1 /* Match-and-simplify patterns for shared GENERIC and GIMPLE folding.
2 This file is consumed by genmatch which produces gimple-match.c
3 and generic-match.c from it.
5 Copyright (C) 2014-2015 Free Software Foundation, Inc.
6 Contributed by Richard Biener <rguenther@suse.de>
7 and Prathamesh Kulkarni <bilbotheelffriend@gmail.com>
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
26 /* Generic tree predicates we inherit. */
28 integer_onep integer_zerop integer_all_onesp integer_minus_onep
29 integer_each_onep integer_truep
30 real_zerop real_onep real_minus_onep
32 tree_expr_nonnegative_p)
35 (define_operator_list tcc_comparison
36 lt le eq ne ge gt unordered ordered unlt unle ungt unge uneq ltgt)
37 (define_operator_list inverted_tcc_comparison
38 ge gt ne eq lt le ordered unordered ge gt le lt ltgt uneq)
39 (define_operator_list inverted_tcc_comparison_with_nans
40 unge ungt ne eq unlt unle ordered unordered ge gt le lt ltgt uneq)
41 (define_operator_list swapped_tcc_comparison
42 gt ge eq ne le lt unordered ordered ungt unge unlt unle uneq ltgt)
43 (define_operator_list simple_comparison lt le eq ne ge gt)
44 (define_operator_list swapped_simple_comparison gt ge eq ne le lt)
46 (define_operator_list LOG BUILT_IN_LOGF BUILT_IN_LOG BUILT_IN_LOGL)
47 (define_operator_list EXP BUILT_IN_EXPF BUILT_IN_EXP BUILT_IN_EXPL)
48 (define_operator_list LOG2 BUILT_IN_LOG2F BUILT_IN_LOG2 BUILT_IN_LOG2L)
49 (define_operator_list EXP2 BUILT_IN_EXP2F BUILT_IN_EXP2 BUILT_IN_EXP2L)
50 (define_operator_list LOG10 BUILT_IN_LOG10F BUILT_IN_LOG10 BUILT_IN_LOG10L)
51 (define_operator_list EXP10 BUILT_IN_EXP10F BUILT_IN_EXP10 BUILT_IN_EXP10L)
52 (define_operator_list POW BUILT_IN_POWF BUILT_IN_POW BUILT_IN_POWL)
53 (define_operator_list POW10 BUILT_IN_POW10F BUILT_IN_POW10 BUILT_IN_POW10L)
54 (define_operator_list SQRT BUILT_IN_SQRTF BUILT_IN_SQRT BUILT_IN_SQRTL)
55 (define_operator_list CBRT BUILT_IN_CBRTF BUILT_IN_CBRT BUILT_IN_CBRTL)
58 /* Simplifications of operations with one constant operand and
59 simplifications to constants or single values. */
61 (for op (plus pointer_plus minus bit_ior bit_xor)
66 /* 0 +p index -> (type)index */
68 (pointer_plus integer_zerop @1)
69 (non_lvalue (convert @1)))
71 /* See if ARG1 is zero and X + ARG1 reduces to X.
72 Likewise if the operands are reversed. */
74 (plus:c @0 real_zerop@1)
75 (if (fold_real_zero_addition_p (type, @1, 0))
78 /* See if ARG1 is zero and X - ARG1 reduces to X. */
80 (minus @0 real_zerop@1)
81 (if (fold_real_zero_addition_p (type, @1, 1))
85 This is unsafe for certain floats even in non-IEEE formats.
86 In IEEE, it is unsafe because it does wrong for NaNs.
87 Also note that operand_equal_p is always false if an operand
91 (if (!FLOAT_TYPE_P (type) || !HONOR_NANS (type))
92 { build_zero_cst (type); }))
95 (mult @0 integer_zerop@1)
98 /* Maybe fold x * 0 to 0. The expressions aren't the same
99 when x is NaN, since x * 0 is also NaN. Nor are they the
100 same in modes with signed zeros, since multiplying a
101 negative value by 0 gives -0, not +0. */
103 (mult @0 real_zerop@1)
104 (if (!HONOR_NANS (type) && !HONOR_SIGNED_ZEROS (type))
107 /* In IEEE floating point, x*1 is not equivalent to x for snans.
108 Likewise for complex arithmetic with signed zeros. */
111 (if (!HONOR_SNANS (type)
112 && (!HONOR_SIGNED_ZEROS (type)
113 || !COMPLEX_FLOAT_TYPE_P (type)))
116 /* Transform x * -1.0 into -x. */
118 (mult @0 real_minus_onep)
119 (if (!HONOR_SNANS (type)
120 && (!HONOR_SIGNED_ZEROS (type)
121 || !COMPLEX_FLOAT_TYPE_P (type)))
124 /* Make sure to preserve divisions by zero. This is the reason why
125 we don't simplify x / x to 1 or 0 / x to 0. */
126 (for op (mult trunc_div ceil_div floor_div round_div exact_div)
132 (for div (trunc_div ceil_div floor_div round_div exact_div)
134 (div @0 integer_minus_onep@1)
135 (if (!TYPE_UNSIGNED (type))
138 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
139 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
142 (if ((INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
143 && TYPE_UNSIGNED (type))
146 /* Combine two successive divisions. Note that combining ceil_div
147 and floor_div is trickier and combining round_div even more so. */
148 (for div (trunc_div exact_div)
150 (div (div @0 INTEGER_CST@1) INTEGER_CST@2)
153 wide_int mul = wi::mul (@1, @2, TYPE_SIGN (type), &overflow_p);
156 (div @0 { wide_int_to_tree (type, mul); }))
158 && (TYPE_UNSIGNED (type)
159 || mul != wi::min_value (TYPE_PRECISION (type), SIGNED)))
160 { build_zero_cst (type); }))))
162 /* Optimize A / A to 1.0 if we don't care about
163 NaNs or Infinities. */
166 (if (FLOAT_TYPE_P (type)
167 && ! HONOR_NANS (type)
168 && ! HONOR_INFINITIES (type))
169 { build_one_cst (type); }))
171 /* Optimize -A / A to -1.0 if we don't care about
172 NaNs or Infinities. */
174 (rdiv:c @0 (negate @0))
175 (if (FLOAT_TYPE_P (type)
176 && ! HONOR_NANS (type)
177 && ! HONOR_INFINITIES (type))
178 { build_minus_one_cst (type); }))
180 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
183 (if (!HONOR_SNANS (type))
186 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
188 (rdiv @0 real_minus_onep)
189 (if (!HONOR_SNANS (type))
192 /* If ARG1 is a constant, we can convert this to a multiply by the
193 reciprocal. This does not have the same rounding properties,
194 so only do this if -freciprocal-math. We can actually
195 always safely do it if ARG1 is a power of two, but it's hard to
196 tell if it is or not in a portable manner. */
197 (for cst (REAL_CST COMPLEX_CST VECTOR_CST)
201 (if (flag_reciprocal_math
204 { tree tem = const_binop (RDIV_EXPR, type, build_one_cst (type), @1); }
206 (mult @0 { tem; } ))))
207 (if (cst != COMPLEX_CST)
208 (with { tree inverse = exact_inverse (type, @1); }
210 (mult @0 { inverse; } )))))))
212 /* Same applies to modulo operations, but fold is inconsistent here
213 and simplifies 0 % x to 0, only preserving literal 0 % 0. */
214 (for mod (ceil_mod floor_mod round_mod trunc_mod)
215 /* 0 % X is always zero. */
217 (mod integer_zerop@0 @1)
218 /* But not for 0 % 0 so that we can get the proper warnings and errors. */
219 (if (!integer_zerop (@1))
221 /* X % 1 is always zero. */
223 (mod @0 integer_onep)
224 { build_zero_cst (type); })
225 /* X % -1 is zero. */
227 (mod @0 integer_minus_onep@1)
228 (if (!TYPE_UNSIGNED (type))
229 { build_zero_cst (type); }))
230 /* (X % Y) % Y is just X % Y. */
232 (mod (mod@2 @0 @1) @1)
234 /* From extract_muldiv_1: (X * C1) % C2 is zero if C1 is a multiple of C2. */
236 (mod (mult @0 INTEGER_CST@1) INTEGER_CST@2)
237 (if (ANY_INTEGRAL_TYPE_P (type)
238 && TYPE_OVERFLOW_UNDEFINED (type)
239 && wi::multiple_of_p (@1, @2, TYPE_SIGN (type)))
240 { build_zero_cst (type); })))
242 /* X % -C is the same as X % C. */
244 (trunc_mod @0 INTEGER_CST@1)
245 (if (TYPE_SIGN (type) == SIGNED
246 && !TREE_OVERFLOW (@1)
248 && !TYPE_OVERFLOW_TRAPS (type)
249 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
250 && !sign_bit_p (@1, @1))
251 (trunc_mod @0 (negate @1))))
253 /* X % -Y is the same as X % Y. */
255 (trunc_mod @0 (convert? (negate @1)))
256 (if (!TYPE_UNSIGNED (type)
257 && !TYPE_OVERFLOW_TRAPS (type)
258 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
259 (trunc_mod @0 (convert @1))))
261 /* X - (X / Y) * Y is the same as X % Y. */
263 (minus (convert1? @0) (convert2? (mult (trunc_div @0 @1) @1)))
264 (if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
265 (trunc_mod (convert @0) (convert @1))))
267 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
268 i.e. "X % C" into "X & (C - 1)", if X and C are positive.
