[24/46] Make stmt_info_for_cost use a stmt_vec_info
[official-gcc.git] / gcc / tree-vectorizer.h
blobfa206a2e87133841e8e02259f35007ea7adbf843
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 class stmt_vec_info {
25 public:
26 stmt_vec_info () {}
27 stmt_vec_info (struct _stmt_vec_info *ptr) : m_ptr (ptr) {}
28 struct _stmt_vec_info *operator-> () const { return m_ptr; }
29 struct _stmt_vec_info &operator* () const;
30 operator struct _stmt_vec_info * () const { return m_ptr; }
31 operator gimple * () const;
32 operator void * () const { return m_ptr; }
33 operator bool () const { return m_ptr; }
34 bool operator == (const stmt_vec_info &x) { return x.m_ptr == m_ptr; }
35 bool operator == (_stmt_vec_info *x) { return x == m_ptr; }
36 bool operator != (const stmt_vec_info &x) { return x.m_ptr != m_ptr; }
37 bool operator != (_stmt_vec_info *x) { return x != m_ptr; }
39 private:
40 struct _stmt_vec_info *m_ptr;
43 #define NULL_STMT_VEC_INFO (stmt_vec_info (NULL))
45 #include "tree-data-ref.h"
46 #include "tree-hash-traits.h"
47 #include "target.h"
49 /* Used for naming of new temporaries. */
50 enum vect_var_kind {
51 vect_simple_var,
52 vect_pointer_var,
53 vect_scalar_var,
54 vect_mask_var
57 /* Defines type of operation. */
58 enum operation_type {
59 unary_op = 1,
60 binary_op,
61 ternary_op
64 /* Define type of available alignment support. */
65 enum dr_alignment_support {
66 dr_unaligned_unsupported,
67 dr_unaligned_supported,
68 dr_explicit_realign,
69 dr_explicit_realign_optimized,
70 dr_aligned
73 /* Define type of def-use cross-iteration cycle. */
74 enum vect_def_type {
75 vect_uninitialized_def = 0,
76 vect_constant_def = 1,
77 vect_external_def,
78 vect_internal_def,
79 vect_induction_def,
80 vect_reduction_def,
81 vect_double_reduction_def,
82 vect_nested_cycle,
83 vect_unknown_def_type
86 /* Define type of reduction. */
87 enum vect_reduction_type {
88 TREE_CODE_REDUCTION,
89 COND_REDUCTION,
90 INTEGER_INDUC_COND_REDUCTION,
91 CONST_COND_REDUCTION,
93 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
94 to implement:
96 for (int i = 0; i < VF; ++i)
97 res = cond[i] ? val[i] : res; */
98 EXTRACT_LAST_REDUCTION,
100 /* Use a folding reduction within the loop to implement:
102 for (int i = 0; i < VF; ++i)
103 res = res OP val[i];
105 (with no reassocation). */
106 FOLD_LEFT_REDUCTION
109 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
110 || ((D) == vect_double_reduction_def) \
111 || ((D) == vect_nested_cycle))
113 /* Structure to encapsulate information about a group of like
114 instructions to be presented to the target cost model. */
115 struct stmt_info_for_cost {
116 int count;
117 enum vect_cost_for_stmt kind;
118 enum vect_cost_model_location where;
119 stmt_vec_info stmt_info;
120 int misalign;
123 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
125 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
126 known alignment for that base. */
127 typedef hash_map<tree_operand_hash,
128 innermost_loop_behavior *> vec_base_alignments;
130 /************************************************************************
132 ************************************************************************/
133 typedef struct _slp_tree *slp_tree;
135 /* A computation tree of an SLP instance. Each node corresponds to a group of
136 stmts to be packed in a SIMD stmt. */
137 struct _slp_tree {
138 /* Nodes that contain def-stmts of this node statements operands. */
139 vec<slp_tree> children;
140 /* A group of scalar stmts to be vectorized together. */
141 vec<stmt_vec_info> stmts;
142 /* Load permutation relative to the stores, NULL if there is no
143 permutation. */
144 vec<unsigned> load_permutation;
145 /* Vectorized stmt/s. */
146 vec<stmt_vec_info> vec_stmts;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
152 /* Whether the scalar computations use two different operators. */
153 bool two_operators;
154 /* The DEF type of this node. */
155 enum vect_def_type def_type;
159 /* SLP instance is a sequence of stmts in a loop that can be packed into
160 SIMD stmts. */
161 typedef struct _slp_instance {
162 /* The root of SLP tree. */
163 slp_tree root;
165 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
166 unsigned int group_size;
168 /* The unrolling factor required to vectorized this SLP instance. */
169 poly_uint64 unrolling_factor;
171 /* The group of nodes that contain loads of this SLP instance. */
172 vec<slp_tree> loads;
174 /* The SLP node containing the reduction PHIs. */
175 slp_tree reduc_phis;
176 } *slp_instance;
179 /* Access Functions. */
180 #define SLP_INSTANCE_TREE(S) (S)->root
181 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
182 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
183 #define SLP_INSTANCE_LOADS(S) (S)->loads
185 #define SLP_TREE_CHILDREN(S) (S)->children
186 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
187 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
188 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
189 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
190 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
191 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
195 /* Describes two objects whose addresses must be unequal for the vectorized
196 loop to be valid. */
197 typedef std::pair<tree, tree> vec_object_pair;
199 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
200 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
201 struct vec_lower_bound {
202 vec_lower_bound () {}
203 vec_lower_bound (tree e, bool u, poly_uint64 m)
204 : expr (e), unsigned_p (u), min_value (m) {}
206 tree expr;
207 bool unsigned_p;
208 poly_uint64 min_value;
211 /* Vectorizer state shared between different analyses like vector sizes
212 of the same CFG region. */
213 struct vec_info_shared {
214 vec_info_shared();
215 ~vec_info_shared();
217 void save_datarefs();
218 void check_datarefs();
220 /* All data references. Freed by free_data_refs, so not an auto_vec. */
221 vec<data_reference_p> datarefs;
222 vec<data_reference> datarefs_copy;
224 /* The loop nest in which the data dependences are computed. */
225 auto_vec<loop_p> loop_nest;
227 /* All data dependences. Freed by free_dependence_relations, so not
228 an auto_vec. */
229 vec<ddr_p> ddrs;
232 /* Vectorizer state common between loop and basic-block vectorization. */
233 struct vec_info {
234 enum vec_kind { bb, loop };
236 vec_info (vec_kind, void *, vec_info_shared *);
237 ~vec_info ();
239 stmt_vec_info add_stmt (gimple *);
240 stmt_vec_info lookup_stmt (gimple *);
241 stmt_vec_info lookup_def (tree);
242 stmt_vec_info lookup_single_use (tree);
244 /* The type of vectorization. */
245 vec_kind kind;
247 /* Shared vectorizer state. */
248 vec_info_shared *shared;
250 /* The mapping of GIMPLE UID to stmt_vec_info. */
251 vec<stmt_vec_info> stmt_vec_infos;
253 /* All SLP instances. */
254 auto_vec<slp_instance> slp_instances;
256 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
257 known alignment for that base. */
258 vec_base_alignments base_alignments;
260 /* All interleaving chains of stores, represented by the first
261 stmt in the chain. */
262 auto_vec<stmt_vec_info> grouped_stores;
264 /* Cost data used by the target cost model. */
265 void *target_cost_data;
268 struct _loop_vec_info;
269 struct _bb_vec_info;
271 template<>
272 template<>
273 inline bool
274 is_a_helper <_loop_vec_info *>::test (vec_info *i)
276 return i->kind == vec_info::loop;
279 template<>
280 template<>
281 inline bool
282 is_a_helper <_bb_vec_info *>::test (vec_info *i)
284 return i->kind == vec_info::bb;
288 /* In general, we can divide the vector statements in a vectorized loop
289 into related groups ("rgroups") and say that for each rgroup there is
290 some nS such that the rgroup operates on nS values from one scalar
291 iteration followed by nS values from the next. That is, if VF is the
292 vectorization factor of the loop, the rgroup operates on a sequence:
294 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
296 where (i,j) represents a scalar value with index j in a scalar
297 iteration with index i.
