testsuite: remove SPE tests.
[official-gcc.git] / gcc / optabs.c
blob184827fdf4e0269477e4773acee0bfa7c58008db
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
41 #include "except.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "expr.h"
45 #include "optabs-tree.h"
46 #include "libfuncs.h"
48 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
49 machine_mode *);
50 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
51 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 operation). OP0_MODE is OP0's mode.
60 If the last insn does not set TARGET, don't do anything, but return 1.
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
66 static int
67 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0,
68 rtx op1, machine_mode op0_mode)
70 rtx_insn *last_insn;
71 rtx set;
72 rtx note;
74 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
76 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
77 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
78 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
79 && GET_RTX_CLASS (code) != RTX_COMPARE
80 && GET_RTX_CLASS (code) != RTX_UNARY)
81 return 1;
83 if (GET_CODE (target) == ZERO_EXTRACT)
84 return 1;
86 for (last_insn = insns;
87 NEXT_INSN (last_insn) != NULL_RTX;
88 last_insn = NEXT_INSN (last_insn))
91 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
92 a value changing in the insn, so the note would be invalid for CSE. */
93 if (reg_overlap_mentioned_p (target, op0)
94 || (op1 && reg_overlap_mentioned_p (target, op1)))
96 if (MEM_P (target)
97 && (rtx_equal_p (target, op0)
98 || (op1 && rtx_equal_p (target, op1))))
100 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
101 over expanding it as temp = MEM op X, MEM = temp. If the target
102 supports MEM = MEM op X instructions, it is sometimes too hard
103 to reconstruct that form later, especially if X is also a memory,
104 and due to multiple occurrences of addresses the address might
105 be forced into register unnecessarily.
106 Note that not emitting the REG_EQUIV note might inhibit
107 CSE in some cases. */
108 set = single_set (last_insn);
109 if (set
110 && GET_CODE (SET_SRC (set)) == code
111 && MEM_P (SET_DEST (set))
112 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
113 || (op1 && rtx_equal_p (SET_DEST (set),
114 XEXP (SET_SRC (set), 1)))))
115 return 1;
117 return 0;
120 set = set_for_reg_notes (last_insn);
121 if (set == NULL_RTX)
122 return 1;
124 if (! rtx_equal_p (SET_DEST (set), target)
125 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
126 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
127 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
128 return 1;
130 if (GET_RTX_CLASS (code) == RTX_UNARY)
131 switch (code)
133 case FFS:
134 case CLZ:
135 case CTZ:
136 case CLRSB:
137 case POPCOUNT:
138 case PARITY:
139 case BSWAP:
140 if (op0_mode != VOIDmode && GET_MODE (target) != op0_mode)
142 note = gen_rtx_fmt_e (code, op0_mode, copy_rtx (op0));
143 if (GET_MODE_UNIT_SIZE (op0_mode)
144 > GET_MODE_UNIT_SIZE (GET_MODE (target)))
145 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
146 note, op0_mode);
147 else
148 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
149 note, op0_mode);
150 break;
152 /* FALLTHRU */
153 default:
154 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
155 break;
157 else
158 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
160 set_unique_reg_note (last_insn, REG_EQUAL, note);
162 return 1;
165 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
166 for a widening operation would be. In most cases this would be OP0, but if
167 that's a constant it'll be VOIDmode, which isn't useful. */
169 static machine_mode
170 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
172 machine_mode m0 = GET_MODE (op0);
173 machine_mode m1 = GET_MODE (op1);
174 machine_mode result;
176 if (m0 == VOIDmode && m1 == VOIDmode)
177 return to_mode;
178 else if (m0 == VOIDmode || GET_MODE_UNIT_SIZE (m0) < GET_MODE_UNIT_SIZE (m1))
179 result = m1;
180 else
181 result = m0;
183 if (GET_MODE_UNIT_SIZE (result) > GET_MODE_UNIT_SIZE (to_mode))
184 return to_mode;
186 return result;
189 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
190 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
191 not actually do a sign-extend or zero-extend, but can leave the
192 higher-order bits of the result rtx undefined, for example, in the case
193 of logical operations, but not right shifts. */
195 static rtx
196 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
197 int unsignedp, int no_extend)
199 rtx result;
200 scalar_int_mode int_mode;
202 /* If we don't have to extend and this is a constant, return it. */
203 if (no_extend && GET_MODE (op) == VOIDmode)
204 return op;
206 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
207 extend since it will be more efficient to do so unless the signedness of
208 a promoted object differs from our extension. */
209 if (! no_extend
210 || !is_a <scalar_int_mode> (mode, &int_mode)
211 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
212 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
213 return convert_modes (mode, oldmode, op, unsignedp);
215 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
216 SUBREG. */
217 if (GET_MODE_SIZE (int_mode) <= UNITS_PER_WORD)
218 return gen_lowpart (int_mode, force_reg (GET_MODE (op), op));
220 /* Otherwise, get an object of MODE, clobber it, and set the low-order
221 part to OP. */
223 result = gen_reg_rtx (int_mode);
224 emit_clobber (result);
225 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
226 return result;
229 /* Expand vector widening operations.
231 There are two different classes of operations handled here:
232 1) Operations whose result is wider than all the arguments to the operation.
233 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
234 In this case OP0 and optionally OP1 would be initialized,
235 but WIDE_OP wouldn't (not relevant for this case).
236 2) Operations whose result is of the same size as the last argument to the
237 operation, but wider than all the other arguments to the operation.
238 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
239 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
241 E.g, when called to expand the following operations, this is how
242 the arguments will be initialized:
243 nops OP0 OP1 WIDE_OP
244 widening-sum 2 oprnd0 - oprnd1
245 widening-dot-product 3 oprnd0 oprnd1 oprnd2
246 widening-mult 2 oprnd0 oprnd1 -
247 type-promotion (vec-unpack) 1 oprnd0 - - */
250 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
251 rtx target, int unsignedp)
253 class expand_operand eops[4];
254 tree oprnd0, oprnd1, oprnd2;
255 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
256 optab widen_pattern_optab;
257 enum insn_code icode;
258 int nops = TREE_CODE_LENGTH (ops->code);
259 int op;
260 bool sbool = false;
262 oprnd0 = ops->op0;
263 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
264 if (ops->code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
265 || ops->code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
266 /* The sign is from the result type rather than operand's type
267 for these ops. */
268 widen_pattern_optab
269 = optab_for_tree_code (ops->code, ops->type, optab_default);
270 else if ((ops->code == VEC_UNPACK_HI_EXPR
271 || ops->code == VEC_UNPACK_LO_EXPR)
272 && VECTOR_BOOLEAN_TYPE_P (ops->type)
273 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0))
274 && TYPE_MODE (ops->type) == TYPE_MODE (TREE_TYPE (oprnd0))
275 && SCALAR_INT_MODE_P (TYPE_MODE (ops->type)))
277 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
278 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
279 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
280 the pattern number of elements in the wider vector. */
281 widen_pattern_optab
282 = (ops->code == VEC_UNPACK_HI_EXPR
283 ? vec_unpacks_sbool_hi_optab : vec_unpacks_sbool_lo_optab);
284 sbool = true;
286 else
287 widen_pattern_optab
288 = optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
289 if (ops->code == WIDEN_MULT_PLUS_EXPR
290 || ops->code == WIDEN_MULT_MINUS_EXPR)
291 icode = find_widening_optab_handler (widen_pattern_optab,
292 TYPE_MODE (TREE_TYPE (ops->op2)),
293 tmode0);
294 else
295 icode = optab_handler (widen_pattern_optab, tmode0);
296 gcc_assert (icode != CODE_FOR_nothing);
298 if (nops >= 2)
300 oprnd1 = ops->op1;
301 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
303 else if (sbool)
305 nops = 2;
306 op1 = GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0)).to_constant ());
307 tmode1 = tmode0;
310 /* The last operand is of a wider mode than the rest of the operands. */
311 if (nops == 2)
312 wmode = tmode1;
313 else if (nops == 3)
315 gcc_assert (tmode1 == tmode0);
316 gcc_assert (op1);
317 oprnd2 = ops->op2;
318 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
321 op = 0;
322 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
323 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
324 if (op1)
325 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
326 if (wide_op)
327 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
328 expand_insn (icode, op, eops);
329 return eops[0].value;
332 /* Generate code to perform an operation specified by TERNARY_OPTAB
333 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
335 UNSIGNEDP is for the case where we have to widen the operands
336 to perform the operation. It says to use zero-extension.
338 If TARGET is nonzero, the value
339 is generated there, if it is convenient to do so.
340 In all cases an rtx is returned for the locus of the value;
341 this may or may not be TARGET. */
344 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
345 rtx op1, rtx op2, rtx target, int unsignedp)
347 class expand_operand ops[4];
348 enum insn_code icode = optab_handler (ternary_optab, mode);
350 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
352 create_output_operand (&ops[0], target, mode);
353 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
354 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
355 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
356 expand_insn (icode, 4, ops);
357 return ops[0].value;
361 /* Like expand_binop, but return a constant rtx if the result can be
362 calculated at compile time. The arguments and return value are
363 otherwise the same as for expand_binop. */
366 simplify_expand_binop (machine_mode mode, optab binoptab,
367 rtx op0, rtx op1, rtx target, int unsignedp,
368 enum optab_methods methods)
370 if (CONSTANT_P (op0) && CONSTANT_P (op1))
372 rtx x = simplify_binary_operation (optab_to_code (binoptab),
373 mode, op0, op1);
374 if (x)
375 return x;
378 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
381 /* Like simplify_expand_binop, but always put the result in TARGET.
382 Return true if the expansion succeeded. */
384 bool
385 force_expand_binop (machine_mode mode, optab binoptab,
386 rtx op0, rtx op1, rtx target, int unsignedp,
387 enum optab_methods methods)
389 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
390 target, unsignedp, methods);
391 if (x == 0)
392 return false;
393 if (x != target)
394 emit_move_insn (target, x);
395 return true;
398 /* Create a new vector value in VMODE with all elements set to OP. The
399 mode of OP must be the element mode of VMODE. If OP is a constant,
400 then the return value will be a constant. */
403 expand_vector_broadcast (machine_mode vmode, rtx op)
405 int n;
406 rtvec vec;
408 gcc_checking_assert (VECTOR_MODE_P (vmode));
410 if (valid_for_const_vector_p (vmode, op))
411 return gen_const_vec_duplicate (vmode, op);
413 insn_code icode = optab_handler (vec_duplicate_optab, vmode);
414 if (icode != CODE_FOR_nothing)
416 class expand_operand ops[2];
417 create_output_operand (&ops[0], NULL_RTX, vmode);
418 create_input_operand (&ops[1], op, GET_MODE (op));
419 expand_insn (icode, 2, ops);
420 return ops[0].value;
423 if (!GET_MODE_NUNITS (vmode).is_constant (&n))
424 return NULL;
426 /* ??? If the target doesn't have a vec_init, then we have no easy way
427 of performing this operation. Most of this sort of generic support
428 is hidden away in the vector lowering support in gimple. */
429 icode = convert_optab_handler (vec_init_optab, vmode,
430 GET_MODE_INNER (vmode));
431 if (icode == CODE_FOR_nothing)
432 return NULL;
434 vec = rtvec_alloc (n);
435 for (int i = 0; i < n; ++i)
436 RTVEC_ELT (vec, i) = op;
437 rtx ret = gen_reg_rtx (vmode);
438 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
440 return ret;
443 /* This subroutine of expand_doubleword_shift handles the cases in which
444 the effective shift value is >= BITS_PER_WORD. The arguments and return
445 value are the same as for the parent routine, except that SUPERWORD_OP1
446 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
447 INTO_TARGET may be null if the caller has decided to calculate it. */
449 static bool
450 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
451 rtx outof_target, rtx into_target,
452 int unsignedp, enum optab_methods methods)
454 if (into_target != 0)
455 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
456 into_target, unsignedp, methods))
457 return false;
459 if (outof_target != 0)
461 /* For a signed right shift, we must fill OUTOF_TARGET with copies
462 of the sign bit, otherwise we must fill it with zeros. */
463 if (binoptab != ashr_optab)
464 emit_move_insn (outof_target, CONST0_RTX (word_mode));
465 else
466 if (!force_expand_binop (word_mode, binoptab, outof_input,
467 gen_int_shift_amount (word_mode,
468 BITS_PER_WORD - 1),
469 outof_target, unsignedp, methods))
470 return false;
472 return true;
475 /* This subroutine of expand_doubleword_shift handles the cases in which
476 the effective shift value is < BITS_PER_WORD. The arguments and return
477 value are the same as for the parent routine. */
479 static bool
480 expand_subword_shift (scalar_int_mode op1_mode, optab binoptab,
481 rtx outof_input, rtx into_input, rtx op1,
482 rtx outof_target, rtx into_target,
483 int unsignedp, enum optab_methods methods,
484 unsigned HOST_WIDE_INT shift_mask)
486 optab reverse_unsigned_shift, unsigned_shift;
487 rtx tmp, carries;
489 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
490 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
492 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
493 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
494 the opposite direction to BINOPTAB. */
495 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
497 carries = outof_input;
498 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
499 op1_mode), op1_mode);
500 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
501 0, true, methods);
503 else
505 /* We must avoid shifting by BITS_PER_WORD bits since that is either
506 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
507 has unknown behavior. Do a single shift first, then shift by the
508 remainder. It's OK to use ~OP1 as the remainder if shift counts
509 are truncated to the mode size. */
510 carries = expand_binop (word_mode, reverse_unsigned_shift,
511 outof_input, const1_rtx, 0, unsignedp, methods);
512 if (shift_mask == BITS_PER_WORD - 1)
514 tmp = immed_wide_int_const
515 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
516 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
517 0, true, methods);
519 else
521 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
522 op1_mode), op1_mode);
523 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
524 0, true, methods);
527 if (tmp == 0 || carries == 0)
528 return false;
529 carries = expand_binop (word_mode, reverse_unsigned_shift,
530 carries, tmp, 0, unsignedp, methods);
531 if (carries == 0)
532 return false;
534 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
535 so the result can go directly into INTO_TARGET if convenient. */
536 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
537 into_target, unsignedp, methods);
538 if (tmp == 0)
539 return false;
541 /* Now OR in the bits carried over from OUTOF_INPUT. */
542 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
543 into_target, unsignedp, methods))
544 return false;
546 /* Use a standard word_mode shift for the out-of half. */
547 if (outof_target != 0)
548 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
549 outof_target, unsignedp, methods))
550 return false;
552 return true;
556 /* Try implementing expand_doubleword_shift using conditional moves.
