testsuite: remove SPE tests.
[official-gcc.git] / gcc / wide-int.h
blobbb0d16b99b1838c369b9d46700fd235577ef0c4e
1 /* Operations with very long integers. -*- C++ -*-
2 Copyright (C) 2012-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #ifndef WIDE_INT_H
21 #define WIDE_INT_H
23 /* wide-int.[cc|h] implements a class that efficiently performs
24 mathematical operations on finite precision integers. wide_ints
25 are designed to be transient - they are not for long term storage
26 of values. There is tight integration between wide_ints and the
27 other longer storage GCC representations (rtl and tree).
29 The actual precision of a wide_int depends on the flavor. There
30 are three predefined flavors:
32 1) wide_int (the default). This flavor does the math in the
33 precision of its input arguments. It is assumed (and checked)
34 that the precisions of the operands and results are consistent.
35 This is the most efficient flavor. It is not possible to examine
36 bits above the precision that has been specified. Because of
37 this, the default flavor has semantics that are simple to
38 understand and in general model the underlying hardware that the
39 compiler is targetted for.
41 This flavor must be used at the RTL level of gcc because there
42 is, in general, not enough information in the RTL representation
43 to extend a value beyond the precision specified in the mode.
45 This flavor should also be used at the TREE and GIMPLE levels of
46 the compiler except for the circumstances described in the
47 descriptions of the other two flavors.
49 The default wide_int representation does not contain any
50 information inherent about signedness of the represented value,
51 so it can be used to represent both signed and unsigned numbers.
52 For operations where the results depend on signedness (full width
53 multiply, division, shifts, comparisons, and operations that need
54 overflow detected), the signedness must be specified separately.
56 2) offset_int. This is a fixed-precision integer that can hold
57 any address offset, measured in either bits or bytes, with at
58 least one extra sign bit. At the moment the maximum address
59 size GCC supports is 64 bits. With 8-bit bytes and an extra
60 sign bit, offset_int therefore needs to have at least 68 bits
61 of precision. We round this up to 128 bits for efficiency.
62 Values of type T are converted to this precision by sign- or
63 zero-extending them based on the signedness of T.
65 The extra sign bit means that offset_int is effectively a signed
66 128-bit integer, i.e. it behaves like int128_t.
68 Since the values are logically signed, there is no need to
69 distinguish between signed and unsigned operations. Sign-sensitive
70 comparison operators <, <=, > and >= are therefore supported.
71 Shift operators << and >> are also supported, with >> being
72 an _arithmetic_ right shift.
74 [ Note that, even though offset_int is effectively int128_t,
75 it can still be useful to use unsigned comparisons like
76 wi::leu_p (a, b) as a more efficient short-hand for
77 "a >= 0 && a <= b". ]
79 3) widest_int. This representation is an approximation of
80 infinite precision math. However, it is not really infinite
81 precision math as in the GMP library. It is really finite
82 precision math where the precision is 4 times the size of the
83 largest integer that the target port can represent.
85 Like offset_int, widest_int is wider than all the values that
86 it needs to represent, so the integers are logically signed.
87 Sign-sensitive comparison operators <, <=, > and >= are supported,
88 as are << and >>.
90 There are several places in the GCC where this should/must be used:
92 * Code that does induction variable optimizations. This code
93 works with induction variables of many different types at the
94 same time. Because of this, it ends up doing many different
95 calculations where the operands are not compatible types. The
96 widest_int makes this easy, because it provides a field where
97 nothing is lost when converting from any variable,
99 * There are a small number of passes that currently use the
100 widest_int that should use the default. These should be
101 changed.
103 There are surprising features of offset_int and widest_int
104 that the users should be careful about:
106 1) Shifts and rotations are just weird. You have to specify a
107 precision in which the shift or rotate is to happen in. The bits
108 above this precision are zeroed. While this is what you
109 want, it is clearly non obvious.
111 2) Larger precision math sometimes does not produce the same
112 answer as would be expected for doing the math at the proper
113 precision. In particular, a multiply followed by a divide will
114 produce a different answer if the first product is larger than
115 what can be represented in the input precision.
117 The offset_int and the widest_int flavors are more expensive
118 than the default wide int, so in addition to the caveats with these
119 two, the default is the prefered representation.
121 All three flavors of wide_int are represented as a vector of
122 HOST_WIDE_INTs. The default and widest_int vectors contain enough elements
123 to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only
124 enough elements to hold ADDR_MAX_PRECISION bits. The values are stored
125 in the vector with the least significant HOST_BITS_PER_WIDE_INT bits
126 in element 0.
128 The default wide_int contains three fields: the vector (VAL),
129 the precision and a length (LEN). The length is the number of HWIs
130 needed to represent the value. widest_int and offset_int have a
131 constant precision that cannot be changed, so they only store the
132 VAL and LEN fields.
134 Since most integers used in a compiler are small values, it is
135 generally profitable to use a representation of the value that is
136 as small as possible. LEN is used to indicate the number of
137 elements of the vector that are in use. The numbers are stored as
138 sign extended numbers as a means of compression. Leading
139 HOST_WIDE_INTs that contain strings of either -1 or 0 are removed
140 as long as they can be reconstructed from the top bit that is being
141 represented.
143 The precision and length of a wide_int are always greater than 0.
144 Any bits in a wide_int above the precision are sign-extended from the
145 most significant bit. For example, a 4-bit value 0x8 is represented as
146 VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer
147 constants to be represented with undefined bits above the precision.
148 This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN,
149 so that the INTEGER_CST representation can be used both in TYPE_PRECISION
150 and in wider precisions.
152 There are constructors to create the various forms of wide_int from
153 trees, rtl and constants. For trees the options are:
155 tree t = ...;
156 wi::to_wide (t) // Treat T as a wide_int
157 wi::to_offset (t) // Treat T as an offset_int
158 wi::to_widest (t) // Treat T as a widest_int
160 All three are light-weight accessors that should have no overhead
161 in release builds. If it is useful for readability reasons to
162 store the result in a temporary variable, the preferred method is:
164 wi::tree_to_wide_ref twide = wi::to_wide (t);
165 wi::tree_to_offset_ref toffset = wi::to_offset (t);
166 wi::tree_to_widest_ref twidest = wi::to_widest (t);
168 To make an rtx into a wide_int, you have to pair it with a mode.
169 The canonical way to do this is with rtx_mode_t as in:
171 rtx r = ...
172 wide_int x = rtx_mode_t (r, mode);
174 Similarly, a wide_int can only be constructed from a host value if
175 the target precision is given explicitly, such as in:
177 wide_int x = wi::shwi (c, prec); // sign-extend C if necessary
178 wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary
180 However, offset_int and widest_int have an inherent precision and so
181 can be initialized directly from a host value:
183 offset_int x = (int) c; // sign-extend C
184 widest_int x = (unsigned int) c; // zero-extend C
186 It is also possible to do arithmetic directly on rtx_mode_ts and
187 constants. For example:
189 wi::add (r1, r2); // add equal-sized rtx_mode_ts r1 and r2
190 wi::add (r1, 1); // add 1 to rtx_mode_t r1
191 wi::lshift (1, 100); // 1 << 100 as a widest_int
193 Many binary operations place restrictions on the combinations of inputs,
194 using the following rules:
196 - {rtx, wide_int} op {rtx, wide_int} -> wide_int
197 The inputs must be the same precision. The result is a wide_int
198 of the same precision
200 - {rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int
201 (un)signed HOST_WIDE_INT op {rtx, wide_int} -> wide_int
202 The HOST_WIDE_INT is extended or truncated to the precision of
203 the other input. The result is a wide_int of the same precision
204 as that input.
206 - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int
207 The inputs are extended to widest_int precision and produce a
208 widest_int result.
210 - offset_int op offset_int -> offset_int
211 offset_int op (un)signed HOST_WIDE_INT -> offset_int
212 (un)signed HOST_WIDE_INT op offset_int -> offset_int
214 - widest_int op widest_int -> widest_int
215 widest_int op (un)signed HOST_WIDE_INT -> widest_int
216 (un)signed HOST_WIDE_INT op widest_int -> widest_int
218 Other combinations like:
220 - widest_int op offset_int and
221 - wide_int op offset_int
223 are not allowed. The inputs should instead be extended or truncated
224 so that they match.
226 The inputs to comparison functions like wi::eq_p and wi::lts_p
227 follow the same compatibility rules, although their return types
228 are different. Unary functions on X produce the same result as
229 a binary operation X + X. Shift functions X op Y also produce
230 the same result as X + X; the precision of the shift amount Y
231 can be arbitrarily different from X. */
233 /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very
234 early examination of the target's mode file. The WIDE_INT_MAX_ELTS
235 can accomodate at least 1 more bit so that unsigned numbers of that
236 mode can be represented as a signed value. Note that it is still
237 possible to create fixed_wide_ints that have precisions greater than
238 MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a
239 double-width multiplication result, for example. */
240 #define WIDE_INT_MAX_ELTS \
241 ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT)
243 #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT)
245 /* This is the max size of any pointer on any machine. It does not
246 seem to be as easy to sniff this out of the machine description as
247 it is for MAX_BITSIZE_MODE_ANY_INT since targets may support
248 multiple address sizes and may have different address sizes for
249 different address spaces. However, currently the largest pointer
250 on any platform is 64 bits. When that changes, then it is likely
251 that a target hook should be defined so that targets can make this
252 value larger for those targets. */
253 #define ADDR_MAX_BITSIZE 64
255 /* This is the internal precision used when doing any address
256 arithmetic. The '4' is really 3 + 1. Three of the bits are for
257 the number of extra bits needed to do bit addresses and the other bit
258 is to allow everything to be signed without loosing any precision.
259 Then everything is rounded up to the next HWI for efficiency. */
260 #define ADDR_MAX_PRECISION \
261 ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \
262 & ~(HOST_BITS_PER_WIDE_INT - 1))
264 /* The number of HWIs needed to store an offset_int. */
265 #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT)
267 /* The type of result produced by a binary operation on types T1 and T2.
268 Defined purely for brevity. */
269 #define WI_BINARY_RESULT(T1, T2) \
270 typename wi::binary_traits <T1, T2>::result_type
272 /* Likewise for binary operators, which excludes the case in which neither
273 T1 nor T2 is a wide-int-based type. */
274 #define WI_BINARY_OPERATOR_RESULT(T1, T2) \
275 typename wi::binary_traits <T1, T2>::operator_result
277 /* The type of result produced by T1 << T2. Leads to substitution failure
278 if the operation isn't supported. Defined purely for brevity. */
279 #define WI_SIGNED_SHIFT_RESULT(T1, T2) \
280 typename wi::binary_traits <T1, T2>::signed_shift_result_type
282 /* The type of result produced by a sign-agnostic binary predicate on
283 types T1 and T2. This is bool if wide-int operations make sense for
284 T1 and T2 and leads to substitution failure otherwise. */
285 #define WI_BINARY_PREDICATE_RESULT(T1, T2) \
286 typename wi::binary_traits <T1, T2>::predicate_result
288 /* The type of result produced by a signed binary predicate on types T1 and T2.
289 This is bool if signed comparisons make sense for T1 and T2 and leads to
290 substitution failure otherwise. */
291 #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \
292 typename wi::binary_traits <T1, T2>::signed_predicate_result
294 /* The type of result produced by a unary operation on type T. */
295 #define WI_UNARY_RESULT(T) \
296 typename wi::binary_traits <T, T>::result_type
298 /* Define a variable RESULT to hold the result of a binary operation on
299 X and Y, which have types T1 and T2 respectively. Define VAL to
300 point to the blocks of RESULT. Once the user of the macro has
301 filled in VAL, it should call RESULT.set_len to set the number
302 of initialized blocks. */
303 #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \
304 WI_BINARY_RESULT (T1, T2) RESULT = \
305 wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \
306 HOST_WIDE_INT *VAL = RESULT.write_val ()
308 /* Similar for the result of a unary operation on X, which has type T. */
309 #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \
310 WI_UNARY_RESULT (T) RESULT = \
311 wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \
312 HOST_WIDE_INT *VAL = RESULT.write_val ()
314 template <typename T> class generic_wide_int;
315 template <int N> class fixed_wide_int_storage;
316 class wide_int_storage;
318 /* An N-bit integer. Until we can use typedef templates, use this instead. */
319 #define FIXED_WIDE_INT(N) \
320 generic_wide_int < fixed_wide_int_storage <N> >
322 typedef generic_wide_int <wide_int_storage> wide_int;
323 typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int;
324 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int;
325 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
326 so as not to confuse gengtype. */
327 typedef generic_wide_int < fixed_wide_int_storage <WIDE_INT_MAX_PRECISION * 2> > widest2_int;
329 /* wi::storage_ref can be a reference to a primitive type,
330 so this is the conservatively-correct setting. */
331 template <bool SE, bool HDP = true>
332 class wide_int_ref_storage;
334 typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref;
336 /* This can be used instead of wide_int_ref if the referenced value is
337 known to have type T. It carries across properties of T's representation,
338 such as whether excess upper bits in a HWI are defined, and can therefore
339 help avoid redundant work.
341 The macro could be replaced with a template typedef, once we're able
342 to use those. */
343 #define WIDE_INT_REF_FOR(T) \
344 generic_wide_int \
345 <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended, \
346 wi::int_traits <T>::host_dependent_precision> >
348 namespace wi
350 /* Operations that calculate overflow do so even for
351 TYPE_OVERFLOW_WRAPS types. For example, adding 1 to +MAX_INT in
352 an unsigned int is 0 and does not overflow in C/C++, but wi::add
353 will set the overflow argument in case it's needed for further
354 analysis.
356 For operations that require overflow, these are the different
357 types of overflow. */
358 enum overflow_type {
359 OVF_NONE = 0,
360 OVF_UNDERFLOW = -1,
361 OVF_OVERFLOW = 1,
362 /* There was an overflow, but we are unsure whether it was an
363 overflow or an underflow. */
364 OVF_UNKNOWN = 2
367 /* Classifies an integer based on its precision. */
368 enum precision_type {
369 /* The integer has both a precision and defined signedness. This allows
370 the integer to be converted to any width, since we know whether to fill
371 any extra bits with zeros or signs. */
372 FLEXIBLE_PRECISION,
374 /* The integer has a variable precision but no defined signedness. */
375 VAR_PRECISION,
377 /* The integer has a constant precision (known at GCC compile time)
378 and is signed. */
379 CONST_PRECISION
382 /* This class, which has no default implementation, is expected to
383 provide the following members:
385 static const enum precision_type precision_type;
386 Classifies the type of T.
388 static const unsigned int precision;
389 Only defined if precision_type == CONST_PRECISION. Specifies the
390 precision of all integers of type T.