299 [ We use the term "rgroup" to emphasise that this grouping isn't
300 necessarily the same as the grouping of statements used elsewhere.
301 For example, if we implement a group of scalar loads using gather
302 loads, we'll use a separate gather load for each scalar load, and
303 thus each gather load will belong to its own rgroup. ]
305 In general this sequence will occupy nV vectors concatenated
306 together. If these vectors have nL lanes each, the total number
307 of scalar values N is given by:
309 N = nS * VF = nV * nL
311 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
312 are compile-time constants but VF and nL can be variable (if the target
313 supports variable-length vectors).
315 In classical vectorization, each iteration of the vector loop would
316 handle exactly VF iterations of the original scalar loop. However,
317 in a fully-masked loop, a particular iteration of the vector loop
318 might handle fewer than VF iterations of the scalar loop. The vector
319 lanes that correspond to iterations of the scalar loop are said to be
320 "active" and the other lanes are said to be "inactive".
322 In a fully-masked loop, many rgroups need to be masked to ensure that
323 they have no effect for the inactive lanes. Each such rgroup needs a
324 sequence of booleans in the same order as above, but with each (i,j)
325 replaced by a boolean that indicates whether iteration i is active.
326 This sequence occupies nV vector masks that again have nL lanes each.
327 Thus the mask sequence as a whole consists of VF independent booleans
328 that are each repeated nS times.
330 We make the simplifying assumption that if a sequence of nV masks is
331 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
332 VIEW_CONVERTing it. This holds for all current targets that support
333 fully-masked loops. For example, suppose the scalar loop is:
335 float *f;
336 double *d;
337 for (int i = 0; i < n; ++i)
339 f[i * 2 + 0] += 1.0f;
340 f[i * 2 + 1] += 2.0f;
341 d[i] += 3.0;
344 and suppose that vectors have 256 bits. The vectorized f accesses
345 will belong to one rgroup and the vectorized d access to another:
347 f rgroup: nS = 2, nV = 1, nL = 8
348 d rgroup: nS = 1, nV = 1, nL = 4
349 VF = 4
351 [ In this simple example the rgroups do correspond to the normal
352 SLP grouping scheme. ]
354 If only the first three lanes are active, the masks we need are:
356 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
357 d rgroup: 1 | 1 | 1 | 0
359 Here we can use a mask calculated for f's rgroup for d's, but not
360 vice versa.
362 Thus for each value of nV, it is enough to provide nV masks, with the
363 mask being calculated based on the highest nL (or, equivalently, based
364 on the highest nS) required by any rgroup with that nV. We therefore
365 represent the entire collection of masks as a two-level table, with the
366 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
367 the second being indexed by the mask index 0 <= i < nV. */
369 /* The masks needed by rgroups with nV vectors, according to the
370 description above. */
371 struct rgroup_masks {
372 /* The largest nS for all rgroups that use these masks. */
373 unsigned int max_nscalars_per_iter;
375 /* The type of mask to use, based on the highest nS recorded above. */
376 tree mask_type;
378 /* A vector of nV masks, in iteration order. */
379 vec<tree> masks;
382 typedef auto_vec<rgroup_masks> vec_loop_masks;
384 /*-----------------------------------------------------------------*/
385 /* Info on vectorized loops. */
386 /*-----------------------------------------------------------------*/
387 typedef struct _loop_vec_info : public vec_info {
388 _loop_vec_info (struct loop *, vec_info_shared *);
389 ~_loop_vec_info ();
391 /* The loop to which this info struct refers to. */
392 struct loop *loop;
394 /* The loop basic blocks. */
395 basic_block *bbs;
397 /* Number of latch executions. */
398 tree num_itersm1;
399 /* Number of iterations. */
400 tree num_iters;
401 /* Number of iterations of the original loop. */
402 tree num_iters_unchanged;
403 /* Condition under which this loop is analyzed and versioned. */
404 tree num_iters_assumptions;
406 /* Threshold of number of iterations below which vectorzation will not be
407 performed. It is calculated from MIN_PROFITABLE_ITERS and
408 PARAM_MIN_VECT_LOOP_BOUND. */
409 unsigned int th;
411 /* When applying loop versioning, the vector form should only be used
412 if the number of scalar iterations is >= this value, on top of all
413 the other requirements. Ignored when loop versioning is not being
414 used. */
415 poly_uint64 versioning_threshold;
417 /* Unrolling factor */
418 poly_uint64 vectorization_factor;
420 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
421 if there is no particular limit. */
422 unsigned HOST_WIDE_INT max_vectorization_factor;
424 /* The masks that a fully-masked loop should use to avoid operating
425 on inactive scalars. */
426 vec_loop_masks masks;
428 /* If we are using a loop mask to align memory addresses, this variable
429 contains the number of vector elements that we should skip in the
430 first iteration of the vector loop (i.e. the number of leading
431 elements that should be false in the first mask). */
432 tree mask_skip_niters;
434 /* Type of the variables to use in the WHILE_ULT call for fully-masked
435 loops. */
436 tree mask_compare_type;
438 /* Unknown DRs according to which loop was peeled. */
439 struct data_reference *unaligned_dr;
441 /* peeling_for_alignment indicates whether peeling for alignment will take
442 place, and what the peeling factor should be:
443 peeling_for_alignment = X means:
