1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
54 #include "insn-config.h"
55 #include "insn-attr.h"
57 #include "conditions.h"
60 #include "hard-reg-set.h"
67 #include "basic-block.h"
69 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
70 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
72 #if defined (USG) || !defined (HAVE_STAB_H)
73 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
78 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
80 #ifdef XCOFF_DEBUGGING_INFO
84 #ifdef DWARF_DEBUGGING_INFO
88 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
89 #include "dwarf2out.h"
92 #ifdef SDB_DEBUGGING_INFO
96 /* .stabd code for line number. */
101 /* .stabs code for included file name. */
106 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
107 null default for it to save conditionalization later. */
108 #ifndef CC_STATUS_INIT
109 #define CC_STATUS_INIT
112 /* How to start an assembler comment. */
113 #ifndef ASM_COMMENT_START
114 #define ASM_COMMENT_START ";#"
117 /* Is the given character a logical line separator for the assembler? */
118 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
119 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
122 #ifndef JUMP_TABLES_IN_TEXT_SECTION
123 #define JUMP_TABLES_IN_TEXT_SECTION 0
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn
;
128 rtx current_output_insn
;
130 /* Line number of last NOTE. */
131 static int last_linenum
;
133 /* Highest line number in current block. */
134 static int high_block_linenum
;
136 /* Likewise for function. */
137 static int high_function_linenum
;
139 /* Filename of last NOTE. */
140 static const char *last_filename
;
142 /* Number of basic blocks seen so far;
143 used if profile_block_flag is set. */
144 static int count_basic_blocks
;
146 /* Number of instrumented arcs when profile_arc_flag is set. */
147 extern int count_instrumented_edges
;
149 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't abort.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 static rtx this_is_asm_operands
;
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands
;
159 /* Compare optimization flag. */
161 static rtx last_ignored_compare
= 0;
163 /* Flag indicating this insn is the start of a new basic block. */
165 static int new_block
= 1;
167 /* Assign a unique number to each insn that is output.
168 This can be used to generate unique local labels. */
170 static int insn_counter
= 0;
173 /* This variable contains machine-dependent flags (defined in tm.h)
174 set and examined by output routines
175 that describe how to interpret the condition codes properly. */
179 /* During output of an insn, this contains a copy of cc_status
180 from before the insn. */
182 CC_STATUS cc_prev_status
;
185 /* Indexed by hardware reg number, is 1 if that register is ever
186 used in the current function.
188 In life_analysis, or in stupid_life_analysis, this is set
189 up to record the hard regs used explicitly. Reload adds
190 in the hard regs used for holding pseudo regs. Final uses
191 it to generate the code in the function prologue and epilogue
192 to save and restore registers as needed. */
194 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
196 /* Nonzero means current function must be given a frame pointer.
197 Set in stmt.c if anything is allocated on the stack there.
198 Set in reload1.c if anything is allocated on the stack there. */
200 int frame_pointer_needed
;
202 /* Assign unique numbers to labels generated for profiling. */
204 int profile_label_no
;
206 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
208 static int block_depth
;
210 /* Nonzero if have enabled APP processing of our assembler output. */
214 /* If we are outputting an insn sequence, this contains the sequence rtx.
219 #ifdef ASSEMBLER_DIALECT
221 /* Number of the assembler dialect to use, starting at 0. */
222 static int dialect_number
;
225 /* Indexed by line number, nonzero if there is a note for that line. */
227 static char *line_note_exists
;
229 #ifdef HAVE_conditional_execution
230 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
231 rtx current_insn_predicate
;
234 /* Linked list to hold line numbers for each basic block. */
238 struct bb_list
*next
; /* pointer to next basic block */
239 int line_num
; /* line number */
240 int file_label_num
; /* LPBC<n> label # for stored filename */
241 int func_label_num
; /* LPBC<n> label # for stored function name */
244 static struct bb_list
*bb_head
= 0; /* Head of basic block list */
245 static struct bb_list
**bb_tail
= &bb_head
; /* Ptr to store next bb ptr */
246 static int bb_file_label_num
= -1; /* Current label # for file */
247 static int bb_func_label_num
= -1; /* Current label # for func */
249 /* Linked list to hold the strings for each file and function name output. */
253 struct bb_str
*next
; /* pointer to next string */
254 const char *string
; /* string */
255 int label_num
; /* label number */
256 int length
; /* string length */
259 static struct bb_str
*sbb_head
= 0; /* Head of string list. */
260 static struct bb_str
**sbb_tail
= &sbb_head
; /* Ptr to store next bb str */
261 static int sbb_label_num
= 0; /* Last label used */
263 #ifdef HAVE_ATTR_length
264 static int asm_insn_count
PARAMS ((rtx
));
266 static void profile_function
PARAMS ((FILE *));
267 static void profile_after_prologue
PARAMS ((FILE *));
268 static void add_bb
PARAMS ((FILE *));
269 static int add_bb_string
PARAMS ((const char *, int));
270 static void output_source_line
PARAMS ((FILE *, rtx
));
271 static rtx walk_alter_subreg
PARAMS ((rtx
));
272 static void output_asm_name
PARAMS ((void));
273 static void output_operand
PARAMS ((rtx
, int));
274 #ifdef LEAF_REGISTERS
275 static void leaf_renumber_regs
PARAMS ((rtx
));
278 static int alter_cond
PARAMS ((rtx
));
280 #ifndef ADDR_VEC_ALIGN
281 static int final_addr_vec_align
PARAMS ((rtx
));
283 #ifdef HAVE_ATTR_length
284 static int align_fuzz
PARAMS ((rtx
, rtx
, int, unsigned));
287 /* Initialize data in final at the beginning of a compilation. */
290 init_final (filename
)
291 const char *filename ATTRIBUTE_UNUSED
;
296 #ifdef ASSEMBLER_DIALECT
297 dialect_number
= ASSEMBLER_DIALECT
;
301 /* Called at end of source file,
302 to output the block-profiling table for this entire compilation. */
306 const char *filename
;
310 if (profile_block_flag
|| profile_arc_flag
)
313 int align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
317 int long_bytes
= LONG_TYPE_SIZE
/ BITS_PER_UNIT
;
318 int pointer_bytes
= POINTER_SIZE
/ BITS_PER_UNIT
;
320 if (profile_block_flag
)
321 size
= long_bytes
* count_basic_blocks
;
323 size
= long_bytes
* count_instrumented_edges
;
326 rounded
+= (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) - 1;
327 rounded
= (rounded
/ (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
328 * (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
));
332 /* Output the main header, of 11 words:
333 0: 1 if this file is initialized, else 0.
334 1: address of file name (LPBX1).
335 2: address of table of counts (LPBX2).
336 3: number of counts in the table.
337 4: always 0, for compatibility with Sun.
339 The following are GNU extensions:
341 5: address of table of start addrs of basic blocks (LPBX3).
342 6: Number of bytes in this header.
343 7: address of table of function names (LPBX4).
344 8: address of table of line numbers (LPBX5) or 0.
345 9: address of table of file names (LPBX6) or 0.
346 10: space reserved for basic block profiling. */
348 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
350 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 0);
352 assemble_integer (const0_rtx
, long_bytes
, 1);
354 /* address of filename */
355 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 1);
356 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
358 /* address of count table */
359 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 2);
360 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
, 1);
362 /* count of the # of basic blocks or # of instrumented arcs */
363 if (profile_block_flag
)
364 assemble_integer (GEN_INT (count_basic_blocks
), long_bytes
, 1);
366 assemble_integer (GEN_INT (count_instrumented_edges
), long_bytes
, 1);
368 /* zero word (link field) */
369 assemble_integer (const0_rtx
, pointer_bytes
, 1);
371 /* address of basic block start address table */
372 if (profile_block_flag
)
374 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 3);
375 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
379 assemble_integer (const0_rtx
, pointer_bytes
, 1);
381 /* byte count for extended structure. */
382 assemble_integer (GEN_INT (11 * UNITS_PER_WORD
), long_bytes
, 1);
384 /* address of function name table */
385 if (profile_block_flag
)
387 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 4);
388 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
392 assemble_integer (const0_rtx
, pointer_bytes
, 1);
394 /* address of line number and filename tables if debugging. */
395 if (write_symbols
!= NO_DEBUG
&& profile_block_flag
)
397 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 5);
398 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
400 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 6);
401 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
406 assemble_integer (const0_rtx
, pointer_bytes
, 1);
407 assemble_integer (const0_rtx
, pointer_bytes
, 1);
410 /* space for extension ptr (link field) */
411 assemble_integer (const0_rtx
, UNITS_PER_WORD
, 1);
413 /* Output the file name changing the suffix to .d for Sun tcov
415 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 1);
417 char *cwd
= getpwd ();
418 int len
= strlen (filename
) + strlen (cwd
) + 1;
419 char *data_file
= (char *) alloca (len
+ 4);
421 strcpy (data_file
, cwd
);
422 strcat (data_file
, "/");
423 strcat (data_file
, filename
);
424 strip_off_ending (data_file
, len
);
425 if (profile_block_flag
)
426 strcat (data_file
, ".d");
428 strcat (data_file
, ".da");
429 assemble_string (data_file
, strlen (data_file
) + 1);
432 /* Make space for the table of counts. */
435 /* Realign data section. */
436 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
437 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 2);
439 assemble_zeros (size
);
443 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 2);
444 #ifdef ASM_OUTPUT_SHARED_LOCAL
445 if (flag_shared_data
)
446 ASM_OUTPUT_SHARED_LOCAL (asm_out_file
, name
, size
, rounded
);
449 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
450 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file
, NULL_TREE
, name
,
451 size
, BIGGEST_ALIGNMENT
);
453 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
454 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file
, name
, size
,
457 ASM_OUTPUT_LOCAL (asm_out_file
, name
, size
, rounded
);
462 /* Output any basic block strings */
463 if (profile_block_flag
)
465 readonly_data_section ();
468 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
469 for (sptr
= sbb_head
; sptr
!= 0; sptr
= sptr
->next
)
471 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBC",
473 assemble_string (sptr
->string
, sptr
->length
);
478 /* Output the table of addresses. */
479 if (profile_block_flag
)
481 /* Realign in new section */
482 ASM_OUTPUT_ALIGN (asm_out_file
, align
);
483 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 3);
484 for (i
= 0; i
< count_basic_blocks
; i
++)
486 ASM_GENERATE_INTERNAL_LABEL (name
, "LPB", i
);
487 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
492 /* Output the table of function names. */
493 if (profile_block_flag
)
495 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 4);
496 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
498 if (ptr
->func_label_num
>= 0)
500 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBC",
501 ptr
->func_label_num
);
502 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
506 assemble_integer (const0_rtx
, pointer_bytes
, 1);
509 for (; i
< count_basic_blocks
; i
++)
510 assemble_integer (const0_rtx
, pointer_bytes
, 1);
513 if (write_symbols
!= NO_DEBUG
&& profile_block_flag
)
515 /* Output the table of line numbers. */
516 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 5);
517 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
518 assemble_integer (GEN_INT (ptr
->line_num
), long_bytes
, 1);
520 for (; i
< count_basic_blocks
; i
++)
521 assemble_integer (const0_rtx
, long_bytes
, 1);
523 /* Output the table of file names. */
524 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file
, "LPBX", 6);
525 for ((ptr
= bb_head
), (i
= 0); ptr
!= 0; (ptr
= ptr
->next
), i
++)
527 if (ptr
->file_label_num
>= 0)
529 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBC",
530 ptr
->file_label_num
);
531 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
),
535 assemble_integer (const0_rtx
, pointer_bytes
, 1);
538 for (; i
< count_basic_blocks
; i
++)
539 assemble_integer (const0_rtx
, pointer_bytes
, 1);
542 /* End with the address of the table of addresses,
543 so we can find it easily, as the last word in the file's text. */
544 if (profile_block_flag
)
546 ASM_GENERATE_INTERNAL_LABEL (name
, "LPBX", 3);
547 assemble_integer (gen_rtx_SYMBOL_REF (Pmode
, name
), pointer_bytes
,
553 /* Enable APP processing of subsequent output.
554 Used before the output from an `asm' statement. */
561 fputs (ASM_APP_ON
, asm_out_file
);
566 /* Disable APP processing of subsequent output.
