indicate that we want CONCATs now. */
6132 generating_concat_p = 1;
6134 /* Indicate we have no need of a frame pointer yet. */
6135 frame_pointer_needed = 0;
6137 /* By default assume not varargs or stdarg. */
6138 current_function_varargs = 0;
6139 current_function_stdarg = 0;
6141 /* We haven't made any trampolines for this function yet. */
6142 trampoline_list = 0;
6144 init_pending_stack_adjust ();
6145 inhibit_defer_pop = 0;
6147 current_function_outgoing_args_size = 0;
6149 if (init_lang_status)
6150 (*init_lang_status) (cfun);
6151 if (init_machine_status)
6152 (*init_machine_status) (cfun);
6155 /* Initialize the rtl expansion mechanism so that we can do simple things
6156 like generate sequences. This is used to provide a context during global
6157 initialization of some passes. */
6158 void
6159 init_dummy_function_start ()
6161 prepare_function_start ();
6164 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6165 and initialize static variables for generating RTL for the statements
6166 of the function. */
6168 void
6169 init_function_start (subr, filename, line)
6170 tree subr;
6171 const char *filename;
6172 int line;
6174 prepare_function_start ();
6176 /* Remember this function for later. */
6177 cfun->next_global = all_functions;
6178 all_functions = cfun;
6180 current_function_name = (*decl_printable_name) (subr, 2);
6181 cfun->decl = subr;
6183 /* Nonzero if this is a nested function that uses a static chain. */
6185 current_function_needs_context
6186 = (decl_function_context (current_function_decl) != 0
6187 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6189 /* Within function body, compute a type's size as soon it is laid out. */
6190 immediate_size_expand++;
6192 /* Prevent ever trying to delete the first instruction of a function.
6193 Also tell final how to output a linenum before the function prologue.
6194 Note linenums could be missing, e.g. when compiling a Java .class file. */
6195 if (line > 0)
6196 emit_line_note (filename, line);
6198 /* Make sure first insn is a note even if we don't want linenums.
6199 This makes sure the first insn will never be deleted.
6200 Also, final expects a note to appear there. */
6201 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6203 /* Set flags used by final.c. */
6204 if (aggregate_value_p (DECL_RESULT (subr)))
6206 #ifdef PCC_STATIC_STRUCT_RETURN
6207 current_function_returns_pcc_struct = 1;
6208 #endif
6209 current_function_returns_struct = 1;
6212 /* Warn if this value is an aggregate type,
6213 regardless of which calling convention we are using for it. */
6214 if (warn_aggregate_return
6215 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6216 warning ("function returns an aggregate");
6218 current_function_returns_pointer
6219 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6222 /* Make sure all values used by the optimization passes have sane
6223 defaults. */
6224 void
6225 init_function_for_compilation ()
6227 reg_renumber = 0;
6229 /* No prologue/epilogue insns yet. */
6230 VARRAY_GROW (prologue, 0);
6231 VARRAY_GROW (epilogue, 0);
6232 VARRAY_GROW (sibcall_epilogue, 0);
6235 /* Indicate that the current function uses extra args
6236 not explicitly mentioned in the argument list in any fashion. */
6238 void
6239 mark_varargs ()
6241 current_function_varargs = 1;
6244 /* Expand a call to __main at the beginning of a possible main function. */
6246 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6247 #undef HAS_INIT_SECTION
6248 #define HAS_INIT_SECTION
6249 #endif
6251 void
6252 expand_main_function ()
6254 #if !defined (HAS_INIT_SECTION)
6255 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), 0,
6256 VOIDmode, 0);
6257 #endif /* not HAS_INIT_SECTION */
6260 extern struct obstack permanent_obstack;
6262 /* The PENDING_SIZES represent the sizes of variable-sized types.
6263 Create RTL for the various sizes now (using temporary variables),
6264 so that we can refer to the sizes from the RTL we are generating
6265 for the current function. The PENDING_SIZES are a TREE_LIST. The
6266 TREE_VALUE of each node is a SAVE_EXPR. */
6268 void
6269 expand_pending_sizes (pending_sizes)
6270 tree pending_sizes;
6272 tree tem;
6274 /* Evaluate now the sizes of any types declared among the arguments. */
6275 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6277 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode,
6278 EXPAND_MEMORY_USE_BAD);
6279 /* Flush the queue in case this parameter declaration has
6280 side-effects. */
6281 emit_queue ();
6285 /* Start the RTL for a new function, and set variables used for
6286 emitting RTL.
6287 SUBR is the FUNCTION_DECL node.
6288 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6289 the function's parameters, which must be run at any return statement. */
6291 void
6292 expand_function_start (subr, parms_have_cleanups)
6293 tree subr;
6294 int parms_have_cleanups;
6296 tree tem;
6297 rtx last_ptr = NULL_RTX;
6299 /* Make sure volatile mem refs aren't considered
6300 valid operands of arithmetic insns. */
6301 init_recog_no_volatile ();
6303 /* Set this before generating any memory accesses. */
6304 current_function_check_memory_usage
6305 = (flag_check_memory_usage
6306 && ! DECL_NO_CHECK_MEMORY_USAGE (current_function_decl));
6308 current_function_instrument_entry_exit
6309 = (flag_instrument_function_entry_exit
6310 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6312 current_function_limit_stack
6313 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6315 /* If function gets a static chain arg, store it in the stack frame.
