1 /* Control flow functions for trees.
2 Copyright (C) 2001-2020 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "tree-pass.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
40 #include "gimple-fold.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
67 /* This file contains functions for building the Control Flow Graph (CFG)
68 for a function tree. */
70 /* Local declarations. */
72 /* Initial capacity for the basic block array. */
73 static const int initial_cfg_capacity
= 20;
75 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
76 which use a particular edge. The CASE_LABEL_EXPRs are chained together
77 via their CASE_CHAIN field, which we clear after we're done with the
78 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
80 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
81 update the case vector in response to edge redirections.
83 Right now this table is set up and torn down at key points in the
84 compilation process. It would be nice if we could make the table
85 more persistent. The key is getting notification of changes to
86 the CFG (particularly edge removal, creation and redirection). */
88 static hash_map
<edge
, tree
> *edge_to_cases
;
90 /* If we record edge_to_cases, this bitmap will hold indexes
91 of basic blocks that end in a GIMPLE_SWITCH which we touched
92 due to edge manipulations. */
94 static bitmap touched_switch_bbs
;
99 long num_merged_labels
;
102 static struct cfg_stats_d cfg_stats
;
104 /* Data to pass to replace_block_vars_by_duplicates_1. */
105 struct replace_decls_d
107 hash_map
<tree
, tree
> *vars_map
;
111 /* Hash table to store last discriminator assigned for each locus. */
112 struct locus_discrim_map
118 /* Hashtable helpers. */
120 struct locus_discrim_hasher
: free_ptr_hash
<locus_discrim_map
>
122 static inline hashval_t
hash (const locus_discrim_map
*);
123 static inline bool equal (const locus_discrim_map
*,
124 const locus_discrim_map
*);
127 /* Trivial hash function for a location_t. ITEM is a pointer to
128 a hash table entry that maps a location_t to a discriminator. */
131 locus_discrim_hasher::hash (const locus_discrim_map
*item
)
133 return item
->location_line
;
136 /* Equality function for the locus-to-discriminator map. A and B
137 point to the two hash table entries to compare. */
140 locus_discrim_hasher::equal (const locus_discrim_map
*a
,
141 const locus_discrim_map
*b
)
143 return a
->location_line
== b
->location_line
;
146 static hash_table
<locus_discrim_hasher
> *discriminator_per_locus
;
148 /* Basic blocks and flowgraphs. */
149 static void make_blocks (gimple_seq
);
152 static void make_edges (void);
153 static void assign_discriminators (void);
154 static void make_cond_expr_edges (basic_block
);
155 static void make_gimple_switch_edges (gswitch
*, basic_block
);
156 static bool make_goto_expr_edges (basic_block
);
157 static void make_gimple_asm_edges (basic_block
);
158 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
159 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
161 /* Various helpers. */
162 static inline bool stmt_starts_bb_p (gimple
*, gimple
*);
163 static int gimple_verify_flow_info (void);
164 static void gimple_make_forwarder_block (edge
);
165 static gimple
*first_non_label_stmt (basic_block
);
166 static bool verify_gimple_transaction (gtransaction
*);
167 static bool call_can_make_abnormal_goto (gimple
*);
169 /* Flowgraph optimization and cleanup. */
170 static void gimple_merge_blocks (basic_block
, basic_block
);
171 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
172 static void remove_bb (basic_block
);
173 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
174 static edge
find_taken_edge_cond_expr (const gcond
*, tree
);
177 init_empty_tree_cfg_for_function (struct function
*fn
)
179 /* Initialize the basic block array. */
181 profile_status_for_fn (fn
) = PROFILE_ABSENT
;
182 n_basic_blocks_for_fn (fn
) = NUM_FIXED_BLOCKS
;
183 last_basic_block_for_fn (fn
) = NUM_FIXED_BLOCKS
;
184 vec_alloc (basic_block_info_for_fn (fn
), initial_cfg_capacity
);
185 vec_safe_grow_cleared (basic_block_info_for_fn (fn
),
186 initial_cfg_capacity
);
188 /* Build a mapping of labels to their associated blocks. */
189 vec_alloc (label_to_block_map_for_fn (fn
), initial_cfg_capacity
);
190 vec_safe_grow_cleared (label_to_block_map_for_fn (fn
),
191 initial_cfg_capacity
);
193 SET_BASIC_BLOCK_FOR_FN (fn
, ENTRY_BLOCK
, ENTRY_BLOCK_PTR_FOR_FN (fn
));
194 SET_BASIC_BLOCK_FOR_FN (fn
, EXIT_BLOCK
, EXIT_BLOCK_PTR_FOR_FN (fn
));
196 ENTRY_BLOCK_PTR_FOR_FN (fn
)->next_bb
197 = EXIT_BLOCK_PTR_FOR_FN (fn
);
198 EXIT_BLOCK_PTR_FOR_FN (fn
)->prev_bb
199 = ENTRY_BLOCK_PTR_FOR_FN (fn
);
203 init_empty_tree_cfg (void)
205 init_empty_tree_cfg_for_function (cfun
);
208 /*---------------------------------------------------------------------------
210 ---------------------------------------------------------------------------*/
212 /* Entry point to the CFG builder for trees. SEQ is the sequence of
213 statements to be added to the flowgraph. */
216 build_gimple_cfg (gimple_seq seq
)
218 /* Register specific gimple functions. */
219 gimple_register_cfg_hooks ();
221 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
223 init_empty_tree_cfg ();
227 /* Make sure there is always at least one block, even if it's empty. */
228 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
229 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
231 /* Adjust the size of the array. */
232 if (basic_block_info_for_fn (cfun
)->length ()
233 < (size_t) n_basic_blocks_for_fn (cfun
))
234 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
),
235 n_basic_blocks_for_fn (cfun
));
237 /* To speed up statement iterator walks, we first purge dead labels. */
238 cleanup_dead_labels ();
240 /* Group case nodes to reduce the number of edges.
241 We do this after cleaning up dead labels because otherwise we miss
242 a lot of obvious case merging opportunities. */
243 group_case_labels ();
245 /* Create the edges of the flowgraph. */
246 discriminator_per_locus
= new hash_table
<locus_discrim_hasher
> (13);
248 assign_discriminators ();
249 cleanup_dead_labels ();
250 delete discriminator_per_locus
;
251 discriminator_per_locus
= NULL
;
254 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
255 them and propagate the information to LOOP. We assume that the annotations
256 come immediately before the condition in BB, if any. */
259 replace_loop_annotate_in_block (basic_block bb
, class loop
*loop
)
261 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
262 gimple
*stmt
= gsi_stmt (gsi
);
264 if (!(stmt
&& gimple_code (stmt
) == GIMPLE_COND
))
267 for (gsi_prev_nondebug (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
269 stmt
= gsi_stmt (gsi
);
270 if (gimple_code (stmt
) != GIMPLE_CALL
)
272 if (!gimple_call_internal_p (stmt
)
273 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
276 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
278 case annot_expr_ivdep_kind
:
279 loop
->safelen
= INT_MAX
;
281 case annot_expr_unroll_kind
:
283 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt
, 2));
284 cfun
->has_unroll
= true;
286 case annot_expr_no_vector_kind
:
287 loop
->dont_vectorize
= true;
289 case annot_expr_vector_kind
:
290 loop
->force_vectorize
= true;
291 cfun
->has_force_vectorize_loops
= true;
293 case annot_expr_parallel_kind
:
294 loop
->can_be_parallel
= true;
295 loop
->safelen
= INT_MAX
;
301 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
302 gimple_call_arg (stmt
, 0));
303 gsi_replace (&gsi
, stmt
, true);
307 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
308 them and propagate the information to the loop. We assume that the
309 annotations come immediately before the condition of the loop. */
312 replace_loop_annotate (void)
316 gimple_stmt_iterator gsi
;
319 FOR_EACH_LOOP (loop
, 0)
321 /* First look into the header. */
322 replace_loop_annotate_in_block (loop
->header
, loop
);
324 /* Then look into the latch, if any. */
326 replace_loop_annotate_in_block (loop
->latch
, loop
);
328 /* Push the global flag_finite_loops state down to individual loops. */
329 loop
->finite_p
= flag_finite_loops
;
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb
, cfun
)
335 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
337 stmt
= gsi_stmt (gsi
);
338 if (gimple_code (stmt
) != GIMPLE_CALL
)
340 if (!gimple_call_internal_p (stmt
)
341 || gimple_call_internal_fn (stmt
) != IFN_ANNOTATE
)
344 switch ((annot_expr_kind
) tree_to_shwi (gimple_call_arg (stmt
, 1)))
346 case annot_expr_ivdep_kind
:
347 case annot_expr_unroll_kind
:
348 case annot_expr_no_vector_kind
:
349 case annot_expr_vector_kind
:
350 case annot_expr_parallel_kind
:
356 warning_at (gimple_location (stmt
), 0, "ignoring loop annotation");
357 stmt
= gimple_build_assign (gimple_call_lhs (stmt
),
358 gimple_call_arg (stmt
, 0));
359 gsi_replace (&gsi
, stmt
, true);
365 execute_build_cfg (void)
367 gimple_seq body
= gimple_body (current_function_decl
);
369 build_gimple_cfg (body
);
370 gimple_set_body (current_function_decl
, NULL
);
371 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
373 fprintf (dump_file
, "Scope blocks:\n");
374 dump_scope_blocks (dump_file
, dump_flags
);
377 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
378 replace_loop_annotate ();
384 const pass_data pass_data_build_cfg
=
386 GIMPLE_PASS
, /* type */
388 OPTGROUP_NONE
, /* optinfo_flags */
389 TV_TREE_CFG
, /* tv_id */
390 PROP_gimple_leh
, /* properties_required */
391 ( PROP_cfg
| PROP_loops
), /* properties_provided */
392 0, /* properties_destroyed */
393 0, /* todo_flags_start */
394 0, /* todo_flags_finish */
397 class pass_build_cfg
: public gimple_opt_pass
400 pass_build_cfg (gcc::context
*ctxt
)
401 : gimple_opt_pass (pass_data_build_cfg
, ctxt
)
404 /* opt_pass methods: */
405 virtual unsigned int execute (function
*) { return execute_build_cfg (); }
407 }; // class pass_build_cfg
412 make_pass_build_cfg (gcc::context
*ctxt
)
414 return new pass_build_cfg (ctxt
);
418 /* Return true if T is a computed goto. */
421 computed_goto_p (gimple
*t
)
423 return (gimple_code (t
) == GIMPLE_GOTO
424 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
427 /* Returns true if the sequence of statements STMTS only contains
428 a call to __builtin_unreachable (). */
431 gimple_seq_unreachable_p (gimple_seq stmts
)
434 /* Return false if -fsanitize=unreachable, we don't want to
435 optimize away those calls, but rather turn them into
436 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
438 || sanitize_flags_p (SANITIZE_UNREACHABLE
))
441 gimple_stmt_iterator gsi
= gsi_last (stmts
);
443 if (!gimple_call_builtin_p (gsi_stmt (gsi
), BUILT_IN_UNREACHABLE
))
446 for (gsi_prev (&gsi
); !gsi_end_p (gsi
); gsi_prev (&gsi
))
448 gimple
*stmt
= gsi_stmt (gsi
);
449 if (gimple_code (stmt
) != GIMPLE_LABEL
450 && !is_gimple_debug (stmt
)
451 && !gimple_clobber_p (stmt
))
457 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
458 the other edge points to a bb with just __builtin_unreachable ().
459 I.e. return true for C->M edge in:
467 __builtin_unreachable ();
471 assert_unreachable_fallthru_edge_p (edge e
)
473 basic_block pred_bb
= e
->src
;
474 gimple
*last
= last_stmt (pred_bb
);
475 if (last
&& gimple_code (last
) == GIMPLE_COND
)
477 basic_block other_bb
= EDGE_SUCC (pred_bb
, 0)->dest
;
478 if (other_bb
== e
->dest
)
479 other_bb
= EDGE_SUCC (pred_bb
, 1)->dest
;
480 if (EDGE_COUNT (other_bb
->succs
) == 0)
481 return gimple_seq_unreachable_p (bb_seq (other_bb
));
487 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
488 could alter control flow except via eh. We initialize the flag at
489 CFG build time and only ever clear it later. */
492 gimple_call_initialize_ctrl_altering (gimple
*stmt
)
494 int flags
= gimple_call_flags (stmt
);
496 /* A call alters control flow if it can make an abnormal goto. */
497 if (call_can_make_abnormal_goto (stmt
)
498 /* A call also alters control flow if it does not return. */
499 || flags
& ECF_NORETURN
500 /* TM ending statements have backedges out of the transaction.
501 Return true so we split the basic block containing them.
502 Note that the TM_BUILTIN test is merely an optimization. */
503 || ((flags
& ECF_TM_BUILTIN
)
504 && is_tm_ending_fndecl (gimple_call_fndecl (stmt
)))
505 /* BUILT_IN_RETURN call is same as return statement. */
506 || gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
)
507 /* IFN_UNIQUE should be the last insn, to make checking for it
508 as cheap as possible. */
509 || (gimple_call_internal_p (stmt
)
510 && gimple_call_internal_unique_p (stmt
)))
511 gimple_call_set_ctrl_altering (stmt
, true);
513 gimple_call_set_ctrl_altering (stmt
, false);
517 /* Insert SEQ after BB and build a flowgraph. */
520 make_blocks_1 (gimple_seq seq
, basic_block bb
)
522 gimple_stmt_iterator i
= gsi_start (seq
);
524 gimple
*prev_stmt
= NULL
;
525 bool start_new_block
= true;
526 bool first_stmt_of_seq
= true;
528 while (!gsi_end_p (i
))
530 /* PREV_STMT should only be set to a debug stmt if the debug
531 stmt is before nondebug stmts. Once stmt reaches a nondebug
532 nonlabel, prev_stmt will be set to it, so that
533 stmt_starts_bb_p will know to start a new block if a label is
534 found. However, if stmt was a label after debug stmts only,
535 keep the label in prev_stmt even if we find further debug
536 stmts, for there may be other labels after them, and they
537 should land in the same block. */
538 if (!prev_stmt
|| !stmt
|| !is_gimple_debug (stmt
))
542 if (stmt
&& is_gimple_call (stmt
))
543 gimple_call_initialize_ctrl_altering (stmt
);
545 /* If the statement starts a new basic block or if we have determined
546 in a previous pass that we need to create a new block for STMT, do
548 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
550 if (!first_stmt_of_seq
)
551 gsi_split_seq_before (&i
, &seq
);
552 bb
= create_basic_block (seq
, bb
);
553 start_new_block
= false;
557 /* Now add STMT to BB and create the subgraphs for special statement
559 gimple_set_bb (stmt
, bb
);
561 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
563 if (stmt_ends_bb_p (stmt
))
565 /* If the stmt can make abnormal goto use a new temporary
566 for the assignment to the LHS. This makes sure the old value
567 of the LHS is available on the abnormal edge. Otherwise
568 we will end up with overlapping life-ranges for abnormal
570 if (gimple_has_lhs (stmt
)
571 && stmt_can_make_abnormal_goto (stmt
)
572 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
574 tree lhs
= gimple_get_lhs (stmt
);
575 tree tmp
= create_tmp_var (TREE_TYPE (lhs
));
576 gimple
*s
= gimple_build_assign (lhs
, tmp
);
577 gimple_set_location (s
, gimple_location (stmt
));
578 gimple_set_block (s
, gimple_block (stmt
));
579 gimple_set_lhs (stmt
, tmp
);
580 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
582 start_new_block
= true;
586 first_stmt_of_seq
= false;
591 /* Build a flowgraph for the sequence of stmts SEQ. */
594 make_blocks (gimple_seq seq
)
596 /* Look for debug markers right before labels, and move the debug
597 stmts after the labels. Accepting labels among debug markers
598 adds no value, just complexity; if we wanted to annotate labels
599 with view numbers (so sequencing among markers would matter) or
600 somesuch, we're probably better off still moving the labels, but
601 adding other debug annotations in their original positions or
602 emitting nonbind or bind markers associated with the labels in
603 the original position of the labels.
605 Moving labels would probably be simpler, but we can't do that:
606 moving labels assigns label ids to them, and doing so because of
607 debug markers makes for -fcompare-debug and possibly even codegen
608 differences. So, we have to move the debug stmts instead. To
609 that end, we scan SEQ backwards, marking the position of the
610 latest (earliest we find) label, and moving debug stmts that are
611 not separated from it by nondebug nonlabel stmts after the
613 if (MAY_HAVE_DEBUG_MARKER_STMTS
)
615 gimple_stmt_iterator label
= gsi_none ();
617 for (gimple_stmt_iterator i
= gsi_last (seq
); !gsi_end_p (i
); gsi_prev (&i
))
619 gimple
*stmt
= gsi_stmt (i
);
621 /* If this is the first label we encounter (latest in SEQ)
622 before nondebug stmts, record its position. */
623 if (is_a
<glabel
*> (stmt
))
625 if (gsi_end_p (label
))
630 /* Without a recorded label position to move debug stmts to,
631 there's nothing to do. */
632 if (gsi_end_p (label
))
635 /* Move the debug stmt at I after LABEL. */
636 if (is_gimple_debug (stmt
))
638 gcc_assert (gimple_debug_nonbind_marker_p (stmt
));
639 /* As STMT is removed, I advances to the stmt after
640 STMT, so the gsi_prev in the for "increment"
641 expression gets us to the stmt we're to visit after
642 STMT. LABEL, however, would advance to the moved
643 stmt if we passed it to gsi_move_after, so pass it a
644 copy instead, so as to keep LABEL pointing to the
646 gimple_stmt_iterator copy
= label
;
647 gsi_move_after (&i
, ©
);
651 /* There aren't any (more?) debug stmts before label, so
652 there isn't anything else to move after it. */
657 make_blocks_1 (seq
, ENTRY_BLOCK_PTR_FOR_FN (cfun
));
660 /* Create and return a new empty basic block after bb AFTER. */
663 create_bb (void *h
, void *e
, basic_block after
)
669 /* Create and initialize a new basic block. Since alloc_block uses
670 GC allocation that clears memory to allocate a basic block, we do
671 not have to clear the newly allocated basic block here. */
674 bb
->index
= last_basic_block_for_fn (cfun
);
676 set_bb_seq (bb
, h
? (gimple_seq
) h
: NULL
);
678 /* Add the new block to the linked list of blocks. */
679 link_block (bb
, after
);
681 /* Grow the basic block array if needed. */
682 if ((size_t) last_basic_block_for_fn (cfun
)
683 == basic_block_info_for_fn (cfun
)->length ())
686 (last_basic_block_for_fn (cfun
)
687 + (last_basic_block_for_fn (cfun
) + 3) / 4);
688 vec_safe_grow_cleared (basic_block_info_for_fn (cfun
), new_size
);
691 /* Add the newly created block to the array. */
692 SET_BASIC_BLOCK_FOR_FN (cfun
, last_basic_block_for_fn (cfun
), bb
);
694 n_basic_blocks_for_fn (cfun
)++;
695 last_basic_block_for_fn (cfun
)++;
701 /*---------------------------------------------------------------------------
703 ---------------------------------------------------------------------------*/
705 /* If basic block BB has an abnormal edge to a basic block
706 containing IFN_ABNORMAL_DISPATCHER internal call, return
707 that the dispatcher's basic block, otherwise return NULL. */
710 get_abnormal_succ_dispatcher (basic_block bb
)
715 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
716 if ((e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
)) == EDGE_ABNORMAL
)
718 gimple_stmt_iterator gsi
719 = gsi_start_nondebug_after_labels_bb (e
->dest
);
720 gimple
*g
= gsi_stmt (gsi
);
721 if (g
&& gimple_call_internal_p (g
, IFN_ABNORMAL_DISPATCHER
))
727 /* Helper function for make_edges. Create a basic block with
728 with ABNORMAL_DISPATCHER internal call in it if needed, and
729 create abnormal edges from BBS to it and from it to FOR_BB
730 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
733 handle_abnormal_edges (basic_block
*dispatcher_bbs
,
734 basic_block for_bb
, int *bb_to_omp_idx
,
735 auto_vec
<basic_block
> *bbs
, bool computed_goto
)
737 basic_block
*dispatcher
= dispatcher_bbs
+ (computed_goto
? 1 : 0);
738 unsigned int idx
= 0;
744 dispatcher
= dispatcher_bbs
+ 2 * bb_to_omp_idx
[for_bb
->index
];
745 if (bb_to_omp_idx
[for_bb
->index
] != 0)
749 /* If the dispatcher has been created already, then there are basic
750 blocks with abnormal edges to it, so just make a new edge to
752 if (*dispatcher
== NULL
)
754 /* Check if there are any basic blocks that need to have
755 abnormal edges to this dispatcher. If there are none, return
757 if (bb_to_omp_idx
== NULL
)
759 if (bbs
->is_empty ())
764 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
765 if (bb_to_omp_idx
[bb
->index
] == bb_to_omp_idx
[for_bb
->index
])
771 /* Create the dispatcher bb. */
772 *dispatcher
= create_basic_block (NULL
, for_bb
);
775 /* Factor computed gotos into a common computed goto site. Also
776 record the location of that site so that we can un-factor the
777 gotos after we have converted back to normal form. */
778 gimple_stmt_iterator gsi
= gsi_start_bb (*dispatcher
);
780 /* Create the destination of the factored goto. Each original
781 computed goto will put its desired destination into this
782 variable and jump to the label we create immediately below. */
783 tree var
= create_tmp_var (ptr_type_node
, "gotovar");
785 /* Build a label for the new block which will contain the
786 factored computed goto. */
787 tree factored_label_decl
788 = create_artificial_label (UNKNOWN_LOCATION
);
789 gimple
*factored_computed_goto_label
790 = gimple_build_label (factored_label_decl
);
791 gsi_insert_after (&gsi
, factored_computed_goto_label
, GSI_NEW_STMT
);
793 /* Build our new computed goto. */
794 gimple
*factored_computed_goto
= gimple_build_goto (var
);
795 gsi_insert_after (&gsi
, factored_computed_goto
, GSI_NEW_STMT
);
797 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
800 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
803 gsi
= gsi_last_bb (bb
);
804 gimple
*last
= gsi_stmt (gsi
);
806 gcc_assert (computed_goto_p (last
));
808 /* Copy the original computed goto's destination into VAR. */
810 = gimple_build_assign (var
, gimple_goto_dest (last
));
811 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
813 edge e
= make_edge (bb
, *dispatcher
, EDGE_FALLTHRU
);
814 e
->goto_locus
= gimple_location (last
);
815 gsi_remove (&gsi
, true);
820 tree arg
= inner
? boolean_true_node
: boolean_false_node
;
821 gimple
*g
= gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER
,
823 gimple_stmt_iterator gsi
= gsi_after_labels (*dispatcher
);
824 gsi_insert_after (&gsi
, g
, GSI_NEW_STMT
);
826 /* Create predecessor edges of the dispatcher. */
827 FOR_EACH_VEC_ELT (*bbs
, idx
, bb
)
830 && bb_to_omp_idx
[bb
->index
] != bb_to_omp_idx
[for_bb
->index
])
832 make_edge (bb
, *dispatcher
, EDGE_ABNORMAL
);
837 make_edge (*dispatcher
, for_bb
, EDGE_ABNORMAL
);
840 /* Creates outgoing edges for BB. Returns 1 when it ends with an
841 computed goto, returns 2 when it ends with a statement that
842 might return to this function via an nonlocal goto, otherwise
843 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
846 make_edges_bb (basic_block bb
, struct omp_region
**pcur_region
, int *pomp_index
)
848 gimple
*last
= last_stmt (bb
);
849 bool fallthru
= false;
855 switch (gimple_code (last
))
858 if (make_goto_expr_edges (bb
))
864 edge e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
865 e
->goto_locus
= gimple_location (last
);
870 make_cond_expr_edges (bb
);
874 make_gimple_switch_edges (as_a
<gswitch
*> (last
), bb
);
878 make_eh_edges (last
);
881 case GIMPLE_EH_DISPATCH
:
882 fallthru
= make_eh_dispatch_edges (as_a
<geh_dispatch
*> (last
));
886 /* If this function receives a nonlocal goto, then we need to
887 make edges from this call site to all the nonlocal goto
889 if (stmt_can_make_abnormal_goto (last
))
892 /* If this statement has reachable exception handlers, then
893 create abnormal edges to them. */
894 make_eh_edges (last
);
896 /* BUILTIN_RETURN is really a return statement. */
897 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
899 make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
902 /* Some calls are known not to return. */
904 fallthru
= !gimple_call_noreturn_p (last
);
908 /* A GIMPLE_ASSIGN may throw internally and thus be considered
910 if (is_ctrl_altering_stmt (last
))
911 make_eh_edges (last
);
916 make_gimple_asm_edges (bb
);
921 fallthru
= omp_make_gimple_edges (bb
, pcur_region
, pomp_index
);
924 case GIMPLE_TRANSACTION
:
926 gtransaction
*txn
= as_a
<gtransaction
*> (last
);
927 tree label1
= gimple_transaction_label_norm (txn
);
928 tree label2
= gimple_transaction_label_uninst (txn
);
931 make_edge (bb
, label_to_block (cfun
, label1
), EDGE_FALLTHRU
);
933 make_edge (bb
, label_to_block (cfun
, label2
),
934 EDGE_TM_UNINSTRUMENTED
| (label1
? 0 : EDGE_FALLTHRU
));
936 tree label3
= gimple_transaction_label_over (txn
);
937 if (gimple_transaction_subcode (txn
)
938 & (GTMA_HAVE_ABORT
| GTMA_IS_OUTER
))
939 make_edge (bb
, label_to_block (cfun
, label3
), EDGE_TM_ABORT
);
946 gcc_assert (!stmt_ends_bb_p (last
));
952 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
957 /* Join all the blocks in the flowgraph. */
963 struct omp_region
*cur_region
= NULL
;
964 auto_vec
<basic_block
> ab_edge_goto
;
965 auto_vec
<basic_block
> ab_edge_call
;
966 int *bb_to_omp_idx
= NULL
;
967 int cur_omp_region_idx
= 0;
969 /* Create an edge from entry to the first block with executable
971 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
),
972 BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
),
975 /* Traverse the basic block array placing edges. */
976 FOR_EACH_BB_FN (bb
, cfun
)
981 bb_to_omp_idx
[bb
->index
] = cur_omp_region_idx
;
983 mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
985 ab_edge_goto
.safe_push (bb
);
987 ab_edge_call
.safe_push (bb
);
989 if (cur_region
&& bb_to_omp_idx
== NULL
)
990 bb_to_omp_idx
= XCNEWVEC (int, n_basic_blocks_for_fn (cfun
));
993 /* Computed gotos are hell to deal with, especially if there are
994 lots of them with a large number of destinations. So we factor
995 them to a common computed goto location before we build the
996 edge list. After we convert back to normal form, we will un-factor
997 the computed gotos since factoring introduces an unwanted jump.
998 For non-local gotos and abnormal edges from calls to calls that return
999 twice or forced labels, factor the abnormal edges too, by having all
1000 abnormal edges from the calls go to a common artificial basic block
1001 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
1002 basic block to all forced labels and calls returning twice.
1003 We do this per-OpenMP structured block, because those regions
1004 are guaranteed to be single entry single exit by the standard,
1005 so it is not allowed to enter or exit such regions abnormally this way,
1006 thus all computed gotos, non-local gotos and setjmp/longjmp calls
1007 must not transfer control across SESE region boundaries. */
1008 if (!ab_edge_goto
.is_empty () || !ab_edge_call
.is_empty ())
1010 gimple_stmt_iterator gsi
;
1011 basic_block dispatcher_bb_array
[2] = { NULL
, NULL
};
1012 basic_block
*dispatcher_bbs
= dispatcher_bb_array
;
1013 int count
= n_basic_blocks_for_fn (cfun
);
1016 dispatcher_bbs
= XCNEWVEC (basic_block
, 2 * count
);
1018 FOR_EACH_BB_FN (bb
, cfun
)
1020 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1022 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1028 target
= gimple_label_label (label_stmt
);
1030 /* Make an edge to every label block that has been marked as a
1031 potential target for a computed goto or a non-local goto. */
1032 if (FORCED_LABEL (target
))
1033 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1034 &ab_edge_goto
, true);
1035 if (DECL_NONLOCAL (target
))
1037 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1038 &ab_edge_call
, false);
1043 if (!gsi_end_p (gsi
) && is_gimple_debug (gsi_stmt (gsi
)))
1044 gsi_next_nondebug (&gsi
);
1045 if (!gsi_end_p (gsi
))
1047 /* Make an edge to every setjmp-like call. */
1048 gimple
*call_stmt
= gsi_stmt (gsi
);
1049 if (is_gimple_call (call_stmt
)
1050 && ((gimple_call_flags (call_stmt
) & ECF_RETURNS_TWICE
)
1051 || gimple_call_builtin_p (call_stmt
,
1052 BUILT_IN_SETJMP_RECEIVER
)))
1053 handle_abnormal_edges (dispatcher_bbs
, bb
, bb_to_omp_idx
,
1054 &ab_edge_call
, false);
1059 XDELETE (dispatcher_bbs
);
1062 XDELETE (bb_to_omp_idx
);
1064 omp_free_regions ();
1067 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1068 needed. Returns true if new bbs were created.
1069 Note: This is transitional code, and should not be used for new code. We
1070 should be able to get rid of this by rewriting all target va-arg
1071 gimplification hooks to use an interface gimple_build_cond_value as described
1072 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1075 gimple_find_sub_bbs (gimple_seq seq
, gimple_stmt_iterator
*gsi
)
1077 gimple
*stmt
= gsi_stmt (*gsi
);
1078 basic_block bb
= gimple_bb (stmt
);
1079 basic_block lastbb
, afterbb
;
1080 int old_num_bbs
= n_basic_blocks_for_fn (cfun
);
1082 lastbb
= make_blocks_1 (seq
, bb
);
1083 if (old_num_bbs
== n_basic_blocks_for_fn (cfun
))
1085 e
= split_block (bb
, stmt
);
1086 /* Move e->dest to come after the new basic blocks. */
1088 unlink_block (afterbb
);
1089 link_block (afterbb
, lastbb
);
1090 redirect_edge_succ (e
, bb
->next_bb
);
1092 while (bb
!= afterbb
)
1094 struct omp_region
*cur_region
= NULL
;
1095 profile_count cnt
= profile_count::zero ();
1098 int cur_omp_region_idx
= 0;
1099 int mer
= make_edges_bb (bb
, &cur_region
, &cur_omp_region_idx
);
1100 gcc_assert (!mer
&& !cur_region
);
1101 add_bb_to_loop (bb
, afterbb
->loop_father
);
1105 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1107 if (e
->count ().initialized_p ())
1112 tree_guess_outgoing_edge_probabilities (bb
);
1113 if (all
|| profile_status_for_fn (cfun
) == PROFILE_READ
)
1121 /* Find the next available discriminator value for LOCUS. The
1122 discriminator distinguishes among several basic blocks that
1123 share a common locus, allowing for more accurate sample-based
1127 next_discriminator_for_locus (int line
)
1129 struct locus_discrim_map item
;
1130 struct locus_discrim_map
**slot
;
1132 item
.location_line
= line
;
1133 item
.discriminator
= 0;
1134 slot
= discriminator_per_locus
->find_slot_with_hash (&item
, line
, INSERT
);
1136 if (*slot
== HTAB_EMPTY_ENTRY
)
1138 *slot
= XNEW (struct locus_discrim_map
);
1140 (*slot
)->location_line
= line
;
1141 (*slot
)->discriminator
= 0;
1143 (*slot
)->discriminator
++;
1144 return (*slot
)->discriminator
;
1147 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1150 same_line_p (location_t locus1
, expanded_location
*from
, location_t locus2
)
1152 expanded_location to
;
1154 if (locus1
== locus2
)
1157 to
= expand_location (locus2
);
1159 if (from
->line
!= to
.line
)
1161 if (from
->file
== to
.file
)
1163 return (from
->file
!= NULL
1165 && filename_cmp (from
->file
, to
.file
) == 0);
1168 /* Assign discriminators to each basic block. */
1171 assign_discriminators (void)
1175 FOR_EACH_BB_FN (bb
, cfun
)
1179 gimple
*last
= last_stmt (bb
);
1180 location_t locus
= last
? gimple_location (last
) : UNKNOWN_LOCATION
;
1182 if (locus
== UNKNOWN_LOCATION
)
1185 expanded_location locus_e
= expand_location (locus
);
1187 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1189 gimple
*first
= first_non_label_stmt (e
->dest
);
1190 gimple
*last
= last_stmt (e
->dest
);
1191 if ((first
&& same_line_p (locus
, &locus_e
,
1192 gimple_location (first
)))
1193 || (last
&& same_line_p (locus
, &locus_e
,
1194 gimple_location (last
))))
1196 if (e
->dest
->discriminator
!= 0 && bb
->discriminator
== 0)
1198 = next_discriminator_for_locus (locus_e
.line
);
1200 e
->dest
->discriminator
1201 = next_discriminator_for_locus (locus_e
.line
);
1207 /* Create the edges for a GIMPLE_COND starting at block BB. */
1210 make_cond_expr_edges (basic_block bb
)
1212 gcond
*entry
= as_a
<gcond
*> (last_stmt (bb
));
1213 gimple
*then_stmt
, *else_stmt
;
1214 basic_block then_bb
, else_bb
;
1215 tree then_label
, else_label
;
1219 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
1221 /* Entry basic blocks for each component. */
1222 then_label
= gimple_cond_true_label (entry
);
1223 else_label
= gimple_cond_false_label (entry
);
1224 then_bb
= label_to_block (cfun
, then_label
);
1225 else_bb
= label_to_block (cfun
, else_label
);
1226 then_stmt
= first_stmt (then_bb
);
1227 else_stmt
= first_stmt (else_bb
);
1229 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
1230 e
->goto_locus
= gimple_location (then_stmt
);
1231 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
1233 e
->goto_locus
= gimple_location (else_stmt
);
1235 /* We do not need the labels anymore. */
1236 gimple_cond_set_true_label (entry
, NULL_TREE
);
1237 gimple_cond_set_false_label (entry
, NULL_TREE
);
1241 /* Called for each element in the hash table (P) as we delete the
1242 edge to cases hash table.