444 If X=0: Peeling for alignment will not be applied.
445 If X>0: Peel first X iterations.
446 If X=-1: Generate a runtime test to calculate the number of iterations
447 to be peeled, using the dataref recorded in the field
448 unaligned_dr. */
449 int peeling_for_alignment;
451 /* The mask used to check the alignment of pointers or arrays. */
452 int ptr_mask;
454 /* Data Dependence Relations defining address ranges that are candidates
455 for a run-time aliasing check. */
456 auto_vec<ddr_p> may_alias_ddrs;
458 /* Data Dependence Relations defining address ranges together with segment
459 lengths from which the run-time aliasing check is built. */
460 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
462 /* Check that the addresses of each pair of objects is unequal. */
463 auto_vec<vec_object_pair> check_unequal_addrs;
465 /* List of values that are required to be nonzero. This is used to check
466 whether things like "x[i * n] += 1;" are safe and eventually gets added
467 to the checks for lower bounds below. */
468 auto_vec<tree> check_nonzero;
470 /* List of values that need to be checked for a minimum value. */
471 auto_vec<vec_lower_bound> lower_bounds;
473 /* Statements in the loop that have data references that are candidates for a
474 runtime (loop versioning) misalignment check. */
475 auto_vec<stmt_vec_info> may_misalign_stmts;
477 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
478 auto_vec<stmt_vec_info> reductions;
480 /* All reduction chains in the loop, represented by the first
481 stmt in the chain. */
482 auto_vec<stmt_vec_info> reduction_chains;
484 /* Cost vector for a single scalar iteration. */
485 auto_vec<stmt_info_for_cost> scalar_cost_vec;
487 /* Map of IV base/step expressions to inserted name in the preheader. */
488 hash_map<tree_operand_hash, tree> *ivexpr_map;
490 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
491 applied to the loop, i.e., no unrolling is needed, this is 1. */
492 poly_uint64 slp_unrolling_factor;
494 /* Cost of a single scalar iteration. */
495 int single_scalar_iteration_cost;
497 /* Is the loop vectorizable? */
498 bool vectorizable;
500 /* Records whether we still have the option of using a fully-masked loop. */
501 bool can_fully_mask_p;
503 /* True if have decided to use a fully-masked loop. */
504 bool fully_masked_p;
506 /* When we have grouped data accesses with gaps, we may introduce invalid
507 memory accesses. We peel the last iteration of the loop to prevent
508 this. */
509 bool peeling_for_gaps;
511 /* When the number of iterations is not a multiple of the vector size
512 we need to peel off iterations at the end to form an epilogue loop. */
513 bool peeling_for_niter;
515 /* Reductions are canonicalized so that the last operand is the reduction
516 operand. If this places a constant into RHS1, this decanonicalizes
517 GIMPLE for other phases, so we must track when this has occurred and
518 fix it up. */
519 bool operands_swapped;
521 /* True if there are no loop carried data dependencies in the loop.
522 If loop->safelen <= 1, then this is always true, either the loop
523 didn't have any loop carried data dependencies, or the loop is being
524 vectorized guarded with some runtime alias checks, or couldn't
525 be vectorized at all, but then this field shouldn't be used.
526 For loop->safelen >= 2, the user has asserted that there are no
527 backward dependencies, but there still could be loop carried forward
528 dependencies in such loops. This flag will be false if normal
529 vectorizer data dependency analysis would fail or require versioning
530 for alias, but because of loop->safelen >= 2 it has been vectorized
531 even without versioning for alias. E.g. in:
532 #pragma omp simd
533 for (int i = 0; i < m; i++)
534 a[i] = a[i + k] * c;
535 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
536 DTRT even for k > 0 && k < m, but without safelen we would not
537 vectorize this, so this field would be false. */
538 bool no_data_dependencies;
540 /* Mark loops having masked stores. */
541 bool has_mask_store;
543 /* If if-conversion versioned this loop before conversion, this is the
544 loop version without if-conversion. */
545 struct loop *scalar_loop;
547 /* For loops being epilogues of already vectorized loops
548 this points to the original vectorized loop. Otherwise NULL. */
549 _loop_vec_info *orig_loop_info;
551 } *loop_vec_info;
553 /* Access Functions. */
554 #define LOOP_VINFO_LOOP(L) (L)->loop
555 #define LOOP_VINFO_BBS(L) (L)->bbs
556 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
557 #define LOOP_VINFO_NITERS(L) (L)->num_iters
558 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
559 prologue peeling retain total unchanged scalar loop iterations for
560 cost model. */
561 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
562 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
563 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
564 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
565 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
566 #define LOOP_VINFO_CAN_FULLY_MASK_P(L) (L)->can_fully_mask_p
567 #define LOOP_VINFO_FULLY_MASKED_P(L) (L)->fully_masked_p
568 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
569 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
570 #define LOOP_VINFO_MASKS(L) (L)->masks
571 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
572 #define LOOP_VINFO_MASK_COMPARE_TYPE(L) (L)->mask_compare_type
573 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
574 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
575 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
576 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
577 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
578 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
579 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
580 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
581 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
582 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
583 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
584 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
585 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
586 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
587 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
588 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
589 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
590 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
591 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
592 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
593 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
594 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
595 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
596 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
597 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
598 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
599 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
600 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
602 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
603 ((L)->may_misalign_stmts.length () > 0)
604 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
605 ((L)->comp_alias_ddrs.length () > 0 \
606 || (L)->check_unequal_addrs.length () > 0 \
607 || (L)->lower_bounds.length () > 0)
608 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
609 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
610 #define LOOP_REQUIRES_VERSIONING(L) \
611 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
612 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
613 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
615 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
616 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