6316 Do this first, so it gets the first stack slot offset. */
6317 if (current_function_needs_context)
6319 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6321 /* Delay copying static chain if it is not a register to avoid
6322 conflicts with regs used for parameters. */
6323 if (! SMALL_REGISTER_CLASSES
6324 || GET_CODE (static_chain_incoming_rtx) == REG)
6325 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6328 /* If the parameters of this function need cleaning up, get a label
6329 for the beginning of the code which executes those cleanups. This must
6330 be done before doing anything with return_label. */
6331 if (parms_have_cleanups)
6332 cleanup_label = gen_label_rtx ();
6333 else
6334 cleanup_label = 0;
6336 /* Make the label for return statements to jump to. Do not special
6337 case machines with special return instructions -- they will be
6338 handled later during jump, ifcvt, or epilogue creation. */
6339 return_label = gen_label_rtx ();
6341 /* Initialize rtx used to return the value. */
6342 /* Do this before assign_parms so that we copy the struct value address
6343 before any library calls that assign parms might generate. */
6345 /* Decide whether to return the value in memory or in a register. */
6346 if (aggregate_value_p (DECL_RESULT (subr)))
6348 /* Returning something that won't go in a register. */
6349 register rtx value_address = 0;
6351 #ifdef PCC_STATIC_STRUCT_RETURN
6352 if (current_function_returns_pcc_struct)
6354 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6355 value_address = assemble_static_space (size);
6357 else
6358 #endif
6360 /* Expect to be passed the address of a place to store the value.
6361 If it is passed as an argument, assign_parms will take care of
6362 it. */
6363 if (struct_value_incoming_rtx)
6365 value_address = gen_reg_rtx (Pmode);
6366 emit_move_insn (value_address, struct_value_incoming_rtx);
6369 if (value_address)
6371 SET_DECL_RTL (DECL_RESULT (subr),
6372 gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)),
6373 value_address));
6374 set_mem_attributes (DECL_RTL (DECL_RESULT (subr)),
6375 DECL_RESULT (subr), 1);
6378 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6379 /* If return mode is void, this decl rtl should not be used. */
6380 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6381 else if (parms_have_cleanups
6382 || current_function_instrument_entry_exit
6383 || (flag_exceptions && USING_SJLJ_EXCEPTIONS))
6385 /* If function will end with cleanup code for parms, compute the
6386 return values into a pseudo reg, which we will copy into the
6387 true return register after the cleanups are done. */
6389 /* In order to figure out what mode to use for the pseudo, we
6390 figure out what the mode of the eventual return register will
6391 actually be, and use that. */
6392 rtx hard_reg
6393 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6394 subr, 1);
6396 /* Since we know the return value is not an aggregate, we should
6397 have a REG here. */
6398 if (!REG_P (hard_reg))
6399 abort ();
6401 /* Create the pseudo. */
6402 SET_DECL_RTL (DECL_RESULT (subr),
6403 gen_reg_rtx (GET_MODE (hard_reg)));
6404 /* Needed because we may need to move this to memory
6405 in case it's a named return value whose address is taken. */
6406 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6408 else
6410 /* Scalar, returned in a register. */
6411 SET_DECL_RTL (DECL_RESULT (subr),
6412 hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6413 subr, 1));
6415 /* Mark this reg as the function's return value. */
6416 if (GET_CODE (DECL_RTL (DECL_RESULT (subr))) == REG)
6418 REG_FUNCTION_VALUE_P (DECL_RTL (DECL_RESULT (subr))) = 1;
6419 /* Needed because we may need to move this to memory
6420 in case it's a named return value whose address is taken. */
6421 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6425 /* Initialize rtx for parameters and local variables.
6426 In some cases this requires emitting insns. */
6428 assign_parms (subr);
6430 /* Copy the static chain now if it wasn't a register. The delay is to
6431 avoid conflicts with the parameter passing registers. */
6433 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6434 if (GET_CODE (static_chain_incoming_rtx) != REG)
6435 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6437 /* The following was moved from init_function_start.
6438 The move is supposed to make sdb output more accurate. */
6439 /* Indicate the beginning of the function body,
6440 as opposed to parm setup. */
6441 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_BEG);
6443 if (GET_CODE (get_last_insn ()) != NOTE)
6444 emit_note (NULL_PTR, NOTE_INSN_DELETED);
6445 parm_birth_insn = get_last_insn ();
6447 context_display = 0;
6448 if (current_function_needs_context)
6450 /* Fetch static chain values for containing functions. */
6451 tem = decl_function_context (current_function_decl);
6452 /* Copy the static chain pointer into a pseudo. If we have
6453 small register classes, copy the value from memory if
6454 static_chain_incoming_rtx is a REG. */
6455 if (tem)
6457 /* If the static chain originally came in a register, put it back
6458 there, then move it out in the next insn. The reason for
6459 this peculiar code is to satisfy function integration. */
6460 if (SMALL_REGISTER_CLASSES
6461 && GET_CODE (static_chain_incoming_rtx) == REG)
6462 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6463 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6466 while (tem)
6468 tree rtlexp = make_node (RTL_EXPR);
6470 RTL_EXPR_RTL (rtlexp) = last_ptr;
6471 context_display = tree_cons (tem, rtlexp, context_display);
6472 tem = decl_function_context (tem);
6473 if (tem == 0)
6474 break;
6475 /* Chain thru stack frames, assuming pointer to next lexical frame
6476 is found at the place we always store it. */
6477 #ifdef FRAME_GROWS_DOWNWARD
6478 last_ptr = plus_constant (last_ptr,
6479 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6480 #endif
6481 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6482 MEM_ALIAS_SET (last_ptr) = get_frame_alias_set ();
6483 last_ptr = copy_to_reg (last_ptr);
6485 /* If we are not optimizing, ensure that we know that this
6486 piece of context is live over the entire function. */
6487 if (! optimize)
6488 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6489 save_expr_regs);
