* config/sh/sh.c (push_regs): Emit movml for interrupt handler
[official-gcc.git] / gcc / gimple.c
blob7433b14c36765803bfd4a36d571d10ec90094af8
1 /* Gimple IR support functions.
3 Copyright 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "target.h"
27 #include "tree.h"
28 #include "ggc.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "toplev.h"
33 #include "diagnostic.h"
34 #include "tree-flow.h"
35 #include "value-prof.h"
36 #include "flags.h"
37 #include "alias.h"
38 #include "demangle.h"
40 /* Global type table. FIXME lto, it should be possible to re-use some
41 of the type hashing routines in tree.c (type_hash_canon, type_hash_lookup,
42 etc), but those assume that types were built with the various
43 build_*_type routines which is not the case with the streamer. */
44 static htab_t gimple_types;
45 static struct pointer_map_t *type_hash_cache;
47 /* Global type comparison cache. */
48 static htab_t gtc_visited;
49 static struct obstack gtc_ob;
51 /* All the tuples have their operand vector (if present) at the very bottom
52 of the structure. Therefore, the offset required to find the
53 operands vector the size of the structure minus the size of the 1
54 element tree array at the end (see gimple_ops). */
55 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
56 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
57 EXPORTED_CONST size_t gimple_ops_offset_[] = {
58 #include "gsstruct.def"
60 #undef DEFGSSTRUCT
62 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof(struct STRUCT),
63 static const size_t gsstruct_code_size[] = {
64 #include "gsstruct.def"
66 #undef DEFGSSTRUCT
68 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
69 const char *const gimple_code_name[] = {
70 #include "gimple.def"
72 #undef DEFGSCODE
74 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
75 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
76 #include "gimple.def"
78 #undef DEFGSCODE
80 #ifdef GATHER_STATISTICS
81 /* Gimple stats. */
83 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
84 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
86 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
87 static const char * const gimple_alloc_kind_names[] = {
88 "assignments",
89 "phi nodes",
90 "conditionals",
91 "sequences",
92 "everything else"
95 #endif /* GATHER_STATISTICS */
97 /* A cache of gimple_seq objects. Sequences are created and destroyed
98 fairly often during gimplification. */
99 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
101 /* Private API manipulation functions shared only with some
102 other files. */
103 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
104 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
106 /* Gimple tuple constructors.
107 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
108 be passed a NULL to start with an empty sequence. */
110 /* Set the code for statement G to CODE. */
112 static inline void
113 gimple_set_code (gimple g, enum gimple_code code)
115 g->gsbase.code = code;
118 /* Return the number of bytes needed to hold a GIMPLE statement with
119 code CODE. */
121 static inline size_t
122 gimple_size (enum gimple_code code)
124 return gsstruct_code_size[gss_for_code (code)];
127 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
128 operands. */
130 gimple
131 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
133 size_t size;
134 gimple stmt;
136 size = gimple_size (code);
137 if (num_ops > 0)
138 size += sizeof (tree) * (num_ops - 1);
140 #ifdef GATHER_STATISTICS
142 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
143 gimple_alloc_counts[(int) kind]++;
144 gimple_alloc_sizes[(int) kind] += size;
146 #endif
148 stmt = ggc_alloc_cleared_gimple_statement_d_stat (size PASS_MEM_STAT);
149 gimple_set_code (stmt, code);
150 gimple_set_num_ops (stmt, num_ops);
152 /* Do not call gimple_set_modified here as it has other side
153 effects and this tuple is still not completely built. */
154 stmt->gsbase.modified = 1;
156 return stmt;
159 /* Set SUBCODE to be the code of the expression computed by statement G. */
161 static inline void
162 gimple_set_subcode (gimple g, unsigned subcode)
164 /* We only have 16 bits for the RHS code. Assert that we are not
165 overflowing it. */
166 gcc_assert (subcode < (1 << 16));
167 g->gsbase.subcode = subcode;
172 /* Build a tuple with operands. CODE is the statement to build (which
173 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
174 for the new tuple. NUM_OPS is the number of operands to allocate. */
176 #define gimple_build_with_ops(c, s, n) \
177 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
179 static gimple
180 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
181 unsigned num_ops MEM_STAT_DECL)
183 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
184 gimple_set_subcode (s, subcode);
186 return s;
190 /* Build a GIMPLE_RETURN statement returning RETVAL. */
192 gimple
193 gimple_build_return (tree retval)
195 gimple s = gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK, 1);
196 if (retval)
197 gimple_return_set_retval (s, retval);
198 return s;
201 /* Reset alias information on call S. */
203 void
204 gimple_call_reset_alias_info (gimple s)
206 if (gimple_call_flags (s) & ECF_CONST)
207 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
208 else
209 pt_solution_reset (gimple_call_use_set (s));
210 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
211 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
212 else
213 pt_solution_reset (gimple_call_clobber_set (s));
216 /* Helper for gimple_build_call, gimple_build_call_vec and
217 gimple_build_call_from_tree. Build the basic components of a
218 GIMPLE_CALL statement to function FN with NARGS arguments. */
220 static inline gimple
221 gimple_build_call_1 (tree fn, unsigned nargs)
223 gimple s = gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK, nargs + 3);
224 if (TREE_CODE (fn) == FUNCTION_DECL)
225 fn = build_fold_addr_expr (fn);
226 gimple_set_op (s, 1, fn);
227 gimple_call_reset_alias_info (s);
228 return s;
232 /* Build a GIMPLE_CALL statement to function FN with the arguments
233 specified in vector ARGS. */
235 gimple
236 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
238 unsigned i;
239 unsigned nargs = VEC_length (tree, args);
240 gimple call = gimple_build_call_1 (fn, nargs);
242 for (i = 0; i < nargs; i++)
243 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
245 return call;
249 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
250 arguments. The ... are the arguments. */
252 gimple
253 gimple_build_call (tree fn, unsigned nargs, ...)
255 va_list ap;
256 gimple call;
257 unsigned i;
259 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
261 call = gimple_build_call_1 (fn, nargs);
263 va_start (ap, nargs);
264 for (i = 0; i < nargs; i++)
265 gimple_call_set_arg (call, i, va_arg (ap, tree));
266 va_end (ap);
268 return call;
272 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
273 assumed to be in GIMPLE form already. Minimal checking is done of
274 this fact. */
276 gimple
277 gimple_build_call_from_tree (tree t)
279 unsigned i, nargs;
280 gimple call;
281 tree fndecl = get_callee_fndecl (t);
283 gcc_assert (TREE_CODE (t) == CALL_EXPR);
285 nargs = call_expr_nargs (t);
286 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
288 for (i = 0; i < nargs; i++)
289 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
291 gimple_set_block (call, TREE_BLOCK (t));
293 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
294 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
295 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
296 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
297 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
298 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
299 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
300 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
301 gimple_set_no_warning (call, TREE_NO_WARNING (t));
303 return call;
307 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
308 *OP1_P, *OP2_P and *OP3_P respectively. */
310 void
311 extract_ops_from_tree_1 (tree expr, enum tree_code *subcode_p, tree *op1_p,
312 tree *op2_p, tree *op3_p)
314 enum gimple_rhs_class grhs_class;
316 *subcode_p = TREE_CODE (expr);
317 grhs_class = get_gimple_rhs_class (*subcode_p);
319 if (grhs_class == GIMPLE_TERNARY_RHS)
321 *op1_p = TREE_OPERAND (expr, 0);
322 *op2_p = TREE_OPERAND (expr, 1);
323 *op3_p = TREE_OPERAND (expr, 2);
325 else if (grhs_class == GIMPLE_BINARY_RHS)
327 *op1_p = TREE_OPERAND (expr, 0);
328 *op2_p = TREE_OPERAND (expr, 1);
329 *op3_p = NULL_TREE;
331 else if (grhs_class == GIMPLE_UNARY_RHS)
333 *op1_p = TREE_OPERAND (expr, 0);
334 *op2_p = NULL_TREE;
335 *op3_p = NULL_TREE;
337 else if (grhs_class == GIMPLE_SINGLE_RHS)
339 *op1_p = expr;
340 *op2_p = NULL_TREE;
341 *op3_p = NULL_TREE;
343 else
344 gcc_unreachable ();
348 /* Build a GIMPLE_ASSIGN statement.
350 LHS of the assignment.
351 RHS of the assignment which can be unary or binary. */
353 gimple
354 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
356 enum tree_code subcode;
357 tree op1, op2, op3;
359 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
360 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2, op3
361 PASS_MEM_STAT);
365 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
366 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
367 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
369 gimple
370 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
371 tree op2, tree op3 MEM_STAT_DECL)
373 unsigned num_ops;
374 gimple p;
376 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
377 code). */
378 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
380 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
381 PASS_MEM_STAT);
382 gimple_assign_set_lhs (p, lhs);
383 gimple_assign_set_rhs1 (p, op1);
384 if (op2)
386 gcc_assert (num_ops > 2);
387 gimple_assign_set_rhs2 (p, op2);
390 if (op3)
392 gcc_assert (num_ops > 3);
393 gimple_assign_set_rhs3 (p, op3);
396 return p;
400 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
402 DST/SRC are the destination and source respectively. You can pass
403 ungimplified trees in DST or SRC, in which case they will be
404 converted to a gimple operand if necessary.
406 This function returns the newly created GIMPLE_ASSIGN tuple. */
408 gimple
409 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
411 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
412 gimplify_and_add (t, seq_p);
413 ggc_free (t);
414 return gimple_seq_last_stmt (*seq_p);
418 /* Build a GIMPLE_COND statement.
420 PRED is the condition used to compare LHS and the RHS.
421 T_LABEL is the label to jump to if the condition is true.
422 F_LABEL is the label to jump to otherwise. */
424 gimple
425 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
426 tree t_label, tree f_label)
428 gimple p;
430 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
431 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
432 gimple_cond_set_lhs (p, lhs);
433 gimple_cond_set_rhs (p, rhs);
434 gimple_cond_set_true_label (p, t_label);
435 gimple_cond_set_false_label (p, f_label);
436 return p;
440 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
442 void
443 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
444 tree *lhs_p, tree *rhs_p)
446 location_t loc = EXPR_LOCATION (cond);
447 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
448 || TREE_CODE (cond) == TRUTH_NOT_EXPR
449 || is_gimple_min_invariant (cond)
450 || SSA_VAR_P (cond));
452 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
454 /* Canonicalize conditionals of the form 'if (!VAL)'. */
455 if (*code_p == TRUTH_NOT_EXPR)
457 *code_p = EQ_EXPR;
458 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
459 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
461 /* Canonicalize conditionals of the form 'if (VAL)' */
462 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
464 *code_p = NE_EXPR;
465 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
466 *rhs_p = fold_convert_loc (loc, TREE_TYPE (*lhs_p), integer_zero_node);
471 /* Build a GIMPLE_COND statement from the conditional expression tree
472 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
474 gimple
475 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
477 enum tree_code code;
478 tree lhs, rhs;
480 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
481 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
484 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
485 boolean expression tree COND. */
487 void
488 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
490 enum tree_code code;
491 tree lhs, rhs;
493 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
494 gimple_cond_set_condition (stmt, code, lhs, rhs);
497 /* Build a GIMPLE_LABEL statement for LABEL. */
499 gimple
500 gimple_build_label (tree label)
502 gimple p = gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1);
503 gimple_label_set_label (p, label);
504 return p;
507 /* Build a GIMPLE_GOTO statement to label DEST. */
509 gimple
510 gimple_build_goto (tree dest)
512 gimple p = gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1);
513 gimple_goto_set_dest (p, dest);
514 return p;
518 /* Build a GIMPLE_NOP statement. */
520 gimple
521 gimple_build_nop (void)
523 return gimple_alloc (GIMPLE_NOP, 0);
527 /* Build a GIMPLE_BIND statement.
528 VARS are the variables in BODY.
529 BLOCK is the containing block. */
531 gimple
532 gimple_build_bind (tree vars, gimple_seq body, tree block)
534 gimple p = gimple_alloc (GIMPLE_BIND, 0);
535 gimple_bind_set_vars (p, vars);
536 if (body)
537 gimple_bind_set_body (p, body);
538 if (block)
539 gimple_bind_set_block (p, block);
540 return p;
543 /* Helper function to set the simple fields of a asm stmt.
545 STRING is a pointer to a string that is the asm blocks assembly code.
546 NINPUT is the number of register inputs.
547 NOUTPUT is the number of register outputs.
548 NCLOBBERS is the number of clobbered registers.
551 static inline gimple
552 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
553 unsigned nclobbers, unsigned nlabels)
555 gimple p;
556 int size = strlen (string);
558 /* ASMs with labels cannot have outputs. This should have been
559 enforced by the front end. */
560 gcc_assert (nlabels == 0 || noutputs == 0);
562 p = gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
563 ninputs + noutputs + nclobbers + nlabels);
565 p->gimple_asm.ni = ninputs;
566 p->gimple_asm.no = noutputs;
567 p->gimple_asm.nc = nclobbers;
568 p->gimple_asm.nl = nlabels;
569 p->gimple_asm.string = ggc_alloc_string (string, size);
571 #ifdef GATHER_STATISTICS
572 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
573 #endif
575 return p;
578 /* Build a GIMPLE_ASM statement.
580 STRING is the assembly code.
581 NINPUT is the number of register inputs.
582 NOUTPUT is the number of register outputs.
583 NCLOBBERS is the number of clobbered registers.
584 INPUTS is a vector of the input register parameters.
585 OUTPUTS is a vector of the output register parameters.
586 CLOBBERS is a vector of the clobbered register parameters.
587 LABELS is a vector of destination labels. */
589 gimple
590 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
591 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers,
592 VEC(tree,gc)* labels)
594 gimple p;
595 unsigned i;
597 p = gimple_build_asm_1 (string,
598 VEC_length (tree, inputs),
599 VEC_length (tree, outputs),
600 VEC_length (tree, clobbers),
601 VEC_length (tree, labels));
603 for (i = 0; i < VEC_length (tree, inputs); i++)
604 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
606 for (i = 0; i < VEC_length (tree, outputs); i++)
607 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
609 for (i = 0; i < VEC_length (tree, clobbers); i++)
610 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
612 for (i = 0; i < VEC_length (tree, labels); i++)
613 gimple_asm_set_label_op (p, i, VEC_index (tree, labels, i));
615 return p;
618 /* Build a GIMPLE_CATCH statement.
620 TYPES are the catch types.
621 HANDLER is the exception handler. */
623 gimple
624 gimple_build_catch (tree types, gimple_seq handler)
626 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
627 gimple_catch_set_types (p, types);
628 if (handler)
629 gimple_catch_set_handler (p, handler);
631 return p;
634 /* Build a GIMPLE_EH_FILTER statement.
636 TYPES are the filter's types.
637 FAILURE is the filter's failure action. */
639 gimple
640 gimple_build_eh_filter (tree types, gimple_seq failure)
642 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
643 gimple_eh_filter_set_types (p, types);
644 if (failure)
645 gimple_eh_filter_set_failure (p, failure);
647 return p;
650 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
652 gimple
653 gimple_build_eh_must_not_throw (tree decl)
655 gimple p = gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0);
657 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
658 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
659 gimple_eh_must_not_throw_set_fndecl (p, decl);
661 return p;
664 /* Build a GIMPLE_TRY statement.
666 EVAL is the expression to evaluate.
667 CLEANUP is the cleanup expression.
668 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
669 whether this is a try/catch or a try/finally respectively. */
671 gimple
672 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
673 enum gimple_try_flags kind)
675 gimple p;
677 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
678 p = gimple_alloc (GIMPLE_TRY, 0);
679 gimple_set_subcode (p, kind);
680 if (eval)
681 gimple_try_set_eval (p, eval);
682 if (cleanup)
683 gimple_try_set_cleanup (p, cleanup);
685 return p;
688 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
690 CLEANUP is the cleanup expression. */
692 gimple
693 gimple_build_wce (gimple_seq cleanup)
695 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
696 if (cleanup)
697 gimple_wce_set_cleanup (p, cleanup);
699 return p;
703 /* Build a GIMPLE_RESX statement. */
705 gimple
706 gimple_build_resx (int region)
708 gimple p = gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0);
709 p->gimple_eh_ctrl.region = region;
710 return p;
714 /* The helper for constructing a gimple switch statement.
715 INDEX is the switch's index.
716 NLABELS is the number of labels in the switch excluding the default.
717 DEFAULT_LABEL is the default label for the switch statement. */
719 gimple
720 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
722 /* nlabels + 1 default label + 1 index. */
723 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, ERROR_MARK,
724 1 + (default_label != NULL) + nlabels);
725 gimple_switch_set_index (p, index);
726 if (default_label)
727 gimple_switch_set_default_label (p, default_label);
728 return p;
732 /* Build a GIMPLE_SWITCH statement.
734 INDEX is the switch's index.
735 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
736 ... are the labels excluding the default. */
738 gimple
739 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
741 va_list al;
742 unsigned i, offset;
743 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
745 /* Store the rest of the labels. */
746 va_start (al, default_label);
747 offset = (default_label != NULL);
748 for (i = 0; i < nlabels; i++)
749 gimple_switch_set_label (p, i + offset, va_arg (al, tree));
750 va_end (al);
752 return p;
756 /* Build a GIMPLE_SWITCH statement.
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
762 gimple
763 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
765 unsigned i, offset, nlabels = VEC_length (tree, args);
766 gimple p = gimple_build_switch_nlabels (nlabels, index, default_label);
768 /* Copy the labels from the vector to the switch statement. */
769 offset = (default_label != NULL);
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + offset, VEC_index (tree, args, i));
773 return p;
776 /* Build a GIMPLE_EH_DISPATCH statement. */
778 gimple
779 gimple_build_eh_dispatch (int region)
781 gimple p = gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0);
782 p->gimple_eh_ctrl.region = region;
783 return p;
786 /* Build a new GIMPLE_DEBUG_BIND statement.