618 #define LOOP_VINFO_EPILOGUE_P(L) \
619 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
621 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
622 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
624 static inline loop_vec_info
625 loop_vec_info_for_loop (struct loop *loop)
627 return (loop_vec_info) loop->aux;
630 static inline bool
631 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
633 return (loop->inner
634 && (loop->inner == (gimple_bb (stmt))->loop_father));
637 typedef struct _bb_vec_info : public vec_info
639 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
640 ~_bb_vec_info ();
642 basic_block bb;
643 gimple_stmt_iterator region_begin;
644 gimple_stmt_iterator region_end;
645 } *bb_vec_info;
647 #define BB_VINFO_BB(B) (B)->bb
648 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
649 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
650 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
651 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
652 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
654 static inline bb_vec_info
655 vec_info_for_bb (basic_block bb)
657 return (bb_vec_info) bb->aux;
660 /*-----------------------------------------------------------------*/
661 /* Info on vectorized defs. */
662 /*-----------------------------------------------------------------*/
663 enum stmt_vec_info_type {
664 undef_vec_info_type = 0,
665 load_vec_info_type,
666 store_vec_info_type,
667 shift_vec_info_type,
668 op_vec_info_type,
669 call_vec_info_type,
670 call_simd_clone_vec_info_type,
671 assignment_vec_info_type,
672 condition_vec_info_type,
673 comparison_vec_info_type,
674 reduc_vec_info_type,
675 induc_vec_info_type,
676 type_promotion_vec_info_type,
677 type_demotion_vec_info_type,
678 type_conversion_vec_info_type,
679 loop_exit_ctrl_vec_info_type
682 /* Indicates whether/how a variable is used in the scope of loop/basic
683 block. */
684 enum vect_relevant {
685 vect_unused_in_scope = 0,
687 /* The def is only used outside the loop. */
688 vect_used_only_live,
689 /* The def is in the inner loop, and the use is in the outer loop, and the
690 use is a reduction stmt. */
691 vect_used_in_outer_by_reduction,
692 /* The def is in the inner loop, and the use is in the outer loop (and is
693 not part of reduction). */
694 vect_used_in_outer,
696 /* defs that feed computations that end up (only) in a reduction. These
697 defs may be used by non-reduction stmts, but eventually, any
698 computations/values that are affected by these defs are used to compute
699 a reduction (i.e. don't get stored to memory, for example). We use this
700 to identify computations that we can change the order in which they are
701 computed. */
702 vect_used_by_reduction,
704 vect_used_in_scope
707 /* The type of vectorization that can be applied to the stmt: regular loop-based
708 vectorization; pure SLP - the stmt is a part of SLP instances and does not
709 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
710 a part of SLP instance and also must be loop-based vectorized, since it has
711 uses outside SLP sequences.
713 In the loop context the meanings of pure and hybrid SLP are slightly
714 different. By saying that pure SLP is applied to the loop, we mean that we
715 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
716 vectorized without doing any conceptual unrolling, cause we don't pack
717 together stmts from different iterations, only within a single iteration.
718 Loop hybrid SLP means that we exploit both intra-iteration and
719 inter-iteration parallelism (e.g., number of elements in the vector is 4
720 and the slp-group-size is 2, in which case we don't have enough parallelism
721 within an iteration, so we obtain the rest of the parallelism from subsequent
722 iterations by unrolling the loop by 2). */
723 enum slp_vect_type {
724 loop_vect = 0,
725 pure_slp,
726 hybrid
729 /* Says whether a statement is a load, a store of a vectorized statement
730 result, or a store of an invariant value. */
731 enum vec_load_store_type {
732 VLS_LOAD,
733 VLS_STORE,
734 VLS_STORE_INVARIANT
737 /* Describes how we're going to vectorize an individual load or store,
738 or a group of loads or stores. */
739 enum vect_memory_access_type {
740 /* An access to an invariant address. This is used only for loads. */
741 VMAT_INVARIANT,
743 /* A simple contiguous access. */
744 VMAT_CONTIGUOUS,
746 /* A contiguous access that goes down in memory rather than up,
747 with no additional permutation. This is used only for stores
748 of invariants. */
749 VMAT_CONTIGUOUS_DOWN,
751 /* A simple contiguous access in which the elements need to be permuted
752 after loading or before storing. Only used for loop vectorization;
753 SLP uses separate permutes. */
754 VMAT_CONTIGUOUS_PERMUTE,
756 /* A simple contiguous access in which the elements need to be reversed
757 after loading or before storing. */
758 VMAT_CONTIGUOUS_REVERSE,
760 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
761 VMAT_LOAD_STORE_LANES,
763 /* An access in which each scalar element is loaded or stored
764 individually. */
765 VMAT_ELEMENTWISE,
767 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
768 SLP accesses. Each unrolled iteration uses a contiguous load
769 or store for the whole group, but the groups from separate iterations
770 are combined in the same way as for VMAT_ELEMENTWISE. */
771 VMAT_STRIDED_SLP,
773 /* The access uses gather loads or scatter stores. */
774 VMAT_GATHER_SCATTER
777 struct dataref_aux {
778 /* The misalignment in bytes of the reference, or -1 if not known. */
779 int misalignment;
780 /* The byte alignment that we'd ideally like the reference to have,
781 and the value that misalignment is measured against. */
782 int target_alignment;
783 /* If true the alignment of base_decl needs to be increased. */
784 bool base_misaligned;
785 tree base_decl;
788 typedef struct data_reference *dr_p;
790 struct _stmt_vec_info {
792 enum stmt_vec_info_type type;
794 /* Indicates whether this stmts is part of a computation whose result is
795 used outside the loop. */
796 bool live;
798 /* Stmt is part of some pattern (computation idiom) */
799 bool in_pattern_p;
801 /* Is this statement vectorizable or should it be skipped in (partial)
802 vectorization. */
803 bool vectorizable;
805 /* The stmt to which this info struct refers to. */
806 gimple *stmt;
808 /* The vec_info with respect to which STMT is vectorized. */
809 vec_info *vinfo;
811 /* The vector type to be used for the LHS of this statement. */
812 tree vectype;
814 /* The vectorized version of the stmt. */
815 stmt_vec_info vectorized_stmt;
818 /* The following is relevant only for stmts that contain a non-scalar
819 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
820 at most one such data-ref. */
822 /* Information about the data-ref (access function, etc),
823 relative to the inner-most containing loop. */
824 struct data_reference *data_ref_info;
826 dataref_aux dr_aux;
828 /* Information about the data-ref relative to this loop
829 nest (the loop that is being considered for vectorization). */
830 innermost_loop_behavior dr_wrt_vec_loop;
832 /* For loop PHI nodes, the base and evolution part of it. This makes sure
833 this information is still available in vect_update_ivs_after_vectorizer
834 where we may not be able to re-analyze the PHI nodes evolution as
835 peeling for the prologue loop can make it unanalyzable. The evolution
836 part is still correct after peeling, but the base may have changed from
837 the version here. */
838 tree loop_phi_evolution_base_unchanged;
839 tree loop_phi_evolution_part;
841 /* Used for various bookkeeping purposes, generally holding a pointer to
842 some other stmt S that is in some way "related" to this stmt.