567 Called from varasm.c before most kinds of output. */
574 fputs (ASM_APP_OFF
, asm_out_file
);
579 /* Return the number of slots filled in the current
580 delayed branch sequence (we don't count the insn needing the
581 delay slot). Zero if not in a delayed branch sequence. */
585 dbr_sequence_length ()
587 if (final_sequence
!= 0)
588 return XVECLEN (final_sequence
, 0) - 1;
594 /* The next two pages contain routines used to compute the length of an insn
595 and to shorten branches. */
597 /* Arrays for insn lengths, and addresses. The latter is referenced by
598 `insn_current_length'. */
600 static short *insn_lengths
;
602 #ifdef HAVE_ATTR_length
603 varray_type insn_addresses_
;
606 /* Max uid for which the above arrays are valid. */
607 static int insn_lengths_max_uid
;
609 /* Address of insn being processed. Used by `insn_current_length'. */
610 int insn_current_address
;
612 /* Address of insn being processed in previous iteration. */
613 int insn_last_address
;
615 /* konwn invariant alignment of insn being processed. */
616 int insn_current_align
;
618 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
619 gives the next following alignment insn that increases the known
620 alignment, or NULL_RTX if there is no such insn.
621 For any alignment obtained this way, we can again index uid_align with
622 its uid to obtain the next following align that in turn increases the
623 alignment, till we reach NULL_RTX; the sequence obtained this way
624 for each insn we'll call the alignment chain of this insn in the following
627 struct label_alignment
633 static rtx
*uid_align
;
634 static int *uid_shuid
;
635 static struct label_alignment
*label_align
;
637 /* Indicate that branch shortening hasn't yet been done. */
656 insn_lengths_max_uid
= 0;
658 #ifdef HAVE_ATTR_length
659 INSN_ADDRESSES_FREE ();
668 /* Obtain the current length of an insn. If branch shortening has been done,
669 get its actual length. Otherwise, get its maximum length. */
672 get_attr_length (insn
)
673 rtx insn ATTRIBUTE_UNUSED
;
675 #ifdef HAVE_ATTR_length
680 if (insn_lengths_max_uid
> INSN_UID (insn
))
681 return insn_lengths
[INSN_UID (insn
)];
683 switch (GET_CODE (insn
))
691 length
= insn_default_length (insn
);
695 body
= PATTERN (insn
);
696 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
698 /* Alignment is machine-dependent and should be handled by
702 length
= insn_default_length (insn
);
706 body
= PATTERN (insn
);
707 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
710 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
711 length
= asm_insn_count (body
) * insn_default_length (insn
);
712 else if (GET_CODE (body
) == SEQUENCE
)
713 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
714 length
+= get_attr_length (XVECEXP (body
, 0, i
));
716 length
= insn_default_length (insn
);
723 #ifdef ADJUST_INSN_LENGTH
724 ADJUST_INSN_LENGTH (insn
, length
);
727 #else /* not HAVE_ATTR_length */
729 #endif /* not HAVE_ATTR_length */
732 /* Code to handle alignment inside shorten_branches. */
734 /* Here is an explanation how the algorithm in align_fuzz can give
737 Call a sequence of instructions beginning with alignment point X
738 and continuing until the next alignment point `block X'. When `X'
739 is used in an expression, it means the alignment value of the
742 Call the distance between the start of the first insn of block X, and
743 the end of the last insn of block X `IX', for the `inner size of X'.
744 This is clearly the sum of the instruction lengths.
746 Likewise with the next alignment-delimited block following X, which we
749 Call the distance between the start of the first insn of block X, and
750 the start of the first insn of block Y `OX', for the `outer size of X'.
752 The estimated padding is then OX - IX.
754 OX can be safely estimated as
759 OX = round_up(IX, X) + Y - X
761 Clearly est(IX) >= real(IX), because that only depends on the
762 instruction lengths, and those being overestimated is a given.
764 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
765 we needn't worry about that when thinking about OX.
767 When X >= Y, the alignment provided by Y adds no uncertainty factor
768 for branch ranges starting before X, so we can just round what we have.
769 But when X < Y, we don't know anything about the, so to speak,
770 `middle bits', so we have to assume the worst when aligning up from an
771 address mod X to one mod Y, which is Y - X. */
774 #define LABEL_ALIGN(LABEL) align_labels_log
777 #ifndef LABEL_ALIGN_MAX_SKIP
778 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
782 #define LOOP_ALIGN(LABEL) align_loops_log
785 #ifndef LOOP_ALIGN_MAX_SKIP
786 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
789 #ifndef LABEL_ALIGN_AFTER_BARRIER
790 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
793 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
794 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
797 #ifndef ADDR_VEC_ALIGN
799 final_addr_vec_align (addr_vec
)
802 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
804 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
805 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
806 return exact_log2 (align
);
810 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
813 #ifndef INSN_LENGTH_ALIGNMENT
814 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
817 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
819 static int min_labelno
, max_labelno
;
821 #define LABEL_TO_ALIGNMENT(LABEL) \
822 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
824 #define LABEL_TO_MAX_SKIP(LABEL) \
825 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
827 /* For the benefit of port specific code do this also as a function. */
830 label_to_alignment (label
)
833 return LABEL_TO_ALIGNMENT (label
);
836 #ifdef HAVE_ATTR_length
837 /* The differences in addresses
838 between a branch and its target might grow or shrink depending on
839 the alignment the start insn of the range (the branch for a forward
840 branch or the label for a backward branch) starts out on; if these
841 differences are used naively, they can even oscillate infinitely.
842 We therefore want to compute a 'worst case' address difference that
843 is independent of the alignment the start insn of the range end
844 up on, and that is at least as large as the actual difference.
845 The function align_fuzz calculates the amount we have to add to the
846 naively computed difference, by traversing the part of the alignment
847 chain of the start insn of the range that is in front of the end insn
848 of the range, and considering for each alignment the maximum amount
849 that it might contribute to a size increase.
851 For casesi tables, we also want to know worst case minimum amounts of
852 address difference, in case a machine description wants to introduce
853 some common offset that is added to all offsets in a table.
854 For this purpose, align_fuzz with a growth argument of 0 comuptes the
855 appropriate adjustment. */
857 /* Compute the maximum delta by which the difference of the addresses of
858 START and END might grow / shrink due to a different address for start
859 which changes the size of alignment insns between START and END.
860 KNOWN_ALIGN_LOG is the alignment known for START.
861 GROWTH should be ~0 if the objective is to compute potential code size
862 increase, and 0 if the objective is to compute potential shrink.
863 The return value is undefined for any other value of GROWTH. */
866 align_fuzz (start
, end
, known_align_log
, growth
)
871 int uid
= INSN_UID (start
);
873 int known_align
= 1 << known_align_log
;
874 int end_shuid
= INSN_SHUID (end
);
877 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
879 int align_addr
, new_align
;
881 uid
= INSN_UID (align_label
);
882 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
883 if (uid_shuid
[uid
] > end_shuid
)
885 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
886 new_align
= 1 << known_align_log
;
887 if (new_align
< known_align
)
889 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
890 known_align
= new_align
;
895 /* Compute a worst-case reference address of a branch so that it
896 can be safely used in the presence of aligned labels. Since the
897 size of the branch itself is unknown, the size of the branch is
898 not included in the range. I.e. for a forward branch, the reference
899 address is the end address of the branch as known from the previous
900 branch shortening pass, minus a value to account for possible size
901 increase due to alignment. For a backward branch, it is the start
902 address of the branch as known from the current pass, plus a value
903 to account for possible size increase due to alignment.
904 NB.: Therefore, the maximum offset allowed for backward branches needs
905 to exclude the branch size. */
908 insn_current_reference_address (branch
)
914 if (! INSN_ADDRESSES_SET_P ())
917 seq
= NEXT_INSN (PREV_INSN (branch
));
918 seq_uid
= INSN_UID (seq
);
919 if (GET_CODE (branch
) != JUMP_INSN
)
920 /* This can happen for example on the PA; the objective is to know the
921 offset to address something in front of the start of the function.
922 Thus, we can treat it like a backward branch.
923 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
924 any alignment we'd encounter, so we skip the call to align_fuzz. */
925 return insn_current_address
;
926 dest
= JUMP_LABEL (branch
);
928 /* BRANCH has no proper alignment chain set, so use SEQ.
929 BRANCH also has no INSN_SHUID. */
930 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
932 /* Forward branch. */
933 return (insn_last_address
+ insn_lengths
[seq_uid
]
934 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
938 /* Backward branch. */
939 return (insn_current_address
940 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
943 #endif /* HAVE_ATTR_length */
945 /* Make a pass over all insns and compute their actual lengths by shortening
946 any branches of variable length if possible. */
948 /* Give a default value for the lowest address in a function. */
950 #ifndef FIRST_INSN_ADDRESS
951 #define FIRST_INSN_ADDRESS 0
954 /* shorten_branches might be called multiple times: for example, the SH
955 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
956 In order to do this, it needs proper length information, which it obtains
957 by calling shorten_branches. This cannot be collapsed with
958 shorten_branches itself into a single pass unless we also want to intergate
959 reorg.c, since the branch splitting exposes new instructions with delay
963 shorten_branches (first
)
964 rtx first ATTRIBUTE_UNUSED
;
971 #ifdef HAVE_ATTR_length
972 #define MAX_CODE_ALIGN 16
974 int something_changed
= 1;
975 char *varying_length
;
978 rtx align_tab
[MAX_CODE_ALIGN
];
980 /* In order to make sure that all instructions have valid length info,
981 we must split them before we compute the address/length info. */
983 for (insn
= NEXT_INSN (first
); insn
; insn
= NEXT_INSN (insn
))
987 /* Don't split the insn if it has been deleted. */
988 if (! INSN_DELETED_P (old
))
989 insn
= try_split (PATTERN (old
), old
, 1);
990 /* When not optimizing, the old insn will be still left around
991 with only the 'deleted' bit set. Transform it into a note
992 to avoid confusion of subsequent processing. */
993 if (INSN_DELETED_P (old
))
995 PUT_CODE (old
, NOTE
);
996 NOTE_LINE_NUMBER (old
) = NOTE_INSN_DELETED
;
997 NOTE_SOURCE_FILE (old
) = 0;
1002 /* We must do some computations even when not actually shortening, in
1003 order to get the alignment information for the labels. */
1005 init_insn_lengths ();
1007 /* Compute maximum UID and allocate label_align / uid_shuid. */
1008 max_uid
= get_max_uid ();
1010 max_labelno
= max_label_num ();
1011 min_labelno
= get_first_label_num ();
1012 label_align
= (struct label_alignment
*)
1013 xcalloc ((max_labelno
- min_labelno
+ 1), sizeof (struct label_alignment
));
1015 uid_shuid
= (int *) xmalloc (max_uid
* sizeof *uid_shuid
);
1017 /* Initialize label_align and set up uid_shuid to be strictly
1018 monotonically rising with insn order. */
1019 /* We use max_log here to keep track of the maximum alignment we want to
1020 impose on the next CODE_LABEL (or the current one if we are processing
1021 the CODE_LABEL itself). */
1026 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
1030 INSN_SHUID (insn
) = i
++;
1033 /* reorg might make the first insn of a loop being run once only,
1034 and delete the label in front of it. Then we want to apply
1035 the loop alignment to the new label created by reorg, which
1036 is separated by the former loop start insn from the
1037 NOTE_INSN_LOOP_BEG. */
1039 else if (GET_CODE (insn
) == CODE_LABEL
)
1043 log
= LABEL_ALIGN (insn
);
1047 max_skip
= LABEL_ALIGN_MAX_SKIP
;
1049 next
= NEXT_INSN (insn
);
1050 /* ADDR_VECs only take room if read-only data goes into the text
1052 if (JUMP_TABLES_IN_TEXT_SECTION
1053 #if !defined(READONLY_DATA_SECTION)
1057 if (next
&& GET_CODE (next
) == JUMP_INSN
)
1059 rtx nextbody
= PATTERN (next
);
1060 if (GET_CODE (nextbody
) == ADDR_VEC
1061 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1063 log
= ADDR_VEC_ALIGN (next
);
1067 max_skip
= LABEL_ALIGN_MAX_SKIP
;
1071 LABEL_TO_ALIGNMENT (insn
) = max_log
;
1072 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
1076 else if (GET_CODE (insn
) == BARRIER
)
1080 for (label
= insn
; label
&& ! INSN_P (label
);
1081 label
= NEXT_INSN (label
))
1082 if (GET_CODE (label
) == CODE_LABEL
)
1084 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1088 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
1093 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1094 sequences in order to handle reorg output efficiently. */
1095 else if (GET_CODE (insn
) == NOTE
1096 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
1101 /* Search for the label that starts the loop.