557 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
558 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
559 are the shift counts to use in the former and latter case. All other
560 arguments are the same as the parent routine. */
562 static bool
563 expand_doubleword_shift_condmove (scalar_int_mode op1_mode, optab binoptab,
564 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
565 rtx outof_input, rtx into_input,
566 rtx subword_op1, rtx superword_op1,
567 rtx outof_target, rtx into_target,
568 int unsignedp, enum optab_methods methods,
569 unsigned HOST_WIDE_INT shift_mask)
571 rtx outof_superword, into_superword;
573 /* Put the superword version of the output into OUTOF_SUPERWORD and
574 INTO_SUPERWORD. */
575 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
576 if (outof_target != 0 && subword_op1 == superword_op1)
578 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
579 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
580 into_superword = outof_target;
581 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
582 outof_superword, 0, unsignedp, methods))
583 return false;
585 else
587 into_superword = gen_reg_rtx (word_mode);
588 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
589 outof_superword, into_superword,
590 unsignedp, methods))
591 return false;
594 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
595 if (!expand_subword_shift (op1_mode, binoptab,
596 outof_input, into_input, subword_op1,
597 outof_target, into_target,
598 unsignedp, methods, shift_mask))
599 return false;
601 /* Select between them. Do the INTO half first because INTO_SUPERWORD
602 might be the current value of OUTOF_TARGET. */
603 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
604 into_target, into_superword, word_mode, false))
605 return false;
607 if (outof_target != 0)
608 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
609 outof_target, outof_superword,
610 word_mode, false))
611 return false;
613 return true;
616 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
617 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
618 input operand; the shift moves bits in the direction OUTOF_INPUT->
619 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
620 of the target. OP1 is the shift count and OP1_MODE is its mode.
621 If OP1 is constant, it will have been truncated as appropriate
622 and is known to be nonzero.
624 If SHIFT_MASK is zero, the result of word shifts is undefined when the
625 shift count is outside the range [0, BITS_PER_WORD). This routine must
626 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
628 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
629 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
630 fill with zeros or sign bits as appropriate.
632 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
633 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
634 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
635 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
636 are undefined.
638 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
639 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
640 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
641 function wants to calculate it itself.
643 Return true if the shift could be successfully synthesized. */
645 static bool
646 expand_doubleword_shift (scalar_int_mode op1_mode, optab binoptab,
647 rtx outof_input, rtx into_input, rtx op1,
648 rtx outof_target, rtx into_target,
649 int unsignedp, enum optab_methods methods,
650 unsigned HOST_WIDE_INT shift_mask)
652 rtx superword_op1, tmp, cmp1, cmp2;
653 enum rtx_code cmp_code;
655 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
656 fill the result with sign or zero bits as appropriate. If so, the value
657 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
658 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
659 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
661 This isn't worthwhile for constant shifts since the optimizers will
662 cope better with in-range shift counts. */
663 if (shift_mask >= BITS_PER_WORD
664 && outof_target != 0
665 && !CONSTANT_P (op1))
667 if (!expand_doubleword_shift (op1_mode, binoptab,
668 outof_input, into_input, op1,
669 0, into_target,
670 unsignedp, methods, shift_mask))
671 return false;
672 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
673 outof_target, unsignedp, methods))
674 return false;
675 return true;
678 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
679 is true when the effective shift value is less than BITS_PER_WORD.
680 Set SUPERWORD_OP1 to the shift count that should be used to shift
681 OUTOF_INPUT into INTO_TARGET when the condition is false. */
682 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
683 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
685 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
686 is a subword shift count. */
687 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
688 0, true, methods);
689 cmp2 = CONST0_RTX (op1_mode);
690 cmp_code = EQ;
691 superword_op1 = op1;
693 else
695 /* Set CMP1 to OP1 - BITS_PER_WORD. */
696 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
697 0, true, methods);
698 cmp2 = CONST0_RTX (op1_mode);
699 cmp_code = LT;
700 superword_op1 = cmp1;
702 if (cmp1 == 0)
703 return false;
705 /* If we can compute the condition at compile time, pick the
706 appropriate subroutine. */
707 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
708 if (tmp != 0 && CONST_INT_P (tmp))
710 if (tmp == const0_rtx)
711 return expand_superword_shift (binoptab, outof_input, superword_op1,
712 outof_target, into_target,
713 unsignedp, methods);
714 else
715 return expand_subword_shift (op1_mode, binoptab,
716 outof_input, into_input, op1,
717 outof_target, into_target,
718 unsignedp, methods, shift_mask);
721 /* Try using conditional moves to generate straight-line code. */
722 if (HAVE_conditional_move)
724 rtx_insn *start = get_last_insn ();
725 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
726 cmp_code, cmp1, cmp2,
727 outof_input, into_input,
728 op1, superword_op1,
729 outof_target, into_target,
730 unsignedp, methods, shift_mask))
731 return true;
732 delete_insns_since (start);
735 /* As a last resort, use branches to select the correct alternative. */
736 rtx_code_label *subword_label = gen_label_rtx ();
737 rtx_code_label *done_label = gen_label_rtx ();
739 NO_DEFER_POP;
740 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
741 0, 0, subword_label,
742 profile_probability::uninitialized ());
743 OK_DEFER_POP;
745 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
746 outof_target, into_target,
747 unsignedp, methods))
748 return false;
750 emit_jump_insn (targetm.gen_jump (done_label));
751 emit_barrier ();
752 emit_label (subword_label);
754 if (!expand_subword_shift (op1_mode, binoptab,
755 outof_input, into_input, op1,
756 outof_target, into_target,
757 unsignedp, methods, shift_mask))
758 return false;
760 emit_label (done_label);
761 return true;
764 /* Subroutine of expand_binop. Perform a double word multiplication of
765 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
766 as the target's word_mode. This function return NULL_RTX if anything
767 goes wrong, in which case it may have already emitted instructions
768 which need to be deleted.
770 If we want to multiply two two-word values and have normal and widening
771 multiplies of single-word values, we can do this with three smaller
772 multiplications.
774 The multiplication proceeds as follows:
775 _______________________
776 [__op0_high_|__op0_low__]
777 _______________________
778 * [__op1_high_|__op1_low__]
779 _______________________________________________
780 _______________________
781 (1) [__op0_low__*__op1_low__]
782 _______________________
783 (2a) [__op0_low__*__op1_high_]
784 _______________________
785 (2b) [__op0_high_*__op1_low__]
786 _______________________
787 (3) [__op0_high_*__op1_high_]
790 This gives a 4-word result. Since we are only interested in the
791 lower 2 words, partial result (3) and the upper words of (2a) and
792 (2b) don't need to be calculated. Hence (2a) and (2b) can be
793 calculated using non-widening multiplication.
795 (1), however, needs to be calculated with an unsigned widening
796 multiplication. If this operation is not directly supported we
797 try using a signed widening multiplication and adjust the result.
798 This adjustment works as follows:
800 If both operands are positive then no adjustment is needed.
802 If the operands have different signs, for example op0_low < 0 and
803 op1_low >= 0, the instruction treats the most significant bit of
804 op0_low as a sign bit instead of a bit with significance
805 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
806 with 2**BITS_PER_WORD - op0_low, and two's complements the
807 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
808 the result.
810 Similarly, if both operands are negative, we need to add
811 (op0_low + op1_low) * 2**BITS_PER_WORD.
813 We use a trick to adjust quickly. We logically shift op0_low right
814 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
815 op0_high (op1_high) before it is used to calculate 2b (2a). If no
816 logical shift exists, we do an arithmetic right shift and subtract
817 the 0 or -1. */
819 static rtx
820 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
821 bool umulp, enum optab_methods methods)
823 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
824 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
825 rtx wordm1 = (umulp ? NULL_RTX
826 : gen_int_shift_amount (word_mode, BITS_PER_WORD - 1));
827 rtx product, adjust, product_high, temp;
829 rtx op0_high = operand_subword_force (op0, high, mode);
830 rtx op0_low = operand_subword_force (op0, low, mode);
831 rtx op1_high = operand_subword_force (op1, high, mode);
832 rtx op1_low = operand_subword_force (op1, low, mode);
834 /* If we're using an unsigned multiply to directly compute the product
835 of the low-order words of the operands and perform any required
836 adjustments of the operands, we begin by trying two more multiplications
837 and then computing the appropriate sum.
839 We have checked above that the required addition is provided.
840 Full-word addition will normally always succeed, especially if
841 it is provided at all, so we don't worry about its failure. The
842 multiplication may well fail, however, so we do handle that. */
844 if (!umulp)
846 /* ??? This could be done with emit_store_flag where available. */
847 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
848 NULL_RTX, 1, methods);
849 if (temp)
850 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
851 NULL_RTX, 0, OPTAB_DIRECT);
852 else
854 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
855 NULL_RTX, 0, methods);
856 if (!temp)
857 return NULL_RTX;
858 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
859 NULL_RTX, 0, OPTAB_DIRECT);
862 if (!op0_high)
863 return NULL_RTX;
866 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
867 NULL_RTX, 0, OPTAB_DIRECT);
868 if (!adjust)
869 return NULL_RTX;
871 /* OP0_HIGH should now be dead. */
873 if (!umulp)
875 /* ??? This could be done with emit_store_flag where available. */
876 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
877 NULL_RTX, 1, methods);
878 if (temp)
879 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
880 NULL_RTX, 0, OPTAB_DIRECT);
881 else
883 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
884 NULL_RTX, 0, methods);
885 if (!temp)
886 return NULL_RTX;
887 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
888 NULL_RTX, 0, OPTAB_DIRECT);
891 if (!op1_high)
892 return NULL_RTX;
895 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
896 NULL_RTX, 0, OPTAB_DIRECT);
897 if (!temp)
898 return NULL_RTX;
900 /* OP1_HIGH should now be dead. */
902 adjust = expand_binop (word_mode, add_optab, adjust, temp,
903 NULL_RTX, 0, OPTAB_DIRECT);
905 if (target && !REG_P (target))
906 target = NULL_RTX;
908 /* *_widen_optab needs to determine operand mode, make sure at least
909 one operand has non-VOID mode. */
910 if (GET_MODE (op0_low) == VOIDmode && GET_MODE (op1_low) == VOIDmode)
911 op0_low = force_reg (word_mode, op0_low);
913 if (umulp)
914 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
915 target, 1, OPTAB_DIRECT);
916 else
917 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
918 target, 1, OPTAB_DIRECT);
920 if (!product)
921 return NULL_RTX;
923 product_high = operand_subword (product, high, 1, mode);
924 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
925 NULL_RTX, 0, OPTAB_DIRECT);
926 emit_move_insn (product_high, adjust);
927 return product;
930 /* Wrapper around expand_binop which takes an rtx code to specify
931 the operation to perform, not an optab pointer. All other
932 arguments are the same. */
934 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
935 rtx op1, rtx target, int unsignedp,
936 enum optab_methods methods)
938 optab binop = code_to_optab (code);
939 gcc_assert (binop);
941 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
944 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
945 binop. Order them according to commutative_operand_precedence and, if
946 possible, try to put TARGET or a pseudo first. */
947 static bool
948 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
950 int op0_prec = commutative_operand_precedence (op0);
951 int op1_prec = commutative_operand_precedence (op1);
953 if (op0_prec < op1_prec)
954 return true;
956 if (op0_prec > op1_prec)
957 return false;
959 /* With equal precedence, both orders are ok, but it is better if the
960 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
961 if (target == 0 || REG_P (target))
962 return (REG_P (op1) && !REG_P (op0)) || target == op1;
963 else
964 return rtx_equal_p (op1, target);
967 /* Return true if BINOPTAB implements a shift operation. */
969 static bool
970 shift_optab_p (optab binoptab)
972 switch (optab_to_code (binoptab))
974 case ASHIFT:
975 case SS_ASHIFT:
976 case US_ASHIFT:
977 case ASHIFTRT:
978 case LSHIFTRT:
979 case ROTATE:
980 case ROTATERT:
981 return true;
983 default:
984 return false;
988 /* Return true if BINOPTAB implements a commutative binary operation. */
990 static bool
991 commutative_optab_p (optab binoptab)
993 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
994 || binoptab == smul_widen_optab
995 || binoptab == umul_widen_optab
996 || binoptab == smul_highpart_optab
997 || binoptab == umul_highpart_optab);
1000 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1001 optimizing, and if the operand is a constant that costs more than
1002 1 instruction, force the constant into a register and return that
1003 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1005 static rtx
1006 avoid_expensive_constant (machine_mode mode, optab binoptab,
1007 int opn, rtx x, bool unsignedp)
1009 bool speed = optimize_insn_for_speed_p ();
1011 if (mode != VOIDmode
1012 && optimize
1013 && CONSTANT_P (x)
1014 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
1015 > set_src_cost (x, mode, speed)))
1017 if (CONST_INT_P (x))
1019 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1020 if (intval != INTVAL (x))
1021 x = GEN_INT (intval);
1023 else
1024 x = convert_modes (mode, VOIDmode, x, unsignedp);
1025 x = force_reg (mode, x);
1027 return x;
1030 /* Helper function for expand_binop: handle the case where there
1031 is an insn ICODE that directly implements the indicated operation.
