PR rtl-optimization/57003
[official-gcc.git] / gcc / rtlanal.c
blob30634580f2c45ef662eb98477283494bef9ff67d
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "function.h"
36 #include "df.h"
37 #include "tree.h"
38 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
39 #include "addresses.h"
40 #include "rtl-iter.h"
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int computed_jump_p_1 (const_rtx);
47 static void parms_set (rtx, const_rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
50 const_rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
53 const_rtx, enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
66 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
68 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
69 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
70 SIGN_EXTEND then while narrowing we also have to enforce the
71 representation and sign-extend the value to mode DESTINATION_REP.
73 If the value is already sign-extended to DESTINATION_REP mode we
74 can just switch to DESTINATION mode on it. For each pair of
75 integral modes SOURCE and DESTINATION, when truncating from SOURCE
76 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
77 contains the number of high-order bits in SOURCE that have to be
78 copies of the sign-bit so that we can do this mode-switch to
79 DESTINATION. */
81 static unsigned int
82 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
84 /* Store X into index I of ARRAY. ARRAY is known to have at least I
85 elements. Return the new base of ARRAY. */
87 template <typename T>
88 typename T::value_type *
89 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
90 value_type *base,
91 size_t i, value_type x)
93 if (base == array.stack)
95 if (i < LOCAL_ELEMS)
97 base[i] = x;
98 return base;
100 gcc_checking_assert (i == LOCAL_ELEMS);
101 vec_safe_grow (array.heap, i + 1);
102 base = array.heap->address ();
103 memcpy (base, array.stack, sizeof (array.stack));
104 base[LOCAL_ELEMS] = x;
105 return base;
107 unsigned int length = array.heap->length ();
108 if (length > i)
110 gcc_checking_assert (base == array.heap->address ());
111 base[i] = x;
112 return base;
114 else
116 gcc_checking_assert (i == length);
117 vec_safe_push (array.heap, x);
118 return array.heap->address ();
122 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
123 number of elements added to the worklist. */
125 template <typename T>
126 size_t
127 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
128 value_type *base,
129 size_t end, rtx_type x)
131 const char *format = GET_RTX_FORMAT (GET_CODE (x));
132 size_t orig_end = end;
133 for (int i = 0; format[i]; ++i)
134 if (format[i] == 'e')
136 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
137 if (__builtin_expect (end < LOCAL_ELEMS, true))
138 base[end++] = subx;
139 else
140 base = add_single_to_queue (array, base, end++, subx);
142 else if (format[i] == 'E')
144 int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
145 rtx *vec = x->u.fld[i].rt_rtvec->elem;
146 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
147 for (int j = 0; j < length; j++)
148 base[end++] = T::get_value (vec[j]);
149 else
150 for (int j = 0; j < length; j++)
151 base = add_single_to_queue (array, base, end++,
152 T::get_value (vec[j]));
154 return end - orig_end;
157 template <typename T>
158 void
159 generic_subrtx_iterator <T>::free_array (array_type &array)
161 vec_free (array.heap);
164 template <typename T>
165 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
167 template class generic_subrtx_iterator <const_rtx_accessor>;
168 template class generic_subrtx_iterator <rtx_var_accessor>;
169 template class generic_subrtx_iterator <rtx_ptr_accessor>;
171 /* Return 1 if the value of X is unstable
172 (would be different at a different point in the program).
173 The frame pointer, arg pointer, etc. are considered stable
174 (within one function) and so is anything marked `unchanging'. */
177 rtx_unstable_p (const_rtx x)
179 const RTX_CODE code = GET_CODE (x);
180 int i;
181 const char *fmt;
183 switch (code)
185 case MEM:
186 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
188 case CONST:
189 CASE_CONST_ANY:
190 case SYMBOL_REF:
191 case LABEL_REF:
192 return 0;
194 case REG:
195 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
196 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
197 /* The arg pointer varies if it is not a fixed register. */
198 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
199 return 0;
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up local-alloc
202 into believing that the restore is not needed. */
203 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
204 return 0;
205 return 1;
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
211 /* Fall through. */
213 default:
214 break;
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
221 if (rtx_unstable_p (XEXP (x, i)))
222 return 1;
224 else if (fmt[i] == 'E')
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_unstable_p (XVECEXP (x, i, j)))
229 return 1;
232 return 0;
235 /* Return 1 if X has a value that can vary even between two
236 executions of the program. 0 means X can be compared reliably
237 against certain constants or near-constants.
238 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
239 zero, we are slightly more conservative.
240 The frame pointer and the arg pointer are considered constant. */
242 bool
243 rtx_varies_p (const_rtx x, bool for_alias)
245 RTX_CODE code;
246 int i;
247 const char *fmt;
249 if (!x)
250 return 0;
252 code = GET_CODE (x);
253 switch (code)
255 case MEM:
256 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
258 case CONST:
259 CASE_CONST_ANY:
260 case SYMBOL_REF:
261 case LABEL_REF:
262 return 0;
264 case REG:
265 /* Note that we have to test for the actual rtx used for the frame
266 and arg pointers and not just the register number in case we have
267 eliminated the frame and/or arg pointer and are using it
268 for pseudos. */
269 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
270 /* The arg pointer varies if it is not a fixed register. */
271 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
272 return 0;
273 if (x == pic_offset_table_rtx
274 /* ??? When call-clobbered, the value is stable modulo the restore
275 that must happen after a call. This currently screws up
276 local-alloc into believing that the restore is not needed, so we
277 must return 0 only if we are called from alias analysis. */
278 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
279 return 0;
280 return 1;
282 case LO_SUM:
283 /* The operand 0 of a LO_SUM is considered constant
284 (in fact it is related specifically to operand 1)
285 during alias analysis. */
286 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
287 || rtx_varies_p (XEXP (x, 1), for_alias);
289 case ASM_OPERANDS:
290 if (MEM_VOLATILE_P (x))
291 return 1;
293 /* Fall through. */
295 default:
296 break;
299 fmt = GET_RTX_FORMAT (code);
300 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
301 if (fmt[i] == 'e')
303 if (rtx_varies_p (XEXP (x, i), for_alias))
304 return 1;
306 else if (fmt[i] == 'E')
308 int j;
309 for (j = 0; j < XVECLEN (x, i); j++)
310 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
311 return 1;
314 return 0;
317 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
318 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
319 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
320 references on strict alignment machines. */
322 static int
323 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
324 enum machine_mode mode, bool unaligned_mems)
326 enum rtx_code code = GET_CODE (x);
328 /* The offset must be a multiple of the mode size if we are considering
329 unaligned memory references on strict alignment machines. */
330 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
332 HOST_WIDE_INT actual_offset = offset;
334 #ifdef SPARC_STACK_BOUNDARY_HACK
335 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
336 the real alignment of %sp. However, when it does this, the
337 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
338 if (SPARC_STACK_BOUNDARY_HACK
339 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
340 actual_offset -= STACK_POINTER_OFFSET;
341 #endif
343 if (actual_offset % GET_MODE_SIZE (mode) != 0)
344 return 1;
347 switch (code)
349 case SYMBOL_REF:
350 if (SYMBOL_REF_WEAK (x))
351 return 1;
352 if (!CONSTANT_POOL_ADDRESS_P (x))
354 tree decl;
355 HOST_WIDE_INT decl_size;
357 if (offset < 0)
358 return 1;
359 if (size == 0)
360 size = GET_MODE_SIZE (mode);
361 if (size == 0)
362 return offset != 0;
364 /* If the size of the access or of the symbol is unknown,
365 assume the worst. */
366 decl = SYMBOL_REF_DECL (x);
368 /* Else check that the access is in bounds. TODO: restructure
369 expr_size/tree_expr_size/int_expr_size and just use the latter. */
370 if (!decl)
371 decl_size = -1;
372 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
373 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
374 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
375 : -1);
376 else if (TREE_CODE (decl) == STRING_CST)
377 decl_size = TREE_STRING_LENGTH (decl);
378 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
379 decl_size = int_size_in_bytes (TREE_TYPE (decl));
380 else
381 decl_size = -1;
383 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
386 return 0;
388 case LABEL_REF:
389 return 0;
391 case REG:
392 /* Stack references are assumed not to trap, but we need to deal with
393 nonsensical offsets. */
394 if (x == frame_pointer_rtx)
396 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (FRAME_GROWS_DOWNWARD)
401 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
402 return 1;
404 else
406 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
407 return 1;
409 return 0;
411 /* ??? Need to add a similar guard for nonsensical offsets. */
412 if (x == hard_frame_pointer_rtx
413 || x == stack_pointer_rtx
414 /* The arg pointer varies if it is not a fixed register. */
415 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
416 return 0;
417 /* All of the virtual frame registers are stack references. */
418 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
419 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
420 return 0;
421 return 1;
423 case CONST:
424 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
425 mode, unaligned_mems);
427 case PLUS:
428 /* An address is assumed not to trap if:
429 - it is the pic register plus a constant. */
430 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
431 return 0;
433 /* - or it is an address that can't trap plus a constant integer. */
434 if (CONST_INT_P (XEXP (x, 1))
435 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
436 size, mode, unaligned_mems))
437 return 0;
439 return 1;
441 case LO_SUM:
442 case PRE_MODIFY:
443 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
444 mode, unaligned_mems);
446 case PRE_DEC:
447 case PRE_INC:
448 case POST_DEC:
449 case POST_INC:
450 case POST_MODIFY:
451 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
452 mode, unaligned_mems);
454 default:
455 break;
458 /* If it isn't one of the case above, it can cause a trap. */
459 return 1;
462 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
465 rtx_addr_can_trap_p (const_rtx x)
467 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
470 /* Return true if X is an address that is known to not be zero. */
472 bool
473 nonzero_address_p (const_rtx x)
475 const enum rtx_code code = GET_CODE (x);
477 switch (code)
479 case SYMBOL_REF:
480 return !SYMBOL_REF_WEAK (x);
482 case LABEL_REF:
483 return true;
485 case REG:
486 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
487 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
488 || x == stack_pointer_rtx
489 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
490 return true;
491 /* All of the virtual frame registers are stack references. */
492 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
493 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
494 return true;
495 return false;
497 case CONST:
498 return nonzero_address_p (XEXP (x, 0));
500 case PLUS:
501 /* Handle PIC references. */
502 if (XEXP (x, 0) == pic_offset_table_rtx
503 && CONSTANT_P (XEXP (x, 1)))
504 return true;
505 return false;
507 case PRE_MODIFY:
508 /* Similar to the above; allow positive offsets. Further, since
509 auto-inc is only allowed in memories, the register must be a
510 pointer. */
511 if (CONST_INT_P (XEXP (x, 1))
512 && INTVAL (XEXP (x, 1)) > 0)
513 return true;
514 return nonzero_address_p (XEXP (x, 0));
516 case PRE_INC:
517 /* Similarly. Further, the offset is always positive. */
518 return true;
520 case PRE_DEC:
521 case POST_DEC:
522 case POST_INC:
523 case POST_MODIFY:
524 return nonzero_address_p (XEXP (x, 0));
526 case LO_SUM:
527 return nonzero_address_p (XEXP (x, 1));
529 default:
530 break;
533 /* If it isn't one of the case above, might be zero. */
534 return false;
537 /* Return 1 if X refers to a memory location whose address
538 cannot be compared reliably with constant addresses,
539 or if X refers to a BLKmode memory object.
540 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
541 zero, we are slightly more conservative. */
543 bool
544 rtx_addr_varies_p (const_rtx x, bool for_alias)
546 enum rtx_code code;
547 int i;
548 const char *fmt;
550 if (x == 0)
551 return 0;
553 code = GET_CODE (x);
554 if (code == MEM)
555 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
557 fmt = GET_RTX_FORMAT (code);
558 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
559 if (fmt[i] == 'e')
561 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
562 return 1;
564 else if (fmt[i] == 'E')
566 int j;
567 for (j = 0; j < XVECLEN (x, i); j++)
568 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
569 return 1;
571 return 0;
574 /* Return the CALL in X if there is one. */
577 get_call_rtx_from (rtx x)
579 if (INSN_P (x))
580 x = PATTERN (x);
581 if (GET_CODE (x) == PARALLEL)
582 x = XVECEXP (x, 0, 0);
583 if (GET_CODE (x) == SET)
584 x = SET_SRC (x);
585 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
586 return x;
587 return NULL_RTX;
590 /* Return the value of the integer term in X, if one is apparent;
591 otherwise return 0.
592 Only obvious integer terms are detected.
593 This is used in cse.c with the `related_value' field. */
595 HOST_WIDE_INT
596 get_integer_term (const_rtx x)
598 if (GET_CODE (x) == CONST)
599 x = XEXP (x, 0);
601 if (GET_CODE (x) == MINUS
602 && CONST_INT_P (XEXP (x, 1)))
603 return - INTVAL (XEXP (x, 1));
604 if (GET_CODE (x) == PLUS
605 && CONST_INT_P (XEXP (x, 1)))
606 return INTVAL (XEXP (x, 1));
607 return 0;
610 /* If X is a constant, return the value sans apparent integer term;
611 otherwise return 0.
612 Only obvious integer terms are detected. */
615 get_related_value (const_rtx x)
617 if (GET_CODE (x) != CONST)
618 return 0;
619 x = XEXP (x, 0);
620 if (GET_CODE (x) == PLUS
621 && CONST_INT_P (XEXP (x, 1)))
622 return XEXP (x, 0);
623 else if (GET_CODE (x) == MINUS
624 && CONST_INT_P (XEXP (x, 1)))
625 return XEXP (x, 0);
626 return 0;
629 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
630 to somewhere in the same object or object_block as SYMBOL. */
632 bool
633 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
635 tree decl;
637 if (GET_CODE (symbol) != SYMBOL_REF)
638 return false;
640 if (offset == 0)
641 return true;
643 if (offset > 0)
645 if (CONSTANT_POOL_ADDRESS_P (symbol)
646 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
647 return true;
649 decl = SYMBOL_REF_DECL (symbol);
650 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
651 return true;
654 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
655 && SYMBOL_REF_BLOCK (symbol)
656 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
657 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
658 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
659 return true;
661 return false;
664 /* Split X into a base and a constant offset, storing them in *BASE_OUT
665 and *OFFSET_OUT respectively. */
667 void
668 split_const (rtx x, rtx *base_out, rtx *offset_out)
670 if (GET_CODE (x) == CONST)
672 x = XEXP (x, 0);
673 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
675 *base_out = XEXP (x, 0);
676 *offset_out = XEXP (x, 1);
677 return;
680 *base_out = x;
681 *offset_out = const0_rtx;
684 /* Return the number of places FIND appears within X. If COUNT_DEST is
685 zero, we do not count occurrences inside the destination of a SET. */
688 count_occurrences (const_rtx x, const_rtx find, int count_dest)
690 int i, j;
691 enum rtx_code code;
692 const char *format_ptr;
693 int count;
695 if (x == find)
696 return 1;
698 code = GET_CODE (x);
700 switch (code)
702 case REG:
703 CASE_CONST_ANY:
704 case SYMBOL_REF:
705 case CODE_LABEL:
706 case PC:
707 case CC0:
708 return 0;
710 case EXPR_LIST:
711 count = count_occurrences (XEXP (x, 0), find, count_dest);
712 if (XEXP (x, 1))
713 count += count_occurrences (XEXP (x, 1), find, count_dest);
714 return count;
716 case MEM:
717 if (MEM_P (find) && rtx_equal_p (x, find))
718 return 1;
719 break;
721 case SET:
722 if (SET_DEST (x) == find && ! count_dest)
723 return count_occurrences (SET_SRC (x), find, count_dest);
724 break;
726 default:
727 break;
730 format_ptr = GET_RTX_FORMAT (code);
731 count = 0;
733 for (i = 0; i < GET_RTX_LENGTH (code); i++)
735 switch (*format_ptr++)
737 case 'e':
738 count += count_occurrences (XEXP (x, i), find, count_dest);
739 break;
741 case 'E':
742 for (j = 0; j < XVECLEN (x, i); j++)
743 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
744 break;
747 return count;
751 /* Return TRUE if OP is a register or subreg of a register that
752 holds an unsigned quantity. Otherwise, return FALSE. */
754 bool
755 unsigned_reg_p (rtx op)
757 if (REG_P (op)
758 && REG_EXPR (op)
759 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
760 return true;
762 if (GET_CODE (op) == SUBREG
763 && SUBREG_PROMOTED_SIGN (op))
764 return true;
766 return false;
770 /* Nonzero if register REG appears somewhere within IN.