1102 Don't skip past the end of the loop, since that could
1103 lead to putting an alignment where it does not belong.
1104 However, a label after a nested (non-)loop would be OK. */
1105 for (label
= insn
; label
; label
= NEXT_INSN (label
))
1107 if (GET_CODE (label
) == NOTE
1108 && NOTE_LINE_NUMBER (label
) == NOTE_INSN_LOOP_BEG
)
1110 else if (GET_CODE (label
) == NOTE
1111 && NOTE_LINE_NUMBER (label
) == NOTE_INSN_LOOP_END
1114 else if (GET_CODE (label
) == CODE_LABEL
)
1116 log
= LOOP_ALIGN (label
);
1120 max_skip
= LOOP_ALIGN_MAX_SKIP
;
1129 #ifdef HAVE_ATTR_length
1131 /* Allocate the rest of the arrays. */
1132 insn_lengths
= (short *) xmalloc (max_uid
* sizeof (short));
1133 insn_lengths_max_uid
= max_uid
;
1134 /* Syntax errors can lead to labels being outside of the main insn stream.
1135 Initialize insn_addresses, so that we get reproducible results. */
1136 INSN_ADDRESSES_ALLOC (max_uid
);
1138 varying_length
= (char *) xcalloc (max_uid
, sizeof (char));
1140 /* Initialize uid_align. We scan instructions
1141 from end to start, and keep in align_tab[n] the last seen insn
1142 that does an alignment of at least n+1, i.e. the successor
1143 in the alignment chain for an insn that does / has a known
1145 uid_align
= (rtx
*) xcalloc (max_uid
, sizeof *uid_align
);
1147 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1148 align_tab
[i
] = NULL_RTX
;
1149 seq
= get_last_insn ();
1150 for (; seq
; seq
= PREV_INSN (seq
))
1152 int uid
= INSN_UID (seq
);
1154 log
= (GET_CODE (seq
) == CODE_LABEL
? LABEL_TO_ALIGNMENT (seq
) : 0);
1155 uid_align
[uid
] = align_tab
[0];
1158 /* Found an alignment label. */
1159 uid_align
[uid
] = align_tab
[log
];
1160 for (i
= log
- 1; i
>= 0; i
--)
1164 #ifdef CASE_VECTOR_SHORTEN_MODE
1167 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1170 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1171 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1174 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1176 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1177 int len
, i
, min
, max
, insn_shuid
;
1179 addr_diff_vec_flags flags
;
1181 if (GET_CODE (insn
) != JUMP_INSN
1182 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1184 pat
= PATTERN (insn
);
1185 len
= XVECLEN (pat
, 1);
1188 min_align
= MAX_CODE_ALIGN
;
1189 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1191 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1192 int shuid
= INSN_SHUID (lab
);
1203 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1204 min_align
= LABEL_TO_ALIGNMENT (lab
);
1206 XEXP (pat
, 2) = gen_rtx_LABEL_REF (VOIDmode
, min_lab
);
1207 XEXP (pat
, 3) = gen_rtx_LABEL_REF (VOIDmode
, max_lab
);
1208 insn_shuid
= INSN_SHUID (insn
);
1209 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1210 flags
.min_align
= min_align
;
1211 flags
.base_after_vec
= rel
> insn_shuid
;
1212 flags
.min_after_vec
= min
> insn_shuid
;
1213 flags
.max_after_vec
= max
> insn_shuid
;
1214 flags
.min_after_base
= min
> rel
;
1215 flags
.max_after_base
= max
> rel
;
1216 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1219 #endif /* CASE_VECTOR_SHORTEN_MODE */
1221 /* Compute initial lengths, addresses, and varying flags for each insn. */
1222 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
1224 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1226 uid
= INSN_UID (insn
);
1228 insn_lengths
[uid
] = 0;
1230 if (GET_CODE (insn
) == CODE_LABEL
)
1232 int log
= LABEL_TO_ALIGNMENT (insn
);
1235 int align
= 1 << log
;
1236 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1237 insn_lengths
[uid
] = new_address
- insn_current_address
;
1241 INSN_ADDRESSES (uid
) = insn_current_address
;
1243 if (GET_CODE (insn
) == NOTE
|| GET_CODE (insn
) == BARRIER
1244 || GET_CODE (insn
) == CODE_LABEL
)
1246 if (INSN_DELETED_P (insn
))
1249 body
= PATTERN (insn
);
1250 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1252 /* This only takes room if read-only data goes into the text
1254 if (JUMP_TABLES_IN_TEXT_SECTION
1255 #if !defined(READONLY_DATA_SECTION)
1259 insn_lengths
[uid
] = (XVECLEN (body
,
1260 GET_CODE (body
) == ADDR_DIFF_VEC
)
1261 * GET_MODE_SIZE (GET_MODE (body
)));
1262 /* Alignment is handled by ADDR_VEC_ALIGN. */
1264 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1265 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1266 else if (GET_CODE (body
) == SEQUENCE
)
1269 int const_delay_slots
;
1271 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1273 const_delay_slots
= 0;
1275 /* Inside a delay slot sequence, we do not do any branch shortening
1276 if the shortening could change the number of delay slots
1278 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1280 rtx inner_insn
= XVECEXP (body
, 0, i
);
1281 int inner_uid
= INSN_UID (inner_insn
);
1284 if (GET_CODE (body
) == ASM_INPUT
1285 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1286 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1287 * insn_default_length (inner_insn
));
1289 inner_length
= insn_default_length (inner_insn
);
1291 insn_lengths
[inner_uid
] = inner_length
;
1292 if (const_delay_slots
)
1294 if ((varying_length
[inner_uid
]
1295 = insn_variable_length_p (inner_insn
)) != 0)
1296 varying_length
[uid
] = 1;
1297 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1298 + insn_lengths
[uid
]);
1301 varying_length
[inner_uid
] = 0;
1302 insn_lengths
[uid
] += inner_length
;
1305 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1307 insn_lengths
[uid
] = insn_default_length (insn
);
1308 varying_length
[uid
] = insn_variable_length_p (insn
);
1311 /* If needed, do any adjustment. */
1312 #ifdef ADJUST_INSN_LENGTH
1313 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1314 if (insn_lengths
[uid
] < 0)
1315 fatal_insn ("Negative insn length", insn
);
1319 /* Now loop over all the insns finding varying length insns. For each,
1320 get the current insn length. If it has changed, reflect the change.
1321 When nothing changes for a full pass, we are done. */
1323 while (something_changed
)
1325 something_changed
= 0;
1326 insn_current_align
= MAX_CODE_ALIGN
- 1;
1327 for (insn_current_address
= FIRST_INSN_ADDRESS
, insn
= first
;
1329 insn
= NEXT_INSN (insn
))
1332 #ifdef ADJUST_INSN_LENGTH
1337 uid
= INSN_UID (insn
);
1339 if (GET_CODE (insn
) == CODE_LABEL
)
1341 int log
= LABEL_TO_ALIGNMENT (insn
);
1342 if (log
> insn_current_align
)
1344 int align
= 1 << log
;
1345 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1346 insn_lengths
[uid
] = new_address
- insn_current_address
;
1347 insn_current_align
= log
;
1348 insn_current_address
= new_address
;
1351 insn_lengths
[uid
] = 0;
1352 INSN_ADDRESSES (uid
) = insn_current_address
;
1356 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1357 if (length_align
< insn_current_align
)
1358 insn_current_align
= length_align
;
1360 insn_last_address
= INSN_ADDRESSES (uid
);
1361 INSN_ADDRESSES (uid
) = insn_current_address
;
1363 #ifdef CASE_VECTOR_SHORTEN_MODE
1364 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
1365 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1367 rtx body
= PATTERN (insn
);
1368 int old_length
= insn_lengths
[uid
];
1369 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1370 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1371 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1372 addr_diff_vec_flags flags
= ADDR_DIFF_VEC_FLAGS (body
);
1373 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1374 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1375 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1379 /* Try to find a known alignment for rel_lab. */
1380 for (prev
= rel_lab
;
1382 && ! insn_lengths
[INSN_UID (prev
)]
1383 && ! (varying_length
[INSN_UID (prev
)] & 1);
1384 prev
= PREV_INSN (prev
))
1385 if (varying_length
[INSN_UID (prev
)] & 2)
1387 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1391 /* See the comment on addr_diff_vec_flags in rtl.h for the
1392 meaning of the flags values. base: REL_LAB vec: INSN */
1393 /* Anything after INSN has still addresses from the last
1394 pass; adjust these so that they reflect our current
1395 estimate for this pass. */
1396 if (flags
.base_after_vec
)
1397 rel_addr
+= insn_current_address
- insn_last_address
;
1398 if (flags
.min_after_vec
)
1399 min_addr
+= insn_current_address
- insn_last_address
;
1400 if (flags
.max_after_vec
)
1401 max_addr
+= insn_current_address
- insn_last_address
;
1402 /* We want to know the worst case, i.e. lowest possible value
1403 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1404 its offset is positive, and we have to be wary of code shrink;
1405 otherwise, it is negative, and we have to be vary of code
1407 if (flags
.min_after_base
)
1409 /* If INSN is between REL_LAB and MIN_LAB, the size
1410 changes we are about to make can change the alignment
1411 within the observed offset, therefore we have to break
1412 it up into two parts that are independent. */
1413 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1415 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1416 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1419 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1423 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1425 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1426 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1429 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1431 /* Likewise, determine the highest lowest possible value
1432 for the offset of MAX_LAB. */
1433 if (flags
.max_after_base
)
1435 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1437 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1438 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1441 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1445 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1447 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1448 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1451 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1453 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1454 max_addr
- rel_addr
,
1456 if (JUMP_TABLES_IN_TEXT_SECTION
1457 #if !defined(READONLY_DATA_SECTION)
1463 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1464 insn_current_address
+= insn_lengths
[uid
];
1465 if (insn_lengths
[uid
] != old_length
)
1466 something_changed
= 1;
1471 #endif /* CASE_VECTOR_SHORTEN_MODE */
1473 if (! (varying_length
[uid
]))
1475 insn_current_address
+= insn_lengths
[uid
];
1478 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1482 body
= PATTERN (insn
);
1484 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1486 rtx inner_insn
= XVECEXP (body
, 0, i
);
1487 int inner_uid
= INSN_UID (inner_insn
);
1490 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1492 /* insn_current_length returns 0 for insns with a
1493 non-varying length. */
1494 if (! varying_length
[inner_uid
])
1495 inner_length
= insn_lengths
[inner_uid
];
1497 inner_length
= insn_current_length (inner_insn
);
1499 if (inner_length
!= insn_lengths
[inner_uid
])
1501 insn_lengths
[inner_uid
] = inner_length
;
1502 something_changed
= 1;
1504 insn_current_address
+= insn_lengths
[inner_uid
];
1505 new_length
+= inner_length
;
1510 new_length
= insn_current_length (insn
);
1511 insn_current_address
+= new_length
;
1514 #ifdef ADJUST_INSN_LENGTH
1515 /* If needed, do any adjustment. */
1516 tmp_length
= new_length
;
1517 ADJUST_INSN_LENGTH (insn
, new_length
);
1518 insn_current_address
+= (new_length
- tmp_length
);
1521 if (new_length
!= insn_lengths
[uid
])
1523 insn_lengths
[uid
] = new_length
;
1524 something_changed
= 1;
1527 /* For a non-optimizing compile, do only a single pass. */
1532 free (varying_length
);
1534 #endif /* HAVE_ATTR_length */
1537 #ifdef HAVE_ATTR_length
1538 /* Given the body of an INSN known to be generated by an ASM statement, return
1539 the number of machine instructions likely to be generated for this insn.
1540 This is used to compute its length. */
1543 asm_insn_count (body
)
1546 const char *template;
1549 if (GET_CODE (body
) == ASM_INPUT
)
1550 template = XSTR (body
, 0);
1552 template = decode_asm_operands (body
, NULL_PTR
, NULL_PTR
,
1553 NULL_PTR
, NULL_PTR
);
1555 for (; *template; template++)
1556 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1563 /* Output assembler code for the start of a function,
1564 and initialize some of the variables in this file
1565 for the new function. The label for the function and associated
1566 assembler pseudo-ops have already been output in `assemble_start_function'.