6493 if (current_function_instrument_entry_exit)
6495 rtx fun = DECL_RTL (current_function_decl);
6496 if (GET_CODE (fun) == MEM)
6497 fun = XEXP (fun, 0);
6498 else
6499 abort ();
6500 emit_library_call (profile_function_entry_libfunc, 0, VOIDmode, 2,
6501 fun, Pmode,
6502 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6504 hard_frame_pointer_rtx),
6505 Pmode);
6508 #ifdef PROFILE_HOOK
6509 if (profile_flag)
6510 PROFILE_HOOK (profile_label_no);
6511 #endif
6513 /* After the display initializations is where the tail-recursion label
6514 should go, if we end up needing one. Ensure we have a NOTE here
6515 since some things (like trampolines) get placed before this. */
6516 tail_recursion_reentry = emit_note (NULL_PTR, NOTE_INSN_DELETED);
6518 /* Evaluate now the sizes of any types declared among the arguments. */
6519 expand_pending_sizes (nreverse (get_pending_sizes ()));
6521 /* Make sure there is a line number after the function entry setup code. */
6522 force_next_line_note ();
6525 /* Undo the effects of init_dummy_function_start. */
6526 void
6527 expand_dummy_function_end ()
6529 /* End any sequences that failed to be closed due to syntax errors. */
6530 while (in_sequence_p ())
6531 end_sequence ();
6533 /* Outside function body, can't compute type's actual size
6534 until next function's body starts. */
6536 free_after_parsing (cfun);
6537 free_after_compilation (cfun);
6538 free (cfun);
6539 cfun = 0;
6542 /* Call DOIT for each hard register used as a return value from
6543 the current function. */
6545 void
6546 diddle_return_value (doit, arg)
6547 void (*doit) PARAMS ((rtx, void *));
6548 void *arg;
6550 rtx outgoing = current_function_return_rtx;
6551 int pcc;
6553 if (! outgoing)
6554 return;
6556 pcc = (current_function_returns_struct
6557 || current_function_returns_pcc_struct);
6559 if ((GET_CODE (outgoing) == REG
6560 && REGNO (outgoing) >= FIRST_PSEUDO_REGISTER)
6561 || pcc)
6563 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6565 /* A PCC-style return returns a pointer to the memory in which
6566 the structure is stored. */
6567 if (pcc)
6568 type = build_pointer_type (type);
6570 #ifdef FUNCTION_OUTGOING_VALUE
6571 outgoing = FUNCTION_OUTGOING_VALUE (type, current_function_decl);
6572 #else
6573 outgoing = FUNCTION_VALUE (type, current_function_decl);
6574 #endif
6575 /* If this is a BLKmode structure being returned in registers, then use
6576 the mode computed in expand_return. */
6577 if (GET_MODE (outgoing) == BLKmode)
6578 PUT_MODE (outgoing, GET_MODE (current_function_return_rtx));
6579 REG_FUNCTION_VALUE_P (outgoing) = 1;
6582 if (GET_CODE (outgoing) == REG)
6583 (*doit) (outgoing, arg);
6584 else if (GET_CODE (outgoing) == PARALLEL)
6586 int i;
6588 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6590 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6592 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6593 (*doit) (x, arg);
6598 static void
6599 do_clobber_return_reg (reg, arg)
6600 rtx reg;
6601 void *arg ATTRIBUTE_UNUSED;
6603 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6606 void
6607 clobber_return_register ()
6609 diddle_return_value (do_clobber_return_reg, NULL);
6612 static void
6613 do_use_return_reg (reg, arg)
6614 rtx reg;
6615 void *arg ATTRIBUTE_UNUSED;
6617 emit_insn (gen_rtx_USE (VOIDmode, reg));
6620 void
6621 use_return_register ()
6623 diddle_return_value (do_use_return_reg, NULL);
6626 /* Generate RTL for the end of the current function.
6627 FILENAME and LINE are the current position in the source file.
6629 It is up to language-specific callers to do cleanups for parameters--
6630 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6632 void
6633 expand_function_end (filename, line, end_bindings)
6634 const char *filename;
6635 int line;
6636 int end_bindings;
6638 tree link;
6640 #ifdef TRAMPOLINE_TEMPLATE
6641 static rtx initial_trampoline;
6642 #endif
6644 finish_expr_for_function ();
6646 #ifdef NON_SAVING_SETJMP
6647 /* Don't put any variables in registers if we call setjmp
6648 on a machine that fails to restore the registers. */
6649 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6651 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6652 setjmp_protect (DECL_INITIAL (current_function_decl));
6654 setjmp_protect_args ();
6656 #endif
6658 /* Save the argument pointer if a save area was made for it. */
6659 if (arg_pointer_save_area)
6661 /* arg_pointer_save_area may not be a valid memory address, so we
6662 have to check it and fix it if necessary. */
6663 rtx seq;
6664 start_sequence ();
6665 emit_move_insn (validize_mem (arg_pointer_save_area),
6666 virtual_incoming_args_rtx);
6667 seq = gen_sequence ();
6668 end_sequence ();
6669 emit_insn_before (seq, tail_recursion_reentry);
6672 /* Initialize any trampolines required by this function. */
6673 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6675 tree function = TREE_PURPOSE (link);
6676 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6677 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6678 #ifdef TRAMPOLINE_TEMPLATE
6679 rtx blktramp;
6680 #endif
6681 rtx seq;
6683 #ifdef TRAMPOLINE_TEMPLATE
6684 /* First make sure this compilation has a template for
6685 initializing trampolines. */
6686 if (initial_trampoline == 0)
6688 initial_trampoline
6689 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6691 ggc_add_rtx_root (&initial_trampoline, 1);
6693 #endif
6695 /* Generate insns to initialize the trampoline. */
6696 start_sequence ();
6697 tramp = round_trampoline_addr (XEXP (tramp, 0));
6698 #ifdef TRAMPOLINE_TEMPLATE
6699 blktramp = change_address (initial_trampoline, BLKmode, tramp);
6700 emit_block_move (blktramp, initial_trampoline,
6701 GEN_INT (TRAMPOLINE_SIZE),
6702 TRAMPOLINE_ALIGNMENT);
6703 #endif
6704 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6705 seq = get_insns ();
6706 end_sequence ();
6708 /* Put those insns at entry to the containing function (this one). */
6709 emit_insns_before (seq, tail_recursion_reentry);
6712 /* If we are doing stack checking and this function makes calls,
6713 do a stack probe at the start of the function to ensure we have enough
6714 space for another stack frame. */
6715 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6717 rtx insn, seq;