771 Also works if REG is not a register; in this case it checks
772 for a subexpression of IN that is Lisp "equal" to REG. */
775 reg_mentioned_p (const_rtx reg, const_rtx in)
777 const char *fmt;
778 int i;
779 enum rtx_code code;
781 if (in == 0)
782 return 0;
784 if (reg == in)
785 return 1;
787 if (GET_CODE (in) == LABEL_REF)
788 return reg == LABEL_REF_LABEL (in);
790 code = GET_CODE (in);
792 switch (code)
794 /* Compare registers by number. */
795 case REG:
796 return REG_P (reg) && REGNO (in) == REGNO (reg);
798 /* These codes have no constituent expressions
799 and are unique. */
800 case SCRATCH:
801 case CC0:
802 case PC:
803 return 0;
805 CASE_CONST_ANY:
806 /* These are kept unique for a given value. */
807 return 0;
809 default:
810 break;
813 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
814 return 1;
816 fmt = GET_RTX_FORMAT (code);
818 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
820 if (fmt[i] == 'E')
822 int j;
823 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
824 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
825 return 1;
827 else if (fmt[i] == 'e'
828 && reg_mentioned_p (reg, XEXP (in, i)))
829 return 1;
831 return 0;
834 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
835 no CODE_LABEL insn. */
838 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
840 rtx_insn *p;
841 if (beg == end)
842 return 0;
843 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
844 if (LABEL_P (p))
845 return 0;
846 return 1;
849 /* Nonzero if register REG is used in an insn between
850 FROM_INSN and TO_INSN (exclusive of those two). */
853 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
854 const rtx_insn *to_insn)
856 rtx_insn *insn;
858 if (from_insn == to_insn)
859 return 0;
861 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
862 if (NONDEBUG_INSN_P (insn)
863 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
864 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
865 return 1;
866 return 0;
869 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
870 is entirely replaced by a new value and the only use is as a SET_DEST,
871 we do not consider it a reference. */
874 reg_referenced_p (const_rtx x, const_rtx body)
876 int i;
878 switch (GET_CODE (body))
880 case SET:
881 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
882 return 1;
884 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
885 of a REG that occupies all of the REG, the insn references X if
886 it is mentioned in the destination. */
887 if (GET_CODE (SET_DEST (body)) != CC0
888 && GET_CODE (SET_DEST (body)) != PC
889 && !REG_P (SET_DEST (body))
890 && ! (GET_CODE (SET_DEST (body)) == SUBREG
891 && REG_P (SUBREG_REG (SET_DEST (body)))
892 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
893 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
894 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
895 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
896 && reg_overlap_mentioned_p (x, SET_DEST (body)))
897 return 1;
898 return 0;
900 case ASM_OPERANDS:
901 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
902 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
903 return 1;
904 return 0;
906 case CALL:
907 case USE:
908 case IF_THEN_ELSE:
909 return reg_overlap_mentioned_p (x, body);
911 case TRAP_IF:
912 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
914 case PREFETCH:
915 return reg_overlap_mentioned_p (x, XEXP (body, 0));
917 case UNSPEC:
918 case UNSPEC_VOLATILE:
919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
920 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
921 return 1;
922 return 0;
924 case PARALLEL:
925 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
926 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
927 return 1;
928 return 0;
930 case CLOBBER:
931 if (MEM_P (XEXP (body, 0)))
932 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
933 return 1;
934 return 0;
936 case COND_EXEC:
937 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
938 return 1;
939 return reg_referenced_p (x, COND_EXEC_CODE (body));
941 default:
942 return 0;
946 /* Nonzero if register REG is set or clobbered in an insn between
947 FROM_INSN and TO_INSN (exclusive of those two). */
950 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
951 const rtx_insn *to_insn)
953 const rtx_insn *insn;
955 if (from_insn == to_insn)
956 return 0;
958 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
959 if (INSN_P (insn) && reg_set_p (reg, insn))
960 return 1;
961 return 0;
964 /* Internals of reg_set_between_p. */
966 reg_set_p (const_rtx reg, const_rtx insn)
968 /* We can be passed an insn or part of one. If we are passed an insn,
969 check if a side-effect of the insn clobbers REG. */
970 if (INSN_P (insn)
971 && (FIND_REG_INC_NOTE (insn, reg)
972 || (CALL_P (insn)
973 && ((REG_P (reg)
974 && REGNO (reg) < FIRST_PSEUDO_REGISTER
975 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
976 GET_MODE (reg), REGNO (reg)))
977 || MEM_P (reg)
978 || find_reg_fusage (insn, CLOBBER, reg)))))
979 return 1;
981 return set_of (reg, insn) != NULL_RTX;
984 /* Similar to reg_set_between_p, but check all registers in X. Return 0
985 only if none of them are modified between START and END. Return 1 if
986 X contains a MEM; this routine does use memory aliasing. */
989 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
991 const enum rtx_code code = GET_CODE (x);
992 const char *fmt;
993 int i, j;
994 rtx_insn *insn;
996 if (start == end)
997 return 0;
999 switch (code)
1001 CASE_CONST_ANY:
1002 case CONST:
1003 case SYMBOL_REF:
1004 case LABEL_REF:
1005 return 0;
1007 case PC:
1008 case CC0:
1009 return 1;
1011 case MEM:
1012 if (modified_between_p (XEXP (x, 0), start, end))
1013 return 1;
1014 if (MEM_READONLY_P (x))
1015 return 0;
1016 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1017 if (memory_modified_in_insn_p (x, insn))
1018 return 1;
1019 return 0;
1020 break;
1022 case REG:
1023 return reg_set_between_p (x, start, end);
1025 default:
1026 break;
1029 fmt = GET_RTX_FORMAT (code);
1030 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1032 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1033 return 1;
1035 else if (fmt[i] == 'E')
1036 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1037 if (modified_between_p (XVECEXP (x, i, j), start, end))
1038 return 1;
1041 return 0;
1044 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1045 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1046 does use memory aliasing. */
1049 modified_in_p (const_rtx x, const_rtx insn)
1051 const enum rtx_code code = GET_CODE (x);
1052 const char *fmt;
1053 int i, j;
1055 switch (code)
1057 CASE_CONST_ANY:
1058 case CONST:
1059 case SYMBOL_REF:
1060 case LABEL_REF:
1061 return 0;
1063 case PC:
1064 case CC0:
1065 return 1;
1067 case MEM:
1068 if (modified_in_p (XEXP (x, 0), insn))
1069 return 1;
1070 if (MEM_READONLY_P (x))
1071 return 0;
1072 if (memory_modified_in_insn_p (x, insn))
1073 return 1;
1074 return 0;
1075 break;
1077 case REG:
1078 return reg_set_p (x, insn);
1080 default:
1081 break;
1084 fmt = GET_RTX_FORMAT (code);
1085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1087 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1088 return 1;
1090 else if (fmt[i] == 'E')
1091 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1092 if (modified_in_p (XVECEXP (x, i, j), insn))
1093 return 1;
1096 return 0;
1099 /* Helper function for set_of. */
1100 struct set_of_data
1102 const_rtx found;
1103 const_rtx pat;
1106 static void
1107 set_of_1 (rtx x, const_rtx pat, void *data1)
1109 struct set_of_data *const data = (struct set_of_data *) (data1);
1110 if (rtx_equal_p (x, data->pat)
1111 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1112 data->found = pat;
1115 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1116 (either directly or via STRICT_LOW_PART and similar modifiers). */
1117 const_rtx
1118 set_of (const_rtx pat, const_rtx insn)
1120 struct set_of_data data;
1121 data.found = NULL_RTX;
1122 data.pat = pat;
1123 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1124 return data.found;
1127 /* Add all hard register in X to *PSET. */
1128 void
1129 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1131 subrtx_iterator::array_type array;
1132 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1134 const_rtx x = *iter;
1135 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1136 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1140 /* This function, called through note_stores, collects sets and
1141 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1142 by DATA. */
1143 void
1144 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1146 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1147 if (REG_P (x) && HARD_REGISTER_P (x))
1148 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1151 /* Examine INSN, and compute the set of hard registers written by it.
1152 Store it in *PSET. Should only be called after reload. */
1153 void
1154 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset, bool implicit)
1156 rtx link;
1158 CLEAR_HARD_REG_SET (*pset);
1159 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1160 if (CALL_P (insn))
1162 if (implicit)
1163 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1165 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1166 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1168 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1169 if (REG_NOTE_KIND (link) == REG_INC)
1170 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1173 /* Like record_hard_reg_sets, but called through note_uses. */
1174 void
1175 record_hard_reg_uses (rtx *px, void *data)
1177 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1180 /* Given an INSN, return a SET expression if this insn has only a single SET.
1181 It may also have CLOBBERs, USEs, or SET whose output
1182 will not be used, which we ignore. */
1185 single_set_2 (const rtx_insn *insn, const_rtx pat)
1187 rtx set = NULL;
1188 int set_verified = 1;
1189 int i;
1191 if (GET_CODE (pat) == PARALLEL)
1193 for (i = 0; i < XVECLEN (pat, 0); i++)
1195 rtx sub = XVECEXP (pat, 0, i);
1196 switch (GET_CODE (sub))
1198 case USE:
1199 case CLOBBER:
1200 break;
1202 case SET:
1203 /* We can consider insns having multiple sets, where all
1204 but one are dead as single set insns. In common case
1205 only single set is present in the pattern so we want
1206 to avoid checking for REG_UNUSED notes unless necessary.
1208 When we reach set first time, we just expect this is
1209 the single set we are looking for and only when more
1210 sets are found in the insn, we check them. */
1211 if (!set_verified)
1213 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1214 && !side_effects_p (set))
1215 set = NULL;
1216 else
1217 set_verified = 1;
1219 if (!set)
1220 set = sub, set_verified = 0;
1221 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1222 || side_effects_p (sub))
1223 return NULL_RTX;
1224 break;
1226 default:
1227 return NULL_RTX;
1231 return set;
1234 /* Given an INSN, return nonzero if it has more than one SET, else return
1235 zero. */
1238 multiple_sets (const_rtx insn)
1240 int found;
1241 int i;
1243 /* INSN must be an insn. */
1244 if (! INSN_P (insn))
1245 return 0;
1247 /* Only a PARALLEL can have multiple SETs. */
1248 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1250 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1251 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1253 /* If we have already found a SET, then return now. */
1254 if (found)
1255 return 1;
1256 else
1257 found = 1;
1261 /* Either zero or one SET. */
1262 return 0;
1265 /* Return nonzero if the destination of SET equals the source
1266 and there are no side effects. */
1269 set_noop_p (const_rtx set)
1271 rtx src = SET_SRC (set);
1272 rtx dst = SET_DEST (set);
1274 if (dst == pc_rtx && src == pc_rtx)
1275 return 1;
1277 if (MEM_P (dst) && MEM_P (src))
1278 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1280 if (GET_CODE (dst) == ZERO_EXTRACT)
1281 return rtx_equal_p (XEXP (dst, 0), src)
1282 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1283 && !side_effects_p (src);
1285 if (GET_CODE (dst) == STRICT_LOW_PART)
1286 dst = XEXP (dst, 0);
1288 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1290 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1291 return 0;
1292 src = SUBREG_REG (src);
1293 dst = SUBREG_REG (dst);
1296 /* It is a NOOP if destination overlaps with selected src vector
1297 elements. */
1298 if (GET_CODE (src) == VEC_SELECT
1299 && REG_P (XEXP (src, 0)) && REG_P (dst)
1300 && HARD_REGISTER_P (XEXP (src, 0))
1301 && HARD_REGISTER_P (dst))
1303 int i;
1304 rtx par = XEXP (src, 1);
1305 rtx src0 = XEXP (src, 0);
1306 int c0 = INTVAL (XVECEXP (par, 0, 0));
1307 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1309 for (i = 1; i < XVECLEN (par, 0); i++)
1310 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1311 return 0;
1312 return
1313 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1314 offset, GET_MODE (dst)) == (int) REGNO (dst);
1317 return (REG_P (src) && REG_P (dst)
1318 && REGNO (src) == REGNO (dst));
1321 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1322 value to itself. */
1325 noop_move_p (const_rtx insn)
1327 rtx pat = PATTERN (insn);
1329 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1330 return 1;
1332 /* Insns carrying these notes are useful later on. */
1333 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1334 return 0;
1336 /* Check the code to be executed for COND_EXEC. */
1337 if (GET_CODE (pat) == COND_EXEC)
1338 pat = COND_EXEC_CODE (pat);
1340 if (GET_CODE (pat) == SET && set_noop_p (pat))
1341 return 1;
1343 if (GET_CODE (pat) == PARALLEL)
1345 int i;
1346 /* If nothing but SETs of registers to themselves,
1347 this insn can also be deleted. */
1348 for (i = 0; i < XVECLEN (pat, 0); i++)
1350 rtx tem = XVECEXP (pat, 0, i);
1352 if (GET_CODE (tem) == USE
1353 || GET_CODE (tem) == CLOBBER)
1354 continue;
1356 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1357 return 0;
1360 return 1;
1362 return 0;
1366 /* Return nonzero if register in range [REGNO, ENDREGNO)
1367 appears either explicitly or implicitly in X
1368 other than being stored into.
1370 References contained within the substructure at LOC do not count.
1371 LOC may be zero, meaning don't ignore anything. */
1374 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1375 rtx *loc)
1377 int i;
1378 unsigned int x_regno;
1379 RTX_CODE code;
1380 const char *fmt;
1382 repeat:
1383 /* The contents of a REG_NONNEG note is always zero, so we must come here
1384 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1385 if (x == 0)
1386 return 0;
1388 code = GET_CODE (x);
1390 switch (code)
1392 case REG:
1393 x_regno = REGNO (x);
1395 /* If we modifying the stack, frame, or argument pointer, it will
1396 clobber a virtual register. In fact, we could be more precise,
1397 but it isn't worth it. */
1398 if ((x_regno == STACK_POINTER_REGNUM
1399 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1400 || x_regno == ARG_POINTER_REGNUM
1401 #endif
1402 || x_regno == FRAME_POINTER_REGNUM)
1403 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1404 return 1;
1406 return endregno > x_regno && regno < END_REGNO (x);
1408 case SUBREG:
1409 /* If this is a SUBREG of a hard reg, we can see exactly which
1410 registers are being modified. Otherwise, handle normally. */
1411 if (REG_P (SUBREG_REG (x))
1412 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1414 unsigned int inner_regno = subreg_regno (x);
1415 unsigned int inner_endregno
1416 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1417 ? subreg_nregs (x) : 1);
1419 return endregno > inner_regno && regno < inner_endregno;
1421 break;
1423 case CLOBBER:
1424 case SET:
1425 if (&SET_DEST (x) != loc
1426 /* Note setting a SUBREG counts as referring to the REG it is in for
1427 a pseudo but not for hard registers since we can
1428 treat each word individually. */
1429 && ((GET_CODE (SET_DEST (x)) == SUBREG
1430 && loc != &SUBREG_REG (SET_DEST (x))
1431 && REG_P (SUBREG_REG (SET_DEST (x)))
1432 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1433 && refers_to_regno_p (regno, endregno,
1434 SUBREG_REG (SET_DEST (x)), loc))
1435 || (!REG_P (SET_DEST (x))
1436 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1437 return 1;
1439 if (code == CLOBBER || loc == &SET_SRC (x))
1440 return 0;
1441 x = SET_SRC (x);
1442 goto repeat;
1444 default:
1445 break;
1448 /* X does not match, so try its subexpressions. */
1450 fmt = GET_RTX_FORMAT (code);
1451 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1453 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1455 if (i == 0)
1457 x = XEXP (x, 0);
1458 goto repeat;
1460 else
1461 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1462 return 1;
1464 else if (fmt[i] == 'E')
1466 int j;
1467 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1468 if (loc != &XVECEXP (x, i, j)
1469 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1470 return 1;
1473 return 0;
1476 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1477 we check if any register number in X conflicts with the relevant register
1478 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1479 contains a MEM (we don't bother checking for memory addresses that can't
1480 conflict because we expect this to be a rare case. */
1483 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1485 unsigned int regno, endregno;
1487 /* If either argument is a constant, then modifying X can not
1488 affect IN. Here we look at IN, we can profitably combine
1489 CONSTANT_P (x) with the switch statement below. */
1490 if (CONSTANT_P (in))
1491 return 0;
1493 recurse:
1494 switch (GET_CODE (x))
1496 case STRICT_LOW_PART:
1497 case ZERO_EXTRACT:
1498 case SIGN_EXTRACT:
1499 /* Overly conservative. */
1500 x = XEXP (x, 0);
1501 goto recurse;
1503 case SUBREG:
1504 regno = REGNO (SUBREG_REG (x));
1505 if (regno < FIRST_PSEUDO_REGISTER)
1506 regno = subreg_regno (x);
1507 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1508 ? subreg_nregs (x) : 1);
1509 goto do_reg;
1511 case REG:
1512 regno = REGNO (x);
1513 endregno = END_REGNO (x);
1514 do_reg:
1515 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1517 case MEM:
1519 const char *fmt;
1520 int i;
1522 if (MEM_P (in))
1523 return 1;
1525 fmt = GET_RTX_FORMAT (GET_CODE (in));
1526 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1527 if (fmt[i] == 'e')
1529 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1530 return 1;
1532 else if (fmt[i] == 'E')
1534 int j;
1535 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1536 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1537 return 1;
1540 return 0;
1543 case SCRATCH:
1544 case PC:
1545 case CC0:
1546 return reg_mentioned_p (x, in);
1548 case PARALLEL:
1550 int i;
1552 /* If any register in here refers to it we return true. */
1553 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1554 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1555 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1556 return 1;
1557 return 0;
1560 default:
1561 gcc_assert (CONSTANT_P (x));
1562 return 0;
1566 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1567 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1568 ignored by note_stores, but passed to FUN.
1570 FUN receives three arguments:
1571 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1572 2. the SET or CLOBBER rtx that does the store,
1573 3. the pointer DATA provided to note_stores.
1575 If the item being stored in or clobbered is a SUBREG of a hard register,
1576 the SUBREG will be passed. */
1578 void
1579 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1581 int i;
1583 if (GET_CODE (x) == COND_EXEC)
1584 x = COND_EXEC_CODE (x);
1586 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1588 rtx dest = SET_DEST (x);
1590 while ((GET_CODE (dest) == SUBREG
1591 && (!REG_P (SUBREG_REG (dest))
1592 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1593 || GET_CODE (dest) == ZERO_EXTRACT
1594 || GET_CODE (dest) == STRICT_LOW_PART)
1595 dest = XEXP (dest, 0);
1597 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1598 each of whose first operand is a register. */
1599 if (GET_CODE (dest) == PARALLEL)
1601 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1602 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1603 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1605 else
1606 (*fun) (dest, x, data);
1609 else if (GET_CODE (x) == PARALLEL)
1610 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1611 note_stores (XVECEXP (x, 0, i), fun, data);
1614 /* Like notes_stores, but call FUN for each expression that is being
1615 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1616 FUN for each expression, not any interior subexpressions. FUN receives a
1617 pointer to the expression and the DATA passed to this function.
1619 Note that this is not quite the same test as that done in reg_referenced_p
1620 since that considers something as being referenced if it is being
1621 partially set, while we do not. */
1623 void
1624 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1626 rtx body = *pbody;
1627 int i;
1629 switch (GET_CODE (body))
1631 case COND_EXEC:
1632 (*fun) (&COND_EXEC_TEST (body), data);
1633 note_uses (&COND_EXEC_CODE (body), fun, data);
1634 return;
1636 case PARALLEL:
1637 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1638 note_uses (&XVECEXP (body, 0, i), fun, data);
1639 return;
1641 case SEQUENCE:
1642 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1643 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1644 return;
1646 case USE:
1647 (*fun) (&XEXP (body, 0), data);
1648 return;
1650 case ASM_OPERANDS:
1651 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1652 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1653 return;
1655 case TRAP_IF:
1656 (*fun) (&TRAP_CONDITION (body), data);
1657 return;
1659 case PREFETCH:
1660 (*fun) (&XEXP (body, 0), data);
1661 return;
1663 case UNSPEC:
1664 case UNSPEC_VOLATILE:
1665 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1666 (*fun) (&XVECEXP (body, 0, i), data);
1667 return;
1669 case CLOBBER:
1670 if (MEM_P (XEXP (body, 0)))
1671 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1672 return;
1674 case SET:
1676 rtx dest = SET_DEST (body);
1678 /* For sets we replace everything in source plus registers in memory
1679 expression in store and operands of a ZERO_EXTRACT. */
1680 (*fun) (&SET_SRC (body), data);
1682 if (GET_CODE (dest) == ZERO_EXTRACT)
1684 (*fun) (&XEXP (dest, 1), data);
1685 (*fun) (&XEXP (dest, 2), data);
1688 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1689 dest = XEXP (dest, 0);
1691 if (MEM_P (dest))
1692 (*fun) (&XEXP (dest, 0), data);
1694 return;
1696 default:
1697 /* All the other possibilities never store. */
1698 (*fun) (pbody, data);
1699 return;
1703 /* Return nonzero if X's old contents don't survive after INSN.
1704 This will be true if X is (cc0) or if X is a register and
1705 X dies in INSN or because INSN entirely sets X.
1707 "Entirely set" means set directly and not through a SUBREG, or
1708 ZERO_EXTRACT, so no trace of the old contents remains.
1709 Likewise, REG_INC does not count.
1711 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1712 but for this use that makes no difference, since regs don't overlap
1713 during their lifetimes. Therefore, this function may be used
1714 at any time after deaths have been computed.