1568 FIRST is the first insn of the rtl for the function being compiled.
1569 FILE is the file to write assembler code to.
1570 OPTIMIZE is nonzero if we should eliminate redundant
1571 test and compare insns. */
1574 final_start_function (first
, file
, optimize
)
1577 int optimize ATTRIBUTE_UNUSED
;
1581 this_is_asm_operands
= 0;
1583 #ifdef NON_SAVING_SETJMP
1584 /* A function that calls setjmp should save and restore all the
1585 call-saved registers on a system where longjmp clobbers them. */
1586 if (NON_SAVING_SETJMP
&& current_function_calls_setjmp
)
1590 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1591 if (!call_used_regs
[i
])
1592 regs_ever_live
[i
] = 1;
1596 /* Initial line number is supposed to be output
1597 before the function's prologue and label
1598 so that the function's address will not appear to be
1599 in the last statement of the preceding function. */
1600 if (NOTE_LINE_NUMBER (first
) != NOTE_INSN_DELETED
)
1601 last_linenum
= high_block_linenum
= high_function_linenum
1602 = NOTE_LINE_NUMBER (first
);
1604 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO) \
1605 || defined (DWARF2_DEBUGGING_INFO)
1606 dwarf2out_begin_prologue ();
1609 /* For SDB and XCOFF, the function beginning must be marked between
1610 the function label and the prologue. We always need this, even when
1611 -g1 was used. Defer on MIPS systems so that parameter descriptions
1612 follow function entry. */
1613 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1614 if (write_symbols
== SDB_DEBUG
)
1615 sdbout_begin_function (last_linenum
);
1618 #ifdef XCOFF_DEBUGGING_INFO
1619 if (write_symbols
== XCOFF_DEBUG
)
1620 xcoffout_begin_function (file
, last_linenum
);
1623 /* But only output line number for other debug info types if -g2
1625 if (NOTE_LINE_NUMBER (first
) != NOTE_INSN_DELETED
)
1626 output_source_line (file
, first
);
1628 #ifdef LEAF_REG_REMAP
1629 if (current_function_uses_only_leaf_regs
)
1630 leaf_renumber_regs (first
);
1633 /* The Sun386i and perhaps other machines don't work right
1634 if the profiling code comes after the prologue. */
1635 #ifdef PROFILE_BEFORE_PROLOGUE
1637 profile_function (file
);
1638 #endif /* PROFILE_BEFORE_PROLOGUE */
1640 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1641 if (dwarf2out_do_frame ())
1642 dwarf2out_frame_debug (NULL_RTX
);
1645 /* If debugging, assign block numbers to all of the blocks in this
1649 number_blocks (current_function_decl
);
1650 remove_unnecessary_notes ();
1651 /* We never actually put out begin/end notes for the top-level
1652 block in the function. But, conceptually, that block is
1654 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1657 #ifdef FUNCTION_PROLOGUE
1658 /* First output the function prologue: code to set up the stack frame. */
1659 FUNCTION_PROLOGUE (file
, get_frame_size ());
1662 /* If the machine represents the prologue as RTL, the profiling code must
1663 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1664 #ifdef HAVE_prologue
1665 if (! HAVE_prologue
)
1667 profile_after_prologue (file
);
1671 /* If we are doing basic block profiling, remember a printable version
1672 of the function name. */
1673 if (profile_block_flag
)
1676 add_bb_string ((*decl_printable_name
) (current_function_decl
, 2),
1682 profile_after_prologue (file
)
1683 FILE *file ATTRIBUTE_UNUSED
;
1685 #ifdef FUNCTION_BLOCK_PROFILER
1686 if (profile_block_flag
)
1688 FUNCTION_BLOCK_PROFILER (file
, count_basic_blocks
);
1690 #endif /* FUNCTION_BLOCK_PROFILER */
1692 #ifndef PROFILE_BEFORE_PROLOGUE
1694 profile_function (file
);
1695 #endif /* not PROFILE_BEFORE_PROLOGUE */
1699 profile_function (file
)
1702 #ifndef NO_PROFILE_COUNTERS
1703 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1705 #if defined(ASM_OUTPUT_REG_PUSH)
1706 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1707 int sval
= current_function_returns_struct
;
1709 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1710 int cxt
= current_function_needs_context
;
1712 #endif /* ASM_OUTPUT_REG_PUSH */
1714 #ifndef NO_PROFILE_COUNTERS
1716 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1717 ASM_OUTPUT_INTERNAL_LABEL (file
, "LP", profile_label_no
);
1718 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, 1);
1721 function_section (current_function_decl
);
1723 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1725 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1727 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1730 ASM_OUTPUT_REG_PUSH (file
, STRUCT_VALUE_REGNUM
);
1735 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1737 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1739 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1742 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1747 FUNCTION_PROFILER (file
, profile_label_no
);
1749 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1751 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1753 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1756 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1761 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1763 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_INCOMING_REGNUM
);
1765 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1768 ASM_OUTPUT_REG_POP (file
, STRUCT_VALUE_REGNUM
);
1774 /* Output assembler code for the end of a function.
1775 For clarity, args are same as those of `final_start_function'
1776 even though not all of them are needed. */
1779 final_end_function (first
, file
, optimize
)
1780 rtx first ATTRIBUTE_UNUSED
;
1781 FILE *file ATTRIBUTE_UNUSED
;
1782 int optimize ATTRIBUTE_UNUSED
;
1786 #ifdef SDB_DEBUGGING_INFO
1787 if (write_symbols
== SDB_DEBUG
)
1788 sdbout_end_function (high_function_linenum
);
1791 #ifdef DWARF_DEBUGGING_INFO
1792 if (write_symbols
== DWARF_DEBUG
)
1793 dwarfout_end_function ();
1796 #ifdef XCOFF_DEBUGGING_INFO
1797 if (write_symbols
== XCOFF_DEBUG
)
1798 xcoffout_end_function (file
, high_function_linenum
);
1801 #ifdef FUNCTION_EPILOGUE
1802 /* Finally, output the function epilogue:
1803 code to restore the stack frame and return to the caller. */
1804 FUNCTION_EPILOGUE (file
, get_frame_size ());
1807 #ifdef SDB_DEBUGGING_INFO
1808 if (write_symbols
== SDB_DEBUG
)
1809 sdbout_end_epilogue ();
1812 #ifdef DWARF_DEBUGGING_INFO
1813 if (write_symbols
== DWARF_DEBUG
)
1814 dwarfout_end_epilogue ();
1817 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1818 if (dwarf2out_do_frame ())
1819 dwarf2out_end_epilogue ();
1822 #ifdef XCOFF_DEBUGGING_INFO
1823 if (write_symbols
== XCOFF_DEBUG
)
1824 xcoffout_end_epilogue (file
);
1827 bb_func_label_num
= -1; /* not in function, nuke label # */
1829 /* If FUNCTION_EPILOGUE is not defined, then the function body
1830 itself contains return instructions wherever needed. */
1833 /* Add a block to the linked list that remembers the current line/file/function
1834 for basic block profiling. Emit the label in front of the basic block and
1835 the instructions that increment the count field. */
1841 struct bb_list
*ptr
=
1842 (struct bb_list
*) permalloc (sizeof (struct bb_list
));
1844 /* Add basic block to linked list. */
1846 ptr
->line_num
= last_linenum
;
1847 ptr
->file_label_num
= bb_file_label_num
;
1848 ptr
->func_label_num
= bb_func_label_num
;
1850 bb_tail
= &ptr
->next
;
1852 /* Enable the table of basic-block use counts
1853 to point at the code it applies to. */
1854 ASM_OUTPUT_INTERNAL_LABEL (file
, "LPB", count_basic_blocks
);
1856 /* Before first insn of this basic block, increment the
1857 count of times it was entered. */
1858 #ifdef BLOCK_PROFILER
1859 BLOCK_PROFILER (file
, count_basic_blocks
);
1866 count_basic_blocks
++;
1869 /* Add a string to be used for basic block profiling. */
1872 add_bb_string (string
, perm_p
)
1877 struct bb_str
*ptr
= 0;
1881 string
= "<unknown>";
1885 /* Allocate a new string if the current string isn't permanent. If
1886 the string is permanent search for the same string in other
1889 len
= strlen (string
) + 1;
1892 char *p
= (char *) permalloc (len
);
1893 memcpy (p
, string
, len
);
1897 for (ptr
= sbb_head
; ptr
!= (struct bb_str
*) 0; ptr
= ptr
->next
)
1898 if (ptr
->string
== string
)
1901 /* Allocate a new string block if we need to. */
1904 ptr
= (struct bb_str
*) permalloc (sizeof (*ptr
));
1907 ptr
->label_num
= sbb_label_num
++;
1908 ptr
->string
= string
;
1910 sbb_tail
= &ptr
->next
;
1913 return ptr
->label_num
;
1916 /* Output assembler code for some insns: all or part of a function.
1917 For description of args, see `final_start_function', above.
1919 PRESCAN is 1 if we are not really outputting,
1920 just scanning as if we were outputting.
1921 Prescanning deletes and rearranges insns just like ordinary output.
1922 PRESCAN is -2 if we are outputting after having prescanned.
1923 In this case, don't try to delete or rearrange insns
1924 because that has already been done.
1925 Prescanning is done only on certain machines. */
1928 final (first
, file
, optimize
, prescan
)
1938 last_ignored_compare
= 0;
1941 /* Make a map indicating which line numbers appear in this function.
1942 When producing SDB debugging info, delete troublesome line number
1943 notes from inlined functions in other files as well as duplicate
1944 line number notes. */
1945 #ifdef SDB_DEBUGGING_INFO
1946 if (write_symbols
== SDB_DEBUG
)
1949 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1950 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1952 if ((RTX_INTEGRATED_P (insn
)
1953 && strcmp (NOTE_SOURCE_FILE (insn
), main_input_filename
) != 0)
1955 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1956 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)))
1958 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
1959 NOTE_SOURCE_FILE (insn
) = 0;
1963 if (NOTE_LINE_NUMBER (insn
) > max_line
)
1964 max_line
= NOTE_LINE_NUMBER (insn
);
1970 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1971 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > max_line
)
1972 max_line
= NOTE_LINE_NUMBER (insn
);
1975 line_note_exists
= (char *) xcalloc (max_line
+ 1, sizeof (char));
1977 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1979 if (INSN_UID (insn
) > max_uid
) /* find largest UID */
1980 max_uid
= INSN_UID (insn
);
1981 if (GET_CODE (insn
) == NOTE
&& NOTE_LINE_NUMBER (insn
) > 0)
1982 line_note_exists
[NOTE_LINE_NUMBER (insn
)] = 1;
1984 /* If CC tracking across branches is enabled, record the insn which
1985 jumps to each branch only reached from one place. */
1986 if (optimize
&& GET_CODE (insn
) == JUMP_INSN
)
1988 rtx lab
= JUMP_LABEL (insn
);
1989 if (lab
&& LABEL_NUSES (lab
) == 1)
1991 LABEL_REFS (lab
) = insn
;
2001 /* Output the insns. */
2002 for (insn
= NEXT_INSN (first
); insn
;)
2004 #ifdef HAVE_ATTR_length
2005 if (INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2008 /* Irritatingly, the reg-stack pass is creating new instructions
2009 and because of REG_DEAD note abuse it has to run after
2010 shorten_branches. Fake address of -1 then. */
2011 insn_current_address
= -1;
2013 /* This can be triggered by bugs elsewhere in the compiler if
2014 new insns are created after init_insn_lengths is called. */
2019 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2020 #endif /* HAVE_ATTR_length */
2022 insn
= final_scan_insn (insn
, file
, optimize
, prescan
, 0);
2025 /* Do basic-block profiling here
2026 if the last insn was a conditional branch. */
2027 if (profile_block_flag
&& new_block
)
2030 free (line_note_exists
);
2031 line_note_exists
= NULL
;
2035 get_insn_template (code
, insn
)
2039 const void *output
= insn_data
[code
].output
;
2040 switch (insn_data
[code
].output_format
)
2042 case INSN_OUTPUT_FORMAT_SINGLE
:
2043 return (const char *) output
;
2044 case INSN_OUTPUT_FORMAT_MULTI
:
2045 return ((const char *const *) output
)[which_alternative
];
2046 case INSN_OUTPUT_FORMAT_FUNCTION
:
2049 return (*(insn_output_fn
) output
) (recog_data
.operand
, insn
);
2056 /* The final scan for one insn, INSN.
2057 Args are same as in `final', except that INSN
2058 is the insn being scanned.