6719 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6720 if (GET_CODE (insn) == CALL_INSN)
6722 start_sequence ();
6723 probe_stack_range (STACK_CHECK_PROTECT,
6724 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6725 seq = get_insns ();
6726 end_sequence ();
6727 emit_insns_before (seq, tail_recursion_reentry);
6728 break;
6732 /* Warn about unused parms if extra warnings were specified. */
6733 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6734 warning. WARN_UNUSED_PARAMETER is negative when set by
6735 -Wunused. */
6736 if (warn_unused_parameter > 0
6737 || (warn_unused_parameter < 0 && extra_warnings))
6739 tree decl;
6741 for (decl = DECL_ARGUMENTS (current_function_decl);
6742 decl; decl = TREE_CHAIN (decl))
6743 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6744 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6745 warning_with_decl (decl, "unused parameter `%s'");
6748 /* Delete handlers for nonlocal gotos if nothing uses them. */
6749 if (nonlocal_goto_handler_slots != 0
6750 && ! current_function_has_nonlocal_label)
6751 delete_handlers ();
6753 /* End any sequences that failed to be closed due to syntax errors. */
6754 while (in_sequence_p ())
6755 end_sequence ();
6757 /* Outside function body, can't compute type's actual size
6758 until next function's body starts. */
6759 immediate_size_expand--;
6761 clear_pending_stack_adjust ();
6762 do_pending_stack_adjust ();
6764 /* Mark the end of the function body.
6765 If control reaches this insn, the function can drop through
6766 without returning a value. */
6767 emit_note (NULL_PTR, NOTE_INSN_FUNCTION_END);
6769 /* Must mark the last line number note in the function, so that the test
6770 coverage code can avoid counting the last line twice. This just tells
6771 the code to ignore the immediately following line note, since there
6772 already exists a copy of this note somewhere above. This line number
6773 note is still needed for debugging though, so we can't delete it. */
6774 if (flag_test_coverage)
6775 emit_note (NULL_PTR, NOTE_INSN_REPEATED_LINE_NUMBER);
6777 /* Output a linenumber for the end of the function.
6778 SDB depends on this. */
6779 emit_line_note_force (filename, line);
6781 /* Output the label for the actual return from the function,
6782 if one is expected. This happens either because a function epilogue
6783 is used instead of a return instruction, or because a return was done
6784 with a goto in order to run local cleanups, or because of pcc-style
6785 structure returning. */
6787 if (return_label)
6789 rtx before, after;
6791 /* Before the return label, clobber the return registers so that
6792 they are not propogated live to the rest of the function. This
6793 can only happen with functions that drop through; if there had
6794 been a return statement, there would have either been a return
6795 rtx, or a jump to the return label. */
6797 before = get_last_insn ();
6798 clobber_return_register ();
6799 after = get_last_insn ();
6801 if (before != after)
6802 cfun->x_clobber_return_insn = after;
6804 emit_label (return_label);
6807 /* C++ uses this. */
6808 if (end_bindings)
6809 expand_end_bindings (0, 0, 0);
6811 if (current_function_instrument_entry_exit)
6813 rtx fun = DECL_RTL (current_function_decl);
6814 if (GET_CODE (fun) == MEM)
6815 fun = XEXP (fun, 0);
6816 else
6817 abort ();
6818 emit_library_call (profile_function_exit_libfunc, 0, VOIDmode, 2,
6819 fun, Pmode,
6820 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6822 hard_frame_pointer_rtx),
6823 Pmode);
6826 /* Let except.c know where it should emit the call to unregister
6827 the function context for sjlj exceptions. */
6828 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6829 sjlj_emit_function_exit_after (get_last_insn ());
6831 /* If we had calls to alloca, and this machine needs
6832 an accurate stack pointer to exit the function,
6833 insert some code to save and restore the stack pointer. */
6834 #ifdef EXIT_IGNORE_STACK
6835 if (! EXIT_IGNORE_STACK)
6836 #endif
6837 if (current_function_calls_alloca)
6839 rtx tem = 0;
6841 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6842 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6845 /* If scalar return value was computed in a pseudo-reg, or was a named
6846 return value that got dumped to the stack, copy that to the hard
6847 return register. */
6848 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6850 tree decl_result = DECL_RESULT (current_function_decl);
6851 rtx decl_rtl = DECL_RTL (decl_result);
6853 if (REG_P (decl_rtl)
6854 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6855 : DECL_REGISTER (decl_result))
6857 rtx real_decl_rtl;
6859 #ifdef FUNCTION_OUTGOING_VALUE
6860 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
6861 current_function_decl);
6862 #else
6863 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
6864 current_function_decl);
6865 #endif
6866 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
6868 /* If this is a BLKmode structure being returned in registers,
6869 then use the mode computed in expand_return. Note that if
6870 decl_rtl is memory, then its mode may have been changed,
6871 but that current_function_return_rtx has not. */
6872 if (GET_MODE (real_decl_rtl) == BLKmode)
6873 PUT_MODE (real_decl_rtl, GET_MODE (current_function_return_rtx));
6875 /* If a named return value dumped decl_return to memory, then
6876 we may need to re-do the PROMOTE_MODE signed/unsigned
6877 extension. */
6878 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
6880 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
6882 #ifdef PROMOTE_FUNCTION_RETURN
6883 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
6884 &unsignedp, 1);
6885 #endif
6887 convert_move (real_decl_rtl, decl_rtl, unsignedp);
6889 else if (GET_CODE (real_decl_rtl) == PARALLEL)
6890 emit_group_load (real_decl_rtl, decl_rtl,
6891 int_size_in_bytes (TREE_TYPE (decl_result)),
6892 TYPE_ALIGN (TREE_TYPE (decl_result)));
6893 else
6894 emit_move_insn (real_decl_rtl, decl_rtl);
6896 /* The delay slot scheduler assumes that current_function_return_rtx
6897 holds the hard register containing the return value, not a
6898 temporary pseudo. */
6899 current_function_return_rtx = real_decl_rtl;
6903 /* If returning a structure, arrange to return the address of the value
6904 in a place where debuggers expect to find it.