1244 Clear all the CASE_CHAINs to prevent problems with copying of
1245 SWITCH_EXPRs and structure sharing rules, then free the hash table
1249 edge_to_cases_cleanup (edge
const &, tree
const &value
, void *)
1253 for (t
= value
; t
; t
= next
)
1255 next
= CASE_CHAIN (t
);
1256 CASE_CHAIN (t
) = NULL
;
1262 /* Start recording information mapping edges to case labels. */
1265 start_recording_case_labels (void)
1267 gcc_assert (edge_to_cases
== NULL
);
1268 edge_to_cases
= new hash_map
<edge
, tree
>;
1269 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
1272 /* Return nonzero if we are recording information for case labels. */
1275 recording_case_labels_p (void)
1277 return (edge_to_cases
!= NULL
);
1280 /* Stop recording information mapping edges to case labels and
1281 remove any information we have recorded. */
1283 end_recording_case_labels (void)
1287 edge_to_cases
->traverse
<void *, edge_to_cases_cleanup
> (NULL
);
1288 delete edge_to_cases
;
1289 edge_to_cases
= NULL
;
1290 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
1292 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
1295 gimple
*stmt
= last_stmt (bb
);
1296 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1297 group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1300 BITMAP_FREE (touched_switch_bbs
);
1303 /* If we are inside a {start,end}_recording_cases block, then return
1304 a chain of CASE_LABEL_EXPRs from T which reference E.
1306 Otherwise return NULL. */
1309 get_cases_for_edge (edge e
, gswitch
*t
)
1314 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1315 chains available. Return NULL so the caller can detect this case. */
1316 if (!recording_case_labels_p ())
1319 slot
= edge_to_cases
->get (e
);
1323 /* If we did not find E in the hash table, then this must be the first
1324 time we have been queried for information about E & T. Add all the
1325 elements from T to the hash table then perform the query again. */
1327 n
= gimple_switch_num_labels (t
);
1328 for (i
= 0; i
< n
; i
++)
1330 tree elt
= gimple_switch_label (t
, i
);
1331 tree lab
= CASE_LABEL (elt
);
1332 basic_block label_bb
= label_to_block (cfun
, lab
);
1333 edge this_edge
= find_edge (e
->src
, label_bb
);
1335 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1337 tree
&s
= edge_to_cases
->get_or_insert (this_edge
);
1338 CASE_CHAIN (elt
) = s
;
1342 return *edge_to_cases
->get (e
);
1345 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1348 make_gimple_switch_edges (gswitch
*entry
, basic_block bb
)
1352 n
= gimple_switch_num_labels (entry
);
1354 for (i
= 0; i
< n
; ++i
)
1356 basic_block label_bb
= gimple_switch_label_bb (cfun
, entry
, i
);
1357 make_edge (bb
, label_bb
, 0);
1362 /* Return the basic block holding label DEST. */
1365 label_to_block (struct function
*ifun
, tree dest
)
1367 int uid
= LABEL_DECL_UID (dest
);
1369 /* We would die hard when faced by an undefined label. Emit a label to
1370 the very first basic block. This will hopefully make even the dataflow
1371 and undefined variable warnings quite right. */
1372 if (seen_error () && uid
< 0)
1374 gimple_stmt_iterator gsi
=
1375 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun
, NUM_FIXED_BLOCKS
));
1378 stmt
= gimple_build_label (dest
);
1379 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
1380 uid
= LABEL_DECL_UID (dest
);
1382 if (vec_safe_length (ifun
->cfg
->x_label_to_block_map
) <= (unsigned int) uid
)
1384 return (*ifun
->cfg
->x_label_to_block_map
)[uid
];
1387 /* Create edges for a goto statement at block BB. Returns true
1388 if abnormal edges should be created. */
1391 make_goto_expr_edges (basic_block bb
)
1393 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1394 gimple
*goto_t
= gsi_stmt (last
);
1396 /* A simple GOTO creates normal edges. */
1397 if (simple_goto_p (goto_t
))
1399 tree dest
= gimple_goto_dest (goto_t
);
1400 basic_block label_bb
= label_to_block (cfun
, dest
);
1401 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1402 e
->goto_locus
= gimple_location (goto_t
);
1403 gsi_remove (&last
, true);
1407 /* A computed GOTO creates abnormal edges. */
1411 /* Create edges for an asm statement with labels at block BB. */
1414 make_gimple_asm_edges (basic_block bb
)
1416 gasm
*stmt
= as_a
<gasm
*> (last_stmt (bb
));
1417 int i
, n
= gimple_asm_nlabels (stmt
);
1419 for (i
= 0; i
< n
; ++i
)
1421 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1422 basic_block label_bb
= label_to_block (cfun
, label
);
1423 make_edge (bb
, label_bb
, 0);
1427 /*---------------------------------------------------------------------------
1429 ---------------------------------------------------------------------------*/
1431 /* Cleanup useless labels in basic blocks. This is something we wish
1432 to do early because it allows us to group case labels before creating
1433 the edges for the CFG, and it speeds up block statement iterators in
1434 all passes later on.
1435 We rerun this pass after CFG is created, to get rid of the labels that
1436 are no longer referenced. After then we do not run it any more, since
1437 (almost) no new labels should be created. */
1439 /* A map from basic block index to the leading label of that block. */
1445 /* True if the label is referenced from somewhere. */
1449 /* Given LABEL return the first label in the same basic block. */
1452 main_block_label (tree label
, label_record
*label_for_bb
)
1454 basic_block bb
= label_to_block (cfun
, label
);
1455 tree main_label
= label_for_bb
[bb
->index
].label
;
1457 /* label_to_block possibly inserted undefined label into the chain. */
1460 label_for_bb
[bb
->index
].label
= label
;
1464 label_for_bb
[bb
->index
].used
= true;
1468 /* Clean up redundant labels within the exception tree. */
1471 cleanup_dead_labels_eh (label_record
*label_for_bb
)
1478 if (cfun
->eh
== NULL
)
1481 for (i
= 1; vec_safe_iterate (cfun
->eh
->lp_array
, i
, &lp
); ++i
)
1482 if (lp
&& lp
->post_landing_pad
)
1484 lab
= main_block_label (lp
->post_landing_pad
, label_for_bb
);
1485 if (lab
!= lp
->post_landing_pad
)
1487 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1488 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1492 FOR_ALL_EH_REGION (r
)
1496 case ERT_MUST_NOT_THROW
:
1502 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1506 c
->label
= main_block_label (lab
, label_for_bb
);
1511 case ERT_ALLOWED_EXCEPTIONS
:
1512 lab
= r
->u
.allowed
.label
;
1514 r
->u
.allowed
.label
= main_block_label (lab
, label_for_bb
);
1520 /* Cleanup redundant labels. This is a three-step process:
1521 1) Find the leading label for each block.
1522 2) Redirect all references to labels to the leading labels.
1523 3) Cleanup all useless labels. */
1526 cleanup_dead_labels (void)
1529 label_record
*label_for_bb
= XCNEWVEC (struct label_record
,
1530 last_basic_block_for_fn (cfun
));
1532 /* Find a suitable label for each block. We use the first user-defined
1533 label if there is one, or otherwise just the first label we see. */
1534 FOR_EACH_BB_FN (bb
, cfun
)
1536 gimple_stmt_iterator i
;
1538 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1541 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1546 label
= gimple_label_label (label_stmt
);
1548 /* If we have not yet seen a label for the current block,
1549 remember this one and see if there are more labels. */
1550 if (!label_for_bb
[bb
->index
].label
)
1552 label_for_bb
[bb
->index
].label
= label
;
1556 /* If we did see a label for the current block already, but it
1557 is an artificially created label, replace it if the current
1558 label is a user defined label. */
1559 if (!DECL_ARTIFICIAL (label
)
1560 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1562 label_for_bb
[bb
->index
].label
= label
;
1568 /* Now redirect all jumps/branches to the selected label.
1569 First do so for each block ending in a control statement. */
1570 FOR_EACH_BB_FN (bb
, cfun
)
1572 gimple
*stmt
= last_stmt (bb
);
1573 tree label
, new_label
;
1578 switch (gimple_code (stmt
))
1582 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
1583 label
= gimple_cond_true_label (cond_stmt
);
1586 new_label
= main_block_label (label
, label_for_bb
);
1587 if (new_label
!= label
)
1588 gimple_cond_set_true_label (cond_stmt
, new_label
);
1591 label
= gimple_cond_false_label (cond_stmt
);
1594 new_label
= main_block_label (label
, label_for_bb
);
1595 if (new_label
!= label
)
1596 gimple_cond_set_false_label (cond_stmt
, new_label
);
1603 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
1604 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
1606 /* Replace all destination labels. */
1607 for (i
= 0; i
< n
; ++i
)
1609 tree case_label
= gimple_switch_label (switch_stmt
, i
);
1610 label
= CASE_LABEL (case_label
);
1611 new_label
= main_block_label (label
, label_for_bb
);
1612 if (new_label
!= label
)
1613 CASE_LABEL (case_label
) = new_label
;
1620 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
1621 int i
, n
= gimple_asm_nlabels (asm_stmt
);
1623 for (i
= 0; i
< n
; ++i
)
1625 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
1626 tree label
= main_block_label (TREE_VALUE (cons
), label_for_bb
);
1627 TREE_VALUE (cons
) = label
;
1632 /* We have to handle gotos until they're removed, and we don't
1633 remove them until after we've created the CFG edges. */
1635 if (!computed_goto_p (stmt
))
1637 ggoto
*goto_stmt
= as_a
<ggoto
*> (stmt
);
1638 label
= gimple_goto_dest (goto_stmt
);
1639 new_label
= main_block_label (label
, label_for_bb
);
1640 if (new_label
!= label
)
1641 gimple_goto_set_dest (goto_stmt
, new_label
);
1645 case GIMPLE_TRANSACTION
:
1647 gtransaction
*txn
= as_a
<gtransaction
*> (stmt
);
1649 label
= gimple_transaction_label_norm (txn
);
1652 new_label
= main_block_label (label
, label_for_bb
);
1653 if (new_label
!= label
)
1654 gimple_transaction_set_label_norm (txn
, new_label
);
1657 label
= gimple_transaction_label_uninst (txn
);
1660 new_label
= main_block_label (label
, label_for_bb
);
1661 if (new_label
!= label
)
1662 gimple_transaction_set_label_uninst (txn
, new_label
);
1665 label
= gimple_transaction_label_over (txn
);
1668 new_label
= main_block_label (label
, label_for_bb
);
1669 if (new_label
!= label
)
1670 gimple_transaction_set_label_over (txn
, new_label
);
1680 /* Do the same for the exception region tree labels. */
1681 cleanup_dead_labels_eh (label_for_bb
);
1683 /* Finally, purge dead labels. All user-defined labels and labels that
1684 can be the target of non-local gotos and labels which have their
1685 address taken are preserved. */
1686 FOR_EACH_BB_FN (bb
, cfun
)
1688 gimple_stmt_iterator i
;
1689 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1691 if (!label_for_this_bb
)
1694 /* If the main label of the block is unused, we may still remove it. */
1695 if (!label_for_bb
[bb
->index
].used
)
1696 label_for_this_bb
= NULL
;
1698 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1701 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
1706 label
= gimple_label_label (label_stmt
);
1708 if (label
== label_for_this_bb
1709 || !DECL_ARTIFICIAL (label
)
1710 || DECL_NONLOCAL (label
)
1711 || FORCED_LABEL (label
))
1714 gsi_remove (&i
, true);
1718 free (label_for_bb
);
1721 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1722 the ones jumping to the same label.
1723 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1726 group_case_labels_stmt (gswitch
*stmt
)
1728 int old_size
= gimple_switch_num_labels (stmt
);
1729 int i
, next_index
, new_size
;
1730 basic_block default_bb
= NULL
;
1732 default_bb
= gimple_switch_default_bb (cfun
, stmt
);
1734 /* Look for possible opportunities to merge cases. */
1736 while (i
< old_size
)
1738 tree base_case
, base_high
;
1739 basic_block base_bb
;
1741 base_case
= gimple_switch_label (stmt
, i
);
1743 gcc_assert (base_case
);
1744 base_bb
= label_to_block (cfun
, CASE_LABEL (base_case
));
1746 /* Discard cases that have the same destination as the default case or
1747 whose destiniation blocks have already been removed as unreachable. */
1748 if (base_bb
== NULL
|| base_bb
== default_bb
)
1754 base_high
= CASE_HIGH (base_case
)
1755 ? CASE_HIGH (base_case
)
1756 : CASE_LOW (base_case
);
1759 /* Try to merge case labels. Break out when we reach the end
1760 of the label vector or when we cannot merge the next case
1761 label with the current one. */
1762 while (next_index
< old_size
)
1764 tree merge_case
= gimple_switch_label (stmt
, next_index
);
1765 basic_block merge_bb
= label_to_block (cfun
, CASE_LABEL (merge_case
));
1766 wide_int bhp1
= wi::to_wide (base_high
) + 1;
1768 /* Merge the cases if they jump to the same place,
1769 and their ranges are consecutive. */
1770 if (merge_bb
== base_bb
1771 && wi::to_wide (CASE_LOW (merge_case
)) == bhp1
)
1773 base_high
= CASE_HIGH (merge_case
) ?
1774 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1775 CASE_HIGH (base_case
) = base_high
;
1782 /* Discard cases that have an unreachable destination block. */
1783 if (EDGE_COUNT (base_bb
->succs
) == 0
1784 && gimple_seq_unreachable_p (bb_seq (base_bb
))
1785 /* Don't optimize this if __builtin_unreachable () is the
1786 implicitly added one by the C++ FE too early, before
1787 -Wreturn-type can be diagnosed. We'll optimize it later
1788 during switchconv pass or any other cfg cleanup. */
1789 && (gimple_in_ssa_p (cfun
)
1790 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb
)))
1791 != BUILTINS_LOCATION
)))
1793 edge base_edge
= find_edge (gimple_bb (stmt
), base_bb
);
1794 if (base_edge
!= NULL
)
1795 remove_edge_and_dominated_blocks (base_edge
);
1801 gimple_switch_set_label (stmt
, new_size
,
1802 gimple_switch_label (stmt
, i
));
1807 gcc_assert (new_size
<= old_size
);
1809 if (new_size
< old_size
)
1810 gimple_switch_set_num_labels (stmt
, new_size
);
1812 return new_size
< old_size
;
1815 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1816 and scan the sorted vector of cases. Combine the ones jumping to the
1820 group_case_labels (void)
1823 bool changed
= false;
1825 FOR_EACH_BB_FN (bb
, cfun
)
1827 gimple
*stmt
= last_stmt (bb
);
1828 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1829 changed
|= group_case_labels_stmt (as_a
<gswitch
*> (stmt
));
1835 /* Checks whether we can merge block B into block A. */
1838 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1842 if (!single_succ_p (a
))
1845 if (single_succ_edge (a
)->flags
& EDGE_COMPLEX
)
1848 if (single_succ (a
) != b
)
1851 if (!single_pred_p (b
))
1854 if (a
== ENTRY_BLOCK_PTR_FOR_FN (cfun
)
1855 || b
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1858 /* If A ends by a statement causing exceptions or something similar, we
1859 cannot merge the blocks. */
1860 stmt
= last_stmt (a
);
1861 if (stmt
&& stmt_ends_bb_p (stmt
))
1864 /* Do not allow a block with only a non-local label to be merged. */
1866 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
1867 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
1870 /* Examine the labels at the beginning of B. */
1871 for (gimple_stmt_iterator gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);
1875 glabel
*label_stmt
= dyn_cast
<glabel
*> (gsi_stmt (gsi
));
1878 lab
= gimple_label_label (label_stmt
);
1880 /* Do not remove user forced labels or for -O0 any user labels. */
1881 if (!DECL_ARTIFICIAL (lab
) && (!optimize
|| FORCED_LABEL (lab
)))
1885 /* Protect simple loop latches. We only want to avoid merging
1886 the latch with the loop header or with a block in another
1887 loop in this case. */
1889 && b
->loop_father
->latch
== b
1890 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES
)
1891 && (b
->loop_father
->header
== a
1892 || b
->loop_father
!= a
->loop_father
))
1895 /* It must be possible to eliminate all phi nodes in B. If ssa form
1896 is not up-to-date and a name-mapping is registered, we cannot eliminate
1897 any phis. Symbols marked for renaming are never a problem though. */
1898 for (gphi_iterator gsi
= gsi_start_phis (b
); !gsi_end_p (gsi
);
1901 gphi
*phi
= gsi
.phi ();
1902 /* Technically only new names matter. */
1903 if (name_registered_for_update_p (PHI_RESULT (phi
)))
1907 /* When not optimizing, don't merge if we'd lose goto_locus. */
1909 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1911 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1912 gimple_stmt_iterator prev
, next
;
1913 prev
= gsi_last_nondebug_bb (a
);
1914 next
= gsi_after_labels (b
);
1915 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1916 gsi_next_nondebug (&next
);
1917 if ((gsi_end_p (prev
)
1918 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1919 && (gsi_end_p (next
)
1920 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1927 /* Replaces all uses of NAME by VAL. */
1930 replace_uses_by (tree name
, tree val
)
1932 imm_use_iterator imm_iter
;
1937 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1939 /* Mark the block if we change the last stmt in it. */
1940 if (cfgcleanup_altered_bbs
1941 && stmt_ends_bb_p (stmt
))
1942 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1944 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1946 replace_exp (use
, val
);
1948 if (gimple_code (stmt
) == GIMPLE_PHI
)
1950 e
= gimple_phi_arg_edge (as_a
<gphi
*> (stmt
),
1951 PHI_ARG_INDEX_FROM_USE (use
));
1952 if (e
->flags
& EDGE_ABNORMAL
1953 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
))
1955 /* This can only occur for virtual operands, since
1956 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1957 would prevent replacement. */
1958 gcc_checking_assert (virtual_operand_p (name
));
1959 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1964 if (gimple_code (stmt
) != GIMPLE_PHI
)
1966 gimple_stmt_iterator gsi
= gsi_for_stmt (stmt
);
1967 gimple
*orig_stmt
= stmt
;
1970 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1971 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1972 only change sth from non-invariant to invariant, and only
1973 when propagating constants. */
1974 if (is_gimple_min_invariant (val
))
1975 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1977 tree op
= gimple_op (stmt
, i
);
1978 /* Operands may be empty here. For example, the labels
1979 of a GIMPLE_COND are nulled out following the creation
1980 of the corresponding CFG edges. */
1981 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1982 recompute_tree_invariant_for_addr_expr (op
);
1985 if (fold_stmt (&gsi
))
1986 stmt
= gsi_stmt (gsi
);
1988 if (maybe_clean_or_replace_eh_stmt (orig_stmt
, stmt
))
1989 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
1995 gcc_checking_assert (has_zero_uses (name
));
1997 /* Also update the trees stored in loop structures. */
2002 FOR_EACH_LOOP (loop
, 0)
2004 substitute_in_loop_info (loop
, name
, val
);
2009 /* Merge block B into block A. */
2012 gimple_merge_blocks (basic_block a
, basic_block b
)
2014 gimple_stmt_iterator last
, gsi
;
2018 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
2020 /* Remove all single-valued PHI nodes from block B of the form
2021 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2022 gsi
= gsi_last_bb (a
);
2023 for (psi
= gsi_start_phis (b
); !gsi_end_p (psi
); )
2025 gimple
*phi
= gsi_stmt (psi
);
2026 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
2028 bool may_replace_uses
= (virtual_operand_p (def
)
2029 || may_propagate_copy (def
, use
));
2031 /* In case we maintain loop closed ssa form, do not propagate arguments
2032 of loop exit phi nodes. */
2034 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
2035 && !virtual_operand_p (def
)
2036 && TREE_CODE (use
) == SSA_NAME
2037 && a
->loop_father
!= b
->loop_father
)
2038 may_replace_uses
= false;
2040 if (!may_replace_uses
)
2042 gcc_assert (!virtual_operand_p (def
));
2044 /* Note that just emitting the copies is fine -- there is no problem
2045 with ordering of phi nodes. This is because A is the single
2046 predecessor of B, therefore results of the phi nodes cannot
2047 appear as arguments of the phi nodes. */
2048 copy
= gimple_build_assign (def
, use
);
2049 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
2050 remove_phi_node (&psi
, false);
2054 /* If we deal with a PHI for virtual operands, we can simply
2055 propagate these without fussing with folding or updating
2057 if (virtual_operand_p (def
))
2059 imm_use_iterator iter
;
2060 use_operand_p use_p
;
2063 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
2064 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
2065 SET_USE (use_p
, use
);
2067 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
2068 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
2071 replace_uses_by (def
, use
);
2073 remove_phi_node (&psi
, true);
2077 /* Ensure that B follows A. */
2078 move_block_after (b
, a
);
2080 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
2081 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
2083 /* Remove labels from B and set gimple_bb to A for other statements. */
2084 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
2086 gimple
*stmt
= gsi_stmt (gsi
);
2087 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2089 tree label
= gimple_label_label (label_stmt
);
2092 gsi_remove (&gsi
, false);
2094 /* Now that we can thread computed gotos, we might have
2095 a situation where we have a forced label in block B
2096 However, the label at the start of block B might still be
2097 used in other ways (think about the runtime checking for
2098 Fortran assigned gotos). So we cannot just delete the
2099 label. Instead we move the label to the start of block A. */
2100 if (FORCED_LABEL (label
))
2102 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
2103 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
2105 /* Other user labels keep around in a form of a debug stmt. */
2106 else if (!DECL_ARTIFICIAL (label
) && MAY_HAVE_DEBUG_BIND_STMTS
)
2108 gimple
*dbg
= gimple_build_debug_bind (label
,
2111 gimple_debug_bind_reset_value (dbg
);
2112 gsi_insert_before (&gsi
, dbg
, GSI_SAME_STMT
);
2115 lp_nr
= EH_LANDING_PAD_NR (label
);
2118 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
2119 lp
->post_landing_pad
= NULL
;
2124 gimple_set_bb (stmt
, a
);
2129 /* When merging two BBs, if their counts are different, the larger count
2130 is selected as the new bb count. This is to handle inconsistent
2132 if (a
->loop_father
== b
->loop_father
)
2134 a
->count
= a
->count
.merge (b
->count
);
2137 /* Merge the sequences. */
2138 last
= gsi_last_bb (a
);
2139 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
2140 set_bb_seq (b
, NULL
);
2142 if (cfgcleanup_altered_bbs
)
2143 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
2147 /* Return the one of two successors of BB that is not reachable by a
2148 complex edge, if there is one. Else, return BB. We use
2149 this in optimizations that use post-dominators for their heuristics,
2150 to catch the cases in C++ where function calls are involved. */
2153 single_noncomplex_succ (basic_block bb
)
2156 if (EDGE_COUNT (bb
->succs
) != 2)
2159 e0
= EDGE_SUCC (bb
, 0);
2160 e1
= EDGE_SUCC (bb
, 1);
2161 if (e0
->flags
& EDGE_COMPLEX
)
2163 if (e1
->flags
& EDGE_COMPLEX
)
2169 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2172 notice_special_calls (gcall
*call
)
2174 int flags
= gimple_call_flags (call
);
2176 if (flags
& ECF_MAY_BE_ALLOCA
)
2177 cfun
->calls_alloca
= true;
2178 if (flags
& ECF_RETURNS_TWICE
)
2179 cfun
->calls_setjmp
= true;
2183 /* Clear flags set by notice_special_calls. Used by dead code removal
2184 to update the flags. */
2187 clear_special_calls (void)
2189 cfun
->calls_alloca
= false;
2190 cfun
->calls_setjmp
= false;
2193 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2196 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
2198 /* Since this block is no longer reachable, we can just delete all
2199 of its PHI nodes. */
2200 remove_phi_nodes (bb
);
2202 /* Remove edges to BB's successors. */
2203 while (EDGE_COUNT (bb
->succs
) > 0)
2204 remove_edge (EDGE_SUCC (bb
, 0));
2208 /* Remove statements of basic block BB. */
2211 remove_bb (basic_block bb
)
2213 gimple_stmt_iterator i
;
2217 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
2218 if (dump_flags
& TDF_DETAILS
)
2220 dump_bb (dump_file
, bb
, 0, TDF_BLOCKS
);
2221 fprintf (dump_file
, "\n");
2227 class loop
*loop
= bb
->loop_father
;
2229 /* If a loop gets removed, clean up the information associated
2231 if (loop
->latch
== bb
2232 || loop
->header
== bb
)
2233 free_numbers_of_iterations_estimates (loop
);
2236 /* Remove all the instructions in the block. */
2237 if (bb_seq (bb
) != NULL
)
2239 /* Walk backwards so as to get a chance to substitute all
2240 released DEFs into debug stmts. See
2241 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2243 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
2245 gimple
*stmt
= gsi_stmt (i
);
2246 glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
);
2248 && (FORCED_LABEL (gimple_label_label (label_stmt
))
2249 || DECL_NONLOCAL (gimple_label_label (label_stmt
))))
2252 gimple_stmt_iterator new_gsi
;
2254 /* A non-reachable non-local label may still be referenced.
2255 But it no longer needs to carry the extra semantics of
2257 if (DECL_NONLOCAL (gimple_label_label (label_stmt
)))
2259 DECL_NONLOCAL (gimple_label_label (label_stmt
)) = 0;
2260 FORCED_LABEL (gimple_label_label (label_stmt
)) = 1;
2263 new_bb
= bb
->prev_bb
;
2264 /* Don't move any labels into ENTRY block. */
2265 if (new_bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2267 new_bb
= single_succ (new_bb
);
2268 gcc_assert (new_bb
!= bb
);
2270 new_gsi
= gsi_after_labels (new_bb
);
2271 gsi_remove (&i
, false);
2272 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
2276 /* Release SSA definitions. */
2277 release_defs (stmt
);
2278 gsi_remove (&i
, true);
2282 i
= gsi_last_bb (bb
);
2288 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
2289 bb
->il
.gimple
.seq
= NULL
;
2290 bb
->il
.gimple
.phi_nodes
= NULL
;
2294 /* Given a basic block BB and a value VAL for use in the final statement
2295 of the block (if a GIMPLE_COND, GIMPLE_SWITCH, or computed goto), return
2296 the edge that will be taken out of the block.
2297 If VAL is NULL_TREE, then the current value of the final statement's
2298 predicate or index is used.
2299 If the value does not match a unique edge, NULL is returned. */
2302 find_taken_edge (basic_block bb
, tree val
)
2306 stmt
= last_stmt (bb
);
2308 /* Handle ENTRY and EXIT. */
2312 if (gimple_code (stmt
) == GIMPLE_COND
)
2313 return find_taken_edge_cond_expr (as_a
<gcond
*> (stmt
), val
);
2315 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
2316 return find_taken_edge_switch_expr (as_a
<gswitch
*> (stmt
), val
);
2318 if (computed_goto_p (stmt
))
2320 /* Only optimize if the argument is a label, if the argument is
2321 not a label then we cannot construct a proper CFG.
2323 It may be the case that we only need to allow the LABEL_REF to
2324 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2325 appear inside a LABEL_EXPR just to be safe. */
2327 && (TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
2328 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
2329 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
2332 /* Otherwise we only know the taken successor edge if it's unique. */
2333 return single_succ_p (bb
) ? single_succ_edge (bb
) : NULL
;
2336 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2337 statement, determine which of the outgoing edges will be taken out of the
2338 block. Return NULL if either edge may be taken. */
2341 find_taken_edge_computed_goto (basic_block bb
, tree val
)
2346 dest
= label_to_block (cfun
, val
);
2348 e
= find_edge (bb
, dest
);
2350 /* It's possible for find_edge to return NULL here on invalid code
2351 that abuses the labels-as-values extension (e.g. code that attempts to
2352 jump *between* functions via stored labels-as-values; PR 84136).
2353 If so, then we simply return that NULL for the edge.
2354 We don't currently have a way of detecting such invalid code, so we
2355 can't assert that it was the case when a NULL edge occurs here. */
2360 /* Given COND_STMT and a constant value VAL for use as the predicate,
2361 determine which of the two edges will be taken out of
2362 the statement's block. Return NULL if either edge may be taken.
2363 If VAL is NULL_TREE, then the current value of COND_STMT's predicate
2367 find_taken_edge_cond_expr (const gcond
*cond_stmt
, tree val
)
2369 edge true_edge
, false_edge
;
2371 if (val
== NULL_TREE
)
2373 /* Use the current value of the predicate. */
2374 if (gimple_cond_true_p (cond_stmt
))
2375 val
= integer_one_node
;
2376 else if (gimple_cond_false_p (cond_stmt
))
2377 val
= integer_zero_node
;
2381 else if (TREE_CODE (val
) != INTEGER_CST
)
2384 extract_true_false_edges_from_block (gimple_bb (cond_stmt
),
2385 &true_edge
, &false_edge
);
2387 return (integer_zerop (val
) ? false_edge
: true_edge
);
2390 /* Given SWITCH_STMT and an INTEGER_CST VAL for use as the index, determine
2391 which edge will be taken out of the statement's block. Return NULL if any
2393 If VAL is NULL_TREE, then the current value of SWITCH_STMT's index
2397 find_taken_edge_switch_expr (const gswitch
*switch_stmt
, tree val
)
2399 basic_block dest_bb
;
2403 if (gimple_switch_num_labels (switch_stmt
) == 1)
2404 taken_case
= gimple_switch_default_label (switch_stmt
);
2407 if (val
== NULL_TREE
)
2408 val
= gimple_switch_index (switch_stmt
);
2409 if (TREE_CODE (val
) != INTEGER_CST
)
2412 taken_case
= find_case_label_for_value (switch_stmt
, val
);
2414 dest_bb
= label_to_block (cfun
, CASE_LABEL (taken_case
));
2416 e
= find_edge (gimple_bb (switch_stmt
), dest_bb
);
2422 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2423 We can make optimal use here of the fact that the case labels are
2424 sorted: We can do a binary search for a case matching VAL. */
2427 find_case_label_for_value (const gswitch
*switch_stmt
, tree val
)
2429 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
2430 tree default_case
= gimple_switch_default_label (switch_stmt
);
2432 for (low
= 0, high
= n
; high
- low
> 1; )
2434 size_t i
= (high
+ low
) / 2;
2435 tree t
= gimple_switch_label (switch_stmt
, i
);
2438 /* Cache the result of comparing CASE_LOW and val. */
2439 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
2446 if (CASE_HIGH (t
) == NULL
)
2448 /* A singe-valued case label. */
2454 /* A case range. We can only handle integer ranges. */
2455 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2460 return default_case
;
2464 /* Dump a basic block on stderr. */
2467 gimple_debug_bb (basic_block bb
)
2469 dump_bb (stderr
, bb
, 0, TDF_VOPS
|TDF_MEMSYMS
|TDF_BLOCKS
);
2473 /* Dump basic block with index N on stderr. */
2476 gimple_debug_bb_n (int n
)
2478 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun
, n
));
2479 return BASIC_BLOCK_FOR_FN (cfun
, n
);
2483 /* Dump the CFG on stderr.