269 Also optimize A % (C << N) where C is a power of 2,
270 to A & ((C << N) - 1). */
271 (match (power_of_two_cand @1)
273 (match (power_of_two_cand @1)
274 (lshift INTEGER_CST@1 @2))
275 (for mod (trunc_mod floor_mod)
277 (mod @0 (convert?@3 (power_of_two_cand@1 @2)))
278 (if ((TYPE_UNSIGNED (type)
279 || tree_expr_nonnegative_p (@0))
280 && tree_nop_conversion_p (type, TREE_TYPE (@3))
281 && integer_pow2p (@2) && tree_int_cst_sgn (@2) > 0)
282 (bit_and @0 (convert (minus @1 { build_int_cst (TREE_TYPE (@1), 1); }))))))
284 /* X % Y is smaller than Y. */
287 (cmp (trunc_mod @0 @1) @1)
288 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
289 { constant_boolean_node (cmp == LT_EXPR, type); })))
292 (cmp @1 (trunc_mod @0 @1))
293 (if (TYPE_UNSIGNED (TREE_TYPE (@0)))
294 { constant_boolean_node (cmp == GT_EXPR, type); })))
298 (bit_ior @0 integer_all_onesp@1)
303 (bit_and @0 integer_zerop@1)
309 (for op (bit_ior bit_xor plus)
311 (op:c (convert? @0) (convert? (bit_not @0)))
312 (convert { build_all_ones_cst (TREE_TYPE (@0)); })))
317 { build_zero_cst (type); })
319 /* Canonicalize X ^ ~0 to ~X. */
321 (bit_xor @0 integer_all_onesp@1)
326 (bit_and @0 integer_all_onesp)
329 /* x & x -> x, x | x -> x */
330 (for bitop (bit_and bit_ior)
335 /* x + (x & 1) -> (x + 1) & ~1 */
337 (plus:c @0 (bit_and:s @0 integer_onep@1))
338 (bit_and (plus @0 @1) (bit_not @1)))
340 /* x & ~(x & y) -> x & ~y */
341 /* x | ~(x | y) -> x | ~y */
342 (for bitop (bit_and bit_ior)
344 (bitop:c @0 (bit_not (bitop:cs @0 @1)))
345 (bitop @0 (bit_not @1))))
347 /* (x | y) & ~x -> y & ~x */
348 /* (x & y) | ~x -> y | ~x */
349 (for bitop (bit_and bit_ior)
350 rbitop (bit_ior bit_and)
352 (bitop:c (rbitop:c @0 @1) (bit_not@2 @0))
355 /* (x & y) ^ (x | y) -> x ^ y */
357 (bit_xor:c (bit_and @0 @1) (bit_ior @0 @1))
360 /* (x ^ y) ^ (x | y) -> x & y */
362 (bit_xor:c (bit_xor @0 @1) (bit_ior @0 @1))
365 /* (x & y) + (x ^ y) -> x | y */
366 /* (x & y) | (x ^ y) -> x | y */
367 /* (x & y) ^ (x ^ y) -> x | y */
368 (for op (plus bit_ior bit_xor)
370 (op:c (bit_and @0 @1) (bit_xor @0 @1))
373 /* (x & y) + (x | y) -> x + y */
375 (plus:c (bit_and @0 @1) (bit_ior @0 @1))
378 /* (x + y) - (x | y) -> x & y */
380 (minus (plus @0 @1) (bit_ior @0 @1))
381 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
382 && !TYPE_SATURATING (type))
385 /* (x + y) - (x & y) -> x | y */
387 (minus (plus @0 @1) (bit_and @0 @1))
388 (if (!TYPE_OVERFLOW_SANITIZED (type) && !TYPE_OVERFLOW_TRAPS (type)
389 && !TYPE_SATURATING (type))
392 /* (x | y) - (x ^ y) -> x & y */
394 (minus (bit_ior @0 @1) (bit_xor @0 @1))
397 /* (x | y) - (x & y) -> x ^ y */
399 (minus (bit_ior @0 @1) (bit_and @0 @1))
402 /* (x | y) & ~(x & y) -> x ^ y */
404 (bit_and:c (bit_ior @0 @1) (bit_not (bit_and @0 @1)))
407 /* (x | y) & (~x ^ y) -> x & y */
409 (bit_and:c (bit_ior:c @0 @1) (bit_xor:c @1 (bit_not @0)))
412 /* ~x & ~y -> ~(x | y)
413 ~x | ~y -> ~(x & y) */
414 (for op (bit_and bit_ior)
415 rop (bit_ior bit_and)
417 (op (convert1? (bit_not @0)) (convert2? (bit_not @1)))
418 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
419 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
420 (bit_not (rop (convert @0) (convert @1))))))
422 /* If we are XORing or adding two BIT_AND_EXPR's, both of which are and'ing
423 with a constant, and the two constants have no bits in common,
424 we should treat this as a BIT_IOR_EXPR since this may produce more
426 (for op (bit_xor plus)
428 (op (convert1? (bit_and@4 @0 INTEGER_CST@1))
429 (convert2? (bit_and@5 @2 INTEGER_CST@3)))
430 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
431 && tree_nop_conversion_p (type, TREE_TYPE (@2))
432 && wi::bit_and (@1, @3) == 0)
433 (bit_ior (convert @4) (convert @5)))))
435 /* (X | Y) ^ X -> Y & ~ X*/
437 (bit_xor:c (convert? (bit_ior:c @0 @1)) (convert? @0))
438 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
439 (convert (bit_and @1 (bit_not @0)))))
441 /* Convert ~X ^ ~Y to X ^ Y. */
443 (bit_xor (convert1? (bit_not @0)) (convert2? (bit_not @1)))
444 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
445 && tree_nop_conversion_p (type, TREE_TYPE (@1)))
446 (bit_xor (convert @0) (convert @1))))
448 /* Convert ~X ^ C to X ^ ~C. */
450 (bit_xor (convert? (bit_not @0)) INTEGER_CST@1)
451 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
452 (bit_xor (convert @0) (bit_not @1))))
454 /* Fold (X & Y) ^ Y as ~X & Y. */
456 (bit_xor:c (bit_and:c @0 @1) @1)
457 (bit_and (bit_not @0) @1))
459 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
460 operands are another bit-wise operation with a common input. If so,
461 distribute the bit operations to save an operation and possibly two if
462 constants are involved. For example, convert
463 (A | B) & (A | C) into A | (B & C)
464 Further simplification will occur if B and C are constants. */
465 (for op (bit_and bit_ior)
466 rop (bit_ior bit_and)
468 (op (convert? (rop:c @0 @1)) (convert? (rop @0 @2)))
469 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
470 (rop (convert @0) (op (convert @1) (convert @2))))))
480 (abs tree_expr_nonnegative_p@0)
483 /* A - B -> A + (-B) if B is easily negatable. This just covers
484 very few cases of "easily negatable", effectively inlining negate_expr_p. */
486 (minus @0 INTEGER_CST@1)
487 (if ((INTEGRAL_TYPE_P (type)
488 && TYPE_OVERFLOW_WRAPS (type))
489 || (!TYPE_OVERFLOW_SANITIZED (type)
490 && may_negate_without_overflow_p (@1)))
491 (plus @0 (negate @1))))
493 (minus @0 REAL_CST@1)
494 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
495 (plus @0 (negate @1))))
497 (minus @0 VECTOR_CST@1)
498 (if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_WRAPS (type))
499 (plus @0 (negate @1))))
502 /* Try to fold (type) X op CST -> (type) (X op ((type-x) CST))
504 For bitwise binary operations apply operand conversions to the
505 binary operation result instead of to the operands. This allows
506 to combine successive conversions and bitwise binary operations.