788 VAR is bound to VALUE; block and location are taken from STMT. */
790 gimple
791 gimple_build_debug_bind_stat (tree var, tree value, gimple stmt MEM_STAT_DECL)
793 gimple p = gimple_build_with_ops_stat (GIMPLE_DEBUG,
794 (unsigned)GIMPLE_DEBUG_BIND, 2
795 PASS_MEM_STAT);
797 gimple_debug_bind_set_var (p, var);
798 gimple_debug_bind_set_value (p, value);
799 if (stmt)
801 gimple_set_block (p, gimple_block (stmt));
802 gimple_set_location (p, gimple_location (stmt));
805 return p;
809 /* Build a GIMPLE_OMP_CRITICAL statement.
811 BODY is the sequence of statements for which only one thread can execute.
812 NAME is optional identifier for this critical block. */
814 gimple
815 gimple_build_omp_critical (gimple_seq body, tree name)
817 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
818 gimple_omp_critical_set_name (p, name);
819 if (body)
820 gimple_omp_set_body (p, body);
822 return p;
825 /* Build a GIMPLE_OMP_FOR statement.
827 BODY is sequence of statements inside the for loop.
828 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
829 lastprivate, reductions, ordered, schedule, and nowait.
830 COLLAPSE is the collapse count.
831 PRE_BODY is the sequence of statements that are loop invariant. */
833 gimple
834 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
835 gimple_seq pre_body)
837 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
838 if (body)
839 gimple_omp_set_body (p, body);
840 gimple_omp_for_set_clauses (p, clauses);
841 p->gimple_omp_for.collapse = collapse;
842 p->gimple_omp_for.iter
843 = ggc_alloc_cleared_vec_gimple_omp_for_iter (collapse);
844 if (pre_body)
845 gimple_omp_for_set_pre_body (p, pre_body);
847 return p;
851 /* Build a GIMPLE_OMP_PARALLEL statement.
853 BODY is sequence of statements which are executed in parallel.
854 CLAUSES, are the OMP parallel construct's clauses.
855 CHILD_FN is the function created for the parallel threads to execute.
856 DATA_ARG are the shared data argument(s). */
858 gimple
859 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
860 tree data_arg)
862 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_parallel_set_clauses (p, clauses);
866 gimple_omp_parallel_set_child_fn (p, child_fn);
867 gimple_omp_parallel_set_data_arg (p, data_arg);
869 return p;
873 /* Build a GIMPLE_OMP_TASK statement.
875 BODY is sequence of statements which are executed by the explicit task.
876 CLAUSES, are the OMP parallel construct's clauses.
877 CHILD_FN is the function created for the parallel threads to execute.
878 DATA_ARG are the shared data argument(s).
879 COPY_FN is the optional function for firstprivate initialization.
880 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
882 gimple
883 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
884 tree data_arg, tree copy_fn, tree arg_size,
885 tree arg_align)
887 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
888 if (body)
889 gimple_omp_set_body (p, body);
890 gimple_omp_task_set_clauses (p, clauses);
891 gimple_omp_task_set_child_fn (p, child_fn);
892 gimple_omp_task_set_data_arg (p, data_arg);
893 gimple_omp_task_set_copy_fn (p, copy_fn);
894 gimple_omp_task_set_arg_size (p, arg_size);
895 gimple_omp_task_set_arg_align (p, arg_align);
897 return p;
901 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
903 BODY is the sequence of statements in the section. */
905 gimple
906 gimple_build_omp_section (gimple_seq body)
908 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
909 if (body)
910 gimple_omp_set_body (p, body);
912 return p;
916 /* Build a GIMPLE_OMP_MASTER statement.
918 BODY is the sequence of statements to be executed by just the master. */
920 gimple
921 gimple_build_omp_master (gimple_seq body)
923 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
924 if (body)
925 gimple_omp_set_body (p, body);
927 return p;
931 /* Build a GIMPLE_OMP_CONTINUE statement.
933 CONTROL_DEF is the definition of the control variable.
934 CONTROL_USE is the use of the control variable. */
936 gimple
937 gimple_build_omp_continue (tree control_def, tree control_use)
939 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
940 gimple_omp_continue_set_control_def (p, control_def);
941 gimple_omp_continue_set_control_use (p, control_use);
942 return p;
945 /* Build a GIMPLE_OMP_ORDERED statement.
947 BODY is the sequence of statements inside a loop that will executed in
948 sequence. */
950 gimple
951 gimple_build_omp_ordered (gimple_seq body)
953 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
954 if (body)
955 gimple_omp_set_body (p, body);
957 return p;
961 /* Build a GIMPLE_OMP_RETURN statement.
962 WAIT_P is true if this is a non-waiting return. */
964 gimple
965 gimple_build_omp_return (bool wait_p)
967 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
968 if (wait_p)
969 gimple_omp_return_set_nowait (p);
971 return p;
975 /* Build a GIMPLE_OMP_SECTIONS statement.
977 BODY is a sequence of section statements.
978 CLAUSES are any of the OMP sections contsruct's clauses: private,
979 firstprivate, lastprivate, reduction, and nowait. */
981 gimple
982 gimple_build_omp_sections (gimple_seq body, tree clauses)
984 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
985 if (body)
986 gimple_omp_set_body (p, body);
987 gimple_omp_sections_set_clauses (p, clauses);
989 return p;
993 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
995 gimple
996 gimple_build_omp_sections_switch (void)
998 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1002 /* Build a GIMPLE_OMP_SINGLE statement.
1004 BODY is the sequence of statements that will be executed once.
1005 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1006 copyprivate, nowait. */
1008 gimple
1009 gimple_build_omp_single (gimple_seq body, tree clauses)
1011 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1012 if (body)
1013 gimple_omp_set_body (p, body);
1014 gimple_omp_single_set_clauses (p, clauses);
1016 return p;
1020 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1022 gimple
1023 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1025 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1026 gimple_omp_atomic_load_set_lhs (p, lhs);
1027 gimple_omp_atomic_load_set_rhs (p, rhs);
1028 return p;
1031 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1033 VAL is the value we are storing. */
1035 gimple
1036 gimple_build_omp_atomic_store (tree val)
1038 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1039 gimple_omp_atomic_store_set_val (p, val);
1040 return p;
1043 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1044 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1046 gimple
1047 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1049 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1050 /* Ensure all the predictors fit into the lower bits of the subcode. */
1051 gcc_assert ((int) END_PREDICTORS <= GF_PREDICT_TAKEN);
1052 gimple_predict_set_predictor (p, predictor);
1053 gimple_predict_set_outcome (p, outcome);
1054 return p;
1057 #if defined ENABLE_GIMPLE_CHECKING
1058 /* Complain of a gimple type mismatch and die. */
1060 void
1061 gimple_check_failed (const_gimple gs, const char *file, int line,
1062 const char *function, enum gimple_code code,
1063 enum tree_code subcode)
1065 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1066 gimple_code_name[code],
1067 tree_code_name[subcode],
1068 gimple_code_name[gimple_code (gs)],
1069 gs->gsbase.subcode > 0
1070 ? tree_code_name[gs->gsbase.subcode]
1071 : "",
1072 function, trim_filename (file), line);
1074 #endif /* ENABLE_GIMPLE_CHECKING */
1077 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1078 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1079 instead. */
1081 gimple_seq
1082 gimple_seq_alloc (void)
1084 gimple_seq seq = gimple_seq_cache;
1085 if (seq)
1087 gimple_seq_cache = gimple_seq_cache->next_free;
1088 gcc_assert (gimple_seq_cache != seq);
1089 memset (seq, 0, sizeof (*seq));
1091 else
1093 seq = ggc_alloc_cleared_gimple_seq_d ();
1094 #ifdef GATHER_STATISTICS
1095 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1096 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1097 #endif
1100 return seq;
1103 /* Return SEQ to the free pool of GIMPLE sequences. */
1105 void
1106 gimple_seq_free (gimple_seq seq)
1108 if (seq == NULL)
1109 return;
1111 gcc_assert (gimple_seq_first (seq) == NULL);
1112 gcc_assert (gimple_seq_last (seq) == NULL);
1114 /* If this triggers, it's a sign that the same list is being freed
1115 twice. */
1116 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1118 /* Add SEQ to the pool of free sequences. */
1119 seq->next_free = gimple_seq_cache;
1120 gimple_seq_cache = seq;
1124 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1125 *SEQ_P is NULL, a new sequence is allocated. */
1127 void
1128 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1130 gimple_stmt_iterator si;
1132 if (gs == NULL)
1133 return;
1135 if (*seq_p == NULL)
1136 *seq_p = gimple_seq_alloc ();
1138 si = gsi_last (*seq_p);
1139 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1143 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1144 NULL, a new sequence is allocated. */
1146 void
1147 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1149 gimple_stmt_iterator si;
1151 if (src == NULL)
1152 return;
1154 if (*dst_p == NULL)
1155 *dst_p = gimple_seq_alloc ();
1157 si = gsi_last (*dst_p);
1158 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1162 /* Helper function of empty_body_p. Return true if STMT is an empty
1163 statement. */
1165 static bool
1166 empty_stmt_p (gimple stmt)
1168 if (gimple_code (stmt) == GIMPLE_NOP)
1169 return true;
1170 if (gimple_code (stmt) == GIMPLE_BIND)
1171 return empty_body_p (gimple_bind_body (stmt));
1172 return false;
1176 /* Return true if BODY contains nothing but empty statements. */
1178 bool
1179 empty_body_p (gimple_seq body)
1181 gimple_stmt_iterator i;
1183 if (gimple_seq_empty_p (body))
1184 return true;
1185 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1186 if (!empty_stmt_p (gsi_stmt (i))
1187 && !is_gimple_debug (gsi_stmt (i)))
1188 return false;
1190 return true;
1194 /* Perform a deep copy of sequence SRC and return the result. */
1196 gimple_seq
1197 gimple_seq_copy (gimple_seq src)
1199 gimple_stmt_iterator gsi;
1200 gimple_seq new_seq = gimple_seq_alloc ();
1201 gimple stmt;
1203 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1205 stmt = gimple_copy (gsi_stmt (gsi));
1206 gimple_seq_add_stmt (&new_seq, stmt);
1209 return new_seq;
1213 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1214 on each one. WI is as in walk_gimple_stmt.
1216 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1217 value is stored in WI->CALLBACK_RESULT and the statement that
1218 produced the value is returned.
1220 Otherwise, all the statements are walked and NULL returned. */
1222 gimple
1223 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1224 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1226 gimple_stmt_iterator gsi;
1228 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1230 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1231 if (ret)
1233 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1234 to hold it. */
1235 gcc_assert (wi);
1236 wi->callback_result = ret;
1237 return gsi_stmt (gsi);
1241 if (wi)
1242 wi->callback_result = NULL_TREE;
1244 return NULL;
1248 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1250 static tree
1251 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1252 struct walk_stmt_info *wi)
1254 tree ret, op;
1255 unsigned noutputs;
1256 const char **oconstraints;
1257 unsigned i, n;
1258 const char *constraint;
1259 bool allows_mem, allows_reg, is_inout;
1261 noutputs = gimple_asm_noutputs (stmt);
1262 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1264 if (wi)
1265 wi->is_lhs = true;
1267 for (i = 0; i < noutputs; i++)
1269 op = gimple_asm_output_op (stmt, i);
1270 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1271 oconstraints[i] = constraint;
1272 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1273 &is_inout);
1274 if (wi)
1275 wi->val_only = (allows_reg || !allows_mem);
1276 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1277 if (ret)
1278 return ret;
1281 n = gimple_asm_ninputs (stmt);
1282 for (i = 0; i < n; i++)
1284 op = gimple_asm_input_op (stmt, i);
1285 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1286 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1287 oconstraints, &allows_mem, &allows_reg);
1288 if (wi)
1290 wi->val_only = (allows_reg || !allows_mem);
1291 /* Although input "m" is not really a LHS, we need a lvalue. */
1292 wi->is_lhs = !wi->val_only;
1294 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1295 if (ret)
1296 return ret;
1299 if (wi)
1301 wi->is_lhs = false;
1302 wi->val_only = true;
1305 n = gimple_asm_nlabels (stmt);
1306 for (i = 0; i < n; i++)
1308 op = gimple_asm_label_op (stmt, i);
1309 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1310 if (ret)
1311 return ret;
1314 return NULL_TREE;
1318 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1319 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1321 CALLBACK_OP is called on each operand of STMT via walk_tree.
1322 Additional parameters to walk_tree must be stored in WI. For each operand
1323 OP, walk_tree is called as:
1325 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1327 If CALLBACK_OP returns non-NULL for an operand, the remaining
1328 operands are not scanned.
1330 The return value is that returned by the last call to walk_tree, or
1331 NULL_TREE if no CALLBACK_OP is specified. */
1333 tree
1334 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1335 struct walk_stmt_info *wi)
1337 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1338 unsigned i;
1339 tree ret = NULL_TREE;
1341 switch (gimple_code (stmt))
1343 case GIMPLE_ASSIGN:
1344 /* Walk the RHS operands. If the LHS is of a non-renamable type or
1345 is a register variable, we may use a COMPONENT_REF on the RHS. */
1346 if (wi)
1348 tree lhs = gimple_assign_lhs (stmt);
1349 wi->val_only
1350 = (is_gimple_reg_type (TREE_TYPE (lhs)) && !is_gimple_reg (lhs))
1351 || !gimple_assign_single_p (stmt);
1354 for (i = 1; i < gimple_num_ops (stmt); i++)
1356 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1357 pset);
1358 if (ret)
1359 return ret;
1362 /* Walk the LHS. If the RHS is appropriate for a memory, we
1363 may use a COMPONENT_REF on the LHS. */
1364 if (wi)
1366 /* If the RHS has more than 1 operand, it is not appropriate
1367 for the memory. */
1368 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1369 || !gimple_assign_single_p (stmt);
1370 wi->is_lhs = true;
1373 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1374 if (ret)
1375 return ret;
1377 if (wi)
1379 wi->val_only = true;
1380 wi->is_lhs = false;
1382 break;
1384 case GIMPLE_CALL:
1385 if (wi)
1387 wi->is_lhs = false;
1388 wi->val_only = true;
1391 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1392 if (ret)
1393 return ret;
1395 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1396 if (ret)
1397 return ret;
1399 for (i = 0; i < gimple_call_num_args (stmt); i++)
1401 if (wi)
1402 wi->val_only = is_gimple_reg_type (gimple_call_arg (stmt, i));
1403 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1404 pset);
1405 if (ret)
1406 return ret;
1409 if (gimple_call_lhs (stmt))
1411 if (wi)
1413 wi->is_lhs = true;
1414 wi->val_only = is_gimple_reg_type (gimple_call_lhs (stmt));
1417 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1418 if (ret)
1419 return ret;
1422 if (wi)
1424 wi->is_lhs = false;
1425 wi->val_only = true;
1427 break;
1429 case GIMPLE_CATCH:
1430 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1431 pset);
1432 if (ret)
1433 return ret;
1434 break;
1436 case GIMPLE_EH_FILTER:
1437 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1438 pset);
1439 if (ret)
1440 return ret;
1441 break;
1443 case GIMPLE_ASM:
1444 ret = walk_gimple_asm (stmt, callback_op, wi);
1445 if (ret)
1446 return ret;
1447 break;
1449 case GIMPLE_OMP_CONTINUE:
1450 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1451 callback_op, wi, pset);
1452 if (ret)
1453 return ret;
1455 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1456 callback_op, wi, pset);
1457 if (ret)
1458 return ret;
1459 break;
1461 case GIMPLE_OMP_CRITICAL:
1462 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1463 pset);
1464 if (ret)
1465 return ret;
1466 break;
1468 case GIMPLE_OMP_FOR:
1469 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1470 pset);
1471 if (ret)
1472 return ret;
1473 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1475 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1476 wi, pset);
1477 if (ret)
1478 return ret;
1479 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1480 wi, pset);
1481 if (ret)
1482 return ret;
1483 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1484 wi, pset);
1485 if (ret)
1486 return ret;
1487 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1488 wi, pset);
1490 if (ret)
1491 return ret;
1492 break;
1494 case GIMPLE_OMP_PARALLEL:
1495 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1496 wi, pset);
1497 if (ret)
1498 return ret;
1499 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1500 wi, pset);
1501 if (ret)
1502 return ret;
1503 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1504 wi, pset);
1505 if (ret)
1506 return ret;
1507 break;
1509 case GIMPLE_OMP_TASK:
1510 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1511 wi, pset);
1512 if (ret)
1513 return ret;
1514 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1515 wi, pset);
1516 if (ret)
1517 return ret;
1518 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1519 wi, pset);
1520 if (ret)
1521 return ret;
1522 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1523 wi, pset);
1524 if (ret)
1525 return ret;
1526 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1527 wi, pset);
1528 if (ret)
1529 return ret;
1530 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1531 wi, pset);
1532 if (ret)
1533 return ret;
1534 break;
1536 case GIMPLE_OMP_SECTIONS:
1537 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1542 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1543 wi, pset);
1544 if (ret)
1545 return ret;
1547 break;
1549 case GIMPLE_OMP_SINGLE:
1550 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1551 pset);
1552 if (ret)
1553 return ret;
1554 break;
1556 case GIMPLE_OMP_ATOMIC_LOAD:
1557 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1558 pset);
1559 if (ret)
1560 return ret;
1562 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1563 pset);
1564 if (ret)
1565 return ret;
1566 break;
1568 case GIMPLE_OMP_ATOMIC_STORE:
1569 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1570 wi, pset);
1571 if (ret)
1572 return ret;
1573 break;
1575 /* Tuples that do not have operands. */
1576 case GIMPLE_NOP:
1577 case GIMPLE_RESX:
1578 case GIMPLE_OMP_RETURN:
1579 case GIMPLE_PREDICT:
1580 break;
1582 default:
1584 enum gimple_statement_structure_enum gss;
1585 gss = gimple_statement_structure (stmt);
1586 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1587 for (i = 0; i < gimple_num_ops (stmt); i++)
1589 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1590 if (ret)
1591 return ret;
1594 break;
1597 return NULL_TREE;
1601 /* Walk the current statement in GSI (optionally using traversal state
1602 stored in WI). If WI is NULL, no state is kept during traversal.