2485 FLAGS are the same used by the tree dumping functions
2486 (see TDF_* in dumpfile.h). */
2489 gimple_debug_cfg (dump_flags_t flags
)
2491 gimple_dump_cfg (stderr
, flags
);
2495 /* Dump the program showing basic block boundaries on the given FILE.
2497 FLAGS are the same used by the tree dumping functions (see TDF_* in
2501 gimple_dump_cfg (FILE *file
, dump_flags_t flags
)
2503 if (flags
& TDF_DETAILS
)
2505 dump_function_header (file
, current_function_decl
, flags
);
2506 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2507 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
2508 last_basic_block_for_fn (cfun
));
2510 brief_dump_cfg (file
, flags
);
2511 fprintf (file
, "\n");
2514 if (flags
& TDF_STATS
)
2515 dump_cfg_stats (file
);
2517 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2521 /* Dump CFG statistics on FILE. */
2524 dump_cfg_stats (FILE *file
)
2526 static long max_num_merged_labels
= 0;
2527 unsigned long size
, total
= 0;
2530 const char * const fmt_str
= "%-30s%-13s%12s\n";
2531 const char * const fmt_str_1
= "%-30s%13d" PRsa (11) "\n";
2532 const char * const fmt_str_2
= "%-30s%13ld" PRsa (11) "\n";
2533 const char * const fmt_str_3
= "%-43s" PRsa (11) "\n";
2534 const char *funcname
= current_function_name ();
2536 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2538 fprintf (file
, "---------------------------------------------------------\n");
2539 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2540 fprintf (file
, fmt_str
, "", " instances ", "used ");
2541 fprintf (file
, "---------------------------------------------------------\n");
2543 size
= n_basic_blocks_for_fn (cfun
) * sizeof (struct basic_block_def
);
2545 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks_for_fn (cfun
),
2546 SIZE_AMOUNT (size
));
2549 FOR_EACH_BB_FN (bb
, cfun
)
2550 num_edges
+= EDGE_COUNT (bb
->succs
);
2551 size
= num_edges
* sizeof (class edge_def
);
2553 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SIZE_AMOUNT (size
));
2555 fprintf (file
, "---------------------------------------------------------\n");
2556 fprintf (file
, fmt_str_3
, "Total memory used by CFG data",
2557 SIZE_AMOUNT (total
));
2558 fprintf (file
, "---------------------------------------------------------\n");
2559 fprintf (file
, "\n");
2561 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2562 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2564 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2565 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2567 fprintf (file
, "\n");
2571 /* Dump CFG statistics on stderr. Keep extern so that it's always
2572 linked in the final executable. */
2575 debug_cfg_stats (void)
2577 dump_cfg_stats (stderr
);
2580 /*---------------------------------------------------------------------------
2581 Miscellaneous helpers
2582 ---------------------------------------------------------------------------*/
2584 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2585 flow. Transfers of control flow associated with EH are excluded. */
2588 call_can_make_abnormal_goto (gimple
*t
)
2590 /* If the function has no non-local labels, then a call cannot make an
2591 abnormal transfer of control. */
2592 if (!cfun
->has_nonlocal_label
2593 && !cfun
->calls_setjmp
)
2596 /* Likewise if the call has no side effects. */
2597 if (!gimple_has_side_effects (t
))
2600 /* Likewise if the called function is leaf. */
2601 if (gimple_call_flags (t
) & ECF_LEAF
)
2608 /* Return true if T can make an abnormal transfer of control flow.
2609 Transfers of control flow associated with EH are excluded. */
2612 stmt_can_make_abnormal_goto (gimple
*t
)
2614 if (computed_goto_p (t
))
2616 if (is_gimple_call (t
))
2617 return call_can_make_abnormal_goto (t
);
2622 /* Return true if T represents a stmt that always transfers control. */
2625 is_ctrl_stmt (gimple
*t
)
2627 switch (gimple_code (t
))
2641 /* Return true if T is a statement that may alter the flow of control
2642 (e.g., a call to a non-returning function). */
2645 is_ctrl_altering_stmt (gimple
*t
)
2649 switch (gimple_code (t
))
2652 /* Per stmt call flag indicates whether the call could alter
2654 if (gimple_call_ctrl_altering_p (t
))
2658 case GIMPLE_EH_DISPATCH
:
2659 /* EH_DISPATCH branches to the individual catch handlers at
2660 this level of a try or allowed-exceptions region. It can
2661 fallthru to the next statement as well. */
2665 if (gimple_asm_nlabels (as_a
<gasm
*> (t
)) > 0)
2670 /* OpenMP directives alter control flow. */
2673 case GIMPLE_TRANSACTION
:
2674 /* A transaction start alters control flow. */
2681 /* If a statement can throw, it alters control flow. */
2682 return stmt_can_throw_internal (cfun
, t
);
2686 /* Return true if T is a simple local goto. */
2689 simple_goto_p (gimple
*t
)
2691 return (gimple_code (t
) == GIMPLE_GOTO
2692 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2696 /* Return true if STMT should start a new basic block. PREV_STMT is
2697 the statement preceding STMT. It is used when STMT is a label or a
2698 case label. Labels should only start a new basic block if their
2699 previous statement wasn't a label. Otherwise, sequence of labels
2700 would generate unnecessary basic blocks that only contain a single
2704 stmt_starts_bb_p (gimple
*stmt
, gimple
*prev_stmt
)
2709 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2710 any nondebug stmts in the block. We don't want to start another
2711 block in this case: the debug stmt will already have started the
2712 one STMT would start if we weren't outputting debug stmts. */
2713 if (prev_stmt
&& is_gimple_debug (prev_stmt
))
2716 /* Labels start a new basic block only if the preceding statement
2717 wasn't a label of the same type. This prevents the creation of
2718 consecutive blocks that have nothing but a single label. */
2719 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2721 /* Nonlocal and computed GOTO targets always start a new block. */
2722 if (DECL_NONLOCAL (gimple_label_label (label_stmt
))
2723 || FORCED_LABEL (gimple_label_label (label_stmt
)))
2726 if (glabel
*plabel
= safe_dyn_cast
<glabel
*> (prev_stmt
))
2728 if (DECL_NONLOCAL (gimple_label_label (plabel
))
2729 || !DECL_ARTIFICIAL (gimple_label_label (plabel
)))
2732 cfg_stats
.num_merged_labels
++;
2738 else if (gimple_code (stmt
) == GIMPLE_CALL
)
2740 if (gimple_call_flags (stmt
) & ECF_RETURNS_TWICE
)
2741 /* setjmp acts similar to a nonlocal GOTO target and thus should
2742 start a new block. */
2744 if (gimple_call_internal_p (stmt
, IFN_PHI
)
2746 && gimple_code (prev_stmt
) != GIMPLE_LABEL
2747 && (gimple_code (prev_stmt
) != GIMPLE_CALL
2748 || ! gimple_call_internal_p (prev_stmt
, IFN_PHI
)))
2749 /* PHI nodes start a new block unless preceeded by a label
2758 /* Return true if T should end a basic block. */
2761 stmt_ends_bb_p (gimple
*t
)
2763 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2766 /* Remove block annotations and other data structures. */
2769 delete_tree_cfg_annotations (struct function
*fn
)
2771 vec_free (label_to_block_map_for_fn (fn
));
2774 /* Return the virtual phi in BB. */
2777 get_virtual_phi (basic_block bb
)
2779 for (gphi_iterator gsi
= gsi_start_phis (bb
);
2783 gphi
*phi
= gsi
.phi ();
2785 if (virtual_operand_p (PHI_RESULT (phi
)))
2792 /* Return the first statement in basic block BB. */
2795 first_stmt (basic_block bb
)
2797 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2798 gimple
*stmt
= NULL
;
2800 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2808 /* Return the first non-label statement in basic block BB. */
2811 first_non_label_stmt (basic_block bb
)
2813 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2814 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2816 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2819 /* Return the last statement in basic block BB. */
2822 last_stmt (basic_block bb
)
2824 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2825 gimple
*stmt
= NULL
;
2827 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2835 /* Return the last statement of an otherwise empty block. Return NULL
2836 if the block is totally empty, or if it contains more than one
2840 last_and_only_stmt (basic_block bb
)
2842 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2843 gimple
*last
, *prev
;
2848 last
= gsi_stmt (i
);
2849 gsi_prev_nondebug (&i
);
2853 /* Empty statements should no longer appear in the instruction stream.
2854 Everything that might have appeared before should be deleted by
2855 remove_useless_stmts, and the optimizers should just gsi_remove
2856 instead of smashing with build_empty_stmt.
2858 Thus the only thing that should appear here in a block containing
2859 one executable statement is a label. */
2860 prev
= gsi_stmt (i
);
2861 if (gimple_code (prev
) == GIMPLE_LABEL
)
2867 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2870 reinstall_phi_args (edge new_edge
, edge old_edge
)
2876 vec
<edge_var_map
> *v
= redirect_edge_var_map_vector (old_edge
);
2880 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2881 v
->iterate (i
, &vm
) && !gsi_end_p (phis
);
2882 i
++, gsi_next (&phis
))
2884 gphi
*phi
= phis
.phi ();
2885 tree result
= redirect_edge_var_map_result (vm
);
2886 tree arg
= redirect_edge_var_map_def (vm
);
2888 gcc_assert (result
== gimple_phi_result (phi
));
2890 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2893 redirect_edge_var_map_clear (old_edge
);
2896 /* Returns the basic block after which the new basic block created
2897 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2898 near its "logical" location. This is of most help to humans looking
2899 at debugging dumps. */
2902 split_edge_bb_loc (edge edge_in
)
2904 basic_block dest
= edge_in
->dest
;
2905 basic_block dest_prev
= dest
->prev_bb
;
2909 edge e
= find_edge (dest_prev
, dest
);
2910 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2911 return edge_in
->src
;
2916 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2917 Abort on abnormal edges. */
2920 gimple_split_edge (edge edge_in
)
2922 basic_block new_bb
, after_bb
, dest
;
2925 /* Abnormal edges cannot be split. */
2926 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2928 dest
= edge_in
->dest
;
2930 after_bb
= split_edge_bb_loc (edge_in
);
2932 new_bb
= create_empty_bb (after_bb
);
2933 new_bb
->count
= edge_in
->count ();
2935 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2936 gcc_assert (e
== edge_in
);
2938 new_edge
= make_single_succ_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2939 reinstall_phi_args (new_edge
, e
);
2945 /* Verify properties of the address expression T whose base should be
2946 TREE_ADDRESSABLE if VERIFY_ADDRESSABLE is true. */
2949 verify_address (tree t
, bool verify_addressable
)
2952 bool old_side_effects
;
2954 bool new_side_effects
;
2956 old_constant
= TREE_CONSTANT (t
);
2957 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2959 recompute_tree_invariant_for_addr_expr (t
);
2960 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2961 new_constant
= TREE_CONSTANT (t
);
2963 if (old_constant
!= new_constant
)
2965 error ("constant not recomputed when %<ADDR_EXPR%> changed");
2968 if (old_side_effects
!= new_side_effects
)
2970 error ("side effects not recomputed when %<ADDR_EXPR%> changed");
2974 tree base
= TREE_OPERAND (t
, 0);
2975 while (handled_component_p (base
))
2976 base
= TREE_OPERAND (base
, 0);
2979 || TREE_CODE (base
) == PARM_DECL
2980 || TREE_CODE (base
) == RESULT_DECL
))
2983 if (verify_addressable
&& !TREE_ADDRESSABLE (base
))
2985 error ("address taken but %<TREE_ADDRESSABLE%> bit not set");
2993 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2994 Returns true if there is an error, otherwise false. */
2997 verify_types_in_gimple_min_lval (tree expr
)
3001 if (is_gimple_id (expr
))
3004 if (TREE_CODE (expr
) != TARGET_MEM_REF
3005 && TREE_CODE (expr
) != MEM_REF
)
3007 error ("invalid expression for min lvalue");
3011 /* TARGET_MEM_REFs are strange beasts. */
3012 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3015 op
= TREE_OPERAND (expr
, 0);
3016 if (!is_gimple_val (op
))
3018 error ("invalid operand in indirect reference");
3019 debug_generic_stmt (op
);
3022 /* Memory references now generally can involve a value conversion. */
3027 /* Verify if EXPR is a valid GIMPLE reference expression. If
3028 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3029 if there is an error, otherwise false. */
3032 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
3034 const char *code_name
= get_tree_code_name (TREE_CODE (expr
));
3036 if (TREE_CODE (expr
) == REALPART_EXPR
3037 || TREE_CODE (expr
) == IMAGPART_EXPR
3038 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3040 tree op
= TREE_OPERAND (expr
, 0);
3041 if (!is_gimple_reg_type (TREE_TYPE (expr
)))
3043 error ("non-scalar %qs", code_name
);
3047 if (TREE_CODE (expr
) == BIT_FIELD_REF
)
3049 tree t1
= TREE_OPERAND (expr
, 1);
3050 tree t2
= TREE_OPERAND (expr
, 2);
3051 poly_uint64 size
, bitpos
;
3052 if (!poly_int_tree_p (t1
, &size
)
3053 || !poly_int_tree_p (t2
, &bitpos
)
3054 || !types_compatible_p (bitsizetype
, TREE_TYPE (t1
))
3055 || !types_compatible_p (bitsizetype
, TREE_TYPE (t2
)))
3057 error ("invalid position or size operand to %qs", code_name
);
3060 if (INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3061 && maybe_ne (TYPE_PRECISION (TREE_TYPE (expr
)), size
))
3063 error ("integral result type precision does not match "
3064 "field size of %qs", code_name
);
3067 else if (!INTEGRAL_TYPE_P (TREE_TYPE (expr
))
3068 && TYPE_MODE (TREE_TYPE (expr
)) != BLKmode
3069 && maybe_ne (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr
))),
3072 error ("mode size of non-integral result does not "
3073 "match field size of %qs",
3077 if (INTEGRAL_TYPE_P (TREE_TYPE (op
))
3078 && !type_has_mode_precision_p (TREE_TYPE (op
)))
3080 error ("%qs of non-mode-precision operand", code_name
);
3083 if (!AGGREGATE_TYPE_P (TREE_TYPE (op
))
3084 && maybe_gt (size
+ bitpos
,
3085 tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (op
)))))
3087 error ("position plus size exceeds size of referenced object in "
3093 if ((TREE_CODE (expr
) == REALPART_EXPR
3094 || TREE_CODE (expr
) == IMAGPART_EXPR
)
3095 && !useless_type_conversion_p (TREE_TYPE (expr
),
3096 TREE_TYPE (TREE_TYPE (op
))))
3098 error ("type mismatch in %qs reference", code_name
);
3099 debug_generic_stmt (TREE_TYPE (expr
));
3100 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3106 while (handled_component_p (expr
))
3108 code_name
= get_tree_code_name (TREE_CODE (expr
));
3110 if (TREE_CODE (expr
) == REALPART_EXPR
3111 || TREE_CODE (expr
) == IMAGPART_EXPR
3112 || TREE_CODE (expr
) == BIT_FIELD_REF
)
3114 error ("non-top-level %qs", code_name
);
3118 tree op
= TREE_OPERAND (expr
, 0);
3120 if (TREE_CODE (expr
) == ARRAY_REF
3121 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
3123 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
3124 || (TREE_OPERAND (expr
, 2)
3125 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3126 || (TREE_OPERAND (expr
, 3)
3127 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
3129 error ("invalid operands to %qs", code_name
);
3130 debug_generic_stmt (expr
);
3135 /* Verify if the reference array element types are compatible. */
3136 if (TREE_CODE (expr
) == ARRAY_REF
3137 && !useless_type_conversion_p (TREE_TYPE (expr
),
3138 TREE_TYPE (TREE_TYPE (op
))))
3140 error ("type mismatch in %qs", code_name
);
3141 debug_generic_stmt (TREE_TYPE (expr
));
3142 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3145 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
3146 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
3147 TREE_TYPE (TREE_TYPE (op
))))
3149 error ("type mismatch in %qs", code_name
);
3150 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
3151 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
3155 if (TREE_CODE (expr
) == COMPONENT_REF
)
3157 if (TREE_OPERAND (expr
, 2)
3158 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
3160 error ("invalid %qs offset operator", code_name
);
3163 if (!useless_type_conversion_p (TREE_TYPE (expr
),
3164 TREE_TYPE (TREE_OPERAND (expr
, 1))))
3166 error ("type mismatch in %qs", code_name
);
3167 debug_generic_stmt (TREE_TYPE (expr
));
3168 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
3173 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
3175 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3176 that their operand is not an SSA name or an invariant when
3177 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3178 bug). Otherwise there is nothing to verify, gross mismatches at
3179 most invoke undefined behavior. */
3181 && (TREE_CODE (op
) == SSA_NAME
3182 || is_gimple_min_invariant (op
)))
3184 error ("conversion of %qs on the left hand side of %qs",
3185 get_tree_code_name (TREE_CODE (op
)), code_name
);
3186 debug_generic_stmt (expr
);
3189 else if (TREE_CODE (op
) == SSA_NAME
3190 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
3192 error ("conversion of register to a different size in %qs",
3194 debug_generic_stmt (expr
);
3197 else if (!handled_component_p (op
))
3204 code_name
= get_tree_code_name (TREE_CODE (expr
));
3206 if (TREE_CODE (expr
) == MEM_REF
)
3208 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0))
3209 || (TREE_CODE (TREE_OPERAND (expr
, 0)) == ADDR_EXPR
3210 && verify_address (TREE_OPERAND (expr
, 0), false)))
3212 error ("invalid address operand in %qs", code_name
);
3213 debug_generic_stmt (expr
);
3216 if (!poly_int_tree_p (TREE_OPERAND (expr
, 1))
3217 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
3219 error ("invalid offset operand in %qs", code_name
);
3220 debug_generic_stmt (expr
);
3223 if (MR_DEPENDENCE_CLIQUE (expr
) != 0
3224 && MR_DEPENDENCE_CLIQUE (expr
) > cfun
->last_clique
)
3226 error ("invalid clique in %qs", code_name
);
3227 debug_generic_stmt (expr
);
3231 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
3233 if (!TMR_BASE (expr
)
3234 || !is_gimple_mem_ref_addr (TMR_BASE (expr
))
3235 || (TREE_CODE (TMR_BASE (expr
)) == ADDR_EXPR
3236 && verify_address (TMR_BASE (expr
), false)))
3238 error ("invalid address operand in %qs", code_name
);
3241 if (!TMR_OFFSET (expr
)
3242 || !poly_int_tree_p (TMR_OFFSET (expr
))
3243 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3245 error ("invalid offset operand in %qs", code_name
);
3246 debug_generic_stmt (expr
);
3249 if (MR_DEPENDENCE_CLIQUE (expr
) != 0
3250 && MR_DEPENDENCE_CLIQUE (expr
) > cfun
->last_clique
)
3252 error ("invalid clique in %qs", code_name
);
3253 debug_generic_stmt (expr
);
3257 else if (TREE_CODE (expr
) == INDIRECT_REF
)
3259 error ("%qs in gimple IL", code_name
);
3260 debug_generic_stmt (expr
);
3264 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3265 && verify_types_in_gimple_min_lval (expr
));
3268 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3269 list of pointer-to types that is trivially convertible to DEST. */
3272 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3276 if (!TYPE_POINTER_TO (src_obj
))
3279 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3280 if (useless_type_conversion_p (dest
, src
))
3286 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3287 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3290 valid_fixed_convert_types_p (tree type1
, tree type2
)
3292 return (FIXED_POINT_TYPE_P (type1
)
3293 && (INTEGRAL_TYPE_P (type2
)
3294 || SCALAR_FLOAT_TYPE_P (type2
)
3295 || FIXED_POINT_TYPE_P (type2
)));
3298 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3299 is a problem, otherwise false. */
3302 verify_gimple_call (gcall
*stmt
)
3304 tree fn
= gimple_call_fn (stmt
);
3305 tree fntype
, fndecl
;
3308 if (gimple_call_internal_p (stmt
))
3312 error ("gimple call has two targets");
3313 debug_generic_stmt (fn
);
3321 error ("gimple call has no target");
3326 if (fn
&& !is_gimple_call_addr (fn
))
3328 error ("invalid function in gimple call");
3329 debug_generic_stmt (fn
);
3334 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3335 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3336 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3338 error ("non-function in gimple call");
3342 fndecl
= gimple_call_fndecl (stmt
);
3344 && TREE_CODE (fndecl
) == FUNCTION_DECL
3345 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3346 && !DECL_PURE_P (fndecl
)
3347 && !TREE_READONLY (fndecl
))
3349 error ("invalid pure const state for function");
3353 tree lhs
= gimple_call_lhs (stmt
);
3355 && (!is_gimple_lvalue (lhs
)
3356 || verify_types_in_gimple_reference (lhs
, true)))
3358 error ("invalid LHS in gimple call");
3362 if (gimple_call_ctrl_altering_p (stmt
)
3363 && gimple_call_noreturn_p (stmt
)
3364 && should_remove_lhs_p (lhs
))
3366 error ("LHS in %<noreturn%> call");
3370 fntype
= gimple_call_fntype (stmt
);
3373 && !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (fntype
))
3374 /* ??? At least C++ misses conversions at assignments from
3375 void * call results.
3376 For now simply allow arbitrary pointer type conversions. */
3377 && !(POINTER_TYPE_P (TREE_TYPE (lhs
))
3378 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3380 error ("invalid conversion in gimple call");
3381 debug_generic_stmt (TREE_TYPE (lhs
));
3382 debug_generic_stmt (TREE_TYPE (fntype
));
3386 if (gimple_call_chain (stmt
)
3387 && !is_gimple_val (gimple_call_chain (stmt
)))
3389 error ("invalid static chain in gimple call");
3390 debug_generic_stmt (gimple_call_chain (stmt
));
3394 /* If there is a static chain argument, the call should either be
3395 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3396 if (gimple_call_chain (stmt
)
3398 && !DECL_STATIC_CHAIN (fndecl
))
3400 error ("static chain with function that doesn%'t use one");
3404 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
3406 switch (DECL_FUNCTION_CODE (fndecl
))
3408 case BUILT_IN_UNREACHABLE
:
3410 if (gimple_call_num_args (stmt
) > 0)
3412 /* Built-in unreachable with parameters might not be caught by
3413 undefined behavior sanitizer. Front-ends do check users do not
3414 call them that way but we also produce calls to
3415 __builtin_unreachable internally, for example when IPA figures
3416 out a call cannot happen in a legal program. In such cases,
3417 we must make sure arguments are stripped off. */
3418 error ("%<__builtin_unreachable%> or %<__builtin_trap%> call "
3428 /* ??? The C frontend passes unpromoted arguments in case it
3429 didn't see a function declaration before the call. So for now
3430 leave the call arguments mostly unverified. Once we gimplify
3431 unit-at-a-time we have a chance to fix this. */
3433 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3435 tree arg
= gimple_call_arg (stmt
, i
);
3436 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3437 && !is_gimple_val (arg
))
3438 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3439 && !is_gimple_lvalue (arg
)))
3441 error ("invalid argument to gimple call");
3442 debug_generic_expr (arg
);
3450 /* Verifies the gimple comparison with the result type TYPE and
3451 the operands OP0 and OP1, comparison code is CODE. */
3454 verify_gimple_comparison (tree type
, tree op0
, tree op1
, enum tree_code code
)
3456 tree op0_type
= TREE_TYPE (op0
);
3457 tree op1_type
= TREE_TYPE (op1
);
3459 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3461 error ("invalid operands in gimple comparison");
3465 /* For comparisons we do not have the operations type as the
3466 effective type the comparison is carried out in. Instead
3467 we require that either the first operand is trivially
3468 convertible into the second, or the other way around.
3469 Because we special-case pointers to void we allow
3470 comparisons of pointers with the same mode as well. */
3471 if (!useless_type_conversion_p (op0_type
, op1_type
)
3472 && !useless_type_conversion_p (op1_type
, op0_type
)
3473 && (!POINTER_TYPE_P (op0_type
)
3474 || !POINTER_TYPE_P (op1_type
)
3475 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3477 error ("mismatching comparison operand types");
3478 debug_generic_expr (op0_type
);
3479 debug_generic_expr (op1_type
);
3483 /* The resulting type of a comparison may be an effective boolean type. */
3484 if (INTEGRAL_TYPE_P (type
)
3485 && (TREE_CODE (type
) == BOOLEAN_TYPE
3486 || TYPE_PRECISION (type
) == 1))
3488 if ((TREE_CODE (op0_type
) == VECTOR_TYPE
3489 || TREE_CODE (op1_type
) == VECTOR_TYPE
)
3490 && code
!= EQ_EXPR
&& code
!= NE_EXPR
3491 && !VECTOR_BOOLEAN_TYPE_P (op0_type
)
3492 && !VECTOR_INTEGER_TYPE_P (op0_type
))
3494 error ("unsupported operation or type for vector comparison"
3495 " returning a boolean");
3496 debug_generic_expr (op0_type
);
3497 debug_generic_expr (op1_type
);
3501 /* Or a boolean vector type with the same element count
3502 as the comparison operand types. */
3503 else if (TREE_CODE (type
) == VECTOR_TYPE
3504 && TREE_CODE (TREE_TYPE (type
)) == BOOLEAN_TYPE
)
3506 if (TREE_CODE (op0_type
) != VECTOR_TYPE
3507 || TREE_CODE (op1_type
) != VECTOR_TYPE
)
3509 error ("non-vector operands in vector comparison");
3510 debug_generic_expr (op0_type
);
3511 debug_generic_expr (op1_type
);
3515 if (maybe_ne (TYPE_VECTOR_SUBPARTS (type
),
3516 TYPE_VECTOR_SUBPARTS (op0_type
)))
3518 error ("invalid vector comparison resulting type");
3519 debug_generic_expr (type
);
3525 error ("bogus comparison result type");
3526 debug_generic_expr (type
);
3533 /* Verify a gimple assignment statement STMT with an unary rhs.
3534 Returns true if anything is wrong. */
3537 verify_gimple_assign_unary (gassign
*stmt
)
3539 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3540 tree lhs
= gimple_assign_lhs (stmt
);
3541 tree lhs_type
= TREE_TYPE (lhs
);
3542 tree rhs1
= gimple_assign_rhs1 (stmt
);
3543 tree rhs1_type
= TREE_TYPE (rhs1
);
3545 if (!is_gimple_reg (lhs
))
3547 error ("non-register as LHS of unary operation");
3551 if (!is_gimple_val (rhs1
))
3553 error ("invalid operand in unary operation");
3557 const char* const code_name
= get_tree_code_name (rhs_code
);
3559 /* First handle conversions. */
3564 /* Allow conversions between vectors with the same number of elements,
3565 provided that the conversion is OK for the element types too. */
3566 if (VECTOR_TYPE_P (lhs_type
)
3567 && VECTOR_TYPE_P (rhs1_type
)
3568 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
3569 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3571 lhs_type
= TREE_TYPE (lhs_type
);
3572 rhs1_type
= TREE_TYPE (rhs1_type
);
3574 else if (VECTOR_TYPE_P (lhs_type
) || VECTOR_TYPE_P (rhs1_type
))
3576 error ("invalid vector types in nop conversion");
3577 debug_generic_expr (lhs_type
);
3578 debug_generic_expr (rhs1_type
);
3582 /* Allow conversions from pointer type to integral type only if
3583 there is no sign or zero extension involved.
3584 For targets were the precision of ptrofftype doesn't match that
3585 of pointers we allow conversions to types where
3586 POINTERS_EXTEND_UNSIGNED specifies how that works. */
3587 if ((POINTER_TYPE_P (lhs_type
)
3588 && INTEGRAL_TYPE_P (rhs1_type
))
3589 || (POINTER_TYPE_P (rhs1_type
)
3590 && INTEGRAL_TYPE_P (lhs_type
)
3591 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3592 #if defined(POINTERS_EXTEND_UNSIGNED)
3593 || (TYPE_MODE (rhs1_type
) == ptr_mode
3594 && (TYPE_PRECISION (lhs_type
)
3595 == BITS_PER_WORD
/* word_mode */
3596 || (TYPE_PRECISION (lhs_type
)
3597 == GET_MODE_PRECISION (Pmode
))))
3602 /* Allow conversion from integral to offset type and vice versa. */
3603 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3604 && INTEGRAL_TYPE_P (rhs1_type
))
3605 || (INTEGRAL_TYPE_P (lhs_type
)
3606 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3609 /* Otherwise assert we are converting between types of the
3611 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3613 error ("invalid types in nop conversion");
3614 debug_generic_expr (lhs_type
);
3615 debug_generic_expr (rhs1_type
);
3622 case ADDR_SPACE_CONVERT_EXPR
:
3624 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3625 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3626 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3628 error ("invalid types in address space conversion");
3629 debug_generic_expr (lhs_type
);
3630 debug_generic_expr (rhs1_type
);
3637 case FIXED_CONVERT_EXPR
:
3639 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3640 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3642 error ("invalid types in fixed-point conversion");
3643 debug_generic_expr (lhs_type
);
3644 debug_generic_expr (rhs1_type
);
3653 if ((!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3654 && (!VECTOR_INTEGER_TYPE_P (rhs1_type
)
3655 || !VECTOR_FLOAT_TYPE_P (lhs_type
)))
3657 error ("invalid types in conversion to floating-point");
3658 debug_generic_expr (lhs_type
);
3659 debug_generic_expr (rhs1_type
);
3666 case FIX_TRUNC_EXPR
:
3668 if ((!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3669 && (!VECTOR_INTEGER_TYPE_P (lhs_type
)
3670 || !VECTOR_FLOAT_TYPE_P (rhs1_type
)))
3672 error ("invalid types in conversion to integer");
3673 debug_generic_expr (lhs_type
);
3674 debug_generic_expr (rhs1_type
);
3681 case VEC_UNPACK_HI_EXPR
:
3682 case VEC_UNPACK_LO_EXPR
:
3683 case VEC_UNPACK_FLOAT_HI_EXPR
:
3684 case VEC_UNPACK_FLOAT_LO_EXPR
:
3685 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
3686 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
3687 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3688 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3689 || (!INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3690 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
)))
3691 || (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3692 && !SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3693 || ((rhs_code
== VEC_UNPACK_HI_EXPR
3694 || rhs_code
== VEC_UNPACK_LO_EXPR
)
3695 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3696 != INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3697 || ((rhs_code
== VEC_UNPACK_FLOAT_HI_EXPR
3698 || rhs_code
== VEC_UNPACK_FLOAT_LO_EXPR
)
3699 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3700 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))))
3701 || ((rhs_code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
3702 || rhs_code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
3703 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3704 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))))
3705 || (maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
3706 2 * GET_MODE_SIZE (element_mode (rhs1_type
)))
3707 && (!VECTOR_BOOLEAN_TYPE_P (lhs_type
)
3708 || !VECTOR_BOOLEAN_TYPE_P (rhs1_type
)))
3709 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (lhs_type
),
3710 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
3712 error ("type mismatch in %qs expression", code_name
);
3713 debug_generic_expr (lhs_type
);
3714 debug_generic_expr (rhs1_type
);
3728 if (!ANY_INTEGRAL_TYPE_P (lhs_type
)
3729 || !TYPE_UNSIGNED (lhs_type
)
3730 || !ANY_INTEGRAL_TYPE_P (rhs1_type
)
3731 || TYPE_UNSIGNED (rhs1_type
)
3732 || element_precision (lhs_type
) != element_precision (rhs1_type
))
3734 error ("invalid types for %qs", code_name
);
3735 debug_generic_expr (lhs_type
);
3736 debug_generic_expr (rhs1_type
);
3741 case VEC_DUPLICATE_EXPR
:
3742 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
3743 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
3745 error ("%qs should be from a scalar to a like vector", code_name
);
3746 debug_generic_expr (lhs_type
);
3747 debug_generic_expr (rhs1_type
);
3756 /* For the remaining codes assert there is no conversion involved. */
3757 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3759 error ("non-trivial conversion in unary operation");
3760 debug_generic_expr (lhs_type
);
3761 debug_generic_expr (rhs1_type
);
3768 /* Verify a gimple assignment statement STMT with a binary rhs.