507 We combine the above two cases by using a conditional convert. */
508 (for bitop (bit_and bit_ior bit_xor)
510 (bitop (convert @0) (convert? @1))
511 (if (((TREE_CODE (@1) == INTEGER_CST
512 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
513 && int_fits_type_p (@1, TREE_TYPE (@0)))
514 || types_match (@0, @1))
515 /* ??? This transform conflicts with fold-const.c doing
516 Convert (T)(x & c) into (T)x & (T)c, if c is an integer
517 constants (if x has signed type, the sign bit cannot be set
518 in c). This folds extension into the BIT_AND_EXPR.
519 Restrict it to GIMPLE to avoid endless recursions. */
520 && (bitop != BIT_AND_EXPR || GIMPLE)
521 && (/* That's a good idea if the conversion widens the operand, thus
522 after hoisting the conversion the operation will be narrower. */
523 TYPE_PRECISION (TREE_TYPE (@0)) < TYPE_PRECISION (type)
524 /* It's also a good idea if the conversion is to a non-integer
526 || GET_MODE_CLASS (TYPE_MODE (type)) != MODE_INT
527 /* Or if the precision of TO is not the same as the precision
529 || TYPE_PRECISION (type) != GET_MODE_PRECISION (TYPE_MODE (type))))
530 (convert (bitop @0 (convert @1))))))
532 (for bitop (bit_and bit_ior)
533 rbitop (bit_ior bit_and)
534 /* (x | y) & x -> x */
535 /* (x & y) | x -> x */
537 (bitop:c (rbitop:c @0 @1) @0)
539 /* (~x | y) & x -> x & y */
540 /* (~x & y) | x -> x | y */
542 (bitop:c (rbitop:c (bit_not @0) @1) @0)
545 /* Simplify (A & B) OP0 (C & B) to (A OP0 C) & B. */
546 (for bitop (bit_and bit_ior bit_xor)
548 (bitop (bit_and:c @0 @1) (bit_and @2 @1))
549 (bit_and (bitop @0 @2) @1)))
551 /* (x | CST1) & CST2 -> (x & CST2) | (CST1 & CST2) */
553 (bit_and (bit_ior @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
554 (bit_ior (bit_and @0 @2) (bit_and @1 @2)))
556 /* Combine successive equal operations with constants. */
557 (for bitop (bit_and bit_ior bit_xor)
559 (bitop (bitop @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
560 (bitop @0 (bitop @1 @2))))
562 /* Try simple folding for X op !X, and X op X with the help
563 of the truth_valued_p and logical_inverted_value predicates. */
564 (match truth_valued_p
566 (if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1)))
567 (for op (tcc_comparison truth_and truth_andif truth_or truth_orif truth_xor)
568 (match truth_valued_p
570 (match truth_valued_p
573 (match (logical_inverted_value @0)
574 (bit_not truth_valued_p@0))
575 (match (logical_inverted_value @0)
576 (eq @0 integer_zerop))
577 (match (logical_inverted_value @0)
578 (ne truth_valued_p@0 integer_truep))
579 (match (logical_inverted_value @0)
580 (bit_xor truth_valued_p@0 integer_truep))
584 (bit_and:c @0 (logical_inverted_value @0))
585 { build_zero_cst (type); })
586 /* X | !X and X ^ !X -> 1, , if X is truth-valued. */
587 (for op (bit_ior bit_xor)
589 (op:c truth_valued_p@0 (logical_inverted_value @0))
590 { constant_boolean_node (true, type); }))
592 /* If arg1 and arg2 are booleans (or any single bit type)
593 then try to simplify:
600 But only do this if our result feeds into a comparison as
601 this transformation is not always a win, particularly on
602 targets with and-not instructions.
603 -> simplify_bitwise_binary_boolean */
605 (ne (bit_and:c (bit_not @0) @1) integer_zerop)
606 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
607 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
610 (ne (bit_ior:c (bit_not @0) @1) integer_zerop)
611 (if (INTEGRAL_TYPE_P (TREE_TYPE (@1))
612 && TYPE_PRECISION (TREE_TYPE (@1)) == 1)
617 (bit_not (bit_not @0))
620 /* Convert ~ (-A) to A - 1. */
622 (bit_not (convert? (negate @0)))
623 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
624 (convert (minus @0 { build_each_one_cst (TREE_TYPE (@0)); }))))
626 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
628 (bit_not (convert? (minus @0 integer_each_onep)))
629 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
630 (convert (negate @0))))
632 (bit_not (convert? (plus @0 integer_all_onesp)))
633 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
634 (convert (negate @0))))
636 /* Part of convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
638 (bit_not (convert? (bit_xor @0 INTEGER_CST@1)))
639 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
640 (convert (bit_xor @0 (bit_not @1)))))
642 (bit_not (convert? (bit_xor:c (bit_not @0) @1)))
643 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
644 (convert (bit_xor @0 @1))))
646 /* (x & ~m) | (y & m) -> ((x ^ y) & m) ^ x */
648 (bit_ior:c (bit_and:cs @0 (bit_not @2)) (bit_and:cs @1 @2))
649 (bit_xor (bit_and (bit_xor @0 @1) @2) @0))
652 /* Associate (p +p off1) +p off2 as (p +p (off1 + off2)). */
654 (pointer_plus (pointer_plus:s @0 @1) @3)
655 (pointer_plus @0 (plus @1 @3)))
661 tem4 = (unsigned long) tem3;
666 (pointer_plus @0 (convert?@2 (minus@3 (convert @1) (convert @0))))
667 /* Conditionally look through a sign-changing conversion. */
668 (if (TYPE_PRECISION (TREE_TYPE (@2)) == TYPE_PRECISION (TREE_TYPE (@3))
669 && ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@1)))
670 || (GENERIC && type == TREE_TYPE (@1))))
674 tem = (sizetype) ptr;
678 and produce the simpler and easier to analyze with respect to alignment
679 ... = ptr & ~algn; */
681 (pointer_plus @0 (negate (bit_and (convert @0) INTEGER_CST@1)))
682 (with { tree algn = wide_int_to_tree (TREE_TYPE (@0), wi::bit_not (@1)); }
683 (bit_and @0 { algn; })))
685 /* Try folding difference of addresses. */
687 (minus (convert ADDR_EXPR@0) (convert @1))
688 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
689 (with { HOST_WIDE_INT diff; }
690 (if (ptr_difference_const (@0, @1, &diff))
691 { build_int_cst_type (type, diff); }))))
693 (minus (convert @0) (convert ADDR_EXPR@1))
694 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
695 (with { HOST_WIDE_INT diff; }
696 (if (ptr_difference_const (@0, @1, &diff))
697 { build_int_cst_type (type, diff); }))))
699 /* If arg0 is derived from the address of an object or function, we may
700 be able to fold this expression using the object or function's
703 (bit_and (convert? @0) INTEGER_CST@1)
704 (if (POINTER_TYPE_P (TREE_TYPE (@0))
705 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
709 unsigned HOST_WIDE_INT bitpos;
710 get_pointer_alignment_1 (@0, &align, &bitpos);
712 (if (wi::ltu_p (@1, align / BITS_PER_UNIT))
713 { wide_int_to_tree (type, wi::bit_and (@1, bitpos / BITS_PER_UNIT)); }))))
716 /* We can't reassociate at all for saturating types. */
717 (if (!TYPE_SATURATING (type))
719 /* Contract negates. */
720 /* A + (-B) -> A - B */
722 (plus:c (convert1? @0) (convert2? (negate @1)))
723 /* Apply STRIP_NOPS on @0 and the negate. */
724 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
725 && tree_nop_conversion_p (type, TREE_TYPE (@1))