1716 If REG is a hard reg that occupies multiple machine registers, this
1717 function will only return 1 if each of those registers will be replaced
1718 by INSN. */
1721 dead_or_set_p (const_rtx insn, const_rtx x)
1723 unsigned int regno, end_regno;
1724 unsigned int i;
1726 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1727 if (GET_CODE (x) == CC0)
1728 return 1;
1730 gcc_assert (REG_P (x));
1732 regno = REGNO (x);
1733 end_regno = END_REGNO (x);
1734 for (i = regno; i < end_regno; i++)
1735 if (! dead_or_set_regno_p (insn, i))
1736 return 0;
1738 return 1;
1741 /* Return TRUE iff DEST is a register or subreg of a register and
1742 doesn't change the number of words of the inner register, and any
1743 part of the register is TEST_REGNO. */
1745 static bool
1746 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1748 unsigned int regno, endregno;
1750 if (GET_CODE (dest) == SUBREG
1751 && (((GET_MODE_SIZE (GET_MODE (dest))
1752 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1753 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1754 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1755 dest = SUBREG_REG (dest);
1757 if (!REG_P (dest))
1758 return false;
1760 regno = REGNO (dest);
1761 endregno = END_REGNO (dest);
1762 return (test_regno >= regno && test_regno < endregno);
1765 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1766 any member matches the covers_regno_no_parallel_p criteria. */
1768 static bool
1769 covers_regno_p (const_rtx dest, unsigned int test_regno)
1771 if (GET_CODE (dest) == PARALLEL)
1773 /* Some targets place small structures in registers for return
1774 values of functions, and those registers are wrapped in
1775 PARALLELs that we may see as the destination of a SET. */
1776 int i;
1778 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1780 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1781 if (inner != NULL_RTX
1782 && covers_regno_no_parallel_p (inner, test_regno))
1783 return true;
1786 return false;
1788 else
1789 return covers_regno_no_parallel_p (dest, test_regno);
1792 /* Utility function for dead_or_set_p to check an individual register. */
1795 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1797 const_rtx pattern;
1799 /* See if there is a death note for something that includes TEST_REGNO. */
1800 if (find_regno_note (insn, REG_DEAD, test_regno))
1801 return 1;
1803 if (CALL_P (insn)
1804 && find_regno_fusage (insn, CLOBBER, test_regno))
1805 return 1;
1807 pattern = PATTERN (insn);
1809 /* If a COND_EXEC is not executed, the value survives. */
1810 if (GET_CODE (pattern) == COND_EXEC)
1811 return 0;
1813 if (GET_CODE (pattern) == SET)
1814 return covers_regno_p (SET_DEST (pattern), test_regno);
1815 else if (GET_CODE (pattern) == PARALLEL)
1817 int i;
1819 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1821 rtx body = XVECEXP (pattern, 0, i);
1823 if (GET_CODE (body) == COND_EXEC)
1824 body = COND_EXEC_CODE (body);
1826 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1827 && covers_regno_p (SET_DEST (body), test_regno))
1828 return 1;
1832 return 0;
1835 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1836 If DATUM is nonzero, look for one whose datum is DATUM. */
1839 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1841 rtx link;
1843 gcc_checking_assert (insn);
1845 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1846 if (! INSN_P (insn))
1847 return 0;
1848 if (datum == 0)
1850 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1851 if (REG_NOTE_KIND (link) == kind)
1852 return link;
1853 return 0;
1856 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1857 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1858 return link;
1859 return 0;
1862 /* Return the reg-note of kind KIND in insn INSN which applies to register
1863 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1864 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1865 it might be the case that the note overlaps REGNO. */
1868 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1870 rtx link;
1872 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1873 if (! INSN_P (insn))
1874 return 0;
1876 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1877 if (REG_NOTE_KIND (link) == kind
1878 /* Verify that it is a register, so that scratch and MEM won't cause a
1879 problem here. */
1880 && REG_P (XEXP (link, 0))
1881 && REGNO (XEXP (link, 0)) <= regno
1882 && END_REGNO (XEXP (link, 0)) > regno)
1883 return link;
1884 return 0;
1887 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1888 has such a note. */
1891 find_reg_equal_equiv_note (const_rtx insn)
1893 rtx link;
1895 if (!INSN_P (insn))
1896 return 0;
1898 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1899 if (REG_NOTE_KIND (link) == REG_EQUAL
1900 || REG_NOTE_KIND (link) == REG_EQUIV)
1902 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1903 insns that have multiple sets. Checking single_set to
1904 make sure of this is not the proper check, as explained
1905 in the comment in set_unique_reg_note.
1907 This should be changed into an assert. */
1908 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1909 return 0;
1910 return link;
1912 return NULL;
1915 /* Check whether INSN is a single_set whose source is known to be
1916 equivalent to a constant. Return that constant if so, otherwise
1917 return null. */
1920 find_constant_src (const rtx_insn *insn)
1922 rtx note, set, x;
1924 set = single_set (insn);
1925 if (set)
1927 x = avoid_constant_pool_reference (SET_SRC (set));
1928 if (CONSTANT_P (x))
1929 return x;
1932 note = find_reg_equal_equiv_note (insn);
1933 if (note && CONSTANT_P (XEXP (note, 0)))
1934 return XEXP (note, 0);
1936 return NULL_RTX;
1939 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1940 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1943 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1945 /* If it's not a CALL_INSN, it can't possibly have a
1946 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1947 if (!CALL_P (insn))
1948 return 0;
1950 gcc_assert (datum);
1952 if (!REG_P (datum))
1954 rtx link;
1956 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1957 link;
1958 link = XEXP (link, 1))
1959 if (GET_CODE (XEXP (link, 0)) == code
1960 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1961 return 1;
1963 else
1965 unsigned int regno = REGNO (datum);
1967 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1968 to pseudo registers, so don't bother checking. */
1970 if (regno < FIRST_PSEUDO_REGISTER)
1972 unsigned int end_regno = END_HARD_REGNO (datum);
1973 unsigned int i;
1975 for (i = regno; i < end_regno; i++)
1976 if (find_regno_fusage (insn, code, i))
1977 return 1;
1981 return 0;
1984 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1985 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1988 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1990 rtx link;
1992 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1993 to pseudo registers, so don't bother checking. */
1995 if (regno >= FIRST_PSEUDO_REGISTER
1996 || !CALL_P (insn) )
1997 return 0;
1999 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2001 rtx op, reg;
2003 if (GET_CODE (op = XEXP (link, 0)) == code
2004 && REG_P (reg = XEXP (op, 0))
2005 && REGNO (reg) <= regno
2006 && END_HARD_REGNO (reg) > regno)
2007 return 1;
2010 return 0;
2014 /* Return true if KIND is an integer REG_NOTE. */
2016 static bool
2017 int_reg_note_p (enum reg_note kind)
2019 return kind == REG_BR_PROB;
2022 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2023 stored as the pointer to the next register note. */
2026 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2028 rtx note;
2030 gcc_checking_assert (!int_reg_note_p (kind));
2031 switch (kind)
2033 case REG_CC_SETTER:
2034 case REG_CC_USER:
2035 case REG_LABEL_TARGET:
2036 case REG_LABEL_OPERAND:
2037 case REG_TM:
2038 /* These types of register notes use an INSN_LIST rather than an
2039 EXPR_LIST, so that copying is done right and dumps look
2040 better. */
2041 note = alloc_INSN_LIST (datum, list);
2042 PUT_REG_NOTE_KIND (note, kind);
2043 break;
2045 default:
2046 note = alloc_EXPR_LIST (kind, datum, list);
2047 break;
2050 return note;
2053 /* Add register note with kind KIND and datum DATUM to INSN. */
2055 void
2056 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2058 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2061 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2063 void
2064 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2066 gcc_checking_assert (int_reg_note_p (kind));
2067 REG_NOTES (insn) = gen_rtx_INT_LIST ((enum machine_mode) kind,
2068 datum, REG_NOTES (insn));
2071 /* Add a register note like NOTE to INSN. */
2073 void
2074 add_shallow_copy_of_reg_note (rtx insn, rtx note)
2076 if (GET_CODE (note) == INT_LIST)
2077 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2078 else
2079 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2082 /* Remove register note NOTE from the REG_NOTES of INSN. */
2084 void
2085 remove_note (rtx insn, const_rtx note)
2087 rtx link;
2089 if (note == NULL_RTX)
2090 return;
2092 if (REG_NOTES (insn) == note)
2093 REG_NOTES (insn) = XEXP (note, 1);
2094 else
2095 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2096 if (XEXP (link, 1) == note)
2098 XEXP (link, 1) = XEXP (note, 1);
2099 break;
2102 switch (REG_NOTE_KIND (note))
2104 case REG_EQUAL:
2105 case REG_EQUIV:
2106 df_notes_rescan (as_a <rtx_insn *> (insn));
2107 break;
2108 default:
2109 break;
2113 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2115 void
2116 remove_reg_equal_equiv_notes (rtx insn)
2118 rtx *loc;
2120 loc = &REG_NOTES (insn);
2121 while (*loc)
2123 enum reg_note kind = REG_NOTE_KIND (*loc);
2124 if (kind == REG_EQUAL || kind == REG_EQUIV)
2125 *loc = XEXP (*loc, 1);
2126 else
2127 loc = &XEXP (*loc, 1);
2131 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2133 void
2134 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2136 df_ref eq_use;
2138 if (!df)
2139 return;
2141 /* This loop is a little tricky. We cannot just go down the chain because
2142 it is being modified by some actions in the loop. So we just iterate
2143 over the head. We plan to drain the list anyway. */
2144 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2146 rtx_insn *insn = DF_REF_INSN (eq_use);
2147 rtx note = find_reg_equal_equiv_note (insn);
2149 /* This assert is generally triggered when someone deletes a REG_EQUAL
2150 or REG_EQUIV note by hacking the list manually rather than calling
2151 remove_note. */
2152 gcc_assert (note);
2154 remove_note (insn, note);
2158 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2159 return 1 if it is found. A simple equality test is used to determine if
2160 NODE matches. */
2163 in_expr_list_p (const_rtx listp, const_rtx node)
2165 const_rtx x;
2167 for (x = listp; x; x = XEXP (x, 1))
2168 if (node == XEXP (x, 0))
2169 return 1;
2171 return 0;
2174 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2175 remove that entry from the list if it is found.
2177 A simple equality test is used to determine if NODE matches. */
2179 void
2180 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2182 rtx_expr_list *temp = *listp;
2183 rtx prev = NULL_RTX;
2185 while (temp)
2187 if (node == temp->element ())
2189 /* Splice the node out of the list. */
2190 if (prev)
2191 XEXP (prev, 1) = temp->next ();
2192 else
2193 *listp = temp->next ();
2195 return;
2198 prev = temp;
2199 temp = temp->next ();
2203 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2204 remove that entry from the list if it is found.
2206 A simple equality test is used to determine if NODE matches. */
2208 void
2209 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2211 rtx_insn_list *temp = *listp;
2212 rtx prev = NULL;
2214 while (temp)
2216 if (node == temp->insn ())
2218 /* Splice the node out of the list. */
2219 if (prev)
2220 XEXP (prev, 1) = temp->next ();
2221 else
2222 *listp = temp->next ();
2224 return;
2227 prev = temp;
2228 temp = temp->next ();
2232 /* Nonzero if X contains any volatile instructions. These are instructions
2233 which may cause unpredictable machine state instructions, and thus no
2234 instructions or register uses should be moved or combined across them.
2235 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2238 volatile_insn_p (const_rtx x)
2240 const RTX_CODE code = GET_CODE (x);
2241 switch (code)
2243 case LABEL_REF:
2244 case SYMBOL_REF:
2245 case CONST:
2246 CASE_CONST_ANY:
2247 case CC0:
2248 case PC:
2249 case REG:
2250 case SCRATCH:
2251 case CLOBBER:
2252 case ADDR_VEC:
2253 case ADDR_DIFF_VEC:
2254 case CALL:
2255 case MEM:
2256 return 0;
2258 case UNSPEC_VOLATILE:
2259 return 1;
2261 case ASM_INPUT:
2262 case ASM_OPERANDS:
2263 if (MEM_VOLATILE_P (x))
2264 return 1;
2266 default:
2267 break;
2270 /* Recursively scan the operands of this expression. */
2273 const char *const fmt = GET_RTX_FORMAT (code);
2274 int i;
2276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2278 if (fmt[i] == 'e')
2280 if (volatile_insn_p (XEXP (x, i)))
2281 return 1;
2283 else if (fmt[i] == 'E')
2285 int j;
2286 for (j = 0; j < XVECLEN (x, i); j++)
2287 if (volatile_insn_p (XVECEXP (x, i, j)))
2288 return 1;
2292 return 0;
2295 /* Nonzero if X contains any volatile memory references
2296 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2299 volatile_refs_p (const_rtx x)
2301 const RTX_CODE code = GET_CODE (x);
2302 switch (code)
2304 case LABEL_REF:
2305 case SYMBOL_REF:
2306 case CONST:
2307 CASE_CONST_ANY:
2308 case CC0:
2309 case PC:
2310 case REG:
2311 case SCRATCH:
2312 case CLOBBER:
2313 case ADDR_VEC:
2314 case ADDR_DIFF_VEC:
2315 return 0;
2317 case UNSPEC_VOLATILE:
2318 return 1;
2320 case MEM:
2321 case ASM_INPUT:
2322 case ASM_OPERANDS:
2323 if (MEM_VOLATILE_P (x))
2324 return 1;
2326 default:
2327 break;
2330 /* Recursively scan the operands of this expression. */
2333 const char *const fmt = GET_RTX_FORMAT (code);
2334 int i;
2336 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2338 if (fmt[i] == 'e')
2340 if (volatile_refs_p (XEXP (x, i)))
2341 return 1;
2343 else if (fmt[i] == 'E')
2345 int j;
2346 for (j = 0; j < XVECLEN (x, i); j++)
2347 if (volatile_refs_p (XVECEXP (x, i, j)))
2348 return 1;
2352 return 0;
2355 /* Similar to above, except that it also rejects register pre- and post-
2356 incrementing. */
2359 side_effects_p (const_rtx x)
2361 const RTX_CODE code = GET_CODE (x);
2362 switch (code)
2364 case LABEL_REF:
2365 case SYMBOL_REF:
2366 case CONST:
2367 CASE_CONST_ANY:
2368 case CC0:
2369 case PC:
2370 case REG:
2371 case SCRATCH:
2372 case ADDR_VEC:
2373 case ADDR_DIFF_VEC:
2374 case VAR_LOCATION:
2375 return 0;
2377 case CLOBBER:
2378 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2379 when some combination can't be done. If we see one, don't think
2380 that we can simplify the expression. */
2381 return (GET_MODE (x) != VOIDmode);
2383 case PRE_INC:
2384 case PRE_DEC:
2385 case POST_INC:
2386 case POST_DEC:
2387 case PRE_MODIFY:
2388 case POST_MODIFY:
2389 case CALL:
2390 case UNSPEC_VOLATILE:
2391 return 1;
2393 case MEM:
2394 case ASM_INPUT:
2395 case ASM_OPERANDS:
2396 if (MEM_VOLATILE_P (x))
2397 return 1;
2399 default:
2400 break;
2403 /* Recursively scan the operands of this expression. */
2406 const char *fmt = GET_RTX_FORMAT (code);
2407 int i;
2409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2411 if (fmt[i] == 'e')
2413 if (side_effects_p (XEXP (x, i)))
2414 return 1;
2416 else if (fmt[i] == 'E')
2418 int j;
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 if (side_effects_p (XVECEXP (x, i, j)))
2421 return 1;
2425 return 0;
2428 /* Return nonzero if evaluating rtx X might cause a trap.
2429 FLAGS controls how to consider MEMs. A nonzero means the context
2430 of the access may have changed from the original, such that the
2431 address may have become invalid. */
2434 may_trap_p_1 (const_rtx x, unsigned flags)
2436 int i;
2437 enum rtx_code code;
2438 const char *fmt;
2440 /* We make no distinction currently, but this function is part of
2441 the internal target-hooks ABI so we keep the parameter as
2442 "unsigned flags". */
2443 bool code_changed = flags != 0;
2445 if (x == 0)
2446 return 0;
2447 code = GET_CODE (x);
2448 switch (code)
2450 /* Handle these cases quickly. */
2451 CASE_CONST_ANY:
2452 case SYMBOL_REF:
2453 case LABEL_REF:
2454 case CONST:
2455 case PC:
2456 case CC0:
2457 case REG:
2458 case SCRATCH:
2459 return 0;
2461 case UNSPEC:
2462 return targetm.unspec_may_trap_p (x, flags);
2464 case UNSPEC_VOLATILE:
2465 case ASM_INPUT:
2466 case TRAP_IF:
2467 return 1;
2469 case ASM_OPERANDS:
2470 return MEM_VOLATILE_P (x);
2472 /* Memory ref can trap unless it's a static var or a stack slot. */
2473 case MEM:
2474 /* Recognize specific pattern of stack checking probes. */
2475 if (flag_stack_check
2476 && MEM_VOLATILE_P (x)
2477 && XEXP (x, 0) == stack_pointer_rtx)
2478 return 1;
2479 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2480 reference; moving it out of context such as when moving code
2481 when optimizing, might cause its address to become invalid. */
2482 code_changed
2483 || !MEM_NOTRAP_P (x))
2485 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2486 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2487 GET_MODE (x), code_changed);
2490 return 0;
2492 /* Division by a non-constant might trap. */
2493 case DIV:
2494 case MOD:
2495 case UDIV:
2496 case UMOD:
2497 if (HONOR_SNANS (GET_MODE (x)))
2498 return 1;
2499 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2500 return flag_trapping_math;
2501 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2502 return 1;
2503 break;
2505 case EXPR_LIST:
2506 /* An EXPR_LIST is used to represent a function call. This
2507 certainly may trap. */
2508 return 1;
2510 case GE:
2511 case GT:
2512 case LE:
2513 case LT:
2514 case LTGT:
2515 case COMPARE:
2516 /* Some floating point comparisons may trap. */
2517 if (!flag_trapping_math)
2518 break;
2519 /* ??? There is no machine independent way to check for tests that trap
2520 when COMPARE is used, though many targets do make this distinction.