1603 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1604 that it has handled all the operands of the statement, its return
1605 value is returned. Otherwise, the return value from CALLBACK_STMT
1606 is discarded and its operands are scanned.
1608 If CALLBACK_STMT is NULL or it didn't handle the operands,
1609 CALLBACK_OP is called on each operand of the statement via
1610 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1611 operand, the remaining operands are not scanned. In this case, the
1612 return value from CALLBACK_OP is returned.
1614 In any other case, NULL_TREE is returned. */
1616 tree
1617 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1618 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1620 gimple ret;
1621 tree tree_ret;
1622 gimple stmt = gsi_stmt (*gsi);
1624 if (wi)
1625 wi->gsi = *gsi;
1627 if (wi && wi->want_locations && gimple_has_location (stmt))
1628 input_location = gimple_location (stmt);
1630 ret = NULL;
1632 /* Invoke the statement callback. Return if the callback handled
1633 all of STMT operands by itself. */
1634 if (callback_stmt)
1636 bool handled_ops = false;
1637 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1638 if (handled_ops)
1639 return tree_ret;
1641 /* If CALLBACK_STMT did not handle operands, it should not have
1642 a value to return. */
1643 gcc_assert (tree_ret == NULL);
1645 /* Re-read stmt in case the callback changed it. */
1646 stmt = gsi_stmt (*gsi);
1649 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1650 if (callback_op)
1652 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1653 if (tree_ret)
1654 return tree_ret;
1657 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1658 switch (gimple_code (stmt))
1660 case GIMPLE_BIND:
1661 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1662 callback_op, wi);
1663 if (ret)
1664 return wi->callback_result;
1665 break;
1667 case GIMPLE_CATCH:
1668 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1669 callback_op, wi);
1670 if (ret)
1671 return wi->callback_result;
1672 break;
1674 case GIMPLE_EH_FILTER:
1675 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1676 callback_op, wi);
1677 if (ret)
1678 return wi->callback_result;
1679 break;
1681 case GIMPLE_TRY:
1682 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1683 wi);
1684 if (ret)
1685 return wi->callback_result;
1687 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1688 callback_op, wi);
1689 if (ret)
1690 return wi->callback_result;
1691 break;
1693 case GIMPLE_OMP_FOR:
1694 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1695 callback_op, wi);
1696 if (ret)
1697 return wi->callback_result;
1699 /* FALL THROUGH. */
1700 case GIMPLE_OMP_CRITICAL:
1701 case GIMPLE_OMP_MASTER:
1702 case GIMPLE_OMP_ORDERED:
1703 case GIMPLE_OMP_SECTION:
1704 case GIMPLE_OMP_PARALLEL:
1705 case GIMPLE_OMP_TASK:
1706 case GIMPLE_OMP_SECTIONS:
1707 case GIMPLE_OMP_SINGLE:
1708 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1709 wi);
1710 if (ret)
1711 return wi->callback_result;
1712 break;
1714 case GIMPLE_WITH_CLEANUP_EXPR:
1715 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1716 callback_op, wi);
1717 if (ret)
1718 return wi->callback_result;
1719 break;
1721 default:
1722 gcc_assert (!gimple_has_substatements (stmt));
1723 break;
1726 return NULL;
1730 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1732 void
1733 gimple_set_body (tree fndecl, gimple_seq seq)
1735 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1736 if (fn == NULL)
1738 /* If FNDECL still does not have a function structure associated
1739 with it, then it does not make sense for it to receive a
1740 GIMPLE body. */
1741 gcc_assert (seq == NULL);
1743 else
1744 fn->gimple_body = seq;
1748 /* Return the body of GIMPLE statements for function FN. After the
1749 CFG pass, the function body doesn't exist anymore because it has
1750 been split up into basic blocks. In this case, it returns
1751 NULL. */
1753 gimple_seq
1754 gimple_body (tree fndecl)
1756 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1757 return fn ? fn->gimple_body : NULL;
1760 /* Return true when FNDECL has Gimple body either in unlowered
1761 or CFG form. */
1762 bool
1763 gimple_has_body_p (tree fndecl)
1765 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1766 return (gimple_body (fndecl) || (fn && fn->cfg));
1769 /* Detect flags from a GIMPLE_CALL. This is just like
1770 call_expr_flags, but for gimple tuples. */
1773 gimple_call_flags (const_gimple stmt)
1775 int flags;
1776 tree decl = gimple_call_fndecl (stmt);
1777 tree t;
1779 if (decl)
1780 flags = flags_from_decl_or_type (decl);
1781 else
1783 t = TREE_TYPE (gimple_call_fn (stmt));
1784 if (t && TREE_CODE (t) == POINTER_TYPE)
1785 flags = flags_from_decl_or_type (TREE_TYPE (t));
1786 else
1787 flags = 0;
1790 if (stmt->gsbase.subcode & GF_CALL_NOTHROW)
1791 flags |= ECF_NOTHROW;
1793 return flags;
1796 /* Detects argument flags for argument number ARG on call STMT. */
1799 gimple_call_arg_flags (const_gimple stmt, unsigned arg)
1801 tree type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1802 tree attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1803 if (!attr)
1804 return 0;
1806 attr = TREE_VALUE (TREE_VALUE (attr));
1807 if (1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1808 return 0;
1810 switch (TREE_STRING_POINTER (attr)[1 + arg])
1812 case 'x':
1813 case 'X':
1814 return EAF_UNUSED;
1816 case 'R':
1817 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1819 case 'r':
1820 return EAF_NOCLOBBER | EAF_NOESCAPE;
1822 case 'W':
1823 return EAF_DIRECT | EAF_NOESCAPE;
1825 case 'w':
1826 return EAF_NOESCAPE;
1828 case '.':
1829 default:
1830 return 0;
1834 /* Detects return flags for the call STMT. */
1837 gimple_call_return_flags (const_gimple stmt)
1839 tree type;
1840 tree attr = NULL_TREE;
1842 if (gimple_call_flags (stmt) & ECF_MALLOC)
1843 return ERF_NOALIAS;
1845 type = TREE_TYPE (TREE_TYPE (gimple_call_fn (stmt)));
1846 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1847 if (!attr)
1848 return 0;
1850 attr = TREE_VALUE (TREE_VALUE (attr));
1851 if (TREE_STRING_LENGTH (attr) < 1)
1852 return 0;
1854 switch (TREE_STRING_POINTER (attr)[0])
1856 case '1':
1857 case '2':
1858 case '3':
1859 case '4':
1860 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1862 case 'm':
1863 return ERF_NOALIAS;
1865 case '.':
1866 default:
1867 return 0;
1871 /* Return true if GS is a copy assignment. */
1873 bool
1874 gimple_assign_copy_p (gimple gs)
1876 return gimple_code (gs) == GIMPLE_ASSIGN
1877 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1878 == GIMPLE_SINGLE_RHS
1879 && is_gimple_val (gimple_op (gs, 1));
1883 /* Return true if GS is a SSA_NAME copy assignment. */
1885 bool
1886 gimple_assign_ssa_name_copy_p (gimple gs)
1888 return (gimple_code (gs) == GIMPLE_ASSIGN
1889 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1890 == GIMPLE_SINGLE_RHS)
1891 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1892 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1896 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1897 there is no operator associated with the assignment itself.
1898 Unlike gimple_assign_copy_p, this predicate returns true for
1899 any RHS operand, including those that perform an operation
1900 and do not have the semantics of a copy, such as COND_EXPR. */
1902 bool
1903 gimple_assign_single_p (gimple gs)
1905 return (gimple_code (gs) == GIMPLE_ASSIGN
1906 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1907 == GIMPLE_SINGLE_RHS);
1910 /* Return true if GS is an assignment with a unary RHS, but the
1911 operator has no effect on the assigned value. The logic is adapted
1912 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1913 instances in which STRIP_NOPS was previously applied to the RHS of
1914 an assignment.
1916 NOTE: In the use cases that led to the creation of this function
1917 and of gimple_assign_single_p, it is typical to test for either
1918 condition and to proceed in the same manner. In each case, the
1919 assigned value is represented by the single RHS operand of the
1920 assignment. I suspect there may be cases where gimple_assign_copy_p,
1921 gimple_assign_single_p, or equivalent logic is used where a similar
1922 treatment of unary NOPs is appropriate. */
1924 bool
1925 gimple_assign_unary_nop_p (gimple gs)
1927 return (gimple_code (gs) == GIMPLE_ASSIGN
1928 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1929 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1930 && gimple_assign_rhs1 (gs) != error_mark_node
1931 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1932 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1935 /* Set BB to be the basic block holding G. */
1937 void
1938 gimple_set_bb (gimple stmt, basic_block bb)
1940 stmt->gsbase.bb = bb;
1942 /* If the statement is a label, add the label to block-to-labels map
1943 so that we can speed up edge creation for GIMPLE_GOTOs. */
1944 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1946 tree t;
1947 int uid;
1949 t = gimple_label_label (stmt);
1950 uid = LABEL_DECL_UID (t);
1951 if (uid == -1)
1953 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1954 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1955 if (old_len <= (unsigned) uid)
1957 unsigned new_len = 3 * uid / 2 + 1;
1959 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1960 new_len);
1964 VEC_replace (basic_block, label_to_block_map, uid, bb);
1969 /* Modify the RHS of the assignment pointed-to by GSI using the
1970 operands in the expression tree EXPR.
1972 NOTE: The statement pointed-to by GSI may be reallocated if it
1973 did not have enough operand slots.
1975 This function is useful to convert an existing tree expression into
1976 the flat representation used for the RHS of a GIMPLE assignment.
1977 It will reallocate memory as needed to expand or shrink the number
1978 of operand slots needed to represent EXPR.
1980 NOTE: If you find yourself building a tree and then calling this
1981 function, you are most certainly doing it the slow way. It is much
1982 better to build a new assignment or to use the function
1983 gimple_assign_set_rhs_with_ops, which does not require an
1984 expression tree to be built. */
1986 void
1987 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1989 enum tree_code subcode;
1990 tree op1, op2, op3;
1992 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1993 gimple_assign_set_rhs_with_ops_1 (gsi, subcode, op1, op2, op3);
1997 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1998 operands OP1, OP2 and OP3.
2000 NOTE: The statement pointed-to by GSI may be reallocated if it
2001 did not have enough operand slots. */
2003 void
2004 gimple_assign_set_rhs_with_ops_1 (gimple_stmt_iterator *gsi, enum tree_code code,
2005 tree op1, tree op2, tree op3)
2007 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2008 gimple stmt = gsi_stmt (*gsi);
2010 /* If the new CODE needs more operands, allocate a new statement. */
2011 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2013 tree lhs = gimple_assign_lhs (stmt);
2014 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2015 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2016 gsi_replace (gsi, new_stmt, true);
2017 stmt = new_stmt;
2019 /* The LHS needs to be reset as this also changes the SSA name
2020 on the LHS. */
2021 gimple_assign_set_lhs (stmt, lhs);
2024 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2025 gimple_set_subcode (stmt, code);
2026 gimple_assign_set_rhs1 (stmt, op1);
2027 if (new_rhs_ops > 1)
2028 gimple_assign_set_rhs2 (stmt, op2);
2029 if (new_rhs_ops > 2)
2030 gimple_assign_set_rhs3 (stmt, op3);
2034 /* Return the LHS of a statement that performs an assignment,
2035 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2036 for a call to a function that returns no value, or for a
2037 statement other than an assignment or a call. */
2039 tree
2040 gimple_get_lhs (const_gimple stmt)
2042 enum gimple_code code = gimple_code (stmt);
2044 if (code == GIMPLE_ASSIGN)
2045 return gimple_assign_lhs (stmt);
2046 else if (code == GIMPLE_CALL)
2047 return gimple_call_lhs (stmt);
2048 else
2049 return NULL_TREE;
2053 /* Set the LHS of a statement that performs an assignment,
2054 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2056 void
2057 gimple_set_lhs (gimple stmt, tree lhs)
2059 enum gimple_code code = gimple_code (stmt);
2061 if (code == GIMPLE_ASSIGN)
2062 gimple_assign_set_lhs (stmt, lhs);
2063 else if (code == GIMPLE_CALL)
2064 gimple_call_set_lhs (stmt, lhs);
2065 else
2066 gcc_unreachable();
2069 /* Replace the LHS of STMT, an assignment, either a GIMPLE_ASSIGN or a
2070 GIMPLE_CALL, with NLHS, in preparation for modifying the RHS to an
2071 expression with a different value.
2073 This will update any annotations (say debug bind stmts) referring
2074 to the original LHS, so that they use the RHS instead. This is
2075 done even if NLHS and LHS are the same, for it is understood that
2076 the RHS will be modified afterwards, and NLHS will not be assigned
2077 an equivalent value.
2079 Adjusting any non-annotation uses of the LHS, if needed, is a
2080 responsibility of the caller.
2082 The effect of this call should be pretty much the same as that of
2083 inserting a copy of STMT before STMT, and then removing the
2084 original stmt, at which time gsi_remove() would have update
2085 annotations, but using this function saves all the inserting,
2086 copying and removing. */
2088 void
2089 gimple_replace_lhs (gimple stmt, tree nlhs)
2091 if (MAY_HAVE_DEBUG_STMTS)
2093 tree lhs = gimple_get_lhs (stmt);
2095 gcc_assert (SSA_NAME_DEF_STMT (lhs) == stmt);
2097 insert_debug_temp_for_var_def (NULL, lhs);
2100 gimple_set_lhs (stmt, nlhs);
2103 /* Return a deep copy of statement STMT. All the operands from STMT
2104 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2105 and VUSE operand arrays are set to empty in the new copy. */
2107 gimple
2108 gimple_copy (gimple stmt)
2110 enum gimple_code code = gimple_code (stmt);
2111 unsigned num_ops = gimple_num_ops (stmt);
2112 gimple copy = gimple_alloc (code, num_ops);
2113 unsigned i;
2115 /* Shallow copy all the fields from STMT. */
2116 memcpy (copy, stmt, gimple_size (code));
2118 /* If STMT has sub-statements, deep-copy them as well. */
2119 if (gimple_has_substatements (stmt))
2121 gimple_seq new_seq;
2122 tree t;
2124 switch (gimple_code (stmt))
2126 case GIMPLE_BIND:
2127 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2128 gimple_bind_set_body (copy, new_seq);
2129 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2130 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2131 break;
2133 case GIMPLE_CATCH:
2134 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2135 gimple_catch_set_handler (copy, new_seq);
2136 t = unshare_expr (gimple_catch_types (stmt));
2137 gimple_catch_set_types (copy, t);
2138 break;
2140 case GIMPLE_EH_FILTER:
2141 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2142 gimple_eh_filter_set_failure (copy, new_seq);
2143 t = unshare_expr (gimple_eh_filter_types (stmt));
2144 gimple_eh_filter_set_types (copy, t);
2145 break;
2147 case GIMPLE_TRY:
2148 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2149 gimple_try_set_eval (copy, new_seq);
2150 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2151 gimple_try_set_cleanup (copy, new_seq);
2152 break;
2154 case GIMPLE_OMP_FOR:
2155 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2156 gimple_omp_for_set_pre_body (copy, new_seq);
2157 t = unshare_expr (gimple_omp_for_clauses (stmt));
2158 gimple_omp_for_set_clauses (copy, t);
2159 copy->gimple_omp_for.iter
2160 = ggc_alloc_vec_gimple_omp_for_iter
2161 (gimple_omp_for_collapse (stmt));
2162 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2164 gimple_omp_for_set_cond (copy, i,
2165 gimple_omp_for_cond (stmt, i));
2166 gimple_omp_for_set_index (copy, i,
2167 gimple_omp_for_index (stmt, i));
2168 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2169 gimple_omp_for_set_initial (copy, i, t);
2170 t = unshare_expr (gimple_omp_for_final (stmt, i));
2171 gimple_omp_for_set_final (copy, i, t);
2172 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2173 gimple_omp_for_set_incr (copy, i, t);
2175 goto copy_omp_body;
2177 case GIMPLE_OMP_PARALLEL:
2178 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2179 gimple_omp_parallel_set_clauses (copy, t);
2180 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2181 gimple_omp_parallel_set_child_fn (copy, t);
2182 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2183 gimple_omp_parallel_set_data_arg (copy, t);
2184 goto copy_omp_body;
2186 case GIMPLE_OMP_TASK:
2187 t = unshare_expr (gimple_omp_task_clauses (stmt));
2188 gimple_omp_task_set_clauses (copy, t);
2189 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2190 gimple_omp_task_set_child_fn (copy, t);
2191 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2192 gimple_omp_task_set_data_arg (copy, t);
2193 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2194 gimple_omp_task_set_copy_fn (copy, t);
2195 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2196 gimple_omp_task_set_arg_size (copy, t);
2197 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2198 gimple_omp_task_set_arg_align (copy, t);
2199 goto copy_omp_body;
2201 case GIMPLE_OMP_CRITICAL:
2202 t = unshare_expr (gimple_omp_critical_name (stmt));
2203 gimple_omp_critical_set_name (copy, t);
2204 goto copy_omp_body;
2206 case GIMPLE_OMP_SECTIONS:
2207 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2208 gimple_omp_sections_set_clauses (copy, t);
2209 t = unshare_expr (gimple_omp_sections_control (stmt));
2210 gimple_omp_sections_set_control (copy, t);
2211 /* FALLTHRU */
2213 case GIMPLE_OMP_SINGLE:
2214 case GIMPLE_OMP_SECTION:
2215 case GIMPLE_OMP_MASTER:
2216 case GIMPLE_OMP_ORDERED:
2217 copy_omp_body:
2218 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2219 gimple_omp_set_body (copy, new_seq);
2220 break;
2222 case GIMPLE_WITH_CLEANUP_EXPR:
2223 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2224 gimple_wce_set_cleanup (copy, new_seq);
2225 break;
2227 default:
2228 gcc_unreachable ();
2232 /* Make copy of operands. */
2233 if (num_ops > 0)
2235 for (i = 0; i < num_ops; i++)
2236 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2238 /* Clear out SSA operand vectors on COPY. */
2239 if (gimple_has_ops (stmt))
2241 gimple_set_def_ops (copy, NULL);
2242 gimple_set_use_ops (copy, NULL);
2245 if (gimple_has_mem_ops (stmt))
2247 gimple_set_vdef (copy, gimple_vdef (stmt));
2248 gimple_set_vuse (copy, gimple_vuse (stmt));
2251 /* SSA operands need to be updated. */
2252 gimple_set_modified (copy, true);
2255 return copy;
2259 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2260 a MODIFIED field. */
2262 void
2263 gimple_set_modified (gimple s, bool modifiedp)
2265 if (gimple_has_ops (s))
2267 s->gsbase.modified = (unsigned) modifiedp;
2269 if (modifiedp
2270 && cfun->gimple_df
2271 && is_gimple_call (s)
2272 && gimple_call_noreturn_p (s))
2273 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2278 /* Return true if statement S has side-effects. We consider a
2279 statement to have side effects if:
2281 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2282 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2284 bool
2285 gimple_has_side_effects (const_gimple s)
2287 unsigned i;
2289 if (is_gimple_debug (s))
2290 return false;
2292 /* We don't have to scan the arguments to check for
2293 volatile arguments, though, at present, we still
2294 do a scan to check for TREE_SIDE_EFFECTS. */
2295 if (gimple_has_volatile_ops (s))
2296 return true;
2298 if (is_gimple_call (s))
2300 unsigned nargs = gimple_call_num_args (s);
2302 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2303 return true;
2304 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2305 /* An infinite loop is considered a side effect. */
2306 return true;
2308 if (gimple_call_lhs (s)
2309 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2311 gcc_assert (gimple_has_volatile_ops (s));
2312 return true;
2315 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2316 return true;
2318 for (i = 0; i < nargs; i++)
2319 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2321 gcc_assert (gimple_has_volatile_ops (s));
2322 return true;
2325 return false;
2327 else
2329 for (i = 0; i < gimple_num_ops (s); i++)
2330 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2332 gcc_assert (gimple_has_volatile_ops (s));
2333 return true;
2337 return false;
2340 /* Return true if the RHS of statement S has side effects.