1032 Returns null if this is not possible. */
1033 static rtx
1034 expand_binop_directly (enum insn_code icode, machine_mode mode, optab binoptab,
1035 rtx op0, rtx op1,
1036 rtx target, int unsignedp, enum optab_methods methods,
1037 rtx_insn *last)
1039 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1040 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1041 machine_mode mode0, mode1, tmp_mode;
1042 class expand_operand ops[3];
1043 bool commutative_p;
1044 rtx_insn *pat;
1045 rtx xop0 = op0, xop1 = op1;
1046 bool canonicalize_op1 = false;
1048 /* If it is a commutative operator and the modes would match
1049 if we would swap the operands, we can save the conversions. */
1050 commutative_p = commutative_optab_p (binoptab);
1051 if (commutative_p
1052 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1053 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode0)
1054 std::swap (xop0, xop1);
1056 /* If we are optimizing, force expensive constants into a register. */
1057 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1058 if (!shift_optab_p (binoptab))
1059 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1060 else
1061 /* Shifts and rotates often use a different mode for op1 from op0;
1062 for VOIDmode constants we don't know the mode, so force it
1063 to be canonicalized using convert_modes. */
1064 canonicalize_op1 = true;
1066 /* In case the insn wants input operands in modes different from
1067 those of the actual operands, convert the operands. It would
1068 seem that we don't need to convert CONST_INTs, but we do, so
1069 that they're properly zero-extended, sign-extended or truncated
1070 for their mode. */
1072 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1073 if (xmode0 != VOIDmode && xmode0 != mode0)
1075 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1076 mode0 = xmode0;
1079 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1080 ? GET_MODE (xop1) : mode);
1081 if (xmode1 != VOIDmode && xmode1 != mode1)
1083 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1084 mode1 = xmode1;
1087 /* If operation is commutative,
1088 try to make the first operand a register.
1089 Even better, try to make it the same as the target.
1090 Also try to make the last operand a constant. */
1091 if (commutative_p
1092 && swap_commutative_operands_with_target (target, xop0, xop1))
1093 std::swap (xop0, xop1);
1095 /* Now, if insn's predicates don't allow our operands, put them into
1096 pseudo regs. */
1098 if (binoptab == vec_pack_trunc_optab
1099 || binoptab == vec_pack_usat_optab
1100 || binoptab == vec_pack_ssat_optab
1101 || binoptab == vec_pack_ufix_trunc_optab
1102 || binoptab == vec_pack_sfix_trunc_optab
1103 || binoptab == vec_packu_float_optab
1104 || binoptab == vec_packs_float_optab)
1106 /* The mode of the result is different then the mode of the
1107 arguments. */
1108 tmp_mode = insn_data[(int) icode].operand[0].mode;
1109 if (VECTOR_MODE_P (mode)
1110 && maybe_ne (GET_MODE_NUNITS (tmp_mode), 2 * GET_MODE_NUNITS (mode)))
1112 delete_insns_since (last);
1113 return NULL_RTX;
1116 else
1117 tmp_mode = mode;
1119 create_output_operand (&ops[0], target, tmp_mode);
1120 create_input_operand (&ops[1], xop0, mode0);
1121 create_input_operand (&ops[2], xop1, mode1);
1122 pat = maybe_gen_insn (icode, 3, ops);
1123 if (pat)
1125 /* If PAT is composed of more than one insn, try to add an appropriate
1126 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1127 operand, call expand_binop again, this time without a target. */
1128 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1129 && ! add_equal_note (pat, ops[0].value,
1130 optab_to_code (binoptab),
1131 ops[1].value, ops[2].value, mode0))
1133 delete_insns_since (last);
1134 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1135 unsignedp, methods);
1138 emit_insn (pat);
1139 return ops[0].value;
1141 delete_insns_since (last);
1142 return NULL_RTX;
1145 /* Generate code to perform an operation specified by BINOPTAB
1146 on operands OP0 and OP1, with result having machine-mode MODE.
1148 UNSIGNEDP is for the case where we have to widen the operands
1149 to perform the operation. It says to use zero-extension.
1151 If TARGET is nonzero, the value
1152 is generated there, if it is convenient to do so.
1153 In all cases an rtx is returned for the locus of the value;
1154 this may or may not be TARGET. */
1157 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1158 rtx target, int unsignedp, enum optab_methods methods)
1160 enum optab_methods next_methods
1161 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1162 ? OPTAB_WIDEN : methods);
1163 enum mode_class mclass;
1164 enum insn_code icode;
1165 machine_mode wider_mode;
1166 scalar_int_mode int_mode;
1167 rtx libfunc;
1168 rtx temp;
1169 rtx_insn *entry_last = get_last_insn ();
1170 rtx_insn *last;
1172 mclass = GET_MODE_CLASS (mode);
1174 /* If subtracting an integer constant, convert this into an addition of
1175 the negated constant. */
1177 if (binoptab == sub_optab && CONST_INT_P (op1))
1179 op1 = negate_rtx (mode, op1);
1180 binoptab = add_optab;
1182 /* For shifts, constant invalid op1 might be expanded from different
1183 mode than MODE. As those are invalid, force them to a register
1184 to avoid further problems during expansion. */
1185 else if (CONST_INT_P (op1)
1186 && shift_optab_p (binoptab)
1187 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1189 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1190 op1 = force_reg (GET_MODE_INNER (mode), op1);
1193 /* Record where to delete back to if we backtrack. */
1194 last = get_last_insn ();
1196 /* If we can do it with a three-operand insn, do so. */
1198 if (methods != OPTAB_MUST_WIDEN)
1200 if (convert_optab_p (binoptab))
1202 machine_mode from_mode = widened_mode (mode, op0, op1);
1203 icode = find_widening_optab_handler (binoptab, mode, from_mode);
1205 else
1206 icode = optab_handler (binoptab, mode);
1207 if (icode != CODE_FOR_nothing)
1209 temp = expand_binop_directly (icode, mode, binoptab, op0, op1,
1210 target, unsignedp, methods, last);
1211 if (temp)
1212 return temp;
1216 /* If we were trying to rotate, and that didn't work, try rotating
1217 the other direction before falling back to shifts and bitwise-or. */
1218 if (((binoptab == rotl_optab
1219 && (icode = optab_handler (rotr_optab, mode)) != CODE_FOR_nothing)
1220 || (binoptab == rotr_optab
1221 && (icode = optab_handler (rotl_optab, mode)) != CODE_FOR_nothing))
1222 && is_int_mode (mode, &int_mode))
1224 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1225 rtx newop1;
1226 unsigned int bits = GET_MODE_PRECISION (int_mode);
1228 if (CONST_INT_P (op1))
1229 newop1 = gen_int_shift_amount (int_mode, bits - INTVAL (op1));
1230 else if (targetm.shift_truncation_mask (int_mode) == bits - 1)
1231 newop1 = negate_rtx (GET_MODE (op1), op1);
1232 else
1233 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1234 gen_int_mode (bits, GET_MODE (op1)), op1,
1235 NULL_RTX, unsignedp, OPTAB_DIRECT);
1237 temp = expand_binop_directly (icode, int_mode, otheroptab, op0, newop1,
1238 target, unsignedp, methods, last);
1239 if (temp)
1240 return temp;
1243 /* If this is a multiply, see if we can do a widening operation that
1244 takes operands of this mode and makes a wider mode. */
1246 if (binoptab == smul_optab
1247 && GET_MODE_2XWIDER_MODE (mode).exists (&wider_mode)
1248 && (convert_optab_handler ((unsignedp
1249 ? umul_widen_optab
1250 : smul_widen_optab),
1251 wider_mode, mode) != CODE_FOR_nothing))
1253 /* *_widen_optab needs to determine operand mode, make sure at least
1254 one operand has non-VOID mode. */
1255 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
1256 op0 = force_reg (mode, op0);
1257 temp = expand_binop (wider_mode,
1258 unsignedp ? umul_widen_optab : smul_widen_optab,
1259 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1261 if (temp != 0)
1263 if (GET_MODE_CLASS (mode) == MODE_INT
1264 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1265 return gen_lowpart (mode, temp);
1266 else
1267 return convert_to_mode (mode, temp, unsignedp);
1271 /* If this is a vector shift by a scalar, see if we can do a vector
1272 shift by a vector. If so, broadcast the scalar into a vector. */
1273 if (mclass == MODE_VECTOR_INT)
1275 optab otheroptab = unknown_optab;
1277 if (binoptab == ashl_optab)
1278 otheroptab = vashl_optab;
1279 else if (binoptab == ashr_optab)
1280 otheroptab = vashr_optab;
1281 else if (binoptab == lshr_optab)
1282 otheroptab = vlshr_optab;
1283 else if (binoptab == rotl_optab)
1284 otheroptab = vrotl_optab;
1285 else if (binoptab == rotr_optab)
1286 otheroptab = vrotr_optab;
1288 if (otheroptab
1289 && (icode = optab_handler (otheroptab, mode)) != CODE_FOR_nothing)
1291 /* The scalar may have been extended to be too wide. Truncate
1292 it back to the proper size to fit in the broadcast vector. */
1293 scalar_mode inner_mode = GET_MODE_INNER (mode);
1294 if (!CONST_INT_P (op1)
1295 && (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (op1)))
1296 > GET_MODE_BITSIZE (inner_mode)))
1297 op1 = force_reg (inner_mode,
1298 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1299 GET_MODE (op1)));
1300 rtx vop1 = expand_vector_broadcast (mode, op1);
1301 if (vop1)
1303 temp = expand_binop_directly (icode, mode, otheroptab, op0, vop1,
1304 target, unsignedp, methods, last);
1305 if (temp)
1306 return temp;
1311 /* Look for a wider mode of the same class for which we think we
1312 can open-code the operation. Check for a widening multiply at the
1313 wider mode as well. */
1315 if (CLASS_HAS_WIDER_MODES_P (mclass)
1316 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1317 FOR_EACH_WIDER_MODE (wider_mode, mode)
1319 machine_mode next_mode;
1320 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1321 || (binoptab == smul_optab
1322 && GET_MODE_WIDER_MODE (wider_mode).exists (&next_mode)
1323 && (find_widening_optab_handler ((unsignedp
1324 ? umul_widen_optab
1325 : smul_widen_optab),
1326 next_mode, mode)
1327 != CODE_FOR_nothing)))
1329 rtx xop0 = op0, xop1 = op1;
1330 int no_extend = 0;
1332 /* For certain integer operations, we need not actually extend
1333 the narrow operands, as long as we will truncate
1334 the results to the same narrowness. */
1336 if ((binoptab == ior_optab || binoptab == and_optab
1337 || binoptab == xor_optab
1338 || binoptab == add_optab || binoptab == sub_optab
1339 || binoptab == smul_optab || binoptab == ashl_optab)
1340 && mclass == MODE_INT)
1342 no_extend = 1;
1343 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1344 xop0, unsignedp);
1345 if (binoptab != ashl_optab)
1346 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1347 xop1, unsignedp);
1350 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1352 /* The second operand of a shift must always be extended. */
1353 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1354 no_extend && binoptab != ashl_optab);
1356 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1357 unsignedp, OPTAB_DIRECT);
1358 if (temp)
1360 if (mclass != MODE_INT
1361 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1363 if (target == 0)
1364 target = gen_reg_rtx (mode);
1365 convert_move (target, temp, 0);
1366 return target;
1368 else
1369 return gen_lowpart (mode, temp);
1371 else
1372 delete_insns_since (last);
1376 /* If operation is commutative,
1377 try to make the first operand a register.