2521 For instance, sparc uses CCFPE for compares which generate exceptions
2522 and CCFP for compares which do not generate exceptions. */
2523 if (HONOR_NANS (GET_MODE (x)))
2524 return 1;
2525 /* But often the compare has some CC mode, so check operand
2526 modes as well. */
2527 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2528 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2529 return 1;
2530 break;
2532 case EQ:
2533 case NE:
2534 if (HONOR_SNANS (GET_MODE (x)))
2535 return 1;
2536 /* Often comparison is CC mode, so check operand modes. */
2537 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2538 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2539 return 1;
2540 break;
2542 case FIX:
2543 /* Conversion of floating point might trap. */
2544 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2545 return 1;
2546 break;
2548 case NEG:
2549 case ABS:
2550 case SUBREG:
2551 /* These operations don't trap even with floating point. */
2552 break;
2554 default:
2555 /* Any floating arithmetic may trap. */
2556 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2557 return 1;
2560 fmt = GET_RTX_FORMAT (code);
2561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2563 if (fmt[i] == 'e')
2565 if (may_trap_p_1 (XEXP (x, i), flags))
2566 return 1;
2568 else if (fmt[i] == 'E')
2570 int j;
2571 for (j = 0; j < XVECLEN (x, i); j++)
2572 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2573 return 1;
2576 return 0;
2579 /* Return nonzero if evaluating rtx X might cause a trap. */
2582 may_trap_p (const_rtx x)
2584 return may_trap_p_1 (x, 0);
2587 /* Same as above, but additionally return nonzero if evaluating rtx X might
2588 cause a fault. We define a fault for the purpose of this function as a
2589 erroneous execution condition that cannot be encountered during the normal
2590 execution of a valid program; the typical example is an unaligned memory
2591 access on a strict alignment machine. The compiler guarantees that it
2592 doesn't generate code that will fault from a valid program, but this
2593 guarantee doesn't mean anything for individual instructions. Consider
2594 the following example:
2596 struct S { int d; union { char *cp; int *ip; }; };
2598 int foo(struct S *s)
2600 if (s->d == 1)
2601 return *s->ip;
2602 else
2603 return *s->cp;
2606 on a strict alignment machine. In a valid program, foo will never be
2607 invoked on a structure for which d is equal to 1 and the underlying
2608 unique field of the union not aligned on a 4-byte boundary, but the
2609 expression *s->ip might cause a fault if considered individually.
2611 At the RTL level, potentially problematic expressions will almost always
2612 verify may_trap_p; for example, the above dereference can be emitted as
2613 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2614 However, suppose that foo is inlined in a caller that causes s->cp to
2615 point to a local character variable and guarantees that s->d is not set
2616 to 1; foo may have been effectively translated into pseudo-RTL as:
2618 if ((reg:SI) == 1)
2619 (set (reg:SI) (mem:SI (%fp - 7)))
2620 else
2621 (set (reg:QI) (mem:QI (%fp - 7)))
2623 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2624 memory reference to a stack slot, but it will certainly cause a fault
2625 on a strict alignment machine. */
2628 may_trap_or_fault_p (const_rtx x)
2630 return may_trap_p_1 (x, 1);
2633 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2634 i.e., an inequality. */
2637 inequality_comparisons_p (const_rtx x)
2639 const char *fmt;
2640 int len, i;
2641 const enum rtx_code code = GET_CODE (x);
2643 switch (code)
2645 case REG:
2646 case SCRATCH:
2647 case PC:
2648 case CC0:
2649 CASE_CONST_ANY:
2650 case CONST:
2651 case LABEL_REF:
2652 case SYMBOL_REF:
2653 return 0;
2655 case LT:
2656 case LTU:
2657 case GT:
2658 case GTU:
2659 case LE:
2660 case LEU:
2661 case GE:
2662 case GEU:
2663 return 1;
2665 default:
2666 break;
2669 len = GET_RTX_LENGTH (code);
2670 fmt = GET_RTX_FORMAT (code);
2672 for (i = 0; i < len; i++)
2674 if (fmt[i] == 'e')
2676 if (inequality_comparisons_p (XEXP (x, i)))
2677 return 1;
2679 else if (fmt[i] == 'E')
2681 int j;
2682 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2683 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2684 return 1;
2688 return 0;
2691 /* Replace any occurrence of FROM in X with TO. The function does
2692 not enter into CONST_DOUBLE for the replace.
2694 Note that copying is not done so X must not be shared unless all copies
2695 are to be modified. */
2698 replace_rtx (rtx x, rtx from, rtx to)
2700 int i, j;
2701 const char *fmt;
2703 if (x == from)
2704 return to;
2706 /* Allow this function to make replacements in EXPR_LISTs. */
2707 if (x == 0)
2708 return 0;
2710 if (GET_CODE (x) == SUBREG)
2712 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2714 if (CONST_INT_P (new_rtx))
2716 x = simplify_subreg (GET_MODE (x), new_rtx,
2717 GET_MODE (SUBREG_REG (x)),
2718 SUBREG_BYTE (x));
2719 gcc_assert (x);
2721 else
2722 SUBREG_REG (x) = new_rtx;
2724 return x;
2726 else if (GET_CODE (x) == ZERO_EXTEND)
2728 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2730 if (CONST_INT_P (new_rtx))
2732 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2733 new_rtx, GET_MODE (XEXP (x, 0)));
2734 gcc_assert (x);
2736 else
2737 XEXP (x, 0) = new_rtx;
2739 return x;
2742 fmt = GET_RTX_FORMAT (GET_CODE (x));
2743 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2745 if (fmt[i] == 'e')
2746 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2747 else if (fmt[i] == 'E')
2748 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2749 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2752 return x;
2755 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2756 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2758 void
2759 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2761 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2762 rtx x = *loc;
2763 if (JUMP_TABLE_DATA_P (x))
2765 x = PATTERN (x);
2766 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2767 int len = GET_NUM_ELEM (vec);
2768 for (int i = 0; i < len; ++i)
2770 rtx ref = RTVEC_ELT (vec, i);
2771 if (XEXP (ref, 0) == old_label)
2773 XEXP (ref, 0) = new_label;
2774 if (update_label_nuses)
2776 ++LABEL_NUSES (new_label);
2777 --LABEL_NUSES (old_label);
2781 return;
2784 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2785 field. This is not handled by the iterator because it doesn't
2786 handle unprinted ('0') fields. */
2787 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2788 JUMP_LABEL (x) = new_label;
2790 subrtx_ptr_iterator::array_type array;
2791 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2793 rtx *loc = *iter;
2794 if (rtx x = *loc)
2796 if (GET_CODE (x) == SYMBOL_REF
2797 && CONSTANT_POOL_ADDRESS_P (x))
2799 rtx c = get_pool_constant (x);
2800 if (rtx_referenced_p (old_label, c))
2802 /* Create a copy of constant C; replace the label inside
2803 but do not update LABEL_NUSES because uses in constant pool
2804 are not counted. */
2805 rtx new_c = copy_rtx (c);
2806 replace_label (&new_c, old_label, new_label, false);
2808 /* Add the new constant NEW_C to constant pool and replace
2809 the old reference to constant by new reference. */
2810 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2811 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2815 if ((GET_CODE (x) == LABEL_REF
2816 || GET_CODE (x) == INSN_LIST)
2817 && XEXP (x, 0) == old_label)
2819 XEXP (x, 0) = new_label;
2820 if (update_label_nuses)
2822 ++LABEL_NUSES (new_label);
2823 --LABEL_NUSES (old_label);
2830 void
2831 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2832 bool update_label_nuses)
2834 rtx insn_as_rtx = insn;
2835 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2836 gcc_checking_assert (insn_as_rtx == insn);
2839 /* Return true if X is referenced in BODY. */
2841 bool
2842 rtx_referenced_p (const_rtx x, const_rtx body)
2844 subrtx_iterator::array_type array;
2845 FOR_EACH_SUBRTX (iter, array, body, ALL)
2846 if (const_rtx y = *iter)
2848 /* Check if a label_ref Y refers to label X. */
2849 if (GET_CODE (y) == LABEL_REF
2850 && LABEL_P (x)
2851 && LABEL_REF_LABEL (y) == x)
2852 return true;
2854 if (rtx_equal_p (x, y))
2855 return true;
2857 /* If Y is a reference to pool constant traverse the constant. */
2858 if (GET_CODE (y) == SYMBOL_REF
2859 && CONSTANT_POOL_ADDRESS_P (y))
2860 iter.substitute (get_pool_constant (y));
2862 return false;
2865 /* If INSN is a tablejump return true and store the label (before jump table) to
2866 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2868 bool
2869 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2871 rtx label, table;
2873 if (!JUMP_P (insn))
2874 return false;
2876 label = JUMP_LABEL (insn);
2877 if (label != NULL_RTX && !ANY_RETURN_P (label)
2878 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2879 && JUMP_TABLE_DATA_P (table))
2881 if (labelp)
2882 *labelp = label;
2883 if (tablep)
2884 *tablep = as_a <rtx_jump_table_data *> (table);
2885 return true;
2887 return false;
2890 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2891 constant that is not in the constant pool and not in the condition
2892 of an IF_THEN_ELSE. */
2894 static int
2895 computed_jump_p_1 (const_rtx x)
2897 const enum rtx_code code = GET_CODE (x);
2898 int i, j;
2899 const char *fmt;
2901 switch (code)
2903 case LABEL_REF:
2904 case PC:
2905 return 0;
2907 case CONST:
2908 CASE_CONST_ANY:
2909 case SYMBOL_REF:
2910 case REG:
2911 return 1;
2913 case MEM:
2914 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2915 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2917 case IF_THEN_ELSE:
2918 return (computed_jump_p_1 (XEXP (x, 1))
2919 || computed_jump_p_1 (XEXP (x, 2)));
2921 default:
2922 break;
2925 fmt = GET_RTX_FORMAT (code);
2926 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2928 if (fmt[i] == 'e'
2929 && computed_jump_p_1 (XEXP (x, i)))
2930 return 1;
2932 else if (fmt[i] == 'E')
2933 for (j = 0; j < XVECLEN (x, i); j++)
2934 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2935 return 1;
2938 return 0;
2941 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2943 Tablejumps and casesi insns are not considered indirect jumps;
2944 we can recognize them by a (use (label_ref)). */
2947 computed_jump_p (const_rtx insn)
2949 int i;
2950 if (JUMP_P (insn))
2952 rtx pat = PATTERN (insn);
2954 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2955 if (JUMP_LABEL (insn) != NULL)
2956 return 0;
2958 if (GET_CODE (pat) == PARALLEL)
2960 int len = XVECLEN (pat, 0);
2961 int has_use_labelref = 0;
2963 for (i = len - 1; i >= 0; i--)
2964 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2965 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2966 == LABEL_REF))
2968 has_use_labelref = 1;
2969 break;
2972 if (! has_use_labelref)
2973 for (i = len - 1; i >= 0; i--)
2974 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2975 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2976 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2977 return 1;
2979 else if (GET_CODE (pat) == SET
2980 && SET_DEST (pat) == pc_rtx
2981 && computed_jump_p_1 (SET_SRC (pat)))
2982 return 1;
2984 return 0;
2987 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2988 calls. Processes the subexpressions of EXP and passes them to F. */
2989 static int
2990 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2992 int result, i, j;
2993 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2994 rtx *x;
2996 for (; format[n] != '\0'; n++)
2998 switch (format[n])
3000 case 'e':
3001 /* Call F on X. */
3002 x = &XEXP (exp, n);
3003 result = (*f) (x, data);
3004 if (result == -1)
3005 /* Do not traverse sub-expressions. */
3006 continue;
3007 else if (result != 0)
3008 /* Stop the traversal. */
3009 return result;
3011 if (*x == NULL_RTX)
3012 /* There are no sub-expressions. */
3013 continue;
3015 i = non_rtx_starting_operands[GET_CODE (*x)];
3016 if (i >= 0)
3018 result = for_each_rtx_1 (*x, i, f, data);
3019 if (result != 0)
3020 return result;
3022 break;
3024 case 'V':
3025 case 'E':
3026 if (XVEC (exp, n) == 0)
3027 continue;
3028 for (j = 0; j < XVECLEN (exp, n); ++j)
3030 /* Call F on X. */
3031 x = &XVECEXP (exp, n, j);
3032 result = (*f) (x, data);
3033 if (result == -1)
3034 /* Do not traverse sub-expressions. */
3035 continue;
3036 else if (result != 0)
3037 /* Stop the traversal. */
3038 return result;
3040 if (*x == NULL_RTX)
3041 /* There are no sub-expressions. */
3042 continue;
3044 i = non_rtx_starting_operands[GET_CODE (*x)];
3045 if (i >= 0)
3047 result = for_each_rtx_1 (*x, i, f, data);
3048 if (result != 0)
3049 return result;
3052 break;
3054 default:
3055 /* Nothing to do. */
3056 break;
3060 return 0;
3063 /* Traverse X via depth-first search, calling F for each
3064 sub-expression (including X itself). F is also passed the DATA.
3065 If F returns -1, do not traverse sub-expressions, but continue
3066 traversing the rest of the tree. If F ever returns any other
3067 nonzero value, stop the traversal, and return the value returned
3068 by F. Otherwise, return 0. This function does not traverse inside
3069 tree structure that contains RTX_EXPRs, or into sub-expressions
3070 whose format code is `0' since it is not known whether or not those
3071 codes are actually RTL.
3073 This routine is very general, and could (should?) be used to
3074 implement many of the other routines in this file. */
3077 for_each_rtx (rtx *x, rtx_function f, void *data)
3079 int result;
3080 int i;
3082 /* Call F on X. */
3083 result = (*f) (x, data);
3084 if (result == -1)
3085 /* Do not traverse sub-expressions. */
3086 return 0;
3087 else if (result != 0)
3088 /* Stop the traversal. */
3089 return result;
3091 if (*x == NULL_RTX)
3092 /* There are no sub-expressions. */
3093 return 0;
3095 i = non_rtx_starting_operands[GET_CODE (*x)];
3096 if (i < 0)
3097 return 0;
3099 return for_each_rtx_1 (*x, i, f, data);
3102 /* Like "for_each_rtx", but for calling on an rtx_insn **. */
3105 for_each_rtx_in_insn (rtx_insn **insn, rtx_function f, void *data)
3107 rtx insn_as_rtx = *insn;
3108 int result;
3110 result = for_each_rtx (&insn_as_rtx, f, data);
3112 if (insn_as_rtx != *insn)
3113 *insn = safe_as_a <rtx_insn *> (insn_as_rtx);
3115 return result;
3120 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3121 the equivalent add insn and pass the result to FN, using DATA as the
3122 final argument. */
3124 static int
3125 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3127 rtx x = XEXP (mem, 0);
3128 switch (GET_CODE (x))
3130 case PRE_INC:
3131 case POST_INC:
3133 int size = GET_MODE_SIZE (GET_MODE (mem));
3134 rtx r1 = XEXP (x, 0);
3135 rtx c = gen_int_mode (size, GET_MODE (r1));
3136 return fn (mem, x, r1, r1, c, data);
3139 case PRE_DEC:
3140 case POST_DEC:
3142 int size = GET_MODE_SIZE (GET_MODE (mem));
3143 rtx r1 = XEXP (x, 0);
3144 rtx c = gen_int_mode (-size, GET_MODE (r1));
3145 return fn (mem, x, r1, r1, c, data);
3148 case PRE_MODIFY:
3149 case POST_MODIFY:
3151 rtx r1 = XEXP (x, 0);
3152 rtx add = XEXP (x, 1);
3153 return fn (mem, x, r1, add, NULL, data);
3156 default:
3157 gcc_unreachable ();
3161 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3162 For each such autoinc operation found, call FN, passing it
3163 the innermost enclosing MEM, the operation itself, the RTX modified
3164 by the operation, two RTXs (the second may be NULL) that, once
3165 added, represent the value to be held by the modified RTX
3166 afterwards, and DATA. FN is to return 0 to continue the
3167 traversal or any other value to have it returned to the caller of
3168 for_each_inc_dec. */
3171 for_each_inc_dec (rtx x,
3172 for_each_inc_dec_fn fn,
3173 void *data)
3175 subrtx_var_iterator::array_type array;
3176 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3178 rtx mem = *iter;
3179 if (mem
3180 && MEM_P (mem)
3181 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3183 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3184 if (res != 0)
3185 return res;
3186 iter.skip_subrtxes ();
3189 return 0;
3193 /* Searches X for any reference to REGNO, returning the rtx of the
3194 reference found if any. Otherwise, returns NULL_RTX. */
3197 regno_use_in (unsigned int regno, rtx x)
3199 const char *fmt;
3200 int i, j;
3201 rtx tem;
3203 if (REG_P (x) && REGNO (x) == regno)
3204 return x;
3206 fmt = GET_RTX_FORMAT (GET_CODE (x));
3207 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3209 if (fmt[i] == 'e')
3211 if ((tem = regno_use_in (regno, XEXP (x, i))))
3212 return tem;
3214 else if (fmt[i] == 'E')
3215 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3216 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3217 return tem;
3220 return NULL_RTX;
3223 /* Return a value indicating whether OP, an operand of a commutative
3224 operation, is preferred as the first or second operand. The higher
3225 the value, the stronger the preference for being the first operand.
3226 We use negative values to indicate a preference for the first operand
3227 and positive values for the second operand. */
3230 commutative_operand_precedence (rtx op)
3232 enum rtx_code code = GET_CODE (op);
3234 /* Constants always come the second operand. Prefer "nice" constants. */
3235 if (code == CONST_INT)
3236 return -8;
3237 if (code == CONST_WIDE_INT)
3238 return -8;
3239 if (code == CONST_DOUBLE)
3240 return -7;
3241 if (code == CONST_FIXED)
3242 return -7;
3243 op = avoid_constant_pool_reference (op);
3244 code = GET_CODE (op);
3246 switch (GET_RTX_CLASS (code))
3248 case RTX_CONST_OBJ:
3249 if (code == CONST_INT)
3250 return -6;
3251 if (code == CONST_WIDE_INT)
3252 return -6;
3253 if (code == CONST_DOUBLE)
3254 return -5;
3255 if (code == CONST_FIXED)
3256 return -5;
3257 return -4;
3259 case RTX_EXTRA:
3260 /* SUBREGs of objects should come second. */
3261 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3262 return -3;
3263 return 0;
3265 case RTX_OBJ:
3266 /* Complex expressions should be the first, so decrease priority
3267 of objects. Prefer pointer objects over non pointer objects. */
3268 if ((REG_P (op) && REG_POINTER (op))
3269 || (MEM_P (op) && MEM_POINTER (op)))
3270 return -1;
3271 return -2;
3273 case RTX_COMM_ARITH:
3274 /* Prefer operands that are themselves commutative to be first.