2341 We may use it to determine if it is admissable to replace
2342 an assignment or call with a copy of a previously-computed
2343 value. In such cases, side-effects due the the LHS are
2344 preserved. */
2346 bool
2347 gimple_rhs_has_side_effects (const_gimple s)
2349 unsigned i;
2351 if (is_gimple_call (s))
2353 unsigned nargs = gimple_call_num_args (s);
2355 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2356 return true;
2358 /* We cannot use gimple_has_volatile_ops here,
2359 because we must ignore a volatile LHS. */
2360 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2361 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2363 gcc_assert (gimple_has_volatile_ops (s));
2364 return true;
2367 for (i = 0; i < nargs; i++)
2368 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2369 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2370 return true;
2372 return false;
2374 else if (is_gimple_assign (s))
2376 /* Skip the first operand, the LHS. */
2377 for (i = 1; i < gimple_num_ops (s); i++)
2378 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2379 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2381 gcc_assert (gimple_has_volatile_ops (s));
2382 return true;
2385 else if (is_gimple_debug (s))
2386 return false;
2387 else
2389 /* For statements without an LHS, examine all arguments. */
2390 for (i = 0; i < gimple_num_ops (s); i++)
2391 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2392 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2394 gcc_assert (gimple_has_volatile_ops (s));
2395 return true;
2399 return false;
2402 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2403 Return true if S can trap. When INCLUDE_MEM is true, check whether
2404 the memory operations could trap. When INCLUDE_STORES is true and
2405 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2407 bool
2408 gimple_could_trap_p_1 (gimple s, bool include_mem, bool include_stores)
2410 tree t, div = NULL_TREE;
2411 enum tree_code op;
2413 if (include_mem)
2415 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2417 for (i = start; i < gimple_num_ops (s); i++)
2418 if (tree_could_trap_p (gimple_op (s, i)))
2419 return true;
2422 switch (gimple_code (s))
2424 case GIMPLE_ASM:
2425 return gimple_asm_volatile_p (s);
2427 case GIMPLE_CALL:
2428 t = gimple_call_fndecl (s);
2429 /* Assume that calls to weak functions may trap. */
2430 if (!t || !DECL_P (t) || DECL_WEAK (t))
2431 return true;
2432 return false;
2434 case GIMPLE_ASSIGN:
2435 t = gimple_expr_type (s);
2436 op = gimple_assign_rhs_code (s);
2437 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2438 div = gimple_assign_rhs2 (s);
2439 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2440 (INTEGRAL_TYPE_P (t)
2441 && TYPE_OVERFLOW_TRAPS (t)),
2442 div));
2444 default:
2445 break;
2448 return false;
2451 /* Return true if statement S can trap. */
2453 bool
2454 gimple_could_trap_p (gimple s)
2456 return gimple_could_trap_p_1 (s, true, true);
2459 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2461 bool
2462 gimple_assign_rhs_could_trap_p (gimple s)
2464 gcc_assert (is_gimple_assign (s));
2465 return gimple_could_trap_p_1 (s, true, false);
2469 /* Print debugging information for gimple stmts generated. */
2471 void
2472 dump_gimple_statistics (void)
2474 #ifdef GATHER_STATISTICS
2475 int i, total_tuples = 0, total_bytes = 0;
2477 fprintf (stderr, "\nGIMPLE statements\n");
2478 fprintf (stderr, "Kind Stmts Bytes\n");
2479 fprintf (stderr, "---------------------------------------\n");
2480 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2482 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2483 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2484 total_tuples += gimple_alloc_counts[i];
2485 total_bytes += gimple_alloc_sizes[i];
2487 fprintf (stderr, "---------------------------------------\n");
2488 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2489 fprintf (stderr, "---------------------------------------\n");
2490 #else
2491 fprintf (stderr, "No gimple statistics\n");
2492 #endif
2496 /* Return the number of operands needed on the RHS of a GIMPLE
2497 assignment for an expression with tree code CODE. */
2499 unsigned
2500 get_gimple_rhs_num_ops (enum tree_code code)
2502 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2504 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2505 return 1;
2506 else if (rhs_class == GIMPLE_BINARY_RHS)
2507 return 2;
2508 else if (rhs_class == GIMPLE_TERNARY_RHS)
2509 return 3;
2510 else
2511 gcc_unreachable ();
2514 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2515 (unsigned char) \
2516 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2517 : ((TYPE) == tcc_binary \
2518 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2519 : ((TYPE) == tcc_constant \
2520 || (TYPE) == tcc_declaration \
2521 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2522 : ((SYM) == TRUTH_AND_EXPR \
2523 || (SYM) == TRUTH_OR_EXPR \
2524 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2525 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2526 : ((SYM) == WIDEN_MULT_PLUS_EXPR \
2527 || (SYM) == WIDEN_MULT_MINUS_EXPR) ? GIMPLE_TERNARY_RHS \
2528 : ((SYM) == COND_EXPR \
2529 || (SYM) == CONSTRUCTOR \
2530 || (SYM) == OBJ_TYPE_REF \
2531 || (SYM) == ASSERT_EXPR \
2532 || (SYM) == ADDR_EXPR \
2533 || (SYM) == WITH_SIZE_EXPR \
2534 || (SYM) == SSA_NAME \
2535 || (SYM) == POLYNOMIAL_CHREC \
2536 || (SYM) == DOT_PROD_EXPR \
2537 || (SYM) == VEC_COND_EXPR \
2538 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2539 : GIMPLE_INVALID_RHS),
2540 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2542 const unsigned char gimple_rhs_class_table[] = {
2543 #include "all-tree.def"
2546 #undef DEFTREECODE
2547 #undef END_OF_BASE_TREE_CODES
2549 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2551 /* Validation of GIMPLE expressions. */
2553 /* Returns true iff T is a valid RHS for an assignment to a renamed
2554 user -- or front-end generated artificial -- variable. */
2556 bool
2557 is_gimple_reg_rhs (tree t)
2559 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2562 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2563 LHS, or for a call argument. */
2565 bool
2566 is_gimple_mem_rhs (tree t)
2568 /* If we're dealing with a renamable type, either source or dest must be
2569 a renamed variable. */
2570 if (is_gimple_reg_type (TREE_TYPE (t)))
2571 return is_gimple_val (t);
2572 else
2573 return is_gimple_val (t) || is_gimple_lvalue (t);
2576 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2578 bool
2579 is_gimple_lvalue (tree t)
2581 return (is_gimple_addressable (t)
2582 || TREE_CODE (t) == WITH_SIZE_EXPR
2583 /* These are complex lvalues, but don't have addresses, so they
2584 go here. */
2585 || TREE_CODE (t) == BIT_FIELD_REF);
2588 /* Return true if T is a GIMPLE condition. */
2590 bool
2591 is_gimple_condexpr (tree t)
2593 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2594 && !tree_could_trap_p (t)
2595 && is_gimple_val (TREE_OPERAND (t, 0))
2596 && is_gimple_val (TREE_OPERAND (t, 1))));
2599 /* Return true if T is something whose address can be taken. */
2601 bool
2602 is_gimple_addressable (tree t)
2604 return (is_gimple_id (t) || handled_component_p (t)
2605 || TREE_CODE (t) == MEM_REF);
2608 /* Return true if T is a valid gimple constant. */
2610 bool
2611 is_gimple_constant (const_tree t)
2613 switch (TREE_CODE (t))
2615 case INTEGER_CST:
2616 case REAL_CST:
2617 case FIXED_CST:
2618 case STRING_CST:
2619 case COMPLEX_CST:
2620 case VECTOR_CST:
2621 return true;
2623 /* Vector constant constructors are gimple invariant. */
2624 case CONSTRUCTOR:
2625 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2626 return TREE_CONSTANT (t);
2627 else
2628 return false;
2630 default:
2631 return false;
2635 /* Return true if T is a gimple address. */
2637 bool
2638 is_gimple_address (const_tree t)
2640 tree op;
2642 if (TREE_CODE (t) != ADDR_EXPR)
2643 return false;
2645 op = TREE_OPERAND (t, 0);
2646 while (handled_component_p (op))
2648 if ((TREE_CODE (op) == ARRAY_REF
2649 || TREE_CODE (op) == ARRAY_RANGE_REF)
2650 && !is_gimple_val (TREE_OPERAND (op, 1)))
2651 return false;
2653 op = TREE_OPERAND (op, 0);
2656 if (CONSTANT_CLASS_P (op) || TREE_CODE (op) == MEM_REF)
2657 return true;
2659 switch (TREE_CODE (op))
2661 case PARM_DECL:
2662 case RESULT_DECL:
2663 case LABEL_DECL:
2664 case FUNCTION_DECL:
2665 case VAR_DECL:
2666 case CONST_DECL:
2667 return true;
2669 default:
2670 return false;
2674 /* Strip out all handled components that produce invariant
2675 offsets. */
2677 static const_tree
2678 strip_invariant_refs (const_tree op)
2680 while (handled_component_p (op))
2682 switch (TREE_CODE (op))
2684 case ARRAY_REF:
2685 case ARRAY_RANGE_REF:
2686 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2687 || TREE_OPERAND (op, 2) != NULL_TREE
2688 || TREE_OPERAND (op, 3) != NULL_TREE)
2689 return NULL;
2690 break;
2692 case COMPONENT_REF:
2693 if (TREE_OPERAND (op, 2) != NULL_TREE)
2694 return NULL;
2695 break;
2697 default:;
2699 op = TREE_OPERAND (op, 0);
2702 return op;
2705 /* Return true if T is a gimple invariant address. */
2707 bool
2708 is_gimple_invariant_address (const_tree t)
2710 const_tree op;
2712 if (TREE_CODE (t) != ADDR_EXPR)
2713 return false;
2715 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2716 if (!op)
2717 return false;
2719 if (TREE_CODE (op) == MEM_REF)
2721 const_tree op0 = TREE_OPERAND (op, 0);
2722 return (TREE_CODE (op0) == ADDR_EXPR
2723 && (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))
2724 || decl_address_invariant_p (TREE_OPERAND (op0, 0))));
2727 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2730 /* Return true if T is a gimple invariant address at IPA level
2731 (so addresses of variables on stack are not allowed). */
2733 bool
2734 is_gimple_ip_invariant_address (const_tree t)
2736 const_tree op;
2738 if (TREE_CODE (t) != ADDR_EXPR)
2739 return false;
2741 op = strip_invariant_refs (TREE_OPERAND (t, 0));
2743 return op && (CONSTANT_CLASS_P (op) || decl_address_ip_invariant_p (op));
2746 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2747 form of function invariant. */
2749 bool
2750 is_gimple_min_invariant (const_tree t)
2752 if (TREE_CODE (t) == ADDR_EXPR)
2753 return is_gimple_invariant_address (t);
2755 return is_gimple_constant (t);
2758 /* Return true if T is a GIMPLE interprocedural invariant. It's a restricted
2759 form of gimple minimal invariant. */
2761 bool
2762 is_gimple_ip_invariant (const_tree t)
2764 if (TREE_CODE (t) == ADDR_EXPR)
2765 return is_gimple_ip_invariant_address (t);
2767 return is_gimple_constant (t);
2770 /* Return true if T looks like a valid GIMPLE statement. */
2772 bool
2773 is_gimple_stmt (tree t)
2775 const enum tree_code code = TREE_CODE (t);
2777 switch (code)
2779 case NOP_EXPR:
2780 /* The only valid NOP_EXPR is the empty statement. */
2781 return IS_EMPTY_STMT (t);
2783 case BIND_EXPR:
2784 case COND_EXPR:
2785 /* These are only valid if they're void. */
2786 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2788 case SWITCH_EXPR:
2789 case GOTO_EXPR:
2790 case RETURN_EXPR:
2791 case LABEL_EXPR:
2792 case CASE_LABEL_EXPR:
2793 case TRY_CATCH_EXPR:
2794 case TRY_FINALLY_EXPR:
2795 case EH_FILTER_EXPR:
2796 case CATCH_EXPR:
2797 case ASM_EXPR:
2798 case STATEMENT_LIST:
2799 case OMP_PARALLEL:
2800 case OMP_FOR:
2801 case OMP_SECTIONS:
2802 case OMP_SECTION:
2803 case OMP_SINGLE:
2804 case OMP_MASTER:
2805 case OMP_ORDERED:
2806 case OMP_CRITICAL:
2807 case OMP_TASK:
2808 /* These are always void. */
2809 return true;
2811 case CALL_EXPR:
2812 case MODIFY_EXPR:
2813 case PREDICT_EXPR:
2814 /* These are valid regardless of their type. */
2815 return true;
2817 default:
2818 return false;
2822 /* Return true if T is a variable. */
2824 bool
2825 is_gimple_variable (tree t)
2827 return (TREE_CODE (t) == VAR_DECL
2828 || TREE_CODE (t) == PARM_DECL
2829 || TREE_CODE (t) == RESULT_DECL
2830 || TREE_CODE (t) == SSA_NAME);
2833 /* Return true if T is a GIMPLE identifier (something with an address). */
2835 bool
2836 is_gimple_id (tree t)
2838 return (is_gimple_variable (t)
2839 || TREE_CODE (t) == FUNCTION_DECL
2840 || TREE_CODE (t) == LABEL_DECL
2841 || TREE_CODE (t) == CONST_DECL
2842 /* Allow string constants, since they are addressable. */
2843 || TREE_CODE (t) == STRING_CST);
2846 /* Return true if TYPE is a suitable type for a scalar register variable. */
2848 bool
2849 is_gimple_reg_type (tree type)
2851 return !AGGREGATE_TYPE_P (type);
2854 /* Return true if T is a non-aggregate register variable. */
2856 bool
2857 is_gimple_reg (tree t)
2859 if (TREE_CODE (t) == SSA_NAME)
2860 t = SSA_NAME_VAR (t);
2862 if (!is_gimple_variable (t))
2863 return false;
2865 if (!is_gimple_reg_type (TREE_TYPE (t)))
2866 return false;
2868 /* A volatile decl is not acceptable because we can't reuse it as
2869 needed. We need to copy it into a temp first. */
2870 if (TREE_THIS_VOLATILE (t))
2871 return false;
2873 /* We define "registers" as things that can be renamed as needed,
2874 which with our infrastructure does not apply to memory. */
2875 if (needs_to_live_in_memory (t))
2876 return false;
2878 /* Hard register variables are an interesting case. For those that
2879 are call-clobbered, we don't know where all the calls are, since
2880 we don't (want to) take into account which operations will turn
2881 into libcalls at the rtl level. For those that are call-saved,
2882 we don't currently model the fact that calls may in fact change
2883 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2884 level, and so miss variable changes that might imply. All around,
2885 it seems safest to not do too much optimization with these at the
2886 tree level at all. We'll have to rely on the rtl optimizers to
2887 clean this up, as there we've got all the appropriate bits exposed. */
2888 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2889 return false;
2891 /* Complex and vector values must have been put into SSA-like form.