1378 Even better, try to make it the same as the target.
1379 Also try to make the last operand a constant. */
1380 if (commutative_optab_p (binoptab)
1381 && swap_commutative_operands_with_target (target, op0, op1))
1382 std::swap (op0, op1);
1384 /* These can be done a word at a time. */
1385 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1386 && is_int_mode (mode, &int_mode)
1387 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
1388 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1390 int i;
1391 rtx_insn *insns;
1393 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1394 won't be accurate, so use a new target. */
1395 if (target == 0
1396 || target == op0
1397 || target == op1
1398 || !valid_multiword_target_p (target))
1399 target = gen_reg_rtx (int_mode);
1401 start_sequence ();
1403 /* Do the actual arithmetic. */
1404 machine_mode op0_mode = GET_MODE (op0);
1405 machine_mode op1_mode = GET_MODE (op1);
1406 if (op0_mode == VOIDmode)
1407 op0_mode = int_mode;
1408 if (op1_mode == VOIDmode)
1409 op1_mode = int_mode;
1410 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
1412 rtx target_piece = operand_subword (target, i, 1, int_mode);
1413 rtx x = expand_binop (word_mode, binoptab,
1414 operand_subword_force (op0, i, op0_mode),
1415 operand_subword_force (op1, i, op1_mode),
1416 target_piece, unsignedp, next_methods);
1418 if (x == 0)
1419 break;
1421 if (target_piece != x)
1422 emit_move_insn (target_piece, x);
1425 insns = get_insns ();
1426 end_sequence ();
1428 if (i == GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD)
1430 emit_insn (insns);
1431 return target;
1435 /* Synthesize double word shifts from single word shifts. */
1436 if ((binoptab == lshr_optab || binoptab == ashl_optab
1437 || binoptab == ashr_optab)
1438 && is_int_mode (mode, &int_mode)
1439 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1440 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1441 && GET_MODE_PRECISION (int_mode) == GET_MODE_BITSIZE (int_mode)
1442 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1443 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1444 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1446 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1447 scalar_int_mode op1_mode;
1449 double_shift_mask = targetm.shift_truncation_mask (int_mode);
1450 shift_mask = targetm.shift_truncation_mask (word_mode);
1451 op1_mode = (GET_MODE (op1) != VOIDmode
1452 ? as_a <scalar_int_mode> (GET_MODE (op1))
1453 : word_mode);
1455 /* Apply the truncation to constant shifts. */
1456 if (double_shift_mask > 0 && CONST_INT_P (op1))
1457 op1 = gen_int_mode (INTVAL (op1) & double_shift_mask, op1_mode);
1459 if (op1 == CONST0_RTX (op1_mode))
1460 return op0;
1462 /* Make sure that this is a combination that expand_doubleword_shift
1463 can handle. See the comments there for details. */
1464 if (double_shift_mask == 0
1465 || (shift_mask == BITS_PER_WORD - 1
1466 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1468 rtx_insn *insns;
1469 rtx into_target, outof_target;
1470 rtx into_input, outof_input;
1471 int left_shift, outof_word;
1473 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1474 won't be accurate, so use a new target. */
1475 if (target == 0
1476 || target == op0
1477 || target == op1
1478 || !valid_multiword_target_p (target))
1479 target = gen_reg_rtx (int_mode);
1481 start_sequence ();
1483 /* OUTOF_* is the word we are shifting bits away from, and
1484 INTO_* is the word that we are shifting bits towards, thus
1485 they differ depending on the direction of the shift and
1486 WORDS_BIG_ENDIAN. */
1488 left_shift = binoptab == ashl_optab;
1489 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1491 outof_target = operand_subword (target, outof_word, 1, int_mode);
1492 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1494 outof_input = operand_subword_force (op0, outof_word, int_mode);
1495 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1497 if (expand_doubleword_shift (op1_mode, binoptab,
1498 outof_input, into_input, op1,
1499 outof_target, into_target,
1500 unsignedp, next_methods, shift_mask))
1502 insns = get_insns ();
1503 end_sequence ();
1505 emit_insn (insns);
1506 return target;
1508 end_sequence ();
1512 /* Synthesize double word rotates from single word shifts. */
1513 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1514 && is_int_mode (mode, &int_mode)
1515 && CONST_INT_P (op1)
1516 && GET_MODE_PRECISION (int_mode) == 2 * BITS_PER_WORD
1517 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1518 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1520 rtx_insn *insns;
1521 rtx into_target, outof_target;
1522 rtx into_input, outof_input;
1523 rtx inter;
1524 int shift_count, left_shift, outof_word;
1526 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1527 won't be accurate, so use a new target. Do this also if target is not
1528 a REG, first because having a register instead may open optimization
1529 opportunities, and second because if target and op0 happen to be MEMs
1530 designating the same location, we would risk clobbering it too early
1531 in the code sequence we generate below. */
1532 if (target == 0
1533 || target == op0
1534 || target == op1
1535 || !REG_P (target)
1536 || !valid_multiword_target_p (target))
1537 target = gen_reg_rtx (int_mode);
1539 start_sequence ();
1541 shift_count = INTVAL (op1);
1543 /* OUTOF_* is the word we are shifting bits away from, and
1544 INTO_* is the word that we are shifting bits towards, thus
1545 they differ depending on the direction of the shift and
1546 WORDS_BIG_ENDIAN. */
1548 left_shift = (binoptab == rotl_optab);
1549 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1551 outof_target = operand_subword (target, outof_word, 1, int_mode);
1552 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1554 outof_input = operand_subword_force (op0, outof_word, int_mode);
1555 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1557 if (shift_count == BITS_PER_WORD)
1559 /* This is just a word swap. */
1560 emit_move_insn (outof_target, into_input);
1561 emit_move_insn (into_target, outof_input);
1562 inter = const0_rtx;
1564 else
1566 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1567 HOST_WIDE_INT first_shift_count, second_shift_count;
1568 optab reverse_unsigned_shift, unsigned_shift;
1570 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1571 ? lshr_optab : ashl_optab);
1573 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1574 ? ashl_optab : lshr_optab);
1576 if (shift_count > BITS_PER_WORD)
1578 first_shift_count = shift_count - BITS_PER_WORD;
1579 second_shift_count = 2 * BITS_PER_WORD - shift_count;
1581 else
1583 first_shift_count = BITS_PER_WORD - shift_count;
1584 second_shift_count = shift_count;
1586 rtx first_shift_count_rtx
1587 = gen_int_shift_amount (word_mode, first_shift_count);
1588 rtx second_shift_count_rtx
1589 = gen_int_shift_amount (word_mode, second_shift_count);
1591 into_temp1 = expand_binop (word_mode, unsigned_shift,
1592 outof_input, first_shift_count_rtx,
1593 NULL_RTX, unsignedp, next_methods);
1594 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1595 into_input, second_shift_count_rtx,
1596 NULL_RTX, unsignedp, next_methods);
1598 if (into_temp1 != 0 && into_temp2 != 0)
1599 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1600 into_target, unsignedp, next_methods);
1601 else
1602 inter = 0;
1604 if (inter != 0 && inter != into_target)
1605 emit_move_insn (into_target, inter);
1607 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1608 into_input, first_shift_count_rtx,
1609 NULL_RTX, unsignedp, next_methods);
1610 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1611 outof_input, second_shift_count_rtx,
1612 NULL_RTX, unsignedp, next_methods);
1614 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1615 inter = expand_binop (word_mode, ior_optab,
1616 outof_temp1, outof_temp2,
1617 outof_target, unsignedp, next_methods);
1619 if (inter != 0 && inter != outof_target)
1620 emit_move_insn (outof_target, inter);
1623 insns = get_insns ();
1624 end_sequence ();
1626 if (inter != 0)
1628 emit_insn (insns);
1629 return target;
1633 /* These can be done a word at a time by propagating carries. */
1634 if ((binoptab == add_optab || binoptab == sub_optab)
1635 && is_int_mode (mode, &int_mode)
1636 && GET_MODE_SIZE (int_mode) >= 2 * UNITS_PER_WORD
1637 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1639 unsigned int i;
1640 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1641 const unsigned int nwords = GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD;
1642 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1643 rtx xop0, xop1, xtarget;
1645 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1646 value is one of those, use it. Otherwise, use 1 since it is the
1647 one easiest to get. */
1648 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1649 int normalizep = STORE_FLAG_VALUE;
1650 #else
1651 int normalizep = 1;
1652 #endif
1654 /* Prepare the operands. */
1655 xop0 = force_reg (int_mode, op0);
1656 xop1 = force_reg (int_mode, op1);
1658 xtarget = gen_reg_rtx (int_mode);
1660 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1661 target = xtarget;
1663 /* Indicate for flow that the entire target reg is being set. */
1664 if (REG_P (target))
1665 emit_clobber (xtarget);
1667 /* Do the actual arithmetic. */
1668 for (i = 0; i < nwords; i++)
1670 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1671 rtx target_piece = operand_subword (xtarget, index, 1, int_mode);
1672 rtx op0_piece = operand_subword_force (xop0, index, int_mode);
1673 rtx op1_piece = operand_subword_force (xop1, index, int_mode);
1674 rtx x;
1676 /* Main add/subtract of the input operands. */
1677 x = expand_binop (word_mode, binoptab,
1678 op0_piece, op1_piece,
1679 target_piece, unsignedp, next_methods);
1680 if (x == 0)
1681 break;
1683 if (i + 1 < nwords)
1685 /* Store carry from main add/subtract. */
1686 carry_out = gen_reg_rtx (word_mode);
1687 carry_out = emit_store_flag_force (carry_out,
1688 (binoptab == add_optab
1689 ? LT : GT),
1690 x, op0_piece,
1691 word_mode, 1, normalizep);
1694 if (i > 0)
1696 rtx newx;
1698 /* Add/subtract previous carry to main result. */
1699 newx = expand_binop (word_mode,
1700 normalizep == 1 ? binoptab : otheroptab,
1701 x, carry_in,
1702 NULL_RTX, 1, next_methods);
1704 if (i + 1 < nwords)
1706 /* Get out carry from adding/subtracting carry in. */
1707 rtx carry_tmp = gen_reg_rtx (word_mode);
1708 carry_tmp = emit_store_flag_force (carry_tmp,
1709 (binoptab == add_optab
1710 ? LT : GT),
1711 newx, x,
1712 word_mode, 1, normalizep);
1714 /* Logical-ior the two poss. carry together. */
1715 carry_out = expand_binop (word_mode, ior_optab,
1716 carry_out, carry_tmp,
1717 carry_out, 0, next_methods);
1718 if (carry_out == 0)
1719 break;
1721 emit_move_insn (target_piece, newx);
1723 else
1725 if (x != target_piece)
1726 emit_move_insn (target_piece, x);
1729 carry_in = carry_out;
1732 if (i == GET_MODE_BITSIZE (int_mode) / (unsigned) BITS_PER_WORD)
1734 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing
1735 || ! rtx_equal_p (target, xtarget))
1737 rtx_insn *temp = emit_move_insn (target, xtarget);
1739 set_dst_reg_note (temp, REG_EQUAL,
1740 gen_rtx_fmt_ee (optab_to_code (binoptab),
1741 int_mode, copy_rtx (xop0),
1742 copy_rtx (xop1)),
1743 target);
1745 else
1746 target = xtarget;
1748 return target;
1751 else
1752 delete_insns_since (last);
1755 /* Attempt to synthesize double word multiplies using a sequence of word
1756 mode multiplications. We first attempt to generate a sequence using a
1757 more efficient unsigned widening multiply, and if that fails we then
1758 try using a signed widening multiply. */
1760 if (binoptab == smul_optab
1761 && is_int_mode (mode, &int_mode)
1762 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1763 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1766 rtx product = NULL_RTX;
1767 if (convert_optab_handler (umul_widen_optab, int_mode, word_mode)
1768 != CODE_FOR_nothing)
1770 product = expand_doubleword_mult (int_mode, op0, op1, target,
1771 true, methods);
1772 if (!product)
1773 delete_insns_since (last);
1776 if (product == NULL_RTX
1777 && (convert_optab_handler (smul_widen_optab, int_mode, word_mode)
1778 != CODE_FOR_nothing))
1780 product = expand_doubleword_mult (int_mode, op0, op1, target,
1781 false, methods);
1782 if (!product)
1783 delete_insns_since (last);
1786 if (product != NULL_RTX)
1788 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing)
1790 rtx_insn *move = emit_move_insn (target ? target : product,
1791 product);
1792 set_dst_reg_note (move,
1793 REG_EQUAL,
1794 gen_rtx_fmt_ee (MULT, int_mode,
1795 copy_rtx (op0),
1796 copy_rtx (op1)),
1797 target ? target : product);
1799 return product;
1803 /* It can't be open-coded in this mode.