726 && !TYPE_OVERFLOW_SANITIZED (type))
727 (minus (convert @0) (convert @1))))
728 /* A - (-B) -> A + B */
730 (minus (convert1? @0) (convert2? (negate @1)))
731 (if (tree_nop_conversion_p (type, TREE_TYPE (@0))
732 && tree_nop_conversion_p (type, TREE_TYPE (@1))
733 && !TYPE_OVERFLOW_SANITIZED (type))
734 (plus (convert @0) (convert @1))))
737 (negate (convert? (negate @1)))
738 (if (tree_nop_conversion_p (type, TREE_TYPE (@1))
739 && !TYPE_OVERFLOW_SANITIZED (type))
742 /* We can't reassociate floating-point unless -fassociative-math
743 or fixed-point plus or minus because of saturation to +-Inf. */
744 (if ((!FLOAT_TYPE_P (type) || flag_associative_math)
745 && !FIXED_POINT_TYPE_P (type))
747 /* Match patterns that allow contracting a plus-minus pair
748 irrespective of overflow issues. */
749 /* (A +- B) - A -> +- B */
750 /* (A +- B) -+ B -> A */
751 /* A - (A +- B) -> -+ B */
752 /* A +- (B -+ A) -> +- B */
754 (minus (plus:c @0 @1) @0)
757 (minus (minus @0 @1) @0)
760 (plus:c (minus @0 @1) @1)
763 (minus @0 (plus:c @0 @1))
766 (minus @0 (minus @0 @1))
769 /* (A +- CST) +- CST -> A + CST */
770 (for outer_op (plus minus)
771 (for inner_op (plus minus)
773 (outer_op (inner_op @0 CONSTANT_CLASS_P@1) CONSTANT_CLASS_P@2)
774 /* If the constant operation overflows we cannot do the transform
775 as we would introduce undefined overflow, for example
776 with (a - 1) + INT_MIN. */
777 (with { tree cst = fold_binary (outer_op == inner_op
778 ? PLUS_EXPR : MINUS_EXPR, type, @1, @2); }
779 (if (cst && !TREE_OVERFLOW (cst))
780 (inner_op @0 { cst; } ))))))
782 /* (CST - A) +- CST -> CST - A */
783 (for outer_op (plus minus)
785 (outer_op (minus CONSTANT_CLASS_P@1 @0) CONSTANT_CLASS_P@2)
786 (with { tree cst = fold_binary (outer_op, type, @1, @2); }
787 (if (cst && !TREE_OVERFLOW (cst))
788 (minus { cst; } @0)))))
792 (plus:c (bit_not @0) @0)
793 (if (!TYPE_OVERFLOW_TRAPS (type))
794 { build_all_ones_cst (type); }))
798 (plus (convert? (bit_not @0)) integer_each_onep)
799 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
800 (negate (convert @0))))
804 (minus (convert? (negate @0)) integer_each_onep)
805 (if (!TYPE_OVERFLOW_TRAPS (type)
806 && tree_nop_conversion_p (type, TREE_TYPE (@0)))
807 (bit_not (convert @0))))
811 (minus integer_all_onesp @0)
814 /* (T)(P + A) - (T)P -> (T) A */
815 (for add (plus pointer_plus)
817 (minus (convert (add @0 @1))
819 (if (element_precision (type) <= element_precision (TREE_TYPE (@1))
820 /* For integer types, if A has a smaller type
821 than T the result depends on the possible
823 E.g. T=size_t, A=(unsigned)429497295, P>0.
824 However, if an overflow in P + A would cause
825 undefined behavior, we can assume that there
827 || (INTEGRAL_TYPE_P (TREE_TYPE (@0))
828 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
829 /* For pointer types, if the conversion of A to the
830 final type requires a sign- or zero-extension,
831 then we have to punt - it is not defined which
833 || (POINTER_TYPE_P (TREE_TYPE (@0))
834 && TREE_CODE (@1) == INTEGER_CST
835 && tree_int_cst_sign_bit (@1) == 0))
839 /* Simplifications of MIN_EXPR and MAX_EXPR. */
841 (for minmax (min max)
847 (if (INTEGRAL_TYPE_P (type)
848 && TYPE_MIN_VALUE (type)
849 && operand_equal_p (@1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
853 (if (INTEGRAL_TYPE_P (type)
854 && TYPE_MAX_VALUE (type)
855 && operand_equal_p (@1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
859 /* Simplifications of shift and rotates. */
861 (for rotate (lrotate rrotate)
863 (rotate integer_all_onesp@0 @1)
866 /* Optimize -1 >> x for arithmetic right shifts. */
868 (rshift integer_all_onesp@0 @1)
869 (if (!TYPE_UNSIGNED (type)
870 && tree_expr_nonnegative_p (@1))
873 (for shiftrotate (lrotate rrotate lshift rshift)
875 (shiftrotate @0 integer_zerop)
878 (shiftrotate integer_zerop@0 @1)
880 /* Prefer vector1 << scalar to vector1 << vector2
881 if vector2 is uniform. */
882 (for vec (VECTOR_CST CONSTRUCTOR)
884 (shiftrotate @0 vec@1)
885 (with { tree tem = uniform_vector_p (@1); }
887 (shiftrotate @0 { tem; }))))))
889 /* Rewrite an LROTATE_EXPR by a constant into an
890 RROTATE_EXPR by a new constant. */
892 (lrotate @0 INTEGER_CST@1)
893 (rrotate @0 { fold_binary (MINUS_EXPR, TREE_TYPE (@1),
894 build_int_cst (TREE_TYPE (@1),
895 element_precision (type)), @1); }))
897 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
898 (for op (lrotate rrotate rshift lshift)
900 (op (op @0 INTEGER_CST@1) INTEGER_CST@2)
901 (with { unsigned int prec = element_precision (type); }
902 (if (wi::ge_p (@1, 0, TYPE_SIGN (TREE_TYPE (@1)))
903 && wi::lt_p (@1, prec, TYPE_SIGN (TREE_TYPE (@1)))
904 && wi::ge_p (@2, 0, TYPE_SIGN (TREE_TYPE (@2)))
905 && wi::lt_p (@2, prec, TYPE_SIGN (TREE_TYPE (@2))))
906 (with { unsigned int low = wi::add (@1, @2).to_uhwi (); }
907 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
908 being well defined. */
910 (if (op == LROTATE_EXPR || op == RROTATE_EXPR)
911 (op @0 { build_int_cst (TREE_TYPE (@1), low % prec); }))
912 (if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
913 { build_zero_cst (type); })
914 (op @0 { build_int_cst (TREE_TYPE (@1), prec - 1); }))
915 (op @0 { build_int_cst (TREE_TYPE (@1), low); }))))))
918 /* ((1 << A) & 1) != 0 -> A == 0
919 ((1 << A) & 1) == 0 -> A != 0 */
923 (cmp (bit_and (lshift integer_onep @0) integer_onep) integer_zerop)
924 (icmp @0 { build_zero_cst (TREE_TYPE (@0)); })))
926 /* (CST1 << A) == CST2 -> A == ctz (CST2) - ctz (CST1)
927 (CST1 << A) != CST2 -> A != ctz (CST2) - ctz (CST1)
931 (cmp (lshift INTEGER_CST@0 @1) INTEGER_CST@2)
932 (with { int cand = wi::ctz (@2) - wi::ctz (@0); }
934 || (!integer_zerop (@2)
935 && wi::ne_p (wi::lshift (@0, cand), @2)))
936 { constant_boolean_node (cmp == NE_EXPR, type); })
937 (if (!integer_zerop (@2)
938 && wi::eq_p (wi::lshift (@0, cand), @2))
939 (cmp @1 { build_int_cst (TREE_TYPE (@1), cand); })))))
941 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
942 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
943 if the new mask might be further optimized. */
944 (for shift (lshift rshift)
946 (bit_and (convert?:s@4 (shift:s@5 (convert1?@3 @0) INTEGER_CST@1))
948 (if (tree_nop_conversion_p (TREE_TYPE (@4), TREE_TYPE (@5))
949 && TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT
950 && tree_fits_uhwi_p (@1)
951 && tree_to_uhwi (@1) > 0
952 && tree_to_uhwi (@1) < TYPE_PRECISION (type))
955 unsigned int shiftc = tree_to_uhwi (@1);
956 unsigned HOST_WIDE_INT mask = TREE_INT_CST_LOW (@2);
957 unsigned HOST_WIDE_INT newmask, zerobits = 0;
958 tree shift_type = TREE_TYPE (@3);
961 if (shift == LSHIFT_EXPR)
962 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
963 else if (shift == RSHIFT_EXPR
964 && (TYPE_PRECISION (shift_type)
965 == GET_MODE_PRECISION (TYPE_MODE (shift_type))))