2892 That is, no assignments to the individual components. */
2893 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2894 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2895 return DECL_GIMPLE_REG_P (t);
2897 return true;
2901 /* Return true if T is a GIMPLE variable whose address is not needed. */
2903 bool
2904 is_gimple_non_addressable (tree t)
2906 if (TREE_CODE (t) == SSA_NAME)
2907 t = SSA_NAME_VAR (t);
2909 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2912 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2914 bool
2915 is_gimple_val (tree t)
2917 /* Make loads from volatiles and memory vars explicit. */
2918 if (is_gimple_variable (t)
2919 && is_gimple_reg_type (TREE_TYPE (t))
2920 && !is_gimple_reg (t))
2921 return false;
2923 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2926 /* Similarly, but accept hard registers as inputs to asm statements. */
2928 bool
2929 is_gimple_asm_val (tree t)
2931 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2932 return true;
2934 return is_gimple_val (t);
2937 /* Return true if T is a GIMPLE minimal lvalue. */
2939 bool
2940 is_gimple_min_lval (tree t)
2942 if (!(t = CONST_CAST_TREE (strip_invariant_refs (t))))
2943 return false;
2944 return (is_gimple_id (t) || TREE_CODE (t) == MEM_REF);
2947 /* Return true if T is a typecast operation. */
2949 bool
2950 is_gimple_cast (tree t)
2952 return (CONVERT_EXPR_P (t)
2953 || TREE_CODE (t) == FIX_TRUNC_EXPR);
2956 /* Return true if T is a valid function operand of a CALL_EXPR. */
2958 bool
2959 is_gimple_call_addr (tree t)
2961 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
2964 /* Return true if T is a valid address operand of a MEM_REF. */
2966 bool
2967 is_gimple_mem_ref_addr (tree t)
2969 return (is_gimple_reg (t)
2970 || TREE_CODE (t) == INTEGER_CST
2971 || (TREE_CODE (t) == ADDR_EXPR
2972 && (CONSTANT_CLASS_P (TREE_OPERAND (t, 0))
2973 || decl_address_invariant_p (TREE_OPERAND (t, 0)))));
2976 /* If T makes a function call, return the corresponding CALL_EXPR operand.
2977 Otherwise, return NULL_TREE. */
2979 tree
2980 get_call_expr_in (tree t)
2982 if (TREE_CODE (t) == MODIFY_EXPR)
2983 t = TREE_OPERAND (t, 1);
2984 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2985 t = TREE_OPERAND (t, 0);
2986 if (TREE_CODE (t) == CALL_EXPR)
2987 return t;
2988 return NULL_TREE;
2992 /* Given a memory reference expression T, return its base address.
2993 The base address of a memory reference expression is the main
2994 object being referenced. For instance, the base address for
2995 'array[i].fld[j]' is 'array'. You can think of this as stripping
2996 away the offset part from a memory address.
2998 This function calls handled_component_p to strip away all the inner
2999 parts of the memory reference until it reaches the base object. */
3001 tree
3002 get_base_address (tree t)
3004 while (handled_component_p (t))
3005 t = TREE_OPERAND (t, 0);
3007 if (TREE_CODE (t) == MEM_REF
3008 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
3009 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
3010 else if (TREE_CODE (t) == TARGET_MEM_REF
3011 && TMR_SYMBOL (t))
3012 t = TMR_SYMBOL (t);
3014 if (SSA_VAR_P (t)
3015 || TREE_CODE (t) == STRING_CST
3016 || TREE_CODE (t) == CONSTRUCTOR
3017 || INDIRECT_REF_P (t)
3018 || TREE_CODE (t) == MEM_REF)
3019 return t;
3020 else
3021 return NULL_TREE;
3024 void
3025 recalculate_side_effects (tree t)
3027 enum tree_code code = TREE_CODE (t);
3028 int len = TREE_OPERAND_LENGTH (t);
3029 int i;
3031 switch (TREE_CODE_CLASS (code))
3033 case tcc_expression:
3034 switch (code)
3036 case INIT_EXPR:
3037 case MODIFY_EXPR:
3038 case VA_ARG_EXPR:
3039 case PREDECREMENT_EXPR:
3040 case PREINCREMENT_EXPR:
3041 case POSTDECREMENT_EXPR:
3042 case POSTINCREMENT_EXPR:
3043 /* All of these have side-effects, no matter what their
3044 operands are. */
3045 return;
3047 default:
3048 break;
3050 /* Fall through. */
3052 case tcc_comparison: /* a comparison expression */
3053 case tcc_unary: /* a unary arithmetic expression */
3054 case tcc_binary: /* a binary arithmetic expression */
3055 case tcc_reference: /* a reference */
3056 case tcc_vl_exp: /* a function call */
3057 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3058 for (i = 0; i < len; ++i)
3060 tree op = TREE_OPERAND (t, i);
3061 if (op && TREE_SIDE_EFFECTS (op))
3062 TREE_SIDE_EFFECTS (t) = 1;
3064 break;
3066 case tcc_constant:
3067 /* No side-effects. */
3068 return;
3070 default:
3071 gcc_unreachable ();
3075 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3076 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3077 we failed to create one. */
3079 tree
3080 canonicalize_cond_expr_cond (tree t)
3082 /* Strip conversions around boolean operations. */
3083 if (CONVERT_EXPR_P (t)
3084 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 0))))
3085 t = TREE_OPERAND (t, 0);
3087 /* For (bool)x use x != 0. */
3088 if (CONVERT_EXPR_P (t)
3089 && TREE_CODE (TREE_TYPE (t)) == BOOLEAN_TYPE)
3091 tree top0 = TREE_OPERAND (t, 0);
3092 t = build2 (NE_EXPR, TREE_TYPE (t),
3093 top0, build_int_cst (TREE_TYPE (top0), 0));
3095 /* For !x use x == 0. */
3096 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3098 tree top0 = TREE_OPERAND (t, 0);
3099 t = build2 (EQ_EXPR, TREE_TYPE (t),
3100 top0, build_int_cst (TREE_TYPE (top0), 0));
3102 /* For cmp ? 1 : 0 use cmp. */
3103 else if (TREE_CODE (t) == COND_EXPR
3104 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3105 && integer_onep (TREE_OPERAND (t, 1))
3106 && integer_zerop (TREE_OPERAND (t, 2)))
3108 tree top0 = TREE_OPERAND (t, 0);
3109 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3110 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3113 if (is_gimple_condexpr (t))
3114 return t;
3116 return NULL_TREE;
3119 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
3120 the positions marked by the set ARGS_TO_SKIP. */
3122 gimple
3123 gimple_call_copy_skip_args (gimple stmt, bitmap args_to_skip)
3125 int i;
3126 tree fn = gimple_call_fn (stmt);
3127 int nargs = gimple_call_num_args (stmt);
3128 VEC(tree, heap) *vargs = VEC_alloc (tree, heap, nargs);
3129 gimple new_stmt;
3131 for (i = 0; i < nargs; i++)
3132 if (!bitmap_bit_p (args_to_skip, i))
3133 VEC_quick_push (tree, vargs, gimple_call_arg (stmt, i));
3135 new_stmt = gimple_build_call_vec (fn, vargs);
3136 VEC_free (tree, heap, vargs);
3137 if (gimple_call_lhs (stmt))
3138 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
3140 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3141 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3143 gimple_set_block (new_stmt, gimple_block (stmt));
3144 if (gimple_has_location (stmt))
3145 gimple_set_location (new_stmt, gimple_location (stmt));
3146 gimple_call_copy_flags (new_stmt, stmt);
3147 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
3149 gimple_set_modified (new_stmt, true);
3151 return new_stmt;
3155 static hashval_t gimple_type_hash (const void *);
3157 /* Structure used to maintain a cache of some type pairs compared by
3158 gimple_types_compatible_p when comparing aggregate types. There are
3159 three possible values for SAME_P:
3161 -2: The pair (T1, T2) has just been inserted in the table.
3162 0: T1 and T2 are different types.
3163 1: T1 and T2 are the same type.
3165 The two elements in the SAME_P array are indexed by the comparison
3166 mode gtc_mode. */
3168 struct type_pair_d
3170 unsigned int uid1;
3171 unsigned int uid2;
3172 signed char same_p[2];
3174 typedef struct type_pair_d *type_pair_t;
3176 DEF_VEC_P(type_pair_t);
3177 DEF_VEC_ALLOC_P(type_pair_t,heap);
3179 /* Return a hash value for the type pair pointed-to by P. */
3181 static hashval_t
3182 type_pair_hash (const void *p)
3184 const struct type_pair_d *pair = (const struct type_pair_d *) p;
3185 hashval_t val1 = pair->uid1;
3186 hashval_t val2 = pair->uid2;
3187 return (iterative_hash_hashval_t (val2, val1)
3188 ^ iterative_hash_hashval_t (val1, val2));
3191 /* Compare two type pairs pointed-to by P1 and P2. */
3193 static int
3194 type_pair_eq (const void *p1, const void *p2)
3196 const struct type_pair_d *pair1 = (const struct type_pair_d *) p1;
3197 const struct type_pair_d *pair2 = (const struct type_pair_d *) p2;
3198 return ((pair1->uid1 == pair2->uid1 && pair1->uid2 == pair2->uid2)
3199 || (pair1->uid1 == pair2->uid2 && pair1->uid2 == pair2->uid1));
3202 /* Lookup the pair of types T1 and T2 in *VISITED_P. Insert a new
3203 entry if none existed. */
3205 static type_pair_t
3206 lookup_type_pair (tree t1, tree t2, htab_t *visited_p, struct obstack *ob_p)
3208 struct type_pair_d pair;
3209 type_pair_t p;
3210 void **slot;
3212 if (*visited_p == NULL)
3214 *visited_p = htab_create (251, type_pair_hash, type_pair_eq, NULL);
3215 gcc_obstack_init (ob_p);
3218 pair.uid1 = TYPE_UID (t1);
3219 pair.uid2 = TYPE_UID (t2);
3220 slot = htab_find_slot (*visited_p, &pair, INSERT);
3222 if (*slot)
3223 p = *((type_pair_t *) slot);
3224 else
3226 p = XOBNEW (ob_p, struct type_pair_d);
3227 p->uid1 = TYPE_UID (t1);
3228 p->uid2 = TYPE_UID (t2);
3229 p->same_p[0] = -2;
3230 p->same_p[1] = -2;
3231 *slot = (void *) p;
3234 return p;
3237 /* Per pointer state for the SCC finding. The on_sccstack flag
3238 is not strictly required, it is true when there is no hash value
3239 recorded for the type and false otherwise. But querying that
3240 is slower. */
3242 struct sccs
3244 unsigned int dfsnum;
3245 unsigned int low;
3246 bool on_sccstack;
3247 union {
3248 hashval_t hash;
3249 signed char same_p;
3250 } u;
3253 static unsigned int next_dfs_num;
3254 static unsigned int gtc_next_dfs_num;
3256 /* Return true if T1 and T2 have the same name. If FOR_COMPLETION_P is
3257 true then if any type has no name return false, otherwise return
3258 true if both types have no names. */
3260 static bool
3261 compare_type_names_p (tree t1, tree t2, bool for_completion_p)
3263 tree name1 = TYPE_NAME (t1);
3264 tree name2 = TYPE_NAME (t2);
3266 /* Consider anonymous types all unique for completion. */
3267 if (for_completion_p
3268 && (!name1 || !name2))
3269 return false;
3271 if (name1 && TREE_CODE (name1) == TYPE_DECL)
3273 name1 = DECL_NAME (name1);
3274 if (for_completion_p
3275 && !name1)
3276 return false;
3278 gcc_assert (!name1 || TREE_CODE (name1) == IDENTIFIER_NODE);
3280 if (name2 && TREE_CODE (name2) == TYPE_DECL)
3282 name2 = DECL_NAME (name2);
3283 if (for_completion_p
3284 && !name2)
3285 return false;
3287 gcc_assert (!name2 || TREE_CODE (name2) == IDENTIFIER_NODE);
3289 /* Identifiers can be compared with pointer equality rather
3290 than a string comparison. */
3291 if (name1 == name2)
3292 return true;
3294 return false;
3297 /* Return true if the field decls F1 and F2 are at the same offset.
3299 This is intended to be used on GIMPLE types only. In order to
3300 compare GENERIC types, use fields_compatible_p instead. */
3302 bool
3303 gimple_compare_field_offset (tree f1, tree f2)
3305 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
3307 tree offset1 = DECL_FIELD_OFFSET (f1);
3308 tree offset2 = DECL_FIELD_OFFSET (f2);
3309 return ((offset1 == offset2
3310 /* Once gimplification is done, self-referential offsets are
3311 instantiated as operand #2 of the COMPONENT_REF built for
3312 each access and reset. Therefore, they are not relevant
3313 anymore and fields are interchangeable provided that they
3314 represent the same access. */
3315 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
3316 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
3317 && (DECL_SIZE (f1) == DECL_SIZE (f2)
3318 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
3319 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
3320 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
3321 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
3322 || operand_equal_p (offset1, offset2, 0))
3323 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
3324 DECL_FIELD_BIT_OFFSET (f2)));
3327 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
3328 should be, so handle differing ones specially by decomposing
3329 the offset into a byte and bit offset manually. */
3330 if (host_integerp (DECL_FIELD_OFFSET (f1), 0)
3331 && host_integerp (DECL_FIELD_OFFSET (f2), 0))
3333 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
3334 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
3335 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
3336 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
3337 + bit_offset1 / BITS_PER_UNIT);
3338 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
3339 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
3340 + bit_offset2 / BITS_PER_UNIT);
3341 if (byte_offset1 != byte_offset2)
3342 return false;
3343 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
3346 return false;
3349 /* If the type T1 and the type T2 are a complete and an incomplete
3350 variant of the same type return true. */
3352 static bool
3353 gimple_compatible_complete_and_incomplete_subtype_p (tree t1, tree t2)
3355 /* If one pointer points to an incomplete type variant of
3356 the other pointed-to type they are the same. */
3357 if (TREE_CODE (t1) == TREE_CODE (t2)
3358 && RECORD_OR_UNION_TYPE_P (t1)
3359 && (!COMPLETE_TYPE_P (t1)
3360 || !COMPLETE_TYPE_P (t2))
3361 && TYPE_QUALS (t1) == TYPE_QUALS (t2)
3362 && compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3363 TYPE_MAIN_VARIANT (t2), true))
3364 return true;
3365 return false;
3368 static bool
3369 gimple_types_compatible_p_1 (tree, tree, enum gtc_mode, type_pair_t,
3370 VEC(type_pair_t, heap) **,
3371 struct pointer_map_t *, struct obstack *);
3373 /* DFS visit the edge from the callers type pair with state *STATE to
3374 the pair T1, T2 while operating in FOR_MERGING_P mode.
3375 Update the merging status if it is not part of the SCC containing the
3376 callers pair and return it.
3377 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3379 static bool
3380 gtc_visit (tree t1, tree t2, enum gtc_mode mode,
3381 struct sccs *state,
3382 VEC(type_pair_t, heap) **sccstack,
3383 struct pointer_map_t *sccstate,
3384 struct obstack *sccstate_obstack)
3386 struct sccs *cstate = NULL;
3387 type_pair_t p;
3388 void **slot;
3390 /* Check first for the obvious case of pointer identity. */
3391 if (t1 == t2)
3392 return true;
3394 /* Check that we have two types to compare. */
3395 if (t1 == NULL_TREE || t2 == NULL_TREE)
3396 return false;
3398 /* If the types have been previously registered and found equal
3399 they still are. */
3400 if (TYPE_CANONICAL (t1)
3401 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3402 return true;
3404 /* Can't be the same type if the types don't have the same code. */
3405 if (TREE_CODE (t1) != TREE_CODE (t2))
3406 return false;
3408 /* Can't be the same type if they have different CV qualifiers. */
3409 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3410 return false;
3412 /* Void types are always the same. */
3413 if (TREE_CODE (t1) == VOID_TYPE)
3414 return true;
3416 /* Do some simple checks before doing three hashtable queries. */
3417 if (INTEGRAL_TYPE_P (t1)
3418 || SCALAR_FLOAT_TYPE_P (t1)
3419 || FIXED_POINT_TYPE_P (t1)
3420 || TREE_CODE (t1) == VECTOR_TYPE
3421 || TREE_CODE (t1) == COMPLEX_TYPE
3422 || TREE_CODE (t1) == OFFSET_TYPE)
3424 /* Can't be the same type if they have different alignment,
3425 sign, precision or mode. */
3426 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3427 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3428 || TYPE_MODE (t1) != TYPE_MODE (t2)
3429 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3430 return false;
3432 if (TREE_CODE (t1) == INTEGER_TYPE
3433 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3434 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3435 return false;
3437 /* That's all we need to check for float and fixed-point types. */
3438 if (SCALAR_FLOAT_TYPE_P (t1)
3439 || FIXED_POINT_TYPE_P (t1))
3440 return true;
3442 /* For integral types fall thru to more complex checks. */
3445 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3447 /* Can't be the same type if they have different alignment or mode. */
3448 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3449 || TYPE_MODE (t1) != TYPE_MODE (t2))
3450 return false;
3453 /* If the hash values of t1 and t2 are different the types can't
3454 possibly be the same. This helps keeping the type-pair hashtable
3455 small, only tracking comparisons for hash collisions. */
3456 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3457 return false;
3459 /* Allocate a new cache entry for this comparison. */
3460 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3461 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3463 /* We have already decided whether T1 and T2 are the
3464 same, return the cached result. */
3465 return p->same_p[mode] == 1;
3468 if ((slot = pointer_map_contains (sccstate, p)) != NULL)
3469 cstate = (struct sccs *)*slot;
3470 if (!cstate)
3472 bool res;
3473 /* Not yet visited. DFS recurse. */
3474 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3475 sccstack, sccstate, sccstate_obstack);
3476 if (!cstate)
3477 cstate = (struct sccs *)* pointer_map_contains (sccstate, p);
3478 state->low = MIN (state->low, cstate->low);
3479 /* If the type is no longer on the SCC stack and thus is not part
3480 of the parents SCC, return its state. Otherwise we will
3481 ignore this pair and assume equality. */
3482 if (!cstate->on_sccstack)
3483 return res;
3485 if (cstate->dfsnum < state->dfsnum
3486 && cstate->on_sccstack)
3487 state->low = MIN (cstate->dfsnum, state->low);
3489 /* We are part of our parents SCC, skip this entry and return true. */
3490 return true;
3493 /* Worker for gimple_types_compatible.