1804 Use a library call if one is available and caller says that's ok. */
1806 libfunc = optab_libfunc (binoptab, mode);
1807 if (libfunc
1808 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1810 rtx_insn *insns;
1811 rtx op1x = op1;
1812 machine_mode op1_mode = mode;
1813 rtx value;
1815 start_sequence ();
1817 if (shift_optab_p (binoptab))
1819 op1_mode = targetm.libgcc_shift_count_mode ();
1820 /* Specify unsigned here,
1821 since negative shift counts are meaningless. */
1822 op1x = convert_to_mode (op1_mode, op1, 1);
1825 if (GET_MODE (op0) != VOIDmode
1826 && GET_MODE (op0) != mode)
1827 op0 = convert_to_mode (mode, op0, unsignedp);
1829 /* Pass 1 for NO_QUEUE so we don't lose any increments
1830 if the libcall is cse'd or moved. */
1831 value = emit_library_call_value (libfunc,
1832 NULL_RTX, LCT_CONST, mode,
1833 op0, mode, op1x, op1_mode);
1835 insns = get_insns ();
1836 end_sequence ();
1838 bool trapv = trapv_binoptab_p (binoptab);
1839 target = gen_reg_rtx (mode);
1840 emit_libcall_block_1 (insns, target, value,
1841 trapv ? NULL_RTX
1842 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1843 mode, op0, op1), trapv);
1845 return target;
1848 delete_insns_since (last);
1850 /* It can't be done in this mode. Can we do it in a wider mode? */
1852 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1853 || methods == OPTAB_MUST_WIDEN))
1855 /* Caller says, don't even try. */
1856 delete_insns_since (entry_last);
1857 return 0;
1860 /* Compute the value of METHODS to pass to recursive calls.
1861 Don't allow widening to be tried recursively. */
1863 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1865 /* Look for a wider mode of the same class for which it appears we can do
1866 the operation. */
1868 if (CLASS_HAS_WIDER_MODES_P (mclass))
1870 /* This code doesn't make sense for conversion optabs, since we
1871 wouldn't then want to extend the operands to be the same size
1872 as the result. */
1873 gcc_assert (!convert_optab_p (binoptab));
1874 FOR_EACH_WIDER_MODE (wider_mode, mode)
1876 if (optab_handler (binoptab, wider_mode)
1877 || (methods == OPTAB_LIB
1878 && optab_libfunc (binoptab, wider_mode)))
1880 rtx xop0 = op0, xop1 = op1;
1881 int no_extend = 0;
1883 /* For certain integer operations, we need not actually extend
1884 the narrow operands, as long as we will truncate
1885 the results to the same narrowness. */
1887 if ((binoptab == ior_optab || binoptab == and_optab
1888 || binoptab == xor_optab
1889 || binoptab == add_optab || binoptab == sub_optab
1890 || binoptab == smul_optab || binoptab == ashl_optab)
1891 && mclass == MODE_INT)
1892 no_extend = 1;
1894 xop0 = widen_operand (xop0, wider_mode, mode,
1895 unsignedp, no_extend);
1897 /* The second operand of a shift must always be extended. */
1898 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1899 no_extend && binoptab != ashl_optab);
1901 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1902 unsignedp, methods);
1903 if (temp)
1905 if (mclass != MODE_INT
1906 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1908 if (target == 0)
1909 target = gen_reg_rtx (mode);
1910 convert_move (target, temp, 0);
1911 return target;
1913 else
1914 return gen_lowpart (mode, temp);
1916 else
1917 delete_insns_since (last);
1922 delete_insns_since (entry_last);
1923 return 0;
1926 /* Expand a binary operator which has both signed and unsigned forms.
1927 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1928 signed operations.
1930 If we widen unsigned operands, we may use a signed wider operation instead
1931 of an unsigned wider operation, since the result would be the same. */
1934 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1935 rtx op0, rtx op1, rtx target, int unsignedp,
1936 enum optab_methods methods)
1938 rtx temp;
1939 optab direct_optab = unsignedp ? uoptab : soptab;
1940 bool save_enable;
1942 /* Do it without widening, if possible. */
1943 temp = expand_binop (mode, direct_optab, op0, op1, target,
1944 unsignedp, OPTAB_DIRECT);
1945 if (temp || methods == OPTAB_DIRECT)
1946 return temp;
1948 /* Try widening to a signed int. Disable any direct use of any
1949 signed insn in the current mode. */
1950 save_enable = swap_optab_enable (soptab, mode, false);
1952 temp = expand_binop (mode, soptab, op0, op1, target,
1953 unsignedp, OPTAB_WIDEN);
1955 /* For unsigned operands, try widening to an unsigned int. */
1956 if (!temp && unsignedp)
1957 temp = expand_binop (mode, uoptab, op0, op1, target,
1958 unsignedp, OPTAB_WIDEN);
1959 if (temp || methods == OPTAB_WIDEN)
1960 goto egress;
1962 /* Use the right width libcall if that exists. */
1963 temp = expand_binop (mode, direct_optab, op0, op1, target,
1964 unsignedp, OPTAB_LIB);
1965 if (temp || methods == OPTAB_LIB)
1966 goto egress;
1968 /* Must widen and use a libcall, use either signed or unsigned. */
1969 temp = expand_binop (mode, soptab, op0, op1, target,
1970 unsignedp, methods);
1971 if (!temp && unsignedp)
1972 temp = expand_binop (mode, uoptab, op0, op1, target,
1973 unsignedp, methods);
1975 egress:
1976 /* Undo the fiddling above. */
1977 if (save_enable)
1978 swap_optab_enable (soptab, mode, true);
1979 return temp;
1982 /* Generate code to perform an operation specified by UNOPPTAB
1983 on operand OP0, with two results to TARG0 and TARG1.
1984 We assume that the order of the operands for the instruction
1985 is TARG0, TARG1, OP0.
1987 Either TARG0 or TARG1 may be zero, but what that means is that
1988 the result is not actually wanted. We will generate it into
1989 a dummy pseudo-reg and discard it. They may not both be zero.
1991 Returns 1 if this operation can be performed; 0 if not. */
1994 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
1995 int unsignedp)
1997 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1998 enum mode_class mclass;
1999 machine_mode wider_mode;
2000 rtx_insn *entry_last = get_last_insn ();
2001 rtx_insn *last;
2003 mclass = GET_MODE_CLASS (mode);
2005 if (!targ0)
2006 targ0 = gen_reg_rtx (mode);
2007 if (!targ1)
2008 targ1 = gen_reg_rtx (mode);
2010 /* Record where to go back to if we fail. */
2011 last = get_last_insn ();
2013 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2015 class expand_operand ops[3];
2016 enum insn_code icode = optab_handler (unoptab, mode);
2018 create_fixed_operand (&ops[0], targ0);
2019 create_fixed_operand (&ops[1], targ1);
2020 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2021 if (maybe_expand_insn (icode, 3, ops))
2022 return 1;
2025 /* It can't be done in this mode. Can we do it in a wider mode? */
2027 if (CLASS_HAS_WIDER_MODES_P (mclass))
2029 FOR_EACH_WIDER_MODE (wider_mode, mode)
2031 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2033 rtx t0 = gen_reg_rtx (wider_mode);
2034 rtx t1 = gen_reg_rtx (wider_mode);
2035 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2037 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2039 convert_move (targ0, t0, unsignedp);
2040 convert_move (targ1, t1, unsignedp);
2041 return 1;
2043 else
2044 delete_insns_since (last);
2049 delete_insns_since (entry_last);
2050 return 0;
2053 /* Generate code to perform an operation specified by BINOPTAB
2054 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2055 We assume that the order of the operands for the instruction
2056 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2057 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2059 Either TARG0 or TARG1 may be zero, but what that means is that
2060 the result is not actually wanted. We will generate it into
2061 a dummy pseudo-reg and discard it. They may not both be zero.
2063 Returns 1 if this operation can be performed; 0 if not. */
2066 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2067 int unsignedp)
2069 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2070 enum mode_class mclass;
2071 machine_mode wider_mode;
2072 rtx_insn *entry_last = get_last_insn ();
2073 rtx_insn *last;
2075 mclass = GET_MODE_CLASS (mode);
2077 if (!targ0)
2078 targ0 = gen_reg_rtx (mode);
2079 if (!targ1)
2080 targ1 = gen_reg_rtx (mode);
2082 /* Record where to go back to if we fail. */
2083 last = get_last_insn ();
2085 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2087 class expand_operand ops[4];
2088 enum insn_code icode = optab_handler (binoptab, mode);
2089 machine_mode mode0 = insn_data[icode].operand[1].mode;
2090 machine_mode mode1 = insn_data[icode].operand[2].mode;
2091 rtx xop0 = op0, xop1 = op1;
2093 /* If we are optimizing, force expensive constants into a register. */
2094 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2095 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2097 create_fixed_operand (&ops[0], targ0);
2098 create_convert_operand_from (&ops[1], xop0, mode, unsignedp);
2099 create_convert_operand_from (&ops[2], xop1, mode, unsignedp);
2100 create_fixed_operand (&ops[3], targ1);
2101 if (maybe_expand_insn (icode, 4, ops))
2102 return 1;
2103 delete_insns_since (last);
2106 /* It can't be done in this mode. Can we do it in a wider mode? */
2108 if (CLASS_HAS_WIDER_MODES_P (mclass))
2110 FOR_EACH_WIDER_MODE (wider_mode, mode)
2112 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2114 rtx t0 = gen_reg_rtx (wider_mode);
2115 rtx t1 = gen_reg_rtx (wider_mode);
2116 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2117 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2119 if (expand_twoval_binop (binoptab, cop0, cop1,
2120 t0, t1, unsignedp))
2122 convert_move (targ0, t0, unsignedp);
2123 convert_move (targ1, t1, unsignedp);
2124 return 1;
2126 else
2127 delete_insns_since (last);
2132 delete_insns_since (entry_last);
2133 return 0;
2136 /* Expand the two-valued library call indicated by BINOPTAB, but
2137 preserve only one of the values. If TARG0 is non-NULL, the first
2138 value is placed into TARG0; otherwise the second value is placed
2139 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2140 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2141 This routine assumes that the value returned by the library call is
2142 as if the return value was of an integral mode twice as wide as the
2143 mode of OP0. Returns 1 if the call was successful. */
2145 bool
2146 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2147 rtx targ0, rtx targ1, enum rtx_code code)
2149 machine_mode mode;
2150 machine_mode libval_mode;
2151 rtx libval;
2152 rtx_insn *insns;
2153 rtx libfunc;
2155 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2156 gcc_assert (!targ0 != !targ1);
2158 mode = GET_MODE (op0);
2159 libfunc = optab_libfunc (binoptab, mode);
2160 if (!libfunc)
2161 return false;
2163 /* The value returned by the library function will have twice as
2164 many bits as the nominal MODE. */
2165 libval_mode = smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode));
2166 start_sequence ();
2167 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2168 libval_mode,
2169 op0, mode,
2170 op1, mode);
2171 /* Get the part of VAL containing the value that we want. */
2172 libval = simplify_gen_subreg (mode, libval, libval_mode,
2173 targ0 ? 0 : GET_MODE_SIZE (mode));
2174 insns = get_insns ();
2175 end_sequence ();
2176 /* Move the into the desired location. */
2177 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2178 gen_rtx_fmt_ee (code, mode, op0, op1));
2180 return true;
2184 /* Wrapper around expand_unop which takes an rtx code to specify
2185 the operation to perform, not an optab pointer. All other
2186 arguments are the same. */
2188 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2189 rtx target, int unsignedp)
2191 optab unop = code_to_optab (code);
2192 gcc_assert (unop);
2194 return expand_unop (mode, unop, op0, target, unsignedp);
2197 /* Try calculating
2198 (clz:narrow x)
2200 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2202 A similar operation can be used for clrsb. UNOPTAB says which operation
2203 we are trying to expand. */
2204 static rtx
2205 widen_leading (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
2207 opt_scalar_int_mode wider_mode_iter;
2208 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2210 scalar_int_mode wider_mode = wider_mode_iter.require ();
2211 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2213 rtx xop0, temp;
2214 rtx_insn *last;
2216 last = get_last_insn ();
2218 if (target == 0)
2219 target = gen_reg_rtx (mode);
2220 xop0 = widen_operand (op0, wider_mode, mode,
2221 unoptab != clrsb_optab, false);
2222 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2223 unoptab != clrsb_optab);
2224 if (temp != 0)
2225 temp = expand_binop
2226 (wider_mode, sub_optab, temp,
2227 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2228 - GET_MODE_PRECISION (mode),
2229 wider_mode),
2230 target, true, OPTAB_DIRECT);
2231 if (temp == 0)
2232 delete_insns_since (last);
2234 return temp;
2237 return 0;
2240 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2241 quantities, choosing which based on whether the high word is nonzero. */
2242 static rtx
2243 expand_doubleword_clz (scalar_int_mode mode, rtx op0, rtx target)
2245 rtx xop0 = force_reg (mode, op0);
2246 rtx subhi = gen_highpart (word_mode, xop0);
2247 rtx sublo = gen_lowpart (word_mode, xop0);
2248 rtx_code_label *hi0_label = gen_label_rtx ();
2249 rtx_code_label *after_label = gen_label_rtx ();
2250 rtx_insn *seq;
2251 rtx temp, result;
2253 /* If we were not given a target, use a word_mode register, not a
2254 'mode' register. The result will fit, and nobody is expecting
2255 anything bigger (the return type of __builtin_clz* is int). */
2256 if (!target)