967 prec = TYPE_PRECISION (TREE_TYPE (@3));
969 /* See if more bits can be proven as zero because of
972 && TYPE_UNSIGNED (TREE_TYPE (@0)))
974 tree inner_type = TREE_TYPE (@0);
975 if ((TYPE_PRECISION (inner_type)
976 == GET_MODE_PRECISION (TYPE_MODE (inner_type)))
977 && TYPE_PRECISION (inner_type) < prec)
979 prec = TYPE_PRECISION (inner_type);
980 /* See if we can shorten the right shift. */
982 shift_type = inner_type;
983 /* Otherwise X >> C1 is all zeros, so we'll optimize
984 it into (X, 0) later on by making sure zerobits
988 zerobits = ~(unsigned HOST_WIDE_INT) 0;
991 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
992 zerobits <<= prec - shiftc;
994 /* For arithmetic shift if sign bit could be set, zerobits
995 can contain actually sign bits, so no transformation is
996 possible, unless MASK masks them all away. In that
997 case the shift needs to be converted into logical shift. */
998 if (!TYPE_UNSIGNED (TREE_TYPE (@3))
999 && prec == TYPE_PRECISION (TREE_TYPE (@3)))
1001 if ((mask & zerobits) == 0)
1002 shift_type = unsigned_type_for (TREE_TYPE (@3));
1008 /* ((X << 16) & 0xff00) is (X, 0). */
1009 (if ((mask & zerobits) == mask)
1010 { build_int_cst (type, 0); })
1011 (with { newmask = mask | zerobits; }
1012 (if (newmask != mask && (newmask & (newmask + 1)) == 0)
1015 /* Only do the transformation if NEWMASK is some integer
1017 for (prec = BITS_PER_UNIT;
1018 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
1019 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
1022 (if (prec < HOST_BITS_PER_WIDE_INT
1023 || newmask == ~(unsigned HOST_WIDE_INT) 0)
1025 { tree newmaskt = build_int_cst_type (TREE_TYPE (@2), newmask); }
1026 (if (!tree_int_cst_equal (newmaskt, @2))
1027 (if (shift_type != TREE_TYPE (@3))
1028 (bit_and (convert (shift:shift_type (convert @3) @1)) { newmaskt; }))
1029 (if (shift_type == TREE_TYPE (@3))
1030 (bit_and @4 { newmaskt; }))))))))))))
1032 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
1033 (X & C2) >> C1 into (X >> C1) & (C2 >> C1). */
1034 (for shift (lshift rshift)
1036 (shift (convert? (bit_and @0 INTEGER_CST@2)) INTEGER_CST@1)
1037 (if (tree_nop_conversion_p (type, TREE_TYPE (@0)))
1038 (with { tree mask = int_const_binop (shift, fold_convert (type, @2), @1); }
1039 (bit_and (shift (convert @0) @1) { mask; })))))
1042 /* Simplifications of conversions. */
1044 /* Basic strip-useless-type-conversions / strip_nops. */
1045 (for cvt (convert view_convert float fix_trunc)
1048 (if ((GIMPLE && useless_type_conversion_p (type, TREE_TYPE (@0)))
1049 || (GENERIC && type == TREE_TYPE (@0)))
1052 /* Contract view-conversions. */
1054 (view_convert (view_convert @0))
1057 /* For integral conversions with the same precision or pointer
1058 conversions use a NOP_EXPR instead. */
1061 (if ((INTEGRAL_TYPE_P (type) || POINTER_TYPE_P (type))
1062 && (INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1063 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (@0)))
1066 /* Strip inner integral conversions that do not change precision or size. */
1068 (view_convert (convert@0 @1))
1069 (if ((INTEGRAL_TYPE_P (TREE_TYPE (@0)) || POINTER_TYPE_P (TREE_TYPE (@0)))
1070 && (INTEGRAL_TYPE_P (TREE_TYPE (@1)) || POINTER_TYPE_P (TREE_TYPE (@1)))
1071 && (TYPE_PRECISION (TREE_TYPE (@0)) == TYPE_PRECISION (TREE_TYPE (@1)))
1072 && (TYPE_SIZE (TREE_TYPE (@0)) == TYPE_SIZE (TREE_TYPE (@1))))
1075 /* Re-association barriers around constants and other re-association
1076 barriers can be removed. */
1078 (paren CONSTANT_CLASS_P@0)
1081 (paren (paren@1 @0))
1084 /* Handle cases of two conversions in a row. */
1085 (for ocvt (convert float fix_trunc)
1086 (for icvt (convert float)
1091 tree inside_type = TREE_TYPE (@0);
1092 tree inter_type = TREE_TYPE (@1);
1093 int inside_int = INTEGRAL_TYPE_P (inside_type);
1094 int inside_ptr = POINTER_TYPE_P (inside_type);
1095 int inside_float = FLOAT_TYPE_P (inside_type);
1096 int inside_vec = VECTOR_TYPE_P (inside_type);
1097 unsigned int inside_prec = TYPE_PRECISION (inside_type);
1098 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
1099 int inter_int = INTEGRAL_TYPE_P (inter_type);
1100 int inter_ptr = POINTER_TYPE_P (inter_type);
1101 int inter_float = FLOAT_TYPE_P (inter_type);
1102 int inter_vec = VECTOR_TYPE_P (inter_type);
1103 unsigned int inter_prec = TYPE_PRECISION (inter_type);
1104 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
1105 int final_int = INTEGRAL_TYPE_P (type);
1106 int final_ptr = POINTER_TYPE_P (type);
1107 int final_float = FLOAT_TYPE_P (type);
1108 int final_vec = VECTOR_TYPE_P (type);
1109 unsigned int final_prec = TYPE_PRECISION (type);
1110 int final_unsignedp = TYPE_UNSIGNED (type);
1112 /* In addition to the cases of two conversions in a row
1113 handled below, if we are converting something to its own
1114 type via an object of identical or wider precision, neither
1115 conversion is needed. */
1116 (if (((GIMPLE && useless_type_conversion_p (type, inside_type))
1118 && TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (inside_type)))
1119 && (((inter_int || inter_ptr) && final_int)
1120 || (inter_float && final_float))
1121 && inter_prec >= final_prec)
1124 /* Likewise, if the intermediate and initial types are either both
1125 float or both integer, we don't need the middle conversion if the
1126 former is wider than the latter and doesn't change the signedness
1127 (for integers). Avoid this if the final type is a pointer since
1128 then we sometimes need the middle conversion. Likewise if the
1129 final type has a precision not equal to the size of its mode. */
1130 (if (((inter_int && inside_int) || (inter_float && inside_float))
1131 && (final_int || final_float)
1132 && inter_prec >= inside_prec
1133 && (inter_float || inter_unsignedp == inside_unsignedp)
1134 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1135 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1138 /* If we have a sign-extension of a zero-extended value, we can
1139 replace that by a single zero-extension. Likewise if the
1140 final conversion does not change precision we can drop the
1141 intermediate conversion. */
1142 (if (inside_int && inter_int && final_int
1143 && ((inside_prec < inter_prec && inter_prec < final_prec
1144 && inside_unsignedp && !inter_unsignedp)
1145 || final_prec == inter_prec))
1148 /* Two conversions in a row are not needed unless:
1149 - some conversion is floating-point (overstrict for now), or
1150 - some conversion is a vector (overstrict for now), or
1151 - the intermediate type is narrower than both initial and
1153 - the intermediate type and innermost type differ in signedness,
1154 and the outermost type is wider than the intermediate, or
1155 - the initial type is a pointer type and the precisions of the