3769 Returns true if anything is wrong. */
3772 verify_gimple_assign_binary (gassign
*stmt
)
3774 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3775 tree lhs
= gimple_assign_lhs (stmt
);
3776 tree lhs_type
= TREE_TYPE (lhs
);
3777 tree rhs1
= gimple_assign_rhs1 (stmt
);
3778 tree rhs1_type
= TREE_TYPE (rhs1
);
3779 tree rhs2
= gimple_assign_rhs2 (stmt
);
3780 tree rhs2_type
= TREE_TYPE (rhs2
);
3782 if (!is_gimple_reg (lhs
))
3784 error ("non-register as LHS of binary operation");
3788 if (!is_gimple_val (rhs1
)
3789 || !is_gimple_val (rhs2
))
3791 error ("invalid operands in binary operation");
3795 const char* const code_name
= get_tree_code_name (rhs_code
);
3797 /* First handle operations that involve different types. */
3802 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3803 || !(INTEGRAL_TYPE_P (rhs1_type
)
3804 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3805 || !(INTEGRAL_TYPE_P (rhs2_type
)
3806 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3808 error ("type mismatch in %qs", code_name
);
3809 debug_generic_expr (lhs_type
);
3810 debug_generic_expr (rhs1_type
);
3811 debug_generic_expr (rhs2_type
);
3823 /* Shifts and rotates are ok on integral types, fixed point
3824 types and integer vector types. */
3825 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3826 && !FIXED_POINT_TYPE_P (rhs1_type
)
3827 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3828 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3829 || (!INTEGRAL_TYPE_P (rhs2_type
)
3830 /* Vector shifts of vectors are also ok. */
3831 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3832 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3833 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3834 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3835 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3837 error ("type mismatch in %qs", code_name
);
3838 debug_generic_expr (lhs_type
);
3839 debug_generic_expr (rhs1_type
);
3840 debug_generic_expr (rhs2_type
);
3847 case WIDEN_LSHIFT_EXPR
:
3849 if (!INTEGRAL_TYPE_P (lhs_type
)
3850 || !INTEGRAL_TYPE_P (rhs1_type
)
3851 || TREE_CODE (rhs2
) != INTEGER_CST
3852 || (2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)))
3854 error ("type mismatch in %qs", code_name
);
3855 debug_generic_expr (lhs_type
);
3856 debug_generic_expr (rhs1_type
);
3857 debug_generic_expr (rhs2_type
);
3864 case VEC_WIDEN_LSHIFT_HI_EXPR
:
3865 case VEC_WIDEN_LSHIFT_LO_EXPR
:
3867 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3868 || TREE_CODE (lhs_type
) != VECTOR_TYPE
3869 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3870 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))
3871 || TREE_CODE (rhs2
) != INTEGER_CST
3872 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type
))
3873 > TYPE_PRECISION (TREE_TYPE (lhs_type
))))
3875 error ("type mismatch in %qs", code_name
);
3876 debug_generic_expr (lhs_type
);
3877 debug_generic_expr (rhs1_type
);
3878 debug_generic_expr (rhs2_type
);
3888 tree lhs_etype
= lhs_type
;
3889 tree rhs1_etype
= rhs1_type
;
3890 tree rhs2_etype
= rhs2_type
;
3891 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
)
3893 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3894 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3896 error ("invalid non-vector operands to %qs", code_name
);
3899 lhs_etype
= TREE_TYPE (lhs_type
);
3900 rhs1_etype
= TREE_TYPE (rhs1_type
);
3901 rhs2_etype
= TREE_TYPE (rhs2_type
);
3903 if (POINTER_TYPE_P (lhs_etype
)
3904 || POINTER_TYPE_P (rhs1_etype
)
3905 || POINTER_TYPE_P (rhs2_etype
))
3907 error ("invalid (pointer) operands %qs", code_name
);
3911 /* Continue with generic binary expression handling. */
3915 case POINTER_PLUS_EXPR
:
3917 if (!POINTER_TYPE_P (rhs1_type
)
3918 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3919 || !ptrofftype_p (rhs2_type
))
3921 error ("type mismatch in %qs", code_name
);
3922 debug_generic_stmt (lhs_type
);
3923 debug_generic_stmt (rhs1_type
);
3924 debug_generic_stmt (rhs2_type
);
3931 case POINTER_DIFF_EXPR
:
3933 if (!POINTER_TYPE_P (rhs1_type
)
3934 || !POINTER_TYPE_P (rhs2_type
)
3935 /* Because we special-case pointers to void we allow difference
3936 of arbitrary pointers with the same mode. */
3937 || TYPE_MODE (rhs1_type
) != TYPE_MODE (rhs2_type
)
3938 || TREE_CODE (lhs_type
) != INTEGER_TYPE
3939 || TYPE_UNSIGNED (lhs_type
)
3940 || TYPE_PRECISION (lhs_type
) != TYPE_PRECISION (rhs1_type
))
3942 error ("type mismatch in %qs", code_name
);
3943 debug_generic_stmt (lhs_type
);
3944 debug_generic_stmt (rhs1_type
);
3945 debug_generic_stmt (rhs2_type
);
3952 case TRUTH_ANDIF_EXPR
:
3953 case TRUTH_ORIF_EXPR
:
3954 case TRUTH_AND_EXPR
:
3956 case TRUTH_XOR_EXPR
:
3966 case UNORDERED_EXPR
:
3974 /* Comparisons are also binary, but the result type is not
3975 connected to the operand types. */
3976 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
, rhs_code
);
3978 case WIDEN_MULT_EXPR
:
3979 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3981 return ((2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
))
3982 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3984 case WIDEN_SUM_EXPR
:
3986 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
3987 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
3988 && ((!INTEGRAL_TYPE_P (rhs1_type
)
3989 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3990 || (!INTEGRAL_TYPE_P (lhs_type
)
3991 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
3992 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3993 || maybe_lt (GET_MODE_SIZE (element_mode (rhs2_type
)),
3994 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
3996 error ("type mismatch in %qs", code_name
);
3997 debug_generic_expr (lhs_type
);
3998 debug_generic_expr (rhs1_type
);
3999 debug_generic_expr (rhs2_type
);
4005 case VEC_WIDEN_MULT_HI_EXPR
:
4006 case VEC_WIDEN_MULT_LO_EXPR
:
4007 case VEC_WIDEN_MULT_EVEN_EXPR
:
4008 case VEC_WIDEN_MULT_ODD_EXPR
:
4010 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4011 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4012 || !types_compatible_p (rhs1_type
, rhs2_type
)
4013 || maybe_ne (GET_MODE_SIZE (element_mode (lhs_type
)),
4014 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4016 error ("type mismatch in %qs", code_name
);
4017 debug_generic_expr (lhs_type
);
4018 debug_generic_expr (rhs1_type
);
4019 debug_generic_expr (rhs2_type
);
4025 case VEC_PACK_TRUNC_EXPR
:
4026 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4027 vector boolean types. */
4028 if (VECTOR_BOOLEAN_TYPE_P (lhs_type
)
4029 && VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4030 && types_compatible_p (rhs1_type
, rhs2_type
)
4031 && known_eq (TYPE_VECTOR_SUBPARTS (lhs_type
),
4032 2 * TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4036 case VEC_PACK_SAT_EXPR
:
4037 case VEC_PACK_FIX_TRUNC_EXPR
:
4039 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4040 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4041 || !((rhs_code
== VEC_PACK_FIX_TRUNC_EXPR
4042 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
))
4043 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
)))
4044 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4045 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type
))))
4046 || !types_compatible_p (rhs1_type
, rhs2_type
)
4047 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4048 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4049 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4050 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4052 error ("type mismatch in %qs", code_name
);
4053 debug_generic_expr (lhs_type
);
4054 debug_generic_expr (rhs1_type
);
4055 debug_generic_expr (rhs2_type
);
4062 case VEC_PACK_FLOAT_EXPR
:
4063 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4064 || TREE_CODE (lhs_type
) != VECTOR_TYPE
4065 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
4066 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs_type
))
4067 || !types_compatible_p (rhs1_type
, rhs2_type
)
4068 || maybe_ne (GET_MODE_SIZE (element_mode (rhs1_type
)),
4069 2 * GET_MODE_SIZE (element_mode (lhs_type
)))
4070 || maybe_ne (2 * TYPE_VECTOR_SUBPARTS (rhs1_type
),
4071 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4073 error ("type mismatch in %qs", code_name
);
4074 debug_generic_expr (lhs_type
);
4075 debug_generic_expr (rhs1_type
);
4076 debug_generic_expr (rhs2_type
);
4083 case MULT_HIGHPART_EXPR
:
4084 case TRUNC_DIV_EXPR
:
4086 case FLOOR_DIV_EXPR
:
4087 case ROUND_DIV_EXPR
:
4088 case TRUNC_MOD_EXPR
:
4090 case FLOOR_MOD_EXPR
:
4091 case ROUND_MOD_EXPR
:
4093 case EXACT_DIV_EXPR
:
4099 /* Continue with generic binary expression handling. */
4102 case VEC_SERIES_EXPR
:
4103 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
))
4105 error ("type mismatch in %qs", code_name
);
4106 debug_generic_expr (rhs1_type
);
4107 debug_generic_expr (rhs2_type
);
4110 if (TREE_CODE (lhs_type
) != VECTOR_TYPE
4111 || !useless_type_conversion_p (TREE_TYPE (lhs_type
), rhs1_type
))
4113 error ("vector type expected in %qs", code_name
);
4114 debug_generic_expr (lhs_type
);
4123 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4124 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4126 error ("type mismatch in binary expression");
4127 debug_generic_stmt (lhs_type
);
4128 debug_generic_stmt (rhs1_type
);
4129 debug_generic_stmt (rhs2_type
);
4136 /* Verify a gimple assignment statement STMT with a ternary rhs.
4137 Returns true if anything is wrong. */
4140 verify_gimple_assign_ternary (gassign
*stmt
)
4142 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4143 tree lhs
= gimple_assign_lhs (stmt
);
4144 tree lhs_type
= TREE_TYPE (lhs
);
4145 tree rhs1
= gimple_assign_rhs1 (stmt
);
4146 tree rhs1_type
= TREE_TYPE (rhs1
);
4147 tree rhs2
= gimple_assign_rhs2 (stmt
);
4148 tree rhs2_type
= TREE_TYPE (rhs2
);
4149 tree rhs3
= gimple_assign_rhs3 (stmt
);
4150 tree rhs3_type
= TREE_TYPE (rhs3
);
4152 if (!is_gimple_reg (lhs
))
4154 error ("non-register as LHS of ternary operation");
4158 if ((rhs_code
== COND_EXPR
4159 ? !is_gimple_condexpr (rhs1
) : !is_gimple_val (rhs1
))
4160 || !is_gimple_val (rhs2
)
4161 || !is_gimple_val (rhs3
))
4163 error ("invalid operands in ternary operation");
4167 const char* const code_name
= get_tree_code_name (rhs_code
);
4169 /* First handle operations that involve different types. */
4172 case WIDEN_MULT_PLUS_EXPR
:
4173 case WIDEN_MULT_MINUS_EXPR
:
4174 if ((!INTEGRAL_TYPE_P (rhs1_type
)
4175 && !FIXED_POINT_TYPE_P (rhs1_type
))
4176 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
4177 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4178 || 2 * TYPE_PRECISION (rhs1_type
) > TYPE_PRECISION (lhs_type
)
4179 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
4181 error ("type mismatch in %qs", code_name
);
4182 debug_generic_expr (lhs_type
);
4183 debug_generic_expr (rhs1_type
);
4184 debug_generic_expr (rhs2_type
);
4185 debug_generic_expr (rhs3_type
);
4191 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type
)
4192 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4193 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4195 error ("the first argument of a %qs must be of a "
4196 "boolean vector type of the same number of elements "
4197 "as the result", code_name
);
4198 debug_generic_expr (lhs_type
);
4199 debug_generic_expr (rhs1_type
);
4204 if (!is_gimple_val (rhs1
)
4205 && verify_gimple_comparison (TREE_TYPE (rhs1
),
4206 TREE_OPERAND (rhs1
, 0),
4207 TREE_OPERAND (rhs1
, 1),
4210 if (!useless_type_conversion_p (lhs_type
, rhs2_type
)
4211 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
4213 error ("type mismatch in %qs", code_name
);
4214 debug_generic_expr (lhs_type
);
4215 debug_generic_expr (rhs2_type
);
4216 debug_generic_expr (rhs3_type
);
4222 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
4223 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
4225 error ("type mismatch in %qs", code_name
);
4226 debug_generic_expr (lhs_type
);
4227 debug_generic_expr (rhs1_type
);
4228 debug_generic_expr (rhs2_type
);
4229 debug_generic_expr (rhs3_type
);
4233 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4234 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4235 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4237 error ("vector types expected in %qs", code_name
);
4238 debug_generic_expr (lhs_type
);
4239 debug_generic_expr (rhs1_type
);
4240 debug_generic_expr (rhs2_type
);
4241 debug_generic_expr (rhs3_type
);
4245 if (maybe_ne (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4246 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4247 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs2_type
),
4248 TYPE_VECTOR_SUBPARTS (rhs3_type
))
4249 || maybe_ne (TYPE_VECTOR_SUBPARTS (rhs3_type
),
4250 TYPE_VECTOR_SUBPARTS (lhs_type
)))
4252 error ("vectors with different element number found in %qs",
4254 debug_generic_expr (lhs_type
);
4255 debug_generic_expr (rhs1_type
);
4256 debug_generic_expr (rhs2_type
);
4257 debug_generic_expr (rhs3_type
);
4261 if (TREE_CODE (TREE_TYPE (rhs3_type
)) != INTEGER_TYPE
4262 || (TREE_CODE (rhs3
) != VECTOR_CST
4263 && (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE
4264 (TREE_TYPE (rhs3_type
)))
4265 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE
4266 (TREE_TYPE (rhs1_type
))))))
4268 error ("invalid mask type in %qs", code_name
);
4269 debug_generic_expr (lhs_type
);
4270 debug_generic_expr (rhs1_type
);
4271 debug_generic_expr (rhs2_type
);
4272 debug_generic_expr (rhs3_type
);
4279 if (!useless_type_conversion_p (rhs1_type
, rhs2_type
)
4280 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4281 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type
)))
4282 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type
))))
4284 error ("type mismatch in %qs", code_name
);
4285 debug_generic_expr (lhs_type
);
4286 debug_generic_expr (rhs1_type
);
4287 debug_generic_expr (rhs2_type
);
4288 debug_generic_expr (rhs3_type
);
4292 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
4293 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
4294 || TREE_CODE (rhs3_type
) != VECTOR_TYPE
)
4296 error ("vector types expected in %qs", code_name
);
4297 debug_generic_expr (lhs_type
);
4298 debug_generic_expr (rhs1_type
);
4299 debug_generic_expr (rhs2_type
);
4300 debug_generic_expr (rhs3_type
);
4306 case BIT_INSERT_EXPR
:
4307 if (! useless_type_conversion_p (lhs_type
, rhs1_type
))
4309 error ("type mismatch in %qs", code_name
);
4310 debug_generic_expr (lhs_type
);
4311 debug_generic_expr (rhs1_type
);
4314 if (! ((INTEGRAL_TYPE_P (rhs1_type
)
4315 && INTEGRAL_TYPE_P (rhs2_type
))
4316 /* Vector element insert. */
4317 || (VECTOR_TYPE_P (rhs1_type
)
4318 && types_compatible_p (TREE_TYPE (rhs1_type
), rhs2_type
))
4319 /* Aligned sub-vector insert. */
4320 || (VECTOR_TYPE_P (rhs1_type
)
4321 && VECTOR_TYPE_P (rhs2_type
)
4322 && types_compatible_p (TREE_TYPE (rhs1_type
),
4323 TREE_TYPE (rhs2_type
))
4324 && multiple_p (TYPE_VECTOR_SUBPARTS (rhs1_type
),
4325 TYPE_VECTOR_SUBPARTS (rhs2_type
))
4326 && multiple_of_p (bitsizetype
, rhs3
, TYPE_SIZE (rhs2_type
)))))
4328 error ("not allowed type combination in %qs", code_name
);
4329 debug_generic_expr (rhs1_type
);
4330 debug_generic_expr (rhs2_type
);
4333 if (! tree_fits_uhwi_p (rhs3
)
4334 || ! types_compatible_p (bitsizetype
, TREE_TYPE (rhs3
))
4335 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type
)))
4337 error ("invalid position or size in %qs", code_name
);
4340 if (INTEGRAL_TYPE_P (rhs1_type
)
4341 && !type_has_mode_precision_p (rhs1_type
))
4343 error ("%qs into non-mode-precision operand", code_name
);
4346 if (INTEGRAL_TYPE_P (rhs1_type
))
4348 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4349 if (bitpos
>= TYPE_PRECISION (rhs1_type
)
4350 || (bitpos
+ TYPE_PRECISION (rhs2_type
)
4351 > TYPE_PRECISION (rhs1_type
)))
4353 error ("insertion out of range in %qs", code_name
);
4357 else if (VECTOR_TYPE_P (rhs1_type
))
4359 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (rhs3
);
4360 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (TYPE_SIZE (rhs2_type
));
4361 if (bitpos
% bitsize
!= 0)
4363 error ("%qs not at element boundary", code_name
);
4371 if (((TREE_CODE (rhs1_type
) != VECTOR_TYPE
4372 || TREE_CODE (lhs_type
) != VECTOR_TYPE
)
4373 && ((!INTEGRAL_TYPE_P (rhs1_type
)
4374 && !SCALAR_FLOAT_TYPE_P (rhs1_type
))
4375 || (!INTEGRAL_TYPE_P (lhs_type
)
4376 && !SCALAR_FLOAT_TYPE_P (lhs_type
))))
4377 || !types_compatible_p (rhs1_type
, rhs2_type
)
4378 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
4379 || maybe_lt (GET_MODE_SIZE (element_mode (rhs3_type
)),
4380 2 * GET_MODE_SIZE (element_mode (rhs1_type
))))
4382 error ("type mismatch in %qs", code_name
);
4383 debug_generic_expr (lhs_type
);
4384 debug_generic_expr (rhs1_type
);
4385 debug_generic_expr (rhs2_type
);
4391 case REALIGN_LOAD_EXPR
:
4401 /* Verify a gimple assignment statement STMT with a single rhs.
4402 Returns true if anything is wrong. */
4405 verify_gimple_assign_single (gassign
*stmt
)
4407 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
4408 tree lhs
= gimple_assign_lhs (stmt
);
4409 tree lhs_type
= TREE_TYPE (lhs
);
4410 tree rhs1
= gimple_assign_rhs1 (stmt
);
4411 tree rhs1_type
= TREE_TYPE (rhs1
);
4414 const char* const code_name
= get_tree_code_name (rhs_code
);
4416 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
4418 error ("non-trivial conversion in %qs", code_name
);
4419 debug_generic_expr (lhs_type
);
4420 debug_generic_expr (rhs1_type
);
4424 if (gimple_clobber_p (stmt
)
4425 && !(DECL_P (lhs
) || TREE_CODE (lhs
) == MEM_REF
))
4427 error ("%qs LHS in clobber statement",
4428 get_tree_code_name (TREE_CODE (lhs
)));
4429 debug_generic_expr (lhs
);
4433 if (handled_component_p (lhs
)
4434 || TREE_CODE (lhs
) == MEM_REF
4435 || TREE_CODE (lhs
) == TARGET_MEM_REF
)
4436 res
|= verify_types_in_gimple_reference (lhs
, true);
4438 /* Special codes we cannot handle via their class. */
4443 tree op
= TREE_OPERAND (rhs1
, 0);
4444 if (!is_gimple_addressable (op
))
4446 error ("invalid operand in %qs", code_name
);
4450 /* Technically there is no longer a need for matching types, but
4451 gimple hygiene asks for this check. In LTO we can end up
4452 combining incompatible units and thus end up with addresses
4453 of globals that change their type to a common one. */
4455 && !types_compatible_p (TREE_TYPE (op
),
4456 TREE_TYPE (TREE_TYPE (rhs1
)))
4457 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
4460 error ("type mismatch in %qs", code_name
);
4461 debug_generic_stmt (TREE_TYPE (rhs1
));
4462 debug_generic_stmt (TREE_TYPE (op
));
4466 return (verify_address (rhs1
, true)
4467 || verify_types_in_gimple_reference (op
, true));
4472 error ("%qs in gimple IL", code_name
);
4478 case ARRAY_RANGE_REF
:
4479 case VIEW_CONVERT_EXPR
:
4482 case TARGET_MEM_REF
:
4484 if (!is_gimple_reg (lhs
)
4485 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4487 error ("invalid RHS for gimple memory store: %qs", code_name
);
4488 debug_generic_stmt (lhs
);
4489 debug_generic_stmt (rhs1
);
4492 return res
|| verify_types_in_gimple_reference (rhs1
, false);
4504 /* tcc_declaration */
4509 if (!is_gimple_reg (lhs
)
4510 && !is_gimple_reg (rhs1
)
4511 && is_gimple_reg_type (TREE_TYPE (lhs
)))
4513 error ("invalid RHS for gimple memory store: %qs", code_name
);
4514 debug_generic_stmt (lhs
);
4515 debug_generic_stmt (rhs1
);
4521 if (TREE_CODE (rhs1_type
) == VECTOR_TYPE
)
4524 tree elt_i
, elt_v
, elt_t
= NULL_TREE
;
4526 if (CONSTRUCTOR_NELTS (rhs1
) == 0)
4528 /* For vector CONSTRUCTORs we require that either it is empty
4529 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4530 (then the element count must be correct to cover the whole
4531 outer vector and index must be NULL on all elements, or it is
4532 a CONSTRUCTOR of scalar elements, where we as an exception allow
4533 smaller number of elements (assuming zero filling) and
4534 consecutive indexes as compared to NULL indexes (such
4535 CONSTRUCTORs can appear in the IL from FEs). */
4536 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1
), i
, elt_i
, elt_v
)
4538 if (elt_t
== NULL_TREE
)
4540 elt_t
= TREE_TYPE (elt_v
);
4541 if (TREE_CODE (elt_t
) == VECTOR_TYPE
)
4543 tree elt_t
= TREE_TYPE (elt_v
);
4544 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4547 error ("incorrect type of vector %qs elements",
4549 debug_generic_stmt (rhs1
);
4552 else if (maybe_ne (CONSTRUCTOR_NELTS (rhs1
)
4553 * TYPE_VECTOR_SUBPARTS (elt_t
),
4554 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4556 error ("incorrect number of vector %qs elements",
4558 debug_generic_stmt (rhs1
);
4562 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type
),
4565 error ("incorrect type of vector %qs elements",
4567 debug_generic_stmt (rhs1
);
4570 else if (maybe_gt (CONSTRUCTOR_NELTS (rhs1
),
4571 TYPE_VECTOR_SUBPARTS (rhs1_type
)))
4573 error ("incorrect number of vector %qs elements",
4575 debug_generic_stmt (rhs1
);
4579 else if (!useless_type_conversion_p (elt_t
, TREE_TYPE (elt_v
)))
4581 error ("incorrect type of vector CONSTRUCTOR elements");
4582 debug_generic_stmt (rhs1
);
4585 if (elt_i
!= NULL_TREE
4586 && (TREE_CODE (elt_t
) == VECTOR_TYPE
4587 || TREE_CODE (elt_i
) != INTEGER_CST
4588 || compare_tree_int (elt_i
, i
) != 0))
4590 error ("vector %qs with non-NULL element index",
4592 debug_generic_stmt (rhs1
);
4595 if (!is_gimple_val (elt_v
))
4597 error ("vector %qs element is not a GIMPLE value",
4599 debug_generic_stmt (rhs1
);
4604 else if (CONSTRUCTOR_NELTS (rhs1
) != 0)
4606 error ("non-vector %qs with elements", code_name
);
4607 debug_generic_stmt (rhs1
);
4614 rhs1
= fold (ASSERT_EXPR_COND (rhs1
));
4615 if (rhs1
== boolean_false_node
)
4617 error ("%qs with an always-false condition", code_name
);
4618 debug_generic_stmt (rhs1
);
4624 case WITH_SIZE_EXPR
:
4634 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4635 is a problem, otherwise false. */
4638 verify_gimple_assign (gassign
*stmt
)
4640 switch (gimple_assign_rhs_class (stmt
))
4642 case GIMPLE_SINGLE_RHS
:
4643 return verify_gimple_assign_single (stmt
);
4645 case GIMPLE_UNARY_RHS
:
4646 return verify_gimple_assign_unary (stmt
);
4648 case GIMPLE_BINARY_RHS
:
4649 return verify_gimple_assign_binary (stmt
);
4651 case GIMPLE_TERNARY_RHS
:
4652 return verify_gimple_assign_ternary (stmt
);
4659 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4660 is a problem, otherwise false. */
4663 verify_gimple_return (greturn
*stmt
)
4665 tree op
= gimple_return_retval (stmt
);
4666 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
4668 /* We cannot test for present return values as we do not fix up missing
4669 return values from the original source. */
4673 if (!is_gimple_val (op
)
4674 && TREE_CODE (op
) != RESULT_DECL
)
4676 error ("invalid operand in return statement");
4677 debug_generic_stmt (op
);
4681 if ((TREE_CODE (op
) == RESULT_DECL
4682 && DECL_BY_REFERENCE (op
))
4683 || (TREE_CODE (op
) == SSA_NAME
4684 && SSA_NAME_VAR (op
)
4685 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
4686 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
4687 op
= TREE_TYPE (op
);
4689 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
4691 error ("invalid conversion in return statement");
4692 debug_generic_stmt (restype
);
4693 debug_generic_stmt (TREE_TYPE (op
));
4701 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4702 is a problem, otherwise false. */
4705 verify_gimple_goto (ggoto
*stmt
)
4707 tree dest
= gimple_goto_dest (stmt
);
4709 /* ??? We have two canonical forms of direct goto destinations, a
4710 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4711 if (TREE_CODE (dest
) != LABEL_DECL
4712 && (!is_gimple_val (dest
)
4713 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
4715 error ("goto destination is neither a label nor a pointer");
4722 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4723 is a problem, otherwise false. */
4726 verify_gimple_switch (gswitch
*stmt
)
4729 tree elt
, prev_upper_bound
= NULL_TREE
;
4730 tree index_type
, elt_type
= NULL_TREE
;
4732 if (!is_gimple_val (gimple_switch_index (stmt
)))
4734 error ("invalid operand to switch statement");
4735 debug_generic_stmt (gimple_switch_index (stmt
));
4739 index_type
= TREE_TYPE (gimple_switch_index (stmt
));
4740 if (! INTEGRAL_TYPE_P (index_type
))
4742 error ("non-integral type switch statement");
4743 debug_generic_expr (index_type
);
4747 elt
= gimple_switch_label (stmt
, 0);
4748 if (CASE_LOW (elt
) != NULL_TREE
4749 || CASE_HIGH (elt
) != NULL_TREE
4750 || CASE_CHAIN (elt
) != NULL_TREE
)
4752 error ("invalid default case label in switch statement");
4753 debug_generic_expr (elt
);
4757 n
= gimple_switch_num_labels (stmt
);
4758 for (i
= 1; i
< n
; i
++)
4760 elt
= gimple_switch_label (stmt
, i
);
4762 if (CASE_CHAIN (elt
))
4764 error ("invalid %<CASE_CHAIN%>");
4765 debug_generic_expr (elt
);
4768 if (! CASE_LOW (elt
))
4770 error ("invalid case label in switch statement");
4771 debug_generic_expr (elt
);
4775 && ! tree_int_cst_lt (CASE_LOW (elt
), CASE_HIGH (elt
)))
4777 error ("invalid case range in switch statement");
4778 debug_generic_expr (elt
);
4784 if (TREE_TYPE (CASE_LOW (elt
)) != elt_type
4785 || (CASE_HIGH (elt
) && TREE_TYPE (CASE_HIGH (elt
)) != elt_type
))
4787 error ("type mismatch for case label in switch statement");
4788 debug_generic_expr (elt
);
4794 elt_type
= TREE_TYPE (CASE_LOW (elt
));
4795 if (TYPE_PRECISION (index_type
) < TYPE_PRECISION (elt_type
))
4797 error ("type precision mismatch in switch statement");
4802 if (prev_upper_bound
)
4804 if (! tree_int_cst_lt (prev_upper_bound
, CASE_LOW (elt
)))
4806 error ("case labels not sorted in switch statement");
4811 prev_upper_bound
= CASE_HIGH (elt
);
4812 if (! prev_upper_bound
)
4813 prev_upper_bound
= CASE_LOW (elt
);
4819 /* Verify a gimple debug statement STMT.
4820 Returns true if anything is wrong. */
4823 verify_gimple_debug (gimple
*stmt ATTRIBUTE_UNUSED
)
4825 /* There isn't much that could be wrong in a gimple debug stmt. A
4826 gimple debug bind stmt, for example, maps a tree, that's usually
4827 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4828 component or member of an aggregate type, to another tree, that
4829 can be an arbitrary expression. These stmts expand into debug
4830 insns, and are converted to debug notes by var-tracking.c. */
4834 /* Verify a gimple label statement STMT.
4835 Returns true if anything is wrong. */
4838 verify_gimple_label (glabel
*stmt
)
4840 tree decl
= gimple_label_label (stmt
);
4844 if (TREE_CODE (decl
) != LABEL_DECL
)
4846 if (!DECL_NONLOCAL (decl
) && !FORCED_LABEL (decl
)
4847 && DECL_CONTEXT (decl
) != current_function_decl
)
4849 error ("label context is not the current function declaration");
4853 uid
= LABEL_DECL_UID (decl
);
4856 || (*label_to_block_map_for_fn (cfun
))[uid
] != gimple_bb (stmt
)))
4858 error ("incorrect entry in %<label_to_block_map%>");
4862 uid
= EH_LANDING_PAD_NR (decl
);
4865 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
4866 if (decl
!= lp
->post_landing_pad
)
4868 error ("incorrect setting of landing pad number");
4876 /* Verify a gimple cond statement STMT.