2059 Value returned is the next insn to be scanned.
2061 NOPEEPHOLES is the flag to disallow peephole processing (currently
2062 used for within delayed branch sequence output). */
2065 final_scan_insn (insn
, file
, optimize
, prescan
, nopeepholes
)
2068 int optimize ATTRIBUTE_UNUSED
;
2070 int nopeepholes ATTRIBUTE_UNUSED
;
2078 /* Ignore deleted insns. These can occur when we split insns (due to a
2079 template of "#") while not optimizing. */
2080 if (INSN_DELETED_P (insn
))
2081 return NEXT_INSN (insn
);
2083 switch (GET_CODE (insn
))
2089 switch (NOTE_LINE_NUMBER (insn
))
2091 case NOTE_INSN_DELETED
:
2092 case NOTE_INSN_LOOP_BEG
:
2093 case NOTE_INSN_LOOP_END
:
2094 case NOTE_INSN_LOOP_CONT
:
2095 case NOTE_INSN_LOOP_VTOP
:
2096 case NOTE_INSN_FUNCTION_END
:
2097 case NOTE_INSN_SETJMP
:
2098 case NOTE_INSN_REPEATED_LINE_NUMBER
:
2099 case NOTE_INSN_RANGE_BEG
:
2100 case NOTE_INSN_RANGE_END
:
2101 case NOTE_INSN_LIVE
:
2102 case NOTE_INSN_EXPECTED_VALUE
:
2105 case NOTE_INSN_BASIC_BLOCK
:
2106 #ifdef IA64_UNWIND_INFO
2107 IA64_UNWIND_EMIT (asm_out_file
, insn
);
2110 fprintf (asm_out_file
, "\t%s basic block %d\n",
2111 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
2114 case NOTE_INSN_EH_REGION_BEG
:
2115 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2116 NOTE_EH_HANDLER (insn
));
2119 case NOTE_INSN_EH_REGION_END
:
2120 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2121 NOTE_EH_HANDLER (insn
));
2124 case NOTE_INSN_PROLOGUE_END
:
2125 #ifdef FUNCTION_END_PROLOGUE
2126 FUNCTION_END_PROLOGUE (file
);
2128 profile_after_prologue (file
);
2131 case NOTE_INSN_EPILOGUE_BEG
:
2132 #ifdef FUNCTION_BEGIN_EPILOGUE
2133 FUNCTION_BEGIN_EPILOGUE (file
);
2137 case NOTE_INSN_FUNCTION_BEG
:
2138 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2139 /* MIPS stabs require the parameter descriptions to be after the
2140 function entry point rather than before. */
2141 if (write_symbols
== SDB_DEBUG
)
2144 sdbout_begin_function (last_linenum
);
2147 #ifdef DWARF_DEBUGGING_INFO
2148 /* This outputs a marker where the function body starts, so it
2149 must be after the prologue. */
2150 if (write_symbols
== DWARF_DEBUG
)
2153 dwarfout_begin_function ();
2158 case NOTE_INSN_BLOCK_BEG
:
2159 if (debug_info_level
== DINFO_LEVEL_NORMAL
2160 || debug_info_level
== DINFO_LEVEL_VERBOSE
2161 || write_symbols
== DWARF_DEBUG
2162 || write_symbols
== DWARF2_DEBUG
)
2164 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2168 high_block_linenum
= last_linenum
;
2170 /* Output debugging info about the symbol-block beginning. */
2171 #ifdef SDB_DEBUGGING_INFO
2172 if (write_symbols
== SDB_DEBUG
)
2173 sdbout_begin_block (file
, last_linenum
, n
);
2175 #ifdef XCOFF_DEBUGGING_INFO
2176 if (write_symbols
== XCOFF_DEBUG
)
2177 xcoffout_begin_block (file
, last_linenum
, n
);
2179 #ifdef DBX_DEBUGGING_INFO
2180 if (write_symbols
== DBX_DEBUG
)
2181 ASM_OUTPUT_INTERNAL_LABEL (file
, "LBB", n
);
2183 #ifdef DWARF_DEBUGGING_INFO
2184 if (write_symbols
== DWARF_DEBUG
)
2185 dwarfout_begin_block (n
);
2187 #ifdef DWARF2_DEBUGGING_INFO
2188 if (write_symbols
== DWARF2_DEBUG
)
2189 dwarf2out_begin_block (n
);
2192 /* Mark this block as output. */
2193 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2197 case NOTE_INSN_BLOCK_END
:
2198 if (debug_info_level
== DINFO_LEVEL_NORMAL
2199 || debug_info_level
== DINFO_LEVEL_VERBOSE
2200 || write_symbols
== DWARF_DEBUG
2201 || write_symbols
== DWARF2_DEBUG
)
2203 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2207 /* End of a symbol-block. */
2209 if (block_depth
< 0)
2212 #ifdef XCOFF_DEBUGGING_INFO
2213 if (write_symbols
== XCOFF_DEBUG
)
2214 xcoffout_end_block (file
, high_block_linenum
, n
);
2216 #ifdef DBX_DEBUGGING_INFO
2217 if (write_symbols
== DBX_DEBUG
)
2218 ASM_OUTPUT_INTERNAL_LABEL (file
, "LBE", n
);
2220 #ifdef SDB_DEBUGGING_INFO
2221 if (write_symbols
== SDB_DEBUG
)
2222 sdbout_end_block (file
, high_block_linenum
, n
);
2224 #ifdef DWARF_DEBUGGING_INFO
2225 if (write_symbols
== DWARF_DEBUG
)
2226 dwarfout_end_block (n
);
2228 #ifdef DWARF2_DEBUGGING_INFO
2229 if (write_symbols
== DWARF2_DEBUG
)
2230 dwarf2out_end_block (n
);
2235 case NOTE_INSN_DELETED_LABEL
:
2236 /* Emit the label. We may have deleted the CODE_LABEL because
2237 the label could be proved to be unreachable, though still
2238 referenced (in the form of having its address taken. */
2239 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2246 if (NOTE_LINE_NUMBER (insn
) <= 0)
2249 /* This note is a line-number. */
2254 /* If there is anything real after this note, output it.
2255 If another line note follows, omit this one. */
2256 for (note
= NEXT_INSN (insn
); note
; note
= NEXT_INSN (note
))
2258 if (GET_CODE (note
) != NOTE
&& GET_CODE (note
) != CODE_LABEL
)
2261 /* These types of notes can be significant
2262 so make sure the preceding line number stays. */
2263 else if (GET_CODE (note
) == NOTE
2264 && (NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_BEG
2265 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_BLOCK_END
2266 || NOTE_LINE_NUMBER (note
) == NOTE_INSN_FUNCTION_BEG
))
2268 else if (GET_CODE (note
) == NOTE
&& NOTE_LINE_NUMBER (note
) > 0)
2270 /* Another line note follows; we can delete this note
2271 if no intervening line numbers have notes elsewhere. */
2273 for (num
= NOTE_LINE_NUMBER (insn
) + 1;
2274 num
< NOTE_LINE_NUMBER (note
);
2276 if (line_note_exists
[num
])
2279 if (num
>= NOTE_LINE_NUMBER (note
))
2285 /* Output this line note if it is the first or the last line
2288 output_source_line (file
, insn
);
2295 #if defined (DWARF2_UNWIND_INFO)
2296 if (dwarf2out_do_frame ())
2297 dwarf2out_frame_debug (insn
);
2302 /* The target port might emit labels in the output function for
2303 some insn, e.g. sh.c output_branchy_insn. */
2304 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2306 int align
= LABEL_TO_ALIGNMENT (insn
);
2307 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2308 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2311 if (align
&& NEXT_INSN (insn
))
2312 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2313 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2315 ASM_OUTPUT_ALIGN (file
, align
);
2320 /* If this label is reached from only one place, set the condition
2321 codes from the instruction just before the branch. */
2323 /* Disabled because some insns set cc_status in the C output code
2324 and NOTICE_UPDATE_CC alone can set incorrect status. */
2325 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2327 rtx jump
= LABEL_REFS (insn
);
2328 rtx barrier
= prev_nonnote_insn (insn
);
2330 /* If the LABEL_REFS field of this label has been set to point
2331 at a branch, the predecessor of the branch is a regular
2332 insn, and that branch is the only way to reach this label,
2333 set the condition codes based on the branch and its
2335 if (barrier
&& GET_CODE (barrier
) == BARRIER
2336 && jump
&& GET_CODE (jump
) == JUMP_INSN
2337 && (prev
= prev_nonnote_insn (jump
))
2338 && GET_CODE (prev
) == INSN
)
2340 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
2341 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
2349 #ifdef FINAL_PRESCAN_LABEL
2350 FINAL_PRESCAN_INSN (insn
, NULL_PTR
, 0);
2353 #ifdef SDB_DEBUGGING_INFO
2354 if (write_symbols
== SDB_DEBUG
&& LABEL_NAME (insn
))
2355 sdbout_label (insn
);
2359 fputs (ASM_APP_OFF
, file
);
2362 if (NEXT_INSN (insn
) != 0
2363 && GET_CODE (NEXT_INSN (insn
)) == JUMP_INSN
)
2365 rtx nextbody
= PATTERN (NEXT_INSN (insn
));
2367 /* If this label is followed by a jump-table,
2368 make sure we put the label in the read-only section. Also
2369 possibly write the label and jump table together. */
2371 if (GET_CODE (nextbody
) == ADDR_VEC
2372 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
2374 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2375 /* In this case, the case vector is being moved by the
2376 target, so don't output the label at all. Leave that
2377 to the back end macros. */
2379 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2381 readonly_data_section ();
2382 #ifdef READONLY_DATA_SECTION
2383 ASM_OUTPUT_ALIGN (file
,
2384 exact_log2 (BIGGEST_ALIGNMENT
2386 #endif /* READONLY_DATA_SECTION */
2389 function_section (current_function_decl
);
2391 #ifdef ASM_OUTPUT_CASE_LABEL
2392 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2395 if (LABEL_ALTERNATE_NAME (insn
))
2396 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file
, insn
);
2398 ASM_OUTPUT_INTERNAL_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2404 if (LABEL_ALTERNATE_NAME (insn
))
2405 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file
, insn
);
2407 ASM_OUTPUT_INTERNAL_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2412 register rtx body
= PATTERN (insn
);
2413 int insn_code_number
;
2414 const char *template;
2419 /* An INSN, JUMP_INSN or CALL_INSN.
2420 First check for special kinds that recog doesn't recognize. */
2422 if (GET_CODE (body
) == USE
/* These are just declarations */
2423 || GET_CODE (body
) == CLOBBER
)
2427 /* If there is a REG_CC_SETTER note on this insn, it means that
2428 the setting of the condition code was done in the delay slot
2429 of the insn that branched here. So recover the cc status
2430 from the insn that set it. */
2432 note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2435 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2436 cc_prev_status
= cc_status
;
2440 /* Detect insns that are really jump-tables
2441 and output them as such. */
2443 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
2445 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2446 register int vlen
, idx
;
2454 fputs (ASM_APP_OFF
, file
);
2458 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2459 if (GET_CODE (body
) == ADDR_VEC
)
2461 #ifdef ASM_OUTPUT_ADDR_VEC
2462 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2469 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2470 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2476 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2477 for (idx
= 0; idx
< vlen
; idx
++)
2479 if (GET_CODE (body
) == ADDR_VEC
)
2481 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2482 ASM_OUTPUT_ADDR_VEC_ELT
2483 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2490 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2491 ASM_OUTPUT_ADDR_DIFF_ELT
2494 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2495 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2501 #ifdef ASM_OUTPUT_CASE_END
2502 ASM_OUTPUT_CASE_END (file
,
2503 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2508 function_section (current_function_decl
);
2513 /* Do basic-block profiling when we reach a new block.