1156 intermediate and final types differ, or
1157 - the final type is a pointer type and the precisions of the
1158 initial and intermediate types differ. */
1159 (if (! inside_float && ! inter_float && ! final_float
1160 && ! inside_vec && ! inter_vec && ! final_vec
1161 && (inter_prec >= inside_prec || inter_prec >= final_prec)
1162 && ! (inside_int && inter_int
1163 && inter_unsignedp != inside_unsignedp
1164 && inter_prec < final_prec)
1165 && ((inter_unsignedp && inter_prec > inside_prec)
1166 == (final_unsignedp && final_prec > inter_prec))
1167 && ! (inside_ptr && inter_prec != final_prec)
1168 && ! (final_ptr && inside_prec != inter_prec)
1169 && ! (final_prec != GET_MODE_PRECISION (TYPE_MODE (type))
1170 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
1173 /* A truncation to an unsigned type (a zero-extension) should be
1174 canonicalized as bitwise and of a mask. */
1175 (if (final_int && inter_int && inside_int
1176 && final_prec == inside_prec
1177 && final_prec > inter_prec
1179 (convert (bit_and @0 { wide_int_to_tree
1181 wi::mask (inter_prec, false,
1182 TYPE_PRECISION (inside_type))); })))
1184 /* If we are converting an integer to a floating-point that can
1185 represent it exactly and back to an integer, we can skip the
1186 floating-point conversion. */
1187 (if (GIMPLE /* PR66211 */
1188 && inside_int && inter_float && final_int &&
1189 (unsigned) significand_size (TYPE_MODE (inter_type))
1190 >= inside_prec - !inside_unsignedp)
1193 /* If we have a narrowing conversion to an integral type that is fed by a
1194 BIT_AND_EXPR, we might be able to remove the BIT_AND_EXPR if it merely
1195 masks off bits outside the final type (and nothing else). */
1197 (convert (bit_and @0 INTEGER_CST@1))
1198 (if (INTEGRAL_TYPE_P (type)
1199 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1200 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (@0))
1201 && operand_equal_p (@1, build_low_bits_mask (TREE_TYPE (@1),
1202 TYPE_PRECISION (type)), 0))
1206 /* (X /[ex] A) * A -> X. */
1208 (mult (convert? (exact_div @0 @1)) @1)
1209 /* Look through a sign-changing conversion. */
1212 /* Canonicalization of binary operations. */
1214 /* Convert X + -C into X - C. */
1216 (plus @0 REAL_CST@1)
1217 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1218 (with { tree tem = fold_unary (NEGATE_EXPR, type, @1); }
1219 (if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1220 (minus @0 { tem; })))))
1222 /* Convert x+x into x*2.0. */
1225 (if (SCALAR_FLOAT_TYPE_P (type))
1226 (mult @0 { build_real (type, dconst2); })))
1229 (minus integer_zerop @1)
1232 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
1233 ARG0 is zero and X + ARG0 reduces to X, since that would mean
1234 (-ARG1 + ARG0) reduces to -ARG1. */
1236 (minus real_zerop@0 @1)
1237 (if (fold_real_zero_addition_p (type, @0, 0))
1240 /* Transform x * -1 into -x. */
1242 (mult @0 integer_minus_onep)
1245 /* COMPLEX_EXPR and REALPART/IMAGPART_EXPR cancellations. */
1247 (complex (realpart @0) (imagpart @0))
1250 (realpart (complex @0 @1))
1253 (imagpart (complex @0 @1))
1257 /* BSWAP simplifications, transforms checked by gcc.dg/builtin-bswap-8.c. */
1258 (for bswap (BUILT_IN_BSWAP16 BUILT_IN_BSWAP32 BUILT_IN_BSWAP64)
1263 (bswap (bit_not (bswap @0)))
1265 (for bitop (bit_xor bit_ior bit_and)
1267 (bswap (bitop:c (bswap @0) @1))
1268 (bitop @0 (bswap @1)))))
1271 /* Combine COND_EXPRs and VEC_COND_EXPRs. */
1273 /* Simplify constant conditions.
1274 Only optimize constant conditions when the selected branch
1275 has the same type as the COND_EXPR. This avoids optimizing
1276 away "c ? x : throw", where the throw has a void type.
1277 Note that we cannot throw away the fold-const.c variant nor
1278 this one as we depend on doing this transform before possibly
1279 A ? B : B -> B triggers and the fold-const.c one can optimize
1280 0 ? A : B to B even if A has side-effects. Something
1281 genmatch cannot handle. */
1283 (cond INTEGER_CST@0 @1 @2)
1284 (if (integer_zerop (@0)
1285 && (!VOID_TYPE_P (TREE_TYPE (@2))
1286 || VOID_TYPE_P (type)))
1288 (if (!integer_zerop (@0)
1289 && (!VOID_TYPE_P (TREE_TYPE (@1))
1290 || VOID_TYPE_P (type)))
1293 (vec_cond VECTOR_CST@0 @1 @2)
1294 (if (integer_all_onesp (@0))
1296 (if (integer_zerop (@0))
1299 (for cnd (cond vec_cond)
1300 /* A ? B : (A ? X : C) -> A ? B : C. */
1302 (cnd @0 (cnd @0 @1 @2) @3)
1305 (cnd @0 @1 (cnd @0 @2 @3))
1308 /* A ? B : B -> B. */
1313 /* !A ? B : C -> A ? C : B. */
1315 (cnd (logical_inverted_value truth_valued_p@0) @1 @2)
1318 /* A + (B vcmp C ? 1 : 0) -> A - (B vcmp C), since vector comparisons
1319 return all-1 or all-0 results. */
1320 /* ??? We could instead convert all instances of the vec_cond to negate,
1321 but that isn't necessarily a win on its own. */
1323 (plus:c @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1324 (if (VECTOR_TYPE_P (type)
1325 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1326 && (TYPE_MODE (TREE_TYPE (type))
1327 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1328 (minus @3 (view_convert @0))))
1330 /* ... likewise A - (B vcmp C ? 1 : 0) -> A + (B vcmp C). */
1332 (minus @3 (view_convert? (vec_cond @0 integer_each_onep@1 integer_zerop@2)))
1333 (if (VECTOR_TYPE_P (type)
1334 && TYPE_VECTOR_SUBPARTS (type) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (@0))
1335 && (TYPE_MODE (TREE_TYPE (type))
1336 == TYPE_MODE (TREE_TYPE (TREE_TYPE (@0)))))
1337 (plus @3 (view_convert @0))))
1340 /* Simplifications of comparisons. */
1342 /* We can simplify a logical negation of a comparison to the
1343 inverted comparison. As we cannot compute an expression
1344 operator using invert_tree_comparison we have to simulate
1345 that with expression code iteration. */
1346 (for cmp (tcc_comparison)
1347 icmp (inverted_tcc_comparison)
1348 ncmp (inverted_tcc_comparison_with_nans)
1349 /* Ideally we'd like to combine the following two patterns
1350 and handle some more cases by using
1351 (logical_inverted_value (cmp @0 @1))
1352 here but for that genmatch would need to "inline" that.
1353 For now implement what forward_propagate_comparison did. */
1355 (bit_not (cmp @0 @1))
1356 (if (VECTOR_TYPE_P (type)
1357 || (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) == 1))
1358 /* Comparison inversion may be impossible for trapping math,
1359 invert_tree_comparison will tell us. But we can't use
1360 a computed operator in the replacement tree thus we have
1361 to play the trick below. */
1362 (with { enum tree_code ic = invert_tree_comparison
1363 (cmp, HONOR_NANS (@0)); }
1369 (bit_xor (cmp @0 @1) integer_truep)
1370 (with { enum tree_code ic = invert_tree_comparison
1371 (cmp, HONOR_NANS (@0)); }
1377 /* Transform comparisons of the form X - Y CMP 0 to X CMP Y.