3494 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3496 static bool
3497 gimple_types_compatible_p_1 (tree t1, tree t2, enum gtc_mode mode,
3498 type_pair_t p,
3499 VEC(type_pair_t, heap) **sccstack,
3500 struct pointer_map_t *sccstate,
3501 struct obstack *sccstate_obstack)
3503 struct sccs *state;
3505 gcc_assert (p->same_p[mode] == -2);
3507 state = XOBNEW (sccstate_obstack, struct sccs);
3508 *pointer_map_insert (sccstate, p) = state;
3510 VEC_safe_push (type_pair_t, heap, *sccstack, p);
3511 state->dfsnum = gtc_next_dfs_num++;
3512 state->low = state->dfsnum;
3513 state->on_sccstack = true;
3515 /* If their attributes are not the same they can't be the same type. */
3516 if (!attribute_list_equal (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2)))
3517 goto different_types;
3519 /* Do type-specific comparisons. */
3520 switch (TREE_CODE (t1))
3522 case VECTOR_TYPE:
3523 case COMPLEX_TYPE:
3524 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3525 state, sccstack, sccstate, sccstate_obstack))
3526 goto different_types;
3527 goto same_types;
3529 case ARRAY_TYPE:
3530 /* Array types are the same if the element types are the same and
3531 the number of elements are the same. */
3532 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3533 state, sccstack, sccstate, sccstate_obstack)
3534 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
3535 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
3536 goto different_types;
3537 else
3539 tree i1 = TYPE_DOMAIN (t1);
3540 tree i2 = TYPE_DOMAIN (t2);
3542 /* For an incomplete external array, the type domain can be
3543 NULL_TREE. Check this condition also. */
3544 if (i1 == NULL_TREE && i2 == NULL_TREE)
3545 goto same_types;
3546 else if (i1 == NULL_TREE || i2 == NULL_TREE)
3547 goto different_types;
3548 /* If for a complete array type the possibly gimplified sizes
3549 are different the types are different. */
3550 else if (((TYPE_SIZE (i1) != NULL) ^ (TYPE_SIZE (i2) != NULL))
3551 || (TYPE_SIZE (i1)
3552 && TYPE_SIZE (i2)
3553 && !operand_equal_p (TYPE_SIZE (i1), TYPE_SIZE (i2), 0)))
3554 goto different_types;
3555 else
3557 tree min1 = TYPE_MIN_VALUE (i1);
3558 tree min2 = TYPE_MIN_VALUE (i2);
3559 tree max1 = TYPE_MAX_VALUE (i1);
3560 tree max2 = TYPE_MAX_VALUE (i2);
3562 /* The minimum/maximum values have to be the same. */
3563 if ((min1 == min2
3564 || (min1 && min2
3565 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
3566 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
3567 || operand_equal_p (min1, min2, 0))))
3568 && (max1 == max2
3569 || (max1 && max2
3570 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
3571 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
3572 || operand_equal_p (max1, max2, 0)))))
3573 goto same_types;
3574 else
3575 goto different_types;
3579 case METHOD_TYPE:
3580 /* Method types should belong to the same class. */
3581 if (!gtc_visit (TYPE_METHOD_BASETYPE (t1), TYPE_METHOD_BASETYPE (t2),
3582 mode, state, sccstack, sccstate, sccstate_obstack))
3583 goto different_types;
3585 /* Fallthru */
3587 case FUNCTION_TYPE:
3588 /* Function types are the same if the return type and arguments types
3589 are the same. */
3590 if ((mode != GTC_DIAG
3591 || !gimple_compatible_complete_and_incomplete_subtype_p
3592 (TREE_TYPE (t1), TREE_TYPE (t2)))
3593 && !gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3594 state, sccstack, sccstate, sccstate_obstack))
3595 goto different_types;
3597 if (!targetm.comp_type_attributes (t1, t2))
3598 goto different_types;
3600 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
3601 goto same_types;
3602 else
3604 tree parms1, parms2;
3606 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
3607 parms1 && parms2;
3608 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
3610 if ((mode == GTC_MERGE
3611 || !gimple_compatible_complete_and_incomplete_subtype_p
3612 (TREE_VALUE (parms1), TREE_VALUE (parms2)))
3613 && !gtc_visit (TREE_VALUE (parms1), TREE_VALUE (parms2), mode,
3614 state, sccstack, sccstate, sccstate_obstack))
3615 goto different_types;
3618 if (parms1 || parms2)
3619 goto different_types;
3621 goto same_types;
3624 case OFFSET_TYPE:
3626 if (!gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3627 state, sccstack, sccstate, sccstate_obstack)
3628 || !gtc_visit (TYPE_OFFSET_BASETYPE (t1),
3629 TYPE_OFFSET_BASETYPE (t2), mode,
3630 state, sccstack, sccstate, sccstate_obstack))
3631 goto different_types;
3633 goto same_types;
3636 case POINTER_TYPE:
3637 case REFERENCE_TYPE:
3639 /* If the two pointers have different ref-all attributes,
3640 they can't be the same type. */
3641 if (TYPE_REF_CAN_ALIAS_ALL (t1) != TYPE_REF_CAN_ALIAS_ALL (t2))
3642 goto different_types;
3644 /* If one pointer points to an incomplete type variant of
3645 the other pointed-to type they are the same. */
3646 if (mode == GTC_DIAG
3647 && gimple_compatible_complete_and_incomplete_subtype_p
3648 (TREE_TYPE (t1), TREE_TYPE (t2)))
3649 goto same_types;
3651 /* Otherwise, pointer and reference types are the same if the
3652 pointed-to types are the same. */
3653 if (gtc_visit (TREE_TYPE (t1), TREE_TYPE (t2), mode,
3654 state, sccstack, sccstate, sccstate_obstack))
3655 goto same_types;
3657 goto different_types;
3660 case INTEGER_TYPE:
3661 case BOOLEAN_TYPE:
3663 tree min1 = TYPE_MIN_VALUE (t1);
3664 tree max1 = TYPE_MAX_VALUE (t1);
3665 tree min2 = TYPE_MIN_VALUE (t2);
3666 tree max2 = TYPE_MAX_VALUE (t2);
3667 bool min_equal_p = false;
3668 bool max_equal_p = false;
3670 /* If either type has a minimum value, the other type must
3671 have the same. */
3672 if (min1 == NULL_TREE && min2 == NULL_TREE)
3673 min_equal_p = true;
3674 else if (min1 && min2 && operand_equal_p (min1, min2, 0))
3675 min_equal_p = true;
3677 /* Likewise, if either type has a maximum value, the other
3678 type must have the same. */
3679 if (max1 == NULL_TREE && max2 == NULL_TREE)
3680 max_equal_p = true;
3681 else if (max1 && max2 && operand_equal_p (max1, max2, 0))
3682 max_equal_p = true;
3684 if (!min_equal_p || !max_equal_p)
3685 goto different_types;
3687 goto same_types;
3690 case ENUMERAL_TYPE:
3692 /* FIXME lto, we cannot check bounds on enumeral types because
3693 different front ends will produce different values.
3694 In C, enumeral types are integers, while in C++ each element
3695 will have its own symbolic value. We should decide how enums
3696 are to be represented in GIMPLE and have each front end lower
3697 to that. */
3698 tree v1, v2;
3700 /* For enumeral types, all the values must be the same. */
3701 if (TYPE_VALUES (t1) == TYPE_VALUES (t2))
3702 goto same_types;
3704 for (v1 = TYPE_VALUES (t1), v2 = TYPE_VALUES (t2);
3705 v1 && v2;
3706 v1 = TREE_CHAIN (v1), v2 = TREE_CHAIN (v2))
3708 tree c1 = TREE_VALUE (v1);
3709 tree c2 = TREE_VALUE (v2);
3711 if (TREE_CODE (c1) == CONST_DECL)
3712 c1 = DECL_INITIAL (c1);
3714 if (TREE_CODE (c2) == CONST_DECL)
3715 c2 = DECL_INITIAL (c2);
3717 if (tree_int_cst_equal (c1, c2) != 1)
3718 goto different_types;
3721 /* If one enumeration has more values than the other, they
3722 are not the same. */
3723 if (v1 || v2)
3724 goto different_types;
3726 goto same_types;
3729 case RECORD_TYPE:
3730 case UNION_TYPE:
3731 case QUAL_UNION_TYPE:
3733 tree f1, f2;
3735 /* The struct tags shall compare equal. */
3736 if (!compare_type_names_p (TYPE_MAIN_VARIANT (t1),
3737 TYPE_MAIN_VARIANT (t2), false))
3738 goto different_types;
3740 /* For aggregate types, all the fields must be the same. */
3741 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
3742 f1 && f2;
3743 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
3745 /* The fields must have the same name, offset and type. */
3746 if (DECL_NAME (f1) != DECL_NAME (f2)
3747 || DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
3748 || !gimple_compare_field_offset (f1, f2)
3749 || !gtc_visit (TREE_TYPE (f1), TREE_TYPE (f2), mode,
3750 state, sccstack, sccstate, sccstate_obstack))
3751 goto different_types;
3754 /* If one aggregate has more fields than the other, they
3755 are not the same. */
3756 if (f1 || f2)
3757 goto different_types;
3759 goto same_types;
3762 default:
3763 gcc_unreachable ();
3766 /* Common exit path for types that are not compatible. */
3767 different_types:
3768 state->u.same_p = 0;
3769 goto pop;
3771 /* Common exit path for types that are compatible. */
3772 same_types:
3773 state->u.same_p = 1;
3774 goto pop;
3776 pop:
3777 if (state->low == state->dfsnum)
3779 type_pair_t x;
3781 /* Pop off the SCC and set its cache values. */
3784 struct sccs *cstate;
3785 x = VEC_pop (type_pair_t, *sccstack);
3786 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
3787 cstate->on_sccstack = false;
3788 x->same_p[mode] = cstate->u.same_p;
3790 while (x != p);
3793 return state->u.same_p;
3796 /* Return true iff T1 and T2 are structurally identical. When
3797 FOR_MERGING_P is true the an incomplete type and a complete type
3798 are considered different, otherwise they are considered compatible. */
3800 bool
3801 gimple_types_compatible_p (tree t1, tree t2, enum gtc_mode mode)
3803 VEC(type_pair_t, heap) *sccstack = NULL;
3804 struct pointer_map_t *sccstate;
3805 struct obstack sccstate_obstack;
3806 type_pair_t p = NULL;
3807 bool res;
3809 /* Before starting to set up the SCC machinery handle simple cases. */
3811 /* Check first for the obvious case of pointer identity. */
3812 if (t1 == t2)
3813 return true;
3815 /* Check that we have two types to compare. */
3816 if (t1 == NULL_TREE || t2 == NULL_TREE)
3817 return false;
3819 /* If the types have been previously registered and found equal
3820 they still are. */
3821 if (TYPE_CANONICAL (t1)
3822 && TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2))
3823 return true;
3825 /* Can't be the same type if the types don't have the same code. */
3826 if (TREE_CODE (t1) != TREE_CODE (t2))
3827 return false;
3829 /* Can't be the same type if they have different CV qualifiers. */
3830 if (TYPE_QUALS (t1) != TYPE_QUALS (t2))
3831 return false;
3833 /* Void types are always the same. */
3834 if (TREE_CODE (t1) == VOID_TYPE)
3835 return true;
3837 /* Do some simple checks before doing three hashtable queries. */
3838 if (INTEGRAL_TYPE_P (t1)
3839 || SCALAR_FLOAT_TYPE_P (t1)
3840 || FIXED_POINT_TYPE_P (t1)
3841 || TREE_CODE (t1) == VECTOR_TYPE
3842 || TREE_CODE (t1) == COMPLEX_TYPE
3843 || TREE_CODE (t1) == OFFSET_TYPE)
3845 /* Can't be the same type if they have different alignment,
3846 sign, precision or mode. */
3847 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3848 || TYPE_PRECISION (t1) != TYPE_PRECISION (t2)
3849 || TYPE_MODE (t1) != TYPE_MODE (t2)
3850 || TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2))
3851 return false;
3853 if (TREE_CODE (t1) == INTEGER_TYPE
3854 && (TYPE_IS_SIZETYPE (t1) != TYPE_IS_SIZETYPE (t2)
3855 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)))
3856 return false;
3858 /* That's all we need to check for float and fixed-point types. */
3859 if (SCALAR_FLOAT_TYPE_P (t1)
3860 || FIXED_POINT_TYPE_P (t1))
3861 return true;
3863 /* For integral types fall thru to more complex checks. */
3866 else if (AGGREGATE_TYPE_P (t1) || POINTER_TYPE_P (t1))
3868 /* Can't be the same type if they have different alignment or mode. */
3869 if (TYPE_ALIGN (t1) != TYPE_ALIGN (t2)
3870 || TYPE_MODE (t1) != TYPE_MODE (t2))
3871 return false;
3874 /* If the hash values of t1 and t2 are different the types can't
3875 possibly be the same. This helps keeping the type-pair hashtable
3876 small, only tracking comparisons for hash collisions. */
3877 if (gimple_type_hash (t1) != gimple_type_hash (t2))
3878 return false;
3880 /* If we've visited this type pair before (in the case of aggregates
3881 with self-referential types), and we made a decision, return it. */
3882 p = lookup_type_pair (t1, t2, &gtc_visited, &gtc_ob);
3883 if (p->same_p[mode] == 0 || p->same_p[mode] == 1)
3885 /* We have already decided whether T1 and T2 are the
3886 same, return the cached result. */
3887 return p->same_p[mode] == 1;
3890 /* Now set up the SCC machinery for the comparison. */
3891 gtc_next_dfs_num = 1;
3892 sccstate = pointer_map_create ();
3893 gcc_obstack_init (&sccstate_obstack);
3894 res = gimple_types_compatible_p_1 (t1, t2, mode, p,
3895 &sccstack, sccstate, &sccstate_obstack);
3896 VEC_free (type_pair_t, heap, sccstack);
3897 pointer_map_destroy (sccstate);
3898 obstack_free (&sccstate_obstack, NULL);
3900 return res;
3904 static hashval_t
3905 iterative_hash_gimple_type (tree, hashval_t, VEC(tree, heap) **,
3906 struct pointer_map_t *, struct obstack *);
3908 /* DFS visit the edge from the callers type with state *STATE to T.
3909 Update the callers type hash V with the hash for T if it is not part
3910 of the SCC containing the callers type and return it.
3911 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done. */
3913 static hashval_t
3914 visit (tree t, struct sccs *state, hashval_t v,
3915 VEC (tree, heap) **sccstack,
3916 struct pointer_map_t *sccstate,
3917 struct obstack *sccstate_obstack)
3919 struct sccs *cstate = NULL;
3920 void **slot;
3922 /* If there is a hash value recorded for this type then it can't
3923 possibly be part of our parent SCC. Simply mix in its hash. */
3924 if ((slot = pointer_map_contains (type_hash_cache, t)))
3925 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, v);
3927 if ((slot = pointer_map_contains (sccstate, t)) != NULL)
3928 cstate = (struct sccs *)*slot;
3929 if (!cstate)
3931 hashval_t tem;
3932 /* Not yet visited. DFS recurse. */
3933 tem = iterative_hash_gimple_type (t, v,
3934 sccstack, sccstate, sccstate_obstack);
3935 if (!cstate)
3936 cstate = (struct sccs *)* pointer_map_contains (sccstate, t);
3937 state->low = MIN (state->low, cstate->low);
3938 /* If the type is no longer on the SCC stack and thus is not part
3939 of the parents SCC mix in its hash value. Otherwise we will
3940 ignore the type for hashing purposes and return the unaltered
3941 hash value. */
3942 if (!cstate->on_sccstack)
3943 return tem;
3945 if (cstate->dfsnum < state->dfsnum
3946 && cstate->on_sccstack)
3947 state->low = MIN (cstate->dfsnum, state->low);
3949 /* We are part of our parents SCC, skip this type during hashing
3950 and return the unaltered hash value. */
3951 return v;
3954 /* Hash NAME with the previous hash value V and return it. */
3956 static hashval_t
3957 iterative_hash_name (tree name, hashval_t v)
3959 if (!name)
3960 return v;
3961 if (TREE_CODE (name) == TYPE_DECL)
3962 name = DECL_NAME (name);
3963 if (!name)
3964 return v;
3965 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
3966 return iterative_hash_object (IDENTIFIER_HASH_VALUE (name), v);
3969 /* Returning a hash value for gimple type TYPE combined with VAL.