392 static const bool host_dependent_precision;
393 True if the precision of T depends (or can depend) on the host.
395 static unsigned int get_precision (const T &x)
396 Return the number of bits in X.
398 static wi::storage_ref *decompose (HOST_WIDE_INT *scratch,
399 unsigned int precision, const T &x)
400 Decompose X as a PRECISION-bit integer, returning the associated
401 wi::storage_ref. SCRATCH is available as scratch space if needed.
402 The routine should assert that PRECISION is acceptable. */
403 template <typename T> struct int_traits;
405 /* This class provides a single type, result_type, which specifies the
406 type of integer produced by a binary operation whose inputs have
407 types T1 and T2. The definition should be symmetric. */
408 template <typename T1, typename T2,
409 enum precision_type P1 = int_traits <T1>::precision_type,
410 enum precision_type P2 = int_traits <T2>::precision_type>
411 struct binary_traits;
413 /* Specify the result type for each supported combination of binary
414 inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be
415 mixed, in order to give stronger type checking. When both inputs
416 are CONST_PRECISION, they must have the same precision. */
417 template <typename T1, typename T2>
418 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION>
420 typedef widest_int result_type;
421 /* Don't define operators for this combination. */
424 template <typename T1, typename T2>
425 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION>
427 typedef wide_int result_type;
428 typedef result_type operator_result;
429 typedef bool predicate_result;
432 template <typename T1, typename T2>
433 struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION>
435 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
436 so as not to confuse gengtype. */
437 typedef generic_wide_int < fixed_wide_int_storage
438 <int_traits <T2>::precision> > result_type;
439 typedef result_type operator_result;
440 typedef bool predicate_result;
441 typedef result_type signed_shift_result_type;
442 typedef bool signed_predicate_result;
445 template <typename T1, typename T2>
446 struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION>
448 typedef wide_int result_type;
449 typedef result_type operator_result;
450 typedef bool predicate_result;
453 template <typename T1, typename T2>
454 struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION>
456 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
457 so as not to confuse gengtype. */
458 typedef generic_wide_int < fixed_wide_int_storage
459 <int_traits <T1>::precision> > result_type;
460 typedef result_type operator_result;
461 typedef bool predicate_result;
462 typedef result_type signed_shift_result_type;
463 typedef bool signed_predicate_result;
466 template <typename T1, typename T2>
467 struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION>
469 STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision);
470 /* Spelled out explicitly (rather than through FIXED_WIDE_INT)
471 so as not to confuse gengtype. */
472 typedef generic_wide_int < fixed_wide_int_storage
473 <int_traits <T1>::precision> > result_type;
474 typedef result_type operator_result;
475 typedef bool predicate_result;
476 typedef result_type signed_shift_result_type;
477 typedef bool signed_predicate_result;
480 template <typename T1, typename T2>
481 struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION>
483 typedef wide_int result_type;
484 typedef result_type operator_result;
485 typedef bool predicate_result;
489 /* Public functions for querying and operating on integers. */
490 namespace wi
492 template <typename T>
493 unsigned int get_precision (const T &);
495 template <typename T1, typename T2>
496 unsigned int get_binary_precision (const T1 &, const T2 &);
498 template <typename T1, typename T2>
499 void copy (T1 &, const T2 &);
501 #define UNARY_PREDICATE \
502 template <typename T> bool
503 #define UNARY_FUNCTION \
504 template <typename T> WI_UNARY_RESULT (T)
505 #define BINARY_PREDICATE \
506 template <typename T1, typename T2> bool
507 #define BINARY_FUNCTION \
508 template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2)
509 #define SHIFT_FUNCTION \
510 template <typename T1, typename T2> WI_UNARY_RESULT (T1)
512 UNARY_PREDICATE fits_shwi_p (const T &);
513 UNARY_PREDICATE fits_uhwi_p (const T &);
514 UNARY_PREDICATE neg_p (const T &, signop = SIGNED);
516 template <typename T>
517 HOST_WIDE_INT sign_mask (const T &);
519 BINARY_PREDICATE eq_p (const T1 &, const T2 &);
520 BINARY_PREDICATE ne_p (const T1 &, const T2 &);
521 BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop);
522 BINARY_PREDICATE lts_p (const T1 &, const T2 &);
523 BINARY_PREDICATE ltu_p (const T1 &, const T2 &);
524 BINARY_PREDICATE le_p (const T1 &, const T2 &, signop);
525 BINARY_PREDICATE les_p (const T1 &, const T2 &);
526 BINARY_PREDICATE leu_p (const T1 &, const T2 &);
527 BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop);
528 BINARY_PREDICATE gts_p (const T1 &, const T2 &);
529 BINARY_PREDICATE gtu_p (const T1 &, const T2 &);
530 BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop);
531 BINARY_PREDICATE ges_p (const T1 &, const T2 &);
532 BINARY_PREDICATE geu_p (const T1 &, const T2 &);
534 template <typename T1, typename T2>
535 int cmp (const T1 &, const T2 &, signop);
537 template <typename T1, typename T2>
538 int cmps (const T1 &, const T2 &);
540 template <typename T1, typename T2>
541 int cmpu (const T1 &, const T2 &);
543 UNARY_FUNCTION bit_not (const T &);
544 UNARY_FUNCTION neg (const T &);
545 UNARY_FUNCTION neg (const T &, overflow_type *);
546 UNARY_FUNCTION abs (const T &);
547 UNARY_FUNCTION ext (const T &, unsigned int, signop);
548 UNARY_FUNCTION sext (const T &, unsigned int);
549 UNARY_FUNCTION zext (const T &, unsigned int);
550 UNARY_FUNCTION set_bit (const T &, unsigned int);
552 BINARY_FUNCTION min (const T1 &, const T2 &, signop);
553 BINARY_FUNCTION smin (const T1 &, const T2 &);
554 BINARY_FUNCTION umin (const T1 &, const T2 &);
555 BINARY_FUNCTION max (const T1 &, const T2 &, signop);
556 BINARY_FUNCTION smax (const T1 &, const T2 &);
557 BINARY_FUNCTION umax (const T1 &, const T2 &);
559 BINARY_FUNCTION bit_and (const T1 &, const T2 &);
560 BINARY_FUNCTION bit_and_not (const T1 &, const T2 &);
561 BINARY_FUNCTION bit_or (const T1 &, const T2 &);
562 BINARY_FUNCTION bit_or_not (const T1 &, const T2 &);
563 BINARY_FUNCTION bit_xor (const T1 &, const T2 &);
564 BINARY_FUNCTION add (const T1 &, const T2 &);
565 BINARY_FUNCTION add (const T1 &, const T2 &, signop, overflow_type *);
566 BINARY_FUNCTION sub (const T1 &, const T2 &);
567 BINARY_FUNCTION sub (const T1 &, const T2 &, signop, overflow_type *);
568 BINARY_FUNCTION mul (const T1 &, const T2 &);
569 BINARY_FUNCTION mul (const T1 &, const T2 &, signop, overflow_type *);
570 BINARY_FUNCTION smul (const T1 &, const T2 &, overflow_type *);
571 BINARY_FUNCTION umul (const T1 &, const T2 &, overflow_type *);
572 BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop);
573 BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop,
574 overflow_type * = 0);
575 BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &);
576 BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &);
577 BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop,
578 overflow_type * = 0);
579 BINARY_FUNCTION udiv_floor (const T1 &, const T2 &);
580 BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &);
581 BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop,
582 overflow_type * = 0);
583 BINARY_FUNCTION udiv_ceil (const T1 &, const T2 &);
584 BINARY_FUNCTION div_round (const T1 &, const T2 &, signop,
585 overflow_type * = 0);
586 BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop,
587 WI_BINARY_RESULT (T1, T2) *);
588 BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED);
589 BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop,
590 overflow_type * = 0);
591 BINARY_FUNCTION smod_trunc (const T1 &, const T2 &);
592 BINARY_FUNCTION umod_trunc (const T1 &, const T2 &);
593 BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop,
594 overflow_type * = 0);
595 BINARY_FUNCTION umod_floor (const T1 &, const T2 &);
596 BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop,
597 overflow_type * = 0);
598 BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop,
599 overflow_type * = 0);
601 template <typename T1, typename T2>
602 bool multiple_of_p (const T1 &, const T2 &, signop);
604 template <typename T1, typename T2>
605 bool multiple_of_p (const T1 &, const T2 &, signop,
606 WI_BINARY_RESULT (T1, T2) *);
608 SHIFT_FUNCTION lshift (const T1 &, const T2 &);
609 SHIFT_FUNCTION lrshift (const T1 &, const T2 &);
610 SHIFT_FUNCTION arshift (const T1 &, const T2 &);
611 SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn);
612 SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0);
613 SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0);
615 #undef SHIFT_FUNCTION
616 #undef BINARY_PREDICATE
617 #undef BINARY_FUNCTION
618 #undef UNARY_PREDICATE
619 #undef UNARY_FUNCTION
621 bool only_sign_bit_p (const wide_int_ref &, unsigned int);
622 bool only_sign_bit_p (const wide_int_ref &);
623 int clz (const wide_int_ref &);
624 int clrsb (const wide_int_ref &);
625 int ctz (const wide_int_ref &);
626 int exact_log2 (const wide_int_ref &);
627 int floor_log2 (const wide_int_ref &);
628 int ffs (const wide_int_ref &);
629 int popcount (const wide_int_ref &);
630 int parity (const wide_int_ref &);
632 template <typename T>
633 unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int);
635 template <typename T>
636 unsigned int min_precision (const T &, signop);
638 static inline void accumulate_overflow (overflow_type &, overflow_type);
641 namespace wi
643 /* Contains the components of a decomposed integer for easy, direct
644 access. */
645 class storage_ref
647 public:
648 storage_ref () {}
649 storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int);
651 const HOST_WIDE_INT *val;
652 unsigned int len;
653 unsigned int precision;
655 /* Provide enough trappings for this class to act as storage for
656 generic_wide_int. */
657 unsigned int get_len () const;
658 unsigned int get_precision () const;
659 const HOST_WIDE_INT *get_val () const;
663 inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in,
664 unsigned int len_in,
665 unsigned int precision_in)
666 : val (val_in), len (len_in), precision (precision_in)
670 inline unsigned int
671 wi::storage_ref::get_len () const
673 return len;
676 inline unsigned int
677 wi::storage_ref::get_precision () const
679 return precision;
682 inline const HOST_WIDE_INT *
683 wi::storage_ref::get_val () const
685 return val;
688 /* This class defines an integer type using the storage provided by the
689 template argument. The storage class must provide the following
690 functions:
692 unsigned int get_precision () const
693 Return the number of bits in the integer.
695 HOST_WIDE_INT *get_val () const
696 Return a pointer to the array of blocks that encodes the integer.
698 unsigned int get_len () const
699 Return the number of blocks in get_val (). If this is smaller
700 than the number of blocks implied by get_precision (), the
701 remaining blocks are sign extensions of block get_len () - 1.
703 Although not required by generic_wide_int itself, writable storage
704 classes can also provide the following functions:
706 HOST_WIDE_INT *write_val ()
707 Get a modifiable version of get_val ()
709 unsigned int set_len (unsigned int len)
710 Set the value returned by get_len () to LEN. */
711 template <typename storage>
712 class GTY(()) generic_wide_int : public storage
714 public:
715 generic_wide_int ();
717 template <typename T>
718 generic_wide_int (const T &);
720 template <typename T>
721 generic_wide_int (const T &, unsigned int);
723 /* Conversions. */
724 HOST_WIDE_INT to_shwi (unsigned int) const;
725 HOST_WIDE_INT to_shwi () const;
726 unsigned HOST_WIDE_INT to_uhwi (unsigned int) const;
727 unsigned HOST_WIDE_INT to_uhwi () const;
728 HOST_WIDE_INT to_short_addr () const;
730 /* Public accessors for the interior of a wide int. */
731 HOST_WIDE_INT sign_mask () const;
732 HOST_WIDE_INT elt (unsigned int) const;
733 HOST_WIDE_INT sext_elt (unsigned int) const;
734 unsigned HOST_WIDE_INT ulow () const;
735 unsigned HOST_WIDE_INT uhigh () const;
736 HOST_WIDE_INT slow () const;
737 HOST_WIDE_INT shigh () const;
739 template <typename T>
740 generic_wide_int &operator = (const T &);
742 #define ASSIGNMENT_OPERATOR(OP, F) \
743 template <typename T> \
744 generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); }
746 /* Restrict these to cases where the shift operator is defined. */
747 #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \
748 template <typename T> \
749 generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); }
751 #define INCDEC_OPERATOR(OP, DELTA) \
752 generic_wide_int &OP () { *this += DELTA; return *this; }
754 ASSIGNMENT_OPERATOR (operator &=, bit_and)
755 ASSIGNMENT_OPERATOR (operator |=, bit_or)
756 ASSIGNMENT_OPERATOR (operator ^=, bit_xor)
757 ASSIGNMENT_OPERATOR (operator +=, add)
758 ASSIGNMENT_OPERATOR (operator -=, sub)
759 ASSIGNMENT_OPERATOR (operator *=, mul)
760 ASSIGNMENT_OPERATOR (operator <<=, lshift)
761 SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>)
762 INCDEC_OPERATOR (operator ++, 1)
763 INCDEC_OPERATOR (operator --, -1)
765 #undef SHIFT_ASSIGNMENT_OPERATOR
766 #undef ASSIGNMENT_OPERATOR
767 #undef INCDEC_OPERATOR
769 /* Debugging functions. */
770 void dump () const;
772 static const bool is_sign_extended
773 = wi::int_traits <generic_wide_int <storage> >::is_sign_extended;
776 template <typename storage>
777 inline generic_wide_int <storage>::generic_wide_int () {}
779 template <typename storage>
780 template <typename T>
781 inline generic_wide_int <storage>::generic_wide_int (const T &x)
782 : storage (x)
786 template <typename storage>
787 template <typename T>
788 inline generic_wide_int <storage>::generic_wide_int (const T &x,
789 unsigned int precision)
790 : storage (x, precision)
794 /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION.