1378 ??? The transformation is valid for the other operators if overflow
1379 is undefined for the type, but performing it here badly interacts
1380 with the transformation in fold_cond_expr_with_comparison which
1381 attempts to synthetize ABS_EXPR. */
1384 (cmp (minus@2 @0 @1) integer_zerop)
1385 (if (single_use (@2))
1388 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
1389 signed arithmetic case. That form is created by the compiler
1390 often enough for folding it to be of value. One example is in
1391 computing loop trip counts after Operator Strength Reduction. */
1392 (for cmp (simple_comparison)
1393 scmp (swapped_simple_comparison)
1395 (cmp (mult @0 INTEGER_CST@1) integer_zerop@2)
1396 /* Handle unfolded multiplication by zero. */
1397 (if (integer_zerop (@1))
1399 (if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1400 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0)))
1401 /* If @1 is negative we swap the sense of the comparison. */
1402 (if (tree_int_cst_sgn (@1) < 0)
1406 /* Simplify comparison of something with itself. For IEEE
1407 floating-point, we can only do some of these simplifications. */
1410 (if (! FLOAT_TYPE_P (TREE_TYPE (@0))
1411 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1412 { constant_boolean_node (true, type); }))
1421 || ! FLOAT_TYPE_P (TREE_TYPE (@0))
1422 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (@0))))
1423 { constant_boolean_node (false, type); })))
1425 /* Fold ~X op ~Y as Y op X. */
1426 (for cmp (simple_comparison)
1428 (cmp (bit_not @0) (bit_not @1))
1431 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
1432 (for cmp (simple_comparison)
1433 scmp (swapped_simple_comparison)
1435 (cmp (bit_not @0) CONSTANT_CLASS_P@1)
1436 (if (TREE_CODE (@1) == INTEGER_CST || TREE_CODE (@1) == VECTOR_CST)
1437 (scmp @0 (bit_not @1)))))
1439 (for cmp (simple_comparison)
1440 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
1442 (cmp (convert@2 @0) (convert? @1))
1443 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1444 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1445 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@0)))
1446 && (DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@2))
1447 == DECIMAL_FLOAT_TYPE_P (TREE_TYPE (@1))))
1450 tree type1 = TREE_TYPE (@1);
1451 if (TREE_CODE (@1) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (type1))
1453 REAL_VALUE_TYPE orig = TREE_REAL_CST (@1);
1454 if (TYPE_PRECISION (type1) > TYPE_PRECISION (float_type_node)
1455 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
1456 type1 = float_type_node;
1457 if (TYPE_PRECISION (type1) > TYPE_PRECISION (double_type_node)
1458 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
1459 type1 = double_type_node;
1462 = (TYPE_PRECISION (TREE_TYPE (@0)) > TYPE_PRECISION (type1)
1463 ? TREE_TYPE (@0) : type1);
1465 (if (TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (newtype))
1466 (cmp (convert:newtype @0) (convert:newtype @1))))))
1470 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
1471 /* a CMP (-0) -> a CMP 0 */
1472 (if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (@1)))
1473 (cmp @0 { build_real (TREE_TYPE (@1), dconst0); }))
1474 /* x != NaN is always true, other ops are always false. */
1475 (if (REAL_VALUE_ISNAN (TREE_REAL_CST (@1))
1476 && ! HONOR_SNANS (@1))
1477 { constant_boolean_node (cmp == NE_EXPR, type); })
1478 /* Fold comparisons against infinity. */
1479 (if (REAL_VALUE_ISINF (TREE_REAL_CST (@1))
1480 && MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (@1))))
1483 REAL_VALUE_TYPE max;
1484 enum tree_code code = cmp;
1485 bool neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1));
1487 code = swap_tree_comparison (code);
1489 /* x > +Inf is always false, if with ignore sNANs. */
1490 (if (code == GT_EXPR
1491 && ! HONOR_SNANS (@0))
1492 { constant_boolean_node (false, type); })
1493 (if (code == LE_EXPR)
1494 /* x <= +Inf is always true, if we don't case about NaNs. */
1495 (if (! HONOR_NANS (@0))
1496 { constant_boolean_node (true, type); })
1497 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
1499 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
1500 (if (code == EQ_EXPR || code == GE_EXPR)
1501 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1503 (lt @0 { build_real (TREE_TYPE (@0), max); }))
1504 (gt @0 { build_real (TREE_TYPE (@0), max); })))
1505 /* x < +Inf is always equal to x <= DBL_MAX. */
1506 (if (code == LT_EXPR)
1507 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1509 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1510 (le @0 { build_real (TREE_TYPE (@0), max); })))
1511 /* x != +Inf is always equal to !(x > DBL_MAX). */
1512 (if (code == NE_EXPR)
1513 (with { real_maxval (&max, neg, TYPE_MODE (TREE_TYPE (@0))); }
1514 (if (! HONOR_NANS (@0))
1516 (ge @0 { build_real (TREE_TYPE (@0), max); }))
1517 (le @0 { build_real (TREE_TYPE (@0), max); }))
1519 (bit_xor (lt @0 { build_real (TREE_TYPE (@0), max); })
1520 { build_one_cst (type); }))
1521 (bit_xor (gt @0 { build_real (TREE_TYPE (@0), max); })
1522 { build_one_cst (type); }))))))
1524 /* If this is a comparison of a real constant with a PLUS_EXPR
1525 or a MINUS_EXPR of a real constant, we can convert it into a
1526 comparison with a revised real constant as long as no overflow
1527 occurs when unsafe_math_optimizations are enabled. */
1528 (if (flag_unsafe_math_optimizations)
1529 (for op (plus minus)
1531 (cmp (op @0 REAL_CST@1) REAL_CST@2)
1534 tree tem = const_binop (op == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR,
1535 TREE_TYPE (@1), @2, @1);
1537 (if (!TREE_OVERFLOW (tem))
1538 (cmp @0 { tem; }))))))
1540 /* Likewise, we can simplify a comparison of a real constant with
1541 a MINUS_EXPR whose first operand is also a real constant, i.e.
1542 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
1543 floating-point types only if -fassociative-math is set. */
1544 (if (flag_associative_math)
1546 (cmp (minus REAL_CST@0 @1) REAL_CST@2)
1547 (with { tree tem = const_binop (MINUS_EXPR, TREE_TYPE (@1), @0, @2); }
1548 (if (!TREE_OVERFLOW (tem))
1549 (cmp { tem; } @1)))))
1551 /* Fold comparisons against built-in math functions. */
1552 (if (flag_unsafe_math_optimizations
1553 && ! flag_errno_math)
1556 (cmp (sq @0) REAL_CST@1)
1557 (if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (@1)))
1558 /* sqrt(x) < y is always false, if y is negative. */
1559 (if (cmp == EQ_EXPR || cmp == LT_EXPR || cmp == LE_EXPR)
1560 { constant_boolean_node (false, type); })
1561 /* sqrt(x) > y is always true, if y is negative and we
1562 don't care about NaNs, i.e. negative values of x. */
1563 (if (cmp == NE_EXPR || !HONOR_NANS (@0))
1564 { constant_boolean_node (true, type); })
1565 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
1566 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1567 (if (cmp == GT_EXPR || cmp == GE_EXPR)
1571 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1572 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1574 (if (REAL_VALUE_ISINF (c2))
1575 /* sqrt(x) > y is x == +Inf, when y is very large. */
1576 (if (HONOR_INFINITIES (@0))
1577 (eq @0 { build_real (TREE_TYPE (@0), c2); }))
1578 { constant_boolean_node (false, type); })
1579 /* sqrt(x) > c is the same as x > c*c. */
1580 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))
1581 (if (cmp == LT_EXPR || cmp == LE_EXPR)
1585 REAL_ARITHMETIC (c2, MULT_EXPR, TREE_REAL_CST (@1), TREE_REAL_CST (@1));
1586 real_convert (&c2, TYPE_MODE (TREE_TYPE (@0)), &c2);
1588 (if (REAL_VALUE_ISINF (c2))
1589 /* sqrt(x) < y is always true, when y is a very large
1590 value and we don't care about NaNs or Infinities. */
1591 (if (! HONOR_NANS (@0) && ! HONOR_INFINITIES (@0))
1592 { constant_boolean_node (true, type); })
1593 /* sqrt(x) < y is x != +Inf when y is very large and we
1594 don't care about NaNs. */
1595 (if (! HONOR_NANS (@0))
1596 (ne @0 { build_real (TREE_TYPE (@0), c2); }))
1597 /* sqrt(x) < y is x >= 0 when y is very large and we
1598 don't care about Infinities. */
1599 (if (! HONOR_INFINITIES (@0))
1600 (ge @0 { build_real (TREE_TYPE (@0), dconst0); }))
1601 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
1604 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1605 (ne @0 { build_real (TREE_TYPE (@0), c2); }))))
1606 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
1607 (if (! REAL_VALUE_ISINF (c2)
1608 && ! HONOR_NANS (@0))
1609 (cmp @0 { build_real (TREE_TYPE (@0), c2); }))
1610 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
1611 (if (! REAL_VALUE_ISINF (c2)
1614 (ge @0 { build_real (TREE_TYPE (@0), dconst0); })
1615 (cmp @0 { build_real (TREE_TYPE (@0), c2); })))))))))
1617 /* Unordered tests if either argument is a NaN. */
1619 (bit_ior (unordered @0 @0) (unordered @1 @1))
1620 (if (types_match (@0, @1))
1623 (bit_and (ordered @0 @0) (ordered @1 @1))
1624 (if (types_match (@0, @1))
1627 (bit_ior:c (unordered @0 @0) (unordered:c@2 @0 @1))
1630 (bit_and:c (ordered @0 @0) (ordered:c@2 @0 @1))
1633 /* -A CMP -B -> B CMP A. */
1634 (for cmp (tcc_comparison)
1635 scmp (swapped_tcc_comparison)
1637 (cmp (negate @0) (negate @1))
1638 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1639 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1640 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1643 (cmp (negate @0) CONSTANT_CLASS_P@1)
1644 (if (FLOAT_TYPE_P (TREE_TYPE (@0))
1645 || (ANY_INTEGRAL_TYPE_P (TREE_TYPE (@0))
1646 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (@0))))
1647 (with { tree tem = fold_unary (NEGATE_EXPR, TREE_TYPE (@0), @1); }
1648 (if (tem && !TREE_OVERFLOW (tem))
1649 (scmp @0 { tem; }))))))
1652 /* Equality compare simplifications from fold_binary */
1655 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
1656 Similarly for NE_EXPR. */
1658 (cmp (convert?@3 (bit_ior @0 INTEGER_CST@1)) INTEGER_CST@2)
1659 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0))
1660 && wi::bit_and_not (@1, @2) != 0)
1661 { constant_boolean_node (cmp == NE_EXPR, type); }))
1663 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
1665 (cmp (bit_xor @0 @1) integer_zerop)
1668 /* (X ^ Y) == Y becomes X == 0.