3275 This helps to make things linear. In particular,
3276 (and (and (reg) (reg)) (not (reg))) is canonical. */
3277 return 4;
3279 case RTX_BIN_ARITH:
3280 /* If only one operand is a binary expression, it will be the first
3281 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3282 is canonical, although it will usually be further simplified. */
3283 return 2;
3285 case RTX_UNARY:
3286 /* Then prefer NEG and NOT. */
3287 if (code == NEG || code == NOT)
3288 return 1;
3290 default:
3291 return 0;
3295 /* Return 1 iff it is necessary to swap operands of commutative operation
3296 in order to canonicalize expression. */
3298 bool
3299 swap_commutative_operands_p (rtx x, rtx y)
3301 return (commutative_operand_precedence (x)
3302 < commutative_operand_precedence (y));
3305 /* Return 1 if X is an autoincrement side effect and the register is
3306 not the stack pointer. */
3308 auto_inc_p (const_rtx x)
3310 switch (GET_CODE (x))
3312 case PRE_INC:
3313 case POST_INC:
3314 case PRE_DEC:
3315 case POST_DEC:
3316 case PRE_MODIFY:
3317 case POST_MODIFY:
3318 /* There are no REG_INC notes for SP. */
3319 if (XEXP (x, 0) != stack_pointer_rtx)
3320 return 1;
3321 default:
3322 break;
3324 return 0;
3327 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3329 loc_mentioned_in_p (rtx *loc, const_rtx in)
3331 enum rtx_code code;
3332 const char *fmt;
3333 int i, j;
3335 if (!in)
3336 return 0;
3338 code = GET_CODE (in);
3339 fmt = GET_RTX_FORMAT (code);
3340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3342 if (fmt[i] == 'e')
3344 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3345 return 1;
3347 else if (fmt[i] == 'E')
3348 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3349 if (loc == &XVECEXP (in, i, j)
3350 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3351 return 1;
3353 return 0;
3356 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3357 and SUBREG_BYTE, return the bit offset where the subreg begins
3358 (counting from the least significant bit of the operand). */
3360 unsigned int
3361 subreg_lsb_1 (enum machine_mode outer_mode,
3362 enum machine_mode inner_mode,
3363 unsigned int subreg_byte)
3365 unsigned int bitpos;
3366 unsigned int byte;
3367 unsigned int word;
3369 /* A paradoxical subreg begins at bit position 0. */
3370 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3371 return 0;
3373 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3374 /* If the subreg crosses a word boundary ensure that
3375 it also begins and ends on a word boundary. */
3376 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3377 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3378 && (subreg_byte % UNITS_PER_WORD
3379 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3381 if (WORDS_BIG_ENDIAN)
3382 word = (GET_MODE_SIZE (inner_mode)
3383 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3384 else
3385 word = subreg_byte / UNITS_PER_WORD;
3386 bitpos = word * BITS_PER_WORD;
3388 if (BYTES_BIG_ENDIAN)
3389 byte = (GET_MODE_SIZE (inner_mode)
3390 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3391 else
3392 byte = subreg_byte % UNITS_PER_WORD;
3393 bitpos += byte * BITS_PER_UNIT;
3395 return bitpos;
3398 /* Given a subreg X, return the bit offset where the subreg begins
3399 (counting from the least significant bit of the reg). */
3401 unsigned int
3402 subreg_lsb (const_rtx x)
3404 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3405 SUBREG_BYTE (x));
3408 /* Fill in information about a subreg of a hard register.
3409 xregno - A regno of an inner hard subreg_reg (or what will become one).
3410 xmode - The mode of xregno.
3411 offset - The byte offset.
3412 ymode - The mode of a top level SUBREG (or what may become one).
3413 info - Pointer to structure to fill in.
3415 Rather than considering one particular inner register (and thus one
3416 particular "outer" register) in isolation, this function really uses
3417 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3418 function does not check whether adding INFO->offset to XREGNO gives
3419 a valid hard register; even if INFO->offset + XREGNO is out of range,
3420 there might be another register of the same type that is in range.
3421 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3422 register, since that can depend on things like whether the final
3423 register number is even or odd. Callers that want to check whether
3424 this particular subreg can be replaced by a simple (reg ...) should
3425 use simplify_subreg_regno. */
3427 void
3428 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3429 unsigned int offset, enum machine_mode ymode,
3430 struct subreg_info *info)
3432 int nregs_xmode, nregs_ymode;
3433 int mode_multiple, nregs_multiple;
3434 int offset_adj, y_offset, y_offset_adj;
3435 int regsize_xmode, regsize_ymode;
3436 bool rknown;
3438 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3440 rknown = false;
3442 /* If there are holes in a non-scalar mode in registers, we expect
3443 that it is made up of its units concatenated together. */
3444 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3446 enum machine_mode xmode_unit;
3448 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3449 if (GET_MODE_INNER (xmode) == VOIDmode)
3450 xmode_unit = xmode;
3451 else
3452 xmode_unit = GET_MODE_INNER (xmode);
3453 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3454 gcc_assert (nregs_xmode
3455 == (GET_MODE_NUNITS (xmode)
3456 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3457 gcc_assert (hard_regno_nregs[xregno][xmode]
3458 == (hard_regno_nregs[xregno][xmode_unit]
3459 * GET_MODE_NUNITS (xmode)));
3461 /* You can only ask for a SUBREG of a value with holes in the middle
3462 if you don't cross the holes. (Such a SUBREG should be done by
3463 picking a different register class, or doing it in memory if
3464 necessary.) An example of a value with holes is XCmode on 32-bit
3465 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3466 3 for each part, but in memory it's two 128-bit parts.
3467 Padding is assumed to be at the end (not necessarily the 'high part')
3468 of each unit. */
3469 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3470 < GET_MODE_NUNITS (xmode))
3471 && (offset / GET_MODE_SIZE (xmode_unit)
3472 != ((offset + GET_MODE_SIZE (ymode) - 1)
3473 / GET_MODE_SIZE (xmode_unit))))
3475 info->representable_p = false;
3476 rknown = true;
3479 else
3480 nregs_xmode = hard_regno_nregs[xregno][xmode];
3482 nregs_ymode = hard_regno_nregs[xregno][ymode];
3484 /* Paradoxical subregs are otherwise valid. */
3485 if (!rknown
3486 && offset == 0
3487 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3489 info->representable_p = true;
3490 /* If this is a big endian paradoxical subreg, which uses more
3491 actual hard registers than the original register, we must
3492 return a negative offset so that we find the proper highpart
3493 of the register. */
3494 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3495 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3496 info->offset = nregs_xmode - nregs_ymode;
3497 else
3498 info->offset = 0;
3499 info->nregs = nregs_ymode;
3500 return;
3503 /* If registers store different numbers of bits in the different
3504 modes, we cannot generally form this subreg. */
3505 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3506 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3507 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3508 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3510 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3511 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3512 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3514 info->representable_p = false;
3515 info->nregs
3516 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3517 info->offset = offset / regsize_xmode;
3518 return;
3520 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3522 info->representable_p = false;
3523 info->nregs
3524 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3525 info->offset = offset / regsize_xmode;
3526 return;
3530 /* Lowpart subregs are otherwise valid. */
3531 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3533 info->representable_p = true;
3534 rknown = true;
3536 if (offset == 0 || nregs_xmode == nregs_ymode)
3538 info->offset = 0;
3539 info->nregs = nregs_ymode;
3540 return;
3544 /* This should always pass, otherwise we don't know how to verify
3545 the constraint. These conditions may be relaxed but
3546 subreg_regno_offset would need to be redesigned. */
3547 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3548 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3550 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3551 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3553 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3554 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3555 HOST_WIDE_INT off_low = offset & (ysize - 1);
3556 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3557 offset = (xsize - ysize - off_high) | off_low;
3559 /* The XMODE value can be seen as a vector of NREGS_XMODE
3560 values. The subreg must represent a lowpart of given field.
3561 Compute what field it is. */
3562 offset_adj = offset;
3563 offset_adj -= subreg_lowpart_offset (ymode,
3564 mode_for_size (GET_MODE_BITSIZE (xmode)
3565 / nregs_xmode,
3566 MODE_INT, 0));
3568 /* Size of ymode must not be greater than the size of xmode. */
3569 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3570 gcc_assert (mode_multiple != 0);
3572 y_offset = offset / GET_MODE_SIZE (ymode);
3573 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3574 nregs_multiple = nregs_xmode / nregs_ymode;
3576 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3577 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3579 if (!rknown)
3581 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3582 rknown = true;
3584 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3585 info->nregs = nregs_ymode;
3588 /* This function returns the regno offset of a subreg expression.
3589 xregno - A regno of an inner hard subreg_reg (or what will become one).
3590 xmode - The mode of xregno.
3591 offset - The byte offset.
3592 ymode - The mode of a top level SUBREG (or what may become one).
3593 RETURN - The regno offset which would be used. */
3594 unsigned int
3595 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3596 unsigned int offset, enum machine_mode ymode)
3598 struct subreg_info info;
3599 subreg_get_info (xregno, xmode, offset, ymode, &info);
3600 return info.offset;
3603 /* This function returns true when the offset is representable via
3604 subreg_offset in the given regno.
3605 xregno - A regno of an inner hard subreg_reg (or what will become one).
3606 xmode - The mode of xregno.
3607 offset - The byte offset.
3608 ymode - The mode of a top level SUBREG (or what may become one).
3609 RETURN - Whether the offset is representable. */
3610 bool
3611 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3612 unsigned int offset, enum machine_mode ymode)
3614 struct subreg_info info;
3615 subreg_get_info (xregno, xmode, offset, ymode, &info);
3616 return info.representable_p;
3619 /* Return the number of a YMODE register to which
3621 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3623 can be simplified. Return -1 if the subreg can't be simplified.
3625 XREGNO is a hard register number. */
3628 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3629 unsigned int offset, enum machine_mode ymode)
3631 struct subreg_info info;
3632 unsigned int yregno;
3634 #ifdef CANNOT_CHANGE_MODE_CLASS
3635 /* Give the backend a chance to disallow the mode change. */
3636 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3637 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3638 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3639 /* We can use mode change in LRA for some transformations. */
3640 && ! lra_in_progress)
3641 return -1;
3642 #endif
3644 /* We shouldn't simplify stack-related registers. */
3645 if ((!reload_completed || frame_pointer_needed)
3646 && xregno == FRAME_POINTER_REGNUM)
3647 return -1;
3649 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3650 && xregno == ARG_POINTER_REGNUM)
3651 return -1;
3653 if (xregno == STACK_POINTER_REGNUM
3654 /* We should convert hard stack register in LRA if it is
3655 possible. */
3656 && ! lra_in_progress)
3657 return -1;
3659 /* Try to get the register offset. */
3660 subreg_get_info (xregno, xmode, offset, ymode, &info);
3661 if (!info.representable_p)
3662 return -1;
3664 /* Make sure that the offsetted register value is in range. */
3665 yregno = xregno + info.offset;
3666 if (!HARD_REGISTER_NUM_P (yregno))
3667 return -1;
3669 /* See whether (reg:YMODE YREGNO) is valid.
3671 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3672 This is a kludge to work around how complex FP arguments are passed
3673 on IA-64 and should be fixed. See PR target/49226. */
3674 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3675 && HARD_REGNO_MODE_OK (xregno, xmode))
3676 return -1;
3678 return (int) yregno;
3681 /* Return the final regno that a subreg expression refers to. */
3682 unsigned int
3683 subreg_regno (const_rtx x)
3685 unsigned int ret;
3686 rtx subreg = SUBREG_REG (x);
3687 int regno = REGNO (subreg);
3689 ret = regno + subreg_regno_offset (regno,
3690 GET_MODE (subreg),
3691 SUBREG_BYTE (x),
3692 GET_MODE (x));
3693 return ret;
3697 /* Return the number of registers that a subreg expression refers
3698 to. */
3699 unsigned int
3700 subreg_nregs (const_rtx x)
3702 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3705 /* Return the number of registers that a subreg REG with REGNO
3706 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3707 changed so that the regno can be passed in. */
3709 unsigned int
3710 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3712 struct subreg_info info;
3713 rtx subreg = SUBREG_REG (x);
3715 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3716 &info);
3717 return info.nregs;
3721 struct parms_set_data
3723 int nregs;
3724 HARD_REG_SET regs;
3727 /* Helper function for noticing stores to parameter registers. */
3728 static void
3729 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3731 struct parms_set_data *const d = (struct parms_set_data *) data;
3732 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3733 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3735 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3736 d->nregs--;
3740 /* Look backward for first parameter to be loaded.
3741 Note that loads of all parameters will not necessarily be
3742 found if CSE has eliminated some of them (e.g., an argument
3743 to the outer function is passed down as a parameter).
3744 Do not skip BOUNDARY. */
3745 rtx_insn *
3746 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3748 struct parms_set_data parm;
3749 rtx p;
3750 rtx_insn *before, *first_set;
3752 /* Since different machines initialize their parameter registers
3753 in different orders, assume nothing. Collect the set of all
3754 parameter registers. */
3755 CLEAR_HARD_REG_SET (parm.regs);
3756 parm.nregs = 0;
3757 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3758 if (GET_CODE (XEXP (p, 0)) == USE
3759 && REG_P (XEXP (XEXP (p, 0), 0)))
3761 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3763 /* We only care about registers which can hold function
3764 arguments. */
3765 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3766 continue;
3768 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3769 parm.nregs++;
3771 before = call_insn;
3772 first_set = call_insn;
3774 /* Search backward for the first set of a register in this set. */
3775 while (parm.nregs && before != boundary)
3777 before = PREV_INSN (before);
3779 /* It is possible that some loads got CSEed from one call to
3780 another. Stop in that case. */
3781 if (CALL_P (before))
3782 break;
3784 /* Our caller needs either ensure that we will find all sets
3785 (in case code has not been optimized yet), or take care
3786 for possible labels in a way by setting boundary to preceding
3787 CODE_LABEL. */
3788 if (LABEL_P (before))
3790 gcc_assert (before == boundary);
3791 break;
3794 if (INSN_P (before))
3796 int nregs_old = parm.nregs;
3797 note_stores (PATTERN (before), parms_set, &parm);
3798 /* If we found something that did not set a parameter reg,
3799 we're done. Do not keep going, as that might result
3800 in hoisting an insn before the setting of a pseudo
3801 that is used by the hoisted insn. */
3802 if (nregs_old != parm.nregs)
3803 first_set = before;
3804 else
3805 break;
3808 return first_set;
3811 /* Return true if we should avoid inserting code between INSN and preceding
3812 call instruction. */
3814 bool
3815 keep_with_call_p (const rtx_insn *insn)
3817 rtx set;
3819 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3821 if (REG_P (SET_DEST (set))
3822 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3823 && fixed_regs[REGNO (SET_DEST (set))]
3824 && general_operand (SET_SRC (set), VOIDmode))
3825 return true;
3826 if (REG_P (SET_SRC (set))
3827 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3828 && REG_P (SET_DEST (set))
3829 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3830 return true;
3831 /* There may be a stack pop just after the call and before the store
3832 of the return register. Search for the actual store when deciding
3833 if we can break or not. */
3834 if (SET_DEST (set) == stack_pointer_rtx)
3836 /* This CONST_CAST is okay because next_nonnote_insn just
3837 returns its argument and we assign it to a const_rtx
3838 variable. */
3839 const rtx_insn *i2
3840 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3841 if (i2 && keep_with_call_p (i2))
3842 return true;
3845 return false;
3848 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3849 to non-complex jumps. That is, direct unconditional, conditional,
3850 and tablejumps, but not computed jumps or returns. It also does
3851 not apply to the fallthru case of a conditional jump. */
3853 bool
3854 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3856 rtx tmp = JUMP_LABEL (jump_insn);
3857 rtx_jump_table_data *table;
3859 if (label == tmp)
3860 return true;
3862 if (tablejump_p (jump_insn, NULL, &table))
3864 rtvec vec = table->get_labels ();
3865 int i, veclen = GET_NUM_ELEM (vec);
3867 for (i = 0; i < veclen; ++i)
3868 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3869 return true;
3872 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3873 return true;
3875 return false;
3879 /* Return an estimate of the cost of computing rtx X.
3880 One use is in cse, to decide which expression to keep in the hash table.
3881 Another is in rtl generation, to pick the cheapest way to multiply.
3882 Other uses like the latter are expected in the future.
3884 X appears as operand OPNO in an expression with code OUTER_CODE.
3885 SPEED specifies whether costs optimized for speed or size should
3886 be returned. */
3889 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3891 int i, j;
3892 enum rtx_code code;
3893 const char *fmt;
3894 int total;
3895 int factor;
3897 if (x == 0)
3898 return 0;
3900 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3901 many insns, taking N times as long. */
3902 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3903 if (factor == 0)
3904 factor = 1;
3906 /* Compute the default costs of certain things.
3907 Note that targetm.rtx_costs can override the defaults. */
3909 code = GET_CODE (x);
3910 switch (code)
3912 case MULT:
3913 /* Multiplication has time-complexity O(N*N), where N is the
3914 number of units (translated from digits) when using
3915 schoolbook long multiplication. */
3916 total = factor * factor * COSTS_N_INSNS (5);
3917 break;
3918 case DIV:
3919 case UDIV:
3920 case MOD:
3921 case UMOD:
3922 /* Similarly, complexity for schoolbook long division. */
3923 total = factor * factor * COSTS_N_INSNS (7);
3924 break;
3925 case USE:
3926 /* Used in combine.c as a marker. */
3927 total = 0;
3928 break;
3929 case SET:
3930 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3931 the mode for the factor. */
3932 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3933 if (factor == 0)
3934 factor = 1;
3935 /* Pass through. */
3936 default:
3937 total = factor * COSTS_N_INSNS (1);
3940 switch (code)
3942 case REG:
3943 return 0;
3945 case SUBREG:
3946 total = 0;
3947 /* If we can't tie these modes, make this expensive. The larger
3948 the mode, the more expensive it is. */
3949 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3950 return COSTS_N_INSNS (2 + factor);
3951 break;
3953 default:
3954 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3955 return total;
3956 break;
3959 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3960 which is already in total. */
3962 fmt = GET_RTX_FORMAT (code);
3963 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3964 if (fmt[i] == 'e')
3965 total += rtx_cost (XEXP (x, i), code, i, speed);
3966 else if (fmt[i] == 'E')
3967 for (j = 0; j < XVECLEN (x, i); j++)
3968 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3970 return total;
3973 /* Fill in the structure C with information about both speed and size rtx
3974 costs for X, which is operand OPNO in an expression with code OUTER. */
3976 void
3977 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3978 struct full_rtx_costs *c)
3980 c->speed = rtx_cost (x, outer, opno, true);
3981 c->size = rtx_cost (x, outer, opno, false);
3985 /* Return cost of address expression X.