3970 SCCSTACK, SCCSTATE and SCCSTATE_OBSTACK are state for the DFS walk done.
3972 To hash a type we end up hashing in types that are reachable.
3973 Through pointers we can end up with cycles which messes up the
3974 required property that we need to compute the same hash value
3975 for structurally equivalent types. To avoid this we have to
3976 hash all types in a cycle (the SCC) in a commutative way. The
3977 easiest way is to not mix in the hashes of the SCC members at
3978 all. To make this work we have to delay setting the hash
3979 values of the SCC until it is complete. */
3981 static hashval_t
3982 iterative_hash_gimple_type (tree type, hashval_t val,
3983 VEC(tree, heap) **sccstack,
3984 struct pointer_map_t *sccstate,
3985 struct obstack *sccstate_obstack)
3987 hashval_t v;
3988 void **slot;
3989 struct sccs *state;
3991 #ifdef ENABLE_CHECKING
3992 /* Not visited during this DFS walk nor during previous walks. */
3993 gcc_assert (!pointer_map_contains (type_hash_cache, type)
3994 && !pointer_map_contains (sccstate, type));
3995 #endif
3996 state = XOBNEW (sccstate_obstack, struct sccs);
3997 *pointer_map_insert (sccstate, type) = state;
3999 VEC_safe_push (tree, heap, *sccstack, type);
4000 state->dfsnum = next_dfs_num++;
4001 state->low = state->dfsnum;
4002 state->on_sccstack = true;
4004 /* Combine a few common features of types so that types are grouped into
4005 smaller sets; when searching for existing matching types to merge,
4006 only existing types having the same features as the new type will be
4007 checked. */
4008 v = iterative_hash_hashval_t (TREE_CODE (type), 0);
4009 v = iterative_hash_hashval_t (TYPE_QUALS (type), v);
4010 v = iterative_hash_hashval_t (TREE_ADDRESSABLE (type), v);
4012 /* Do not hash the types size as this will cause differences in
4013 hash values for the complete vs. the incomplete type variant. */
4015 /* Incorporate common features of numerical types. */
4016 if (INTEGRAL_TYPE_P (type)
4017 || SCALAR_FLOAT_TYPE_P (type)
4018 || FIXED_POINT_TYPE_P (type))
4020 v = iterative_hash_hashval_t (TYPE_PRECISION (type), v);
4021 v = iterative_hash_hashval_t (TYPE_MODE (type), v);
4022 v = iterative_hash_hashval_t (TYPE_UNSIGNED (type), v);
4025 /* For pointer and reference types, fold in information about the type
4026 pointed to but do not recurse into possibly incomplete types to
4027 avoid hash differences for complete vs. incomplete types. */
4028 if (POINTER_TYPE_P (type))
4030 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4032 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4033 v = iterative_hash_name
4034 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4036 else
4037 v = visit (TREE_TYPE (type), state, v,
4038 sccstack, sccstate, sccstate_obstack);
4041 /* For integer types hash the types min/max values and the string flag. */
4042 if (TREE_CODE (type) == INTEGER_TYPE)
4044 /* OMP lowering can introduce error_mark_node in place of
4045 random local decls in types. */
4046 if (TYPE_MIN_VALUE (type) != error_mark_node)
4047 v = iterative_hash_expr (TYPE_MIN_VALUE (type), v);
4048 if (TYPE_MAX_VALUE (type) != error_mark_node)
4049 v = iterative_hash_expr (TYPE_MAX_VALUE (type), v);
4050 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4053 /* For array types hash their domain and the string flag. */
4054 if (TREE_CODE (type) == ARRAY_TYPE
4055 && TYPE_DOMAIN (type))
4057 v = iterative_hash_hashval_t (TYPE_STRING_FLAG (type), v);
4058 v = visit (TYPE_DOMAIN (type), state, v,
4059 sccstack, sccstate, sccstate_obstack);
4062 /* Recurse for aggregates with a single element type. */
4063 if (TREE_CODE (type) == ARRAY_TYPE
4064 || TREE_CODE (type) == COMPLEX_TYPE
4065 || TREE_CODE (type) == VECTOR_TYPE)
4066 v = visit (TREE_TYPE (type), state, v,
4067 sccstack, sccstate, sccstate_obstack);
4069 /* Incorporate function return and argument types. */
4070 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4072 unsigned na;
4073 tree p;
4075 /* For method types also incorporate their parent class. */
4076 if (TREE_CODE (type) == METHOD_TYPE)
4077 v = visit (TYPE_METHOD_BASETYPE (type), state, v,
4078 sccstack, sccstate, sccstate_obstack);
4080 /* For result types allow mismatch in completeness. */
4081 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (type)))
4083 v = iterative_hash_hashval_t (TREE_CODE (TREE_TYPE (type)), v);
4084 v = iterative_hash_name
4085 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_TYPE (type))), v);
4087 else
4088 v = visit (TREE_TYPE (type), state, v,
4089 sccstack, sccstate, sccstate_obstack);
4091 for (p = TYPE_ARG_TYPES (type), na = 0; p; p = TREE_CHAIN (p))
4093 /* For argument types allow mismatch in completeness. */
4094 if (RECORD_OR_UNION_TYPE_P (TREE_VALUE (p)))
4096 v = iterative_hash_hashval_t (TREE_CODE (TREE_VALUE (p)), v);
4097 v = iterative_hash_name
4098 (TYPE_NAME (TYPE_MAIN_VARIANT (TREE_VALUE (p))), v);
4100 else
4101 v = visit (TREE_VALUE (p), state, v,
4102 sccstack, sccstate, sccstate_obstack);
4103 na++;
4106 v = iterative_hash_hashval_t (na, v);
4109 if (TREE_CODE (type) == RECORD_TYPE
4110 || TREE_CODE (type) == UNION_TYPE
4111 || TREE_CODE (type) == QUAL_UNION_TYPE)
4113 unsigned nf;
4114 tree f;
4116 v = iterative_hash_name (TYPE_NAME (TYPE_MAIN_VARIANT (type)), v);
4118 for (f = TYPE_FIELDS (type), nf = 0; f; f = TREE_CHAIN (f))
4120 v = iterative_hash_name (DECL_NAME (f), v);
4121 v = visit (TREE_TYPE (f), state, v,
4122 sccstack, sccstate, sccstate_obstack);
4123 nf++;
4126 v = iterative_hash_hashval_t (nf, v);
4129 /* Record hash for us. */
4130 state->u.hash = v;
4132 /* See if we found an SCC. */
4133 if (state->low == state->dfsnum)
4135 tree x;
4137 /* Pop off the SCC and set its hash values. */
4140 struct sccs *cstate;
4141 x = VEC_pop (tree, *sccstack);
4142 gcc_assert (!pointer_map_contains (type_hash_cache, x));
4143 cstate = (struct sccs *)*pointer_map_contains (sccstate, x);
4144 cstate->on_sccstack = false;
4145 slot = pointer_map_insert (type_hash_cache, x);
4146 *slot = (void *) (size_t) cstate->u.hash;
4148 while (x != type);
4151 return iterative_hash_hashval_t (v, val);
4155 /* Returns a hash value for P (assumed to be a type). The hash value
4156 is computed using some distinguishing features of the type. Note
4157 that we cannot use pointer hashing here as we may be dealing with
4158 two distinct instances of the same type.
4160 This function should produce the same hash value for two compatible
4161 types according to gimple_types_compatible_p. */
4163 static hashval_t
4164 gimple_type_hash (const void *p)
4166 const_tree t = (const_tree) p;
4167 VEC(tree, heap) *sccstack = NULL;
4168 struct pointer_map_t *sccstate;
4169 struct obstack sccstate_obstack;
4170 hashval_t val;
4171 void **slot;
4173 if (type_hash_cache == NULL)
4174 type_hash_cache = pointer_map_create ();
4176 if ((slot = pointer_map_contains (type_hash_cache, p)) != NULL)
4177 return iterative_hash_hashval_t ((hashval_t) (size_t) *slot, 0);
4179 /* Perform a DFS walk and pre-hash all reachable types. */
4180 next_dfs_num = 1;
4181 sccstate = pointer_map_create ();
4182 gcc_obstack_init (&sccstate_obstack);
4183 val = iterative_hash_gimple_type (CONST_CAST_TREE (t), 0,
4184 &sccstack, sccstate, &sccstate_obstack);
4185 VEC_free (tree, heap, sccstack);
4186 pointer_map_destroy (sccstate);
4187 obstack_free (&sccstate_obstack, NULL);
4189 return val;
4193 /* Returns nonzero if P1 and P2 are equal. */
4195 static int
4196 gimple_type_eq (const void *p1, const void *p2)
4198 const_tree t1 = (const_tree) p1;
4199 const_tree t2 = (const_tree) p2;
4200 return gimple_types_compatible_p (CONST_CAST_TREE (t1),
4201 CONST_CAST_TREE (t2), GTC_MERGE);
4205 /* Register type T in the global type table gimple_types.
4206 If another type T', compatible with T, already existed in
4207 gimple_types then return T', otherwise return T. This is used by
4208 LTO to merge identical types read from different TUs. */
4210 tree
4211 gimple_register_type (tree t)
4213 void **slot;
4215 gcc_assert (TYPE_P (t));
4217 /* In TYPE_CANONICAL we cache the result of gimple_register_type.
4218 It is initially set to NULL during LTO streaming.
4219 But do not mess with TYPE_CANONICAL when not in WPA or link phase. */
4220 if (in_lto_p && TYPE_CANONICAL (t))
4221 return TYPE_CANONICAL (t);
4223 /* Always register the main variant first. This is important so we
4224 pick up the non-typedef variants as canonical, otherwise we'll end
4225 up taking typedef ids for structure tags during comparison. */
4226 if (TYPE_MAIN_VARIANT (t) != t)
4227 gimple_register_type (TYPE_MAIN_VARIANT (t));
4229 if (gimple_types == NULL)
4230 gimple_types = htab_create (16381, gimple_type_hash, gimple_type_eq, 0);
4232 slot = htab_find_slot (gimple_types, t, INSERT);
4233 if (*slot
4234 && *(tree *)slot != t)
4236 tree new_type = (tree) *((tree *) slot);
4238 /* Do not merge types with different addressability. */
4239 gcc_assert (TREE_ADDRESSABLE (t) == TREE_ADDRESSABLE (new_type));
4241 /* If t is not its main variant then make t unreachable from its
4242 main variant list. Otherwise we'd queue up a lot of duplicates
4243 there. */
4244 if (t != TYPE_MAIN_VARIANT (t))
4246 tree tem = TYPE_MAIN_VARIANT (t);
4247 while (tem && TYPE_NEXT_VARIANT (tem) != t)
4248 tem = TYPE_NEXT_VARIANT (tem);
4249 if (tem)
4250 TYPE_NEXT_VARIANT (tem) = TYPE_NEXT_VARIANT (t);
4251 TYPE_NEXT_VARIANT (t) = NULL_TREE;
4254 /* If we are a pointer then remove us from the pointer-to or
4255 reference-to chain. Otherwise we'd queue up a lot of duplicates
4256 there. */
4257 if (TREE_CODE (t) == POINTER_TYPE)
4259 if (TYPE_POINTER_TO (TREE_TYPE (t)) == t)
4260 TYPE_POINTER_TO (TREE_TYPE (t)) = TYPE_NEXT_PTR_TO (t);
4261 else
4263 tree tem = TYPE_POINTER_TO (TREE_TYPE (t));
4264 while (tem && TYPE_NEXT_PTR_TO (tem) != t)
4265 tem = TYPE_NEXT_PTR_TO (tem);
4266 if (tem)
4267 TYPE_NEXT_PTR_TO (tem) = TYPE_NEXT_PTR_TO (t);
4269 TYPE_NEXT_PTR_TO (t) = NULL_TREE;
4271 else if (TREE_CODE (t) == REFERENCE_TYPE)
4273 if (TYPE_REFERENCE_TO (TREE_TYPE (t)) == t)
4274 TYPE_REFERENCE_TO (TREE_TYPE (t)) = TYPE_NEXT_REF_TO (t);
4275 else
4277 tree tem = TYPE_REFERENCE_TO (TREE_TYPE (t));
4278 while (tem && TYPE_NEXT_REF_TO (tem) != t)
4279 tem = TYPE_NEXT_REF_TO (tem);
4280 if (tem)
4281 TYPE_NEXT_REF_TO (tem) = TYPE_NEXT_REF_TO (t);
4283 TYPE_NEXT_REF_TO (t) = NULL_TREE;
4286 if (in_lto_p)
4287 TYPE_CANONICAL (t) = new_type;
4288 t = new_type;
4290 else
4292 if (in_lto_p)
4293 TYPE_CANONICAL (t) = t;
4294 *slot = (void *) t;
4297 return t;
4301 /* Show statistics on references to the global type table gimple_types. */
4303 void
4304 print_gimple_types_stats (void)
4306 if (gimple_types)
4307 fprintf (stderr, "GIMPLE type table: size %ld, %ld elements, "
4308 "%ld searches, %ld collisions (ratio: %f)\n",
4309 (long) htab_size (gimple_types),
4310 (long) htab_elements (gimple_types),
4311 (long) gimple_types->searches,
4312 (long) gimple_types->collisions,
4313 htab_collisions (gimple_types));
4314 else
4315 fprintf (stderr, "GIMPLE type table is empty\n");
4316 if (gtc_visited)
4317 fprintf (stderr, "GIMPLE type comparison table: size %ld, %ld "
4318 "elements, %ld searches, %ld collisions (ratio: %f)\n",
4319 (long) htab_size (gtc_visited),
4320 (long) htab_elements (gtc_visited),
4321 (long) gtc_visited->searches,
4322 (long) gtc_visited->collisions,
4323 htab_collisions (gtc_visited));
4324 else
4325 fprintf (stderr, "GIMPLE type comparison table is empty\n");
4328 /* Free the gimple type hashtables used for LTO type merging. */
4330 void
4331 free_gimple_type_tables (void)
4333 /* Last chance to print stats for the tables. */
4334 if (flag_lto_report)
4335 print_gimple_types_stats ();
4337 if (gimple_types)
4339 htab_delete (gimple_types);
4340 gimple_types = NULL;
4342 if (type_hash_cache)
4344 pointer_map_destroy (type_hash_cache);
4345 type_hash_cache = NULL;
4347 if (gtc_visited)
4349 htab_delete (gtc_visited);
4350 obstack_free (&gtc_ob, NULL);
4351 gtc_visited = NULL;
4356 /* Return a type the same as TYPE except unsigned or
4357 signed according to UNSIGNEDP. */
4359 static tree
4360 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
4362 tree type1;
4364 type1 = TYPE_MAIN_VARIANT (type);
4365 if (type1 == signed_char_type_node
4366 || type1 == char_type_node
4367 || type1 == unsigned_char_type_node)
4368 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4369 if (type1 == integer_type_node || type1 == unsigned_type_node)
4370 return unsignedp ? unsigned_type_node : integer_type_node;
4371 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
4372 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4373 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
4374 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4375 if (type1 == long_long_integer_type_node
4376 || type1 == long_long_unsigned_type_node)
4377 return unsignedp
4378 ? long_long_unsigned_type_node
4379 : long_long_integer_type_node;
4380 if (int128_integer_type_node && (type1 == int128_integer_type_node || type1 == int128_unsigned_type_node))
4381 return unsignedp
4382 ? int128_unsigned_type_node
4383 : int128_integer_type_node;
4384 #if HOST_BITS_PER_WIDE_INT >= 64
4385 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
4386 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4387 #endif
4388 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
4389 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4390 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
4391 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4392 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
4393 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4394 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
4395 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4397 #define GIMPLE_FIXED_TYPES(NAME) \
4398 if (type1 == short_ ## NAME ## _type_node \
4399 || type1 == unsigned_short_ ## NAME ## _type_node) \
4400 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
4401 : short_ ## NAME ## _type_node; \
4402 if (type1 == NAME ## _type_node \
4403 || type1 == unsigned_ ## NAME ## _type_node) \
4404 return unsignedp ? unsigned_ ## NAME ## _type_node \
4405 : NAME ## _type_node; \
4406 if (type1 == long_ ## NAME ## _type_node \
4407 || type1 == unsigned_long_ ## NAME ## _type_node) \
4408 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
4409 : long_ ## NAME ## _type_node; \
4410 if (type1 == long_long_ ## NAME ## _type_node \
4411 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
4412 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
4413 : long_long_ ## NAME ## _type_node;
4415 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
4416 if (type1 == NAME ## _type_node \
4417 || type1 == u ## NAME ## _type_node) \
4418 return unsignedp ? u ## NAME ## _type_node \
4419 : NAME ## _type_node;
4421 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
4422 if (type1 == sat_ ## short_ ## NAME ## _type_node \
4423 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
4424 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
4425 : sat_ ## short_ ## NAME ## _type_node; \
4426 if (type1 == sat_ ## NAME ## _type_node \
4427 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
4428 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
4429 : sat_ ## NAME ## _type_node; \
4430 if (type1 == sat_ ## long_ ## NAME ## _type_node \
4431 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
4432 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
4433 : sat_ ## long_ ## NAME ## _type_node; \
4434 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
4435 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
4436 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
4437 : sat_ ## long_long_ ## NAME ## _type_node;
4439 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
4440 if (type1 == sat_ ## NAME ## _type_node \