6906 If returning a structure PCC style,
6907 the caller also depends on this value.
6908 And current_function_returns_pcc_struct is not necessarily set. */
6909 if (current_function_returns_struct
6910 || current_function_returns_pcc_struct)
6912 rtx value_address
6913 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
6914 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
6915 #ifdef FUNCTION_OUTGOING_VALUE
6916 rtx outgoing
6917 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
6918 current_function_decl);
6919 #else
6920 rtx outgoing
6921 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
6922 #endif
6924 /* Mark this as a function return value so integrate will delete the
6925 assignment and USE below when inlining this function. */
6926 REG_FUNCTION_VALUE_P (outgoing) = 1;
6928 #ifdef POINTERS_EXTEND_UNSIGNED
6929 /* The address may be ptr_mode and OUTGOING may be Pmode. */
6930 if (GET_MODE (outgoing) != GET_MODE (value_address))
6931 value_address = convert_memory_address (GET_MODE (outgoing),
6932 value_address);
6933 #endif
6935 emit_move_insn (outgoing, value_address);
6937 /* Show return register used to hold result (in this case the address
6938 of the result. */
6939 current_function_return_rtx = outgoing;
6942 /* If this is an implementation of throw, do what's necessary to
6943 communicate between __builtin_eh_return and the epilogue. */
6944 expand_eh_return ();
6946 /* ??? This should no longer be necessary since stupid is no longer with
6947 us, but there are some parts of the compiler (eg reload_combine, and
6948 sh mach_dep_reorg) that still try and compute their own lifetime info
6949 instead of using the general framework. */
6950 use_return_register ();
6952 /* Output a return insn if we are using one.
6953 Otherwise, let the rtl chain end here, to drop through
6954 into the epilogue. */
6956 #ifdef HAVE_return
6957 if (HAVE_return)
6959 emit_jump_insn (gen_return ());
6960 emit_barrier ();
6962 #endif
6964 /* Fix up any gotos that jumped out to the outermost
6965 binding level of the function.
6966 Must follow emitting RETURN_LABEL. */
6968 /* If you have any cleanups to do at this point,
6969 and they need to create temporary variables,
6970 then you will lose. */
6971 expand_fixups (get_insns ());
6974 /* Extend a vector that records the INSN_UIDs of INSNS (either a
6975 sequence or a single insn). */
6977 static void
6978 record_insns (insns, vecp)
6979 rtx insns;
6980 varray_type *vecp;
6982 if (GET_CODE (insns) == SEQUENCE)
6984 int len = XVECLEN (insns, 0);
6985 int i = VARRAY_SIZE (*vecp);
6987 VARRAY_GROW (*vecp, i + len);
6988 while (--len >= 0)
6990 VARRAY_INT (*vecp, i) = INSN_UID (XVECEXP (insns, 0, len));
6991 ++i;
6994 else
6996 int i = VARRAY_SIZE (*vecp);
6997 VARRAY_GROW (*vecp, i + 1);
6998 VARRAY_INT (*vecp, i) = INSN_UID (insns);
7002 /* Determine how many INSN_UIDs in VEC are part of INSN. */
7004 static int
7005 contains (insn, vec)
7006 rtx insn;
7007 varray_type vec;
7009 register int i, j;
7011 if (GET_CODE (insn) == INSN
7012 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7014 int count = 0;
7015 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7016 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7017 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7018 count++;
7019 return count;
7021 else
7023 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7024 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7025 return 1;
7027 return 0;
7031 prologue_epilogue_contains (insn)
7032 rtx insn;
7034 if (contains (insn, prologue))
7035 return 1;
7036 if (contains (insn, epilogue))
7037 return 1;
7038 return 0;
7042 sibcall_epilogue_contains (insn)
7043 rtx insn;
7045 if (sibcall_epilogue)
7046 return contains (insn, sibcall_epilogue);
7047 return 0;
7050 #ifdef HAVE_return
7051 /* Insert gen_return at the end of block BB. This also means updating
7052 block_for_insn appropriately. */
7054 static void
7055 emit_return_into_block (bb, line_note)
7056 basic_block bb;
7057 rtx line_note;
7059 rtx p, end;
7061 p = NEXT_INSN (bb->end);
7062 end = emit_jump_insn_after (gen_return (), bb->end);
7063 if (line_note)
7064 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7065 NOTE_LINE_NUMBER (line_note), bb->end);
7067 while (1)
7069 set_block_for_insn (p, bb);
7070 if (p == bb->end)
7071 break;
7072 p = PREV_INSN (p);
7074 bb->end = end;
7076 #endif /* HAVE_return */
7078 #ifdef HAVE_epilogue
7080 /* Modify SEQ, a SEQUENCE that is part of the epilogue, to no modifications
7081 to the stack pointer. */
7083 static void
7084 keep_stack_depressed (seq)
7085 rtx seq;
7087 int i;
7088 rtx sp_from_reg = 0;
7089 int sp_modified_unknown = 0;
7091 /* If the epilogue is just a single instruction, it's OK as is */
7093 if (GET_CODE (seq) != SEQUENCE)
7094 return;
7096 /* Scan all insns in SEQ looking for ones that modified the stack
7097 pointer. Record if it modified the stack pointer by copying it
7098 from the frame pointer or if it modified it in some other way.