2257 target = gen_reg_rtx (word_mode);
2259 /* In any case, write to a word_mode scratch in both branches of the
2260 conditional, so we can ensure there is a single move insn setting
2261 'target' to tag a REG_EQUAL note on. */
2262 result = gen_reg_rtx (word_mode);
2264 start_sequence ();
2266 /* If the high word is not equal to zero,
2267 then clz of the full value is clz of the high word. */
2268 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2269 word_mode, true, hi0_label);
2271 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2272 if (!temp)
2273 goto fail;
2275 if (temp != result)
2276 convert_move (result, temp, true);
2278 emit_jump_insn (targetm.gen_jump (after_label));
2279 emit_barrier ();
2281 /* Else clz of the full value is clz of the low word plus the number
2282 of bits in the high word. */
2283 emit_label (hi0_label);
2285 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2286 if (!temp)
2287 goto fail;
2288 temp = expand_binop (word_mode, add_optab, temp,
2289 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2290 result, true, OPTAB_DIRECT);
2291 if (!temp)
2292 goto fail;
2293 if (temp != result)
2294 convert_move (result, temp, true);
2296 emit_label (after_label);
2297 convert_move (target, result, true);
2299 seq = get_insns ();
2300 end_sequence ();
2302 add_equal_note (seq, target, CLZ, xop0, NULL_RTX, mode);
2303 emit_insn (seq);
2304 return target;
2306 fail:
2307 end_sequence ();
2308 return 0;
2311 /* Try calculating popcount of a double-word quantity as two popcount's of
2312 word-sized quantities and summing up the results. */
2313 static rtx
2314 expand_doubleword_popcount (scalar_int_mode mode, rtx op0, rtx target)
2316 rtx t0, t1, t;
2317 rtx_insn *seq;
2319 start_sequence ();
2321 t0 = expand_unop_direct (word_mode, popcount_optab,
2322 operand_subword_force (op0, 0, mode), NULL_RTX,
2323 true);
2324 t1 = expand_unop_direct (word_mode, popcount_optab,
2325 operand_subword_force (op0, 1, mode), NULL_RTX,
2326 true);
2327 if (!t0 || !t1)
2329 end_sequence ();
2330 return NULL_RTX;
2333 /* If we were not given a target, use a word_mode register, not a
2334 'mode' register. The result will fit, and nobody is expecting
2335 anything bigger (the return type of __builtin_popcount* is int). */
2336 if (!target)
2337 target = gen_reg_rtx (word_mode);
2339 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2341 seq = get_insns ();
2342 end_sequence ();
2344 add_equal_note (seq, t, POPCOUNT, op0, NULL_RTX, mode);
2345 emit_insn (seq);
2346 return t;
2349 /* Try calculating
2350 (parity:wide x)
2352 (parity:narrow (low (x) ^ high (x))) */
2353 static rtx
2354 expand_doubleword_parity (scalar_int_mode mode, rtx op0, rtx target)
2356 rtx t = expand_binop (word_mode, xor_optab,
2357 operand_subword_force (op0, 0, mode),
2358 operand_subword_force (op0, 1, mode),
2359 NULL_RTX, 0, OPTAB_DIRECT);
2360 return expand_unop (word_mode, parity_optab, t, target, true);
2363 /* Try calculating
2364 (bswap:narrow x)
2366 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2367 static rtx
2368 widen_bswap (scalar_int_mode mode, rtx op0, rtx target)
2370 rtx x;
2371 rtx_insn *last;
2372 opt_scalar_int_mode wider_mode_iter;
2374 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2375 if (optab_handler (bswap_optab, wider_mode_iter.require ())
2376 != CODE_FOR_nothing)
2377 break;
2379 if (!wider_mode_iter.exists ())
2380 return NULL_RTX;
2382 scalar_int_mode wider_mode = wider_mode_iter.require ();
2383 last = get_last_insn ();
2385 x = widen_operand (op0, wider_mode, mode, true, true);
2386 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2388 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2389 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2390 if (x != 0)
2391 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2392 GET_MODE_BITSIZE (wider_mode)
2393 - GET_MODE_BITSIZE (mode),
2394 NULL_RTX, true);
2396 if (x != 0)
2398 if (target == 0)
2399 target = gen_reg_rtx (mode);
2400 emit_move_insn (target, gen_lowpart (mode, x));
2402 else
2403 delete_insns_since (last);
2405 return target;
2408 /* Try calculating bswap as two bswaps of two word-sized operands. */
2410 static rtx
2411 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2413 rtx t0, t1;
2415 t1 = expand_unop (word_mode, bswap_optab,
2416 operand_subword_force (op, 0, mode), NULL_RTX, true);
2417 t0 = expand_unop (word_mode, bswap_optab,
2418 operand_subword_force (op, 1, mode), NULL_RTX, true);
2420 if (target == 0 || !valid_multiword_target_p (target))
2421 target = gen_reg_rtx (mode);
2422 if (REG_P (target))
2423 emit_clobber (target);
2424 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2425 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2427 return target;
2430 /* Try calculating (parity x) as (and (popcount x) 1), where
2431 popcount can also be done in a wider mode. */
2432 static rtx
2433 expand_parity (scalar_int_mode mode, rtx op0, rtx target)
2435 enum mode_class mclass = GET_MODE_CLASS (mode);
2436 opt_scalar_int_mode wider_mode_iter;
2437 FOR_EACH_MODE_FROM (wider_mode_iter, mode)
2439 scalar_int_mode wider_mode = wider_mode_iter.require ();
2440 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2442 rtx xop0, temp;
2443 rtx_insn *last;
2445 last = get_last_insn ();
2447 if (target == 0 || GET_MODE (target) != wider_mode)
2448 target = gen_reg_rtx (wider_mode);
2450 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2451 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2452 true);
2453 if (temp != 0)
2454 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2455 target, true, OPTAB_DIRECT);
2457 if (temp)
2459 if (mclass != MODE_INT
2460 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2461 return convert_to_mode (mode, temp, 0);
2462 else
2463 return gen_lowpart (mode, temp);
2465 else
2466 delete_insns_since (last);
2469 return 0;
2472 /* Try calculating ctz(x) as K - clz(x & -x) ,
2473 where K is GET_MODE_PRECISION(mode) - 1.
2475 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2476 don't have to worry about what the hardware does in that case. (If
2477 the clz instruction produces the usual value at 0, which is K, the
2478 result of this code sequence will be -1; expand_ffs, below, relies
2479 on this. It might be nice to have it be K instead, for consistency
2480 with the (very few) processors that provide a ctz with a defined
2481 value, but that would take one more instruction, and it would be
2482 less convenient for expand_ffs anyway. */
2484 static rtx
2485 expand_ctz (scalar_int_mode mode, rtx op0, rtx target)
2487 rtx_insn *seq;
2488 rtx temp;
2490 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2491 return 0;
2493 start_sequence ();
2495 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2496 if (temp)
2497 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2498 true, OPTAB_DIRECT);
2499 if (temp)
2500 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2501 if (temp)
2502 temp = expand_binop (mode, sub_optab,
2503 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2504 temp, target,
2505 true, OPTAB_DIRECT);
2506 if (temp == 0)
2508 end_sequence ();
2509 return 0;
2512 seq = get_insns ();
2513 end_sequence ();
2515 add_equal_note (seq, temp, CTZ, op0, NULL_RTX, mode);
2516 emit_insn (seq);
2517 return temp;
2521 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2522 else with the sequence used by expand_clz.
2524 The ffs builtin promises to return zero for a zero value and ctz/clz
2525 may have an undefined value in that case. If they do not give us a
2526 convenient value, we have to generate a test and branch. */
2527 static rtx
2528 expand_ffs (scalar_int_mode mode, rtx op0, rtx target)
2530 HOST_WIDE_INT val = 0;
2531 bool defined_at_zero = false;
2532 rtx temp;
2533 rtx_insn *seq;
2535 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2537 start_sequence ();
2539 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2540 if (!temp)
2541 goto fail;
2543 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2545 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2547 start_sequence ();
2548 temp = expand_ctz (mode, op0, 0);
2549 if (!temp)
2550 goto fail;
2552 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2554 defined_at_zero = true;
2555 val = (GET_MODE_PRECISION (mode) - 1) - val;
2558 else
2559 return 0;
2561 if (defined_at_zero && val == -1)
2562 /* No correction needed at zero. */;
2563 else
2565 /* We don't try to do anything clever with the situation found
2566 on some processors (eg Alpha) where ctz(0:mode) ==
2567 bitsize(mode). If someone can think of a way to send N to -1
2568 and leave alone all values in the range 0..N-1 (where N is a
2569 power of two), cheaper than this test-and-branch, please add it.
2571 The test-and-branch is done after the operation itself, in case
2572 the operation sets condition codes that can be recycled for this.
2573 (This is true on i386, for instance.) */
2575 rtx_code_label *nonzero_label = gen_label_rtx ();
2576 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2577 mode, true, nonzero_label);
2579 convert_move (temp, GEN_INT (-1), false);
2580 emit_label (nonzero_label);
2583 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2584 to produce a value in the range 0..bitsize. */
2585 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2586 target, false, OPTAB_DIRECT);
2587 if (!temp)
2588 goto fail;
2590 seq = get_insns ();
2591 end_sequence ();
2593 add_equal_note (seq, temp, FFS, op0, NULL_RTX, mode);
2594 emit_insn (seq);
2595 return temp;
2597 fail:
2598 end_sequence ();
2599 return 0;
2602 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2603 conditions, VAL may already be a SUBREG against which we cannot generate
2604 a further SUBREG. In this case, we expect forcing the value into a
2605 register will work around the situation. */
2607 static rtx
2608 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2609 machine_mode imode)
2611 rtx ret;
2612 ret = lowpart_subreg (omode, val, imode);
2613 if (ret == NULL)
2615 val = force_reg (imode, val);
2616 ret = lowpart_subreg (omode, val, imode);
2617 gcc_assert (ret != NULL);
2619 return ret;
2622 /* Expand a floating point absolute value or negation operation via a
2623 logical operation on the sign bit. */
2625 static rtx
2626 expand_absneg_bit (enum rtx_code code, scalar_float_mode mode,
2627 rtx op0, rtx target)
2629 const struct real_format *fmt;
2630 int bitpos, word, nwords, i;
2631 scalar_int_mode imode;
2632 rtx temp;
2633 rtx_insn *insns;
2635 /* The format has to have a simple sign bit. */
2636 fmt = REAL_MODE_FORMAT (mode);
2637 if (fmt == NULL)
2638 return NULL_RTX;
2640 bitpos = fmt->signbit_rw;
2641 if (bitpos < 0)
2642 return NULL_RTX;
2644 /* Don't create negative zeros if the format doesn't support them. */
2645 if (code == NEG && !fmt->has_signed_zero)
2646 return NULL_RTX;
2648 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2650 if (!int_mode_for_mode (mode).exists (&imode))
2651 return NULL_RTX;
2652 word = 0;
2653 nwords = 1;
2655 else
2657 imode = word_mode;
2659 if (FLOAT_WORDS_BIG_ENDIAN)
2660 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2661 else
2662 word = bitpos / BITS_PER_WORD;
2663 bitpos = bitpos % BITS_PER_WORD;
2664 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2667 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2668 if (code == ABS)
2669 mask = ~mask;
2671 if (target == 0
2672 || target == op0
2673 || (nwords > 1 && !valid_multiword_target_p (target)))
2674 target = gen_reg_rtx (mode);
2676 if (nwords > 1)
2678 start_sequence ();
2680 for (i = 0; i < nwords; ++i)
2682 rtx targ_piece = operand_subword (target, i, 1, mode);
2683 rtx op0_piece = operand_subword_force (op0, i, mode);
2685 if (i == word)
2687 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2688 op0_piece,
2689 immed_wide_int_const (mask, imode),
2690 targ_piece, 1, OPTAB_LIB_WIDEN);
2691 if (temp != targ_piece)
2692 emit_move_insn (targ_piece, temp);
2694 else
2695 emit_move_insn (targ_piece, op0_piece);
2698 insns = get_insns ();
2699 end_sequence ();
2701 emit_insn (insns);
2703 else
2705 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2706 gen_lowpart (imode, op0),
2707 immed_wide_int_const (mask, imode),
2708 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2709 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2711 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2712 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2713 target);
2716 return target;
2719 /* As expand_unop, but will fail rather than attempt the operation in a
2720 different mode or with a libcall. */
2721 static rtx
2722 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2723 int unsignedp)
2725 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2727 class expand_operand ops[2];
2728 enum insn_code icode = optab_handler (unoptab, mode);
2729 rtx_insn *last = get_last_insn ();
2730 rtx_insn *pat;
2732 create_output_operand (&ops[0], target, mode);
2733 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2734 pat = maybe_gen_insn (icode, 2, ops);
2735 if (pat)
2737 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2738 && ! add_equal_note (pat, ops[0].value,
2739 optab_to_code (unoptab),
2740 ops[1].value, NULL_RTX, mode))
2742 delete_insns_since (last);
2743 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2746 emit_insn (pat);
2748 return ops[0].value;
2751 return 0;
2754 /* Generate code to perform an operation specified by UNOPTAB
2755 on operand OP0, with result having machine-mode MODE.