2514 Done here to avoid jump tables. */
2515 if (profile_block_flag
&& new_block
)
2518 if (GET_CODE (body
) == ASM_INPUT
)
2520 /* There's no telling what that did to the condition codes. */
2526 fputs (ASM_APP_ON
, file
);
2529 fprintf (asm_out_file
, "\t%s\n", XSTR (body
, 0));
2533 /* Detect `asm' construct with operands. */
2534 if (asm_noperands (body
) >= 0)
2536 unsigned int noperands
= asm_noperands (body
);
2537 rtx
*ops
= (rtx
*) alloca (noperands
* sizeof (rtx
));
2540 /* There's no telling what that did to the condition codes. */
2547 fputs (ASM_APP_ON
, file
);
2551 /* Get out the operand values. */
2552 string
= decode_asm_operands (body
, ops
, NULL_PTR
,
2553 NULL_PTR
, NULL_PTR
);
2554 /* Inhibit aborts on what would otherwise be compiler bugs. */
2555 insn_noperands
= noperands
;
2556 this_is_asm_operands
= insn
;
2558 /* Output the insn using them. */
2559 output_asm_insn (string
, ops
);
2560 this_is_asm_operands
= 0;
2564 if (prescan
<= 0 && app_on
)
2566 fputs (ASM_APP_OFF
, file
);
2570 if (GET_CODE (body
) == SEQUENCE
)
2572 /* A delayed-branch sequence */
2578 final_sequence
= body
;
2580 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2581 force the restoration of a comparison that was previously
2582 thought unnecessary. If that happens, cancel this sequence
2583 and cause that insn to be restored. */
2585 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, prescan
, 1);
2586 if (next
!= XVECEXP (body
, 0, 1))
2592 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2594 rtx insn
= XVECEXP (body
, 0, i
);
2595 rtx next
= NEXT_INSN (insn
);
2596 /* We loop in case any instruction in a delay slot gets
2599 insn
= final_scan_insn (insn
, file
, 0, prescan
, 1);
2600 while (insn
!= next
);
2602 #ifdef DBR_OUTPUT_SEQEND
2603 DBR_OUTPUT_SEQEND (file
);
2607 /* If the insn requiring the delay slot was a CALL_INSN, the
2608 insns in the delay slot are actually executed before the
2609 called function. Hence we don't preserve any CC-setting
2610 actions in these insns and the CC must be marked as being
2611 clobbered by the function. */
2612 if (GET_CODE (XVECEXP (body
, 0, 0)) == CALL_INSN
)
2617 /* Following a conditional branch sequence, we have a new basic
2619 if (profile_block_flag
)
2621 rtx insn
= XVECEXP (body
, 0, 0);
2622 rtx body
= PATTERN (insn
);
2624 if ((GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == SET
2625 && GET_CODE (SET_SRC (body
)) != LABEL_REF
)
2626 || (GET_CODE (insn
) == JUMP_INSN
2627 && GET_CODE (body
) == PARALLEL
2628 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
2629 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) != LABEL_REF
))
2635 /* We have a real machine instruction as rtl. */
2637 body
= PATTERN (insn
);
2640 set
= single_set (insn
);
2642 /* Check for redundant test and compare instructions
2643 (when the condition codes are already set up as desired).
2644 This is done only when optimizing; if not optimizing,
2645 it should be possible for the user to alter a variable
2646 with the debugger in between statements
2647 and the next statement should reexamine the variable
2648 to compute the condition codes. */
2653 rtx set
= single_set (insn
);
2657 && GET_CODE (SET_DEST (set
)) == CC0
2658 && insn
!= last_ignored_compare
)
2660 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2661 SET_SRC (set
) = alter_subreg (SET_SRC (set
));
2662 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2664 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2665 XEXP (SET_SRC (set
), 0)
2666 = alter_subreg (XEXP (SET_SRC (set
), 0));
2667 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2668 XEXP (SET_SRC (set
), 1)
2669 = alter_subreg (XEXP (SET_SRC (set
), 1));
2671 if ((cc_status
.value1
!= 0
2672 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2673 || (cc_status
.value2
!= 0
2674 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2676 /* Don't delete insn if it has an addressing side-effect. */
2677 if (! FIND_REG_INC_NOTE (insn
, 0)
2678 /* or if anything in it is volatile. */
2679 && ! volatile_refs_p (PATTERN (insn
)))
2681 /* We don't really delete the insn; just ignore it. */
2682 last_ignored_compare
= insn
;
2690 /* Following a conditional branch, we have a new basic block.
2691 But if we are inside a sequence, the new block starts after the
2692 last insn of the sequence. */
2693 if (profile_block_flag
&& final_sequence
== 0
2694 && ((GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == SET
2695 && GET_CODE (SET_SRC (body
)) != LABEL_REF
)
2696 || (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (body
) == PARALLEL
2697 && GET_CODE (XVECEXP (body
, 0, 0)) == SET
2698 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) != LABEL_REF
)))
2702 /* Don't bother outputting obvious no-ops, even without -O.
2703 This optimization is fast and doesn't interfere with debugging.
2704 Don't do this if the insn is in a delay slot, since this
2705 will cause an improper number of delay insns to be written. */
2706 if (final_sequence
== 0
2708 && GET_CODE (insn
) == INSN
&& GET_CODE (body
) == SET
2709 && GET_CODE (SET_SRC (body
)) == REG
2710 && GET_CODE (SET_DEST (body
)) == REG
2711 && REGNO (SET_SRC (body
)) == REGNO (SET_DEST (body
)))
2716 /* If this is a conditional branch, maybe modify it
2717 if the cc's are in a nonstandard state
2718 so that it accomplishes the same thing that it would
2719 do straightforwardly if the cc's were set up normally. */
2721 if (cc_status
.flags
!= 0
2722 && GET_CODE (insn
) == JUMP_INSN
2723 && GET_CODE (body
) == SET
2724 && SET_DEST (body
) == pc_rtx
2725 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2726 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body
), 0))) == '<'
2727 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
2728 /* This is done during prescan; it is not done again
2729 in final scan when prescan has been done. */
2732 /* This function may alter the contents of its argument
2733 and clear some of the cc_status.flags bits.
2734 It may also return 1 meaning condition now always true
2735 or -1 meaning condition now always false
2736 or 2 meaning condition nontrivial but altered. */
2737 register int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2738 /* If condition now has fixed value, replace the IF_THEN_ELSE
2739 with its then-operand or its else-operand. */
2741 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2743 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2745 /* The jump is now either unconditional or a no-op.
2746 If it has become a no-op, don't try to output it.
2747 (It would not be recognized.) */
2748 if (SET_SRC (body
) == pc_rtx
)
2750 PUT_CODE (insn
, NOTE
);
2751 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2752 NOTE_SOURCE_FILE (insn
) = 0;
2755 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2756 /* Replace (set (pc) (return)) with (return). */
2757 PATTERN (insn
) = body
= SET_SRC (body
);
2759 /* Rerecognize the instruction if it has changed. */
2761 INSN_CODE (insn
) = -1;
2764 /* Make same adjustments to instructions that examine the
2765 condition codes without jumping and instructions that
2766 handle conditional moves (if this machine has either one). */
2768 if (cc_status
.flags
!= 0
2771 rtx cond_rtx
, then_rtx
, else_rtx
;
2773 if (GET_CODE (insn
) != JUMP_INSN
2774 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2776 cond_rtx
= XEXP (SET_SRC (set
), 0);
2777 then_rtx
= XEXP (SET_SRC (set
), 1);
2778 else_rtx
= XEXP (SET_SRC (set
), 2);
2782 cond_rtx
= SET_SRC (set
);
2783 then_rtx
= const_true_rtx
;
2784 else_rtx
= const0_rtx
;
2787 switch (GET_CODE (cond_rtx
))
2800 register int result
;
2801 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2803 result
= alter_cond (cond_rtx
);
2805 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2806 else if (result
== -1)
2807 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2808 else if (result
== 2)
2809 INSN_CODE (insn
) = -1;
2810 if (SET_DEST (set
) == SET_SRC (set
))
2812 PUT_CODE (insn
, NOTE
);
2813 NOTE_LINE_NUMBER (insn
) = NOTE_INSN_DELETED
;
2814 NOTE_SOURCE_FILE (insn
) = 0;
2826 #ifdef HAVE_peephole
2827 /* Do machine-specific peephole optimizations if desired. */
2829 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2831 rtx next
= peephole (insn
);
2832 /* When peepholing, if there were notes within the peephole,
2833 emit them before the peephole. */
2834 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2836 rtx prev
= PREV_INSN (insn
);
2839 for (note
= NEXT_INSN (insn
); note
!= next
;
2840 note
= NEXT_INSN (note
))
2841 final_scan_insn (note
, file
, optimize
, prescan
, nopeepholes
);
2843 /* In case this is prescan, put the notes
2844 in proper position for later rescan. */
2845 note
= NEXT_INSN (insn
);
2846 PREV_INSN (note
) = prev
;
2847 NEXT_INSN (prev
) = note
;
2848 NEXT_INSN (PREV_INSN (next
)) = insn
;
2849 PREV_INSN (insn
) = PREV_INSN (next
);
2850 NEXT_INSN (insn
) = next
;
2851 PREV_INSN (next
) = insn
;
2854 /* PEEPHOLE might have changed this. */
2855 body
= PATTERN (insn
);
2859 /* Try to recognize the instruction.
2860 If successful, verify that the operands satisfy the
2861 constraints for the instruction. Crash if they don't,
2862 since `reload' should have changed them so that they do. */
2864 insn_code_number
= recog_memoized (insn
);
2865 cleanup_subreg_operands (insn
);
2867 /* Dump the insn in the assembly for debugging. */
2868 if (flag_dump_rtl_in_asm
)
2870 print_rtx_head
= ASM_COMMENT_START
;
2871 print_rtl_single (asm_out_file
, insn
);
2872 print_rtx_head
= "";
2875 if (! constrain_operands_cached (1))
2876 fatal_insn_not_found (insn
);
2878 /* Some target machines need to prescan each insn before
2881 #ifdef FINAL_PRESCAN_INSN
2882 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2885 #ifdef HAVE_conditional_execution
2886 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2887 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2889 current_insn_predicate
= NULL_RTX
;
2893 cc_prev_status
= cc_status
;
2895 /* Update `cc_status' for this instruction.
2896 The instruction's output routine may change it further.
2897 If the output routine for a jump insn needs to depend
2898 on the cc status, it should look at cc_prev_status. */
2900 NOTICE_UPDATE_CC (body
, insn
);
2903 current_output_insn
= debug_insn
= insn
;
2905 #if defined (DWARF2_UNWIND_INFO)
2906 if (GET_CODE (insn
) == CALL_INSN
&& dwarf2out_do_frame ())
2907 dwarf2out_frame_debug (insn
);
2910 /* Find the proper template for this insn. */
2911 template = get_insn_template (insn_code_number
, insn
);
2913 /* If the C code returns 0, it means that it is a jump insn
2914 which follows a deleted test insn, and that test insn
2915 needs to be reinserted. */
2920 if (prev_nonnote_insn (insn
) != last_ignored_compare
)
2924 /* We have already processed the notes between the setter and
2925 the user. Make sure we don't process them again, this is
2926 particularly important if one of the notes is a block
2927 scope note or an EH note. */
2929 prev
!= last_ignored_compare
;
2930 prev
= PREV_INSN (prev
))
2932 if (GET_CODE (prev
) == NOTE
)
2934 NOTE_LINE_NUMBER (prev
) = NOTE_INSN_DELETED
;
2935 NOTE_SOURCE_FILE (prev
) = 0;
2942 /* If the template is the string "#", it means that this insn must
2944 if (template[0] == '#' && template[1] == '\0')
2946 rtx
new = try_split (body
, insn
, 0);
2948 /* If we didn't split the insn, go away. */
2949 if (new == insn
&& PATTERN (new) == body
)
2950 fatal_insn ("Could not split insn", insn
);
2952 #ifdef HAVE_ATTR_length
2953 /* This instruction should have been split in shorten_branches,
2954 to ensure that we would have valid length info for the
2966 #ifdef IA64_UNWIND_INFO
2967 IA64_UNWIND_EMIT (asm_out_file
, insn
);
2969 /* Output assembler code from the template. */
2971 output_asm_insn (template, recog_data
.operand
);
2973 #if defined (DWARF2_UNWIND_INFO)
2974 #if defined (HAVE_prologue)
2975 if (GET_CODE (insn
) == INSN
&& dwarf2out_do_frame ())
2976 dwarf2out_frame_debug (insn
);
2978 if (!ACCUMULATE_OUTGOING_ARGS
2979 && GET_CODE (insn
) == INSN
2980 && dwarf2out_do_frame ())
2981 dwarf2out_frame_debug (insn
);
2986 /* It's not at all clear why we did this and doing so interferes
2987 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2990 /* Mark this insn as having been output. */
2991 INSN_DELETED_P (insn
) = 1;
2994 current_output_insn
= debug_insn
= 0;
2997 return NEXT_INSN (insn
);
3000 /* Output debugging info to the assembler file FILE
3001 based on the NOTE-insn INSN, assumed to be a line number. */
3004 output_source_line (file
, insn
)
3005 FILE *file ATTRIBUTE_UNUSED
;
3008 register const char *filename
= NOTE_SOURCE_FILE (insn
);
3010 /* Remember filename for basic block profiling.