7099 Then modify any subsequent stack pointer references to take that
7100 into account. We start by only allowing SP to be copied from a
7101 register (presumably FP) and then be subsequently referenced. */
7103 for (i = 0; i < XVECLEN (seq, 0); i++)
7105 rtx insn = XVECEXP (seq, 0, i);
7107 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7108 continue;
7110 if (reg_set_p (stack_pointer_rtx, insn))
7112 rtx set = single_set (insn);
7114 /* If SP is set as a side-effect, we can't support this. */
7115 if (set == 0)
7116 abort ();
7118 if (GET_CODE (SET_SRC (set)) == REG)
7119 sp_from_reg = SET_SRC (set);
7120 else
7121 sp_modified_unknown = 1;
7123 /* Don't allow the SP modification to happen. */
7124 PUT_CODE (insn, NOTE);
7125 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7126 NOTE_SOURCE_FILE (insn) = 0;
7128 else if (reg_referenced_p (stack_pointer_rtx, PATTERN (insn)))
7130 if (sp_modified_unknown)
7131 abort ();
7133 else if (sp_from_reg != 0)
7134 PATTERN (insn)
7135 = replace_rtx (PATTERN (insn), stack_pointer_rtx, sp_from_reg);
7139 #endif
7141 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7142 this into place with notes indicating where the prologue ends and where
7143 the epilogue begins. Update the basic block information when possible. */
7145 void
7146 thread_prologue_and_epilogue_insns (f)
7147 rtx f ATTRIBUTE_UNUSED;
7149 int inserted = 0;
7150 edge e;
7151 rtx seq;
7152 #ifdef HAVE_prologue
7153 rtx prologue_end = NULL_RTX;
7154 #endif
7155 #if defined (HAVE_epilogue) || defined(HAVE_return)
7156 rtx epilogue_end = NULL_RTX;
7157 #endif
7159 #ifdef HAVE_prologue
7160 if (HAVE_prologue)
7162 start_sequence ();
7163 seq = gen_prologue ();
7164 emit_insn (seq);
7166 /* Retain a map of the prologue insns. */
7167 if (GET_CODE (seq) != SEQUENCE)
7168 seq = get_insns ();
7169 record_insns (seq, &prologue);
7170 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7172 seq = gen_sequence ();
7173 end_sequence ();
7175 /* If optimization is off, and perhaps in an empty function,
7176 the entry block will have no successors. */
7177 if (ENTRY_BLOCK_PTR->succ)
7179 /* Can't deal with multiple successsors of the entry block. */
7180 if (ENTRY_BLOCK_PTR->succ->succ_next)
7181 abort ();
7183 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7184 inserted = 1;
7186 else
7187 emit_insn_after (seq, f);
7189 #endif
7191 /* If the exit block has no non-fake predecessors, we don't need
7192 an epilogue. */
7193 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7194 if ((e->flags & EDGE_FAKE) == 0)
7195 break;
7196 if (e == NULL)
7197 goto epilogue_done;
7199 #ifdef HAVE_return
7200 if (optimize && HAVE_return)
7202 /* If we're allowed to generate a simple return instruction,
7203 then by definition we don't need a full epilogue. Examine
7204 the block that falls through to EXIT. If it does not
7205 contain any code, examine its predecessors and try to
7206 emit (conditional) return instructions. */
7208 basic_block last;
7209 edge e_next;
7210 rtx label;
7212 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7213 if (e->flags & EDGE_FALLTHRU)
7214 break;
7215 if (e == NULL)
7216 goto epilogue_done;
7217 last = e->src;
7219 /* Verify that there are no active instructions in the last block. */
7220 label = last->end;
7221 while (label && GET_CODE (label) != CODE_LABEL)
7223 if (active_insn_p (label))
7224 break;
7225 label = PREV_INSN (label);
7228 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7230 rtx epilogue_line_note = NULL_RTX;
7232 /* Locate the line number associated with the closing brace,
7233 if we can find one. */
7234 for (seq = get_last_insn ();
7235 seq && ! active_insn_p (seq);
7236 seq = PREV_INSN (seq))
7237 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7239 epilogue_line_note = seq;
7240 break;
7243 for (e = last->pred; e; e = e_next)
7245 basic_block bb = e->src;
7246 rtx jump;
7248 e_next = e->pred_next;
7249 if (bb == ENTRY_BLOCK_PTR)
7250 continue;
7252 jump = bb->end;
7253 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7254 continue;
7256 /* If we have an unconditional jump, we can replace that
7257 with a simple return instruction. */
7258 if (simplejump_p (jump))
7260 emit_return_into_block (bb, epilogue_line_note);
7261 flow_delete_insn (jump);
7264 /* If we have a conditional jump, we can try to replace
7265 that with a conditional return instruction. */
7266 else if (condjump_p (jump))
7268 rtx ret, *loc;
7270 ret = SET_SRC (PATTERN (jump));
7271 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7272 loc = &XEXP (ret, 1);
7273 else
7274 loc = &XEXP (ret, 2);
7275 ret = gen_rtx_RETURN (VOIDmode);
7277 if (! validate_change (jump, loc, ret, 0))
7278 continue;
7279 if (JUMP_LABEL (jump))
7280 LABEL_NUSES (JUMP_LABEL (jump))--;
7282 /* If this block has only one successor, it both jumps
7283 and falls through to the fallthru block, so we can't
7284 delete the edge. */
7285 if (bb->succ->succ_next == NULL)
7286 continue;
7288 else
7289 continue;
7291 /* Fix up the CFG for the successful change we just made. */
7292 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7295 /* Emit a return insn for the exit fallthru block. Whether
7296 this is still reachable will be determined later. */
7298 emit_barrier_after (last->end);
7299 emit_return_into_block (last, epilogue_line_note);
7300 epilogue_end = last->end;
7301 goto epilogue_done;
7304 #endif
7305 #ifdef HAVE_epilogue
7306 if (HAVE_epilogue)
7308 /* Find the edge that falls through to EXIT. Other edges may exist
7309 due to RETURN instructions, but those don't need epilogues.