4877 Returns true if anything is wrong. */
4880 verify_gimple_cond (gcond
*stmt
)
4882 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4884 error ("invalid comparison code in gimple cond");
4887 if (!(!gimple_cond_true_label (stmt
)
4888 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4889 || !(!gimple_cond_false_label (stmt
)
4890 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4892 error ("invalid labels in gimple cond");
4896 return verify_gimple_comparison (boolean_type_node
,
4897 gimple_cond_lhs (stmt
),
4898 gimple_cond_rhs (stmt
),
4899 gimple_cond_code (stmt
));
4902 /* Verify the GIMPLE statement STMT. Returns true if there is an
4903 error, otherwise false. */
4906 verify_gimple_stmt (gimple
*stmt
)
4908 switch (gimple_code (stmt
))
4911 return verify_gimple_assign (as_a
<gassign
*> (stmt
));
4914 return verify_gimple_label (as_a
<glabel
*> (stmt
));
4917 return verify_gimple_call (as_a
<gcall
*> (stmt
));
4920 return verify_gimple_cond (as_a
<gcond
*> (stmt
));
4923 return verify_gimple_goto (as_a
<ggoto
*> (stmt
));
4926 return verify_gimple_switch (as_a
<gswitch
*> (stmt
));
4929 return verify_gimple_return (as_a
<greturn
*> (stmt
));
4934 case GIMPLE_TRANSACTION
:
4935 return verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
4937 /* Tuples that do not have tree operands. */
4939 case GIMPLE_PREDICT
:
4941 case GIMPLE_EH_DISPATCH
:
4942 case GIMPLE_EH_MUST_NOT_THROW
:
4946 /* OpenMP directives are validated by the FE and never operated
4947 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4948 non-gimple expressions when the main index variable has had
4949 its address taken. This does not affect the loop itself
4950 because the header of an GIMPLE_OMP_FOR is merely used to determine
4951 how to setup the parallel iteration. */
4955 return verify_gimple_debug (stmt
);
4962 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4963 and false otherwise. */
4966 verify_gimple_phi (gphi
*phi
)
4970 tree phi_result
= gimple_phi_result (phi
);
4975 error ("invalid %<PHI%> result");
4979 virtual_p
= virtual_operand_p (phi_result
);
4980 if (TREE_CODE (phi_result
) != SSA_NAME
4982 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4984 error ("invalid %<PHI%> result");
4988 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4990 tree t
= gimple_phi_arg_def (phi
, i
);
4994 error ("missing %<PHI%> def");
4998 /* Addressable variables do have SSA_NAMEs but they
4999 are not considered gimple values. */
5000 else if ((TREE_CODE (t
) == SSA_NAME
5001 && virtual_p
!= virtual_operand_p (t
))
5003 && (TREE_CODE (t
) != SSA_NAME
5004 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
5006 && !is_gimple_val (t
)))
5008 error ("invalid %<PHI%> argument");
5009 debug_generic_expr (t
);
5012 #ifdef ENABLE_TYPES_CHECKING
5013 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
5015 error ("incompatible types in %<PHI%> argument %u", i
);
5016 debug_generic_stmt (TREE_TYPE (phi_result
));
5017 debug_generic_stmt (TREE_TYPE (t
));
5026 /* Verify the GIMPLE statements inside the sequence STMTS. */
5029 verify_gimple_in_seq_2 (gimple_seq stmts
)
5031 gimple_stmt_iterator ittr
;
5034 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
5036 gimple
*stmt
= gsi_stmt (ittr
);
5038 switch (gimple_code (stmt
))
5041 err
|= verify_gimple_in_seq_2 (
5042 gimple_bind_body (as_a
<gbind
*> (stmt
)));
5046 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
5047 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
5050 case GIMPLE_EH_FILTER
:
5051 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
5054 case GIMPLE_EH_ELSE
:
5056 geh_else
*eh_else
= as_a
<geh_else
*> (stmt
);
5057 err
|= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else
));
5058 err
|= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else
));
5063 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (
5064 as_a
<gcatch
*> (stmt
)));
5067 case GIMPLE_TRANSACTION
:
5068 err
|= verify_gimple_transaction (as_a
<gtransaction
*> (stmt
));
5073 bool err2
= verify_gimple_stmt (stmt
);
5075 debug_gimple_stmt (stmt
);
5084 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5085 is a problem, otherwise false. */
5088 verify_gimple_transaction (gtransaction
*stmt
)
5092 lab
= gimple_transaction_label_norm (stmt
);
5093 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5095 lab
= gimple_transaction_label_uninst (stmt
);
5096 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5098 lab
= gimple_transaction_label_over (stmt
);
5099 if (lab
!= NULL
&& TREE_CODE (lab
) != LABEL_DECL
)
5102 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt
));
5106 /* Verify the GIMPLE statements inside the statement list STMTS. */
5109 verify_gimple_in_seq (gimple_seq stmts
)
5111 timevar_push (TV_TREE_STMT_VERIFY
);
5112 if (verify_gimple_in_seq_2 (stmts
))
5113 internal_error ("%<verify_gimple%> failed");
5114 timevar_pop (TV_TREE_STMT_VERIFY
);
5117 /* Return true when the T can be shared. */
5120 tree_node_can_be_shared (tree t
)
5122 if (IS_TYPE_OR_DECL_P (t
)
5123 || TREE_CODE (t
) == SSA_NAME
5124 || TREE_CODE (t
) == IDENTIFIER_NODE
5125 || TREE_CODE (t
) == CASE_LABEL_EXPR
5126 || is_gimple_min_invariant (t
))
5129 if (t
== error_mark_node
)
5135 /* Called via walk_tree. Verify tree sharing. */
5138 verify_node_sharing_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5140 hash_set
<void *> *visited
= (hash_set
<void *> *) data
;
5142 if (tree_node_can_be_shared (*tp
))
5144 *walk_subtrees
= false;
5148 if (visited
->add (*tp
))
5154 /* Called via walk_gimple_stmt. Verify tree sharing. */
5157 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
5159 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5160 return verify_node_sharing_1 (tp
, walk_subtrees
, wi
->info
);
5163 static bool eh_error_found
;
5165 verify_eh_throw_stmt_node (gimple
*const &stmt
, const int &,
5166 hash_set
<gimple
*> *visited
)
5168 if (!visited
->contains (stmt
))
5170 error ("dead statement in EH table");
5171 debug_gimple_stmt (stmt
);
5172 eh_error_found
= true;
5177 /* Verify if the location LOCs block is in BLOCKS. */
5180 verify_location (hash_set
<tree
> *blocks
, location_t loc
)
5182 tree block
= LOCATION_BLOCK (loc
);
5183 if (block
!= NULL_TREE
5184 && !blocks
->contains (block
))
5186 error ("location references block not in block tree");
5189 if (block
!= NULL_TREE
)
5190 return verify_location (blocks
, BLOCK_SOURCE_LOCATION (block
));
5194 /* Called via walk_tree. Verify that expressions have no blocks. */
5197 verify_expr_no_block (tree
*tp
, int *walk_subtrees
, void *)
5201 *walk_subtrees
= false;
5205 location_t loc
= EXPR_LOCATION (*tp
);
5206 if (LOCATION_BLOCK (loc
) != NULL
)
5212 /* Called via walk_tree. Verify locations of expressions. */
5215 verify_expr_location_1 (tree
*tp
, int *walk_subtrees
, void *data
)
5217 hash_set
<tree
> *blocks
= (hash_set
<tree
> *) data
;
5220 /* ??? This doesn't really belong here but there's no good place to
5221 stick this remainder of old verify_expr. */
5222 /* ??? This barfs on debug stmts which contain binds to vars with
5223 different function context. */
5226 || TREE_CODE (t
) == PARM_DECL
5227 || TREE_CODE (t
) == RESULT_DECL
)
5229 tree context
= decl_function_context (t
);
5230 if (context
!= cfun
->decl
5231 && !SCOPE_FILE_SCOPE_P (context
)
5233 && !DECL_EXTERNAL (t
))
5235 error ("local declaration from a different function");
5241 if (VAR_P (t
) && DECL_HAS_DEBUG_EXPR_P (t
))
5243 tree x
= DECL_DEBUG_EXPR (t
);
5244 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5249 || TREE_CODE (t
) == PARM_DECL
5250 || TREE_CODE (t
) == RESULT_DECL
)
5251 && DECL_HAS_VALUE_EXPR_P (t
))
5253 tree x
= DECL_VALUE_EXPR (t
);
5254 tree addr
= walk_tree (&x
, verify_expr_no_block
, NULL
, NULL
);
5261 *walk_subtrees
= false;
5265 location_t loc
= EXPR_LOCATION (t
);
5266 if (verify_location (blocks
, loc
))
5272 /* Called via walk_gimple_op. Verify locations of expressions. */
5275 verify_expr_location (tree
*tp
, int *walk_subtrees
, void *data
)
5277 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5278 return verify_expr_location_1 (tp
, walk_subtrees
, wi
->info
);
5281 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5284 collect_subblocks (hash_set
<tree
> *blocks
, tree block
)
5287 for (t
= BLOCK_SUBBLOCKS (block
); t
; t
= BLOCK_CHAIN (t
))
5290 collect_subblocks (blocks
, t
);
5294 /* Disable warnings about missing quoting in GCC diagnostics for
5295 the verification errors. Their format strings don't follow
5296 GCC diagnostic conventions and trigger an ICE in the end. */
5298 # pragma GCC diagnostic push
5299 # pragma GCC diagnostic ignored "-Wformat-diag"
5302 /* Verify the GIMPLE statements in the CFG of FN. */
5305 verify_gimple_in_cfg (struct function
*fn
, bool verify_nothrow
)
5310 timevar_push (TV_TREE_STMT_VERIFY
);
5311 hash_set
<void *> visited
;
5312 hash_set
<gimple
*> visited_throwing_stmts
;
5314 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5315 hash_set
<tree
> blocks
;
5316 if (DECL_INITIAL (fn
->decl
))
5318 blocks
.add (DECL_INITIAL (fn
->decl
));
5319 collect_subblocks (&blocks
, DECL_INITIAL (fn
->decl
));
5322 FOR_EACH_BB_FN (bb
, fn
)
5324 gimple_stmt_iterator gsi
;
5328 for (gphi_iterator gpi
= gsi_start_phis (bb
);
5332 gphi
*phi
= gpi
.phi ();
5336 if (gimple_bb (phi
) != bb
)
5338 error ("gimple_bb (phi) is set to a wrong basic block");
5342 err2
|= verify_gimple_phi (phi
);
5344 /* Only PHI arguments have locations. */
5345 if (gimple_location (phi
) != UNKNOWN_LOCATION
)
5347 error ("PHI node with location");
5351 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
5353 tree arg
= gimple_phi_arg_def (phi
, i
);
5354 tree addr
= walk_tree (&arg
, verify_node_sharing_1
,
5358 error ("incorrect sharing of tree nodes");
5359 debug_generic_expr (addr
);
5362 location_t loc
= gimple_phi_arg_location (phi
, i
);
5363 if (virtual_operand_p (gimple_phi_result (phi
))
5364 && loc
!= UNKNOWN_LOCATION
)
5366 error ("virtual PHI with argument locations");
5369 addr
= walk_tree (&arg
, verify_expr_location_1
, &blocks
, NULL
);
5372 debug_generic_expr (addr
);
5375 err2
|= verify_location (&blocks
, loc
);
5379 debug_gimple_stmt (phi
);
5383 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5385 gimple
*stmt
= gsi_stmt (gsi
);
5387 struct walk_stmt_info wi
;
5391 if (gimple_bb (stmt
) != bb
)
5393 error ("gimple_bb (stmt) is set to a wrong basic block");
5397 err2
|= verify_gimple_stmt (stmt
);
5398 err2
|= verify_location (&blocks
, gimple_location (stmt
));
5400 memset (&wi
, 0, sizeof (wi
));
5401 wi
.info
= (void *) &visited
;
5402 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
5405 error ("incorrect sharing of tree nodes");
5406 debug_generic_expr (addr
);
5410 memset (&wi
, 0, sizeof (wi
));
5411 wi
.info
= (void *) &blocks
;
5412 addr
= walk_gimple_op (stmt
, verify_expr_location
, &wi
);
5415 debug_generic_expr (addr
);
5419 /* If the statement is marked as part of an EH region, then it is
5420 expected that the statement could throw. Verify that when we
5421 have optimizations that simplify statements such that we prove
5422 that they cannot throw, that we update other data structures
5424 lp_nr
= lookup_stmt_eh_lp (stmt
);
5426 visited_throwing_stmts
.add (stmt
);
5429 if (!stmt_could_throw_p (cfun
, stmt
))
5433 error ("statement marked for throw, but doesn%'t");
5437 else if (!gsi_one_before_end_p (gsi
))
5439 error ("statement marked for throw in middle of block");
5445 debug_gimple_stmt (stmt
);
5449 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5450 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
5451 err
|= verify_location (&blocks
, e
->goto_locus
);
5454 hash_map
<gimple
*, int> *eh_table
= get_eh_throw_stmt_table (cfun
);
5455 eh_error_found
= false;
5457 eh_table
->traverse
<hash_set
<gimple
*> *, verify_eh_throw_stmt_node
>
5458 (&visited_throwing_stmts
);
5460 if (err
|| eh_error_found
)
5461 internal_error ("verify_gimple failed");
5463 verify_histograms ();
5464 timevar_pop (TV_TREE_STMT_VERIFY
);
5468 /* Verifies that the flow information is OK. */
5471 gimple_verify_flow_info (void)
5475 gimple_stmt_iterator gsi
;
5480 if (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5481 || ENTRY_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5483 error ("ENTRY_BLOCK has IL associated with it");
5487 if (EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.seq
5488 || EXIT_BLOCK_PTR_FOR_FN (cfun
)->il
.gimple
.phi_nodes
)
5490 error ("EXIT_BLOCK has IL associated with it");
5494 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (cfun
)->preds
)
5495 if (e
->flags
& EDGE_FALLTHRU
)
5497 error ("fallthru to exit from bb %d", e
->src
->index
);
5501 FOR_EACH_BB_FN (bb
, cfun
)
5503 bool found_ctrl_stmt
= false;
5507 /* Skip labels on the start of basic block. */
5508 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5511 gimple
*prev_stmt
= stmt
;
5513 stmt
= gsi_stmt (gsi
);
5515 if (gimple_code (stmt
) != GIMPLE_LABEL
)
5518 label
= gimple_label_label (as_a
<glabel
*> (stmt
));
5519 if (prev_stmt
&& DECL_NONLOCAL (label
))
5521 error ("nonlocal label ");
5522 print_generic_expr (stderr
, label
);
5523 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5528 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
5530 error ("EH landing pad label ");
5531 print_generic_expr (stderr
, label
);
5532 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
5537 if (label_to_block (cfun
, label
) != bb
)
5540 print_generic_expr (stderr
, label
);
5541 fprintf (stderr
, " to block does not match in bb %d",
5546 if (decl_function_context (label
) != current_function_decl
)
5549 print_generic_expr (stderr
, label
);
5550 fprintf (stderr
, " has incorrect context in bb %d",
5556 /* Verify that body of basic block BB is free of control flow. */
5557 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
5559 gimple
*stmt
= gsi_stmt (gsi
);
5561 if (found_ctrl_stmt
)
5563 error ("control flow in the middle of basic block %d",
5568 if (stmt_ends_bb_p (stmt
))
5569 found_ctrl_stmt
= true;
5571 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
5574 print_generic_expr (stderr
, gimple_label_label (label_stmt
));
5575 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
5580 gsi
= gsi_last_nondebug_bb (bb
);
5581 if (gsi_end_p (gsi
))
5584 stmt
= gsi_stmt (gsi
);
5586 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5589 err
|= verify_eh_edges (stmt
);
5591 if (is_ctrl_stmt (stmt
))
5593 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5594 if (e
->flags
& EDGE_FALLTHRU
)
5596 error ("fallthru edge after a control statement in bb %d",
5602 if (gimple_code (stmt
) != GIMPLE_COND
)
5604 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5605 after anything else but if statement. */
5606 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5607 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
5609 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5615 switch (gimple_code (stmt
))
5622 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
5626 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
5627 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
5628 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5629 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
5630 || EDGE_COUNT (bb
->succs
) >= 3)
5632 error ("wrong outgoing edge flags at end of bb %d",
5640 if (simple_goto_p (stmt
))
5642 error ("explicit goto at end of bb %d", bb
->index
);
5647 /* FIXME. We should double check that the labels in the
5648 destination blocks have their address taken. */
5649 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5650 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
5651 | EDGE_FALSE_VALUE
))
5652 || !(e
->flags
& EDGE_ABNORMAL
))
5654 error ("wrong outgoing edge flags at end of bb %d",
5662 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
5666 if (!single_succ_p (bb
)
5667 || (single_succ_edge (bb
)->flags
5668 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
5669 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5671 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
5674 if (single_succ (bb
) != EXIT_BLOCK_PTR_FOR_FN (cfun
))
5676 error ("return edge does not point to exit in bb %d",
5684 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5689 n
= gimple_switch_num_labels (switch_stmt
);
5691 /* Mark all the destination basic blocks. */
5692 for (i
= 0; i
< n
; ++i
)
5694 basic_block label_bb
= gimple_switch_label_bb (cfun
, switch_stmt
, i
);
5695 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
5696 label_bb
->aux
= (void *)1;
5699 /* Verify that the case labels are sorted. */
5700 prev
= gimple_switch_label (switch_stmt
, 0);
5701 for (i
= 1; i
< n
; ++i
)
5703 tree c
= gimple_switch_label (switch_stmt
, i
);
5706 error ("found default case not at the start of "
5712 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
5714 error ("case labels not sorted: ");
5715 print_generic_expr (stderr
, prev
);
5716 fprintf (stderr
," is greater than ");
5717 print_generic_expr (stderr
, c
);
5718 fprintf (stderr
," but comes before it.\n");
5723 /* VRP will remove the default case if it can prove it will
5724 never be executed. So do not verify there always exists
5725 a default case here. */
5727 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5731 error ("extra outgoing edge %d->%d",
5732 bb
->index
, e
->dest
->index
);
5736 e
->dest
->aux
= (void *)2;
5737 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
5738 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
5740 error ("wrong outgoing edge flags at end of bb %d",
5746 /* Check that we have all of them. */
5747 for (i
= 0; i
< n
; ++i
)
5749 basic_block label_bb
= gimple_switch_label_bb (cfun
,
5752 if (label_bb
->aux
!= (void *)2)
5754 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
5759 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5760 e
->dest
->aux
= (void *)0;
5764 case GIMPLE_EH_DISPATCH
:
5765 err
|= verify_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
));
5773 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
5774 verify_dominators (CDI_DOMINATORS
);
5780 # pragma GCC diagnostic pop
5783 /* Updates phi nodes after creating a forwarder block joined
5784 by edge FALLTHRU. */
5787 gimple_make_forwarder_block (edge fallthru
)
5791 basic_block dummy
, bb
;
5794 bool forward_location_p
;
5796 dummy
= fallthru
->src
;
5797 bb
= fallthru
->dest
;
5799 if (single_pred_p (bb
))
5802 /* We can forward location info if we have only one predecessor. */
5803 forward_location_p
= single_pred_p (dummy
);
5805 /* If we redirected a branch we must create new PHI nodes at the
5807 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5809 gphi
*phi
, *new_phi
;
5812 var
= gimple_phi_result (phi
);
5813 new_phi
= create_phi_node (var
, bb
);
5814 gimple_phi_set_result (phi
, copy_ssa_name (var
, phi
));
5815 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
5817 ? gimple_phi_arg_location (phi
, 0) : UNKNOWN_LOCATION
);
5820 /* Add the arguments we have stored on edges. */
5821 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5826 flush_pending_stmts (e
);
5831 /* Return a non-special label in the head of basic block BLOCK.
5832 Create one if it doesn't exist. */
5835 gimple_block_label (basic_block bb
)
5837 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
5842 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
5844 stmt
= dyn_cast
<glabel
*> (gsi_stmt (i
));
5847 label
= gimple_label_label (stmt
);
5848 if (!DECL_NONLOCAL (label
))
5851 gsi_move_before (&i
, &s
);
5856 label
= create_artificial_label (UNKNOWN_LOCATION
);
5857 stmt
= gimple_build_label (label
);
5858 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
5863 /* Attempt to perform edge redirection by replacing a possibly complex
5864 jump instruction by a goto or by removing the jump completely.
5865 This can apply only if all edges now point to the same block. The
5866 parameters and return values are equivalent to
5867 redirect_edge_and_branch. */
5870 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
5872 basic_block src
= e
->src
;
5873 gimple_stmt_iterator i
;
5876 /* We can replace or remove a complex jump only when we have exactly
5878 if (EDGE_COUNT (src
->succs
) != 2
5879 /* Verify that all targets will be TARGET. Specifically, the
5880 edge that is not E must also go to TARGET. */
5881 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
5884 i
= gsi_last_bb (src
);
5888 stmt
= gsi_stmt (i
);
5890 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
5892 gsi_remove (&i
, true);
5893 e
= ssa_redirect_edge (e
, target
);
5894 e
->flags
= EDGE_FALLTHRU
;
5902 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5903 edge representing the redirected branch. */
5906 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
5908 basic_block bb
= e
->src
;
5909 gimple_stmt_iterator gsi
;
5913 if (e
->flags
& EDGE_ABNORMAL
)
5916 if (e
->dest
== dest
)
5919 if (e
->flags
& EDGE_EH
)
5920 return redirect_eh_edge (e
, dest
);
5922 if (e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
5924 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
5929 gsi
= gsi_last_nondebug_bb (bb
);
5930 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
5932 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
5935 /* For COND_EXPR, we only need to redirect the edge. */
5939 /* No non-abnormal edges should lead from a non-simple goto, and
5940 simple ones should be represented implicitly. */
5945 gswitch
*switch_stmt
= as_a
<gswitch
*> (stmt
);
5946 tree label
= gimple_block_label (dest
);
5947 tree cases
= get_cases_for_edge (e
, switch_stmt
);
5949 /* If we have a list of cases associated with E, then use it
5950 as it's a lot faster than walking the entire case vector. */
5953 edge e2
= find_edge (e
->src
, dest
);
5960 CASE_LABEL (cases
) = label
;
5961 cases
= CASE_CHAIN (cases
);
5964 /* If there was already an edge in the CFG, then we need
5965 to move all the cases associated with E to E2. */
5968 tree cases2
= get_cases_for_edge (e2
, switch_stmt
);
5970 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
5971 CASE_CHAIN (cases2
) = first
;
5973 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
5977 size_t i
, n
= gimple_switch_num_labels (switch_stmt
);
5979 for (i
= 0; i
< n
; i
++)
5981 tree elt
= gimple_switch_label (switch_stmt
, i
);
5982 if (label_to_block (cfun
, CASE_LABEL (elt
)) == e
->dest
)
5983 CASE_LABEL (elt
) = label
;
5991 gasm
*asm_stmt
= as_a
<gasm
*> (stmt
);
5992 int i
, n
= gimple_asm_nlabels (asm_stmt
);
5995 for (i
= 0; i
< n
; ++i
)
5997 tree cons
= gimple_asm_label_op (asm_stmt
, i
);
5998 if (label_to_block (cfun
, TREE_VALUE (cons
)) == e
->dest
)
6001 label
= gimple_block_label (dest
);
6002 TREE_VALUE (cons
) = label
;
6006 /* If we didn't find any label matching the former edge in the
6007 asm labels, we must be redirecting the fallthrough
6009 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
6014 gsi_remove (&gsi
, true);
6015 e
->flags
|= EDGE_FALLTHRU
;
6018 case GIMPLE_OMP_RETURN
:
6019 case GIMPLE_OMP_CONTINUE
:
6020 case GIMPLE_OMP_SECTIONS_SWITCH
:
6021 case GIMPLE_OMP_FOR
:
6022 /* The edges from OMP constructs can be simply redirected. */
6025 case GIMPLE_EH_DISPATCH
:
6026 if (!(e
->flags
& EDGE_FALLTHRU
))
6027 redirect_eh_dispatch_edge (as_a
<geh_dispatch
*> (stmt
), e
, dest
);
6030 case GIMPLE_TRANSACTION
:
6031 if (e
->flags
& EDGE_TM_ABORT
)
6032 gimple_transaction_set_label_over (as_a
<gtransaction
*> (stmt
),
6033 gimple_block_label (dest
));
6034 else if (e
->flags
& EDGE_TM_UNINSTRUMENTED
)
6035 gimple_transaction_set_label_uninst (as_a
<gtransaction
*> (stmt
),
6036 gimple_block_label (dest
));
6038 gimple_transaction_set_label_norm (as_a
<gtransaction
*> (stmt
),
6039 gimple_block_label (dest
));
6043 /* Otherwise it must be a fallthru edge, and we don't need to
6044 do anything besides redirecting it. */
6045 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
6049 /* Update/insert PHI nodes as necessary. */
6051 /* Now update the edges in the CFG. */
6052 e
= ssa_redirect_edge (e
, dest
);
6057 /* Returns true if it is possible to remove edge E by redirecting
6058 it to the destination of the other edge from E->src. */
6061 gimple_can_remove_branch_p (const_edge e
)
6063 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
6069 /* Simple wrapper, as we can always redirect fallthru edges. */
6072 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
6074 e
= gimple_redirect_edge_and_branch (e
, dest
);
6081 /* Splits basic block BB after statement STMT (but at least after the
6082 labels). If STMT is NULL, BB is split just after the labels. */
6085 gimple_split_block (basic_block bb
, void *stmt
)
6087 gimple_stmt_iterator gsi
;
6088 gimple_stmt_iterator gsi_tgt
;
6094 new_bb
= create_empty_bb (bb
);
6096 /* Redirect the outgoing edges. */
6097 new_bb
->succs
= bb
->succs
;
6099 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
6102 /* Get a stmt iterator pointing to the first stmt to move. */
6103 if (!stmt
|| gimple_code ((gimple
*) stmt
) == GIMPLE_LABEL
)
6104 gsi
= gsi_after_labels (bb
);
6107 gsi
= gsi_for_stmt ((gimple
*) stmt
);
6111 /* Move everything from GSI to the new basic block. */
6112 if (gsi_end_p (gsi
))
6115 /* Split the statement list - avoid re-creating new containers as this
6116 brings ugly quadratic memory consumption in the inliner.
6117 (We are still quadratic since we need to update stmt BB pointers,
6119 gsi_split_seq_before (&gsi
, &list
);
6120 set_bb_seq (new_bb
, list
);
6121 for (gsi_tgt
= gsi_start (list
);
6122 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
6123 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
6129 /* Moves basic block BB after block AFTER. */
6132 gimple_move_block_after (basic_block bb
, basic_block after
)
6134 if (bb
->prev_bb
== after
)
6138 link_block (bb
, after
);
6144 /* Return TRUE if block BB has no executable statements, otherwise return
6148 gimple_empty_block_p (basic_block bb
)
6150 /* BB must have no executable statements. */
6151 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
6154 while (!gsi_end_p (gsi
))
6156 gimple
*stmt
= gsi_stmt (gsi
);
6157 if (is_gimple_debug (stmt
))
6159 else if (gimple_code (stmt
) == GIMPLE_NOP
6160 || gimple_code (stmt
) == GIMPLE_PREDICT
)
6170 /* Split a basic block if it ends with a conditional branch and if the
6171 other part of the block is not empty. */
6174 gimple_split_block_before_cond_jump (basic_block bb
)
6176 gimple
*last
, *split_point
;
6177 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6178 if (gsi_end_p (gsi
))
6180 last
= gsi_stmt (gsi
);
6181 if (gimple_code (last
) != GIMPLE_COND
6182 && gimple_code (last
) != GIMPLE_SWITCH
)
6185 split_point
= gsi_stmt (gsi
);
6186 return split_block (bb
, split_point
)->dest
;
6190 /* Return true if basic_block can be duplicated. */
6193 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
6198 /* Create a duplicate of the basic block BB. NOTE: This does not
6199 preserve SSA form. */
6202 gimple_duplicate_bb (basic_block bb
, copy_bb_data
*id
)
6205 gimple_stmt_iterator gsi_tgt
;
6207 new_bb
= create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
);
6209 /* Copy the PHI nodes. We ignore PHI node arguments here because
6210 the incoming edges have not been setup yet. */
6211 for (gphi_iterator gpi
= gsi_start_phis (bb
);
6217 copy
= create_phi_node (NULL_TREE
, new_bb
);
6218 create_new_def_for (gimple_phi_result (phi
), copy
,
6219 gimple_phi_result_ptr (copy
));
6220 gimple_set_uid (copy
, gimple_uid (phi
));
6223 gsi_tgt
= gsi_start_bb (new_bb
);
6224 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
6228 def_operand_p def_p
;
6229 ssa_op_iter op_iter
;
6231 gimple
*stmt
, *copy
;
6233 stmt
= gsi_stmt (gsi
);
6234 if (gimple_code (stmt
) == GIMPLE_LABEL
)
6237 /* Don't duplicate label debug stmts. */
6238 if (gimple_debug_bind_p (stmt
)
6239 && TREE_CODE (gimple_debug_bind_get_var (stmt
))
6243 /* Create a new copy of STMT and duplicate STMT's virtual
6245 copy
= gimple_copy (stmt
);
6246 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
6248 maybe_duplicate_eh_stmt (copy
, stmt
);
6249 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
6251 /* When copying around a stmt writing into a local non-user
6252 aggregate, make sure it won't share stack slot with other
6254 lhs
= gimple_get_lhs (stmt
);
6255 if (lhs
&& TREE_CODE (lhs
) != SSA_NAME
)
6257 tree base
= get_base_address (lhs
);
6259 && (VAR_P (base
) || TREE_CODE (base
) == RESULT_DECL
)
6260 && DECL_IGNORED_P (base
)
6261 && !TREE_STATIC (base
)
6262 && !DECL_EXTERNAL (base
)
6263 && (!VAR_P (base
) || !DECL_HAS_VALUE_EXPR_P (base
)))
6264 DECL_NONSHAREABLE (base
) = 1;
6267 /* If requested remap dependence info of cliques brought in
6270 for (unsigned i
= 0; i
< gimple_num_ops (copy
); ++i
)
6272 tree op
= gimple_op (copy
, i
);
6275 if (TREE_CODE (op
) == ADDR_EXPR
6276 || TREE_CODE (op
) == WITH_SIZE_EXPR
)
6277 op
= TREE_OPERAND (op
, 0);
6278 while (handled_component_p (op
))
6279 op
= TREE_OPERAND (op
, 0);
6280 if ((TREE_CODE (op
) == MEM_REF
6281 || TREE_CODE (op
) == TARGET_MEM_REF
)
6282 && MR_DEPENDENCE_CLIQUE (op
) > 1
6283 && MR_DEPENDENCE_CLIQUE (op
) != bb
->loop_father
->owned_clique
)
6285 if (!id
->dependence_map
)
6286 id
->dependence_map
= new hash_map
<dependence_hash
,
6289 unsigned short &newc
= id
->dependence_map
->get_or_insert
6290 (MR_DEPENDENCE_CLIQUE (op
), &existed
);
6293 gcc_assert (MR_DEPENDENCE_CLIQUE (op
) <= cfun
->last_clique
);
6294 newc
= ++cfun
->last_clique
;
6296 MR_DEPENDENCE_CLIQUE (op
) = newc
;
6300 /* Create new names for all the definitions created by COPY and
6301 add replacement mappings for each new name. */
6302 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
6303 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
6309 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6312 add_phi_args_after_copy_edge (edge e_copy
)
6314 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
6317 gphi
*phi
, *phi_copy
;
6319 gphi_iterator psi
, psi_copy
;
6321 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
6324 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
6326 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
6327 dest
= get_bb_original (e_copy
->dest
);
6329 dest
= e_copy
->dest
;
6331 e
= find_edge (bb
, dest
);
6334 /* During loop unrolling the target of the latch edge is copied.
6335 In this case we are not looking for edge to dest, but to
6336 duplicated block whose original was dest. */
6337 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6339 if ((e
->dest
->flags
& BB_DUPLICATED
)
6340 && get_bb_original (e
->dest
) == dest
)
6344 gcc_assert (e
!= NULL
);
6347 for (psi
= gsi_start_phis (e
->dest
),
6348 psi_copy
= gsi_start_phis (e_copy
->dest
);
6350 gsi_next (&psi
), gsi_next (&psi_copy
))
6353 phi_copy
= psi_copy
.phi ();
6354 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
6355 add_phi_arg (phi_copy
, def
, e_copy
,
6356 gimple_phi_arg_location_from_edge (phi
, e
));
6361 /* Basic block BB_COPY was created by code duplication. Add phi node
6362 arguments for edges going out of BB_COPY. The blocks that were
6363 duplicated have BB_DUPLICATED set. */
6366 add_phi_args_after_copy_bb (basic_block bb_copy
)
6371 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
6373 add_phi_args_after_copy_edge (e_copy
);
6377 /* Blocks in REGION_COPY array of length N_REGION were created by
6378 duplication of basic blocks. Add phi node arguments for edges
6379 going from these blocks. If E_COPY is not NULL, also add
6380 phi node arguments for its destination.*/
6383 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
6388 for (i
= 0; i
< n_region
; i
++)
6389 region_copy
[i
]->flags
|= BB_DUPLICATED
;
6391 for (i
= 0; i
< n_region
; i
++)
6392 add_phi_args_after_copy_bb (region_copy
[i
]);
6394 add_phi_args_after_copy_edge (e_copy
);
6396 for (i
= 0; i
< n_region
; i
++)
6397 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
6400 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6401 important exit edge EXIT. By important we mean that no SSA name defined
6402 inside region is live over the other exit edges of the region. All entry
6403 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6404 to the duplicate of the region. Dominance and loop information is
6405 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6406 UPDATE_DOMINANCE is false then we assume that the caller will update the
6407 dominance information after calling this function. The new basic
6408 blocks are stored to REGION_COPY in the same order as they had in REGION,
6409 provided that REGION_COPY is not NULL.