843 Current use of this field is:
844 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
845 true): S is the "pattern stmt" that represents (and replaces) the
846 sequence of stmts that constitutes the pattern. Similarly, the
847 related_stmt of the "pattern stmt" points back to this stmt (which is
848 the last stmt in the original sequence of stmts that constitutes the
849 pattern). */
850 stmt_vec_info related_stmt;
852 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
853 The sequence is attached to the original statement rather than the
854 pattern statement. */
855 gimple_seq pattern_def_seq;
857 /* List of datarefs that are known to have the same alignment as the dataref
858 of this stmt. */
859 vec<dr_p> same_align_refs;
861 /* Selected SIMD clone's function info. First vector element
862 is SIMD clone's function decl, followed by a pair of trees (base + step)
863 for linear arguments (pair of NULLs for other arguments). */
864 vec<tree> simd_clone_info;
866 /* Classify the def of this stmt. */
867 enum vect_def_type def_type;
869 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
870 enum slp_vect_type slp_type;
872 /* Interleaving and reduction chains info. */
873 /* First element in the group. */
874 stmt_vec_info first_element;
875 /* Pointer to the next element in the group. */
876 stmt_vec_info next_element;
877 /* For data-refs, in case that two or more stmts share data-ref, this is the
878 pointer to the previously detected stmt with the same dr. */
879 stmt_vec_info same_dr_stmt;
880 /* The size of the group. */
881 unsigned int size;
882 /* For stores, number of stores from this group seen. We vectorize the last
883 one. */
884 unsigned int store_count;
885 /* For loads only, the gap from the previous load. For consecutive loads, GAP
886 is 1. */
887 unsigned int gap;
889 /* The minimum negative dependence distance this stmt participates in
890 or zero if none. */
891 unsigned int min_neg_dist;
893 /* Not all stmts in the loop need to be vectorized. e.g, the increment
894 of the loop induction variable and computation of array indexes. relevant
895 indicates whether the stmt needs to be vectorized. */
896 enum vect_relevant relevant;
898 /* For loads if this is a gather, for stores if this is a scatter. */
899 bool gather_scatter_p;
901 /* True if this is an access with loop-invariant stride. */
902 bool strided_p;
904 /* For both loads and stores. */
905 bool simd_lane_access_p;
907 /* Classifies how the load or store is going to be implemented
908 for loop vectorization. */
909 vect_memory_access_type memory_access_type;
911 /* For reduction loops, this is the type of reduction. */
912 enum vect_reduction_type v_reduc_type;
914 /* For CONST_COND_REDUCTION, record the reduc code. */
915 enum tree_code const_cond_reduc_code;
917 /* On a reduction PHI the reduction type as detected by
918 vect_force_simple_reduction. */
919 enum vect_reduction_type reduc_type;
921 /* On a reduction PHI the def returned by vect_force_simple_reduction.
922 On the def returned by vect_force_simple_reduction the
923 corresponding PHI. */
924 stmt_vec_info reduc_def;
926 /* The number of scalar stmt references from active SLP instances. */
927 unsigned int num_slp_uses;
929 /* If nonzero, the lhs of the statement could be truncated to this
930 many bits without affecting any users of the result. */
931 unsigned int min_output_precision;
933 /* If nonzero, all non-boolean input operands have the same precision,
934 and they could each be truncated to this many bits without changing
935 the result. */
936 unsigned int min_input_precision;
938 /* If OPERATION_BITS is nonzero, the statement could be performed on
939 an integer with the sign and number of bits given by OPERATION_SIGN
940 and OPERATION_BITS without changing the result. */
941 unsigned int operation_precision;
942 signop operation_sign;
945 /* Information about a gather/scatter call. */
946 struct gather_scatter_info {
947 /* The internal function to use for the gather/scatter operation,
948 or IFN_LAST if a built-in function should be used instead. */
949 internal_fn ifn;
951 /* The FUNCTION_DECL for the built-in gather/scatter function,
952 or null if an internal function should be used instead. */
953 tree decl;
955 /* The loop-invariant base value. */
956 tree base;
958 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
959 tree offset;
961 /* Each offset element should be multiplied by this amount before
962 being added to the base. */
963 int scale;
965 /* The definition type for the vectorized offset. */
966 enum vect_def_type offset_dt;
968 /* The type of the vectorized offset. */
969 tree offset_vectype;
971 /* The type of the scalar elements after loading or before storing. */
972 tree element_type;
974 /* The type of the scalar elements being loaded or stored. */
975 tree memory_type;
978 /* Access Functions. */
979 #define STMT_VINFO_TYPE(S) (S)->type
980 #define STMT_VINFO_STMT(S) (S)->stmt
981 inline loop_vec_info
982 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
984 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
985 return loop_vinfo;
986 return NULL;
988 inline bb_vec_info
989 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
991 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
992 return bb_vinfo;
993 return NULL;
995 #define STMT_VINFO_RELEVANT(S) (S)->relevant
996 #define STMT_VINFO_LIVE_P(S) (S)->live
997 #define STMT_VINFO_VECTYPE(S) (S)->vectype
998 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
999 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1000 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
1001 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1002 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1003 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1004 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1005 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
1006 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
1008 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1009 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1010 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1011 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1012 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1013 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1014 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1015 (S)->dr_wrt_vec_loop.base_misalignment
1016 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1017 (S)->dr_wrt_vec_loop.offset_alignment
1018 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1019 (S)->dr_wrt_vec_loop.step_alignment
1021 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1022 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1023 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1024 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1025 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1026 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1027 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->data_ref_info && DR_GROUP_FIRST_ELEMENT(S))