7310 There really shouldn't be a mixture -- either all should have
7311 been converted or none, however... */
7313 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7314 if (e->flags & EDGE_FALLTHRU)
7315 break;
7316 if (e == NULL)
7317 goto epilogue_done;
7319 start_sequence ();
7320 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7322 seq = gen_epilogue ();
7324 /* If this function returns with the stack depressed, massage
7325 the epilogue to actually do that. */
7326 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7327 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7328 keep_stack_depressed (seq);
7330 emit_jump_insn (seq);
7332 /* Retain a map of the epilogue insns. */
7333 if (GET_CODE (seq) != SEQUENCE)
7334 seq = get_insns ();
7335 record_insns (seq, &epilogue);
7337 seq = gen_sequence ();
7338 end_sequence ();
7340 insert_insn_on_edge (seq, e);
7341 inserted = 1;
7343 #endif
7344 epilogue_done:
7346 if (inserted)
7347 commit_edge_insertions ();
7349 #ifdef HAVE_sibcall_epilogue
7350 /* Emit sibling epilogues before any sibling call sites. */
7351 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7353 basic_block bb = e->src;
7354 rtx insn = bb->end;
7355 rtx i;
7356 rtx newinsn;
7358 if (GET_CODE (insn) != CALL_INSN
7359 || ! SIBLING_CALL_P (insn))
7360 continue;
7362 start_sequence ();
7363 seq = gen_sibcall_epilogue ();
7364 end_sequence ();
7366 i = PREV_INSN (insn);
7367 newinsn = emit_insn_before (seq, insn);
7369 /* Update the UID to basic block map. */
7370 for (i = NEXT_INSN (i); i != insn; i = NEXT_INSN (i))
7371 set_block_for_insn (i, bb);
7373 /* Retain a map of the epilogue insns. Used in life analysis to
7374 avoid getting rid of sibcall epilogue insns. */
7375 record_insns (GET_CODE (seq) == SEQUENCE
7376 ? seq : newinsn, &sibcall_epilogue);
7378 #endif
7380 #ifdef HAVE_prologue
7381 if (prologue_end)
7383 rtx insn, prev;
7385 /* GDB handles `break f' by setting a breakpoint on the first
7386 line note after the prologue. Which means (1) that if
7387 there are line number notes before where we inserted the
7388 prologue we should move them, and (2) we should generate a
7389 note before the end of the first basic block, if there isn't
7390 one already there. */
7392 for (insn = prologue_end; insn; insn = prev)
7394 prev = PREV_INSN (insn);
7395 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7397 /* Note that we cannot reorder the first insn in the
7398 chain, since rest_of_compilation relies on that
7399 remaining constant. */
7400 if (prev == NULL)
7401 break;
7402 reorder_insns (insn, insn, prologue_end);
7406 /* Find the last line number note in the first block. */
7407 for (insn = BASIC_BLOCK (0)->end;
7408 insn != prologue_end;
7409 insn = PREV_INSN (insn))
7410 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7411 break;
7413 /* If we didn't find one, make a copy of the first line number
7414 we run across. */
7415 if (! insn)
7417 for (insn = next_active_insn (prologue_end);
7418 insn;
7419 insn = PREV_INSN (insn))
7420 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7422 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7423 NOTE_LINE_NUMBER (insn),
7424 prologue_end);
7425 break;
7429 #endif
7430 #ifdef HAVE_epilogue
7431 if (epilogue_end)
7433 rtx insn, next;
7435 /* Similarly, move any line notes that appear after the epilogue.
7436 There is no need, however, to be quite so anal about the existance
7437 of such a note. */
7438 for (insn = epilogue_end; insn; insn = next)
7440 next = NEXT_INSN (insn);
7441 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7442 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7445 #endif
7448 /* Reposition the prologue-end and epilogue-begin notes after instruction
7449 scheduling and delayed branch scheduling. */
7451 void
7452 reposition_prologue_and_epilogue_notes (f)
7453 rtx f ATTRIBUTE_UNUSED;
7455 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7456 int len;
7458 if ((len = VARRAY_SIZE (prologue)) > 0)
7460 register rtx insn, note = 0;
7462 /* Scan from the beginning until we reach the last prologue insn.