6410 The function returns false if it is unable to copy the region,
6414 gimple_duplicate_sese_region (edge entry
, edge exit
,
6415 basic_block
*region
, unsigned n_region
,
6416 basic_block
*region_copy
,
6417 bool update_dominance
)
6420 bool free_region_copy
= false, copying_header
= false;
6421 class loop
*loop
= entry
->dest
->loop_father
;
6423 vec
<basic_block
> doms
= vNULL
;
6425 profile_count total_count
= profile_count::uninitialized ();
6426 profile_count entry_count
= profile_count::uninitialized ();
6428 if (!can_copy_bbs_p (region
, n_region
))
6431 /* Some sanity checking. Note that we do not check for all possible
6432 missuses of the functions. I.e. if you ask to copy something weird,
6433 it will work, but the state of structures probably will not be
6435 for (i
= 0; i
< n_region
; i
++)
6437 /* We do not handle subloops, i.e. all the blocks must belong to the
6439 if (region
[i
]->loop_father
!= loop
)
6442 if (region
[i
] != entry
->dest
6443 && region
[i
] == loop
->header
)
6447 /* In case the function is used for loop header copying (which is the primary
6448 use), ensure that EXIT and its copy will be new latch and entry edges. */
6449 if (loop
->header
== entry
->dest
)
6451 copying_header
= true;
6453 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
6456 for (i
= 0; i
< n_region
; i
++)
6457 if (region
[i
] != exit
->src
6458 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
6462 initialize_original_copy_tables ();
6465 set_loop_copy (loop
, loop_outer (loop
));
6467 set_loop_copy (loop
, loop
);
6471 region_copy
= XNEWVEC (basic_block
, n_region
);
6472 free_region_copy
= true;
6475 /* Record blocks outside the region that are dominated by something
6477 if (update_dominance
)
6480 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6483 if (entry
->dest
->count
.initialized_p ())
6485 total_count
= entry
->dest
->count
;
6486 entry_count
= entry
->count ();
6487 /* Fix up corner cases, to avoid division by zero or creation of negative
6489 if (entry_count
> total_count
)
6490 entry_count
= total_count
;
6493 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
6494 split_edge_bb_loc (entry
), update_dominance
);
6495 if (total_count
.initialized_p () && entry_count
.initialized_p ())
6497 scale_bbs_frequencies_profile_count (region
, n_region
,
6498 total_count
- entry_count
,
6500 scale_bbs_frequencies_profile_count (region_copy
, n_region
, entry_count
,
6506 loop
->header
= exit
->dest
;
6507 loop
->latch
= exit
->src
;
6510 /* Redirect the entry and add the phi node arguments. */
6511 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
6512 gcc_assert (redirected
!= NULL
);
6513 flush_pending_stmts (entry
);
6515 /* Concerning updating of dominators: We must recount dominators
6516 for entry block and its copy. Anything that is outside of the
6517 region, but was dominated by something inside needs recounting as
6519 if (update_dominance
)
6521 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
6522 doms
.safe_push (get_bb_original (entry
->dest
));
6523 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6527 /* Add the other PHI node arguments. */
6528 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
6530 if (free_region_copy
)
6533 free_original_copy_tables ();
6537 /* Checks if BB is part of the region defined by N_REGION BBS. */
6539 bb_part_of_region_p (basic_block bb
, basic_block
* bbs
, unsigned n_region
)
6543 for (n
= 0; n
< n_region
; n
++)
6551 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6552 are stored to REGION_COPY in the same order in that they appear
6553 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6554 the region, EXIT an exit from it. The condition guarding EXIT
6555 is moved to ENTRY. Returns true if duplication succeeds, false
6581 gimple_duplicate_sese_tail (edge entry
, edge exit
,
6582 basic_block
*region
, unsigned n_region
,
6583 basic_block
*region_copy
)
6586 bool free_region_copy
= false;
6587 class loop
*loop
= exit
->dest
->loop_father
;
6588 class loop
*orig_loop
= entry
->dest
->loop_father
;
6589 basic_block switch_bb
, entry_bb
, nentry_bb
;
6590 vec
<basic_block
> doms
;
6591 profile_count total_count
= profile_count::uninitialized (),
6592 exit_count
= profile_count::uninitialized ();
6593 edge exits
[2], nexits
[2], e
;
6594 gimple_stmt_iterator gsi
;
6597 basic_block exit_bb
;
6601 class loop
*target
, *aloop
, *cloop
;
6603 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
6605 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
6607 if (!can_copy_bbs_p (region
, n_region
))
6610 initialize_original_copy_tables ();
6611 set_loop_copy (orig_loop
, loop
);
6614 for (aloop
= orig_loop
->inner
; aloop
; aloop
= aloop
->next
)
6616 if (bb_part_of_region_p (aloop
->header
, region
, n_region
))
6618 cloop
= duplicate_loop (aloop
, target
);
6619 duplicate_subloops (aloop
, cloop
);
6625 region_copy
= XNEWVEC (basic_block
, n_region
);
6626 free_region_copy
= true;
6629 gcc_assert (!need_ssa_update_p (cfun
));
6631 /* Record blocks outside the region that are dominated by something
6633 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
6635 total_count
= exit
->src
->count
;
6636 exit_count
= exit
->count ();
6637 /* Fix up corner cases, to avoid division by zero or creation of negative
6639 if (exit_count
> total_count
)
6640 exit_count
= total_count
;
6642 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
6643 split_edge_bb_loc (exit
), true);
6644 if (total_count
.initialized_p () && exit_count
.initialized_p ())
6646 scale_bbs_frequencies_profile_count (region
, n_region
,
6647 total_count
- exit_count
,
6649 scale_bbs_frequencies_profile_count (region_copy
, n_region
, exit_count
,
6653 /* Create the switch block, and put the exit condition to it. */
6654 entry_bb
= entry
->dest
;
6655 nentry_bb
= get_bb_copy (entry_bb
);
6656 if (!last_stmt (entry
->src
)
6657 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
6658 switch_bb
= entry
->src
;
6660 switch_bb
= split_edge (entry
);
6661 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
6663 gsi
= gsi_last_bb (switch_bb
);
6664 cond_stmt
= last_stmt (exit
->src
);
6665 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
6666 cond_stmt
= gimple_copy (cond_stmt
);
6668 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
6670 sorig
= single_succ_edge (switch_bb
);
6671 sorig
->flags
= exits
[1]->flags
;
6672 sorig
->probability
= exits
[1]->probability
;
6673 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
6674 snew
->probability
= exits
[0]->probability
;
6677 /* Register the new edge from SWITCH_BB in loop exit lists. */
6678 rescan_loop_exit (snew
, true, false);
6680 /* Add the PHI node arguments. */
6681 add_phi_args_after_copy (region_copy
, n_region
, snew
);
6683 /* Get rid of now superfluous conditions and associated edges (and phi node
6685 exit_bb
= exit
->dest
;
6687 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
6688 PENDING_STMT (e
) = NULL
;
6690 /* The latch of ORIG_LOOP was copied, and so was the backedge
6691 to the original header. We redirect this backedge to EXIT_BB. */
6692 for (i
= 0; i
< n_region
; i
++)
6693 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
6695 gcc_assert (single_succ_edge (region_copy
[i
]));
6696 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
6697 PENDING_STMT (e
) = NULL
;
6698 for (psi
= gsi_start_phis (exit_bb
);
6703 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
6704 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
6707 e
= redirect_edge_and_branch (nexits
[1], nexits
[0]->dest
);
6708 PENDING_STMT (e
) = NULL
;
6710 /* Anything that is outside of the region, but was dominated by something
6711 inside needs to update dominance info. */
6712 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
6714 /* Update the SSA web. */
6715 update_ssa (TODO_update_ssa
);
6717 if (free_region_copy
)
6720 free_original_copy_tables ();
6724 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6725 adding blocks when the dominator traversal reaches EXIT. This
6726 function silently assumes that ENTRY strictly dominates EXIT. */
6729 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
6730 vec
<basic_block
> *bbs_p
)
6734 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
6736 son
= next_dom_son (CDI_DOMINATORS
, son
))
6738 bbs_p
->safe_push (son
);
6740 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
6744 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6745 The duplicates are recorded in VARS_MAP. */
6748 replace_by_duplicate_decl (tree
*tp
, hash_map
<tree
, tree
> *vars_map
,
6751 tree t
= *tp
, new_t
;
6752 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
6754 if (DECL_CONTEXT (t
) == to_context
)
6758 tree
&loc
= vars_map
->get_or_insert (t
, &existed
);
6764 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
6765 add_local_decl (f
, new_t
);
6769 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
6770 new_t
= copy_node (t
);
6772 DECL_CONTEXT (new_t
) = to_context
;
6783 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6784 VARS_MAP maps old ssa names and var_decls to the new ones. */
6787 replace_ssa_name (tree name
, hash_map
<tree
, tree
> *vars_map
,
6792 gcc_assert (!virtual_operand_p (name
));
6794 tree
*loc
= vars_map
->get (name
);
6798 tree decl
= SSA_NAME_VAR (name
);
6801 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name
));
6802 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
6803 new_name
= make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6804 decl
, SSA_NAME_DEF_STMT (name
));
6807 new_name
= copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context
),
6808 name
, SSA_NAME_DEF_STMT (name
));
6810 /* Now that we've used the def stmt to define new_name, make sure it
6811 doesn't define name anymore. */
6812 SSA_NAME_DEF_STMT (name
) = NULL
;
6814 vars_map
->put (name
, new_name
);
6828 hash_map
<tree
, tree
> *vars_map
;
6829 htab_t new_label_map
;
6830 hash_map
<void *, void *> *eh_map
;
6834 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6835 contained in *TP if it has been ORIG_BLOCK previously and change the
6836 DECL_CONTEXT of every local variable referenced in *TP. */
6839 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
6841 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6842 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6847 tree block
= TREE_BLOCK (t
);
6848 if (block
== NULL_TREE
)
6850 else if (block
== p
->orig_block
6851 || p
->orig_block
== NULL_TREE
)
6853 /* tree_node_can_be_shared says we can share invariant
6854 addresses but unshare_expr copies them anyways. Make sure
6855 to unshare before adjusting the block in place - we do not
6856 always see a copy here. */
6857 if (TREE_CODE (t
) == ADDR_EXPR
6858 && is_gimple_min_invariant (t
))
6859 *tp
= t
= unshare_expr (t
);
6860 TREE_SET_BLOCK (t
, p
->new_block
);
6862 else if (flag_checking
)
6864 while (block
&& TREE_CODE (block
) == BLOCK
&& block
!= p
->orig_block
)
6865 block
= BLOCK_SUPERCONTEXT (block
);
6866 gcc_assert (block
== p
->orig_block
);
6869 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
6871 if (TREE_CODE (t
) == SSA_NAME
)
6872 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
6873 else if (TREE_CODE (t
) == PARM_DECL
6874 && gimple_in_ssa_p (cfun
))
6875 *tp
= *(p
->vars_map
->get (t
));
6876 else if (TREE_CODE (t
) == LABEL_DECL
)
6878 if (p
->new_label_map
)
6880 struct tree_map in
, *out
;
6882 out
= (struct tree_map
*)
6883 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
6888 /* For FORCED_LABELs we can end up with references from other
6889 functions if some SESE regions are outlined. It is UB to
6890 jump in between them, but they could be used just for printing
6891 addresses etc. In that case, DECL_CONTEXT on the label should
6892 be the function containing the glabel stmt with that LABEL_DECL,
6893 rather than whatever function a reference to the label was seen
6895 if (!FORCED_LABEL (t
) && !DECL_NONLOCAL (t
))
6896 DECL_CONTEXT (t
) = p
->to_context
;
6898 else if (p
->remap_decls_p
)
6900 /* Replace T with its duplicate. T should no longer appear in the
6901 parent function, so this looks wasteful; however, it may appear
6902 in referenced_vars, and more importantly, as virtual operands of
6903 statements, and in alias lists of other variables. It would be
6904 quite difficult to expunge it from all those places. ??? It might
6905 suffice to do this for addressable variables. */
6906 if ((VAR_P (t
) && !is_global_var (t
))
6907 || TREE_CODE (t
) == CONST_DECL
)
6908 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
6912 else if (TYPE_P (t
))
6918 /* Helper for move_stmt_r. Given an EH region number for the source
6919 function, map that to the duplicate EH regio number in the dest. */
6922 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
6924 eh_region old_r
, new_r
;
6926 old_r
= get_eh_region_from_number (old_nr
);
6927 new_r
= static_cast<eh_region
> (*p
->eh_map
->get (old_r
));
6929 return new_r
->index
;
6932 /* Similar, but operate on INTEGER_CSTs. */
6935 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
6939 old_nr
= tree_to_shwi (old_t_nr
);
6940 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
6942 return build_int_cst (integer_type_node
, new_nr
);
6945 /* Like move_stmt_op, but for gimple statements.
6947 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6948 contained in the current statement in *GSI_P and change the
6949 DECL_CONTEXT of every local variable referenced in the current
6953 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
6954 struct walk_stmt_info
*wi
)
6956 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
6957 gimple
*stmt
= gsi_stmt (*gsi_p
);
6958 tree block
= gimple_block (stmt
);
6960 if (block
== p
->orig_block
6961 || (p
->orig_block
== NULL_TREE
6962 && block
!= NULL_TREE
))
6963 gimple_set_block (stmt
, p
->new_block
);
6965 switch (gimple_code (stmt
))
6968 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6970 tree r
, fndecl
= gimple_call_fndecl (stmt
);
6971 if (fndecl
&& fndecl_built_in_p (fndecl
, BUILT_IN_NORMAL
))
6972 switch (DECL_FUNCTION_CODE (fndecl
))
6974 case BUILT_IN_EH_COPY_VALUES
:
6975 r
= gimple_call_arg (stmt
, 1);
6976 r
= move_stmt_eh_region_tree_nr (r
, p
);
6977 gimple_call_set_arg (stmt
, 1, r
);
6980 case BUILT_IN_EH_POINTER
:
6981 case BUILT_IN_EH_FILTER
:
6982 r
= gimple_call_arg (stmt
, 0);
6983 r
= move_stmt_eh_region_tree_nr (r
, p
);
6984 gimple_call_set_arg (stmt
, 0, r
);
6995 gresx
*resx_stmt
= as_a
<gresx
*> (stmt
);
6996 int r
= gimple_resx_region (resx_stmt
);
6997 r
= move_stmt_eh_region_nr (r
, p
);
6998 gimple_resx_set_region (resx_stmt
, r
);
7002 case GIMPLE_EH_DISPATCH
:
7004 geh_dispatch
*eh_dispatch_stmt
= as_a
<geh_dispatch
*> (stmt
);
7005 int r
= gimple_eh_dispatch_region (eh_dispatch_stmt
);
7006 r
= move_stmt_eh_region_nr (r
, p
);
7007 gimple_eh_dispatch_set_region (eh_dispatch_stmt
, r
);
7011 case GIMPLE_OMP_RETURN
:
7012 case GIMPLE_OMP_CONTINUE
:
7017 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
7018 so that such labels can be referenced from other regions.
7019 Make sure to update it when seeing a GIMPLE_LABEL though,
7020 that is the owner of the label. */
7021 walk_gimple_op (stmt
, move_stmt_op
, wi
);
7022 *handled_ops_p
= true;
7023 tree label
= gimple_label_label (as_a
<glabel
*> (stmt
));
7024 if (FORCED_LABEL (label
) || DECL_NONLOCAL (label
))
7025 DECL_CONTEXT (label
) = p
->to_context
;
7030 if (is_gimple_omp (stmt
))
7032 /* Do not remap variables inside OMP directives. Variables
7033 referenced in clauses and directive header belong to the
7034 parent function and should not be moved into the child
7036 bool save_remap_decls_p
= p
->remap_decls_p
;
7037 p
->remap_decls_p
= false;
7038 *handled_ops_p
= true;
7040 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt
), move_stmt_r
,
7043 p
->remap_decls_p
= save_remap_decls_p
;
7051 /* Move basic block BB from function CFUN to function DEST_FN. The
7052 block is moved out of the original linked list and placed after
7053 block AFTER in the new list. Also, the block is removed from the
7054 original array of blocks and placed in DEST_FN's array of blocks.
7055 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7056 updated to reflect the moved edges.
7058 The local variables are remapped to new instances, VARS_MAP is used
7059 to record the mapping. */
7062 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
7063 basic_block after
, bool update_edge_count_p
,
7064 struct move_stmt_d
*d
)
7066 struct control_flow_graph
*cfg
;
7069 gimple_stmt_iterator si
;
7070 unsigned old_len
, new_len
;
7072 /* Remove BB from dominance structures. */
7073 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
7075 /* Move BB from its current loop to the copy in the new function. */
7078 class loop
*new_loop
= (class loop
*)bb
->loop_father
->aux
;
7080 bb
->loop_father
= new_loop
;
7083 /* Link BB to the new linked list. */
7084 move_block_after (bb
, after
);
7086 /* Update the edge count in the corresponding flowgraphs. */
7087 if (update_edge_count_p
)
7088 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7090 cfun
->cfg
->x_n_edges
--;
7091 dest_cfun
->cfg
->x_n_edges
++;
7094 /* Remove BB from the original basic block array. */
7095 (*cfun
->cfg
->x_basic_block_info
)[bb
->index
] = NULL
;
7096 cfun
->cfg
->x_n_basic_blocks
--;
7098 /* Grow DEST_CFUN's basic block array if needed. */
7099 cfg
= dest_cfun
->cfg
;
7100 cfg
->x_n_basic_blocks
++;
7101 if (bb
->index
>= cfg
->x_last_basic_block
)
7102 cfg
->x_last_basic_block
= bb
->index
+ 1;
7104 old_len
= vec_safe_length (cfg
->x_basic_block_info
);
7105 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
7107 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
7108 vec_safe_grow_cleared (cfg
->x_basic_block_info
, new_len
);
7111 (*cfg
->x_basic_block_info
)[bb
->index
] = bb
;
7113 /* Remap the variables in phi nodes. */
7114 for (gphi_iterator psi
= gsi_start_phis (bb
);
7117 gphi
*phi
= psi
.phi ();
7119 tree op
= PHI_RESULT (phi
);
7123 if (virtual_operand_p (op
))
7125 /* Remove the phi nodes for virtual operands (alias analysis will be
7126 run for the new function, anyway). But replace all uses that
7127 might be outside of the region we move. */
7128 use_operand_p use_p
;
7129 imm_use_iterator iter
;
7131 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, op
)
7132 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7133 SET_USE (use_p
, SSA_NAME_VAR (op
));
7134 remove_phi_node (&psi
, true);
7138 SET_PHI_RESULT (phi
,
7139 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7140 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
7142 op
= USE_FROM_PTR (use
);
7143 if (TREE_CODE (op
) == SSA_NAME
)
7144 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
7147 for (i
= 0; i
< EDGE_COUNT (bb
->preds
); i
++)
7149 location_t locus
= gimple_phi_arg_location (phi
, i
);
7150 tree block
= LOCATION_BLOCK (locus
);
7152 if (locus
== UNKNOWN_LOCATION
)
7154 if (d
->orig_block
== NULL_TREE
|| block
== d
->orig_block
)
7156 locus
= set_block (locus
, d
->new_block
);
7157 gimple_phi_arg_set_location (phi
, i
, locus
);
7164 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7166 gimple
*stmt
= gsi_stmt (si
);
7167 struct walk_stmt_info wi
;
7169 memset (&wi
, 0, sizeof (wi
));
7171 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
7173 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
7175 tree label
= gimple_label_label (label_stmt
);
7176 int uid
= LABEL_DECL_UID (label
);
7178 gcc_assert (uid
> -1);
7180 old_len
= vec_safe_length (cfg
->x_label_to_block_map
);
7181 if (old_len
<= (unsigned) uid
)
7183 new_len
= 3 * uid
/ 2 + 1;
7184 vec_safe_grow_cleared (cfg
->x_label_to_block_map
, new_len
);
7187 (*cfg
->x_label_to_block_map
)[uid
] = bb
;
7188 (*cfun
->cfg
->x_label_to_block_map
)[uid
] = NULL
;
7190 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
7192 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
7193 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
7196 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
7197 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
7199 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
7200 gimple_remove_stmt_histograms (cfun
, stmt
);
7202 /* We cannot leave any operands allocated from the operand caches of
7203 the current function. */
7204 free_stmt_operands (cfun
, stmt
);
7205 push_cfun (dest_cfun
);
7210 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7211 if (e
->goto_locus
!= UNKNOWN_LOCATION
)
7213 tree block
= LOCATION_BLOCK (e
->goto_locus
);
7214 if (d
->orig_block
== NULL_TREE
7215 || block
== d
->orig_block
)
7216 e
->goto_locus
= set_block (e
->goto_locus
, d
->new_block
);
7220 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7221 the outermost EH region. Use REGION as the incoming base EH region.
7222 If there is no single outermost region, return NULL and set *ALL to
7226 find_outermost_region_in_block (struct function
*src_cfun
,
7227 basic_block bb
, eh_region region
,
7230 gimple_stmt_iterator si
;
7232 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
7234 gimple
*stmt
= gsi_stmt (si
);
7235 eh_region stmt_region
;
7238 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
7239 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
7243 region
= stmt_region
;
7244 else if (stmt_region
!= region
)
7246 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
7260 new_label_mapper (tree decl
, void *data
)
7262 htab_t hash
= (htab_t
) data
;
7266 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
7268 m
= XNEW (struct tree_map
);
7269 m
->hash
= DECL_UID (decl
);
7270 m
->base
.from
= decl
;
7271 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
7272 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
7273 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
7274 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
7276 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
7277 gcc_assert (*slot
== NULL
);
7284 /* Tree walker to replace the decls used inside value expressions by
7288 replace_block_vars_by_duplicates_1 (tree
*tp
, int *walk_subtrees
, void *data
)
7290 struct replace_decls_d
*rd
= (struct replace_decls_d
*)data
;
7292 switch (TREE_CODE (*tp
))
7297 replace_by_duplicate_decl (tp
, rd
->vars_map
, rd
->to_context
);
7303 if (IS_TYPE_OR_DECL_P (*tp
))
7304 *walk_subtrees
= false;
7309 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7313 replace_block_vars_by_duplicates (tree block
, hash_map
<tree
, tree
> *vars_map
,
7318 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
7321 if (!VAR_P (t
) && TREE_CODE (t
) != CONST_DECL
)
7323 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
7326 if (VAR_P (*tp
) && DECL_HAS_VALUE_EXPR_P (*tp
))
7328 tree x
= DECL_VALUE_EXPR (*tp
);
7329 struct replace_decls_d rd
= { vars_map
, to_context
};
7331 walk_tree (&x
, replace_block_vars_by_duplicates_1
, &rd
, NULL
);
7332 SET_DECL_VALUE_EXPR (t
, x
);
7333 DECL_HAS_VALUE_EXPR_P (t
) = 1;
7335 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
7340 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
7341 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
7344 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7348 fixup_loop_arrays_after_move (struct function
*fn1
, struct function
*fn2
,
7351 /* Discard it from the old loop array. */
7352 (*get_loops (fn1
))[loop
->num
] = NULL
;
7354 /* Place it in the new loop array, assigning it a new number. */
7355 loop
->num
= number_of_loops (fn2
);
7356 vec_safe_push (loops_for_fn (fn2
)->larray
, loop
);
7358 /* Recurse to children. */
7359 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
7360 fixup_loop_arrays_after_move (fn1
, fn2
, loop
);
7363 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7364 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7367 verify_sese (basic_block entry
, basic_block exit
, vec
<basic_block
> *bbs_p
)
7372 bitmap bbs
= BITMAP_ALLOC (NULL
);
7375 gcc_assert (entry
!= NULL
);
7376 gcc_assert (entry
!= exit
);
7377 gcc_assert (bbs_p
!= NULL
);
7379 gcc_assert (bbs_p
->length () > 0);
7381 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7382 bitmap_set_bit (bbs
, bb
->index
);
7384 gcc_assert (bitmap_bit_p (bbs
, entry
->index
));
7385 gcc_assert (exit
== NULL
|| bitmap_bit_p (bbs
, exit
->index
));
7387 FOR_EACH_VEC_ELT (*bbs_p
, i
, bb
)
7391 gcc_assert (single_pred_p (entry
));
7392 gcc_assert (!bitmap_bit_p (bbs
, single_pred (entry
)->index
));
7395 for (ei
= ei_start (bb
->preds
); !ei_end_p (ei
); ei_next (&ei
))
7398 gcc_assert (bitmap_bit_p (bbs
, e
->src
->index
));
7403 gcc_assert (single_succ_p (exit
));
7404 gcc_assert (!bitmap_bit_p (bbs
, single_succ (exit
)->index
));
7407 for (ei
= ei_start (bb
->succs
); !ei_end_p (ei
); ei_next (&ei
))
7410 gcc_assert (bitmap_bit_p (bbs
, e
->dest
->index
));
7417 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7420 gather_ssa_name_hash_map_from (tree
const &from
, tree
const &, void *data
)
7422 bitmap release_names
= (bitmap
)data
;
7424 if (TREE_CODE (from
) != SSA_NAME
)
7427 bitmap_set_bit (release_names
, SSA_NAME_VERSION (from
));
7431 /* Return LOOP_DIST_ALIAS call if present in BB. */
7434 find_loop_dist_alias (basic_block bb
)
7436 gimple
*g
= last_stmt (bb
);
7437 if (g
== NULL
|| gimple_code (g
) != GIMPLE_COND
)
7440 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7442 if (gsi_end_p (gsi
))
7446 if (gimple_call_internal_p (g
, IFN_LOOP_DIST_ALIAS
))
7451 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7452 to VALUE and update any immediate uses of it's LHS. */
7455 fold_loop_internal_call (gimple
*g
, tree value
)
7457 tree lhs
= gimple_call_lhs (g
);
7458 use_operand_p use_p
;
7459 imm_use_iterator iter
;
7461 gimple_stmt_iterator gsi
= gsi_for_stmt (g
);
7463 update_call_from_tree (&gsi
, value
);
7464 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
7466 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
7467 SET_USE (use_p
, value
);
7468 update_stmt (use_stmt
);
7472 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7473 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7474 single basic block in the original CFG and the new basic block is
7475 returned. DEST_CFUN must not have a CFG yet.
7477 Note that the region need not be a pure SESE region. Blocks inside
7478 the region may contain calls to abort/exit. The only restriction
7479 is that ENTRY_BB should be the only entry point and it must
7482 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7483 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7484 to the new function.
7486 All local variables referenced in the region are assumed to be in
7487 the corresponding BLOCK_VARS and unexpanded variable lists
7488 associated with DEST_CFUN.
7490 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7491 reimplement move_sese_region_to_fn by duplicating the region rather than
7495 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
7496 basic_block exit_bb
, tree orig_block
)
7498 vec
<basic_block
> bbs
, dom_bbs
;
7499 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
7500 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
7501 struct function
*saved_cfun
= cfun
;
7502 int *entry_flag
, *exit_flag
;
7503 profile_probability
*entry_prob
, *exit_prob
;
7504 unsigned i
, num_entry_edges
, num_exit_edges
, num_nodes
;
7507 htab_t new_label_map
;
7508 hash_map
<void *, void *> *eh_map
;
7509 class loop
*loop
= entry_bb
->loop_father
;
7510 class loop
*loop0
= get_loop (saved_cfun
, 0);
7511 struct move_stmt_d d
;
7513 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7515 gcc_assert (entry_bb
!= exit_bb
7517 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
7519 /* Collect all the blocks in the region. Manually add ENTRY_BB
7520 because it won't be added by dfs_enumerate_from. */
7522 bbs
.safe_push (entry_bb
);
7523 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
7526 verify_sese (entry_bb
, exit_bb
, &bbs
);
7528 /* The blocks that used to be dominated by something in BBS will now be
7529 dominated by the new block. */
7530 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
7534 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7535 the predecessor edges to ENTRY_BB and the successor edges to
7536 EXIT_BB so that we can re-attach them to the new basic block that
7537 will replace the region. */
7538 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
7539 entry_pred
= XNEWVEC (basic_block
, num_entry_edges
);
7540 entry_flag
= XNEWVEC (int, num_entry_edges
);
7541 entry_prob
= XNEWVEC (profile_probability
, num_entry_edges
);
7543 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
7545 entry_prob
[i
] = e
->probability
;
7546 entry_flag
[i
] = e
->flags
;
7547 entry_pred
[i
++] = e
->src
;
7553 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
7554 exit_succ
= XNEWVEC (basic_block
, num_exit_edges
);
7555 exit_flag
= XNEWVEC (int, num_exit_edges
);
7556 exit_prob
= XNEWVEC (profile_probability
, num_exit_edges
);
7558 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
7560 exit_prob
[i
] = e
->probability
;
7561 exit_flag
[i
] = e
->flags
;
7562 exit_succ
[i
++] = e
->dest
;
7574 /* Switch context to the child function to initialize DEST_FN's CFG. */
7575 gcc_assert (dest_cfun
->cfg
== NULL
);
7576 push_cfun (dest_cfun
);
7578 init_empty_tree_cfg ();
7580 /* Initialize EH information for the new function. */
7582 new_label_map
= NULL
;
7585 eh_region region
= NULL
;
7588 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7590 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
, &all
);
7595 init_eh_for_function ();
7596 if (region
!= NULL
|| all
)
7598 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
7599 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
7600 new_label_mapper
, new_label_map
);
7604 /* Initialize an empty loop tree. */
7605 struct loops
*loops
= ggc_cleared_alloc
<struct loops
> ();
7606 init_loops_structure (dest_cfun
, loops
, 1);
7607 loops
->state
= LOOPS_MAY_HAVE_MULTIPLE_LATCHES
;
7608 set_loops_for_fn (dest_cfun
, loops
);
7610 vec
<loop_p
, va_gc
> *larray
= get_loops (saved_cfun
)->copy ();
7612 /* Move the outlined loop tree part. */
7613 num_nodes
= bbs
.length ();
7614 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7616 if (bb
->loop_father
->header
== bb
)
7618 class loop
*this_loop
= bb
->loop_father
;
7619 class loop
*outer
= loop_outer (this_loop
);
7621 /* If the SESE region contains some bbs ending with
7622 a noreturn call, those are considered to belong
7623 to the outermost loop in saved_cfun, rather than
7624 the entry_bb's loop_father. */
7628 num_nodes
-= this_loop
->num_nodes
;
7629 flow_loop_tree_node_remove (bb
->loop_father
);
7630 flow_loop_tree_node_add (get_loop (dest_cfun
, 0), this_loop
);
7631 fixup_loop_arrays_after_move (saved_cfun
, cfun
, this_loop
);
7634 else if (bb
->loop_father
== loop0
&& loop0
!= loop
)
7637 /* Remove loop exits from the outlined region. */
7638 if (loops_for_fn (saved_cfun
)->exits
)
7639 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7641 struct loops
*l
= loops_for_fn (saved_cfun
);
7643 = l
->exits
->find_slot_with_hash (e
, htab_hash_pointer (e
),
7646 l
->exits
->clear_slot (slot
);
7650 /* Adjust the number of blocks in the tree root of the outlined part. */
7651 get_loop (dest_cfun
, 0)->num_nodes
= bbs
.length () + 2;
7653 /* Setup a mapping to be used by move_block_to_fn. */
7654 loop
->aux
= current_loops
->tree_root
;
7655 loop0
->aux
= current_loops
->tree_root
;
7657 /* Fix up orig_loop_num. If the block referenced in it has been moved
7658 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7660 signed char *moved_orig_loop_num
= NULL
;
7661 FOR_EACH_LOOP_FN (dest_cfun
, dloop
, 0)
7662 if (dloop
->orig_loop_num
)
7664 if (moved_orig_loop_num
== NULL
)
7666 = XCNEWVEC (signed char, vec_safe_length (larray
));
7667 if ((*larray
)[dloop
->orig_loop_num
] != NULL
7668 && get_loop (saved_cfun
, dloop
->orig_loop_num
) == NULL
)
7670 if (moved_orig_loop_num
[dloop
->orig_loop_num
] >= 0
7671 && moved_orig_loop_num
[dloop
->orig_loop_num
] < 2)
7672 moved_orig_loop_num
[dloop
->orig_loop_num
]++;
7673 dloop
->orig_loop_num
= (*larray
)[dloop
->orig_loop_num
]->num
;
7677 moved_orig_loop_num
[dloop
->orig_loop_num
] = -1;
7678 dloop
->orig_loop_num
= 0;
7683 if (moved_orig_loop_num
)
7685 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7687 gimple
*g
= find_loop_dist_alias (bb
);
7691 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7692 gcc_assert (orig_loop_num
7693 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7694 if (moved_orig_loop_num
[orig_loop_num
] == 2)
7696 /* If we have moved both loops with this orig_loop_num into
7697 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7698 too, update the first argument. */
7699 gcc_assert ((*larray
)[dloop
->orig_loop_num
] != NULL
7700 && (get_loop (saved_cfun
, dloop
->orig_loop_num
)
7702 tree t
= build_int_cst (integer_type_node
,
7703 (*larray
)[dloop
->orig_loop_num
]->num
);
7704 gimple_call_set_arg (g
, 0, t
);
7706 /* Make sure the following loop will not update it. */
7707 moved_orig_loop_num
[orig_loop_num
] = 0;
7710 /* Otherwise at least one of the loops stayed in saved_cfun.