3986 Expect that X is properly formed address reference.
3988 SPEED parameter specify whether costs optimized for speed or size should
3989 be returned. */
3992 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3994 /* We may be asked for cost of various unusual addresses, such as operands
3995 of push instruction. It is not worthwhile to complicate writing
3996 of the target hook by such cases. */
3998 if (!memory_address_addr_space_p (mode, x, as))
3999 return 1000;
4001 return targetm.address_cost (x, mode, as, speed);
4004 /* If the target doesn't override, compute the cost as with arithmetic. */
4007 default_address_cost (rtx x, enum machine_mode, addr_space_t, bool speed)
4009 return rtx_cost (x, MEM, 0, speed);
4013 unsigned HOST_WIDE_INT
4014 nonzero_bits (const_rtx x, enum machine_mode mode)
4016 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4019 unsigned int
4020 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
4022 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4025 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4026 It avoids exponential behavior in nonzero_bits1 when X has
4027 identical subexpressions on the first or the second level. */
4029 static unsigned HOST_WIDE_INT
4030 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
4031 enum machine_mode known_mode,
4032 unsigned HOST_WIDE_INT known_ret)
4034 if (x == known_x && mode == known_mode)
4035 return known_ret;
4037 /* Try to find identical subexpressions. If found call
4038 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4039 precomputed value for the subexpression as KNOWN_RET. */
4041 if (ARITHMETIC_P (x))
4043 rtx x0 = XEXP (x, 0);
4044 rtx x1 = XEXP (x, 1);
4046 /* Check the first level. */
4047 if (x0 == x1)
4048 return nonzero_bits1 (x, mode, x0, mode,
4049 cached_nonzero_bits (x0, mode, known_x,
4050 known_mode, known_ret));
4052 /* Check the second level. */
4053 if (ARITHMETIC_P (x0)
4054 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4055 return nonzero_bits1 (x, mode, x1, mode,
4056 cached_nonzero_bits (x1, mode, known_x,
4057 known_mode, known_ret));
4059 if (ARITHMETIC_P (x1)
4060 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4061 return nonzero_bits1 (x, mode, x0, mode,
4062 cached_nonzero_bits (x0, mode, known_x,
4063 known_mode, known_ret));
4066 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4069 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4070 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4071 is less useful. We can't allow both, because that results in exponential
4072 run time recursion. There is a nullstone testcase that triggered
4073 this. This macro avoids accidental uses of num_sign_bit_copies. */
4074 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4076 /* Given an expression, X, compute which bits in X can be nonzero.
4077 We don't care about bits outside of those defined in MODE.
4079 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4080 an arithmetic operation, we can do better. */
4082 static unsigned HOST_WIDE_INT
4083 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4084 enum machine_mode known_mode,
4085 unsigned HOST_WIDE_INT known_ret)
4087 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4088 unsigned HOST_WIDE_INT inner_nz;
4089 enum rtx_code code;
4090 enum machine_mode inner_mode;
4091 unsigned int mode_width = GET_MODE_PRECISION (mode);
4093 /* For floating-point and vector values, assume all bits are needed. */
4094 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4095 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4096 return nonzero;
4098 /* If X is wider than MODE, use its mode instead. */
4099 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4101 mode = GET_MODE (x);
4102 nonzero = GET_MODE_MASK (mode);
4103 mode_width = GET_MODE_PRECISION (mode);
4106 if (mode_width > HOST_BITS_PER_WIDE_INT)
4107 /* Our only callers in this case look for single bit values. So
4108 just return the mode mask. Those tests will then be false. */
4109 return nonzero;
4111 #ifndef WORD_REGISTER_OPERATIONS
4112 /* If MODE is wider than X, but both are a single word for both the host
4113 and target machines, we can compute this from which bits of the
4114 object might be nonzero in its own mode, taking into account the fact
4115 that on many CISC machines, accessing an object in a wider mode
4116 causes the high-order bits to become undefined. So they are
4117 not known to be zero. */
4119 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4120 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4121 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4122 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4124 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4125 known_x, known_mode, known_ret);
4126 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4127 return nonzero;
4129 #endif
4131 code = GET_CODE (x);
4132 switch (code)
4134 case REG:
4135 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4136 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4137 all the bits above ptr_mode are known to be zero. */
4138 /* As we do not know which address space the pointer is referring to,
4139 we can do this only if the target does not support different pointer
4140 or address modes depending on the address space. */
4141 if (target_default_pointer_address_modes_p ()
4142 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4143 && REG_POINTER (x))
4144 nonzero &= GET_MODE_MASK (ptr_mode);
4145 #endif
4147 /* Include declared information about alignment of pointers. */
4148 /* ??? We don't properly preserve REG_POINTER changes across
4149 pointer-to-integer casts, so we can't trust it except for
4150 things that we know must be pointers. See execute/960116-1.c. */
4151 if ((x == stack_pointer_rtx
4152 || x == frame_pointer_rtx
4153 || x == arg_pointer_rtx)
4154 && REGNO_POINTER_ALIGN (REGNO (x)))
4156 unsigned HOST_WIDE_INT alignment
4157 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4159 #ifdef PUSH_ROUNDING
4160 /* If PUSH_ROUNDING is defined, it is possible for the
4161 stack to be momentarily aligned only to that amount,
4162 so we pick the least alignment. */
4163 if (x == stack_pointer_rtx && PUSH_ARGS)
4164 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4165 alignment);
4166 #endif
4168 nonzero &= ~(alignment - 1);
4172 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4173 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4174 known_mode, known_ret,
4175 &nonzero_for_hook);
4177 if (new_rtx)
4178 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4179 known_mode, known_ret);
4181 return nonzero_for_hook;
4184 case CONST_INT:
4185 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4186 /* If X is negative in MODE, sign-extend the value. */
4187 if (INTVAL (x) > 0
4188 && mode_width < BITS_PER_WORD
4189 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4190 != 0)
4191 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4192 #endif
4194 return UINTVAL (x);
4196 case MEM:
4197 #ifdef LOAD_EXTEND_OP
4198 /* In many, if not most, RISC machines, reading a byte from memory
4199 zeros the rest of the register. Noticing that fact saves a lot
4200 of extra zero-extends. */
4201 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4202 nonzero &= GET_MODE_MASK (GET_MODE (x));
4203 #endif
4204 break;
4206 case EQ: case NE:
4207 case UNEQ: case LTGT:
4208 case GT: case GTU: case UNGT:
4209 case LT: case LTU: case UNLT:
4210 case GE: case GEU: case UNGE:
4211 case LE: case LEU: case UNLE:
4212 case UNORDERED: case ORDERED:
4213 /* If this produces an integer result, we know which bits are set.
4214 Code here used to clear bits outside the mode of X, but that is
4215 now done above. */
4216 /* Mind that MODE is the mode the caller wants to look at this
4217 operation in, and not the actual operation mode. We can wind
4218 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4219 that describes the results of a vector compare. */
4220 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4221 && mode_width <= HOST_BITS_PER_WIDE_INT)
4222 nonzero = STORE_FLAG_VALUE;
4223 break;
4225 case NEG:
4226 #if 0
4227 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4228 and num_sign_bit_copies. */
4229 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4230 == GET_MODE_PRECISION (GET_MODE (x)))
4231 nonzero = 1;
4232 #endif
4234 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4235 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4236 break;
4238 case ABS:
4239 #if 0
4240 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4241 and num_sign_bit_copies. */
4242 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4243 == GET_MODE_PRECISION (GET_MODE (x)))
4244 nonzero = 1;
4245 #endif
4246 break;
4248 case TRUNCATE:
4249 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4250 known_x, known_mode, known_ret)
4251 & GET_MODE_MASK (mode));
4252 break;
4254 case ZERO_EXTEND:
4255 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4256 known_x, known_mode, known_ret);
4257 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4258 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4259 break;
4261 case SIGN_EXTEND:
4262 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4263 Otherwise, show all the bits in the outer mode but not the inner
4264 may be nonzero. */
4265 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4266 known_x, known_mode, known_ret);
4267 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4269 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4270 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4271 inner_nz |= (GET_MODE_MASK (mode)
4272 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4275 nonzero &= inner_nz;
4276 break;
4278 case AND:
4279 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4280 known_x, known_mode, known_ret)
4281 & cached_nonzero_bits (XEXP (x, 1), mode,
4282 known_x, known_mode, known_ret);
4283 break;
4285 case XOR: case IOR:
4286 case UMIN: case UMAX: case SMIN: case SMAX:
4288 unsigned HOST_WIDE_INT nonzero0
4289 = cached_nonzero_bits (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
4292 /* Don't call nonzero_bits for the second time if it cannot change
4293 anything. */
4294 if ((nonzero & nonzero0) != nonzero)
4295 nonzero &= nonzero0
4296 | cached_nonzero_bits (XEXP (x, 1), mode,
4297 known_x, known_mode, known_ret);
4299 break;
4301 case PLUS: case MINUS:
4302 case MULT:
4303 case DIV: case UDIV:
4304 case MOD: case UMOD:
4305 /* We can apply the rules of arithmetic to compute the number of
4306 high- and low-order zero bits of these operations. We start by
4307 computing the width (position of the highest-order nonzero bit)
4308 and the number of low-order zero bits for each value. */
4310 unsigned HOST_WIDE_INT nz0
4311 = cached_nonzero_bits (XEXP (x, 0), mode,
4312 known_x, known_mode, known_ret);
4313 unsigned HOST_WIDE_INT nz1
4314 = cached_nonzero_bits (XEXP (x, 1), mode,
4315 known_x, known_mode, known_ret);
4316 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4317 int width0 = floor_log2 (nz0) + 1;
4318 int width1 = floor_log2 (nz1) + 1;
4319 int low0 = floor_log2 (nz0 & -nz0);
4320 int low1 = floor_log2 (nz1 & -nz1);
4321 unsigned HOST_WIDE_INT op0_maybe_minusp
4322 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4323 unsigned HOST_WIDE_INT op1_maybe_minusp
4324 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4325 unsigned int result_width = mode_width;
4326 int result_low = 0;
4328 switch (code)
4330 case PLUS:
4331 result_width = MAX (width0, width1) + 1;
4332 result_low = MIN (low0, low1);
4333 break;
4334 case MINUS:
4335 result_low = MIN (low0, low1);
4336 break;
4337 case MULT:
4338 result_width = width0 + width1;
4339 result_low = low0 + low1;
4340 break;
4341 case DIV:
4342 if (width1 == 0)
4343 break;
4344 if (!op0_maybe_minusp && !op1_maybe_minusp)
4345 result_width = width0;
4346 break;
4347 case UDIV:
4348 if (width1 == 0)
4349 break;
4350 result_width = width0;
4351 break;
4352 case MOD:
4353 if (width1 == 0)
4354 break;
4355 if (!op0_maybe_minusp && !op1_maybe_minusp)
4356 result_width = MIN (width0, width1);
4357 result_low = MIN (low0, low1);
4358 break;
4359 case UMOD:
4360 if (width1 == 0)
4361 break;
4362 result_width = MIN (width0, width1);
4363 result_low = MIN (low0, low1);
4364 break;
4365 default:
4366 gcc_unreachable ();
4369 if (result_width < mode_width)
4370 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4372 if (result_low > 0)
4373 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4375 break;
4377 case ZERO_EXTRACT:
4378 if (CONST_INT_P (XEXP (x, 1))
4379 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4380 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4381 break;
4383 case SUBREG:
4384 /* If this is a SUBREG formed for a promoted variable that has
4385 been zero-extended, we know that at least the high-order bits
4386 are zero, though others might be too. */
4388 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4389 nonzero = GET_MODE_MASK (GET_MODE (x))
4390 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4391 known_x, known_mode, known_ret);
4393 inner_mode = GET_MODE (SUBREG_REG (x));
4394 /* If the inner mode is a single word for both the host and target
4395 machines, we can compute this from which bits of the inner
4396 object might be nonzero. */
4397 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4398 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4400 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4401 known_x, known_mode, known_ret);
4403 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4404 /* If this is a typical RISC machine, we only have to worry
4405 about the way loads are extended. */
4406 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4407 ? val_signbit_known_set_p (inner_mode, nonzero)
4408 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4409 || !MEM_P (SUBREG_REG (x)))
4410 #endif
4412 /* On many CISC machines, accessing an object in a wider mode
4413 causes the high-order bits to become undefined. So they are
4414 not known to be zero. */
4415 if (GET_MODE_PRECISION (GET_MODE (x))
4416 > GET_MODE_PRECISION (inner_mode))
4417 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4418 & ~GET_MODE_MASK (inner_mode));
4421 break;
4423 case ASHIFTRT:
4424 case LSHIFTRT:
4425 case ASHIFT:
4426 case ROTATE:
4427 /* The nonzero bits are in two classes: any bits within MODE
4428 that aren't in GET_MODE (x) are always significant. The rest of the
4429 nonzero bits are those that are significant in the operand of
4430 the shift when shifted the appropriate number of bits. This
4431 shows that high-order bits are cleared by the right shift and
4432 low-order bits by left shifts. */
4433 if (CONST_INT_P (XEXP (x, 1))
4434 && INTVAL (XEXP (x, 1)) >= 0
4435 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4436 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4438 enum machine_mode inner_mode = GET_MODE (x);
4439 unsigned int width = GET_MODE_PRECISION (inner_mode);
4440 int count = INTVAL (XEXP (x, 1));
4441 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4442 unsigned HOST_WIDE_INT op_nonzero
4443 = cached_nonzero_bits (XEXP (x, 0), mode,
4444 known_x, known_mode, known_ret);
4445 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4446 unsigned HOST_WIDE_INT outer = 0;
4448 if (mode_width > width)
4449 outer = (op_nonzero & nonzero & ~mode_mask);
4451 if (code == LSHIFTRT)
4452 inner >>= count;
4453 else if (code == ASHIFTRT)
4455 inner >>= count;
4457 /* If the sign bit may have been nonzero before the shift, we
4458 need to mark all the places it could have been copied to
4459 by the shift as possibly nonzero. */
4460 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4461 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4462 << (width - count);
4464 else if (code == ASHIFT)
4465 inner <<= count;
4466 else
4467 inner = ((inner << (count % width)
4468 | (inner >> (width - (count % width)))) & mode_mask);
4470 nonzero &= (outer | inner);
4472 break;
4474 case FFS:
4475 case POPCOUNT:
4476 /* This is at most the number of bits in the mode. */
4477 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4478 break;
4480 case CLZ:
4481 /* If CLZ has a known value at zero, then the nonzero bits are
4482 that value, plus the number of bits in the mode minus one. */
4483 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4484 nonzero
4485 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4486 else
4487 nonzero = -1;
4488 break;
4490 case CTZ:
4491 /* If CTZ has a known value at zero, then the nonzero bits are
4492 that value, plus the number of bits in the mode minus one. */
4493 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4494 nonzero
4495 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4496 else
4497 nonzero = -1;
4498 break;
4500 case CLRSB:
4501 /* This is at most the number of bits in the mode minus 1. */
4502 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4503 break;
4505 case PARITY:
4506 nonzero = 1;
4507 break;
4509 case IF_THEN_ELSE:
4511 unsigned HOST_WIDE_INT nonzero_true
4512 = cached_nonzero_bits (XEXP (x, 1), mode,
4513 known_x, known_mode, known_ret);
4515 /* Don't call nonzero_bits for the second time if it cannot change
4516 anything. */
4517 if ((nonzero & nonzero_true) != nonzero)
4518 nonzero &= nonzero_true
4519 | cached_nonzero_bits (XEXP (x, 2), mode,
4520 known_x, known_mode, known_ret);
4522 break;
4524 default:
4525 break;
4528 return nonzero;
4531 /* See the macro definition above. */
4532 #undef cached_num_sign_bit_copies
4535 /* The function cached_num_sign_bit_copies is a wrapper around
4536 num_sign_bit_copies1. It avoids exponential behavior in
4537 num_sign_bit_copies1 when X has identical subexpressions on the
4538 first or the second level. */
4540 static unsigned int
4541 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4542 enum machine_mode known_mode,
4543 unsigned int known_ret)
4545 if (x == known_x && mode == known_mode)
4546 return known_ret;
4548 /* Try to find identical subexpressions. If found call
4549 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4550 the precomputed value for the subexpression as KNOWN_RET. */
4552 if (ARITHMETIC_P (x))
4554 rtx x0 = XEXP (x, 0);
4555 rtx x1 = XEXP (x, 1);
4557 /* Check the first level. */
4558 if (x0 == x1)
4559 return
4560 num_sign_bit_copies1 (x, mode, x0, mode,
4561 cached_num_sign_bit_copies (x0, mode, known_x,
4562 known_mode,
4563 known_ret));
4565 /* Check the second level. */
4566 if (ARITHMETIC_P (x0)
4567 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4568 return
4569 num_sign_bit_copies1 (x, mode, x1, mode,
4570 cached_num_sign_bit_copies (x1, mode, known_x,
4571 known_mode,
4572 known_ret));
4574 if (ARITHMETIC_P (x1)
4575 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4576 return
4577 num_sign_bit_copies1 (x, mode, x0, mode,
4578 cached_num_sign_bit_copies (x0, mode, known_x,
4579 known_mode,
4580 known_ret));
4583 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4586 /* Return the number of bits at the high-order end of X that are known to
4587 be equal to the sign bit. X will be used in mode MODE; if MODE is
4588 VOIDmode, X will be used in its own mode. The returned value will always
4589 be between 1 and the number of bits in MODE. */
4591 static unsigned int
4592 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4593 enum machine_mode known_mode,
4594 unsigned int known_ret)
4596 enum rtx_code code = GET_CODE (x);
4597 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4598 int num0, num1, result;
4599 unsigned HOST_WIDE_INT nonzero;
4601 /* If we weren't given a mode, use the mode of X. If the mode is still
4602 VOIDmode, we don't know anything. Likewise if one of the modes is
4603 floating-point. */
4605 if (mode == VOIDmode)
4606 mode = GET_MODE (x);
4608 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4609 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4610 return 1;
4612 /* For a smaller object, just ignore the high bits. */
4613 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4615 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4616 known_x, known_mode, known_ret);
4617 return MAX (1,
4618 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4621 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4623 #ifndef WORD_REGISTER_OPERATIONS
4624 /* If this machine does not do all register operations on the entire
4625 register and MODE is wider than the mode of X, we can say nothing
4626 at all about the high-order bits. */
4627 return 1;
4628 #else
4629 /* Likewise on machines that do, if the mode of the object is smaller
4630 than a word and loads of that size don't sign extend, we can say
4631 nothing about the high order bits. */
4632 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4633 #ifdef LOAD_EXTEND_OP
4634 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4635 #endif
4637 return 1;
4638 #endif
4641 switch (code)
4643 case REG:
4645 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4646 /* If pointers extend signed and this is a pointer in Pmode, say that
4647 all the bits above ptr_mode are known to be sign bit copies. */
4648 /* As we do not know which address space the pointer is referring to,
4649 we can do this only if the target does not support different pointer
4650 or address modes depending on the address space. */
4651 if (target_default_pointer_address_modes_p ()
4652 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4653 && mode == Pmode && REG_POINTER (x))
4654 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4655 #endif
4658 unsigned int copies_for_hook = 1, copies = 1;
4659 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4660 known_mode, known_ret,
4661 &copies_for_hook);
4663 if (new_rtx)
4664 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4665 known_mode, known_ret);
4667 if (copies > 1 || copies_for_hook > 1)
4668 return MAX (copies, copies_for_hook);
4670 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4672 break;
4674 case MEM:
4675 #ifdef LOAD_EXTEND_OP
4676 /* Some RISC machines sign-extend all loads of smaller than a word. */
4677 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4678 return MAX (1, ((int) bitwidth
4679 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4680 #endif
4681 break;
4683 case CONST_INT:
4684 /* If the constant is negative, take its 1's complement and remask.