795 If THIS does not fit in PRECISION, the information is lost. */
796 template <typename storage>
797 inline HOST_WIDE_INT
798 generic_wide_int <storage>::to_shwi (unsigned int precision) const
800 if (precision < HOST_BITS_PER_WIDE_INT)
801 return sext_hwi (this->get_val ()[0], precision);
802 else
803 return this->get_val ()[0];
806 /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */
807 template <typename storage>
808 inline HOST_WIDE_INT
809 generic_wide_int <storage>::to_shwi () const
811 if (is_sign_extended)
812 return this->get_val ()[0];
813 else
814 return to_shwi (this->get_precision ());
817 /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from
818 PRECISION. If THIS does not fit in PRECISION, the information
819 is lost. */
820 template <typename storage>
821 inline unsigned HOST_WIDE_INT
822 generic_wide_int <storage>::to_uhwi (unsigned int precision) const
824 if (precision < HOST_BITS_PER_WIDE_INT)
825 return zext_hwi (this->get_val ()[0], precision);
826 else
827 return this->get_val ()[0];
830 /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */
831 template <typename storage>
832 inline unsigned HOST_WIDE_INT
833 generic_wide_int <storage>::to_uhwi () const
835 return to_uhwi (this->get_precision ());
838 /* TODO: The compiler is half converted from using HOST_WIDE_INT to
839 represent addresses to using offset_int to represent addresses.
840 We use to_short_addr at the interface from new code to old,
841 unconverted code. */
842 template <typename storage>
843 inline HOST_WIDE_INT
844 generic_wide_int <storage>::to_short_addr () const
846 return this->get_val ()[0];
849 /* Return the implicit value of blocks above get_len (). */
850 template <typename storage>
851 inline HOST_WIDE_INT
852 generic_wide_int <storage>::sign_mask () const
854 unsigned int len = this->get_len ();
855 gcc_assert (len > 0);
857 unsigned HOST_WIDE_INT high = this->get_val ()[len - 1];
858 if (!is_sign_extended)
860 unsigned int precision = this->get_precision ();
861 int excess = len * HOST_BITS_PER_WIDE_INT - precision;
862 if (excess > 0)
863 high <<= excess;
865 return (HOST_WIDE_INT) (high) < 0 ? -1 : 0;
868 /* Return the signed value of the least-significant explicitly-encoded
869 block. */
870 template <typename storage>
871 inline HOST_WIDE_INT
872 generic_wide_int <storage>::slow () const
874 return this->get_val ()[0];
877 /* Return the signed value of the most-significant explicitly-encoded
878 block. */
879 template <typename storage>
880 inline HOST_WIDE_INT
881 generic_wide_int <storage>::shigh () const
883 return this->get_val ()[this->get_len () - 1];
886 /* Return the unsigned value of the least-significant
887 explicitly-encoded block. */
888 template <typename storage>
889 inline unsigned HOST_WIDE_INT
890 generic_wide_int <storage>::ulow () const
892 return this->get_val ()[0];
895 /* Return the unsigned value of the most-significant
896 explicitly-encoded block. */
897 template <typename storage>
898 inline unsigned HOST_WIDE_INT
899 generic_wide_int <storage>::uhigh () const
901 return this->get_val ()[this->get_len () - 1];
904 /* Return block I, which might be implicitly or explicit encoded. */
905 template <typename storage>
906 inline HOST_WIDE_INT
907 generic_wide_int <storage>::elt (unsigned int i) const
909 if (i >= this->get_len ())
910 return sign_mask ();
911 else
912 return this->get_val ()[i];
915 /* Like elt, but sign-extend beyond the upper bit, instead of returning
916 the raw encoding. */
917 template <typename storage>
918 inline HOST_WIDE_INT
919 generic_wide_int <storage>::sext_elt (unsigned int i) const
921 HOST_WIDE_INT elt_i = elt (i);
922 if (!is_sign_extended)
924 unsigned int precision = this->get_precision ();
925 unsigned int lsb = i * HOST_BITS_PER_WIDE_INT;
926 if (precision - lsb < HOST_BITS_PER_WIDE_INT)
927 elt_i = sext_hwi (elt_i, precision - lsb);
929 return elt_i;
932 template <typename storage>
933 template <typename T>
934 inline generic_wide_int <storage> &
935 generic_wide_int <storage>::operator = (const T &x)
937 storage::operator = (x);
938 return *this;
941 /* Dump the contents of the integer to stderr, for debugging. */
942 template <typename storage>
943 void
944 generic_wide_int <storage>::dump () const
946 unsigned int len = this->get_len ();
947 const HOST_WIDE_INT *val = this->get_val ();
948 unsigned int precision = this->get_precision ();
949 fprintf (stderr, "[");
950 if (len * HOST_BITS_PER_WIDE_INT < precision)
951 fprintf (stderr, "...,");
952 for (unsigned int i = 0; i < len - 1; ++i)
953 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]);
954 fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n",
955 val[0], precision);
958 namespace wi
960 template <typename storage>
961 struct int_traits < generic_wide_int <storage> >
962 : public wi::int_traits <storage>
964 static unsigned int get_precision (const generic_wide_int <storage> &);
965 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
966 const generic_wide_int <storage> &);
970 template <typename storage>
971 inline unsigned int
972 wi::int_traits < generic_wide_int <storage> >::
973 get_precision (const generic_wide_int <storage> &x)
975 return x.get_precision ();
978 template <typename storage>
979 inline wi::storage_ref
980 wi::int_traits < generic_wide_int <storage> >::
981 decompose (HOST_WIDE_INT *, unsigned int precision,
982 const generic_wide_int <storage> &x)
984 gcc_checking_assert (precision == x.get_precision ());
985 return wi::storage_ref (x.get_val (), x.get_len (), precision);
988 /* Provide the storage for a wide_int_ref. This acts like a read-only
989 wide_int, with the optimization that VAL is normally a pointer to
990 another integer's storage, so that no array copy is needed. */
991 template <bool SE, bool HDP>
992 class wide_int_ref_storage : public wi::storage_ref
994 private:
995 /* Scratch space that can be used when decomposing the original integer.
996 It must live as long as this object. */
997 HOST_WIDE_INT scratch[2];
999 public:
1000 wide_int_ref_storage () {}
1002 wide_int_ref_storage (const wi::storage_ref &);
1004 template <typename T>
1005 wide_int_ref_storage (const T &);
1007 template <typename T>
1008 wide_int_ref_storage (const T &, unsigned int);
1011 /* Create a reference from an existing reference. */
1012 template <bool SE, bool HDP>
1013 inline wide_int_ref_storage <SE, HDP>::
1014 wide_int_ref_storage (const wi::storage_ref &x)
1015 : storage_ref (x)
1018 /* Create a reference to integer X in its natural precision. Note
1019 that the natural precision is host-dependent for primitive
1020 types. */
1021 template <bool SE, bool HDP>
1022 template <typename T>
1023 inline wide_int_ref_storage <SE, HDP>::wide_int_ref_storage (const T &x)
1024 : storage_ref (wi::int_traits <T>::decompose (scratch,
1025 wi::get_precision (x), x))
1029 /* Create a reference to integer X in precision PRECISION. */
1030 template <bool SE, bool HDP>
1031 template <typename T>
1032 inline wide_int_ref_storage <SE, HDP>::
1033 wide_int_ref_storage (const T &x, unsigned int precision)
1034 : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x))
1038 namespace wi
1040 template <bool SE, bool HDP>
1041 struct int_traits <wide_int_ref_storage <SE, HDP> >
1043 static const enum precision_type precision_type = VAR_PRECISION;
1044 static const bool host_dependent_precision = HDP;
1045 static const bool is_sign_extended = SE;
1049 namespace wi
1051 unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1052 unsigned int, unsigned int, unsigned int,
1053 signop sgn);
1054 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1055 unsigned int, unsigned int, bool = true);
1058 /* The storage used by wide_int. */
1059 class GTY(()) wide_int_storage
1061 private:
1062 HOST_WIDE_INT val[WIDE_INT_MAX_ELTS];
1063 unsigned int len;
1064 unsigned int precision;
1066 public:
1067 wide_int_storage ();
1068 template <typename T>
1069 wide_int_storage (const T &);
1071 /* The standard generic_wide_int storage methods. */
1072 unsigned int get_precision () const;
1073 const HOST_WIDE_INT *get_val () const;
1074 unsigned int get_len () const;
1075 HOST_WIDE_INT *write_val ();
1076 void set_len (unsigned int, bool = false);
1078 template <typename T>
1079 wide_int_storage &operator = (const T &);
1081 static wide_int from (const wide_int_ref &, unsigned int, signop);
1082 static wide_int from_array (const HOST_WIDE_INT *, unsigned int,
1083 unsigned int, bool = true);
1084 static wide_int create (unsigned int);
1086 /* FIXME: target-dependent, so should disappear. */
1087 wide_int bswap () const;
1090 namespace wi
1092 template <>
1093 struct int_traits <wide_int_storage>
1095 static const enum precision_type precision_type = VAR_PRECISION;
1096 /* Guaranteed by a static assert in the wide_int_storage constructor. */
1097 static const bool host_dependent_precision = false;
1098 static const bool is_sign_extended = true;
1099 template <typename T1, typename T2>
1100 static wide_int get_binary_result (const T1 &, const T2 &);
1104 inline wide_int_storage::wide_int_storage () {}
1106 /* Initialize the storage from integer X, in its natural precision.
1107 Note that we do not allow integers with host-dependent precision
1108 to become wide_ints; wide_ints must always be logically independent
1109 of the host. */
1110 template <typename T>
1111 inline wide_int_storage::wide_int_storage (const T &x)
1113 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1114 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1115 WIDE_INT_REF_FOR (T) xi (x);
1116 precision = xi.precision;
1117 wi::copy (*this, xi);
1120 template <typename T>
1121 inline wide_int_storage&
1122 wide_int_storage::operator = (const T &x)
1124 { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); }
1125 { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); }
1126 WIDE_INT_REF_FOR (T) xi (x);
1127 precision = xi.precision;
1128 wi::copy (*this, xi);
1129 return *this;
1132 inline unsigned int
1133 wide_int_storage::get_precision () const
1135 return precision;
1138 inline const HOST_WIDE_INT *
1139 wide_int_storage::get_val () const
1141 return val;
1144 inline unsigned int
1145 wide_int_storage::get_len () const
1147 return len;
1150 inline HOST_WIDE_INT *
1151 wide_int_storage::write_val ()
1153 return val;
1156 inline void
1157 wide_int_storage::set_len (unsigned int l, bool is_sign_extended)
1159 len = l;
1160 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision)
1161 val[len - 1] = sext_hwi (val[len - 1],
1162 precision % HOST_BITS_PER_WIDE_INT);
1165 /* Treat X as having signedness SGN and convert it to a PRECISION-bit
1166 number. */
1167 inline wide_int
1168 wide_int_storage::from (const wide_int_ref &x, unsigned int precision,
1169 signop sgn)
1171 wide_int result = wide_int::create (precision);
1172 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1173 x.precision, precision, sgn));
1174 return result;
1177 /* Create a wide_int from the explicit block encoding given by VAL and
1178 LEN. PRECISION is the precision of the integer. NEED_CANON_P is
1179 true if the encoding may have redundant trailing blocks. */
1180 inline wide_int
1181 wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len,
1182 unsigned int precision, bool need_canon_p)
1184 wide_int result = wide_int::create (precision);
1185 result.set_len (wi::from_array (result.write_val (), val, len, precision,
1186 need_canon_p));
1187 return result;
1190 /* Return an uninitialized wide_int with precision PRECISION. */
1191 inline wide_int
1192 wide_int_storage::create (unsigned int precision)
1194 wide_int x;
1195 x.precision = precision;
1196 return x;
1199 template <typename T1, typename T2>
1200 inline wide_int
1201 wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y)
1203 /* This shouldn't be used for two flexible-precision inputs. */
1204 STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION
1205 || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION);
1206 if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION)
1207 return wide_int::create (wi::get_precision (y));
1208 else
1209 return wide_int::create (wi::get_precision (x));
1212 /* The storage used by FIXED_WIDE_INT (N). */
1213 template <int N>
1214 class GTY(()) fixed_wide_int_storage
1216 private:
1217 HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT];
1218 unsigned int len;
1220 public:
1221 fixed_wide_int_storage ();
1222 template <typename T>
1223 fixed_wide_int_storage (const T &);
1225 /* The standard generic_wide_int storage methods. */
1226 unsigned int get_precision () const;
1227 const HOST_WIDE_INT *get_val () const;
1228 unsigned int get_len () const;
1229 HOST_WIDE_INT *write_val ();
1230 void set_len (unsigned int, bool = false);
1232 static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop);
1233 static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int,
1234 bool = true);
1237 namespace wi
1239 template <int N>
1240 struct int_traits < fixed_wide_int_storage <N> >
1242 static const enum precision_type precision_type = CONST_PRECISION;
1243 static const bool host_dependent_precision = false;
1244 static const bool is_sign_extended = true;
1245 static const unsigned int precision = N;
1246 template <typename T1, typename T2>
1247 static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &);
1251 template <int N>
1252 inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {}
1254 /* Initialize the storage from integer X, in precision N. */
1255 template <int N>
1256 template <typename T>
1257 inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x)
1259 /* Check for type compatibility. We don't want to initialize a
1260 fixed-width integer from something like a wide_int. */
1261 WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED;
1262 wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N));
1265 template <int N>
1266 inline unsigned int
1267 fixed_wide_int_storage <N>::get_precision () const
1269 return N;
1272 template <int N>
1273 inline const HOST_WIDE_INT *
1274 fixed_wide_int_storage <N>::get_val () const
1276 return val;
1279 template <int N>
1280 inline unsigned int
1281 fixed_wide_int_storage <N>::get_len () const
1283 return len;
1286 template <int N>
1287 inline HOST_WIDE_INT *
1288 fixed_wide_int_storage <N>::write_val ()
1290 return val;
1293 template <int N>
1294 inline void
1295 fixed_wide_int_storage <N>::set_len (unsigned int l, bool)
1297 len = l;
1298 /* There are no excess bits in val[len - 1]. */
1299 STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0);
1302 /* Treat X as having signedness SGN and convert it to an N-bit number. */
1303 template <int N>
1304 inline FIXED_WIDE_INT (N)
1305 fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn)
1307 FIXED_WIDE_INT (N) result;
1308 result.set_len (wi::force_to_size (result.write_val (), x.val, x.len,
1309 x.precision, N, sgn));
1310 return result;
1313 /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by
1314 VAL and LEN. NEED_CANON_P is true if the encoding may have redundant
1315 trailing blocks. */
1316 template <int N>
1317 inline FIXED_WIDE_INT (N)
1318 fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val,
1319 unsigned int len,
1320 bool need_canon_p)
1322 FIXED_WIDE_INT (N) result;
1323 result.set_len (wi::from_array (result.write_val (), val, len,