7463 We apparently can't depend on basic_block_{head,end} after
7464 reorg has run. */
7465 for (insn = f; len && insn; insn = NEXT_INSN (insn))
7467 if (GET_CODE (insn) == NOTE)
7469 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7470 note = insn;
7472 else if ((len -= contains (insn, prologue)) == 0)
7474 rtx next;
7475 /* Find the prologue-end note if we haven't already, and
7476 move it to just after the last prologue insn. */
7477 if (note == 0)
7479 for (note = insn; (note = NEXT_INSN (note));)
7480 if (GET_CODE (note) == NOTE
7481 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7482 break;
7485 next = NEXT_INSN (note);
7487 /* Whether or not we can depend on BLOCK_HEAD,
7488 attempt to keep it up-to-date. */
7489 if (BLOCK_HEAD (0) == note)
7490 BLOCK_HEAD (0) = next;
7492 remove_insn (note);
7493 add_insn_after (note, insn);
7498 if ((len = VARRAY_SIZE (epilogue)) > 0)
7500 register rtx insn, note = 0;
7502 /* Scan from the end until we reach the first epilogue insn.
7503 We apparently can't depend on basic_block_{head,end} after
7504 reorg has run. */
7505 for (insn = get_last_insn (); len && insn; insn = PREV_INSN (insn))
7507 if (GET_CODE (insn) == NOTE)
7509 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7510 note = insn;
7512 else if ((len -= contains (insn, epilogue)) == 0)
7514 /* Find the epilogue-begin note if we haven't already, and
7515 move it to just before the first epilogue insn. */
7516 if (note == 0)
7518 for (note = insn; (note = PREV_INSN (note));)
7519 if (GET_CODE (note) == NOTE
7520 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7521 break;
7524 /* Whether or not we can depend on BLOCK_HEAD,
7525 attempt to keep it up-to-date. */
7526 if (n_basic_blocks
7527 && BLOCK_HEAD (n_basic_blocks-1) == insn)
7528 BLOCK_HEAD (n_basic_blocks-1) = note;
7530 remove_insn (note);
7531 add_insn_before (note, insn);
7535 #endif /* HAVE_prologue or HAVE_epilogue */
7538 /* Mark T for GC. */
7540 static void
7541 mark_temp_slot (t)
7542 struct temp_slot *t;
7544 while (t)
7546 ggc_mark_rtx (t->slot);
7547 ggc_mark_rtx (t->address);
7548 ggc_mark_tree (t->rtl_expr);
7549 ggc_mark_tree (t->type);
7551 t = t->next;
7555 /* Mark P for GC. */
7557 static void
7558 mark_function_status (p)
7559 struct function *p;
7561 int i;
7562 rtx *r;
7564 if (p == 0)
7565 return;
7567 ggc_mark_rtx (p->arg_offset_rtx);
7569 if (p->x_parm_reg_stack_loc)
7570 for (i = p->x_max_parm_reg, r = p->x_parm_reg_stack_loc;
7571 i > 0; --i, ++r)
7572 ggc_mark_rtx (*r);
7574 ggc_mark_rtx (p->return_rtx);
7575 ggc_mark_rtx (p->x_cleanup_label);
7576 ggc_mark_rtx (p->x_return_label);
7577 ggc_mark_rtx (p->x_save_expr_regs);
7578 ggc_mark_rtx (p->x_stack_slot_list);
7579 ggc_mark_rtx (p->x_parm_birth_insn);
7580 ggc_mark_rtx (p->x_tail_recursion_label);
7581 ggc_mark_rtx (p->x_tail_recursion_reentry);
7582 ggc_mark_rtx (p->internal_arg_pointer);
7583 ggc_mark_rtx (p->x_arg_pointer_save_area);
7584 ggc_mark_tree (p->x_rtl_expr_chain);
7585 ggc_mark_rtx (p->x_last_parm_insn);
7586 ggc_mark_tree (p->x_context_display);
7587 ggc_mark_tree (p->x_trampoline_list);
7588 ggc_mark_rtx (p->epilogue_delay_list);
7589 ggc_mark_rtx (p->x_clobber_return_insn);
7591 mark_temp_slot (p->x_temp_slots);
7594 struct var_refs_queue *q = p->fixup_var_refs_queue;
7595 while (q)
7597 ggc_mark_rtx (q->modified);
7598 q = q->next;
7602 ggc_mark_rtx (p->x_nonlocal_goto_handler_slots);
7603 ggc_mark_rtx (p->x_nonlocal_goto_handler_labels);
7604 ggc_mark_rtx (p->x_nonlocal_goto_stack_level);
7605 ggc_mark_tree (p->x_nonlocal_labels);
7608 /* Mark the function chain ARG (which is really a struct function **)
7609 for GC. */
7611 static void
7612 mark_function_chain (arg)
7613 void *arg;
7615 struct function *f = *(struct function **) arg;
7617 for (; f; f = f->next_global)
7619 ggc_mark_tree (f->decl);
7621 mark_function_status (f);
7622 mark_eh_status (f->eh);
7623 mark_stmt_status (f->stmt);
7624 mark_expr_status (f->expr);
7625 mark_emit_status (f->emit);
7626 mark_varasm_status (f->varasm);
7628 if (mark_machine_status)
7629 (*mark_machine_status) (f);
7630 if (mark_lang_status)
7631 (*mark_lang_status) (f);
7633 if (f->original_arg_vector)
7634 ggc_mark_rtvec ((rtvec) f->original_arg_vector);
7635 if (f->original_decl_initial)
7636 ggc_mark_tree (f->original_decl_initial);
7640 /* Called once, at initialization, to initialize function.c. */
7642 void
7643 init_function_once ()
7645 ggc_add_root (&all_functions, 1, sizeof all_functions,
7646 mark_function_chain);
7648 VARRAY_INT_INIT (prologue, 0, "prologue");
7649 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7650 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");