1669 Likewise (X ^ Y) == X becomes Y == 0. */
1671 (cmp:c (bit_xor:c @0 @1) @0)
1672 (cmp @1 { build_zero_cst (TREE_TYPE (@1)); }))
1674 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
1676 (cmp (convert?@3 (bit_xor @0 INTEGER_CST@1)) INTEGER_CST@2)
1677 (if (tree_nop_conversion_p (TREE_TYPE (@3), TREE_TYPE (@0)))
1678 (cmp @0 (bit_xor @1 (convert @2))))))
1680 /* Simplification of math builtins. */
1682 /* fold_builtin_logarithm */
1683 (if (flag_unsafe_math_optimizations)
1684 /* Special case, optimize logN(expN(x)) = x. */
1685 (for logs (LOG LOG2 LOG10)
1686 exps (EXP EXP2 EXP10)
1690 /* Optimize logN(func()) for various exponential functions. We
1691 want to determine the value "x" and the power "exponent" in
1692 order to transform logN(x**exponent) into exponent*logN(x). */
1693 (for logs (LOG LOG LOG LOG
1695 LOG10 LOG10 LOG10 LOG10)
1696 exps (EXP EXP2 EXP10 POW10)
1703 CASE_FLT_FN (BUILT_IN_EXP):
1704 /* Prepare to do logN(exp(exponent) -> exponent*logN(e). */
1705 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1708 CASE_FLT_FN (BUILT_IN_EXP2):
1709 /* Prepare to do logN(exp2(exponent) -> exponent*logN(2). */
1710 x = build_real (type, dconst2);
1712 CASE_FLT_FN (BUILT_IN_EXP10):
1713 CASE_FLT_FN (BUILT_IN_POW10):
1714 /* Prepare to do logN(exp10(exponent) -> exponent*logN(10). */
1716 REAL_VALUE_TYPE dconst10;
1717 real_from_integer (&dconst10, VOIDmode, 10, SIGNED);
1718 x = build_real (type, dconst10);
1723 (mult (logs { x; }) @0))))
1734 CASE_FLT_FN (BUILT_IN_SQRT):
1735 /* Prepare to do logN(sqrt(x) -> 0.5*logN(x). */
1736 x = build_real (type, dconsthalf);
1738 CASE_FLT_FN (BUILT_IN_CBRT):
1739 /* Prepare to do logN(cbrt(x) -> (1/3)*logN(x). */
1740 x = build_real (type, real_value_truncate (TYPE_MODE (type),
1745 (mult { x; } (logs @0)))))
1746 /* logN(pow(x,exponent) -> exponent*logN(x). */
1747 (for logs (LOG LOG2 LOG10)
1751 (mult @1 (logs @0)))))
1753 /* Narrowing of arithmetic and logical operations.
1755 These are conceptually similar to the transformations performed for
1756 the C/C++ front-ends by shorten_binary_op and shorten_compare. Long
1757 term we want to move all that code out of the front-ends into here. */
1759 /* If we have a narrowing conversion of an arithmetic operation where
1760 both operands are widening conversions from the same type as the outer
1761 narrowing conversion. Then convert the innermost operands to a suitable
1762 unsigned type (to avoid introducing undefined behaviour), perform the
1763 operation and convert the result to the desired type. */
1764 (for op (plus minus)
1766 (convert (op:s (convert@2 @0) (convert@3 @1)))
1767 (if (INTEGRAL_TYPE_P (type)
1768 /* We check for type compatibility between @0 and @1 below,
1769 so there's no need to check that @1/@3 are integral types. */
1770 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1771 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1772 /* The precision of the type of each operand must match the
1773 precision of the mode of each operand, similarly for the
1775 && (TYPE_PRECISION (TREE_TYPE (@0))
1776 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1777 && (TYPE_PRECISION (TREE_TYPE (@1))
1778 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1779 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1780 /* The inner conversion must be a widening conversion. */
1781 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1782 && types_match (@0, @1)
1783 && types_match (@0, type))
1784 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1785 (convert (op @0 @1)))
1786 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1787 (convert (op (convert:utype @0) (convert:utype @1)))))))
1789 /* This is another case of narrowing, specifically when there's an outer
1790 BIT_AND_EXPR which masks off bits outside the type of the innermost
1791 operands. Like the previous case we have to convert the operands
1792 to unsigned types to avoid introducing undefined behaviour for the
1793 arithmetic operation. */
1794 (for op (minus plus)
1796 (bit_and (op:s (convert@2 @0) (convert@3 @1)) INTEGER_CST@4)
1797 (if (INTEGRAL_TYPE_P (type)
1798 /* We check for type compatibility between @0 and @1 below,
1799 so there's no need to check that @1/@3 are integral types. */
1800 && INTEGRAL_TYPE_P (TREE_TYPE (@0))
1801 && INTEGRAL_TYPE_P (TREE_TYPE (@2))
1802 /* The precision of the type of each operand must match the
1803 precision of the mode of each operand, similarly for the
1805 && (TYPE_PRECISION (TREE_TYPE (@0))
1806 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@0))))
1807 && (TYPE_PRECISION (TREE_TYPE (@1))
1808 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (@1))))
1809 && TYPE_PRECISION (type) == GET_MODE_PRECISION (TYPE_MODE (type))
1810 /* The inner conversion must be a widening conversion. */
1811 && TYPE_PRECISION (TREE_TYPE (@2)) > TYPE_PRECISION (TREE_TYPE (@0))
1812 && types_match (@0, @1)
1813 && (tree_int_cst_min_precision (@4, TYPE_SIGN (TREE_TYPE (@0)))
1814 <= TYPE_PRECISION (TREE_TYPE (@0)))
1815 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0))
1816 || tree_int_cst_sgn (@4) >= 0))
1817 (if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (@0)))
1818 (with { tree ntype = TREE_TYPE (@0); }
1819 (convert (bit_and (op @0 @1) (convert:ntype @4)))))
1820 (with { tree utype = unsigned_type_for (TREE_TYPE (@0)); }
1821 (convert (bit_and (op (convert:utype @0) (convert:utype @1))
1822 (convert:utype @4)))))))