1324 N, need_canon_p));
1325 return result;
1328 template <int N>
1329 template <typename T1, typename T2>
1330 inline FIXED_WIDE_INT (N)
1331 wi::int_traits < fixed_wide_int_storage <N> >::
1332 get_binary_result (const T1 &, const T2 &)
1334 return FIXED_WIDE_INT (N) ();
1337 /* A reference to one element of a trailing_wide_ints structure. */
1338 class trailing_wide_int_storage
1340 private:
1341 /* The precision of the integer, which is a fixed property of the
1342 parent trailing_wide_ints. */
1343 unsigned int m_precision;
1345 /* A pointer to the length field. */
1346 unsigned char *m_len;
1348 /* A pointer to the HWI array. There are enough elements to hold all
1349 values of precision M_PRECISION. */
1350 HOST_WIDE_INT *m_val;
1352 public:
1353 trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *);
1355 /* The standard generic_wide_int storage methods. */
1356 unsigned int get_len () const;
1357 unsigned int get_precision () const;
1358 const HOST_WIDE_INT *get_val () const;
1359 HOST_WIDE_INT *write_val ();
1360 void set_len (unsigned int, bool = false);
1362 template <typename T>
1363 trailing_wide_int_storage &operator = (const T &);
1366 typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int;
1368 /* trailing_wide_int behaves like a wide_int. */
1369 namespace wi
1371 template <>
1372 struct int_traits <trailing_wide_int_storage>
1373 : public int_traits <wide_int_storage> {};
1376 /* An array of N wide_int-like objects that can be put at the end of
1377 a variable-sized structure. Use extra_size to calculate how many
1378 bytes beyond the sizeof need to be allocated. Use set_precision
1379 to initialize the structure. */
1380 template <int N>
1381 struct GTY((user)) trailing_wide_ints
1383 private:
1384 /* The shared precision of each number. */
1385 unsigned short m_precision;
1387 /* The shared maximum length of each number. */
1388 unsigned char m_max_len;
1390 /* The current length of each number. */
1391 unsigned char m_len[N];
1393 /* The variable-length part of the structure, which always contains
1394 at least one HWI. Element I starts at index I * M_MAX_LEN. */
1395 HOST_WIDE_INT m_val[1];
1397 public:
1398 typedef WIDE_INT_REF_FOR (trailing_wide_int_storage) const_reference;
1400 void set_precision (unsigned int);
1401 unsigned int get_precision () const { return m_precision; }
1402 trailing_wide_int operator [] (unsigned int);
1403 const_reference operator [] (unsigned int) const;
1404 static size_t extra_size (unsigned int);
1405 size_t extra_size () const { return extra_size (m_precision); }
1408 inline trailing_wide_int_storage::
1409 trailing_wide_int_storage (unsigned int precision, unsigned char *len,
1410 HOST_WIDE_INT *val)
1411 : m_precision (precision), m_len (len), m_val (val)
1415 inline unsigned int
1416 trailing_wide_int_storage::get_len () const
1418 return *m_len;
1421 inline unsigned int
1422 trailing_wide_int_storage::get_precision () const
1424 return m_precision;
1427 inline const HOST_WIDE_INT *
1428 trailing_wide_int_storage::get_val () const
1430 return m_val;
1433 inline HOST_WIDE_INT *
1434 trailing_wide_int_storage::write_val ()
1436 return m_val;
1439 inline void
1440 trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended)
1442 *m_len = len;
1443 if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision)
1444 m_val[len - 1] = sext_hwi (m_val[len - 1],
1445 m_precision % HOST_BITS_PER_WIDE_INT);
1448 template <typename T>
1449 inline trailing_wide_int_storage &
1450 trailing_wide_int_storage::operator = (const T &x)
1452 WIDE_INT_REF_FOR (T) xi (x, m_precision);
1453 wi::copy (*this, xi);
1454 return *this;
1457 /* Initialize the structure and record that all elements have precision
1458 PRECISION. */
1459 template <int N>
1460 inline void
1461 trailing_wide_ints <N>::set_precision (unsigned int precision)
1463 m_precision = precision;
1464 m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1465 / HOST_BITS_PER_WIDE_INT);
1468 /* Return a reference to element INDEX. */
1469 template <int N>
1470 inline trailing_wide_int
1471 trailing_wide_ints <N>::operator [] (unsigned int index)
1473 return trailing_wide_int_storage (m_precision, &m_len[index],
1474 &m_val[index * m_max_len]);
1477 template <int N>
1478 inline typename trailing_wide_ints <N>::const_reference
1479 trailing_wide_ints <N>::operator [] (unsigned int index) const
1481 return wi::storage_ref (&m_val[index * m_max_len],
1482 m_len[index], m_precision);
1485 /* Return how many extra bytes need to be added to the end of the structure
1486 in order to handle N wide_ints of precision PRECISION. */
1487 template <int N>
1488 inline size_t
1489 trailing_wide_ints <N>::extra_size (unsigned int precision)
1491 unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1)
1492 / HOST_BITS_PER_WIDE_INT);
1493 return (N * max_len - 1) * sizeof (HOST_WIDE_INT);
1496 /* This macro is used in structures that end with a trailing_wide_ints field
1497 called FIELD. It declares get_NAME() and set_NAME() methods to access
1498 element I of FIELD. */
1499 #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \
1500 trailing_wide_int get_##NAME () { return FIELD[I]; } \
1501 template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; }
1503 namespace wi
1505 /* Implementation of int_traits for primitive integer types like "int". */
1506 template <typename T, bool signed_p>
1507 struct primitive_int_traits
1509 static const enum precision_type precision_type = FLEXIBLE_PRECISION;
1510 static const bool host_dependent_precision = true;
1511 static const bool is_sign_extended = true;
1512 static unsigned int get_precision (T);
1513 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T);
1517 template <typename T, bool signed_p>
1518 inline unsigned int
1519 wi::primitive_int_traits <T, signed_p>::get_precision (T)
1521 return sizeof (T) * CHAR_BIT;
1524 template <typename T, bool signed_p>
1525 inline wi::storage_ref
1526 wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch,
1527 unsigned int precision, T x)
1529 scratch[0] = x;
1530 if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1531 return wi::storage_ref (scratch, 1, precision);
1532 scratch[1] = 0;
1533 return wi::storage_ref (scratch, 2, precision);
1536 /* Allow primitive C types to be used in wi:: routines. */
1537 namespace wi
1539 template <>
1540 struct int_traits <unsigned char>
1541 : public primitive_int_traits <unsigned char, false> {};
1543 template <>
1544 struct int_traits <unsigned short>
1545 : public primitive_int_traits <unsigned short, false> {};
1547 template <>
1548 struct int_traits <int>
1549 : public primitive_int_traits <int, true> {};
1551 template <>
1552 struct int_traits <unsigned int>
1553 : public primitive_int_traits <unsigned int, false> {};
1555 template <>
1556 struct int_traits <long>
1557 : public primitive_int_traits <long, true> {};
1559 template <>
1560 struct int_traits <unsigned long>
1561 : public primitive_int_traits <unsigned long, false> {};
1563 #if defined HAVE_LONG_LONG
1564 template <>
1565 struct int_traits <long long>
1566 : public primitive_int_traits <long long, true> {};
1568 template <>
1569 struct int_traits <unsigned long long>
1570 : public primitive_int_traits <unsigned long long, false> {};
1571 #endif
1574 namespace wi
1576 /* Stores HWI-sized integer VAL, treating it as having signedness SGN
1577 and precision PRECISION. */
1578 class hwi_with_prec
1580 public:
1581 hwi_with_prec () {}
1582 hwi_with_prec (HOST_WIDE_INT, unsigned int, signop);
1583 HOST_WIDE_INT val;
1584 unsigned int precision;
1585 signop sgn;
1588 hwi_with_prec shwi (HOST_WIDE_INT, unsigned int);
1589 hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int);
1591 hwi_with_prec minus_one (unsigned int);
1592 hwi_with_prec zero (unsigned int);
1593 hwi_with_prec one (unsigned int);
1594 hwi_with_prec two (unsigned int);
1597 inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p,
1598 signop s)
1599 : precision (p), sgn (s)
1601 if (precision < HOST_BITS_PER_WIDE_INT)
1602 val = sext_hwi (v, precision);
1603 else
1604 val = v;
1607 /* Return a signed integer that has value VAL and precision PRECISION. */
1608 inline wi::hwi_with_prec
1609 wi::shwi (HOST_WIDE_INT val, unsigned int precision)
1611 return hwi_with_prec (val, precision, SIGNED);
1614 /* Return an unsigned integer that has value VAL and precision PRECISION. */
1615 inline wi::hwi_with_prec
1616 wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision)
1618 return hwi_with_prec (val, precision, UNSIGNED);
1621 /* Return a wide int of -1 with precision PRECISION. */
1622 inline wi::hwi_with_prec
1623 wi::minus_one (unsigned int precision)
1625 return wi::shwi (-1, precision);
1628 /* Return a wide int of 0 with precision PRECISION. */
1629 inline wi::hwi_with_prec
1630 wi::zero (unsigned int precision)
1632 return wi::shwi (0, precision);
1635 /* Return a wide int of 1 with precision PRECISION. */
1636 inline wi::hwi_with_prec
1637 wi::one (unsigned int precision)
1639 return wi::shwi (1, precision);
1642 /* Return a wide int of 2 with precision PRECISION. */
1643 inline wi::hwi_with_prec
1644 wi::two (unsigned int precision)
1646 return wi::shwi (2, precision);
1649 namespace wi
1651 /* ints_for<T>::zero (X) returns a zero that, when asssigned to a T,
1652 gives that T the same precision as X. */
1653 template<typename T, precision_type = int_traits<T>::precision_type>
1654 struct ints_for
1656 static int zero (const T &) { return 0; }
1659 template<typename T>
1660 struct ints_for<T, VAR_PRECISION>
1662 static hwi_with_prec zero (const T &);
1666 template<typename T>
1667 inline wi::hwi_with_prec
1668 wi::ints_for<T, wi::VAR_PRECISION>::zero (const T &x)
1670 return wi::zero (wi::get_precision (x));
1673 namespace wi
1675 template <>
1676 struct int_traits <wi::hwi_with_prec>
1678 static const enum precision_type precision_type = VAR_PRECISION;
1679 /* hwi_with_prec has an explicitly-given precision, rather than the
1680 precision of HOST_WIDE_INT. */
1681 static const bool host_dependent_precision = false;
1682 static const bool is_sign_extended = true;
1683 static unsigned int get_precision (const wi::hwi_with_prec &);
1684 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
1685 const wi::hwi_with_prec &);
1689 inline unsigned int
1690 wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x)
1692 return x.precision;
1695 inline wi::storage_ref
1696 wi::int_traits <wi::hwi_with_prec>::
1697 decompose (HOST_WIDE_INT *scratch, unsigned int precision,
1698 const wi::hwi_with_prec &x)
1700 gcc_checking_assert (precision == x.precision);
1701 scratch[0] = x.val;
1702 if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT)
1703 return wi::storage_ref (scratch, 1, precision);
1704 scratch[1] = 0;
1705 return wi::storage_ref (scratch, 2, precision);
1708 /* Private functions for handling large cases out of line. They take
1709 individual length and array parameters because that is cheaper for
1710 the inline caller than constructing an object on the stack and
1711 passing a reference to it. (Although many callers use wide_int_refs,
1712 we generally want those to be removed by SRA.) */
1713 namespace wi
1715 bool eq_p_large (const HOST_WIDE_INT *, unsigned int,
1716 const HOST_WIDE_INT *, unsigned int, unsigned int);
1717 bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1718 const HOST_WIDE_INT *, unsigned int);
1719 bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1720 const HOST_WIDE_INT *, unsigned int);
1721 int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1722 const HOST_WIDE_INT *, unsigned int);
1723 int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int,
1724 const HOST_WIDE_INT *, unsigned int);
1725 unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1726 unsigned int,
1727 unsigned int, unsigned int);
1728 unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1729 unsigned int,
1730 unsigned int, unsigned int);
1731 unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1732 unsigned int, unsigned int, unsigned int);
1733 unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1734 unsigned int, unsigned int, unsigned int);
1735 unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1736 unsigned int, unsigned int, unsigned int,
1737 unsigned int);
1738 unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1739 unsigned int, unsigned int, unsigned int,
1740 unsigned int);
1741 unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1742 const HOST_WIDE_INT *, unsigned int, unsigned int);
1743 unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1744 unsigned int, const HOST_WIDE_INT *,
1745 unsigned int, unsigned int);
1746 unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1747 const HOST_WIDE_INT *, unsigned int, unsigned int);
1748 unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1749 unsigned int, const HOST_WIDE_INT *,
1750 unsigned int, unsigned int);
1751 unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1752 const HOST_WIDE_INT *, unsigned int, unsigned int);
1753 unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1754 const HOST_WIDE_INT *, unsigned int, unsigned int,
1755 signop, overflow_type *);
1756 unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int,
1757 const HOST_WIDE_INT *, unsigned int, unsigned int,
1758 signop, overflow_type *);
1759 unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *,
1760 unsigned int, const HOST_WIDE_INT *,
1761 unsigned int, unsigned int, signop,
1762 overflow_type *, bool);
1763 unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *,
1764 HOST_WIDE_INT *, const HOST_WIDE_INT *,
1765 unsigned int, unsigned int,
1766 const HOST_WIDE_INT *,
1767 unsigned int, unsigned int,
1768 signop, overflow_type *);
1771 /* Return the number of bits that integer X can hold. */
1772 template <typename T>
1773 inline unsigned int
1774 wi::get_precision (const T &x)
1776 return wi::int_traits <T>::get_precision (x);
1779 /* Return the number of bits that the result of a binary operation can
1780 hold when the input operands are X and Y. */
1781 template <typename T1, typename T2>
1782 inline unsigned int
1783 wi::get_binary_precision (const T1 &x, const T2 &y)
1785 return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>::
1786 get_binary_result (x, y));
1789 /* Copy the contents of Y to X, but keeping X's current precision. */
1790 template <typename T1, typename T2>
1791 inline void
1792 wi::copy (T1 &x, const T2 &y)
1794 HOST_WIDE_INT *xval = x.write_val ();
1795 const HOST_WIDE_INT *yval = y.get_val ();
1796 unsigned int len = y.get_len ();
1797 unsigned int i = 0;
1799 xval[i] = yval[i];
1800 while (++i < len);
1801 x.set_len (len, y.is_sign_extended);
1804 /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */
1805 template <typename T>
1806 inline bool
1807 wi::fits_shwi_p (const T &x)
1809 WIDE_INT_REF_FOR (T) xi (x);
1810 return xi.len == 1;
1813 /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of
1814 precision. */
1815 template <typename T>
1816 inline bool
1817 wi::fits_uhwi_p (const T &x)
1819 WIDE_INT_REF_FOR (T) xi (x);
1820 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
1821 return true;
1822 if (xi.len == 1)
1823 return xi.slow () >= 0;
1824 return xi.len == 2 && xi.uhigh () == 0;
1827 /* Return true if X is negative based on the interpretation of SGN.