1028 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1029 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1030 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1031 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
1032 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1033 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1035 #define DR_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->first_element)
1036 #define DR_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->next_element)
1037 #define DR_GROUP_SIZE(S) (gcc_checking_assert ((S)->data_ref_info), (S)->size)
1038 #define DR_GROUP_STORE_COUNT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->store_count)
1039 #define DR_GROUP_GAP(S) (gcc_checking_assert ((S)->data_ref_info), (S)->gap)
1040 #define DR_GROUP_SAME_DR_STMT(S) (gcc_checking_assert ((S)->data_ref_info), (S)->same_dr_stmt)
1042 #define REDUC_GROUP_FIRST_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->first_element)
1043 #define REDUC_GROUP_NEXT_ELEMENT(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->next_element)
1044 #define REDUC_GROUP_SIZE(S) (gcc_checking_assert (!(S)->data_ref_info), (S)->size)
1046 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1048 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1049 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1050 #define STMT_SLP_TYPE(S) (S)->slp_type
1052 #define DR_VECT_AUX(dr) (&vinfo_for_stmt (DR_STMT (dr))->dr_aux)
1054 #define VECT_MAX_COST 1000
1056 /* The maximum number of intermediate steps required in multi-step type
1057 conversion. */
1058 #define MAX_INTERM_CVT_STEPS 3
1060 #define MAX_VECTORIZATION_FACTOR INT_MAX
1062 /* Nonzero if TYPE represents a (scalar) boolean type or type
1063 in the middle-end compatible with it (unsigned precision 1 integral
1064 types). Used to determine which types should be vectorized as
1065 VECTOR_BOOLEAN_TYPE_P. */
1067 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1068 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1069 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1070 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1071 && TYPE_PRECISION (TYPE) == 1 \
1072 && TYPE_UNSIGNED (TYPE)))
1074 inline _stmt_vec_info &
1075 stmt_vec_info::operator* () const
1077 return *m_ptr;
1080 inline stmt_vec_info::operator gimple * () const
1082 return m_ptr ? m_ptr->stmt : NULL;
1085 extern vec<stmt_vec_info> *stmt_vec_info_vec;
1087 void set_stmt_vec_info_vec (vec<stmt_vec_info> *);
1088 void free_stmt_vec_infos (vec<stmt_vec_info> *);
1090 /* Return a stmt_vec_info corresponding to STMT. */
1092 static inline stmt_vec_info
1093 vinfo_for_stmt (gimple *stmt)
1095 int uid = gimple_uid (stmt);
1096 if (uid <= 0)
1097 return NULL;
1099 return (*stmt_vec_info_vec)[uid - 1];
1102 /* Set vectorizer information INFO for STMT. */
1104 static inline void
1105 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
1107 unsigned int uid = gimple_uid (stmt);
1108 if (uid == 0)
1110 gcc_checking_assert (info);
1111 uid = stmt_vec_info_vec->length () + 1;
1112 gimple_set_uid (stmt, uid);
1113 stmt_vec_info_vec->safe_push (info);
1115 else
1117 gcc_checking_assert (info == NULL_STMT_VEC_INFO);
1118 (*stmt_vec_info_vec)[uid - 1] = info;
1122 /* Return the earlier statement between STMT1 and STMT2. */
1124 static inline gimple *
1125 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
1127 unsigned int uid1, uid2;
1129 if (stmt1 == NULL)
1130 return stmt2;
1132 if (stmt2 == NULL)
1133 return stmt1;
1135 uid1 = gimple_uid (stmt1);
1136 uid2 = gimple_uid (stmt2);
1138 if (uid1 == 0 || uid2 == 0)
1139 return NULL;
1141 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1142 && uid2 <= stmt_vec_info_vec->length ());
1143 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1144 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1145 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1146 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1148 if (uid1 < uid2)
1149 return stmt1;
1150 else
1151 return stmt2;
1154 /* Return the later statement between STMT1 and STMT2. */
1156 static inline gimple *
1157 get_later_stmt (gimple *stmt1, gimple *stmt2)
1159 unsigned int uid1, uid2;
1161 if (stmt1 == NULL)
1162 return stmt2;
1164 if (stmt2 == NULL)
1165 return stmt1;
1167 uid1 = gimple_uid (stmt1);
1168 uid2 = gimple_uid (stmt2);
1170 if (uid1 == 0 || uid2 == 0)
1171 return NULL;
1173 gcc_assert (uid1 <= stmt_vec_info_vec->length ()
1174 && uid2 <= stmt_vec_info_vec->length ());
1175 gcc_checking_assert ((STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt1))
1176 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt1)))
1177 && (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt2))
1178 || !STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt2))));
1180 if (uid1 > uid2)
1181 return stmt1;
1182 else
1183 return stmt2;
1186 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1187 pattern. */
1189 static inline bool
1190 is_pattern_stmt_p (stmt_vec_info stmt_info)
1192 stmt_vec_info related_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
1193 return related_stmt_info && STMT_VINFO_IN_PATTERN_P (related_stmt_info);
1196 /* Return true if BB is a loop header. */
1198 static inline bool
1199 is_loop_header_bb_p (basic_block bb)
1201 if (bb == (bb->loop_father)->header)
1202 return true;
1203 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1204 return false;
1207 /* Return pow2 (X). */
1209 static inline int
1210 vect_pow2 (int x)
1212 int i, res = 1;
1214 for (i = 0; i < x; i++)
1215 res *= 2;
1217 return res;
1220 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1222 static inline int
1223 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1224 tree vectype, int misalign)
1226 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1227 vectype, misalign);
1230 /* Get cost by calling cost target builtin. */
1232 static inline
1233 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1235 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1238 /* Alias targetm.vectorize.init_cost. */
1240 static inline void *
1241 init_cost (struct loop *loop_info)
1243 return targetm.vectorize.init_cost (loop_info);
1246 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1247 stmt_vec_info, int, enum vect_cost_model_location);
1249 /* Alias targetm.vectorize.add_stmt_cost. */
1251 static inline unsigned
1252 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
1253 stmt_vec_info stmt_info, int misalign,
1254 enum vect_cost_model_location where)
1256 if (dump_file && (dump_flags & TDF_DETAILS))
1257 dump_stmt_cost (dump_file, data, count, kind, stmt_info, misalign, where);
1258 return targetm.vectorize.add_stmt_cost (data, count, kind,
1259 stmt_info, misalign, where);