3011 Filenames are allocated on the permanent obstack
3012 or are passed in ARGV, so we don't have to save
3015 if (profile_block_flag
&& last_filename
!= filename
)
3016 bb_file_label_num
= add_bb_string (filename
, TRUE
);
3018 last_filename
= filename
;
3019 last_linenum
= NOTE_LINE_NUMBER (insn
);
3020 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3021 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3023 if (write_symbols
!= NO_DEBUG
)
3025 #ifdef SDB_DEBUGGING_INFO
3026 if (write_symbols
== SDB_DEBUG
3027 #if 0 /* People like having line numbers even in wrong file! */
3028 /* COFF can't handle multiple source files--lose, lose. */
3029 && !strcmp (filename
, main_input_filename
)
3031 /* COFF relative line numbers must be positive. */
3032 && last_linenum
> sdb_begin_function_line
)
3034 #ifdef ASM_OUTPUT_SOURCE_LINE
3035 ASM_OUTPUT_SOURCE_LINE (file
, last_linenum
);
3037 fprintf (file
, "\t.ln\t%d\n",
3038 ((sdb_begin_function_line
> -1)
3039 ? last_linenum
- sdb_begin_function_line
: 1));
3044 #if defined (DBX_DEBUGGING_INFO)
3045 if (write_symbols
== DBX_DEBUG
)
3046 dbxout_source_line (file
, filename
, NOTE_LINE_NUMBER (insn
));
3049 #if defined (XCOFF_DEBUGGING_INFO)
3050 if (write_symbols
== XCOFF_DEBUG
)
3051 xcoffout_source_line (file
, filename
, insn
);
3054 #ifdef DWARF_DEBUGGING_INFO
3055 if (write_symbols
== DWARF_DEBUG
)
3056 dwarfout_line (filename
, NOTE_LINE_NUMBER (insn
));
3059 #ifdef DWARF2_DEBUGGING_INFO
3060 if (write_symbols
== DWARF2_DEBUG
)
3061 dwarf2out_line (filename
, NOTE_LINE_NUMBER (insn
));
3066 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3067 directly to the desired hard register. */
3070 cleanup_subreg_operands (insn
)
3074 extract_insn_cached (insn
);
3075 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3077 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
)
3078 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand
[i
]);
3079 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3080 || GET_CODE (recog_data
.operand
[i
]) == MULT
3081 || GET_CODE (recog_data
.operand
[i
]) == MEM
)
3082 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand
[i
]);
3085 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3087 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3088 *recog_data
.dup_loc
[i
] = alter_subreg (*recog_data
.dup_loc
[i
]);
3089 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3090 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3091 || GET_CODE (*recog_data
.dup_loc
[i
]) == MEM
)
3092 *recog_data
.dup_loc
[i
] = walk_alter_subreg (*recog_data
.dup_loc
[i
]);
3096 /* If X is a SUBREG, replace it with a REG or a MEM,
3097 based on the thing it is a subreg of. */
3103 register rtx y
= SUBREG_REG (x
);
3105 if (GET_CODE (y
) == SUBREG
)
3106 y
= alter_subreg (y
);
3108 /* If reload is operating, we may be replacing inside this SUBREG.
3109 Check for that and make a new one if so. */
3110 if (reload_in_progress
&& find_replacement (&SUBREG_REG (x
)) != 0)
3113 if (GET_CODE (y
) == REG
)
3116 /* If the word size is larger than the size of this register,
3117 adjust the register number to compensate. */
3118 /* ??? Note that this just catches stragglers created by/for
3119 integrate. It would be better if we either caught these
3120 earlier, or kept _all_ subregs until now and eliminate
3121 gen_lowpart and friends. */
3123 #ifdef ALTER_HARD_SUBREG
3124 regno
= ALTER_HARD_SUBREG (GET_MODE (x
), SUBREG_WORD (x
),
3125 GET_MODE (y
), REGNO (y
));
3127 regno
= REGNO (y
) + SUBREG_WORD (x
);
3131 ORIGINAL_REGNO (x
) = ORIGINAL_REGNO (y
);
3132 /* This field has a different meaning for REGs and SUBREGs. Make sure
3136 else if (GET_CODE (y
) == MEM
)
3138 register int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
3140 if (BYTES_BIG_ENDIAN
)
3141 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
)))
3142 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (y
))));
3144 MEM_COPY_ATTRIBUTES (x
, y
);
3145 XEXP (x
, 0) = plus_constant (XEXP (y
, 0), offset
);
3151 /* Do alter_subreg on all the SUBREGs contained in X. */
3154 walk_alter_subreg (x
)
3157 switch (GET_CODE (x
))
3161 XEXP (x
, 0) = walk_alter_subreg (XEXP (x
, 0));
3162 XEXP (x
, 1) = walk_alter_subreg (XEXP (x
, 1));
3166 XEXP (x
, 0) = walk_alter_subreg (XEXP (x
, 0));
3170 return alter_subreg (x
);
3181 /* Given BODY, the body of a jump instruction, alter the jump condition
3182 as required by the bits that are set in cc_status.flags.
3183 Not all of the bits there can be handled at this level in all cases.
3185 The value is normally 0.
3186 1 means that the condition has become always true.
3187 -1 means that the condition has become always false.
3188 2 means that COND has been altered. */
3196 if (cc_status
.flags
& CC_REVERSED
)
3199 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3202 if (cc_status
.flags
& CC_INVERTED
)
3205 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3208 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3209 switch (GET_CODE (cond
))
3214 /* Jump becomes unconditional. */
3220 /* Jump becomes no-op. */
3224 PUT_CODE (cond
, EQ
);
3229 PUT_CODE (cond
, NE
);
3237 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3238 switch (GET_CODE (cond
))
3242 /* Jump becomes unconditional. */
3247 /* Jump becomes no-op. */
3252 PUT_CODE (cond
, EQ
);
3258 PUT_CODE (cond
, NE
);
3266 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3267 switch (GET_CODE (cond
))
3270 /* Jump becomes unconditional. */
3274 PUT_CODE (cond
, EQ
);
3279 PUT_CODE (cond
, NE
);
3284 /* Jump becomes no-op. */
3291 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3292 switch (GET_CODE (cond
))
3298 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3303 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3308 if (cc_status
.flags
& CC_NOT_SIGNED
)
3309 /* The flags are valid if signed condition operators are converted
3311 switch (GET_CODE (cond
))
3314 PUT_CODE (cond
, LEU
);
3319 PUT_CODE (cond
, LTU
);
3324 PUT_CODE (cond
, GTU
);
3329 PUT_CODE (cond
, GEU
);
3341 /* Report inconsistency between the assembler template and the operands.
3342 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3345 output_operand_lossage (msgid
)
3348 if (this_is_asm_operands
)
3349 error_for_asm (this_is_asm_operands
, "invalid `asm': %s", _(msgid
));
3352 error ("output_operand: %s", _(msgid
));
3357 /* Output of assembler code from a template, and its subroutines. */
3359 /* Output text from TEMPLATE to the assembler output file,
3360 obeying %-directions to substitute operands taken from
3361 the vector OPERANDS.
3363 %N (for N a digit) means print operand N in usual manner.
3364 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3365 and print the label name with no punctuation.
3366 %cN means require operand N to be a constant
3367 and print the constant expression with no punctuation.
3368 %aN means expect operand N to be a memory address
3369 (not a memory reference!) and print a reference
3371 %nN means expect operand N to be a constant
3372 and print a constant expression for minus the value
3373 of the operand, with no other punctuation. */
3378 if (flag_print_asm_name
)
3380 /* Annotate the assembly with a comment describing the pattern and
3381 alternative used. */
3384 register int num
= INSN_CODE (debug_insn
);
3385 fprintf (asm_out_file
, "\t%s %d\t%s",
3386 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3387 insn_data
[num
].name
);
3388 if (insn_data
[num
].n_alternatives
> 1)
3389 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3390 #ifdef HAVE_ATTR_length
3391 fprintf (asm_out_file
, "\t[length = %d]",
3392 get_attr_length (debug_insn
));
3394 /* Clear this so only the first assembler insn
3395 of any rtl insn will get the special comment for -dp. */
3402 output_asm_insn (template, operands
)
3403 const char *template;
3406 register const char *p
;
3409 /* An insn may return a null string template
3410 in a case where no assembler code is needed. */
3415 putc ('\t', asm_out_file
);
3417 #ifdef ASM_OUTPUT_OPCODE
3418 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3426 putc (c
, asm_out_file
);
3427 #ifdef ASM_OUTPUT_OPCODE
3428 while ((c
= *p
) == '\t')
3430 putc (c
, asm_out_file
);
3433 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3437 #ifdef ASSEMBLER_DIALECT
3442 /* If we want the first dialect, do nothing. Otherwise, skip
3443 DIALECT_NUMBER of strings ending with '|'. */
3444 for (i
= 0; i
< dialect_number
; i
++)
3446 while (*p
&& *p
!= '}' && *p
++ != '|')
3457 /* Skip to close brace. */
3458 while (*p
&& *p
++ != '}')
3467 /* %% outputs a single %. */
3471 putc (c
, asm_out_file
);
3473 /* %= outputs a number which is unique to each insn in the entire
3474 compilation. This is useful for making local labels that are
3475 referred to more than once in a given insn. */
3479 fprintf (asm_out_file
, "%d", insn_counter
);
3481 /* % followed by a letter and some digits
3482 outputs an operand in a special way depending on the letter.
3483 Letters `acln' are implemented directly.
3484 Other letters are passed to `output_operand' so that
3485 the PRINT_OPERAND macro can define them. */
3486 else if (ISLOWER (*p
) || ISUPPER (*p
))
3491 if (! (*p
>= '0' && *p
<= '9'))
3492 output_operand_lossage ("operand number missing after %-letter");
3493 else if (this_is_asm_operands
&& (c
< 0 || (unsigned int) c
>= insn_noperands
))
3494 output_operand_lossage ("operand number out of range");
3495 else if (letter
== 'l')
3496 output_asm_label (operands
[c
]);
3497 else if (letter
== 'a')
3498 output_address (operands
[c
]);
3499 else if (letter
== 'c')
3501 if (CONSTANT_ADDRESS_P (operands
[c
]))
3502 output_addr_const (asm_out_file
, operands
[c
]);
3504 output_operand (operands
[c
], 'c');
3506 else if (letter
== 'n')
3508 if (GET_CODE (operands
[c
]) == CONST_INT
)
3509 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3510 - INTVAL (operands
[c
]));
3513 putc ('-', asm_out_file
);
3514 output_addr_const (asm_out_file
, operands
[c
]);
3518 output_operand (operands
[c
], letter
);
3520 while ((c
= *p
) >= '0' && c
<= '9')
3523 /* % followed by a digit outputs an operand the default way. */
3524 else if (*p
>= '0' && *p
<= '9')
3527 if (this_is_asm_operands
3528 && (c
< 0 || (unsigned int) c
>= insn_noperands
))
3529 output_operand_lossage ("operand number out of range");
3531 output_operand (operands
[c
], 0);
3532 while ((c
= *p
) >= '0' && c
<= '9')
3535 /* % followed by punctuation: output something for that
3536 punctuation character alone, with no operand.
3537 The PRINT_OPERAND macro decides what is actually done. */
3538 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3539 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3540 output_operand (NULL_RTX
, *p
++);
3543 output_operand_lossage ("invalid %%-code");
3547 putc (c
, asm_out_file
);
3552 putc ('\n', asm_out_file
);
3555 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3558 output_asm_label (x
)
3563 if (GET_CODE (x
) == LABEL_REF
)
3565 if (GET_CODE (x
) == CODE_LABEL
3566 || (GET_CODE (x
) == NOTE
3567 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3568 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3570 output_operand_lossage ("`%l' operand isn't a label");
3572 assemble_name (asm_out_file
, buf
);
3575 /* Print operand X using machine-dependent assembler syntax.
3576 The macro PRINT_OPERAND is defined just to control this function.
3577 CODE is a non-digit that preceded the operand-number in the % spec,
3578 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3579 between the % and the digits.
3580 When CODE is a non-letter, X is 0.
3582 The meanings of the letters are machine-dependent and controlled
3583 by PRINT_OPERAND. */
3586 output_operand (x
, code
)
3588 int code ATTRIBUTE_UNUSED
;
3590 if (x
&& GET_CODE (x
) == SUBREG
)
3591 x
= alter_subreg (x
);
3593 /* If X is a pseudo-register, abort now rather than writing trash to the
3596 if (x
&& GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
3599 PRINT_OPERAND (asm_out_file
, x
, code
);
3602 /* Print a memory reference operand for address X
3603 using machine-dependent assembler syntax.