1828 For UNSIGNED, this is always false. */
1829 template <typename T>
1830 inline bool
1831 wi::neg_p (const T &x, signop sgn)
1833 WIDE_INT_REF_FOR (T) xi (x);
1834 if (sgn == UNSIGNED)
1835 return false;
1836 return xi.sign_mask () < 0;
1839 /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */
1840 template <typename T>
1841 inline HOST_WIDE_INT
1842 wi::sign_mask (const T &x)
1844 WIDE_INT_REF_FOR (T) xi (x);
1845 return xi.sign_mask ();
1848 /* Return true if X == Y. X and Y must be binary-compatible. */
1849 template <typename T1, typename T2>
1850 inline bool
1851 wi::eq_p (const T1 &x, const T2 &y)
1853 unsigned int precision = get_binary_precision (x, y);
1854 WIDE_INT_REF_FOR (T1) xi (x, precision);
1855 WIDE_INT_REF_FOR (T2) yi (y, precision);
1856 if (xi.is_sign_extended && yi.is_sign_extended)
1858 /* This case reduces to array equality. */
1859 if (xi.len != yi.len)
1860 return false;
1861 unsigned int i = 0;
1863 if (xi.val[i] != yi.val[i])
1864 return false;
1865 while (++i != xi.len);
1866 return true;
1868 if (__builtin_expect (yi.len == 1, true))
1870 /* XI is only equal to YI if it too has a single HWI. */
1871 if (xi.len != 1)
1872 return false;
1873 /* Excess bits in xi.val[0] will be signs or zeros, so comparisons
1874 with 0 are simple. */
1875 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1876 return xi.val[0] == 0;
1877 /* Otherwise flush out any excess bits first. */
1878 unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0];
1879 int excess = HOST_BITS_PER_WIDE_INT - precision;
1880 if (excess > 0)
1881 diff <<= excess;
1882 return diff == 0;
1884 return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision);
1887 /* Return true if X != Y. X and Y must be binary-compatible. */
1888 template <typename T1, typename T2>
1889 inline bool
1890 wi::ne_p (const T1 &x, const T2 &y)
1892 return !eq_p (x, y);
1895 /* Return true if X < Y when both are treated as signed values. */
1896 template <typename T1, typename T2>
1897 inline bool
1898 wi::lts_p (const T1 &x, const T2 &y)
1900 unsigned int precision = get_binary_precision (x, y);
1901 WIDE_INT_REF_FOR (T1) xi (x, precision);
1902 WIDE_INT_REF_FOR (T2) yi (y, precision);
1903 /* We optimize x < y, where y is 64 or fewer bits. */
1904 if (wi::fits_shwi_p (yi))
1906 /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */
1907 if (STATIC_CONSTANT_P (yi.val[0] == 0))
1908 return neg_p (xi);
1909 /* If x fits directly into a shwi, we can compare directly. */
1910 if (wi::fits_shwi_p (xi))
1911 return xi.to_shwi () < yi.to_shwi ();
1912 /* If x doesn't fit and is negative, then it must be more
1913 negative than any value in y, and hence smaller than y. */
1914 if (neg_p (xi))
1915 return true;
1916 /* If x is positive, then it must be larger than any value in y,
1917 and hence greater than y. */
1918 return false;
1920 /* Optimize the opposite case, if it can be detected at compile time. */
1921 if (STATIC_CONSTANT_P (xi.len == 1))
1922 /* If YI is negative it is lower than the least HWI.
1923 If YI is positive it is greater than the greatest HWI. */
1924 return !neg_p (yi);
1925 return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1928 /* Return true if X < Y when both are treated as unsigned values. */
1929 template <typename T1, typename T2>
1930 inline bool
1931 wi::ltu_p (const T1 &x, const T2 &y)
1933 unsigned int precision = get_binary_precision (x, y);
1934 WIDE_INT_REF_FOR (T1) xi (x, precision);
1935 WIDE_INT_REF_FOR (T2) yi (y, precision);
1936 /* Optimize comparisons with constants. */
1937 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
1938 return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0];
1939 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
1940 return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0];
1941 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
1942 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
1943 values does not change the result. */
1944 if (__builtin_expect (xi.len + yi.len == 2, true))
1946 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
1947 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
1948 return xl < yl;
1950 return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len);
1953 /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */
1954 template <typename T1, typename T2>
1955 inline bool
1956 wi::lt_p (const T1 &x, const T2 &y, signop sgn)
1958 if (sgn == SIGNED)
1959 return lts_p (x, y);
1960 else
1961 return ltu_p (x, y);
1964 /* Return true if X <= Y when both are treated as signed values. */
1965 template <typename T1, typename T2>
1966 inline bool
1967 wi::les_p (const T1 &x, const T2 &y)
1969 return !lts_p (y, x);
1972 /* Return true if X <= Y when both are treated as unsigned values. */
1973 template <typename T1, typename T2>
1974 inline bool
1975 wi::leu_p (const T1 &x, const T2 &y)
1977 return !ltu_p (y, x);
1980 /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */
1981 template <typename T1, typename T2>
1982 inline bool
1983 wi::le_p (const T1 &x, const T2 &y, signop sgn)
1985 if (sgn == SIGNED)
1986 return les_p (x, y);
1987 else
1988 return leu_p (x, y);
1991 /* Return true if X > Y when both are treated as signed values. */
1992 template <typename T1, typename T2>
1993 inline bool
1994 wi::gts_p (const T1 &x, const T2 &y)
1996 return lts_p (y, x);
1999 /* Return true if X > Y when both are treated as unsigned values. */
2000 template <typename T1, typename T2>
2001 inline bool
2002 wi::gtu_p (const T1 &x, const T2 &y)
2004 return ltu_p (y, x);
2007 /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */
2008 template <typename T1, typename T2>
2009 inline bool
2010 wi::gt_p (const T1 &x, const T2 &y, signop sgn)
2012 if (sgn == SIGNED)
2013 return gts_p (x, y);
2014 else
2015 return gtu_p (x, y);
2018 /* Return true if X >= Y when both are treated as signed values. */
2019 template <typename T1, typename T2>
2020 inline bool
2021 wi::ges_p (const T1 &x, const T2 &y)
2023 return !lts_p (x, y);
2026 /* Return true if X >= Y when both are treated as unsigned values. */
2027 template <typename T1, typename T2>
2028 inline bool
2029 wi::geu_p (const T1 &x, const T2 &y)
2031 return !ltu_p (x, y);
2034 /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */
2035 template <typename T1, typename T2>
2036 inline bool
2037 wi::ge_p (const T1 &x, const T2 &y, signop sgn)
2039 if (sgn == SIGNED)
2040 return ges_p (x, y);
2041 else
2042 return geu_p (x, y);
2045 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2046 as signed values. */
2047 template <typename T1, typename T2>
2048 inline int
2049 wi::cmps (const T1 &x, const T2 &y)
2051 unsigned int precision = get_binary_precision (x, y);
2052 WIDE_INT_REF_FOR (T1) xi (x, precision);
2053 WIDE_INT_REF_FOR (T2) yi (y, precision);
2054 if (wi::fits_shwi_p (yi))
2056 /* Special case for comparisons with 0. */
2057 if (STATIC_CONSTANT_P (yi.val[0] == 0))
2058 return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0);
2059 /* If x fits into a signed HWI, we can compare directly. */
2060 if (wi::fits_shwi_p (xi))
2062 HOST_WIDE_INT xl = xi.to_shwi ();
2063 HOST_WIDE_INT yl = yi.to_shwi ();
2064 return xl < yl ? -1 : xl > yl;
2066 /* If x doesn't fit and is negative, then it must be more
2067 negative than any signed HWI, and hence smaller than y. */
2068 if (neg_p (xi))
2069 return -1;
2070 /* If x is positive, then it must be larger than any signed HWI,
2071 and hence greater than y. */
2072 return 1;
2074 /* Optimize the opposite case, if it can be detected at compile time. */
2075 if (STATIC_CONSTANT_P (xi.len == 1))
2076 /* If YI is negative it is lower than the least HWI.
2077 If YI is positive it is greater than the greatest HWI. */
2078 return neg_p (yi) ? 1 : -1;
2079 return cmps_large (xi.val, xi.len, precision, yi.val, yi.len);
2082 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y
2083 as unsigned values. */
2084 template <typename T1, typename T2>
2085 inline int
2086 wi::cmpu (const T1 &x, const T2 &y)
2088 unsigned int precision = get_binary_precision (x, y);
2089 WIDE_INT_REF_FOR (T1) xi (x, precision);
2090 WIDE_INT_REF_FOR (T2) yi (y, precision);
2091 /* Optimize comparisons with constants. */
2092 if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0))
2094 /* If XI doesn't fit in a HWI then it must be larger than YI. */
2095 if (xi.len != 1)
2096 return 1;
2097 /* Otherwise compare directly. */
2098 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2099 unsigned HOST_WIDE_INT yl = yi.val[0];
2100 return xl < yl ? -1 : xl > yl;
2102 if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0))
2104 /* If YI doesn't fit in a HWI then it must be larger than XI. */
2105 if (yi.len != 1)
2106 return -1;
2107 /* Otherwise compare directly. */
2108 unsigned HOST_WIDE_INT xl = xi.val[0];
2109 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2110 return xl < yl ? -1 : xl > yl;
2112 /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended
2113 for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both
2114 values does not change the result. */
2115 if (__builtin_expect (xi.len + yi.len == 2, true))
2117 unsigned HOST_WIDE_INT xl = xi.to_uhwi ();
2118 unsigned HOST_WIDE_INT yl = yi.to_uhwi ();
2119 return xl < yl ? -1 : xl > yl;
2121 return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len);
2124 /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of
2125 X and Y indicated by SGN. */
2126 template <typename T1, typename T2>
2127 inline int
2128 wi::cmp (const T1 &x, const T2 &y, signop sgn)
2130 if (sgn == SIGNED)
2131 return cmps (x, y);
2132 else
2133 return cmpu (x, y);
2136 /* Return ~x. */
2137 template <typename T>
2138 inline WI_UNARY_RESULT (T)
2139 wi::bit_not (const T &x)
2141 WI_UNARY_RESULT_VAR (result, val, T, x);
2142 WIDE_INT_REF_FOR (T) xi (x, get_precision (result));
2143 for (unsigned int i = 0; i < xi.len; ++i)
2144 val[i] = ~xi.val[i];
2145 result.set_len (xi.len);
2146 return result;
2149 /* Return -x. */
2150 template <typename T>
2151 inline WI_UNARY_RESULT (T)
2152 wi::neg (const T &x)
2154 return sub (0, x);
2157 /* Return -x. Indicate in *OVERFLOW if performing the negation would
2158 cause an overflow. */
2159 template <typename T>
2160 inline WI_UNARY_RESULT (T)
2161 wi::neg (const T &x, overflow_type *overflow)
2163 *overflow = only_sign_bit_p (x) ? OVF_OVERFLOW : OVF_NONE;
2164 return sub (0, x);
2167 /* Return the absolute value of x. */
2168 template <typename T>
2169 inline WI_UNARY_RESULT (T)
2170 wi::abs (const T &x)
2172 return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x);
2175 /* Return the result of sign-extending the low OFFSET bits of X. */
2176 template <typename T>
2177 inline WI_UNARY_RESULT (T)
2178 wi::sext (const T &x, unsigned int offset)
2180 WI_UNARY_RESULT_VAR (result, val, T, x);
2181 unsigned int precision = get_precision (result);
2182 WIDE_INT_REF_FOR (T) xi (x, precision);
2184 if (offset <= HOST_BITS_PER_WIDE_INT)
2186 val[0] = sext_hwi (xi.ulow (), offset);
2187 result.set_len (1, true);
2189 else
2190 result.set_len (sext_large (val, xi.val, xi.len, precision, offset));
2191 return result;
2194 /* Return the result of zero-extending the low OFFSET bits of X. */
2195 template <typename T>
2196 inline WI_UNARY_RESULT (T)
2197 wi::zext (const T &x, unsigned int offset)
2199 WI_UNARY_RESULT_VAR (result, val, T, x);
2200 unsigned int precision = get_precision (result);
2201 WIDE_INT_REF_FOR (T) xi (x, precision);
2203 /* This is not just an optimization, it is actually required to
2204 maintain canonization. */
2205 if (offset >= precision)
2207 wi::copy (result, xi);
2208 return result;
2211 /* In these cases we know that at least the top bit will be clear,
2212 so no sign extension is necessary. */
2213 if (offset < HOST_BITS_PER_WIDE_INT)
2215 val[0] = zext_hwi (xi.ulow (), offset);
2216 result.set_len (1, true);
2218 else
2219 result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true);
2220 return result;
2223 /* Return the result of extending the low OFFSET bits of X according to
2224 signedness SGN. */
2225 template <typename T>
2226 inline WI_UNARY_RESULT (T)
2227 wi::ext (const T &x, unsigned int offset, signop sgn)
2229 return sgn == SIGNED ? sext (x, offset) : zext (x, offset);
2232 /* Return an integer that represents X | (1 << bit). */
2233 template <typename T>
2234 inline WI_UNARY_RESULT (T)
2235 wi::set_bit (const T &x, unsigned int bit)
2237 WI_UNARY_RESULT_VAR (result, val, T, x);
2238 unsigned int precision = get_precision (result);
2239 WIDE_INT_REF_FOR (T) xi (x, precision);
2240 if (precision <= HOST_BITS_PER_WIDE_INT)
2242 val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit);
2243 result.set_len (1);
2245 else
2246 result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit));
2247 return result;
2250 /* Return the mininum of X and Y, treating them both as having
2251 signedness SGN. */
2252 template <typename T1, typename T2>
2253 inline WI_BINARY_RESULT (T1, T2)
2254 wi::min (const T1 &x, const T2 &y, signop sgn)
2256 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2257 unsigned int precision = get_precision (result);
2258 if (wi::le_p (x, y, sgn))
2259 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2260 else
2261 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2262 return result;
2265 /* Return the minimum of X and Y, treating both as signed values. */
2266 template <typename T1, typename T2>
2267 inline WI_BINARY_RESULT (T1, T2)
2268 wi::smin (const T1 &x, const T2 &y)
2270 return wi::min (x, y, SIGNED);
2273 /* Return the minimum of X and Y, treating both as unsigned values. */
2274 template <typename T1, typename T2>
2275 inline WI_BINARY_RESULT (T1, T2)
2276 wi::umin (const T1 &x, const T2 &y)
2278 return wi::min (x, y, UNSIGNED);
2281 /* Return the maxinum of X and Y, treating them both as having
2282 signedness SGN. */
2283 template <typename T1, typename T2>
2284 inline WI_BINARY_RESULT (T1, T2)
2285 wi::max (const T1 &x, const T2 &y, signop sgn)
2287 WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y);
2288 unsigned int precision = get_precision (result);
2289 if (wi::ge_p (x, y, sgn))
2290 wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision));
2291 else
2292 wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision));
2293 return result;
2296 /* Return the maximum of X and Y, treating both as signed values. */
2297 template <typename T1, typename T2>
2298 inline WI_BINARY_RESULT (T1, T2)
2299 wi::smax (const T1 &x, const T2 &y)
2301 return wi::max (x, y, SIGNED);
2304 /* Return the maximum of X and Y, treating both as unsigned values. */
2305 template <typename T1, typename T2>
2306 inline WI_BINARY_RESULT (T1, T2)
2307 wi::umax (const T1 &x, const T2 &y)
2309 return wi::max (x, y, UNSIGNED);
2312 /* Return X & Y. */
2313 template <typename T1, typename T2>
2314 inline WI_BINARY_RESULT (T1, T2)
2315 wi::bit_and (const T1 &x, const T2 &y)
2317 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2318 unsigned int precision = get_precision (result);
2319 WIDE_INT_REF_FOR (T1) xi (x, precision);