4685 Then see how many zero bits we have. */
4686 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4687 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4688 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4689 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4691 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4693 case SUBREG:
4694 /* If this is a SUBREG for a promoted object that is sign-extended
4695 and we are looking at it in a wider mode, we know that at least the
4696 high-order bits are known to be sign bit copies. */
4698 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4700 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4701 known_x, known_mode, known_ret);
4702 return MAX ((int) bitwidth
4703 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4704 num0);
4707 /* For a smaller object, just ignore the high bits. */
4708 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4710 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4711 known_x, known_mode, known_ret);
4712 return MAX (1, (num0
4713 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4714 - bitwidth)));
4717 #ifdef WORD_REGISTER_OPERATIONS
4718 #ifdef LOAD_EXTEND_OP
4719 /* For paradoxical SUBREGs on machines where all register operations
4720 affect the entire register, just look inside. Note that we are
4721 passing MODE to the recursive call, so the number of sign bit copies
4722 will remain relative to that mode, not the inner mode. */
4724 /* This works only if loads sign extend. Otherwise, if we get a
4725 reload for the inner part, it may be loaded from the stack, and
4726 then we lose all sign bit copies that existed before the store
4727 to the stack. */
4729 if (paradoxical_subreg_p (x)
4730 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4731 && MEM_P (SUBREG_REG (x)))
4732 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4733 known_x, known_mode, known_ret);
4734 #endif
4735 #endif
4736 break;
4738 case SIGN_EXTRACT:
4739 if (CONST_INT_P (XEXP (x, 1)))
4740 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4741 break;
4743 case SIGN_EXTEND:
4744 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4745 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4746 known_x, known_mode, known_ret));
4748 case TRUNCATE:
4749 /* For a smaller object, just ignore the high bits. */
4750 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4751 known_x, known_mode, known_ret);
4752 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4753 - bitwidth)));
4755 case NOT:
4756 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4757 known_x, known_mode, known_ret);
4759 case ROTATE: case ROTATERT:
4760 /* If we are rotating left by a number of bits less than the number
4761 of sign bit copies, we can just subtract that amount from the
4762 number. */
4763 if (CONST_INT_P (XEXP (x, 1))
4764 && INTVAL (XEXP (x, 1)) >= 0
4765 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4767 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4768 known_x, known_mode, known_ret);
4769 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4770 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4772 break;
4774 case NEG:
4775 /* In general, this subtracts one sign bit copy. But if the value
4776 is known to be positive, the number of sign bit copies is the
4777 same as that of the input. Finally, if the input has just one bit
4778 that might be nonzero, all the bits are copies of the sign bit. */
4779 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4780 known_x, known_mode, known_ret);
4781 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4782 return num0 > 1 ? num0 - 1 : 1;
4784 nonzero = nonzero_bits (XEXP (x, 0), mode);
4785 if (nonzero == 1)
4786 return bitwidth;
4788 if (num0 > 1
4789 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4790 num0--;
4792 return num0;
4794 case IOR: case AND: case XOR:
4795 case SMIN: case SMAX: case UMIN: case UMAX:
4796 /* Logical operations will preserve the number of sign-bit copies.
4797 MIN and MAX operations always return one of the operands. */
4798 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4799 known_x, known_mode, known_ret);
4800 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4801 known_x, known_mode, known_ret);
4803 /* If num1 is clearing some of the top bits then regardless of
4804 the other term, we are guaranteed to have at least that many
4805 high-order zero bits. */
4806 if (code == AND
4807 && num1 > 1
4808 && bitwidth <= HOST_BITS_PER_WIDE_INT
4809 && CONST_INT_P (XEXP (x, 1))
4810 && (UINTVAL (XEXP (x, 1))
4811 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4812 return num1;
4814 /* Similarly for IOR when setting high-order bits. */
4815 if (code == IOR
4816 && num1 > 1
4817 && bitwidth <= HOST_BITS_PER_WIDE_INT
4818 && CONST_INT_P (XEXP (x, 1))
4819 && (UINTVAL (XEXP (x, 1))
4820 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4821 return num1;
4823 return MIN (num0, num1);
4825 case PLUS: case MINUS:
4826 /* For addition and subtraction, we can have a 1-bit carry. However,
4827 if we are subtracting 1 from a positive number, there will not
4828 be such a carry. Furthermore, if the positive number is known to
4829 be 0 or 1, we know the result is either -1 or 0. */
4831 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4832 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4834 nonzero = nonzero_bits (XEXP (x, 0), mode);
4835 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4836 return (nonzero == 1 || nonzero == 0 ? bitwidth
4837 : bitwidth - floor_log2 (nonzero) - 1);
4840 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4841 known_x, known_mode, known_ret);
4842 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4843 known_x, known_mode, known_ret);
4844 result = MAX (1, MIN (num0, num1) - 1);
4846 return result;
4848 case MULT:
4849 /* The number of bits of the product is the sum of the number of
4850 bits of both terms. However, unless one of the terms if known
4851 to be positive, we must allow for an additional bit since negating
4852 a negative number can remove one sign bit copy. */
4854 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4855 known_x, known_mode, known_ret);
4856 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4857 known_x, known_mode, known_ret);
4859 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4860 if (result > 0
4861 && (bitwidth > HOST_BITS_PER_WIDE_INT
4862 || (((nonzero_bits (XEXP (x, 0), mode)
4863 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4864 && ((nonzero_bits (XEXP (x, 1), mode)
4865 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4866 != 0))))
4867 result--;
4869 return MAX (1, result);
4871 case UDIV:
4872 /* The result must be <= the first operand. If the first operand
4873 has the high bit set, we know nothing about the number of sign
4874 bit copies. */
4875 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4876 return 1;
4877 else if ((nonzero_bits (XEXP (x, 0), mode)
4878 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4879 return 1;
4880 else
4881 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4882 known_x, known_mode, known_ret);
4884 case UMOD:
4885 /* The result must be <= the second operand. If the second operand
4886 has (or just might have) the high bit set, we know nothing about
4887 the number of sign bit copies. */
4888 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4889 return 1;
4890 else if ((nonzero_bits (XEXP (x, 1), mode)
4891 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4892 return 1;
4893 else
4894 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4895 known_x, known_mode, known_ret);
4897 case DIV:
4898 /* Similar to unsigned division, except that we have to worry about
4899 the case where the divisor is negative, in which case we have
4900 to add 1. */
4901 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4902 known_x, known_mode, known_ret);
4903 if (result > 1
4904 && (bitwidth > HOST_BITS_PER_WIDE_INT
4905 || (nonzero_bits (XEXP (x, 1), mode)
4906 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4907 result--;
4909 return result;
4911 case MOD:
4912 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4913 known_x, known_mode, known_ret);
4914 if (result > 1
4915 && (bitwidth > HOST_BITS_PER_WIDE_INT
4916 || (nonzero_bits (XEXP (x, 1), mode)
4917 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4918 result--;
4920 return result;
4922 case ASHIFTRT:
4923 /* Shifts by a constant add to the number of bits equal to the
4924 sign bit. */
4925 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4926 known_x, known_mode, known_ret);
4927 if (CONST_INT_P (XEXP (x, 1))
4928 && INTVAL (XEXP (x, 1)) > 0
4929 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4930 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4932 return num0;
4934 case ASHIFT:
4935 /* Left shifts destroy copies. */
4936 if (!CONST_INT_P (XEXP (x, 1))
4937 || INTVAL (XEXP (x, 1)) < 0
4938 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4939 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4940 return 1;
4942 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4943 known_x, known_mode, known_ret);
4944 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4946 case IF_THEN_ELSE:
4947 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4948 known_x, known_mode, known_ret);
4949 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4950 known_x, known_mode, known_ret);
4951 return MIN (num0, num1);
4953 case EQ: case NE: case GE: case GT: case LE: case LT:
4954 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4955 case GEU: case GTU: case LEU: case LTU:
4956 case UNORDERED: case ORDERED:
4957 /* If the constant is negative, take its 1's complement and remask.
4958 Then see how many zero bits we have. */
4959 nonzero = STORE_FLAG_VALUE;
4960 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4961 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4962 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4964 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4966 default:
4967 break;
4970 /* If we haven't been able to figure it out by one of the above rules,
4971 see if some of the high-order bits are known to be zero. If so,
4972 count those bits and return one less than that amount. If we can't
4973 safely compute the mask for this mode, always return BITWIDTH. */
4975 bitwidth = GET_MODE_PRECISION (mode);
4976 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4977 return 1;
4979 nonzero = nonzero_bits (x, mode);
4980 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4981 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4984 /* Calculate the rtx_cost of a single instruction. A return value of
4985 zero indicates an instruction pattern without a known cost. */
4988 insn_rtx_cost (rtx pat, bool speed)
4990 int i, cost;
4991 rtx set;
4993 /* Extract the single set rtx from the instruction pattern.
4994 We can't use single_set since we only have the pattern. */
4995 if (GET_CODE (pat) == SET)
4996 set = pat;
4997 else if (GET_CODE (pat) == PARALLEL)
4999 set = NULL_RTX;
5000 for (i = 0; i < XVECLEN (pat, 0); i++)
5002 rtx x = XVECEXP (pat, 0, i);
5003 if (GET_CODE (x) == SET)
5005 if (set)
5006 return 0;
5007 set = x;
5010 if (!set)
5011 return 0;
5013 else
5014 return 0;
5016 cost = set_src_cost (SET_SRC (set), speed);
5017 return cost > 0 ? cost : COSTS_N_INSNS (1);
5020 /* Given an insn INSN and condition COND, return the condition in a
5021 canonical form to simplify testing by callers. Specifically:
5023 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5024 (2) Both operands will be machine operands; (cc0) will have been replaced.
5025 (3) If an operand is a constant, it will be the second operand.
5026 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5027 for GE, GEU, and LEU.
5029 If the condition cannot be understood, or is an inequality floating-point
5030 comparison which needs to be reversed, 0 will be returned.
5032 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5034 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5035 insn used in locating the condition was found. If a replacement test
5036 of the condition is desired, it should be placed in front of that
5037 insn and we will be sure that the inputs are still valid.
5039 If WANT_REG is nonzero, we wish the condition to be relative to that
5040 register, if possible. Therefore, do not canonicalize the condition
5041 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5042 to be a compare to a CC mode register.
5044 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5045 and at INSN. */
5048 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5049 rtx_insn **earliest,
5050 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5052 enum rtx_code code;
5053 rtx_insn *prev = insn;
5054 const_rtx set;
5055 rtx tem;
5056 rtx op0, op1;
5057 int reverse_code = 0;
5058 enum machine_mode mode;
5059 basic_block bb = BLOCK_FOR_INSN (insn);
5061 code = GET_CODE (cond);
5062 mode = GET_MODE (cond);
5063 op0 = XEXP (cond, 0);
5064 op1 = XEXP (cond, 1);
5066 if (reverse)
5067 code = reversed_comparison_code (cond, insn);
5068 if (code == UNKNOWN)
5069 return 0;
5071 if (earliest)
5072 *earliest = insn;
5074 /* If we are comparing a register with zero, see if the register is set
5075 in the previous insn to a COMPARE or a comparison operation. Perform
5076 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5077 in cse.c */
5079 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5080 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5081 && op1 == CONST0_RTX (GET_MODE (op0))
5082 && op0 != want_reg)
5084 /* Set nonzero when we find something of interest. */
5085 rtx x = 0;
5087 #ifdef HAVE_cc0
5088 /* If comparison with cc0, import actual comparison from compare
5089 insn. */
5090 if (op0 == cc0_rtx)
5092 if ((prev = prev_nonnote_insn (prev)) == 0
5093 || !NONJUMP_INSN_P (prev)
5094 || (set = single_set (prev)) == 0
5095 || SET_DEST (set) != cc0_rtx)
5096 return 0;
5098 op0 = SET_SRC (set);
5099 op1 = CONST0_RTX (GET_MODE (op0));
5100 if (earliest)
5101 *earliest = prev;
5103 #endif
5105 /* If this is a COMPARE, pick up the two things being compared. */
5106 if (GET_CODE (op0) == COMPARE)
5108 op1 = XEXP (op0, 1);
5109 op0 = XEXP (op0, 0);
5110 continue;
5112 else if (!REG_P (op0))
5113 break;
5115 /* Go back to the previous insn. Stop if it is not an INSN. We also
5116 stop if it isn't a single set or if it has a REG_INC note because
5117 we don't want to bother dealing with it. */
5119 prev = prev_nonnote_nondebug_insn (prev);
5121 if (prev == 0
5122 || !NONJUMP_INSN_P (prev)
5123 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5124 /* In cfglayout mode, there do not have to be labels at the
5125 beginning of a block, or jumps at the end, so the previous
5126 conditions would not stop us when we reach bb boundary. */
5127 || BLOCK_FOR_INSN (prev) != bb)
5128 break;
5130 set = set_of (op0, prev);
5132 if (set
5133 && (GET_CODE (set) != SET
5134 || !rtx_equal_p (SET_DEST (set), op0)))
5135 break;
5137 /* If this is setting OP0, get what it sets it to if it looks
5138 relevant. */
5139 if (set)
5141 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
5142 #ifdef FLOAT_STORE_FLAG_VALUE
5143 REAL_VALUE_TYPE fsfv;
5144 #endif
5146 /* ??? We may not combine comparisons done in a CCmode with
5147 comparisons not done in a CCmode. This is to aid targets
5148 like Alpha that have an IEEE compliant EQ instruction, and
5149 a non-IEEE compliant BEQ instruction. The use of CCmode is
5150 actually artificial, simply to prevent the combination, but
5151 should not affect other platforms.
5153 However, we must allow VOIDmode comparisons to match either
5154 CCmode or non-CCmode comparison, because some ports have
5155 modeless comparisons inside branch patterns.
5157 ??? This mode check should perhaps look more like the mode check
5158 in simplify_comparison in combine. */
5159 if (((GET_MODE_CLASS (mode) == MODE_CC)
5160 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5161 && mode != VOIDmode
5162 && inner_mode != VOIDmode)
5163 break;
5164 if (GET_CODE (SET_SRC (set)) == COMPARE
5165 || (((code == NE
5166 || (code == LT
5167 && val_signbit_known_set_p (inner_mode,
5168 STORE_FLAG_VALUE))
5169 #ifdef FLOAT_STORE_FLAG_VALUE
5170 || (code == LT
5171 && SCALAR_FLOAT_MODE_P (inner_mode)
5172 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5173 REAL_VALUE_NEGATIVE (fsfv)))
5174 #endif
5176 && COMPARISON_P (SET_SRC (set))))
5177 x = SET_SRC (set);
5178 else if (((code == EQ
5179 || (code == GE
5180 && val_signbit_known_set_p (inner_mode,
5181 STORE_FLAG_VALUE))
5182 #ifdef FLOAT_STORE_FLAG_VALUE
5183 || (code == GE
5184 && SCALAR_FLOAT_MODE_P (inner_mode)
5185 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5186 REAL_VALUE_NEGATIVE (fsfv)))
5187 #endif
5189 && COMPARISON_P (SET_SRC (set)))
5191 reverse_code = 1;
5192 x = SET_SRC (set);
5194 else if ((code == EQ || code == NE)
5195 && GET_CODE (SET_SRC (set)) == XOR)
5196 /* Handle sequences like:
5198 (set op0 (xor X Y))
5199 ...(eq|ne op0 (const_int 0))...
5201 in which case:
5203 (eq op0 (const_int 0)) reduces to (eq X Y)
5204 (ne op0 (const_int 0)) reduces to (ne X Y)
5206 This is the form used by MIPS16, for example. */
5207 x = SET_SRC (set);
5208 else
5209 break;
5212 else if (reg_set_p (op0, prev))
5213 /* If this sets OP0, but not directly, we have to give up. */
5214 break;
5216 if (x)
5218 /* If the caller is expecting the condition to be valid at INSN,
5219 make sure X doesn't change before INSN. */
5220 if (valid_at_insn_p)
5221 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5222 break;
5223 if (COMPARISON_P (x))
5224 code = GET_CODE (x);
5225 if (reverse_code)
5227 code = reversed_comparison_code (x, prev);
5228 if (code == UNKNOWN)
5229 return 0;
5230 reverse_code = 0;
5233 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5234 if (earliest)
5235 *earliest = prev;
5239 /* If constant is first, put it last. */
5240 if (CONSTANT_P (op0))
5241 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5243 /* If OP0 is the result of a comparison, we weren't able to find what
5244 was really being compared, so fail. */
5245 if (!allow_cc_mode
5246 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5247 return 0;
5249 /* Canonicalize any ordered comparison with integers involving equality
5250 if we can do computations in the relevant mode and we do not
5251 overflow. */
5253 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5254 && CONST_INT_P (op1)
5255 && GET_MODE (op0) != VOIDmode
5256 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5258 HOST_WIDE_INT const_val = INTVAL (op1);
5259 unsigned HOST_WIDE_INT uconst_val = const_val;
5260 unsigned HOST_WIDE_INT max_val
5261 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5263 switch (code)
5265 case LE:
5266 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5267 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5268 break;
5270 /* When cross-compiling, const_val might be sign-extended from
5271 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5272 case GE:
5273 if ((const_val & max_val)
5274 != ((unsigned HOST_WIDE_INT) 1
5275 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5276 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5277 break;
5279 case LEU:
5280 if (uconst_val < max_val)
5281 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5282 break;
5284 case GEU:
5285 if (uconst_val != 0)
5286 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5287 break;
5289 default:
5290 break;
5294 /* Never return CC0; return zero instead. */
5295 if (CC0_P (op0))
5296 return 0;
5298 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5301 /* Given a jump insn JUMP, return the condition that will cause it to branch
5302 to its JUMP_LABEL. If the condition cannot be understood, or is an
5303 inequality floating-point comparison which needs to be reversed, 0 will
5304 be returned.
5306 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5307 insn used in locating the condition was found. If a replacement test
5308 of the condition is desired, it should be placed in front of that
5309 insn and we will be sure that the inputs are still valid. If EARLIEST
5310 is null, the returned condition will be valid at INSN.
5312 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5313 compare CC mode register.
5315 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5318 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5319 int valid_at_insn_p)
5321 rtx cond;
5322 int reverse;
5323 rtx set;
5325 /* If this is not a standard conditional jump, we can't parse it. */
5326 if (!JUMP_P (jump)
5327 || ! any_condjump_p (jump))
5328 return 0;
5329 set = pc_set (jump);
5331 cond = XEXP (SET_SRC (set), 0);
5333 /* If this branches to JUMP_LABEL when the condition is false, reverse
5334 the condition. */
5335 reverse
5336 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5337 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5339 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5340 allow_cc_mode, valid_at_insn_p);
5343 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5344 TARGET_MODE_REP_EXTENDED.