1262 /* Alias targetm.vectorize.finish_cost. */
1264 static inline void
1265 finish_cost (void *data, unsigned *prologue_cost,
1266 unsigned *body_cost, unsigned *epilogue_cost)
1268 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1271 /* Alias targetm.vectorize.destroy_cost_data. */
1273 static inline void
1274 destroy_cost_data (void *data)
1276 targetm.vectorize.destroy_cost_data (data);
1279 inline void
1280 add_stmt_costs (void *data, stmt_vector_for_cost *cost_vec)
1282 stmt_info_for_cost *cost;
1283 unsigned i;
1284 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1285 add_stmt_cost (data, cost->count, cost->kind, cost->stmt_info,
1286 cost->misalign, cost->where);
1289 /*-----------------------------------------------------------------*/
1290 /* Info on data references alignment. */
1291 /*-----------------------------------------------------------------*/
1292 #define DR_MISALIGNMENT_UNKNOWN (-1)
1293 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1295 inline void
1296 set_dr_misalignment (struct data_reference *dr, int val)
1298 dataref_aux *data_aux = DR_VECT_AUX (dr);
1299 data_aux->misalignment = val;
1302 inline int
1303 dr_misalignment (struct data_reference *dr)
1305 int misalign = DR_VECT_AUX (dr)->misalignment;
1306 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1307 return misalign;
1310 /* Reflects actual alignment of first access in the vectorized loop,
1311 taking into account peeling/versioning if applied. */
1312 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1313 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1315 /* Only defined once DR_MISALIGNMENT is defined. */
1316 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1318 /* Return true if data access DR is aligned to its target alignment
1319 (which may be less than a full vector). */
1321 static inline bool
1322 aligned_access_p (struct data_reference *data_ref_info)
1324 return (DR_MISALIGNMENT (data_ref_info) == 0);
1327 /* Return TRUE if the alignment of the data access is known, and FALSE
1328 otherwise. */
1330 static inline bool
1331 known_alignment_for_access_p (struct data_reference *data_ref_info)
1333 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1336 /* Return the minimum alignment in bytes that the vectorized version
1337 of DR is guaranteed to have. */
1339 static inline unsigned int
1340 vect_known_alignment_in_bytes (struct data_reference *dr)
1342 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1343 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1344 if (DR_MISALIGNMENT (dr) == 0)
1345 return DR_TARGET_ALIGNMENT (dr);
1346 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1349 /* Return the behavior of DR with respect to the vectorization context
1350 (which for outer loop vectorization might not be the behavior recorded
1351 in DR itself). */
1353 static inline innermost_loop_behavior *
1354 vect_dr_behavior (data_reference *dr)
1356 gimple *stmt = DR_STMT (dr);
1357 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1358 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1359 if (loop_vinfo == NULL
1360 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1361 return &DR_INNERMOST (dr);
1362 else
1363 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1366 /* Return the stmt DR is in. For DR_STMT that have been replaced by
1367 a pattern this returns the corresponding pattern stmt. Otherwise
1368 DR_STMT is returned. */
1370 inline stmt_vec_info
1371 vect_dr_stmt (data_reference *dr)
1373 gimple *stmt = DR_STMT (dr);
1374 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1375 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1376 return STMT_VINFO_RELATED_STMT (stmt_info);
1377 /* DR_STMT should never refer to a stmt in a pattern replacement. */
1378 gcc_checking_assert (!STMT_VINFO_RELATED_STMT (stmt_info));
1379 return stmt_info;
1382 /* Return true if the vect cost model is unlimited. */
1383 static inline bool
1384 unlimited_cost_model (loop_p loop)
1386 if (loop != NULL && loop->force_vectorize
1387 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1388 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1389 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1392 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1393 if the first iteration should use a partial mask in order to achieve
1394 alignment. */
1396 static inline bool
1397 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1399 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1400 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1403 /* Return the number of vectors of type VECTYPE that are needed to get
1404 NUNITS elements. NUNITS should be based on the vectorization factor,
1405 so it is always a known multiple of the number of elements in VECTYPE. */
1407 static inline unsigned int
1408 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1410 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1413 /* Return the number of copies needed for loop vectorization when
1414 a statement operates on vectors of type VECTYPE. This is the
1415 vectorization factor divided by the number of elements in
1416 VECTYPE and is always known at compile time. */
1418 static inline unsigned int
1419 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1421 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1424 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1425 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1426 if we haven't yet recorded any vector types. */
1428 static inline void
1429 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1431 /* All unit counts have the form current_vector_size * X for some
1432 rational X, so two unit sizes must have a common multiple.
1433 Everything is a multiple of the initial value of 1. */
1434 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1435 *max_nunits = force_common_multiple (*max_nunits, nunits);
1438 /* Return the vectorization factor that should be used for costing
1439 purposes while vectorizing the loop described by LOOP_VINFO.
1440 Pick a reasonable estimate if the vectorization factor isn't
1441 known at compile time. */
1443 static inline unsigned int
1444 vect_vf_for_cost (loop_vec_info loop_vinfo)
1446 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1449 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1450 Pick a reasonable estimate if the exact number isn't known at
1451 compile time. */
1453 static inline unsigned int
1454 vect_nunits_for_cost (tree vec_type)
1456 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1459 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1461 static inline unsigned HOST_WIDE_INT
1462 vect_max_vf (loop_vec_info loop_vinfo)
1464 unsigned HOST_WIDE_INT vf;
1465 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1466 return vf;
1467 return MAX_VECTORIZATION_FACTOR;
1470 /* Return the size of the value accessed by unvectorized data reference DR.