7711 Remove the LOOP_DIST_ALIAS call. */
7712 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7714 FOR_EACH_BB_FN (bb
, saved_cfun
)
7716 gimple
*g
= find_loop_dist_alias (bb
);
7719 int orig_loop_num
= tree_to_shwi (gimple_call_arg (g
, 0));
7720 gcc_assert (orig_loop_num
7721 && (unsigned) orig_loop_num
< vec_safe_length (larray
));
7722 if (moved_orig_loop_num
[orig_loop_num
])
7723 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7724 of the corresponding loops was moved, remove it. */
7725 fold_loop_internal_call (g
, gimple_call_arg (g
, 1));
7727 XDELETEVEC (moved_orig_loop_num
);
7731 /* Move blocks from BBS into DEST_CFUN. */
7732 gcc_assert (bbs
.length () >= 2);
7733 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
7734 hash_map
<tree
, tree
> vars_map
;
7736 memset (&d
, 0, sizeof (d
));
7737 d
.orig_block
= orig_block
;
7738 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
7739 d
.from_context
= cfun
->decl
;
7740 d
.to_context
= dest_cfun
->decl
;
7741 d
.vars_map
= &vars_map
;
7742 d
.new_label_map
= new_label_map
;
7744 d
.remap_decls_p
= true;
7746 if (gimple_in_ssa_p (cfun
))
7747 for (tree arg
= DECL_ARGUMENTS (d
.to_context
); arg
; arg
= DECL_CHAIN (arg
))
7749 tree narg
= make_ssa_name_fn (dest_cfun
, arg
, gimple_build_nop ());
7750 set_ssa_default_def (dest_cfun
, arg
, narg
);
7751 vars_map
.put (arg
, narg
);
7754 FOR_EACH_VEC_ELT (bbs
, i
, bb
)
7756 /* No need to update edge counts on the last block. It has
7757 already been updated earlier when we detached the region from
7758 the original CFG. */
7759 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
7763 /* Adjust the maximum clique used. */
7764 dest_cfun
->last_clique
= saved_cfun
->last_clique
;
7768 /* Loop sizes are no longer correct, fix them up. */
7769 loop
->num_nodes
-= num_nodes
;
7770 for (class loop
*outer
= loop_outer (loop
);
7771 outer
; outer
= loop_outer (outer
))
7772 outer
->num_nodes
-= num_nodes
;
7773 loop0
->num_nodes
-= bbs
.length () - num_nodes
;
7775 if (saved_cfun
->has_simduid_loops
|| saved_cfun
->has_force_vectorize_loops
)
7778 for (i
= 0; vec_safe_iterate (loops
->larray
, i
, &aloop
); i
++)
7783 replace_by_duplicate_decl (&aloop
->simduid
, d
.vars_map
,
7785 dest_cfun
->has_simduid_loops
= true;
7787 if (aloop
->force_vectorize
)
7788 dest_cfun
->has_force_vectorize_loops
= true;
7792 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7796 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7798 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
7799 = BLOCK_SUBBLOCKS (orig_block
);
7800 for (block
= BLOCK_SUBBLOCKS (orig_block
);
7801 block
; block
= BLOCK_CHAIN (block
))
7802 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
7803 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
7806 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
7807 &vars_map
, dest_cfun
->decl
);
7810 htab_delete (new_label_map
);
7814 if (gimple_in_ssa_p (cfun
))
7816 /* We need to release ssa-names in a defined order, so first find them,
7817 and then iterate in ascending version order. */
7818 bitmap release_names
= BITMAP_ALLOC (NULL
);
7819 vars_map
.traverse
<void *, gather_ssa_name_hash_map_from
> (release_names
);
7822 EXECUTE_IF_SET_IN_BITMAP (release_names
, 0, i
, bi
)
7823 release_ssa_name (ssa_name (i
));
7824 BITMAP_FREE (release_names
);
7827 /* Rewire the entry and exit blocks. The successor to the entry
7828 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7829 the child function. Similarly, the predecessor of DEST_FN's
7830 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7831 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7832 various CFG manipulation function get to the right CFG.
7834 FIXME, this is silly. The CFG ought to become a parameter to
7836 push_cfun (dest_cfun
);
7837 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= entry_bb
->count
;
7838 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun
), entry_bb
, EDGE_FALLTHRU
);
7841 make_single_succ_edge (exit_bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), 0);
7842 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= exit_bb
->count
;
7845 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
= profile_count::zero ();
7848 /* Back in the original function, the SESE region has disappeared,
7849 create a new basic block in its place. */
7850 bb
= create_empty_bb (entry_pred
[0]);
7852 add_bb_to_loop (bb
, loop
);
7853 for (i
= 0; i
< num_entry_edges
; i
++)
7855 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
7856 e
->probability
= entry_prob
[i
];
7859 for (i
= 0; i
< num_exit_edges
; i
++)
7861 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
7862 e
->probability
= exit_prob
[i
];
7865 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
7866 FOR_EACH_VEC_ELT (dom_bbs
, i
, abb
)
7867 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
7884 /* Dump default def DEF to file FILE using FLAGS and indentation
7888 dump_default_def (FILE *file
, tree def
, int spc
, dump_flags_t flags
)
7890 for (int i
= 0; i
< spc
; ++i
)
7891 fprintf (file
, " ");
7892 dump_ssaname_info_to_file (file
, def
, spc
);
7894 print_generic_expr (file
, TREE_TYPE (def
), flags
);
7895 fprintf (file
, " ");
7896 print_generic_expr (file
, def
, flags
);
7897 fprintf (file
, " = ");
7898 print_generic_expr (file
, SSA_NAME_VAR (def
), flags
);
7899 fprintf (file
, ";\n");
7902 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7905 print_no_sanitize_attr_value (FILE *file
, tree value
)
7907 unsigned int flags
= tree_to_uhwi (value
);
7909 for (int i
= 0; sanitizer_opts
[i
].name
!= NULL
; ++i
)
7911 if ((sanitizer_opts
[i
].flag
& flags
) == sanitizer_opts
[i
].flag
)
7914 fprintf (file
, " | ");
7915 fprintf (file
, "%s", sanitizer_opts
[i
].name
);
7921 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7925 dump_function_to_file (tree fndecl
, FILE *file
, dump_flags_t flags
)
7927 tree arg
, var
, old_current_fndecl
= current_function_decl
;
7928 struct function
*dsf
;
7929 bool ignore_topmost_bind
= false, any_var
= false;
7932 bool tmclone
= (TREE_CODE (fndecl
) == FUNCTION_DECL
7933 && decl_is_tm_clone (fndecl
));
7934 struct function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
7936 if (DECL_ATTRIBUTES (fndecl
) != NULL_TREE
)
7938 fprintf (file
, "__attribute__((");
7942 for (chain
= DECL_ATTRIBUTES (fndecl
); chain
;
7943 first
= false, chain
= TREE_CHAIN (chain
))
7946 fprintf (file
, ", ");
7948 tree name
= get_attribute_name (chain
);
7949 print_generic_expr (file
, name
, dump_flags
);
7950 if (TREE_VALUE (chain
) != NULL_TREE
)
7952 fprintf (file
, " (");
7954 if (strstr (IDENTIFIER_POINTER (name
), "no_sanitize"))
7955 print_no_sanitize_attr_value (file
, TREE_VALUE (chain
));
7957 print_generic_expr (file
, TREE_VALUE (chain
), dump_flags
);
7958 fprintf (file
, ")");
7962 fprintf (file
, "))\n");
7965 current_function_decl
= fndecl
;
7966 if (flags
& TDF_GIMPLE
)
7968 static bool hotness_bb_param_printed
= false;
7969 if (profile_info
!= NULL
7970 && !hotness_bb_param_printed
)
7972 hotness_bb_param_printed
= true;
7974 "/* --param=gimple-fe-computed-hot-bb-threshold=%" PRId64
7975 " */\n", get_hot_bb_threshold ());
7978 print_generic_expr (file
, TREE_TYPE (TREE_TYPE (fndecl
)),
7979 dump_flags
| TDF_SLIM
);
7980 fprintf (file
, " __GIMPLE (%s",
7981 (fun
->curr_properties
& PROP_ssa
) ? "ssa"
7982 : (fun
->curr_properties
& PROP_cfg
) ? "cfg"
7987 basic_block bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
7988 if (bb
->count
.initialized_p ())
7989 fprintf (file
, ",%s(%d)",
7990 profile_quality_as_string (bb
->count
.quality ()),
7991 bb
->count
.value ());
7992 fprintf (file
, ")\n%s (", function_name (fun
));
7996 fprintf (file
, "%s %s(", function_name (fun
), tmclone
? "[tm-clone] " : "");
7998 arg
= DECL_ARGUMENTS (fndecl
);
8001 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
8002 fprintf (file
, " ");
8003 print_generic_expr (file
, arg
, dump_flags
);
8004 if (DECL_CHAIN (arg
))
8005 fprintf (file
, ", ");
8006 arg
= DECL_CHAIN (arg
);
8008 fprintf (file
, ")\n");
8010 dsf
= DECL_STRUCT_FUNCTION (fndecl
);
8011 if (dsf
&& (flags
& TDF_EH
))
8012 dump_eh_tree (file
, dsf
);
8014 if (flags
& TDF_RAW
&& !gimple_has_body_p (fndecl
))
8016 dump_node (fndecl
, TDF_SLIM
| flags
, file
);
8017 current_function_decl
= old_current_fndecl
;
8021 /* When GIMPLE is lowered, the variables are no longer available in
8022 BIND_EXPRs, so display them separately. */
8023 if (fun
&& fun
->decl
== fndecl
&& (fun
->curr_properties
& PROP_gimple_lcf
))
8026 ignore_topmost_bind
= true;
8028 fprintf (file
, "{\n");
8029 if (gimple_in_ssa_p (fun
)
8030 && (flags
& TDF_ALIAS
))
8032 for (arg
= DECL_ARGUMENTS (fndecl
); arg
!= NULL
;
8033 arg
= DECL_CHAIN (arg
))
8035 tree def
= ssa_default_def (fun
, arg
);
8037 dump_default_def (file
, def
, 2, flags
);
8040 tree res
= DECL_RESULT (fun
->decl
);
8041 if (res
!= NULL_TREE
8042 && DECL_BY_REFERENCE (res
))
8044 tree def
= ssa_default_def (fun
, res
);
8046 dump_default_def (file
, def
, 2, flags
);
8049 tree static_chain
= fun
->static_chain_decl
;
8050 if (static_chain
!= NULL_TREE
)
8052 tree def
= ssa_default_def (fun
, static_chain
);
8054 dump_default_def (file
, def
, 2, flags
);
8058 if (!vec_safe_is_empty (fun
->local_decls
))
8059 FOR_EACH_LOCAL_DECL (fun
, ix
, var
)
8061 print_generic_decl (file
, var
, flags
);
8062 fprintf (file
, "\n");
8069 if (gimple_in_ssa_p (cfun
))
8070 FOR_EACH_SSA_NAME (ix
, name
, cfun
)
8072 if (!SSA_NAME_VAR (name
))
8074 fprintf (file
, " ");
8075 print_generic_expr (file
, TREE_TYPE (name
), flags
);
8076 fprintf (file
, " ");
8077 print_generic_expr (file
, name
, flags
);
8078 fprintf (file
, ";\n");
8085 if (fun
&& fun
->decl
== fndecl
8087 && basic_block_info_for_fn (fun
))
8089 /* If the CFG has been built, emit a CFG-based dump. */
8090 if (!ignore_topmost_bind
)
8091 fprintf (file
, "{\n");
8093 if (any_var
&& n_basic_blocks_for_fn (fun
))
8094 fprintf (file
, "\n");
8096 FOR_EACH_BB_FN (bb
, fun
)
8097 dump_bb (file
, bb
, 2, flags
);
8099 fprintf (file
, "}\n");
8101 else if (fun
->curr_properties
& PROP_gimple_any
)
8103 /* The function is now in GIMPLE form but the CFG has not been
8104 built yet. Emit the single sequence of GIMPLE statements
8105 that make up its body. */
8106 gimple_seq body
= gimple_body (fndecl
);
8108 if (gimple_seq_first_stmt (body
)
8109 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
8110 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
8111 print_gimple_seq (file
, body
, 0, flags
);
8114 if (!ignore_topmost_bind
)
8115 fprintf (file
, "{\n");
8118 fprintf (file
, "\n");
8120 print_gimple_seq (file
, body
, 2, flags
);
8121 fprintf (file
, "}\n");
8128 /* Make a tree based dump. */
8129 chain
= DECL_SAVED_TREE (fndecl
);
8130 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
8132 if (ignore_topmost_bind
)
8134 chain
= BIND_EXPR_BODY (chain
);
8142 if (!ignore_topmost_bind
)
8144 fprintf (file
, "{\n");
8145 /* No topmost bind, pretend it's ignored for later. */
8146 ignore_topmost_bind
= true;
8152 fprintf (file
, "\n");
8154 print_generic_stmt_indented (file
, chain
, flags
, indent
);
8155 if (ignore_topmost_bind
)
8156 fprintf (file
, "}\n");
8159 if (flags
& TDF_ENUMERATE_LOCALS
)
8160 dump_enumerated_decls (file
, flags
);
8161 fprintf (file
, "\n\n");
8163 current_function_decl
= old_current_fndecl
;
8166 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8169 debug_function (tree fn
, dump_flags_t flags
)
8171 dump_function_to_file (fn
, stderr
, flags
);
8175 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8178 print_pred_bbs (FILE *file
, basic_block bb
)
8183 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
8184 fprintf (file
, "bb_%d ", e
->src
->index
);
8188 /* Print on FILE the indexes for the successors of basic_block BB. */
8191 print_succ_bbs (FILE *file
, basic_block bb
)
8196 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8197 fprintf (file
, "bb_%d ", e
->dest
->index
);
8200 /* Print to FILE the basic block BB following the VERBOSITY level. */
8203 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
8205 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
8206 memset ((void *) s_indent
, ' ', (size_t) indent
);
8207 s_indent
[indent
] = '\0';
8209 /* Print basic_block's header. */
8212 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
8213 print_pred_bbs (file
, bb
);
8214 fprintf (file
, "}, succs = {");
8215 print_succ_bbs (file
, bb
);
8216 fprintf (file
, "})\n");
8219 /* Print basic_block's body. */
8222 fprintf (file
, "%s {\n", s_indent
);
8223 dump_bb (file
, bb
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
8224 fprintf (file
, "%s }\n", s_indent
);
8228 static void print_loop_and_siblings (FILE *, class loop
*, int, int);
8230 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8231 VERBOSITY level this outputs the contents of the loop, or just its
8235 print_loop (FILE *file
, class loop
*loop
, int indent
, int verbosity
)
8243 s_indent
= (char *) alloca ((size_t) indent
+ 1);
8244 memset ((void *) s_indent
, ' ', (size_t) indent
);
8245 s_indent
[indent
] = '\0';
8247 /* Print loop's header. */
8248 fprintf (file
, "%sloop_%d (", s_indent
, loop
->num
);
8250 fprintf (file
, "header = %d", loop
->header
->index
);
8253 fprintf (file
, "deleted)\n");
8257 fprintf (file
, ", latch = %d", loop
->latch
->index
);
8259 fprintf (file
, ", multiple latches");
8260 fprintf (file
, ", niter = ");
8261 print_generic_expr (file
, loop
->nb_iterations
);
8263 if (loop
->any_upper_bound
)
8265 fprintf (file
, ", upper_bound = ");
8266 print_decu (loop
->nb_iterations_upper_bound
, file
);
8268 if (loop
->any_likely_upper_bound
)
8270 fprintf (file
, ", likely_upper_bound = ");
8271 print_decu (loop
->nb_iterations_likely_upper_bound
, file
);
8274 if (loop
->any_estimate
)
8276 fprintf (file
, ", estimate = ");
8277 print_decu (loop
->nb_iterations_estimate
, file
);
8280 fprintf (file
, ", unroll = %d", loop
->unroll
);
8281 fprintf (file
, ")\n");
8283 /* Print loop's body. */
8286 fprintf (file
, "%s{\n", s_indent
);
8287 FOR_EACH_BB_FN (bb
, cfun
)
8288 if (bb
->loop_father
== loop
)
8289 print_loops_bb (file
, bb
, indent
, verbosity
);
8291 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
8292 fprintf (file
, "%s}\n", s_indent
);
8296 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8297 spaces. Following VERBOSITY level this outputs the contents of the
8298 loop, or just its structure. */
8301 print_loop_and_siblings (FILE *file
, class loop
*loop
, int indent
,
8307 print_loop (file
, loop
, indent
, verbosity
);
8308 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
8311 /* Follow a CFG edge from the entry point of the program, and on entry
8312 of a loop, pretty print the loop structure on FILE. */
8315 print_loops (FILE *file
, int verbosity
)
8319 bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
8320 fprintf (file
, "\nLoops in function: %s\n", current_function_name ());
8321 if (bb
&& bb
->loop_father
)
8322 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
8328 debug (class loop
&ref
)
8330 print_loop (stderr
, &ref
, 0, /*verbosity*/0);
8334 debug (class loop
*ptr
)
8339 fprintf (stderr
, "<nil>\n");
8342 /* Dump a loop verbosely. */
8345 debug_verbose (class loop
&ref
)
8347 print_loop (stderr
, &ref
, 0, /*verbosity*/3);
8351 debug_verbose (class loop
*ptr
)
8356 fprintf (stderr
, "<nil>\n");
8360 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8363 debug_loops (int verbosity
)
8365 print_loops (stderr
, verbosity
);
8368 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8371 debug_loop (class loop
*loop
, int verbosity
)
8373 print_loop (stderr
, loop
, 0, verbosity
);
8376 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8380 debug_loop_num (unsigned num
, int verbosity
)
8382 debug_loop (get_loop (cfun
, num
), verbosity
);
8385 /* Return true if BB ends with a call, possibly followed by some
8386 instructions that must stay with the call. Return false,
8390 gimple_block_ends_with_call_p (basic_block bb
)
8392 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8393 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
8397 /* Return true if BB ends with a conditional branch. Return false,
8401 gimple_block_ends_with_condjump_p (const_basic_block bb
)
8403 gimple
*stmt
= last_stmt (CONST_CAST_BB (bb
));
8404 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
8408 /* Return true if statement T may terminate execution of BB in ways not
8409 explicitly represtented in the CFG. */
8412 stmt_can_terminate_bb_p (gimple
*t
)
8414 tree fndecl
= NULL_TREE
;
8417 /* Eh exception not handled internally terminates execution of the whole
8419 if (stmt_can_throw_external (cfun
, t
))
8422 /* NORETURN and LONGJMP calls already have an edge to exit.
8423 CONST and PURE calls do not need one.
8424 We don't currently check for CONST and PURE here, although
8425 it would be a good idea, because those attributes are
8426 figured out from the RTL in mark_constant_function, and
8427 the counter incrementation code from -fprofile-arcs
8428 leads to different results from -fbranch-probabilities. */
8429 if (is_gimple_call (t
))
8431 fndecl
= gimple_call_fndecl (t
);
8432 call_flags
= gimple_call_flags (t
);
8435 if (is_gimple_call (t
)
8437 && fndecl_built_in_p (fndecl
)
8438 && (call_flags
& ECF_NOTHROW
)
8439 && !(call_flags
& ECF_RETURNS_TWICE
)
8440 /* fork() doesn't really return twice, but the effect of
8441 wrapping it in __gcov_fork() which calls __gcov_dump() and
8442 __gcov_reset() and clears the counters before forking has the same
8443 effect as returning twice. Force a fake edge. */
8444 && !fndecl_built_in_p (fndecl
, BUILT_IN_FORK
))
8447 if (is_gimple_call (t
))
8453 if (call_flags
& (ECF_PURE
| ECF_CONST
)
8454 && !(call_flags
& ECF_LOOPING_CONST_OR_PURE
))
8457 /* Function call may do longjmp, terminate program or do other things.
8458 Special case noreturn that have non-abnormal edges out as in this case
8459 the fact is sufficiently represented by lack of edges out of T. */
8460 if (!(call_flags
& ECF_NORETURN
))
8464 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
8465 if ((e
->flags
& EDGE_FAKE
) == 0)
8469 if (gasm
*asm_stmt
= dyn_cast
<gasm
*> (t
))
8470 if (gimple_asm_volatile_p (asm_stmt
) || gimple_asm_input_p (asm_stmt
))
8477 /* Add fake edges to the function exit for any non constant and non
8478 noreturn calls (or noreturn calls with EH/abnormal edges),
8479 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8480 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8483 The goal is to expose cases in which entering a basic block does
8484 not imply that all subsequent instructions must be executed. */
8487 gimple_flow_call_edges_add (sbitmap blocks
)
8490 int blocks_split
= 0;
8491 int last_bb
= last_basic_block_for_fn (cfun
);
8492 bool check_last_block
= false;
8494 if (n_basic_blocks_for_fn (cfun
) == NUM_FIXED_BLOCKS
)
8498 check_last_block
= true;
8500 check_last_block
= bitmap_bit_p (blocks
,
8501 EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
->index
);
8503 /* In the last basic block, before epilogue generation, there will be
8504 a fallthru edge to EXIT. Special care is required if the last insn
8505 of the last basic block is a call because make_edge folds duplicate
8506 edges, which would result in the fallthru edge also being marked
8507 fake, which would result in the fallthru edge being removed by
8508 remove_fake_edges, which would result in an invalid CFG.
8510 Moreover, we can't elide the outgoing fake edge, since the block
8511 profiler needs to take this into account in order to solve the minimal
8512 spanning tree in the case that the call doesn't return.
8514 Handle this by adding a dummy instruction in a new last basic block. */
8515 if (check_last_block
)
8517 basic_block bb
= EXIT_BLOCK_PTR_FOR_FN (cfun
)->prev_bb
;
8518 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
8521 if (!gsi_end_p (gsi
))
8524 if (t
&& stmt_can_terminate_bb_p (t
))
8528 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8531 gsi_insert_on_edge (e
, gimple_build_nop ());
8532 gsi_commit_edge_inserts ();
8537 /* Now add fake edges to the function exit for any non constant
8538 calls since there is no way that we can determine if they will
8540 for (i
= 0; i
< last_bb
; i
++)
8542 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8543 gimple_stmt_iterator gsi
;
8544 gimple
*stmt
, *last_stmt
;
8549 if (blocks
&& !bitmap_bit_p (blocks
, i
))
8552 gsi
= gsi_last_nondebug_bb (bb
);
8553 if (!gsi_end_p (gsi
))
8555 last_stmt
= gsi_stmt (gsi
);
8558 stmt
= gsi_stmt (gsi
);
8559 if (stmt_can_terminate_bb_p (stmt
))
8563 /* The handling above of the final block before the
8564 epilogue should be enough to verify that there is
8565 no edge to the exit block in CFG already.
8566 Calling make_edge in such case would cause us to
8567 mark that edge as fake and remove it later. */
8568 if (flag_checking
&& stmt
== last_stmt
)
8570 e
= find_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
8571 gcc_assert (e
== NULL
);
8574 /* Note that the following may create a new basic block
8575 and renumber the existing basic blocks. */
8576 if (stmt
!= last_stmt
)
8578 e
= split_block (bb
, stmt
);
8582 e
= make_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
8583 e
->probability
= profile_probability::guessed_never ();
8587 while (!gsi_end_p (gsi
));
8592 checking_verify_flow_info ();
8594 return blocks_split
;
8597 /* Removes edge E and all the blocks dominated by it, and updates dominance
8598 information. The IL in E->src needs to be updated separately.
8599 If dominance info is not available, only the edge E is removed.*/
8602 remove_edge_and_dominated_blocks (edge e
)
8604 vec
<basic_block
> bbs_to_remove
= vNULL
;
8605 vec
<basic_block
> bbs_to_fix_dom
= vNULL
;
8608 bool none_removed
= false;
8610 basic_block bb
, dbb
;
8613 /* If we are removing a path inside a non-root loop that may change
8614 loop ownership of blocks or remove loops. Mark loops for fixup. */
8616 && loop_outer (e
->src
->loop_father
) != NULL
8617 && e
->src
->loop_father
== e
->dest
->loop_father
)
8618 loops_state_set (LOOPS_NEED_FIXUP
);
8620 if (!dom_info_available_p (CDI_DOMINATORS
))
8626 /* No updating is needed for edges to exit. */
8627 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
8629 if (cfgcleanup_altered_bbs
)
8630 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8635 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8636 that is not dominated by E->dest, then this set is empty. Otherwise,
8637 all the basic blocks dominated by E->dest are removed.
8639 Also, to DF_IDOM we store the immediate dominators of the blocks in
8640 the dominance frontier of E (i.e., of the successors of the
8641 removed blocks, if there are any, and of E->dest otherwise). */
8642 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
8647 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
8649 none_removed
= true;
8654 auto_bitmap df
, df_idom
;
8656 bitmap_set_bit (df_idom
,
8657 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
8660 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
8661 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8663 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
8665 if (f
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
8666 bitmap_set_bit (df
, f
->dest
->index
);
8669 FOR_EACH_VEC_ELT (bbs_to_remove
, i
, bb
)
8670 bitmap_clear_bit (df
, bb
->index
);
8672 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
8674 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8675 bitmap_set_bit (df_idom
,
8676 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
8680 if (cfgcleanup_altered_bbs
)
8682 /* Record the set of the altered basic blocks. */
8683 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
8684 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
8687 /* Remove E and the cancelled blocks. */
8692 /* Walk backwards so as to get a chance to substitute all
8693 released DEFs into debug stmts. See
8694 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8696 for (i
= bbs_to_remove
.length (); i
-- > 0; )
8697 delete_basic_block (bbs_to_remove
[i
]);
8700 /* Update the dominance information. The immediate dominator may change only
8701 for blocks whose immediate dominator belongs to DF_IDOM:
8703 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8704 removal. Let Z the arbitrary block such that idom(Z) = Y and
8705 Z dominates X after the removal. Before removal, there exists a path P
8706 from Y to X that avoids Z. Let F be the last edge on P that is
8707 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8708 dominates W, and because of P, Z does not dominate W), and W belongs to
8709 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8710 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
8712 bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8713 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
8715 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
8716 bbs_to_fix_dom
.safe_push (dbb
);
8719 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
8721 bbs_to_remove
.release ();
8722 bbs_to_fix_dom
.release ();
8725 /* Purge dead EH edges from basic block BB. */
8728 gimple_purge_dead_eh_edges (basic_block bb
)
8730 bool changed
= false;
8733 gimple
*stmt
= last_stmt (bb
);
8735 if (stmt
&& stmt_can_throw_internal (cfun
, stmt
))
8738 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8740 if (e
->flags
& EDGE_EH
)
8742 remove_edge_and_dominated_blocks (e
);
8752 /* Purge dead EH edges from basic block listed in BLOCKS. */
8755 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
8757 bool changed
= false;
8761 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8763 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8765 /* Earlier gimple_purge_dead_eh_edges could have removed
8766 this basic block already. */
8767 gcc_assert (bb
|| changed
);
8769 changed
|= gimple_purge_dead_eh_edges (bb
);
8775 /* Purge dead abnormal call edges from basic block BB. */
8778 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
8780 bool changed
= false;
8783 gimple
*stmt
= last_stmt (bb
);
8785 if (!cfun
->has_nonlocal_label
8786 && !cfun
->calls_setjmp
)
8789 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
8792 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
8794 if (e
->flags
& EDGE_ABNORMAL
)
8796 if (e
->flags
& EDGE_FALLTHRU
)
8797 e
->flags
&= ~EDGE_ABNORMAL
;
8799 remove_edge_and_dominated_blocks (e
);
8809 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8812 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
8814 bool changed
= false;
8818 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
8820 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, i
);
8822 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8823 this basic block already. */
8824 gcc_assert (bb
|| changed
);
8826 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
8832 /* This function is called whenever a new edge is created or
8836 gimple_execute_on_growing_pred (edge e
)
8838 basic_block bb
= e
->dest
;
8840 if (!gimple_seq_empty_p (phi_nodes (bb
)))
8841 reserve_phi_args_for_new_edge (bb
);
8844 /* This function is called immediately before edge E is removed from
8845 the edge vector E->dest->preds. */
8848 gimple_execute_on_shrinking_pred (edge e
)
8850 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
8851 remove_phi_args (e
);
8854 /*---------------------------------------------------------------------------
8855 Helper functions for Loop versioning
8856 ---------------------------------------------------------------------------*/
8858 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8859 of 'first'. Both of them are dominated by 'new_head' basic block. When
8860 'new_head' was created by 'second's incoming edge it received phi arguments
8861 on the edge by split_edge(). Later, additional edge 'e' was created to
8862 connect 'new_head' and 'first'. Now this routine adds phi args on this
8863 additional edge 'e' that new_head to second edge received as part of edge
8867 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
8868 basic_block new_head
, edge e
)
8871 gphi_iterator psi1
, psi2
;
8873 edge e2
= find_edge (new_head
, second
);
8875 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8876 edge, we should always have an edge from NEW_HEAD to SECOND. */
8877 gcc_assert (e2
!= NULL
);
8879 /* Browse all 'second' basic block phi nodes and add phi args to
8880 edge 'e' for 'first' head. PHI args are always in correct order. */
8882 for (psi2
= gsi_start_phis (second
),
8883 psi1
= gsi_start_phis (first
);
8884 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
8885 gsi_next (&psi2
), gsi_next (&psi1
))
8889 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
8890 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
8895 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8896 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8897 the destination of the ELSE part. */
8900 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
8901 basic_block second_head ATTRIBUTE_UNUSED
,
8902 basic_block cond_bb
, void *cond_e
)
8904 gimple_stmt_iterator gsi
;
8905 gimple
*new_cond_expr
;
8906 tree cond_expr
= (tree
) cond_e
;
8909 /* Build new conditional expr */
8910 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
8911 NULL_TREE
, NULL_TREE
);
8913 /* Add new cond in cond_bb. */
8914 gsi
= gsi_last_bb (cond_bb
);
8915 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
8917 /* Adjust edges appropriately to connect new head with first head
8918 as well as second head. */
8919 e0
= single_succ_edge (cond_bb
);
8920 e0
->flags
&= ~EDGE_FALLTHRU
;
8921 e0
->flags
|= EDGE_FALSE_VALUE
;
8925 /* Do book-keeping of basic block BB for the profile consistency checker.
8926 Store the counting in RECORD. */
8928 gimple_account_profile_record (basic_block bb
,
8929 struct profile_record
*record
)
8931 gimple_stmt_iterator i
;
8932 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
8935 += estimate_num_insns (gsi_stmt (i
), &eni_size_weights
);
8936 if (bb
->count
.initialized_p ())
8938 += estimate_num_insns (gsi_stmt (i
),
8939 &eni_time_weights
) * bb
->count
.to_gcov_type ();
8940 else if (profile_status_for_fn (cfun
) == PROFILE_GUESSED
)
8942 += estimate_num_insns (gsi_stmt (i
),
8943 &eni_time_weights
) * bb
->count
.to_frequency (cfun
);
8947 struct cfg_hooks gimple_cfg_hooks
= {
8949 gimple_verify_flow_info
,
8950 gimple_dump_bb
, /* dump_bb */
8951 gimple_dump_bb_for_graph
, /* dump_bb_for_graph */
8952 create_bb
, /* create_basic_block */
8953 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
8954 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
8955 gimple_can_remove_branch_p
, /* can_remove_branch_p */
8956 remove_bb
, /* delete_basic_block */
8957 gimple_split_block
, /* split_block */
8958 gimple_move_block_after
, /* move_block_after */
8959 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
8960 gimple_merge_blocks
, /* merge_blocks */
8961 gimple_predict_edge
, /* predict_edge */
8962 gimple_predicted_by_p
, /* predicted_by_p */
8963 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
8964 gimple_duplicate_bb
, /* duplicate_block */
8965 gimple_split_edge
, /* split_edge */
8966 gimple_make_forwarder_block
, /* make_forward_block */
8967 NULL
, /* tidy_fallthru_edge */
8968 NULL
, /* force_nonfallthru */
8969 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
8970 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
8971 gimple_flow_call_edges_add
, /* flow_call_edges_add */
8972 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
8973 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
8974 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
8975 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
8976 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
8977 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
8978 flush_pending_stmts
, /* flush_pending_stmts */
8979 gimple_empty_block_p
, /* block_empty_p */
8980 gimple_split_block_before_cond_jump
, /* split_block_before_cond_jump */
8981 gimple_account_profile_record
,
8985 /* Split all critical edges. Split some extra (not necessarily critical) edges
8986 if FOR_EDGE_INSERTION_P is true. */
8989 split_critical_edges (bool for_edge_insertion_p
/* = false */)
8995 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8996 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8997 mappings around the calls to split_edge. */
8998 start_recording_case_labels ();
8999 FOR_ALL_BB_FN (bb
, cfun
)
9001 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
9003 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
9005 /* PRE inserts statements to edges and expects that
9006 since split_critical_edges was done beforehand, committing edge
9007 insertions will not split more edges. In addition to critical
9008 edges we must split edges that have multiple successors and
9009 end by control flow statements, such as RESX.
9010 Go ahead and split them too. This matches the logic in
9011 gimple_find_edge_insert_loc. */
9012 else if (for_edge_insertion_p
9013 && (!single_pred_p (e
->dest
)
9014 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
9015 || e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
9016 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
9017 && !(e
->flags
& EDGE_ABNORMAL
))
9019 gimple_stmt_iterator gsi
;
9021 gsi
= gsi_last_bb (e
->src
);
9022 if (!gsi_end_p (gsi
)
9023 && stmt_ends_bb_p (gsi_stmt (gsi
))
9024 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
9025 && !gimple_call_builtin_p (gsi_stmt (gsi
),
9031 end_recording_case_labels ();
9037 const pass_data pass_data_split_crit_edges
=
9039 GIMPLE_PASS
, /* type */
9040 "crited", /* name */
9041 OPTGROUP_NONE
, /* optinfo_flags */
9042 TV_TREE_SPLIT_EDGES
, /* tv_id */
9043 PROP_cfg
, /* properties_required */
9044 PROP_no_crit_edges
, /* properties_provided */
9045 0, /* properties_destroyed */
9046 0, /* todo_flags_start */
9047 0, /* todo_flags_finish */
9050 class pass_split_crit_edges
: public gimple_opt_pass
9053 pass_split_crit_edges (gcc::context
*ctxt
)
9054 : gimple_opt_pass (pass_data_split_crit_edges
, ctxt
)
9057 /* opt_pass methods: */
9058 virtual unsigned int execute (function
*) { return split_critical_edges (); }
9060 opt_pass
* clone () { return new pass_split_crit_edges (m_ctxt
); }
9061 }; // class pass_split_crit_edges
9066 make_pass_split_crit_edges (gcc::context
*ctxt
)
9068 return new pass_split_crit_edges (ctxt
);
9072 /* Insert COND expression which is GIMPLE_COND after STMT
9073 in basic block BB with appropriate basic block split
9074 and creation of a new conditionally executed basic block.