2757 UNSIGNEDP is for the case where we have to widen the operands
2758 to perform the operation. It says to use zero-extension.
2760 If TARGET is nonzero, the value
2761 is generated there, if it is convenient to do so.
2762 In all cases an rtx is returned for the locus of the value;
2763 this may or may not be TARGET. */
2766 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2767 int unsignedp)
2769 enum mode_class mclass = GET_MODE_CLASS (mode);
2770 machine_mode wider_mode;
2771 scalar_int_mode int_mode;
2772 scalar_float_mode float_mode;
2773 rtx temp;
2774 rtx libfunc;
2776 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2777 if (temp)
2778 return temp;
2780 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2782 /* Widening (or narrowing) clz needs special treatment. */
2783 if (unoptab == clz_optab)
2785 if (is_a <scalar_int_mode> (mode, &int_mode))
2787 temp = widen_leading (int_mode, op0, target, unoptab);
2788 if (temp)
2789 return temp;
2791 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2792 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2794 temp = expand_doubleword_clz (int_mode, op0, target);
2795 if (temp)
2796 return temp;
2800 goto try_libcall;
2803 if (unoptab == clrsb_optab)
2805 if (is_a <scalar_int_mode> (mode, &int_mode))
2807 temp = widen_leading (int_mode, op0, target, unoptab);
2808 if (temp)
2809 return temp;
2811 goto try_libcall;
2814 if (unoptab == popcount_optab
2815 && is_a <scalar_int_mode> (mode, &int_mode)
2816 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2817 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2818 && optimize_insn_for_speed_p ())
2820 temp = expand_doubleword_popcount (int_mode, op0, target);
2821 if (temp)
2822 return temp;
2825 if (unoptab == parity_optab
2826 && is_a <scalar_int_mode> (mode, &int_mode)
2827 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2828 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2829 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2830 && optimize_insn_for_speed_p ())
2832 temp = expand_doubleword_parity (int_mode, op0, target);
2833 if (temp)
2834 return temp;
2837 /* Widening (or narrowing) bswap needs special treatment. */
2838 if (unoptab == bswap_optab)
2840 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2841 or ROTATERT. First try these directly; if this fails, then try the
2842 obvious pair of shifts with allowed widening, as this will probably
2843 be always more efficient than the other fallback methods. */
2844 if (mode == HImode)
2846 rtx_insn *last;
2847 rtx temp1, temp2;
2849 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2851 temp = expand_binop (mode, rotl_optab, op0,
2852 gen_int_shift_amount (mode, 8),
2853 target, unsignedp, OPTAB_DIRECT);
2854 if (temp)
2855 return temp;
2858 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2860 temp = expand_binop (mode, rotr_optab, op0,
2861 gen_int_shift_amount (mode, 8),
2862 target, unsignedp, OPTAB_DIRECT);
2863 if (temp)
2864 return temp;
2867 last = get_last_insn ();
2869 temp1 = expand_binop (mode, ashl_optab, op0,
2870 gen_int_shift_amount (mode, 8), NULL_RTX,
2871 unsignedp, OPTAB_WIDEN);
2872 temp2 = expand_binop (mode, lshr_optab, op0,
2873 gen_int_shift_amount (mode, 8), NULL_RTX,
2874 unsignedp, OPTAB_WIDEN);
2875 if (temp1 && temp2)
2877 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2878 unsignedp, OPTAB_WIDEN);
2879 if (temp)
2880 return temp;
2883 delete_insns_since (last);
2886 if (is_a <scalar_int_mode> (mode, &int_mode))
2888 temp = widen_bswap (int_mode, op0, target);
2889 if (temp)
2890 return temp;
2892 /* We do not provide a 128-bit bswap in libgcc so force the use of
2893 a double bswap for 64-bit targets. */
2894 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2895 && (UNITS_PER_WORD == 8
2896 || optab_handler (unoptab, word_mode) != CODE_FOR_nothing))
2898 temp = expand_doubleword_bswap (mode, op0, target);
2899 if (temp)
2900 return temp;
2904 goto try_libcall;
2907 if (CLASS_HAS_WIDER_MODES_P (mclass))
2908 FOR_EACH_WIDER_MODE (wider_mode, mode)
2910 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2912 rtx xop0 = op0;
2913 rtx_insn *last = get_last_insn ();
2915 /* For certain operations, we need not actually extend
2916 the narrow operand, as long as we will truncate the
2917 results to the same narrowness. */
2919 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2920 (unoptab == neg_optab
2921 || unoptab == one_cmpl_optab)
2922 && mclass == MODE_INT);
2924 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2925 unsignedp);
2927 if (temp)
2929 if (mclass != MODE_INT
2930 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2932 if (target == 0)
2933 target = gen_reg_rtx (mode);
2934 convert_move (target, temp, 0);
2935 return target;
2937 else
2938 return gen_lowpart (mode, temp);
2940 else
2941 delete_insns_since (last);
2945 /* These can be done a word at a time. */
2946 if (unoptab == one_cmpl_optab
2947 && is_int_mode (mode, &int_mode)
2948 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
2949 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2951 int i;
2952 rtx_insn *insns;
2954 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
2955 target = gen_reg_rtx (int_mode);
2957 start_sequence ();
2959 /* Do the actual arithmetic. */
2960 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
2962 rtx target_piece = operand_subword (target, i, 1, int_mode);
2963 rtx x = expand_unop (word_mode, unoptab,
2964 operand_subword_force (op0, i, int_mode),
2965 target_piece, unsignedp);
2967 if (target_piece != x)
2968 emit_move_insn (target_piece, x);
2971 insns = get_insns ();
2972 end_sequence ();
2974 emit_insn (insns);
2975 return target;
2978 /* Emit ~op0 as op0 ^ -1. */
2979 if (unoptab == one_cmpl_optab
2980 && (SCALAR_INT_MODE_P (mode) || GET_MODE_CLASS (mode) == MODE_VECTOR_INT)
2981 && optab_handler (xor_optab, mode) != CODE_FOR_nothing)
2983 temp = expand_binop (mode, xor_optab, op0, CONSTM1_RTX (mode),
2984 target, unsignedp, OPTAB_DIRECT);
2985 if (temp)
2986 return temp;
2989 if (optab_to_code (unoptab) == NEG)
2991 /* Try negating floating point values by flipping the sign bit. */
2992 if (is_a <scalar_float_mode> (mode, &float_mode))
2994 temp = expand_absneg_bit (NEG, float_mode, op0, target);
2995 if (temp)
2996 return temp;
2999 /* If there is no negation pattern, and we have no negative zero,
3000 try subtracting from zero. */
3001 if (!HONOR_SIGNED_ZEROS (mode))
3003 temp = expand_binop (mode, (unoptab == negv_optab
3004 ? subv_optab : sub_optab),
3005 CONST0_RTX (mode), op0, target,
3006 unsignedp, OPTAB_DIRECT);
3007 if (temp)
3008 return temp;
3012 /* Try calculating parity (x) as popcount (x) % 2. */
3013 if (unoptab == parity_optab && is_a <scalar_int_mode> (mode, &int_mode))
3015 temp = expand_parity (int_mode, op0, target);
3016 if (temp)
3017 return temp;
3020 /* Try implementing ffs (x) in terms of clz (x). */
3021 if (unoptab == ffs_optab && is_a <scalar_int_mode> (mode, &int_mode))
3023 temp = expand_ffs (int_mode, op0, target);
3024 if (temp)
3025 return temp;
3028 /* Try implementing ctz (x) in terms of clz (x). */
3029 if (unoptab == ctz_optab && is_a <scalar_int_mode> (mode, &int_mode))
3031 temp = expand_ctz (int_mode, op0, target);
3032 if (temp)
3033 return temp;
3036 try_libcall:
3037 /* Now try a library call in this mode. */
3038 libfunc = optab_libfunc (unoptab, mode);
3039 if (libfunc)
3041 rtx_insn *insns;
3042 rtx value;
3043 rtx eq_value;
3044 machine_mode outmode = mode;
3046 /* All of these functions return small values. Thus we choose to
3047 have them return something that isn't a double-word. */
3048 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3049 || unoptab == clrsb_optab || unoptab == popcount_optab
3050 || unoptab == parity_optab)
3051 outmode
3052 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3053 optab_libfunc (unoptab, mode)));
3055 start_sequence ();
3057 /* Pass 1 for NO_QUEUE so we don't lose any increments
3058 if the libcall is cse'd or moved. */
3059 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3060 op0, mode);
3061 insns = get_insns ();
3062 end_sequence ();
3064 target = gen_reg_rtx (outmode);
3065 bool trapv = trapv_unoptab_p (unoptab);
3066 if (trapv)
3067 eq_value = NULL_RTX;
3068 else
3070 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3071 if (GET_MODE_UNIT_SIZE (outmode) < GET_MODE_UNIT_SIZE (mode))
3072 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3073 else if (GET_MODE_UNIT_SIZE (outmode) > GET_MODE_UNIT_SIZE (mode))
3074 eq_value = simplify_gen_unary (ZERO_EXTEND,
3075 outmode, eq_value, mode);
3077 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
3079 return target;
3082 /* It can't be done in this mode. Can we do it in a wider mode? */
3084 if (CLASS_HAS_WIDER_MODES_P (mclass))
3086 FOR_EACH_WIDER_MODE (wider_mode, mode)
3088 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3089 || optab_libfunc (unoptab, wider_mode))
3091 rtx xop0 = op0;
3092 rtx_insn *last = get_last_insn ();
3094 /* For certain operations, we need not actually extend
3095 the narrow operand, as long as we will truncate the
3096 results to the same narrowness. */
3097 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3098 (unoptab == neg_optab
3099 || unoptab == one_cmpl_optab
3100 || unoptab == bswap_optab)
3101 && mclass == MODE_INT);
3103 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3104 unsignedp);
3106 /* If we are generating clz using wider mode, adjust the
3107 result. Similarly for clrsb. */
3108 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3109 && temp != 0)
3111 scalar_int_mode wider_int_mode
3112 = as_a <scalar_int_mode> (wider_mode);
3113 int_mode = as_a <scalar_int_mode> (mode);
3114 temp = expand_binop
3115 (wider_mode, sub_optab, temp,
3116 gen_int_mode (GET_MODE_PRECISION (wider_int_mode)
3117 - GET_MODE_PRECISION (int_mode),
3118 wider_int_mode),
3119 target, true, OPTAB_DIRECT);
3122 /* Likewise for bswap. */
3123 if (unoptab == bswap_optab && temp != 0)
3125 scalar_int_mode wider_int_mode
3126 = as_a <scalar_int_mode> (wider_mode);
3127 int_mode = as_a <scalar_int_mode> (mode);
3128 gcc_assert (GET_MODE_PRECISION (wider_int_mode)
3129 == GET_MODE_BITSIZE (wider_int_mode)
3130 && GET_MODE_PRECISION (int_mode)
3131 == GET_MODE_BITSIZE (int_mode));
3133 temp = expand_shift (RSHIFT_EXPR, wider_int_mode, temp,
3134 GET_MODE_BITSIZE (wider_int_mode)
3135 - GET_MODE_BITSIZE (int_mode),
3136 NULL_RTX, true);
3139 if (temp)
3141 if (mclass != MODE_INT)
3143 if (target == 0)
3144 target = gen_reg_rtx (mode);
3145 convert_move (target, temp, 0);
3146 return target;
3148 else
3149 return gen_lowpart (mode, temp);
3151 else
3152 delete_insns_since (last);
3157 /* One final attempt at implementing negation via subtraction,
3158 this time allowing widening of the operand. */
3159 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3161 rtx temp;
3162 temp = expand_binop (mode,
3163 unoptab == negv_optab ? subv_optab : sub_optab,
3164 CONST0_RTX (mode), op0,
3165 target, unsignedp, OPTAB_LIB_WIDEN);
3166 if (temp)
3167 return temp;
3170 return 0;
3173 /* Emit code to compute the absolute value of OP0, with result to
3174 TARGET if convenient. (TARGET may be 0.) The return value says
3175 where the result actually is to be found.
3177 MODE is the mode of the operand; the mode of the result is
3178 different but can be deduced from MODE.