3604 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3610 walk_alter_subreg (x
);
3611 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3614 /* Print an integer constant expression in assembler syntax.
3615 Addition and subtraction are the only arithmetic
3616 that may appear in these expressions. */
3619 output_addr_const (file
, x
)
3626 switch (GET_CODE (x
))
3636 #ifdef ASM_OUTPUT_SYMBOL_REF
3637 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3639 assemble_name (file
, XSTR (x
, 0));
3647 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3648 assemble_name (file
, buf
);
3652 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3656 /* This used to output parentheses around the expression,
3657 but that does not work on the 386 (either ATT or BSD assembler). */
3658 output_addr_const (file
, XEXP (x
, 0));
3662 if (GET_MODE (x
) == VOIDmode
)
3664 /* We can use %d if the number is one word and positive. */
3665 if (CONST_DOUBLE_HIGH (x
))
3666 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3667 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3668 else if (CONST_DOUBLE_LOW (x
) < 0)
3669 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3671 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3674 /* We can't handle floating point constants;
3675 PRINT_OPERAND must handle them. */
3676 output_operand_lossage ("floating constant misused");
3680 /* Some assemblers need integer constants to appear last (eg masm). */
3681 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3683 output_addr_const (file
, XEXP (x
, 1));
3684 if (INTVAL (XEXP (x
, 0)) >= 0)
3685 fprintf (file
, "+");
3686 output_addr_const (file
, XEXP (x
, 0));
3690 output_addr_const (file
, XEXP (x
, 0));
3691 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3692 || INTVAL (XEXP (x
, 1)) >= 0)
3693 fprintf (file
, "+");
3694 output_addr_const (file
, XEXP (x
, 1));
3699 /* Avoid outputting things like x-x or x+5-x,
3700 since some assemblers can't handle that. */
3701 x
= simplify_subtraction (x
);
3702 if (GET_CODE (x
) != MINUS
)
3705 output_addr_const (file
, XEXP (x
, 0));
3706 fprintf (file
, "-");
3707 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
3708 && INTVAL (XEXP (x
, 1)) < 0)
3709 || GET_CODE (XEXP (x
, 1)) != CONST_INT
)
3711 fprintf (file
, "%s", ASM_OPEN_PAREN
);
3712 output_addr_const (file
, XEXP (x
, 1));
3713 fprintf (file
, "%s", ASM_CLOSE_PAREN
);
3716 output_addr_const (file
, XEXP (x
, 1));
3721 output_addr_const (file
, XEXP (x
, 0));
3725 #ifdef OUTPUT_ADDR_CONST_EXTRA
3726 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3731 output_operand_lossage ("invalid expression as operand");
3735 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3736 %R prints the value of REGISTER_PREFIX.
3737 %L prints the value of LOCAL_LABEL_PREFIX.
3738 %U prints the value of USER_LABEL_PREFIX.
3739 %I prints the value of IMMEDIATE_PREFIX.
3740 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3741 Also supported are %d, %x, %s, %e, %f, %g and %%.
3743 We handle alternate assembler dialects here, just like output_asm_insn. */
3746 asm_fprintf
VPARAMS ((FILE *file
, const char *p
, ...))
3748 #ifndef ANSI_PROTOTYPES
3756 VA_START (argptr
, p
);
3758 #ifndef ANSI_PROTOTYPES
3759 file
= va_arg (argptr
, FILE *);
3760 p
= va_arg (argptr
, const char *);
3768 #ifdef ASSEMBLER_DIALECT
3773 /* If we want the first dialect, do nothing. Otherwise, skip
3774 DIALECT_NUMBER of strings ending with '|'. */
3775 for (i
= 0; i
< dialect_number
; i
++)
3777 while (*p
&& *p
++ != '|')
3787 /* Skip to close brace. */
3788 while (*p
&& *p
++ != '}')
3799 while ((c
>= '0' && c
<= '9') || c
== '.')
3807 fprintf (file
, "%%");
3810 case 'd': case 'i': case 'u':
3811 case 'x': case 'p': case 'X':
3815 fprintf (file
, buf
, va_arg (argptr
, int));
3819 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3820 but we do not check for those cases. It means that the value
3821 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3823 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3825 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3835 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3842 fprintf (file
, buf
, va_arg (argptr
, long));
3850 fprintf (file
, buf
, va_arg (argptr
, double));
3856 fprintf (file
, buf
, va_arg (argptr
, char *));
3860 #ifdef ASM_OUTPUT_OPCODE
3861 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3866 #ifdef REGISTER_PREFIX
3867 fprintf (file
, "%s", REGISTER_PREFIX
);
3872 #ifdef IMMEDIATE_PREFIX
3873 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3878 #ifdef LOCAL_LABEL_PREFIX
3879 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3884 fputs (user_label_prefix
, file
);
3887 #ifdef ASM_FPRINTF_EXTENSIONS
3888 /* Upper case letters are reserved for general use by asm_fprintf
3889 and so are not available to target specific code. In order to
3890 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3891 they are defined here. As they get turned into real extensions
3892 to asm_fprintf they should be removed from this list. */
3893 case 'A': case 'B': case 'C': case 'D': case 'E':
3894 case 'F': case 'G': case 'H': case 'J': case 'K':
3895 case 'M': case 'N': case 'P': case 'Q': case 'S':
3896 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3899 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3912 /* Split up a CONST_DOUBLE or integer constant rtx
3913 into two rtx's for single words,
3914 storing in *FIRST the word that comes first in memory in the target
3915 and in *SECOND the other. */
3918 split_double (value
, first
, second
)
3920 rtx
*first
, *second
;
3922 if (GET_CODE (value
) == CONST_INT
)
3924 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3926 /* In this case the CONST_INT holds both target words.
3927 Extract the bits from it into two word-sized pieces.
3928 Sign extend each half to HOST_WIDE_INT. */
3929 unsigned HOST_WIDE_INT low
, high
;
3930 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3932 /* Set sign_bit to the most significant bit of a word. */
3934 sign_bit
<<= BITS_PER_WORD
- 1;
3936 /* Set mask so that all bits of the word are set. We could
3937 have used 1 << BITS_PER_WORD instead of basing the
3938 calculation on sign_bit. However, on machines where
3939 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3940 compiler warning, even though the code would never be
3942 mask
= sign_bit
<< 1;
3945 /* Set sign_extend as any remaining bits. */
3946 sign_extend
= ~mask
;
3948 /* Pick the lower word and sign-extend it. */
3949 low
= INTVAL (value
);
3954 /* Pick the higher word, shifted to the least significant
3955 bits, and sign-extend it. */
3956 high
= INTVAL (value
);
3957 high
>>= BITS_PER_WORD
- 1;
3960 if (high
& sign_bit
)
3961 high
|= sign_extend
;
3963 /* Store the words in the target machine order. */
3964 if (WORDS_BIG_ENDIAN
)
3966 *first
= GEN_INT (high
);
3967 *second
= GEN_INT (low
);
3971 *first
= GEN_INT (low
);
3972 *second
= GEN_INT (high
);
3977 /* The rule for using CONST_INT for a wider mode
3978 is that we regard the value as signed.
3979 So sign-extend it. */
3980 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3981 if (WORDS_BIG_ENDIAN
)
3993 else if (GET_CODE (value
) != CONST_DOUBLE
)
3995 if (WORDS_BIG_ENDIAN
)
3997 *first
= const0_rtx
;
4003 *second
= const0_rtx
;
4006 else if (GET_MODE (value
) == VOIDmode
4007 /* This is the old way we did CONST_DOUBLE integers. */
4008 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
4010 /* In an integer, the words are defined as most and least significant.
4011 So order them by the target's convention. */
4012 if (WORDS_BIG_ENDIAN
)
4014 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
4015 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
4019 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
4020 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
4025 #ifdef REAL_ARITHMETIC
4028 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
4030 /* Note, this converts the REAL_VALUE_TYPE to the target's
4031 format, splits up the floating point double and outputs
4032 exactly 32 bits of it into each of l[0] and l[1] --
4033 not necessarily BITS_PER_WORD bits. */
4034 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
4036 /* If 32 bits is an entire word for the target, but not for the host,
4037 then sign-extend on the host so that the number will look the same
4038 way on the host that it would on the target. See for instance
4039 simplify_unary_operation. The #if is needed to avoid compiler
4042 #if HOST_BITS_PER_LONG > 32
4043 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
4045 if (l
[0] & ((long) 1 << 31))
4046 l
[0] |= ((long) (-1) << 32);
4047 if (l
[1] & ((long) 1 << 31))
4048 l
[1] |= ((long) (-1) << 32);
4052 *first
= GEN_INT ((HOST_WIDE_INT
) l
[0]);
4053 *second
= GEN_INT ((HOST_WIDE_INT
) l
[1]);
4055 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
4056 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
4057 && ! flag_pretend_float
)
4061 #ifdef HOST_WORDS_BIG_ENDIAN
4068 /* Host and target agree => no need to swap. */
4069 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
4070 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
4074 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
4075 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
4077 #endif /* no REAL_ARITHMETIC */
4081 /* Return nonzero if this function has no function calls. */
4089 if (profile_flag
|| profile_block_flag
|| profile_arc_flag
)
4092 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4094 if (GET_CODE (insn
) == CALL_INSN
4095 && ! SIBLING_CALL_P (insn
))
4097 if (GET_CODE (insn
) == INSN
4098 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4099 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
4100 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4103 for (link
= current_function_epilogue_delay_list
;
4105 link
= XEXP (link
, 1))
4107 insn
= XEXP (link
, 0);
4109 if (GET_CODE (insn
) == CALL_INSN
4110 && ! SIBLING_CALL_P (insn
))
4112 if (GET_CODE (insn
) == INSN
4113 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4114 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == CALL_INSN
4115 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4122 /* On some machines, a function with no call insns
4123 can run faster if it doesn't create its own register window.
4124 When output, the leaf function should use only the "output"
4125 registers. Ordinarily, the function would be compiled to use
4126 the "input" registers to find its arguments; it is a candidate
4127 for leaf treatment if it uses only the "input" registers.
4128 Leaf function treatment means renumbering so the function
4129 uses the "output" registers instead. */
4131 #ifdef LEAF_REGISTERS
4133 /* Return 1 if this function uses only the registers that can be
4134 safely renumbered. */
4137 only_leaf_regs_used ()
4140 char *permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4142 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4143 if ((regs_ever_live
[i
] || global_regs
[i
])
4144 && ! permitted_reg_in_leaf_functions
[i
])
4147 if (current_function_uses_pic_offset_table
4148 && pic_offset_table_rtx
!= 0
4149 && GET_CODE (pic_offset_table_rtx
) == REG
4150 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4156 /* Scan all instructions and renumber all registers into those
4157 available in leaf functions. */
4160 leaf_renumber_regs (first
)
4165 /* Renumber only the actual patterns.
4166 The reg-notes can contain frame pointer refs,
4167 and renumbering them could crash, and should not be needed. */
4168 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4170 leaf_renumber_regs_insn (PATTERN (insn
));
4171 for (insn
= current_function_epilogue_delay_list
;
4173 insn
= XEXP (insn
, 1))
4174 if (INSN_P (XEXP (insn
, 0)))
4175 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
4178 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4179 available in leaf functions. */
4182 leaf_renumber_regs_insn (in_rtx
)
4183 register rtx in_rtx
;
4186 register const char *format_ptr
;
4191 /* Renumber all input-registers into output-registers.
4192 renumbered_regs would be 1 for an output-register;
4195 if (GET_CODE (in_rtx
) == REG
)
4199 /* Don't renumber the same reg twice. */
4203 newreg
= REGNO (in_rtx
);
4204 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4205 to reach here as part of a REG_NOTE. */
4206 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4211 newreg
= LEAF_REG_REMAP (newreg
);
4214 regs_ever_live
[REGNO (in_rtx
)] = 0;
4215 regs_ever_live
[newreg
] = 1;
4216 REGNO (in_rtx
) = newreg
;
4220 if (INSN_P (in_rtx
))
4222 /* Inside a SEQUENCE, we find insns.
4223 Renumber just the patterns of these insns,
4224 just as we do for the top-level insns. */
4225 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4229 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4231 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4232 switch (*format_ptr
++)
4235 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4239 if (NULL
!= XVEC (in_rtx
, i
))
4241 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4242 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));