4441 || type1 == sat_ ## u ## NAME ## _type_node) \
4442 return unsignedp ? sat_ ## u ## NAME ## _type_node \
4443 : sat_ ## NAME ## _type_node;
4445 GIMPLE_FIXED_TYPES (fract);
4446 GIMPLE_FIXED_TYPES_SAT (fract);
4447 GIMPLE_FIXED_TYPES (accum);
4448 GIMPLE_FIXED_TYPES_SAT (accum);
4450 GIMPLE_FIXED_MODE_TYPES (qq);
4451 GIMPLE_FIXED_MODE_TYPES (hq);
4452 GIMPLE_FIXED_MODE_TYPES (sq);
4453 GIMPLE_FIXED_MODE_TYPES (dq);
4454 GIMPLE_FIXED_MODE_TYPES (tq);
4455 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
4456 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
4457 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
4458 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
4459 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
4460 GIMPLE_FIXED_MODE_TYPES (ha);
4461 GIMPLE_FIXED_MODE_TYPES (sa);
4462 GIMPLE_FIXED_MODE_TYPES (da);
4463 GIMPLE_FIXED_MODE_TYPES (ta);
4464 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
4465 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
4466 GIMPLE_FIXED_MODE_TYPES_SAT (da);
4467 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
4469 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
4470 the precision; they have precision set to match their range, but
4471 may use a wider mode to match an ABI. If we change modes, we may
4472 wind up with bad conversions. For INTEGER_TYPEs in C, must check
4473 the precision as well, so as to yield correct results for
4474 bit-field types. C++ does not have these separate bit-field
4475 types, and producing a signed or unsigned variant of an
4476 ENUMERAL_TYPE may cause other problems as well. */
4477 if (!INTEGRAL_TYPE_P (type)
4478 || TYPE_UNSIGNED (type) == unsignedp)
4479 return type;
4481 #define TYPE_OK(node) \
4482 (TYPE_MODE (type) == TYPE_MODE (node) \
4483 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
4484 if (TYPE_OK (signed_char_type_node))
4485 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
4486 if (TYPE_OK (integer_type_node))
4487 return unsignedp ? unsigned_type_node : integer_type_node;
4488 if (TYPE_OK (short_integer_type_node))
4489 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
4490 if (TYPE_OK (long_integer_type_node))
4491 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
4492 if (TYPE_OK (long_long_integer_type_node))
4493 return (unsignedp
4494 ? long_long_unsigned_type_node
4495 : long_long_integer_type_node);
4496 if (int128_integer_type_node && TYPE_OK (int128_integer_type_node))
4497 return (unsignedp
4498 ? int128_unsigned_type_node
4499 : int128_integer_type_node);
4501 #if HOST_BITS_PER_WIDE_INT >= 64
4502 if (TYPE_OK (intTI_type_node))
4503 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
4504 #endif
4505 if (TYPE_OK (intDI_type_node))
4506 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
4507 if (TYPE_OK (intSI_type_node))
4508 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
4509 if (TYPE_OK (intHI_type_node))
4510 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
4511 if (TYPE_OK (intQI_type_node))
4512 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
4514 #undef GIMPLE_FIXED_TYPES
4515 #undef GIMPLE_FIXED_MODE_TYPES
4516 #undef GIMPLE_FIXED_TYPES_SAT
4517 #undef GIMPLE_FIXED_MODE_TYPES_SAT
4518 #undef TYPE_OK
4520 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
4524 /* Return an unsigned type the same as TYPE in other respects. */
4526 tree
4527 gimple_unsigned_type (tree type)
4529 return gimple_signed_or_unsigned_type (true, type);
4533 /* Return a signed type the same as TYPE in other respects. */
4535 tree
4536 gimple_signed_type (tree type)
4538 return gimple_signed_or_unsigned_type (false, type);
4542 /* Return the typed-based alias set for T, which may be an expression
4543 or a type. Return -1 if we don't do anything special. */
4545 alias_set_type
4546 gimple_get_alias_set (tree t)
4548 tree u;
4550 /* Permit type-punning when accessing a union, provided the access
4551 is directly through the union. For example, this code does not
4552 permit taking the address of a union member and then storing
4553 through it. Even the type-punning allowed here is a GCC
4554 extension, albeit a common and useful one; the C standard says
4555 that such accesses have implementation-defined behavior. */
4556 for (u = t;
4557 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
4558 u = TREE_OPERAND (u, 0))
4559 if (TREE_CODE (u) == COMPONENT_REF
4560 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
4561 return 0;
4563 /* That's all the expressions we handle specially. */
4564 if (!TYPE_P (t))
4565 return -1;
4567 /* For convenience, follow the C standard when dealing with
4568 character types. Any object may be accessed via an lvalue that
4569 has character type. */
4570 if (t == char_type_node
4571 || t == signed_char_type_node
4572 || t == unsigned_char_type_node)
4573 return 0;
4575 /* Allow aliasing between signed and unsigned variants of the same
4576 type. We treat the signed variant as canonical. */
4577 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
4579 tree t1 = gimple_signed_type (t);
4581 /* t1 == t can happen for boolean nodes which are always unsigned. */
4582 if (t1 != t)
4583 return get_alias_set (t1);
4586 return -1;
4590 /* Data structure used to count the number of dereferences to PTR
4591 inside an expression. */
4592 struct count_ptr_d
4594 tree ptr;
4595 unsigned num_stores;
4596 unsigned num_loads;
4599 /* Helper for count_uses_and_derefs. Called by walk_tree to look for
4600 (ALIGN/MISALIGNED_)INDIRECT_REF nodes for the pointer passed in DATA. */
4602 static tree
4603 count_ptr_derefs (tree *tp, int *walk_subtrees, void *data)
4605 struct walk_stmt_info *wi_p = (struct walk_stmt_info *) data;
4606 struct count_ptr_d *count_p = (struct count_ptr_d *) wi_p->info;
4608 /* Do not walk inside ADDR_EXPR nodes. In the expression &ptr->fld,
4609 pointer 'ptr' is *not* dereferenced, it is simply used to compute
4610 the address of 'fld' as 'ptr + offsetof(fld)'. */
4611 if (TREE_CODE (*tp) == ADDR_EXPR)
4613 *walk_subtrees = 0;
4614 return NULL_TREE;
4617 if (TREE_CODE (*tp) == MEM_REF && TREE_OPERAND (*tp, 0) == count_p->ptr)
4619 if (wi_p->is_lhs)
4620 count_p->num_stores++;
4621 else
4622 count_p->num_loads++;
4625 return NULL_TREE;
4628 /* Count the number of direct and indirect uses for pointer PTR in
4629 statement STMT. The number of direct uses is stored in
4630 *NUM_USES_P. Indirect references are counted separately depending
4631 on whether they are store or load operations. The counts are
4632 stored in *NUM_STORES_P and *NUM_LOADS_P. */
4634 void
4635 count_uses_and_derefs (tree ptr, gimple stmt, unsigned *num_uses_p,
4636 unsigned *num_loads_p, unsigned *num_stores_p)
4638 ssa_op_iter i;
4639 tree use;
4641 *num_uses_p = 0;
4642 *num_loads_p = 0;
4643 *num_stores_p = 0;
4645 /* Find out the total number of uses of PTR in STMT. */
4646 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4647 if (use == ptr)
4648 (*num_uses_p)++;
4650 /* Now count the number of indirect references to PTR. This is
4651 truly awful, but we don't have much choice. There are no parent
4652 pointers inside INDIRECT_REFs, so an expression like
4653 '*x_1 = foo (x_1, *x_1)' needs to be traversed piece by piece to
4654 find all the indirect and direct uses of x_1 inside. The only
4655 shortcut we can take is the fact that GIMPLE only allows
4656 INDIRECT_REFs inside the expressions below. */
4657 if (is_gimple_assign (stmt)
4658 || gimple_code (stmt) == GIMPLE_RETURN
4659 || gimple_code (stmt) == GIMPLE_ASM
4660 || is_gimple_call (stmt))
4662 struct walk_stmt_info wi;
4663 struct count_ptr_d count;
4665 count.ptr = ptr;
4666 count.num_stores = 0;
4667 count.num_loads = 0;
4669 memset (&wi, 0, sizeof (wi));
4670 wi.info = &count;
4671 walk_gimple_op (stmt, count_ptr_derefs, &wi);
4673 *num_stores_p = count.num_stores;
4674 *num_loads_p = count.num_loads;
4677 gcc_assert (*num_uses_p >= *num_loads_p + *num_stores_p);
4680 /* From a tree operand OP return the base of a load or store operation
4681 or NULL_TREE if OP is not a load or a store. */
4683 static tree
4684 get_base_loadstore (tree op)
4686 while (handled_component_p (op))
4687 op = TREE_OPERAND (op, 0);
4688 if (DECL_P (op)
4689 || INDIRECT_REF_P (op)
4690 || TREE_CODE (op) == MEM_REF
4691 || TREE_CODE (op) == TARGET_MEM_REF)
4692 return op;
4693 return NULL_TREE;
4696 /* For the statement STMT call the callbacks VISIT_LOAD, VISIT_STORE and
4697 VISIT_ADDR if non-NULL on loads, store and address-taken operands
4698 passing the STMT, the base of the operand and DATA to it. The base
4699 will be either a decl, an indirect reference (including TARGET_MEM_REF)
4700 or the argument of an address expression.
4701 Returns the results of these callbacks or'ed. */
4703 bool
4704 walk_stmt_load_store_addr_ops (gimple stmt, void *data,
4705 bool (*visit_load)(gimple, tree, void *),
4706 bool (*visit_store)(gimple, tree, void *),
4707 bool (*visit_addr)(gimple, tree, void *))
4709 bool ret = false;
4710 unsigned i;
4711 if (gimple_assign_single_p (stmt))
4713 tree lhs, rhs;
4714 if (visit_store)
4716 lhs = get_base_loadstore (gimple_assign_lhs (stmt));
4717 if (lhs)
4718 ret |= visit_store (stmt, lhs, data);
4720 rhs = gimple_assign_rhs1 (stmt);
4721 while (handled_component_p (rhs))
4722 rhs = TREE_OPERAND (rhs, 0);
4723 if (visit_addr)
4725 if (TREE_CODE (rhs) == ADDR_EXPR)
4726 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4727 else if (TREE_CODE (rhs) == TARGET_MEM_REF
4728 && TMR_BASE (rhs) != NULL_TREE
4729 && TREE_CODE (TMR_BASE (rhs)) == ADDR_EXPR)
4730 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (rhs), 0), data);
4731 else if (TREE_CODE (rhs) == OBJ_TYPE_REF
4732 && TREE_CODE (OBJ_TYPE_REF_OBJECT (rhs)) == ADDR_EXPR)
4733 ret |= visit_addr (stmt, TREE_OPERAND (OBJ_TYPE_REF_OBJECT (rhs),
4734 0), data);
4735 lhs = gimple_assign_lhs (stmt);
4736 if (TREE_CODE (lhs) == TARGET_MEM_REF
4737 && TMR_BASE (lhs) != NULL_TREE
4738 && TREE_CODE (TMR_BASE (lhs)) == ADDR_EXPR)
4739 ret |= visit_addr (stmt, TREE_OPERAND (TMR_BASE (lhs), 0), data);
4741 if (visit_load)
4743 rhs = get_base_loadstore (rhs);
4744 if (rhs)
4745 ret |= visit_load (stmt, rhs, data);
4748 else if (visit_addr
4749 && (is_gimple_assign (stmt)
4750 || gimple_code (stmt) == GIMPLE_COND))
4752 for (i = 0; i < gimple_num_ops (stmt); ++i)
4753 if (gimple_op (stmt, i)
4754 && TREE_CODE (gimple_op (stmt, i)) == ADDR_EXPR)
4755 ret |= visit_addr (stmt, TREE_OPERAND (gimple_op (stmt, i), 0), data);
4757 else if (is_gimple_call (stmt))
4759 if (visit_store)
4761 tree lhs = gimple_call_lhs (stmt);
4762 if (lhs)
4764 lhs = get_base_loadstore (lhs);
4765 if (lhs)
4766 ret |= visit_store (stmt, lhs, data);
4769 if (visit_load || visit_addr)
4770 for (i = 0; i < gimple_call_num_args (stmt); ++i)
4772 tree rhs = gimple_call_arg (stmt, i);
4773 if (visit_addr
4774 && TREE_CODE (rhs) == ADDR_EXPR)
4775 ret |= visit_addr (stmt, TREE_OPERAND (rhs, 0), data);
4776 else if (visit_load)
4778 rhs = get_base_loadstore (rhs);
4779 if (rhs)
4780 ret |= visit_load (stmt, rhs, data);
4783 if (visit_addr
4784 && gimple_call_chain (stmt)
4785 && TREE_CODE (gimple_call_chain (stmt)) == ADDR_EXPR)
4786 ret |= visit_addr (stmt, TREE_OPERAND (gimple_call_chain (stmt), 0),
4787 data);
4788 if (visit_addr
4789 && gimple_call_return_slot_opt_p (stmt)
4790 && gimple_call_lhs (stmt) != NULL_TREE
4791 && TREE_ADDRESSABLE (TREE_TYPE (gimple_call_lhs (stmt))))
4792 ret |= visit_addr (stmt, gimple_call_lhs (stmt), data);
4794 else if (gimple_code (stmt) == GIMPLE_ASM)
4796 unsigned noutputs;
4797 const char *constraint;
4798 const char **oconstraints;
4799 bool allows_mem, allows_reg, is_inout;
4800 noutputs = gimple_asm_noutputs (stmt);
4801 oconstraints = XALLOCAVEC (const char *, noutputs);
4802 if (visit_store || visit_addr)
4803 for (i = 0; i < gimple_asm_noutputs (stmt); ++i)
4805 tree link = gimple_asm_output_op (stmt, i);
4806 tree op = get_base_loadstore (TREE_VALUE (link));
4807 if (op && visit_store)
4808 ret |= visit_store (stmt, op, data);
4809 if (visit_addr)
4811 constraint = TREE_STRING_POINTER
4812 (TREE_VALUE (TREE_PURPOSE (link)));
4813 oconstraints[i] = constraint;
4814 parse_output_constraint (&constraint, i, 0, 0, &allows_mem,
4815 &allows_reg, &is_inout);
4816 if (op && !allows_reg && allows_mem)
4817 ret |= visit_addr (stmt, op, data);
4820 if (visit_load || visit_addr)
4821 for (i = 0; i < gimple_asm_ninputs (stmt); ++i)
4823 tree link = gimple_asm_input_op (stmt, i);
4824 tree op = TREE_VALUE (link);
4825 if (visit_addr
4826 && TREE_CODE (op) == ADDR_EXPR)
4827 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4828 else if (visit_load || visit_addr)
4830 op = get_base_loadstore (op);
4831 if (op)
4833 if (visit_load)
4834 ret |= visit_load (stmt, op, data);
4835 if (visit_addr)
4837 constraint = TREE_STRING_POINTER
4838 (TREE_VALUE (TREE_PURPOSE (link)));
4839 parse_input_constraint (&constraint, 0, 0, noutputs,
4840 0, oconstraints,
4841 &allows_mem, &allows_reg);
4842 if (!allows_reg && allows_mem)
4843 ret |= visit_addr (stmt, op, data);
4849 else if (gimple_code (stmt) == GIMPLE_RETURN)
4851 tree op = gimple_return_retval (stmt);
4852 if (op)
4854 if (visit_addr
4855 && TREE_CODE (op) == ADDR_EXPR)
4856 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4857 else if (visit_load)
4859 op = get_base_loadstore (op);
4860 if (op)
4861 ret |= visit_load (stmt, op, data);
4865 else if (visit_addr
4866 && gimple_code (stmt) == GIMPLE_PHI)
4868 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
4870 tree op = PHI_ARG_DEF (stmt, i);
4871 if (TREE_CODE (op) == ADDR_EXPR)
4872 ret |= visit_addr (stmt, TREE_OPERAND (op, 0), data);
4876 return ret;
4879 /* Like walk_stmt_load_store_addr_ops but with NULL visit_addr. IPA-CP
4880 should make a faster clone for this case. */
4882 bool
4883 walk_stmt_load_store_ops (gimple stmt, void *data,
4884 bool (*visit_load)(gimple, tree, void *),
4885 bool (*visit_store)(gimple, tree, void *))
4887 return walk_stmt_load_store_addr_ops (stmt, data,
4888 visit_load, visit_store, NULL);
4891 /* Helper for gimple_ior_addresses_taken_1. */
4893 static bool
4894 gimple_ior_addresses_taken_1 (gimple stmt ATTRIBUTE_UNUSED,
4895 tree addr, void *data)
4897 bitmap addresses_taken = (bitmap)data;
4898 addr = get_base_address (addr);
4899 if (addr
4900 && DECL_P (addr))
4902 bitmap_set_bit (addresses_taken, DECL_UID (addr));
4903 return true;
4905 return false;
4908 /* Set the bit for the uid of all decls that have their address taken
4909 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
4910 were any in this stmt. */
4912 bool
4913 gimple_ior_addresses_taken (bitmap addresses_taken, gimple stmt)
4915 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
4916 gimple_ior_addresses_taken_1);
4920 /* Return a printable name for symbol DECL. */
4922 const char *
4923 gimple_decl_printable_name (tree decl, int verbosity)
4925 if (!DECL_NAME (decl))
4926 return NULL;
4928 if (DECL_ASSEMBLER_NAME_SET_P (decl))
4930 const char *str, *mangled_str;
4931 int dmgl_opts = DMGL_NO_OPTS;
4933 if (verbosity >= 2)
4935 dmgl_opts = DMGL_VERBOSE
4936 | DMGL_ANSI
4937 | DMGL_GNU_V3
4938 | DMGL_RET_POSTFIX;
4939 if (TREE_CODE (decl) == FUNCTION_DECL)
4940 dmgl_opts |= DMGL_PARAMS;
4943 mangled_str = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl));
4944 str = cplus_demangle_v3 (mangled_str, dmgl_opts);
4945 return (str) ? str : mangled_str;
4948 return IDENTIFIER_POINTER (DECL_NAME (decl));
4951 /* Return true when STMT is builtins call to CODE. */
4953 bool
4954 gimple_call_builtin_p (gimple stmt, enum built_in_function code)
4956 tree fndecl;
4957 return (is_gimple_call (stmt)
4958 && (fndecl = gimple_call_fndecl (stmt)) != NULL
4959 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
4960 && DECL_FUNCTION_CODE (fndecl) == code);
4963 #include "gt-gimple.h"