2320 WIDE_INT_REF_FOR (T2) yi (y, precision);
2321 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2322 if (__builtin_expect (xi.len + yi.len == 2, true))
2324 val[0] = xi.ulow () & yi.ulow ();
2325 result.set_len (1, is_sign_extended);
2327 else
2328 result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len,
2329 precision), is_sign_extended);
2330 return result;
2333 /* Return X & ~Y. */
2334 template <typename T1, typename T2>
2335 inline WI_BINARY_RESULT (T1, T2)
2336 wi::bit_and_not (const T1 &x, const T2 &y)
2338 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2339 unsigned int precision = get_precision (result);
2340 WIDE_INT_REF_FOR (T1) xi (x, precision);
2341 WIDE_INT_REF_FOR (T2) yi (y, precision);
2342 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2343 if (__builtin_expect (xi.len + yi.len == 2, true))
2345 val[0] = xi.ulow () & ~yi.ulow ();
2346 result.set_len (1, is_sign_extended);
2348 else
2349 result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len,
2350 precision), is_sign_extended);
2351 return result;
2354 /* Return X | Y. */
2355 template <typename T1, typename T2>
2356 inline WI_BINARY_RESULT (T1, T2)
2357 wi::bit_or (const T1 &x, const T2 &y)
2359 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2360 unsigned int precision = get_precision (result);
2361 WIDE_INT_REF_FOR (T1) xi (x, precision);
2362 WIDE_INT_REF_FOR (T2) yi (y, precision);
2363 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2364 if (__builtin_expect (xi.len + yi.len == 2, true))
2366 val[0] = xi.ulow () | yi.ulow ();
2367 result.set_len (1, is_sign_extended);
2369 else
2370 result.set_len (or_large (val, xi.val, xi.len,
2371 yi.val, yi.len, precision), is_sign_extended);
2372 return result;
2375 /* Return X | ~Y. */
2376 template <typename T1, typename T2>
2377 inline WI_BINARY_RESULT (T1, T2)
2378 wi::bit_or_not (const T1 &x, const T2 &y)
2380 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2381 unsigned int precision = get_precision (result);
2382 WIDE_INT_REF_FOR (T1) xi (x, precision);
2383 WIDE_INT_REF_FOR (T2) yi (y, precision);
2384 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2385 if (__builtin_expect (xi.len + yi.len == 2, true))
2387 val[0] = xi.ulow () | ~yi.ulow ();
2388 result.set_len (1, is_sign_extended);
2390 else
2391 result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len,
2392 precision), is_sign_extended);
2393 return result;
2396 /* Return X ^ Y. */
2397 template <typename T1, typename T2>
2398 inline WI_BINARY_RESULT (T1, T2)
2399 wi::bit_xor (const T1 &x, const T2 &y)
2401 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2402 unsigned int precision = get_precision (result);
2403 WIDE_INT_REF_FOR (T1) xi (x, precision);
2404 WIDE_INT_REF_FOR (T2) yi (y, precision);
2405 bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended;
2406 if (__builtin_expect (xi.len + yi.len == 2, true))
2408 val[0] = xi.ulow () ^ yi.ulow ();
2409 result.set_len (1, is_sign_extended);
2411 else
2412 result.set_len (xor_large (val, xi.val, xi.len,
2413 yi.val, yi.len, precision), is_sign_extended);
2414 return result;
2417 /* Return X + Y. */
2418 template <typename T1, typename T2>
2419 inline WI_BINARY_RESULT (T1, T2)
2420 wi::add (const T1 &x, const T2 &y)
2422 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2423 unsigned int precision = get_precision (result);
2424 WIDE_INT_REF_FOR (T1) xi (x, precision);
2425 WIDE_INT_REF_FOR (T2) yi (y, precision);
2426 if (precision <= HOST_BITS_PER_WIDE_INT)
2428 val[0] = xi.ulow () + yi.ulow ();
2429 result.set_len (1);
2431 /* If the precision is known at compile time to be greater than
2432 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2433 knowing that (a) all bits in those HWIs are significant and
2434 (b) the result has room for at least two HWIs. This provides
2435 a fast path for things like offset_int and widest_int.
2437 The STATIC_CONSTANT_P test prevents this path from being
2438 used for wide_ints. wide_ints with precisions greater than
2439 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2440 point handling them inline. */
2441 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2442 && __builtin_expect (xi.len + yi.len == 2, true))
2444 unsigned HOST_WIDE_INT xl = xi.ulow ();
2445 unsigned HOST_WIDE_INT yl = yi.ulow ();
2446 unsigned HOST_WIDE_INT resultl = xl + yl;
2447 val[0] = resultl;
2448 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2449 result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl))
2450 >> (HOST_BITS_PER_WIDE_INT - 1)));
2452 else
2453 result.set_len (add_large (val, xi.val, xi.len,
2454 yi.val, yi.len, precision,
2455 UNSIGNED, 0));
2456 return result;
2459 /* Return X + Y. Treat X and Y as having the signednes given by SGN
2460 and indicate in *OVERFLOW whether the operation overflowed. */
2461 template <typename T1, typename T2>
2462 inline WI_BINARY_RESULT (T1, T2)
2463 wi::add (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2465 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2466 unsigned int precision = get_precision (result);
2467 WIDE_INT_REF_FOR (T1) xi (x, precision);
2468 WIDE_INT_REF_FOR (T2) yi (y, precision);
2469 if (precision <= HOST_BITS_PER_WIDE_INT)
2471 unsigned HOST_WIDE_INT xl = xi.ulow ();
2472 unsigned HOST_WIDE_INT yl = yi.ulow ();
2473 unsigned HOST_WIDE_INT resultl = xl + yl;
2474 if (sgn == SIGNED)
2476 if ((((resultl ^ xl) & (resultl ^ yl))
2477 >> (precision - 1)) & 1)
2479 if (xl > resultl)
2480 *overflow = OVF_UNDERFLOW;
2481 else if (xl < resultl)
2482 *overflow = OVF_OVERFLOW;
2483 else
2484 *overflow = OVF_NONE;
2486 else
2487 *overflow = OVF_NONE;
2489 else
2490 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
2491 < (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2492 ? OVF_OVERFLOW : OVF_NONE;
2493 val[0] = resultl;
2494 result.set_len (1);
2496 else
2497 result.set_len (add_large (val, xi.val, xi.len,
2498 yi.val, yi.len, precision,
2499 sgn, overflow));
2500 return result;
2503 /* Return X - Y. */
2504 template <typename T1, typename T2>
2505 inline WI_BINARY_RESULT (T1, T2)
2506 wi::sub (const T1 &x, const T2 &y)
2508 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2509 unsigned int precision = get_precision (result);
2510 WIDE_INT_REF_FOR (T1) xi (x, precision);
2511 WIDE_INT_REF_FOR (T2) yi (y, precision);
2512 if (precision <= HOST_BITS_PER_WIDE_INT)
2514 val[0] = xi.ulow () - yi.ulow ();
2515 result.set_len (1);
2517 /* If the precision is known at compile time to be greater than
2518 HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case
2519 knowing that (a) all bits in those HWIs are significant and
2520 (b) the result has room for at least two HWIs. This provides
2521 a fast path for things like offset_int and widest_int.
2523 The STATIC_CONSTANT_P test prevents this path from being
2524 used for wide_ints. wide_ints with precisions greater than
2525 HOST_BITS_PER_WIDE_INT are relatively rare and there's not much
2526 point handling them inline. */
2527 else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT)
2528 && __builtin_expect (xi.len + yi.len == 2, true))
2530 unsigned HOST_WIDE_INT xl = xi.ulow ();
2531 unsigned HOST_WIDE_INT yl = yi.ulow ();
2532 unsigned HOST_WIDE_INT resultl = xl - yl;
2533 val[0] = resultl;
2534 val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1;
2535 result.set_len (1 + (((resultl ^ xl) & (xl ^ yl))
2536 >> (HOST_BITS_PER_WIDE_INT - 1)));
2538 else
2539 result.set_len (sub_large (val, xi.val, xi.len,
2540 yi.val, yi.len, precision,
2541 UNSIGNED, 0));
2542 return result;
2545 /* Return X - Y. Treat X and Y as having the signednes given by SGN
2546 and indicate in *OVERFLOW whether the operation overflowed. */
2547 template <typename T1, typename T2>
2548 inline WI_BINARY_RESULT (T1, T2)
2549 wi::sub (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2551 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2552 unsigned int precision = get_precision (result);
2553 WIDE_INT_REF_FOR (T1) xi (x, precision);
2554 WIDE_INT_REF_FOR (T2) yi (y, precision);
2555 if (precision <= HOST_BITS_PER_WIDE_INT)
2557 unsigned HOST_WIDE_INT xl = xi.ulow ();
2558 unsigned HOST_WIDE_INT yl = yi.ulow ();
2559 unsigned HOST_WIDE_INT resultl = xl - yl;
2560 if (sgn == SIGNED)
2562 if ((((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1)
2564 if (xl > yl)
2565 *overflow = OVF_UNDERFLOW;
2566 else if (xl < yl)
2567 *overflow = OVF_OVERFLOW;
2568 else
2569 *overflow = OVF_NONE;
2571 else
2572 *overflow = OVF_NONE;
2574 else
2575 *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision))
2576 > (xl << (HOST_BITS_PER_WIDE_INT - precision)))
2577 ? OVF_UNDERFLOW : OVF_NONE;
2578 val[0] = resultl;
2579 result.set_len (1);
2581 else
2582 result.set_len (sub_large (val, xi.val, xi.len,
2583 yi.val, yi.len, precision,
2584 sgn, overflow));
2585 return result;
2588 /* Return X * Y. */
2589 template <typename T1, typename T2>
2590 inline WI_BINARY_RESULT (T1, T2)
2591 wi::mul (const T1 &x, const T2 &y)
2593 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2594 unsigned int precision = get_precision (result);
2595 WIDE_INT_REF_FOR (T1) xi (x, precision);
2596 WIDE_INT_REF_FOR (T2) yi (y, precision);
2597 if (precision <= HOST_BITS_PER_WIDE_INT)
2599 val[0] = xi.ulow () * yi.ulow ();
2600 result.set_len (1);
2602 else
2603 result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len,
2604 precision, UNSIGNED, 0, false));
2605 return result;
2608 /* Return X * Y. Treat X and Y as having the signednes given by SGN
2609 and indicate in *OVERFLOW whether the operation overflowed. */
2610 template <typename T1, typename T2>
2611 inline WI_BINARY_RESULT (T1, T2)
2612 wi::mul (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2614 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2615 unsigned int precision = get_precision (result);
2616 WIDE_INT_REF_FOR (T1) xi (x, precision);
2617 WIDE_INT_REF_FOR (T2) yi (y, precision);
2618 result.set_len (mul_internal (val, xi.val, xi.len,
2619 yi.val, yi.len, precision,
2620 sgn, overflow, false));
2621 return result;
2624 /* Return X * Y, treating both X and Y as signed values. Indicate in
2625 *OVERFLOW whether the operation overflowed. */
2626 template <typename T1, typename T2>
2627 inline WI_BINARY_RESULT (T1, T2)
2628 wi::smul (const T1 &x, const T2 &y, overflow_type *overflow)
2630 return mul (x, y, SIGNED, overflow);
2633 /* Return X * Y, treating both X and Y as unsigned values. Indicate in
2634 *OVERFLOW if the result overflows. */
2635 template <typename T1, typename T2>
2636 inline WI_BINARY_RESULT (T1, T2)
2637 wi::umul (const T1 &x, const T2 &y, overflow_type *overflow)
2639 return mul (x, y, UNSIGNED, overflow);
2642 /* Perform a widening multiplication of X and Y, extending the values
2643 according to SGN, and return the high part of the result. */
2644 template <typename T1, typename T2>
2645 inline WI_BINARY_RESULT (T1, T2)
2646 wi::mul_high (const T1 &x, const T2 &y, signop sgn)
2648 WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y);
2649 unsigned int precision = get_precision (result);
2650 WIDE_INT_REF_FOR (T1) xi (x, precision);
2651 WIDE_INT_REF_FOR (T2) yi (y, precision);
2652 result.set_len (mul_internal (val, xi.val, xi.len,
2653 yi.val, yi.len, precision,
2654 sgn, 0, true));
2655 return result;
2658 /* Return X / Y, rouding towards 0. Treat X and Y as having the
2659 signedness given by SGN. Indicate in *OVERFLOW if the result
2660 overflows. */
2661 template <typename T1, typename T2>
2662 inline WI_BINARY_RESULT (T1, T2)
2663 wi::div_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2665 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2666 unsigned int precision = get_precision (quotient);
2667 WIDE_INT_REF_FOR (T1) xi (x, precision);
2668 WIDE_INT_REF_FOR (T2) yi (y);
2670 quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len,
2671 precision,
2672 yi.val, yi.len, yi.precision,
2673 sgn, overflow));
2674 return quotient;
2677 /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */
2678 template <typename T1, typename T2>
2679 inline WI_BINARY_RESULT (T1, T2)
2680 wi::sdiv_trunc (const T1 &x, const T2 &y)
2682 return div_trunc (x, y, SIGNED);
2685 /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */
2686 template <typename T1, typename T2>
2687 inline WI_BINARY_RESULT (T1, T2)
2688 wi::udiv_trunc (const T1 &x, const T2 &y)
2690 return div_trunc (x, y, UNSIGNED);
2693 /* Return X / Y, rouding towards -inf. Treat X and Y as having the
2694 signedness given by SGN. Indicate in *OVERFLOW if the result
2695 overflows. */
2696 template <typename T1, typename T2>
2697 inline WI_BINARY_RESULT (T1, T2)
2698 wi::div_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2700 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2701 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2702 unsigned int precision = get_precision (quotient);
2703 WIDE_INT_REF_FOR (T1) xi (x, precision);
2704 WIDE_INT_REF_FOR (T2) yi (y);
2706 unsigned int remainder_len;
2707 quotient.set_len (divmod_internal (quotient_val,
2708 &remainder_len, remainder_val,
2709 xi.val, xi.len, precision,
2710 yi.val, yi.len, yi.precision, sgn,
2711 overflow));
2712 remainder.set_len (remainder_len);
2713 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2714 return quotient - 1;
2715 return quotient;
2718 /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */
2719 template <typename T1, typename T2>
2720 inline WI_BINARY_RESULT (T1, T2)
2721 wi::sdiv_floor (const T1 &x, const T2 &y)
2723 return div_floor (x, y, SIGNED);
2726 /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */
2727 /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */
2728 template <typename T1, typename T2>
2729 inline WI_BINARY_RESULT (T1, T2)
2730 wi::udiv_floor (const T1 &x, const T2 &y)
2732 return div_floor (x, y, UNSIGNED);
2735 /* Return X / Y, rouding towards +inf. Treat X and Y as having the
2736 signedness given by SGN. Indicate in *OVERFLOW if the result
2737 overflows. */
2738 template <typename T1, typename T2>
2739 inline WI_BINARY_RESULT (T1, T2)
2740 wi::div_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2742 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2743 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2744 unsigned int precision = get_precision (quotient);
2745 WIDE_INT_REF_FOR (T1) xi (x, precision);
2746 WIDE_INT_REF_FOR (T2) yi (y);
2748 unsigned int remainder_len;
2749 quotient.set_len (divmod_internal (quotient_val,
2750 &remainder_len, remainder_val,
2751 xi.val, xi.len, precision,
2752 yi.val, yi.len, yi.precision, sgn,
2753 overflow));
2754 remainder.set_len (remainder_len);
2755 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2756 return quotient + 1;
2757 return quotient;
2760 /* Return X / Y, rouding towards +inf. Treat X and Y as unsigned values. */
2761 template <typename T1, typename T2>
2762 inline WI_BINARY_RESULT (T1, T2)
2763 wi::udiv_ceil (const T1 &x, const T2 &y)
2765 return div_ceil (x, y, UNSIGNED);
2768 /* Return X / Y, rouding towards nearest with ties away from zero.