9075 Update profile so the new bb is visited with probability PROB.
9076 Return created basic block. */
9078 insert_cond_bb (basic_block bb
, gimple
*stmt
, gimple
*cond
,
9079 profile_probability prob
)
9081 edge fall
= split_block (bb
, stmt
);
9082 gimple_stmt_iterator iter
= gsi_last_bb (bb
);
9085 /* Insert cond statement. */
9086 gcc_assert (gimple_code (cond
) == GIMPLE_COND
);
9087 if (gsi_end_p (iter
))
9088 gsi_insert_before (&iter
, cond
, GSI_CONTINUE_LINKING
);
9090 gsi_insert_after (&iter
, cond
, GSI_CONTINUE_LINKING
);
9092 /* Create conditionally executed block. */
9093 new_bb
= create_empty_bb (bb
);
9094 edge e
= make_edge (bb
, new_bb
, EDGE_TRUE_VALUE
);
9095 e
->probability
= prob
;
9096 new_bb
->count
= e
->count ();
9097 make_single_succ_edge (new_bb
, fall
->dest
, EDGE_FALLTHRU
);
9099 /* Fix edge for split bb. */
9100 fall
->flags
= EDGE_FALSE_VALUE
;
9101 fall
->probability
-= e
->probability
;
9103 /* Update dominance info. */
9104 if (dom_info_available_p (CDI_DOMINATORS
))
9106 set_immediate_dominator (CDI_DOMINATORS
, new_bb
, bb
);
9107 set_immediate_dominator (CDI_DOMINATORS
, fall
->dest
, bb
);
9110 /* Update loop info. */
9112 add_bb_to_loop (new_bb
, bb
->loop_father
);
9117 /* Build a ternary operation and gimplify it. Emit code before GSI.
9118 Return the gimple_val holding the result. */
9121 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9122 tree type
, tree a
, tree b
, tree c
)
9125 location_t loc
= gimple_location (gsi_stmt (*gsi
));
9127 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
9128 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9132 /* Build a binary operation and gimplify it. Emit code before GSI.
9133 Return the gimple_val holding the result. */
9136 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
9137 tree type
, tree a
, tree b
)
9141 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
9142 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9146 /* Build a unary operation and gimplify it. Emit code before GSI.
9147 Return the gimple_val holding the result. */
9150 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
9155 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
9156 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
9162 /* Given a basic block B which ends with a conditional and has
9163 precisely two successors, determine which of the edges is taken if
9164 the conditional is true and which is taken if the conditional is
9165 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9168 extract_true_false_edges_from_block (basic_block b
,
9172 edge e
= EDGE_SUCC (b
, 0);
9174 if (e
->flags
& EDGE_TRUE_VALUE
)
9177 *false_edge
= EDGE_SUCC (b
, 1);
9182 *true_edge
= EDGE_SUCC (b
, 1);
9187 /* From a controlling predicate in the immediate dominator DOM of
9188 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9189 predicate evaluates to true and false and store them to
9190 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9191 they are non-NULL. Returns true if the edges can be determined,
9192 else return false. */
9195 extract_true_false_controlled_edges (basic_block dom
, basic_block phiblock
,
9196 edge
*true_controlled_edge
,
9197 edge
*false_controlled_edge
)
9199 basic_block bb
= phiblock
;
9200 edge true_edge
, false_edge
, tem
;
9201 edge e0
= NULL
, e1
= NULL
;
9203 /* We have to verify that one edge into the PHI node is dominated
9204 by the true edge of the predicate block and the other edge
9205 dominated by the false edge. This ensures that the PHI argument
9206 we are going to take is completely determined by the path we
9207 take from the predicate block.
9208 We can only use BB dominance checks below if the destination of
9209 the true/false edges are dominated by their edge, thus only
9210 have a single predecessor. */
9211 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
9212 tem
= EDGE_PRED (bb
, 0);
9213 if (tem
== true_edge
9214 || (single_pred_p (true_edge
->dest
)
9215 && (tem
->src
== true_edge
->dest
9216 || dominated_by_p (CDI_DOMINATORS
,
9217 tem
->src
, true_edge
->dest
))))
9219 else if (tem
== false_edge
9220 || (single_pred_p (false_edge
->dest
)
9221 && (tem
->src
== false_edge
->dest
9222 || dominated_by_p (CDI_DOMINATORS
,
9223 tem
->src
, false_edge
->dest
))))
9227 tem
= EDGE_PRED (bb
, 1);
9228 if (tem
== true_edge
9229 || (single_pred_p (true_edge
->dest
)
9230 && (tem
->src
== true_edge
->dest
9231 || dominated_by_p (CDI_DOMINATORS
,
9232 tem
->src
, true_edge
->dest
))))
9234 else if (tem
== false_edge
9235 || (single_pred_p (false_edge
->dest
)
9236 && (tem
->src
== false_edge
->dest
9237 || dominated_by_p (CDI_DOMINATORS
,
9238 tem
->src
, false_edge
->dest
))))
9245 if (true_controlled_edge
)
9246 *true_controlled_edge
= e0
;
9247 if (false_controlled_edge
)
9248 *false_controlled_edge
= e1
;
9253 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9254 range [low, high]. Place associated stmts before *GSI. */
9257 generate_range_test (basic_block bb
, tree index
, tree low
, tree high
,
9258 tree
*lhs
, tree
*rhs
)
9260 tree type
= TREE_TYPE (index
);
9261 tree utype
= range_check_type (type
);
9263 low
= fold_convert (utype
, low
);
9264 high
= fold_convert (utype
, high
);
9266 gimple_seq seq
= NULL
;
9267 index
= gimple_convert (&seq
, utype
, index
);
9268 *lhs
= gimple_build (&seq
, MINUS_EXPR
, utype
, index
, low
);
9269 *rhs
= const_binop (MINUS_EXPR
, utype
, high
, low
);
9271 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9272 gsi_insert_seq_before (&gsi
, seq
, GSI_SAME_STMT
);
9275 /* Return the basic block that belongs to label numbered INDEX
9276 of a switch statement. */
9279 gimple_switch_label_bb (function
*ifun
, gswitch
*gs
, unsigned index
)
9281 return label_to_block (ifun
, CASE_LABEL (gimple_switch_label (gs
, index
)));
9284 /* Return the default basic block of a switch statement. */
9287 gimple_switch_default_bb (function
*ifun
, gswitch
*gs
)
9289 return gimple_switch_label_bb (ifun
, gs
, 0);
9292 /* Return the edge that belongs to label numbered INDEX
9293 of a switch statement. */
9296 gimple_switch_edge (function
*ifun
, gswitch
*gs
, unsigned index
)
9298 return find_edge (gimple_bb (gs
), gimple_switch_label_bb (ifun
, gs
, index
));
9301 /* Return the default edge of a switch statement. */
9304 gimple_switch_default_edge (function
*ifun
, gswitch
*gs
)
9306 return gimple_switch_edge (ifun
, gs
, 0);
9310 /* Emit return warnings. */
9314 const pass_data pass_data_warn_function_return
=
9316 GIMPLE_PASS
, /* type */
9317 "*warn_function_return", /* name */
9318 OPTGROUP_NONE
, /* optinfo_flags */
9319 TV_NONE
, /* tv_id */
9320 PROP_cfg
, /* properties_required */
9321 0, /* properties_provided */
9322 0, /* properties_destroyed */
9323 0, /* todo_flags_start */
9324 0, /* todo_flags_finish */
9327 class pass_warn_function_return
: public gimple_opt_pass
9330 pass_warn_function_return (gcc::context
*ctxt
)
9331 : gimple_opt_pass (pass_data_warn_function_return
, ctxt
)
9334 /* opt_pass methods: */
9335 virtual unsigned int execute (function
*);
9337 }; // class pass_warn_function_return
9340 pass_warn_function_return::execute (function
*fun
)
9342 location_t location
;
9347 if (!targetm
.warn_func_return (fun
->decl
))
9350 /* If we have a path to EXIT, then we do return. */
9351 if (TREE_THIS_VOLATILE (fun
->decl
)
9352 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
) > 0)
9354 location
= UNKNOWN_LOCATION
;
9355 for (ei
= ei_start (EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
);
9356 (e
= ei_safe_edge (ei
)); )
9358 last
= last_stmt (e
->src
);
9359 if ((gimple_code (last
) == GIMPLE_RETURN
9360 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
9361 && location
== UNKNOWN_LOCATION
9362 && ((location
= LOCATION_LOCUS (gimple_location (last
)))
9363 != UNKNOWN_LOCATION
)
9366 /* When optimizing, replace return stmts in noreturn functions
9367 with __builtin_unreachable () call. */
9368 if (optimize
&& gimple_code (last
) == GIMPLE_RETURN
)
9370 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9371 gimple
*new_stmt
= gimple_build_call (fndecl
, 0);
9372 gimple_set_location (new_stmt
, gimple_location (last
));
9373 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9374 gsi_replace (&gsi
, new_stmt
, true);
9380 if (location
== UNKNOWN_LOCATION
)
9381 location
= cfun
->function_end_locus
;
9382 warning_at (location
, 0, "%<noreturn%> function does return");
9385 /* If we see "return;" in some basic block, then we do reach the end
9386 without returning a value. */
9387 else if (warn_return_type
> 0
9388 && !TREE_NO_WARNING (fun
->decl
)
9389 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun
->decl
))))
9391 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
)
9393 gimple
*last
= last_stmt (e
->src
);
9394 greturn
*return_stmt
= dyn_cast
<greturn
*> (last
);
9396 && gimple_return_retval (return_stmt
) == NULL
9397 && !gimple_no_warning_p (last
))
9399 location
= gimple_location (last
);
9400 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9401 location
= fun
->function_end_locus
;
9402 if (warning_at (location
, OPT_Wreturn_type
,
9403 "control reaches end of non-void function"))
9404 TREE_NO_WARNING (fun
->decl
) = 1;
9408 /* The C++ FE turns fallthrough from the end of non-void function
9409 into __builtin_unreachable () call with BUILTINS_LOCATION.
9410 Recognize those too. */
9412 if (!TREE_NO_WARNING (fun
->decl
))
9413 FOR_EACH_BB_FN (bb
, fun
)
9414 if (EDGE_COUNT (bb
->succs
) == 0)
9416 gimple
*last
= last_stmt (bb
);
9417 const enum built_in_function ubsan_missing_ret
9418 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN
;
9420 && ((LOCATION_LOCUS (gimple_location (last
))
9421 == BUILTINS_LOCATION
9422 && gimple_call_builtin_p (last
, BUILT_IN_UNREACHABLE
))
9423 || gimple_call_builtin_p (last
, ubsan_missing_ret
)))
9425 gimple_stmt_iterator gsi
= gsi_for_stmt (last
);
9426 gsi_prev_nondebug (&gsi
);
9427 gimple
*prev
= gsi_stmt (gsi
);
9429 location
= UNKNOWN_LOCATION
;
9431 location
= gimple_location (prev
);
9432 if (LOCATION_LOCUS (location
) == UNKNOWN_LOCATION
)
9433 location
= fun
->function_end_locus
;
9434 if (warning_at (location
, OPT_Wreturn_type
,
9435 "control reaches end of non-void function"))
9436 TREE_NO_WARNING (fun
->decl
) = 1;
9447 make_pass_warn_function_return (gcc::context
*ctxt
)
9449 return new pass_warn_function_return (ctxt
);
9452 /* Walk a gimplified function and warn for functions whose return value is
9453 ignored and attribute((warn_unused_result)) is set. This is done before
9454 inlining, so we don't have to worry about that. */
9457 do_warn_unused_result (gimple_seq seq
)
9460 gimple_stmt_iterator i
;
9462 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
9464 gimple
*g
= gsi_stmt (i
);
9466 switch (gimple_code (g
))
9469 do_warn_unused_result (gimple_bind_body (as_a
<gbind
*>(g
)));
9472 do_warn_unused_result (gimple_try_eval (g
));
9473 do_warn_unused_result (gimple_try_cleanup (g
));
9476 do_warn_unused_result (gimple_catch_handler (
9477 as_a
<gcatch
*> (g
)));
9479 case GIMPLE_EH_FILTER
:
9480 do_warn_unused_result (gimple_eh_filter_failure (g
));
9484 if (gimple_call_lhs (g
))
9486 if (gimple_call_internal_p (g
))
9489 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9490 LHS. All calls whose value is ignored should be
9491 represented like this. Look for the attribute. */
9492 fdecl
= gimple_call_fndecl (g
);
9493 ftype
= gimple_call_fntype (g
);
9495 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
9497 location_t loc
= gimple_location (g
);
9500 warning_at (loc
, OPT_Wunused_result
,
9501 "ignoring return value of %qD "
9502 "declared with attribute %<warn_unused_result%>",
9505 warning_at (loc
, OPT_Wunused_result
,
9506 "ignoring return value of function "
9507 "declared with attribute %<warn_unused_result%>");
9512 /* Not a container, not a call, or a call whose value is used. */
9520 const pass_data pass_data_warn_unused_result
=
9522 GIMPLE_PASS
, /* type */
9523 "*warn_unused_result", /* name */
9524 OPTGROUP_NONE
, /* optinfo_flags */
9525 TV_NONE
, /* tv_id */
9526 PROP_gimple_any
, /* properties_required */
9527 0, /* properties_provided */
9528 0, /* properties_destroyed */
9529 0, /* todo_flags_start */
9530 0, /* todo_flags_finish */
9533 class pass_warn_unused_result
: public gimple_opt_pass
9536 pass_warn_unused_result (gcc::context
*ctxt
)
9537 : gimple_opt_pass (pass_data_warn_unused_result
, ctxt
)
9540 /* opt_pass methods: */
9541 virtual bool gate (function
*) { return flag_warn_unused_result
; }
9542 virtual unsigned int execute (function
*)
9544 do_warn_unused_result (gimple_body (current_function_decl
));
9548 }; // class pass_warn_unused_result
9553 make_pass_warn_unused_result (gcc::context
*ctxt
)
9555 return new pass_warn_unused_result (ctxt
);
9558 /* IPA passes, compilation of earlier functions or inlining
9559 might have changed some properties, such as marked functions nothrow,
9560 pure, const or noreturn.
9561 Remove redundant edges and basic blocks, and create new ones if necessary.
9563 This pass can't be executed as stand alone pass from pass manager, because
9564 in between inlining and this fixup the verify_flow_info would fail. */
9567 execute_fixup_cfg (void)
9570 gimple_stmt_iterator gsi
;
9572 cgraph_node
*node
= cgraph_node::get (current_function_decl
);
9573 /* Same scaling is also done by ipa_merge_profiles. */
9574 profile_count num
= node
->count
;
9575 profile_count den
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
;
9576 bool scale
= num
.initialized_p () && !(num
== den
);
9580 profile_count::adjust_for_ipa_scaling (&num
, &den
);
9581 ENTRY_BLOCK_PTR_FOR_FN (cfun
)->count
= node
->count
;
9582 EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
9583 = EXIT_BLOCK_PTR_FOR_FN (cfun
)->count
.apply_scale (num
, den
);
9586 FOR_EACH_BB_FN (bb
, cfun
)
9589 bb
->count
= bb
->count
.apply_scale (num
, den
);
9590 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
9592 gimple
*stmt
= gsi_stmt (gsi
);
9593 tree decl
= is_gimple_call (stmt
)
9594 ? gimple_call_fndecl (stmt
)
9598 int flags
= gimple_call_flags (stmt
);
9599 if (flags
& (ECF_CONST
| ECF_PURE
| ECF_LOOPING_CONST_OR_PURE
))
9601 if (gimple_purge_dead_abnormal_call_edges (bb
))
9602 todo
|= TODO_cleanup_cfg
;
9604 if (gimple_in_ssa_p (cfun
))
9606 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9611 if (flags
& ECF_NORETURN
9612 && fixup_noreturn_call (stmt
))
9613 todo
|= TODO_cleanup_cfg
;
9616 /* Remove stores to variables we marked write-only.
9617 Keep access when store has side effect, i.e. in case when source
9619 if (gimple_store_p (stmt
)
9620 && !gimple_has_side_effects (stmt
)
9623 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9626 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9627 && varpool_node::get (lhs
)->writeonly
)
9629 unlink_stmt_vdef (stmt
);
9630 gsi_remove (&gsi
, true);
9631 release_defs (stmt
);
9632 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9636 /* For calls we can simply remove LHS when it is known
9637 to be write-only. */
9638 if (is_gimple_call (stmt
)
9639 && gimple_get_lhs (stmt
))
9641 tree lhs
= get_base_address (gimple_get_lhs (stmt
));
9644 && (TREE_STATIC (lhs
) || DECL_EXTERNAL (lhs
))
9645 && varpool_node::get (lhs
)->writeonly
)
9647 gimple_call_set_lhs (stmt
, NULL
);
9649 todo
|= TODO_update_ssa
| TODO_cleanup_cfg
;
9653 if (maybe_clean_eh_stmt (stmt
)
9654 && gimple_purge_dead_eh_edges (bb
))
9655 todo
|= TODO_cleanup_cfg
;
9659 /* If we have a basic block with no successors that does not
9660 end with a control statement or a noreturn call end it with
9661 a call to __builtin_unreachable. This situation can occur
9662 when inlining a noreturn call that does in fact return. */
9663 if (EDGE_COUNT (bb
->succs
) == 0)
9665 gimple
*stmt
= last_stmt (bb
);
9667 || (!is_ctrl_stmt (stmt
)
9668 && (!is_gimple_call (stmt
)
9669 || !gimple_call_noreturn_p (stmt
))))
9671 if (stmt
&& is_gimple_call (stmt
))
9672 gimple_call_set_ctrl_altering (stmt
, false);
9673 tree fndecl
= builtin_decl_implicit (BUILT_IN_UNREACHABLE
);
9674 stmt
= gimple_build_call (fndecl
, 0);
9675 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
9676 gsi_insert_after (&gsi
, stmt
, GSI_NEW_STMT
);
9677 if (!cfun
->after_inlining
)
9679 gcall
*call_stmt
= dyn_cast
<gcall
*> (stmt
);
9680 node
->create_edge (cgraph_node::get_create (fndecl
),
9681 call_stmt
, bb
->count
);
9688 update_max_bb_count ();
9689 compute_function_frequency ();
9693 && (todo
& TODO_cleanup_cfg
))
9694 loops_state_set (LOOPS_NEED_FIXUP
);
9701 const pass_data pass_data_fixup_cfg
=
9703 GIMPLE_PASS
, /* type */
9704 "fixup_cfg", /* name */
9705 OPTGROUP_NONE
, /* optinfo_flags */
9706 TV_NONE
, /* tv_id */
9707 PROP_cfg
, /* properties_required */
9708 0, /* properties_provided */
9709 0, /* properties_destroyed */
9710 0, /* todo_flags_start */
9711 0, /* todo_flags_finish */
9714 class pass_fixup_cfg
: public gimple_opt_pass
9717 pass_fixup_cfg (gcc::context
*ctxt
)
9718 : gimple_opt_pass (pass_data_fixup_cfg
, ctxt
)
9721 /* opt_pass methods: */
9722 opt_pass
* clone () { return new pass_fixup_cfg (m_ctxt
); }
9723 virtual unsigned int execute (function
*) { return execute_fixup_cfg (); }
9725 }; // class pass_fixup_cfg
9730 make_pass_fixup_cfg (gcc::context
*ctxt
)
9732 return new pass_fixup_cfg (ctxt
);
9735 /* Garbage collection support for edge_def. */
9737 extern void gt_ggc_mx (tree
&);
9738 extern void gt_ggc_mx (gimple
*&);
9739 extern void gt_ggc_mx (rtx
&);
9740 extern void gt_ggc_mx (basic_block
&);
9743 gt_ggc_mx (rtx_insn
*& x
)
9746 gt_ggc_mx_rtx_def ((void *) x
);
9750 gt_ggc_mx (edge_def
*e
)
9752 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9754 gt_ggc_mx (e
->dest
);
9755 if (current_ir_type () == IR_GIMPLE
)
9756 gt_ggc_mx (e
->insns
.g
);
9758 gt_ggc_mx (e
->insns
.r
);
9762 /* PCH support for edge_def. */
9764 extern void gt_pch_nx (tree
&);
9765 extern void gt_pch_nx (gimple
*&);
9766 extern void gt_pch_nx (rtx
&);
9767 extern void gt_pch_nx (basic_block
&);
9770 gt_pch_nx (rtx_insn
*& x
)
9773 gt_pch_nx_rtx_def ((void *) x
);
9777 gt_pch_nx (edge_def
*e
)
9779 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9781 gt_pch_nx (e
->dest
);
9782 if (current_ir_type () == IR_GIMPLE
)
9783 gt_pch_nx (e
->insns
.g
);
9785 gt_pch_nx (e
->insns
.r
);
9790 gt_pch_nx (edge_def
*e
, gt_pointer_operator op
, void *cookie
)
9792 tree block
= LOCATION_BLOCK (e
->goto_locus
);
9793 op (&(e
->src
), cookie
);
9794 op (&(e
->dest
), cookie
);
9795 if (current_ir_type () == IR_GIMPLE
)
9796 op (&(e
->insns
.g
), cookie
);
9798 op (&(e
->insns
.r
), cookie
);
9799 op (&(block
), cookie
);
9804 namespace selftest
{
9806 /* Helper function for CFG selftests: create a dummy function decl
9807 and push it as cfun. */
9810 push_fndecl (const char *name
)
9812 tree fn_type
= build_function_type_array (integer_type_node
, 0, NULL
);
9813 /* FIXME: this uses input_location: */
9814 tree fndecl
= build_fn_decl (name
, fn_type
);
9815 tree retval
= build_decl (UNKNOWN_LOCATION
, RESULT_DECL
,
9816 NULL_TREE
, integer_type_node
);
9817 DECL_RESULT (fndecl
) = retval
;
9818 push_struct_function (fndecl
);
9819 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9820 ASSERT_TRUE (fun
!= NULL
);
9821 init_empty_tree_cfg_for_function (fun
);
9822 ASSERT_EQ (2, n_basic_blocks_for_fn (fun
));
9823 ASSERT_EQ (0, n_edges_for_fn (fun
));
9827 /* These tests directly create CFGs.
9828 Compare with the static fns within tree-cfg.c:
9830 - make_blocks: calls create_basic_block (seq, bb);
9833 /* Verify a simple cfg of the form:
9834 ENTRY -> A -> B -> C -> EXIT. */
9837 test_linear_chain ()
9839 gimple_register_cfg_hooks ();
9841 tree fndecl
= push_fndecl ("cfg_test_linear_chain");
9842 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9844 /* Create some empty blocks. */
9845 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9846 basic_block bb_b
= create_empty_bb (bb_a
);
9847 basic_block bb_c
= create_empty_bb (bb_b
);
9849 ASSERT_EQ (5, n_basic_blocks_for_fn (fun
));
9850 ASSERT_EQ (0, n_edges_for_fn (fun
));
9852 /* Create some edges: a simple linear chain of BBs. */
9853 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9854 make_edge (bb_a
, bb_b
, 0);
9855 make_edge (bb_b
, bb_c
, 0);
9856 make_edge (bb_c
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9858 /* Verify the edges. */
9859 ASSERT_EQ (4, n_edges_for_fn (fun
));
9860 ASSERT_EQ (NULL
, ENTRY_BLOCK_PTR_FOR_FN (fun
)->preds
);
9861 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun
)->succs
->length ());
9862 ASSERT_EQ (1, bb_a
->preds
->length ());
9863 ASSERT_EQ (1, bb_a
->succs
->length ());
9864 ASSERT_EQ (1, bb_b
->preds
->length ());
9865 ASSERT_EQ (1, bb_b
->succs
->length ());
9866 ASSERT_EQ (1, bb_c
->preds
->length ());
9867 ASSERT_EQ (1, bb_c
->succs
->length ());
9868 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun
)->preds
->length ());
9869 ASSERT_EQ (NULL
, EXIT_BLOCK_PTR_FOR_FN (fun
)->succs
);
9871 /* Verify the dominance information
9872 Each BB in our simple chain should be dominated by the one before
9874 calculate_dominance_info (CDI_DOMINATORS
);
9875 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9876 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9877 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9878 ASSERT_EQ (1, dom_by_b
.length ());
9879 ASSERT_EQ (bb_c
, dom_by_b
[0]);
9880 free_dominance_info (CDI_DOMINATORS
);
9881 dom_by_b
.release ();
9883 /* Similarly for post-dominance: each BB in our chain is post-dominated
9884 by the one after it. */
9885 calculate_dominance_info (CDI_POST_DOMINATORS
);
9886 ASSERT_EQ (bb_b
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9887 ASSERT_EQ (bb_c
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9888 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9889 ASSERT_EQ (1, postdom_by_b
.length ());
9890 ASSERT_EQ (bb_a
, postdom_by_b
[0]);
9891 free_dominance_info (CDI_POST_DOMINATORS
);
9892 postdom_by_b
.release ();
9897 /* Verify a simple CFG of the form:
9913 gimple_register_cfg_hooks ();
9915 tree fndecl
= push_fndecl ("cfg_test_diamond");
9916 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
9918 /* Create some empty blocks. */
9919 basic_block bb_a
= create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
));
9920 basic_block bb_b
= create_empty_bb (bb_a
);
9921 basic_block bb_c
= create_empty_bb (bb_a
);
9922 basic_block bb_d
= create_empty_bb (bb_b
);
9924 ASSERT_EQ (6, n_basic_blocks_for_fn (fun
));
9925 ASSERT_EQ (0, n_edges_for_fn (fun
));
9927 /* Create the edges. */
9928 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), bb_a
, EDGE_FALLTHRU
);
9929 make_edge (bb_a
, bb_b
, EDGE_TRUE_VALUE
);
9930 make_edge (bb_a
, bb_c
, EDGE_FALSE_VALUE
);
9931 make_edge (bb_b
, bb_d
, 0);
9932 make_edge (bb_c
, bb_d
, 0);
9933 make_edge (bb_d
, EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
9935 /* Verify the edges. */
9936 ASSERT_EQ (6, n_edges_for_fn (fun
));
9937 ASSERT_EQ (1, bb_a
->preds
->length ());
9938 ASSERT_EQ (2, bb_a
->succs
->length ());
9939 ASSERT_EQ (1, bb_b
->preds
->length ());
9940 ASSERT_EQ (1, bb_b
->succs
->length ());
9941 ASSERT_EQ (1, bb_c
->preds
->length ());
9942 ASSERT_EQ (1, bb_c
->succs
->length ());
9943 ASSERT_EQ (2, bb_d
->preds
->length ());
9944 ASSERT_EQ (1, bb_d
->succs
->length ());
9946 /* Verify the dominance information. */
9947 calculate_dominance_info (CDI_DOMINATORS
);
9948 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_b
));
9949 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_c
));
9950 ASSERT_EQ (bb_a
, get_immediate_dominator (CDI_DOMINATORS
, bb_d
));
9951 vec
<basic_block
> dom_by_a
= get_dominated_by (CDI_DOMINATORS
, bb_a
);
9952 ASSERT_EQ (3, dom_by_a
.length ()); /* B, C, D, in some order. */
9953 dom_by_a
.release ();
9954 vec
<basic_block
> dom_by_b
= get_dominated_by (CDI_DOMINATORS
, bb_b
);
9955 ASSERT_EQ (0, dom_by_b
.length ());
9956 dom_by_b
.release ();
9957 free_dominance_info (CDI_DOMINATORS
);
9959 /* Similarly for post-dominance. */
9960 calculate_dominance_info (CDI_POST_DOMINATORS
);
9961 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_a
));
9962 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_b
));
9963 ASSERT_EQ (bb_d
, get_immediate_dominator (CDI_POST_DOMINATORS
, bb_c
));
9964 vec
<basic_block
> postdom_by_d
= get_dominated_by (CDI_POST_DOMINATORS
, bb_d
);
9965 ASSERT_EQ (3, postdom_by_d
.length ()); /* A, B, C in some order. */
9966 postdom_by_d
.release ();
9967 vec
<basic_block
> postdom_by_b
= get_dominated_by (CDI_POST_DOMINATORS
, bb_b
);
9968 ASSERT_EQ (0, postdom_by_b
.length ());
9969 postdom_by_b
.release ();
9970 free_dominance_info (CDI_POST_DOMINATORS
);
9975 /* Verify that we can handle a CFG containing a "complete" aka
9976 fully-connected subgraph (where A B C D below all have edges
9977 pointing to each other node, also to themselves).
9995 test_fully_connected ()
9997 gimple_register_cfg_hooks ();
9999 tree fndecl
= push_fndecl ("cfg_fully_connected");
10000 function
*fun
= DECL_STRUCT_FUNCTION (fndecl
);
10004 /* Create some empty blocks. */
10005 auto_vec
<basic_block
> subgraph_nodes
;
10006 for (int i
= 0; i
< n
; i
++)
10007 subgraph_nodes
.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun
)));
10009 ASSERT_EQ (n
+ 2, n_basic_blocks_for_fn (fun
));
10010 ASSERT_EQ (0, n_edges_for_fn (fun
));
10012 /* Create the edges. */
10013 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun
), subgraph_nodes
[0], EDGE_FALLTHRU
);
10014 make_edge (subgraph_nodes
[0], EXIT_BLOCK_PTR_FOR_FN (fun
), 0);
10015 for (int i
= 0; i
< n
; i
++)
10016 for (int j
= 0; j
< n
; j
++)
10017 make_edge (subgraph_nodes
[i
], subgraph_nodes
[j
], 0);
10019 /* Verify the edges. */
10020 ASSERT_EQ (2 + (n
* n
), n_edges_for_fn (fun
));
10021 /* The first one is linked to ENTRY/EXIT as well as itself and
10022 everything else. */
10023 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->preds
->length ());
10024 ASSERT_EQ (n
+ 1, subgraph_nodes
[0]->succs
->length ());
10025 /* The other ones in the subgraph are linked to everything in
10026 the subgraph (including themselves). */
10027 for (int i
= 1; i
< n
; i
++)
10029 ASSERT_EQ (n
, subgraph_nodes
[i
]->preds
->length ());
10030 ASSERT_EQ (n
, subgraph_nodes
[i
]->succs
->length ());
10033 /* Verify the dominance information. */
10034 calculate_dominance_info (CDI_DOMINATORS
);
10035 /* The initial block in the subgraph should be dominated by ENTRY. */
10036 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun
),
10037 get_immediate_dominator (CDI_DOMINATORS
,
10038 subgraph_nodes
[0]));
10039 /* Every other block in the subgraph should be dominated by the
10041 for (int i
= 1; i
< n
; i
++)
10042 ASSERT_EQ (subgraph_nodes
[0],
10043 get_immediate_dominator (CDI_DOMINATORS
,
10044 subgraph_nodes
[i
]));
10045 free_dominance_info (CDI_DOMINATORS
);
10047 /* Similarly for post-dominance. */
10048 calculate_dominance_info (CDI_POST_DOMINATORS
);
10049 /* The initial block in the subgraph should be postdominated by EXIT. */
10050 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun
),
10051 get_immediate_dominator (CDI_POST_DOMINATORS
,
10052 subgraph_nodes
[0]));
10053 /* Every other block in the subgraph should be postdominated by the
10054 initial block, since that leads to EXIT. */
10055 for (int i
= 1; i
< n
; i
++)
10056 ASSERT_EQ (subgraph_nodes
[0],
10057 get_immediate_dominator (CDI_POST_DOMINATORS
,
10058 subgraph_nodes
[i
]));
10059 free_dominance_info (CDI_POST_DOMINATORS
);
10064 /* Run all of the selftests within this file. */
10067 tree_cfg_c_tests ()
10069 test_linear_chain ();
10071 test_fully_connected ();
10074 } // namespace selftest
10076 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
10079 - switch statement (a block with many out-edges)
10080 - something that jumps to itself
10083 #endif /* CHECKING_P */