5346 Note that we assume that the property of
5347 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5348 narrower than mode B. I.e., if A is a mode narrower than B then in
5349 order to be able to operate on it in mode B, mode A needs to
5350 satisfy the requirements set by the representation of mode B. */
5352 static void
5353 init_num_sign_bit_copies_in_rep (void)
5355 enum machine_mode mode, in_mode;
5357 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5358 in_mode = GET_MODE_WIDER_MODE (mode))
5359 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5360 mode = GET_MODE_WIDER_MODE (mode))
5362 enum machine_mode i;
5364 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5365 extends to the next widest mode. */
5366 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5367 || GET_MODE_WIDER_MODE (mode) == in_mode);
5369 /* We are in in_mode. Count how many bits outside of mode
5370 have to be copies of the sign-bit. */
5371 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5373 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5375 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5376 /* We can only check sign-bit copies starting from the
5377 top-bit. In order to be able to check the bits we
5378 have already seen we pretend that subsequent bits
5379 have to be sign-bit copies too. */
5380 || num_sign_bit_copies_in_rep [in_mode][mode])
5381 num_sign_bit_copies_in_rep [in_mode][mode]
5382 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5387 /* Suppose that truncation from the machine mode of X to MODE is not a
5388 no-op. See if there is anything special about X so that we can
5389 assume it already contains a truncated value of MODE. */
5391 bool
5392 truncated_to_mode (enum machine_mode mode, const_rtx x)
5394 /* This register has already been used in MODE without explicit
5395 truncation. */
5396 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5397 return true;
5399 /* See if we already satisfy the requirements of MODE. If yes we
5400 can just switch to MODE. */
5401 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5402 && (num_sign_bit_copies (x, GET_MODE (x))
5403 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5404 return true;
5406 return false;
5409 /* Return true if RTX code CODE has a single sequence of zero or more
5410 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5411 entry in that case. */
5413 static bool
5414 setup_reg_subrtx_bounds (unsigned int code)
5416 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5417 unsigned int i = 0;
5418 for (; format[i] != 'e'; ++i)
5420 if (!format[i])
5421 /* No subrtxes. Leave start and count as 0. */
5422 return true;
5423 if (format[i] == 'E' || format[i] == 'V')
5424 return false;
5427 /* Record the sequence of 'e's. */
5428 rtx_all_subrtx_bounds[code].start = i;
5430 ++i;
5431 while (format[i] == 'e');
5432 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5433 /* rtl-iter.h relies on this. */
5434 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5436 for (; format[i]; ++i)
5437 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5438 return false;
5440 return true;
5443 /* Initialize non_rtx_starting_operands, which is used to speed up
5444 for_each_rtx, and rtx_all_subrtx_bounds. */
5445 void
5446 init_rtlanal (void)
5448 int i;
5449 for (i = 0; i < NUM_RTX_CODE; i++)
5451 const char *format = GET_RTX_FORMAT (i);
5452 const char *first = strpbrk (format, "eEV");
5453 non_rtx_starting_operands[i] = first ? first - format : -1;
5454 if (!setup_reg_subrtx_bounds (i))
5455 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5456 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5457 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5460 init_num_sign_bit_copies_in_rep ();
5463 /* Check whether this is a constant pool constant. */
5464 bool
5465 constant_pool_constant_p (rtx x)
5467 x = avoid_constant_pool_reference (x);
5468 return CONST_DOUBLE_P (x);
5471 /* If M is a bitmask that selects a field of low-order bits within an item but
5472 not the entire word, return the length of the field. Return -1 otherwise.
5473 M is used in machine mode MODE. */
5476 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5478 if (mode != VOIDmode)
5480 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5481 return -1;
5482 m &= GET_MODE_MASK (mode);
5485 return exact_log2 (m + 1);
5488 /* Return the mode of MEM's address. */
5490 enum machine_mode
5491 get_address_mode (rtx mem)
5493 enum machine_mode mode;
5495 gcc_assert (MEM_P (mem));
5496 mode = GET_MODE (XEXP (mem, 0));
5497 if (mode != VOIDmode)
5498 return mode;
5499 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5502 /* Split up a CONST_DOUBLE or integer constant rtx
5503 into two rtx's for single words,
5504 storing in *FIRST the word that comes first in memory in the target
5505 and in *SECOND the other.
5507 TODO: This function needs to be rewritten to work on any size
5508 integer. */
5510 void
5511 split_double (rtx value, rtx *first, rtx *second)
5513 if (CONST_INT_P (value))
5515 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5517 /* In this case the CONST_INT holds both target words.
5518 Extract the bits from it into two word-sized pieces.
5519 Sign extend each half to HOST_WIDE_INT. */
5520 unsigned HOST_WIDE_INT low, high;
5521 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5522 unsigned bits_per_word = BITS_PER_WORD;
5524 /* Set sign_bit to the most significant bit of a word. */
5525 sign_bit = 1;
5526 sign_bit <<= bits_per_word - 1;
5528 /* Set mask so that all bits of the word are set. We could
5529 have used 1 << BITS_PER_WORD instead of basing the
5530 calculation on sign_bit. However, on machines where
5531 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5532 compiler warning, even though the code would never be
5533 executed. */
5534 mask = sign_bit << 1;
5535 mask--;
5537 /* Set sign_extend as any remaining bits. */
5538 sign_extend = ~mask;
5540 /* Pick the lower word and sign-extend it. */
5541 low = INTVAL (value);
5542 low &= mask;
5543 if (low & sign_bit)
5544 low |= sign_extend;
5546 /* Pick the higher word, shifted to the least significant
5547 bits, and sign-extend it. */
5548 high = INTVAL (value);
5549 high >>= bits_per_word - 1;
5550 high >>= 1;
5551 high &= mask;
5552 if (high & sign_bit)
5553 high |= sign_extend;
5555 /* Store the words in the target machine order. */
5556 if (WORDS_BIG_ENDIAN)
5558 *first = GEN_INT (high);
5559 *second = GEN_INT (low);
5561 else
5563 *first = GEN_INT (low);
5564 *second = GEN_INT (high);
5567 else
5569 /* The rule for using CONST_INT for a wider mode
5570 is that we regard the value as signed.
5571 So sign-extend it. */
5572 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5573 if (WORDS_BIG_ENDIAN)
5575 *first = high;
5576 *second = value;
5578 else
5580 *first = value;
5581 *second = high;
5585 else if (GET_CODE (value) == CONST_WIDE_INT)
5587 /* All of this is scary code and needs to be converted to
5588 properly work with any size integer. */
5589 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5590 if (WORDS_BIG_ENDIAN)
5592 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5593 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5595 else
5597 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5598 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5601 else if (!CONST_DOUBLE_P (value))
5603 if (WORDS_BIG_ENDIAN)
5605 *first = const0_rtx;
5606 *second = value;
5608 else
5610 *first = value;
5611 *second = const0_rtx;
5614 else if (GET_MODE (value) == VOIDmode
5615 /* This is the old way we did CONST_DOUBLE integers. */
5616 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5618 /* In an integer, the words are defined as most and least significant.
5619 So order them by the target's convention. */
5620 if (WORDS_BIG_ENDIAN)
5622 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5623 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5625 else
5627 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5628 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5631 else
5633 REAL_VALUE_TYPE r;
5634 long l[2];
5635 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5637 /* Note, this converts the REAL_VALUE_TYPE to the target's
5638 format, splits up the floating point double and outputs
5639 exactly 32 bits of it into each of l[0] and l[1] --
5640 not necessarily BITS_PER_WORD bits. */
5641 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5643 /* If 32 bits is an entire word for the target, but not for the host,
5644 then sign-extend on the host so that the number will look the same
5645 way on the host that it would on the target. See for instance
5646 simplify_unary_operation. The #if is needed to avoid compiler
5647 warnings. */
5649 #if HOST_BITS_PER_LONG > 32
5650 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5652 if (l[0] & ((long) 1 << 31))
5653 l[0] |= ((long) (-1) << 32);
5654 if (l[1] & ((long) 1 << 31))
5655 l[1] |= ((long) (-1) << 32);
5657 #endif
5659 *first = GEN_INT (l[0]);
5660 *second = GEN_INT (l[1]);
5664 /* Return true if X is a sign_extract or zero_extract from the least
5665 significant bit. */
5667 static bool
5668 lsb_bitfield_op_p (rtx x)
5670 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5672 enum machine_mode mode = GET_MODE (XEXP (x, 0));
5673 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5674 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5676 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5678 return false;
5681 /* Strip outer address "mutations" from LOC and return a pointer to the
5682 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5683 stripped expression there.
5685 "Mutations" either convert between modes or apply some kind of
5686 extension, truncation or alignment. */
5688 rtx *
5689 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5691 for (;;)
5693 enum rtx_code code = GET_CODE (*loc);
5694 if (GET_RTX_CLASS (code) == RTX_UNARY)
5695 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5696 used to convert between pointer sizes. */
5697 loc = &XEXP (*loc, 0);
5698 else if (lsb_bitfield_op_p (*loc))
5699 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5700 acts as a combined truncation and extension. */
5701 loc = &XEXP (*loc, 0);
5702 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5703 /* (and ... (const_int -X)) is used to align to X bytes. */
5704 loc = &XEXP (*loc, 0);
5705 else if (code == SUBREG
5706 && !OBJECT_P (SUBREG_REG (*loc))
5707 && subreg_lowpart_p (*loc))
5708 /* (subreg (operator ...) ...) inside and is used for mode
5709 conversion too. */
5710 loc = &SUBREG_REG (*loc);
5711 else
5712 return loc;
5713 if (outer_code)
5714 *outer_code = code;
5718 /* Return true if CODE applies some kind of scale. The scaled value is
5719 is the first operand and the scale is the second. */
5721 static bool
5722 binary_scale_code_p (enum rtx_code code)
5724 return (code == MULT
5725 || code == ASHIFT
5726 /* Needed by ARM targets. */
5727 || code == ASHIFTRT
5728 || code == LSHIFTRT
5729 || code == ROTATE
5730 || code == ROTATERT);
5733 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5734 (see address_info). Return null otherwise. */
5736 static rtx *
5737 get_base_term (rtx *inner)
5739 if (GET_CODE (*inner) == LO_SUM)
5740 inner = strip_address_mutations (&XEXP (*inner, 0));
5741 if (REG_P (*inner)
5742 || MEM_P (*inner)
5743 || GET_CODE (*inner) == SUBREG)
5744 return inner;
5745 return 0;
5748 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5749 (see address_info). Return null otherwise. */
5751 static rtx *
5752 get_index_term (rtx *inner)
5754 /* At present, only constant scales are allowed. */
5755 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5756 inner = strip_address_mutations (&XEXP (*inner, 0));
5757 if (REG_P (*inner)
5758 || MEM_P (*inner)
5759 || GET_CODE (*inner) == SUBREG)
5760 return inner;
5761 return 0;
5764 /* Set the segment part of address INFO to LOC, given that INNER is the
5765 unmutated value. */
5767 static void
5768 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5770 gcc_assert (!info->segment);
5771 info->segment = loc;
5772 info->segment_term = inner;
5775 /* Set the base part of address INFO to LOC, given that INNER is the
5776 unmutated value. */
5778 static void
5779 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5781 gcc_assert (!info->base);
5782 info->base = loc;
5783 info->base_term = inner;
5786 /* Set the index part of address INFO to LOC, given that INNER is the
5787 unmutated value. */
5789 static void
5790 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5792 gcc_assert (!info->index);
5793 info->index = loc;
5794 info->index_term = inner;
5797 /* Set the displacement part of address INFO to LOC, given that INNER
5798 is the constant term. */
5800 static void
5801 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5803 gcc_assert (!info->disp);
5804 info->disp = loc;
5805 info->disp_term = inner;
5808 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5809 rest of INFO accordingly. */
5811 static void
5812 decompose_incdec_address (struct address_info *info)
5814 info->autoinc_p = true;
5816 rtx *base = &XEXP (*info->inner, 0);
5817 set_address_base (info, base, base);
5818 gcc_checking_assert (info->base == info->base_term);
5820 /* These addresses are only valid when the size of the addressed
5821 value is known. */
5822 gcc_checking_assert (info->mode != VOIDmode);
5825 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5826 of INFO accordingly. */
5828 static void
5829 decompose_automod_address (struct address_info *info)
5831 info->autoinc_p = true;
5833 rtx *base = &XEXP (*info->inner, 0);
5834 set_address_base (info, base, base);
5835 gcc_checking_assert (info->base == info->base_term);
5837 rtx plus = XEXP (*info->inner, 1);
5838 gcc_assert (GET_CODE (plus) == PLUS);
5840 info->base_term2 = &XEXP (plus, 0);
5841 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5843 rtx *step = &XEXP (plus, 1);
5844 rtx *inner_step = strip_address_mutations (step);
5845 if (CONSTANT_P (*inner_step))
5846 set_address_disp (info, step, inner_step);
5847 else
5848 set_address_index (info, step, inner_step);
5851 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5852 values in [PTR, END). Return a pointer to the end of the used array. */
5854 static rtx **
5855 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5857 rtx x = *loc;
5858 if (GET_CODE (x) == PLUS)
5860 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5861 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5863 else
5865 gcc_assert (ptr != end);
5866 *ptr++ = loc;
5868 return ptr;
5871 /* Evaluate the likelihood of X being a base or index value, returning
5872 positive if it is likely to be a base, negative if it is likely to be
5873 an index, and 0 if we can't tell. Make the magnitude of the return
5874 value reflect the amount of confidence we have in the answer.
5876 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5878 static int
5879 baseness (rtx x, enum machine_mode mode, addr_space_t as,
5880 enum rtx_code outer_code, enum rtx_code index_code)
5882 /* Believe *_POINTER unless the address shape requires otherwise. */
5883 if (REG_P (x) && REG_POINTER (x))
5884 return 2;
5885 if (MEM_P (x) && MEM_POINTER (x))
5886 return 2;
5888 if (REG_P (x) && HARD_REGISTER_P (x))
5890 /* X is a hard register. If it only fits one of the base
5891 or index classes, choose that interpretation. */
5892 int regno = REGNO (x);
5893 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5894 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5895 if (base_p != index_p)
5896 return base_p ? 1 : -1;
5898 return 0;
5901 /* INFO->INNER describes a normal, non-automodified address.
5902 Fill in the rest of INFO accordingly. */
5904 static void
5905 decompose_normal_address (struct address_info *info)
5907 /* Treat the address as the sum of up to four values. */
5908 rtx *ops[4];
5909 size_t n_ops = extract_plus_operands (info->inner, ops,
5910 ops + ARRAY_SIZE (ops)) - ops;
5912 /* If there is more than one component, any base component is in a PLUS. */
5913 if (n_ops > 1)
5914 info->base_outer_code = PLUS;
5916 /* Try to classify each sum operand now. Leave those that could be
5917 either a base or an index in OPS. */
5918 rtx *inner_ops[4];
5919 size_t out = 0;
5920 for (size_t in = 0; in < n_ops; ++in)
5922 rtx *loc = ops[in];
5923 rtx *inner = strip_address_mutations (loc);
5924 if (CONSTANT_P (*inner))
5925 set_address_disp (info, loc, inner);
5926 else if (GET_CODE (*inner) == UNSPEC)
5927 set_address_segment (info, loc, inner);
5928 else
5930 /* The only other possibilities are a base or an index. */
5931 rtx *base_term = get_base_term (inner);
5932 rtx *index_term = get_index_term (inner);
5933 gcc_assert (base_term || index_term);
5934 if (!base_term)
5935 set_address_index (info, loc, index_term);
5936 else if (!index_term)
5937 set_address_base (info, loc, base_term);
5938 else
5940 gcc_assert (base_term == index_term);
5941 ops[out] = loc;
5942 inner_ops[out] = base_term;
5943 ++out;
5948 /* Classify the remaining OPS members as bases and indexes. */
5949 if (out == 1)
5951 /* If we haven't seen a base or an index yet, assume that this is
5952 the base. If we were confident that another term was the base
5953 or index, treat the remaining operand as the other kind. */
5954 if (!info->base)
5955 set_address_base (info, ops[0], inner_ops[0]);
5956 else
5957 set_address_index (info, ops[0], inner_ops[0]);
5959 else if (out == 2)
5961 /* In the event of a tie, assume the base comes first. */
5962 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5963 GET_CODE (*ops[1]))
5964 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5965 GET_CODE (*ops[0])))
5967 set_address_base (info, ops[0], inner_ops[0]);
5968 set_address_index (info, ops[1], inner_ops[1]);
5970 else
5972 set_address_base (info, ops[1], inner_ops[1]);
5973 set_address_index (info, ops[0], inner_ops[0]);
5976 else
5977 gcc_assert (out == 0);
5980 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5981 or VOIDmode if not known. AS is the address space associated with LOC.
5982 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5984 void
5985 decompose_address (struct address_info *info, rtx *loc, enum machine_mode mode,
5986 addr_space_t as, enum rtx_code outer_code)
5988 memset (info, 0, sizeof (*info));
5989 info->mode = mode;
5990 info->as = as;
5991 info->addr_outer_code = outer_code;
5992 info->outer = loc;
5993 info->inner = strip_address_mutations (loc, &outer_code);
5994 info->base_outer_code = outer_code;
5995 switch (GET_CODE (*info->inner))
5997 case PRE_DEC:
5998 case PRE_INC:
5999 case POST_DEC:
6000 case POST_INC:
6001 decompose_incdec_address (info);
6002 break;
6004 case PRE_MODIFY:
6005 case POST_MODIFY:
6006 decompose_automod_address (info);
6007 break;
6009 default:
6010 decompose_normal_address (info);
6011 break;
6015 /* Describe address operand LOC in INFO. */
6017 void
6018 decompose_lea_address (struct address_info *info, rtx *loc)
6020 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6023 /* Describe the address of MEM X in INFO. */
6025 void
6026 decompose_mem_address (struct address_info *info, rtx x)
6028 gcc_assert (MEM_P (x));
6029 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6030 MEM_ADDR_SPACE (x), MEM);
6033 /* Update INFO after a change to the address it describes. */
6035 void
6036 update_address (struct address_info *info)
6038 decompose_address (info, info->outer, info->mode, info->as,
6039 info->addr_outer_code);
6042 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6043 more complicated than that. */
6045 HOST_WIDE_INT
6046 get_index_scale (const struct address_info *info)
6048 rtx index = *info->index;
6049 if (GET_CODE (index) == MULT
6050 && CONST_INT_P (XEXP (index, 1))
6051 && info->index_term == &XEXP (index, 0))
6052 return INTVAL (XEXP (index, 1));
6054 if (GET_CODE (index) == ASHIFT
6055 && CONST_INT_P (XEXP (index, 1))
6056 && info->index_term == &XEXP (index, 0))
6057 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6059 if (info->index == info->index_term)
6060 return 1;
6062 return 0;
6065 /* Return the "index code" of INFO, in the form required by
6066 ok_for_base_p_1. */
6068 enum rtx_code
6069 get_index_code (const struct address_info *info)
6071 if (info->index)
6072 return GET_CODE (*info->index);
6074 if (info->disp)
6075 return GET_CODE (*info->disp);
6077 return SCRATCH;
6080 /* Return true if X contains a thread-local symbol. */
6082 bool
6083 tls_referenced_p (const_rtx x)
6085 if (!targetm.have_tls)
6086 return false;
6088 subrtx_iterator::array_type array;
6089 FOR_EACH_SUBRTX (iter, array, x, ALL)
6090 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6091 return true;
6092 return false;