2769 Treat X and Y as having the signedness given by SGN. Indicate
2770 in *OVERFLOW if the result overflows. */
2771 template <typename T1, typename T2>
2772 inline WI_BINARY_RESULT (T1, T2)
2773 wi::div_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2775 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2776 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2777 unsigned int precision = get_precision (quotient);
2778 WIDE_INT_REF_FOR (T1) xi (x, precision);
2779 WIDE_INT_REF_FOR (T2) yi (y);
2781 unsigned int remainder_len;
2782 quotient.set_len (divmod_internal (quotient_val,
2783 &remainder_len, remainder_val,
2784 xi.val, xi.len, precision,
2785 yi.val, yi.len, yi.precision, sgn,
2786 overflow));
2787 remainder.set_len (remainder_len);
2789 if (remainder != 0)
2791 if (sgn == SIGNED)
2793 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2794 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
2796 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2797 return quotient - 1;
2798 else
2799 return quotient + 1;
2802 else
2804 if (wi::geu_p (remainder, wi::sub (y, remainder)))
2805 return quotient + 1;
2808 return quotient;
2811 /* Return X / Y, rouding towards 0. Treat X and Y as having the
2812 signedness given by SGN. Store the remainder in *REMAINDER_PTR. */
2813 template <typename T1, typename T2>
2814 inline WI_BINARY_RESULT (T1, T2)
2815 wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn,
2816 WI_BINARY_RESULT (T1, T2) *remainder_ptr)
2818 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2819 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2820 unsigned int precision = get_precision (quotient);
2821 WIDE_INT_REF_FOR (T1) xi (x, precision);
2822 WIDE_INT_REF_FOR (T2) yi (y);
2824 unsigned int remainder_len;
2825 quotient.set_len (divmod_internal (quotient_val,
2826 &remainder_len, remainder_val,
2827 xi.val, xi.len, precision,
2828 yi.val, yi.len, yi.precision, sgn, 0));
2829 remainder.set_len (remainder_len);
2831 *remainder_ptr = remainder;
2832 return quotient;
2835 /* Compute the greatest common divisor of two numbers A and B using
2836 Euclid's algorithm. */
2837 template <typename T1, typename T2>
2838 inline WI_BINARY_RESULT (T1, T2)
2839 wi::gcd (const T1 &a, const T2 &b, signop sgn)
2841 T1 x, y, z;
2843 x = wi::abs (a);
2844 y = wi::abs (b);
2846 while (gt_p (x, 0, sgn))
2848 z = mod_trunc (y, x, sgn);
2849 y = x;
2850 x = z;
2853 return y;
2856 /* Compute X / Y, rouding towards 0, and return the remainder.
2857 Treat X and Y as having the signedness given by SGN. Indicate
2858 in *OVERFLOW if the division overflows. */
2859 template <typename T1, typename T2>
2860 inline WI_BINARY_RESULT (T1, T2)
2861 wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2863 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2864 unsigned int precision = get_precision (remainder);
2865 WIDE_INT_REF_FOR (T1) xi (x, precision);
2866 WIDE_INT_REF_FOR (T2) yi (y);
2868 unsigned int remainder_len;
2869 divmod_internal (0, &remainder_len, remainder_val,
2870 xi.val, xi.len, precision,
2871 yi.val, yi.len, yi.precision, sgn, overflow);
2872 remainder.set_len (remainder_len);
2874 return remainder;
2877 /* Compute X / Y, rouding towards 0, and return the remainder.
2878 Treat X and Y as signed values. */
2879 template <typename T1, typename T2>
2880 inline WI_BINARY_RESULT (T1, T2)
2881 wi::smod_trunc (const T1 &x, const T2 &y)
2883 return mod_trunc (x, y, SIGNED);
2886 /* Compute X / Y, rouding towards 0, and return the remainder.
2887 Treat X and Y as unsigned values. */
2888 template <typename T1, typename T2>
2889 inline WI_BINARY_RESULT (T1, T2)
2890 wi::umod_trunc (const T1 &x, const T2 &y)
2892 return mod_trunc (x, y, UNSIGNED);
2895 /* Compute X / Y, rouding towards -inf, and return the remainder.
2896 Treat X and Y as having the signedness given by SGN. Indicate
2897 in *OVERFLOW if the division overflows. */
2898 template <typename T1, typename T2>
2899 inline WI_BINARY_RESULT (T1, T2)
2900 wi::mod_floor (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2902 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2903 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2904 unsigned int precision = get_precision (quotient);
2905 WIDE_INT_REF_FOR (T1) xi (x, precision);
2906 WIDE_INT_REF_FOR (T2) yi (y);
2908 unsigned int remainder_len;
2909 quotient.set_len (divmod_internal (quotient_val,
2910 &remainder_len, remainder_val,
2911 xi.val, xi.len, precision,
2912 yi.val, yi.len, yi.precision, sgn,
2913 overflow));
2914 remainder.set_len (remainder_len);
2916 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0)
2917 return remainder + y;
2918 return remainder;
2921 /* Compute X / Y, rouding towards -inf, and return the remainder.
2922 Treat X and Y as unsigned values. */
2923 /* ??? Why do we have both this and umod_trunc. Aren't they the same? */
2924 template <typename T1, typename T2>
2925 inline WI_BINARY_RESULT (T1, T2)
2926 wi::umod_floor (const T1 &x, const T2 &y)
2928 return mod_floor (x, y, UNSIGNED);
2931 /* Compute X / Y, rouding towards +inf, and return the remainder.
2932 Treat X and Y as having the signedness given by SGN. Indicate
2933 in *OVERFLOW if the division overflows. */
2934 template <typename T1, typename T2>
2935 inline WI_BINARY_RESULT (T1, T2)
2936 wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2938 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2939 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2940 unsigned int precision = get_precision (quotient);
2941 WIDE_INT_REF_FOR (T1) xi (x, precision);
2942 WIDE_INT_REF_FOR (T2) yi (y);
2944 unsigned int remainder_len;
2945 quotient.set_len (divmod_internal (quotient_val,
2946 &remainder_len, remainder_val,
2947 xi.val, xi.len, precision,
2948 yi.val, yi.len, yi.precision, sgn,
2949 overflow));
2950 remainder.set_len (remainder_len);
2952 if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0)
2953 return remainder - y;
2954 return remainder;
2957 /* Compute X / Y, rouding towards nearest with ties away from zero,
2958 and return the remainder. Treat X and Y as having the signedness
2959 given by SGN. Indicate in *OVERFLOW if the division overflows. */
2960 template <typename T1, typename T2>
2961 inline WI_BINARY_RESULT (T1, T2)
2962 wi::mod_round (const T1 &x, const T2 &y, signop sgn, overflow_type *overflow)
2964 WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y);
2965 WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y);
2966 unsigned int precision = get_precision (quotient);
2967 WIDE_INT_REF_FOR (T1) xi (x, precision);
2968 WIDE_INT_REF_FOR (T2) yi (y);
2970 unsigned int remainder_len;
2971 quotient.set_len (divmod_internal (quotient_val,
2972 &remainder_len, remainder_val,
2973 xi.val, xi.len, precision,
2974 yi.val, yi.len, yi.precision, sgn,
2975 overflow));
2976 remainder.set_len (remainder_len);
2978 if (remainder != 0)
2980 if (sgn == SIGNED)
2982 WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder);
2983 if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder)))
2985 if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn))
2986 return remainder + y;
2987 else
2988 return remainder - y;
2991 else
2993 if (wi::geu_p (remainder, wi::sub (y, remainder)))
2994 return remainder - y;
2997 return remainder;
3000 /* Return true if X is a multiple of Y. Treat X and Y as having the
3001 signedness given by SGN. */
3002 template <typename T1, typename T2>
3003 inline bool
3004 wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn)
3006 return wi::mod_trunc (x, y, sgn) == 0;
3009 /* Return true if X is a multiple of Y, storing X / Y in *RES if so.
3010 Treat X and Y as having the signedness given by SGN. */
3011 template <typename T1, typename T2>
3012 inline bool
3013 wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn,
3014 WI_BINARY_RESULT (T1, T2) *res)
3016 WI_BINARY_RESULT (T1, T2) remainder;
3017 WI_BINARY_RESULT (T1, T2) quotient
3018 = divmod_trunc (x, y, sgn, &remainder);
3019 if (remainder == 0)
3021 *res = quotient;
3022 return true;
3024 return false;
3027 /* Return X << Y. Return 0 if Y is greater than or equal to
3028 the precision of X. */
3029 template <typename T1, typename T2>
3030 inline WI_UNARY_RESULT (T1)
3031 wi::lshift (const T1 &x, const T2 &y)
3033 WI_UNARY_RESULT_VAR (result, val, T1, x);
3034 unsigned int precision = get_precision (result);
3035 WIDE_INT_REF_FOR (T1) xi (x, precision);
3036 WIDE_INT_REF_FOR (T2) yi (y);
3037 /* Handle the simple cases quickly. */
3038 if (geu_p (yi, precision))
3040 val[0] = 0;
3041 result.set_len (1);
3043 else
3045 unsigned int shift = yi.to_uhwi ();
3046 /* For fixed-precision integers like offset_int and widest_int,
3047 handle the case where the shift value is constant and the
3048 result is a single nonnegative HWI (meaning that we don't
3049 need to worry about val[1]). This is particularly common
3050 for converting a byte count to a bit count.
3052 For variable-precision integers like wide_int, handle HWI
3053 and sub-HWI integers inline. */
3054 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3055 ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1)
3056 && xi.len == 1
3057 && IN_RANGE (xi.val[0], 0, HOST_WIDE_INT_MAX >> shift))
3058 : precision <= HOST_BITS_PER_WIDE_INT)
3060 val[0] = xi.ulow () << shift;
3061 result.set_len (1);
3063 else
3064 result.set_len (lshift_large (val, xi.val, xi.len,
3065 precision, shift));
3067 return result;
3070 /* Return X >> Y, using a logical shift. Return 0 if Y is greater than
3071 or equal to the precision of X. */
3072 template <typename T1, typename T2>
3073 inline WI_UNARY_RESULT (T1)
3074 wi::lrshift (const T1 &x, const T2 &y)
3076 WI_UNARY_RESULT_VAR (result, val, T1, x);
3077 /* Do things in the precision of the input rather than the output,
3078 since the result can be no larger than that. */
3079 WIDE_INT_REF_FOR (T1) xi (x);
3080 WIDE_INT_REF_FOR (T2) yi (y);
3081 /* Handle the simple cases quickly. */
3082 if (geu_p (yi, xi.precision))
3084 val[0] = 0;
3085 result.set_len (1);
3087 else
3089 unsigned int shift = yi.to_uhwi ();
3090 /* For fixed-precision integers like offset_int and widest_int,
3091 handle the case where the shift value is constant and the
3092 shifted value is a single nonnegative HWI (meaning that all
3093 bits above the HWI are zero). This is particularly common
3094 for converting a bit count to a byte count.