1471 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1472 associated gimple statement, since that guarantees that DR accesses
1473 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1474 includes things like V1SI, which can be vectorized in the same way
1475 as a plain SI.) */
1477 inline unsigned int
1478 vect_get_scalar_dr_size (struct data_reference *dr)
1480 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1483 /* Source location + hotness information. */
1484 extern dump_user_location_t vect_location;
1486 /* A macro for calling:
1487 dump_begin_scope (MSG, vect_location);
1488 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1489 and then calling
1490 dump_end_scope ();
1491 once the object goes out of scope, thus capturing the nesting of
1492 the scopes. */
1494 #define DUMP_VECT_SCOPE(MSG) \
1495 AUTO_DUMP_SCOPE (MSG, vect_location)
1497 /*-----------------------------------------------------------------*/
1498 /* Function prototypes. */
1499 /*-----------------------------------------------------------------*/
1501 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1502 in tree-vect-loop-manip.c. */
1503 extern void vect_set_loop_condition (struct loop *, loop_vec_info,
1504 tree, tree, tree, bool);
1505 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1506 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1507 struct loop *, edge);
1508 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1509 poly_uint64);
1510 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1511 tree *, tree *, tree *, int, bool, bool);
1512 extern void vect_prepare_for_masked_peels (loop_vec_info);
1513 extern dump_user_location_t find_loop_location (struct loop *);
1514 extern bool vect_can_advance_ivs_p (loop_vec_info);
1516 /* In tree-vect-stmts.c. */
1517 extern poly_uint64 current_vector_size;
1518 extern tree get_vectype_for_scalar_type (tree);
1519 extern tree get_vectype_for_scalar_type_and_size (tree, poly_uint64);
1520 extern tree get_mask_type_for_scalar_type (tree);
1521 extern tree get_same_sized_vectype (tree, tree);
1522 extern bool vect_get_loop_mask_type (loop_vec_info);
1523 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1524 stmt_vec_info * = NULL, gimple ** = NULL);
1525 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1526 tree *, stmt_vec_info * = NULL,
1527 gimple ** = NULL);
1528 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1529 tree, enum tree_code *,
1530 enum tree_code *, int *,
1531 vec<tree> *);
1532 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1533 enum tree_code *,
1534 int *, vec<tree> *);
1535 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1536 extern void free_stmt_vec_info (gimple *stmt);
1537 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1538 enum vect_cost_for_stmt, stmt_vec_info,
1539 int, enum vect_cost_model_location);
1540 extern stmt_vec_info vect_finish_replace_stmt (gimple *, gimple *);
1541 extern stmt_vec_info vect_finish_stmt_generation (gimple *, gimple *,
1542 gimple_stmt_iterator *);
1543 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1544 extern tree vect_get_store_rhs (gimple *);
1545 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1546 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1547 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1548 vec<tree> *, slp_tree);
1549 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1550 vec<tree> *, vec<tree> *);
1551 extern tree vect_init_vector (gimple *, tree, tree,
1552 gimple_stmt_iterator *);
1553 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1554 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1555 bool *, slp_tree, slp_instance);
1556 extern void vect_remove_stores (gimple *);
1557 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance,
1558 stmt_vector_for_cost *);
1559 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1560 stmt_vec_info *, tree, int, slp_tree,
1561 stmt_vector_for_cost *);
1562 extern void vect_get_load_cost (stmt_vec_info, int, bool,
1563 unsigned int *, unsigned int *,
1564 stmt_vector_for_cost *,
1565 stmt_vector_for_cost *, bool);
1566 extern void vect_get_store_cost (stmt_vec_info, int,
1567 unsigned int *, stmt_vector_for_cost *);
1568 extern bool vect_supportable_shift (enum tree_code, tree);
1569 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1570 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1571 extern void optimize_mask_stores (struct loop*);
1572 extern gcall *vect_gen_while (tree, tree, tree);
1573 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1574 extern bool vect_get_vector_types_for_stmt (stmt_vec_info, tree *, tree *);
1575 extern tree vect_get_mask_type_for_stmt (stmt_vec_info);
1577 /* In tree-vect-data-refs.c. */
1578 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1579 extern enum dr_alignment_support vect_supportable_dr_alignment
1580 (struct data_reference *, bool);
1581 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1582 HOST_WIDE_INT *);
1583 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1584 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1585 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1586 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1587 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1588 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1589 extern bool vect_analyze_data_ref_accesses (vec_info *);
1590 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1591 extern bool vect_gather_scatter_fn_p (bool, bool, tree, tree, unsigned int,
1592 signop, int, internal_fn *, tree *);
1593 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1594 gather_scatter_info *);
1595 extern bool vect_find_stmt_data_reference (loop_p, gimple *,
1596 vec<data_reference_p> *);
1597 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1598 extern void vect_record_base_alignments (vec_info *);
1599 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1600 tree *, gimple_stmt_iterator *,
1601 gimple **, bool, bool *,
1602 tree = NULL_TREE, tree = NULL_TREE);
1603 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1604 tree);
1605 extern void vect_copy_ref_info (tree, tree);
1606 extern tree vect_create_destination_var (tree, tree);
1607 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1608 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1609 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1610 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1611 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1612 gimple_stmt_iterator *, vec<tree> *);
1613 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1614 enum dr_alignment_support, tree,
1615 struct loop **);
1616 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1617 gimple_stmt_iterator *);
1618 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1619 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1620 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1621 const char * = NULL);
1622 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1623 tree, tree = NULL_TREE);
1625 /* In tree-vect-loop.c. */
1626 /* FORNOW: Used in tree-parloops.c. */
1627 extern stmt_vec_info vect_force_simple_reduction (loop_vec_info, stmt_vec_info,
1628 bool *, bool);
1629 /* Used in gimple-loop-interchange.c. */
1630 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1631 enum tree_code);
1632 /* Drive for loop analysis stage. */
1633 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info,
1634 vec_info_shared *);
1635 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1636 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1637 tree *, bool);
1638 extern tree vect_halve_mask_nunits (tree);
1639 extern tree vect_double_mask_nunits (tree);
1640 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1641 unsigned int, tree);
1642 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1643 unsigned int, tree, unsigned int);
1645 /* Drive for loop transformation stage. */
1646 extern struct loop *vect_transform_loop (loop_vec_info);
1647 extern loop_vec_info vect_analyze_loop_form (struct loop *, vec_info_shared *);
1648 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1649 slp_tree, int, stmt_vec_info *,
1650 stmt_vector_for_cost *);
1651 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1652 stmt_vec_info *, slp_tree, slp_instance,
1653 stmt_vector_for_cost *);
1654 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1655 stmt_vec_info *, slp_tree,
1656 stmt_vector_for_cost *);
1657 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1658 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1659 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1660 stmt_vector_for_cost *,
1661 stmt_vector_for_cost *,
1662 stmt_vector_for_cost *);
1663 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
1665 /* In tree-vect-slp.c. */
1666 extern void vect_free_slp_instance (slp_instance, bool);
1667 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1668 gimple_stmt_iterator *, poly_uint64,
1669 slp_instance, bool, unsigned *);
1670 extern bool vect_slp_analyze_operations (vec_info *);
1671 extern bool vect_schedule_slp (vec_info *);
1672 extern bool vect_analyze_slp (vec_info *, unsigned);
1673 extern bool vect_make_slp_decision (loop_vec_info);
1674 extern void vect_detect_hybrid_slp (loop_vec_info);
1675 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1676 extern bool vect_slp_bb (basic_block);
1677 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1678 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1679 extern bool can_duplicate_and_interleave_p (unsigned int, machine_mode,
1680 unsigned int * = NULL,
1681 tree * = NULL, tree * = NULL);
1682 extern void duplicate_and_interleave (gimple_seq *, tree, vec<tree>,
1683 unsigned int, vec<tree> &);
1684 extern int vect_get_place_in_interleaving_chain (gimple *, gimple *);
1686 /* In tree-vect-patterns.c. */
1687 /* Pattern recognition functions.
1688 Additional pattern recognition functions can (and will) be added
1689 in the future. */
1690 void vect_pattern_recog (vec_info *);
1692 /* In tree-vectorizer.c. */
1693 unsigned vectorize_loops (void);
1694 bool vect_stmt_in_region_p (vec_info *, gimple *);
1695 void vect_free_loop_info_assumptions (struct loop *);
1697 #endif /* GCC_TREE_VECTORIZER_H */