3096 For variable-precision integers like wide_int, handle HWI
3097 and sub-HWI integers inline. */
3098 if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT)
3099 ? (shift < HOST_BITS_PER_WIDE_INT
3100 && xi.len == 1
3101 && xi.val[0] >= 0)
3102 : xi.precision <= HOST_BITS_PER_WIDE_INT)
3104 val[0] = xi.to_uhwi () >> shift;
3105 result.set_len (1);
3107 else
3108 result.set_len (lrshift_large (val, xi.val, xi.len, xi.precision,
3109 get_precision (result), shift));
3111 return result;
3114 /* Return X >> Y, using an arithmetic shift. Return a sign mask if
3115 Y is greater than or equal to the precision of X. */
3116 template <typename T1, typename T2>
3117 inline WI_UNARY_RESULT (T1)
3118 wi::arshift (const T1 &x, const T2 &y)
3120 WI_UNARY_RESULT_VAR (result, val, T1, x);
3121 /* Do things in the precision of the input rather than the output,
3122 since the result can be no larger than that. */
3123 WIDE_INT_REF_FOR (T1) xi (x);
3124 WIDE_INT_REF_FOR (T2) yi (y);
3125 /* Handle the simple cases quickly. */
3126 if (geu_p (yi, xi.precision))
3128 val[0] = sign_mask (x);
3129 result.set_len (1);
3131 else
3133 unsigned int shift = yi.to_uhwi ();
3134 if (xi.precision <= HOST_BITS_PER_WIDE_INT)
3136 val[0] = sext_hwi (xi.ulow () >> shift, xi.precision - shift);
3137 result.set_len (1, true);
3139 else
3140 result.set_len (arshift_large (val, xi.val, xi.len, xi.precision,
3141 get_precision (result), shift));
3143 return result;
3146 /* Return X >> Y, using an arithmetic shift if SGN is SIGNED and a
3147 logical shift otherwise. */
3148 template <typename T1, typename T2>
3149 inline WI_UNARY_RESULT (T1)
3150 wi::rshift (const T1 &x, const T2 &y, signop sgn)
3152 if (sgn == UNSIGNED)
3153 return lrshift (x, y);
3154 else
3155 return arshift (x, y);
3158 /* Return the result of rotating the low WIDTH bits of X left by Y
3159 bits and zero-extending the result. Use a full-width rotate if
3160 WIDTH is zero. */
3161 template <typename T1, typename T2>
3162 WI_UNARY_RESULT (T1)
3163 wi::lrotate (const T1 &x, const T2 &y, unsigned int width)
3165 unsigned int precision = get_binary_precision (x, x);
3166 if (width == 0)
3167 width = precision;
3168 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3169 WI_UNARY_RESULT (T1) left = wi::lshift (x, ymod);
3170 WI_UNARY_RESULT (T1) right = wi::lrshift (x, wi::sub (width, ymod));
3171 if (width != precision)
3172 return wi::zext (left, width) | wi::zext (right, width);
3173 return left | right;
3176 /* Return the result of rotating the low WIDTH bits of X right by Y
3177 bits and zero-extending the result. Use a full-width rotate if
3178 WIDTH is zero. */
3179 template <typename T1, typename T2>
3180 WI_UNARY_RESULT (T1)
3181 wi::rrotate (const T1 &x, const T2 &y, unsigned int width)
3183 unsigned int precision = get_binary_precision (x, x);
3184 if (width == 0)
3185 width = precision;
3186 WI_UNARY_RESULT (T2) ymod = umod_trunc (y, width);
3187 WI_UNARY_RESULT (T1) right = wi::lrshift (x, ymod);
3188 WI_UNARY_RESULT (T1) left = wi::lshift (x, wi::sub (width, ymod));
3189 if (width != precision)
3190 return wi::zext (left, width) | wi::zext (right, width);
3191 return left | right;
3194 /* Return 0 if the number of 1s in X is even and 1 if the number of 1s
3195 is odd. */
3196 inline int
3197 wi::parity (const wide_int_ref &x)
3199 return popcount (x) & 1;
3202 /* Extract WIDTH bits from X, starting at BITPOS. */
3203 template <typename T>
3204 inline unsigned HOST_WIDE_INT
3205 wi::extract_uhwi (const T &x, unsigned int bitpos, unsigned int width)
3207 unsigned precision = get_precision (x);
3208 if (precision < bitpos + width)
3209 precision = bitpos + width;
3210 WIDE_INT_REF_FOR (T) xi (x, precision);
3212 /* Handle this rare case after the above, so that we assert about
3213 bogus BITPOS values. */
3214 if (width == 0)
3215 return 0;
3217 unsigned int start = bitpos / HOST_BITS_PER_WIDE_INT;
3218 unsigned int shift = bitpos % HOST_BITS_PER_WIDE_INT;
3219 unsigned HOST_WIDE_INT res = xi.elt (start);
3220 res >>= shift;
3221 if (shift + width > HOST_BITS_PER_WIDE_INT)
3223 unsigned HOST_WIDE_INT upper = xi.elt (start + 1);
3224 res |= upper << (-shift % HOST_BITS_PER_WIDE_INT);
3226 return zext_hwi (res, width);
3229 /* Return the minimum precision needed to store X with sign SGN. */
3230 template <typename T>
3231 inline unsigned int
3232 wi::min_precision (const T &x, signop sgn)
3234 if (sgn == SIGNED)
3235 return get_precision (x) - clrsb (x);
3236 else
3237 return get_precision (x) - clz (x);
3240 #define SIGNED_BINARY_PREDICATE(OP, F) \
3241 template <typename T1, typename T2> \
3242 inline WI_SIGNED_BINARY_PREDICATE_RESULT (T1, T2) \
3243 OP (const T1 &x, const T2 &y) \
3245 return wi::F (x, y); \
3248 SIGNED_BINARY_PREDICATE (operator <, lts_p)
3249 SIGNED_BINARY_PREDICATE (operator <=, les_p)
3250 SIGNED_BINARY_PREDICATE (operator >, gts_p)
3251 SIGNED_BINARY_PREDICATE (operator >=, ges_p)
3253 #undef SIGNED_BINARY_PREDICATE
3255 #define UNARY_OPERATOR(OP, F) \
3256 template<typename T> \
3257 WI_UNARY_RESULT (generic_wide_int<T>) \
3258 OP (const generic_wide_int<T> &x) \
3260 return wi::F (x); \
3263 #define BINARY_PREDICATE(OP, F) \
3264 template<typename T1, typename T2> \
3265 WI_BINARY_PREDICATE_RESULT (T1, T2) \
3266 OP (const T1 &x, const T2 &y) \
3268 return wi::F (x, y); \
3271 #define BINARY_OPERATOR(OP, F) \
3272 template<typename T1, typename T2> \
3273 WI_BINARY_OPERATOR_RESULT (T1, T2) \
3274 OP (const T1 &x, const T2 &y) \
3276 return wi::F (x, y); \
3279 #define SHIFT_OPERATOR(OP, F) \
3280 template<typename T1, typename T2> \
3281 WI_BINARY_OPERATOR_RESULT (T1, T1) \
3282 OP (const T1 &x, const T2 &y) \
3284 return wi::F (x, y); \
3287 UNARY_OPERATOR (operator ~, bit_not)
3288 UNARY_OPERATOR (operator -, neg)
3289 BINARY_PREDICATE (operator ==, eq_p)
3290 BINARY_PREDICATE (operator !=, ne_p)
3291 BINARY_OPERATOR (operator &, bit_and)
3292 BINARY_OPERATOR (operator |, bit_or)
3293 BINARY_OPERATOR (operator ^, bit_xor)
3294 BINARY_OPERATOR (operator +, add)
3295 BINARY_OPERATOR (operator -, sub)
3296 BINARY_OPERATOR (operator *, mul)
3297 SHIFT_OPERATOR (operator <<, lshift)
3299 #undef UNARY_OPERATOR
3300 #undef BINARY_PREDICATE
3301 #undef BINARY_OPERATOR
3302 #undef SHIFT_OPERATOR
3304 template <typename T1, typename T2>
3305 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3306 operator >> (const T1 &x, const T2 &y)
3308 return wi::arshift (x, y);
3311 template <typename T1, typename T2>
3312 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3313 operator / (const T1 &x, const T2 &y)
3315 return wi::sdiv_trunc (x, y);
3318 template <typename T1, typename T2>
3319 inline WI_SIGNED_SHIFT_RESULT (T1, T2)
3320 operator % (const T1 &x, const T2 &y)
3322 return wi::smod_trunc (x, y);
3325 template<typename T>
3326 void
3327 gt_ggc_mx (generic_wide_int <T> *)
3331 template<typename T>
3332 void
3333 gt_pch_nx (generic_wide_int <T> *)
3337 template<typename T>
3338 void
3339 gt_pch_nx (generic_wide_int <T> *, void (*) (void *, void *), void *)
3343 template<int N>
3344 void
3345 gt_ggc_mx (trailing_wide_ints <N> *)
3349 template<int N>
3350 void
3351 gt_pch_nx (trailing_wide_ints <N> *)
3355 template<int N>
3356 void
3357 gt_pch_nx (trailing_wide_ints <N> *, void (*) (void *, void *), void *)
3361 namespace wi
3363 /* Used for overloaded functions in which the only other acceptable
3364 scalar type is a pointer. It stops a plain 0 from being treated
3365 as a null pointer. */
3366 struct never_used1 {};
3367 struct never_used2 {};
3369 wide_int min_value (unsigned int, signop);
3370 wide_int min_value (never_used1 *);
3371 wide_int min_value (never_used2 *);
3372 wide_int max_value (unsigned int, signop);
3373 wide_int max_value (never_used1 *);
3374 wide_int max_value (never_used2 *);
3376 /* FIXME: this is target dependent, so should be elsewhere.
3377 It also seems to assume that CHAR_BIT == BITS_PER_UNIT. */
3378 wide_int from_buffer (const unsigned char *, unsigned int);
3380 #ifndef GENERATOR_FILE
3381 void to_mpz (const wide_int_ref &, mpz_t, signop);
3382 #endif
3384 wide_int mask (unsigned int, bool, unsigned int);
3385 wide_int shifted_mask (unsigned int, unsigned int, bool, unsigned int);
3386 wide_int set_bit_in_zero (unsigned int, unsigned int);
3387 wide_int insert (const wide_int &x, const wide_int &y, unsigned int,
3388 unsigned int);
3389 wide_int round_down_for_mask (const wide_int &, const wide_int &);
3390 wide_int round_up_for_mask (const wide_int &, const wide_int &);
3392 template <typename T>
3393 T mask (unsigned int, bool);
3395 template <typename T>
3396 T shifted_mask (unsigned int, unsigned int, bool);
3398 template <typename T>
3399 T set_bit_in_zero (unsigned int);
3401 unsigned int mask (HOST_WIDE_INT *, unsigned int, bool, unsigned int);
3402 unsigned int shifted_mask (HOST_WIDE_INT *, unsigned int, unsigned int,
3403 bool, unsigned int);
3404 unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *,
3405 unsigned int, unsigned int, bool);
3408 /* Return a PRECISION-bit integer in which the low WIDTH bits are set
3409 and the other bits are clear, or the inverse if NEGATE_P. */
3410 inline wide_int
3411 wi::mask (unsigned int width, bool negate_p, unsigned int precision)
3413 wide_int result = wide_int::create (precision);
3414 result.set_len (mask (result.write_val (), width, negate_p, precision));
3415 return result;
3418 /* Return a PRECISION-bit integer in which the low START bits are clear,
3419 the next WIDTH bits are set, and the other bits are clear,
3420 or the inverse if NEGATE_P. */
3421 inline wide_int
3422 wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p,
3423 unsigned int precision)
3425 wide_int result = wide_int::create (precision);
3426 result.set_len (shifted_mask (result.write_val (), start, width, negate_p,
3427 precision));
3428 return result;
3431 /* Return a PRECISION-bit integer in which bit BIT is set and all the
3432 others are clear. */
3433 inline wide_int
3434 wi::set_bit_in_zero (unsigned int bit, unsigned int precision)
3436 return shifted_mask (bit, 1, false, precision);
3439 /* Return an integer of type T in which the low WIDTH bits are set
3440 and the other bits are clear, or the inverse if NEGATE_P. */
3441 template <typename T>
3442 inline T
3443 wi::mask (unsigned int width, bool negate_p)
3445 STATIC_ASSERT (wi::int_traits<T>::precision);
3446 T result;
3447 result.set_len (mask (result.write_val (), width, negate_p,
3448 wi::int_traits <T>::precision));
3449 return result;
3452 /* Return an integer of type T in which the low START bits are clear,
3453 the next WIDTH bits are set, and the other bits are clear, or the
3454 inverse if NEGATE_P. */
3455 template <typename T>
3456 inline T
3457 wi::shifted_mask (unsigned int start, unsigned int width, bool negate_p)
3459 STATIC_ASSERT (wi::int_traits<T>::precision);
3460 T result;
3461 result.set_len (shifted_mask (result.write_val (), start, width,
3462 negate_p,
3463 wi::int_traits <T>::precision));
3464 return result;
3467 /* Return an integer of type T in which bit BIT is set and all the
3468 others are clear. */
3469 template <typename T>
3470 inline T
3471 wi::set_bit_in_zero (unsigned int bit)
3473 return shifted_mask <T> (bit, 1, false);
3476 /* Accumulate a set of overflows into OVERFLOW. */
3478 static inline void
3479 wi::accumulate_overflow (wi::overflow_type &overflow,
3480 wi::overflow_type suboverflow)
3482 if (!suboverflow)
3483 return;
3484 if (!overflow)
3485 overflow = suboverflow;
3486 else if (overflow != suboverflow)
3487 overflow = wi::OVF_UNKNOWN;
3490 #endif /* WIDE_INT_H */