3183 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3184 int result_unsignedp)
3186 rtx temp;
3188 if (GET_MODE_CLASS (mode) != MODE_INT
3189 || ! flag_trapv)
3190 result_unsignedp = 1;
3192 /* First try to do it with a special abs instruction. */
3193 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3194 op0, target, 0);
3195 if (temp != 0)
3196 return temp;
3198 /* For floating point modes, try clearing the sign bit. */
3199 scalar_float_mode float_mode;
3200 if (is_a <scalar_float_mode> (mode, &float_mode))
3202 temp = expand_absneg_bit (ABS, float_mode, op0, target);
3203 if (temp)
3204 return temp;
3207 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3208 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3209 && !HONOR_SIGNED_ZEROS (mode))
3211 rtx_insn *last = get_last_insn ();
3213 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3214 op0, NULL_RTX, 0);
3215 if (temp != 0)
3216 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3217 OPTAB_WIDEN);
3219 if (temp != 0)
3220 return temp;
3222 delete_insns_since (last);
3225 /* If this machine has expensive jumps, we can do integer absolute
3226 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3227 where W is the width of MODE. */
3229 scalar_int_mode int_mode;
3230 if (is_int_mode (mode, &int_mode)
3231 && BRANCH_COST (optimize_insn_for_speed_p (),
3232 false) >= 2)
3234 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3235 GET_MODE_PRECISION (int_mode) - 1,
3236 NULL_RTX, 0);
3238 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3239 OPTAB_LIB_WIDEN);
3240 if (temp != 0)
3241 temp = expand_binop (int_mode,
3242 result_unsignedp ? sub_optab : subv_optab,
3243 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3245 if (temp != 0)
3246 return temp;
3249 return NULL_RTX;
3253 expand_abs (machine_mode mode, rtx op0, rtx target,
3254 int result_unsignedp, int safe)
3256 rtx temp;
3257 rtx_code_label *op1;
3259 if (GET_MODE_CLASS (mode) != MODE_INT
3260 || ! flag_trapv)
3261 result_unsignedp = 1;
3263 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3264 if (temp != 0)
3265 return temp;
3267 /* If that does not win, use conditional jump and negate. */
3269 /* It is safe to use the target if it is the same
3270 as the source if this is also a pseudo register */
3271 if (op0 == target && REG_P (op0)
3272 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3273 safe = 1;
3275 op1 = gen_label_rtx ();
3276 if (target == 0 || ! safe
3277 || GET_MODE (target) != mode
3278 || (MEM_P (target) && MEM_VOLATILE_P (target))
3279 || (REG_P (target)
3280 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3281 target = gen_reg_rtx (mode);
3283 emit_move_insn (target, op0);
3284 NO_DEFER_POP;
3286 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3287 NULL_RTX, NULL, op1,
3288 profile_probability::uninitialized ());
3290 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3291 target, target, 0);
3292 if (op0 != target)
3293 emit_move_insn (target, op0);
3294 emit_label (op1);
3295 OK_DEFER_POP;
3296 return target;
3299 /* Emit code to compute the one's complement absolute value of OP0
3300 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3301 (TARGET may be NULL_RTX.) The return value says where the result
3302 actually is to be found.
3304 MODE is the mode of the operand; the mode of the result is
3305 different but can be deduced from MODE. */
3308 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3310 rtx temp;
3312 /* Not applicable for floating point modes. */
3313 if (FLOAT_MODE_P (mode))
3314 return NULL_RTX;
3316 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3317 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3319 rtx_insn *last = get_last_insn ();
3321 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3322 if (temp != 0)
3323 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3324 OPTAB_WIDEN);
3326 if (temp != 0)
3327 return temp;
3329 delete_insns_since (last);
3332 /* If this machine has expensive jumps, we can do one's complement
3333 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3335 scalar_int_mode int_mode;
3336 if (is_int_mode (mode, &int_mode)
3337 && BRANCH_COST (optimize_insn_for_speed_p (),
3338 false) >= 2)
3340 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3341 GET_MODE_PRECISION (int_mode) - 1,
3342 NULL_RTX, 0);
3344 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3345 OPTAB_LIB_WIDEN);
3347 if (temp != 0)
3348 return temp;
3351 return NULL_RTX;
3354 /* A subroutine of expand_copysign, perform the copysign operation using the
3355 abs and neg primitives advertised to exist on the target. The assumption
3356 is that we have a split register file, and leaving op0 in fp registers,
3357 and not playing with subregs so much, will help the register allocator. */
3359 static rtx
3360 expand_copysign_absneg (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3361 int bitpos, bool op0_is_abs)
3363 scalar_int_mode imode;
3364 enum insn_code icode;
3365 rtx sign;
3366 rtx_code_label *label;
3368 if (target == op1)
3369 target = NULL_RTX;
3371 /* Check if the back end provides an insn that handles signbit for the
3372 argument's mode. */
3373 icode = optab_handler (signbit_optab, mode);
3374 if (icode != CODE_FOR_nothing)
3376 imode = as_a <scalar_int_mode> (insn_data[(int) icode].operand[0].mode);
3377 sign = gen_reg_rtx (imode);
3378 emit_unop_insn (icode, sign, op1, UNKNOWN);
3380 else
3382 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3384 if (!int_mode_for_mode (mode).exists (&imode))
3385 return NULL_RTX;
3386 op1 = gen_lowpart (imode, op1);
3388 else
3390 int word;
3392 imode = word_mode;
3393 if (FLOAT_WORDS_BIG_ENDIAN)
3394 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3395 else
3396 word = bitpos / BITS_PER_WORD;
3397 bitpos = bitpos % BITS_PER_WORD;
3398 op1 = operand_subword_force (op1, word, mode);
3401 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3402 sign = expand_binop (imode, and_optab, op1,
3403 immed_wide_int_const (mask, imode),
3404 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3407 if (!op0_is_abs)
3409 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3410 if (op0 == NULL)
3411 return NULL_RTX;
3412 target = op0;
3414 else
3416 if (target == NULL_RTX)
3417 target = copy_to_reg (op0);
3418 else
3419 emit_move_insn (target, op0);
3422 label = gen_label_rtx ();
3423 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3425 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3426 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3427 else
3428 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3429 if (op0 != target)
3430 emit_move_insn (target, op0);
3432 emit_label (label);
3434 return target;
3438 /* A subroutine of expand_copysign, perform the entire copysign operation
3439 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3440 is true if op0 is known to have its sign bit clear. */
3442 static rtx
3443 expand_copysign_bit (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3444 int bitpos, bool op0_is_abs)
3446 scalar_int_mode imode;
3447 int word, nwords, i;
3448 rtx temp;
3449 rtx_insn *insns;
3451 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3453 if (!int_mode_for_mode (mode).exists (&imode))
3454 return NULL_RTX;
3455 word = 0;
3456 nwords = 1;
3458 else
3460 imode = word_mode;
3462 if (FLOAT_WORDS_BIG_ENDIAN)
3463 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3464 else
3465 word = bitpos / BITS_PER_WORD;
3466 bitpos = bitpos % BITS_PER_WORD;
3467 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3470 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3472 if (target == 0
3473 || target == op0
3474 || target == op1
3475 || (nwords > 1 && !valid_multiword_target_p (target)))
3476 target = gen_reg_rtx (mode);
3478 if (nwords > 1)
3480 start_sequence ();
3482 for (i = 0; i < nwords; ++i)
3484 rtx targ_piece = operand_subword (target, i, 1, mode);
3485 rtx op0_piece = operand_subword_force (op0, i, mode);
3487 if (i == word)
3489 if (!op0_is_abs)
3490 op0_piece
3491 = expand_binop (imode, and_optab, op0_piece,
3492 immed_wide_int_const (~mask, imode),
3493 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3494 op1 = expand_binop (imode, and_optab,
3495 operand_subword_force (op1, i, mode),
3496 immed_wide_int_const (mask, imode),
3497 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3499 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3500 targ_piece, 1, OPTAB_LIB_WIDEN);
3501 if (temp != targ_piece)
3502 emit_move_insn (targ_piece, temp);
3504 else
3505 emit_move_insn (targ_piece, op0_piece);
3508 insns = get_insns ();
3509 end_sequence ();
3511 emit_insn (insns);
3513 else
3515 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3516 immed_wide_int_const (mask, imode),
3517 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3519 op0 = gen_lowpart (imode, op0);
3520 if (!op0_is_abs)
3521 op0 = expand_binop (imode, and_optab, op0,
3522 immed_wide_int_const (~mask, imode),
3523 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3525 temp = expand_binop (imode, ior_optab, op0, op1,
3526 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3527 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3530 return target;
3533 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3534 scalar floating point mode. Return NULL if we do not know how to
3535 expand the operation inline. */
3538 expand_copysign (rtx op0, rtx op1, rtx target)
3540 scalar_float_mode mode;
3541 const struct real_format *fmt;
3542 bool op0_is_abs;
3543 rtx temp;
3545 mode = as_a <scalar_float_mode> (GET_MODE (op0));
3546 gcc_assert (GET_MODE (op1) == mode);
3548 /* First try to do it with a special instruction. */
3549 temp = expand_binop (mode, copysign_optab, op0, op1,
3550 target, 0, OPTAB_DIRECT);
3551 if (temp)
3552 return temp;
3554 fmt = REAL_MODE_FORMAT (mode);
3555 if (fmt == NULL || !fmt->has_signed_zero)
3556 return NULL_RTX;
3558 op0_is_abs = false;
3559 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3561 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3562 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3563 op0_is_abs = true;
3566 if (fmt->signbit_ro >= 0
3567 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3568 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3569 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3571 temp = expand_copysign_absneg (mode, op0, op1, target,
3572 fmt->signbit_ro, op0_is_abs);
3573 if (temp)
3574 return temp;
3577 if (fmt->signbit_rw < 0)
3578 return NULL_RTX;
3579 return expand_copysign_bit (mode, op0, op1, target,
3580 fmt->signbit_rw, op0_is_abs);
3583 /* Generate an instruction whose insn-code is INSN_CODE,
3584 with two operands: an output TARGET and an input OP0.
3585 TARGET *must* be nonzero, and the output is always stored there.
3586 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3587 the value that is stored into TARGET.
3589 Return false if expansion failed. */
3591 bool
3592 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3593 enum rtx_code code)
3595 class expand_operand ops[2];
3596 rtx_insn *pat;
3598 create_output_operand (&ops[0], target, GET_MODE (target));
3599 create_input_operand (&ops[1], op0, GET_MODE (op0));
3600 pat = maybe_gen_insn (icode, 2, ops);
3601 if (!pat)
3602 return false;
3604 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3605 && code != UNKNOWN)
3606 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX,
3607 GET_MODE (op0));
3609 emit_insn (pat);
3611 if (ops[0].value != target)
3612 emit_move_insn (target, ops[0].value);
3613 return true;
3615 /* Generate an instruction whose insn-code is INSN_CODE,
3616 with two operands: an output TARGET and an input OP0.
3617 TARGET *must* be nonzero, and the output is always stored there.
3618 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3619 the value that is stored into TARGET. */
3621 void
3622 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3624 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3625 gcc_assert (ok);
3628 struct no_conflict_data
3630 rtx target;
3631 rtx_insn *first, *insn;
3632 bool must_stay;
3635 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3636 the currently examined clobber / store has to stay in the list of
3637 insns that constitute the actual libcall block. */
3638 static void
3639 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3641 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3643 /* If this inns directly contributes to setting the target, it must stay. */
3644 if (reg_overlap_mentioned_p (p->target, dest))
3645 p->must_stay = true;
3646 /* If we haven't committed to keeping any other insns in the list yet,
3647 there is nothing more to check. */
3648 else if (p->insn == p->first)
3649 return;
3650 /* If this insn sets / clobbers a register that feeds one of the insns
3651 already in the list, this insn has to stay too. */
3652 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3653 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3654 || reg_used_between_p (dest, p->first, p->insn)
3655 /* Likewise if this insn depends on a register set by a previous
3656 insn in the list, or if it sets a result (presumably a hard
3657 register) that is set or clobbered by a previous insn.
3658 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3659 SET_DEST perform the former check on the address, and the latter
3660 check on the MEM. */
3661 || (GET_CODE (set) == SET
3662 && (modified_in_p (SET_SRC (set), p->first)
3663 || modified_in_p (SET_DEST (set), p->first)
3664 || modified_between_p (SET_SRC (set), p->first, p->insn)
3665 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3666 p->must_stay = true;
3670 /* Emit code to make a call to a constant function or a library call.
3672 INSNS is a list containing all insns emitted in the call.
3673 These insns leave the result in RESULT. Our block is to copy RESULT
3674 to TARGET, which is logically equivalent to EQUIV.
3676 We first emit any insns that set a pseudo on the assumption that these are
3677 loading constants into registers; doing so allows them to be safely cse'ed
3678 between blocks. Then we emit all the other insns in the block, followed by
3679 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3680 note with an operand of EQUIV. */
3682 static void
3683 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3684 bool equiv_may_trap)
3686 rtx final_dest = target;
3687 rtx_insn *next, *last, *insn;
3689 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3690 into a MEM later. Protect the libcall block from this change. */
3691 if (! REG_P (target) || REG_USERVAR_P (target))
3692 target = gen_reg_rtx (GET_MODE (target));
3694 /* If we're using non-call exceptions, a libcall corresponding to an
3695 operation that may trap may also trap. */
3696 /* ??? See the comment in front of make_reg_eh_region_note. */
3697 if (cfun->can_throw_non_call_exceptions
3698 && (equiv_may_trap || may_trap_p (equiv)))
3700 for (insn = insns; insn; insn = NEXT_INSN (insn))
3701 if (CALL_P (insn))
3703 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3704 if (note)
3706 int lp_nr = INTVAL (XEXP (note, 0));
3707 if (lp_nr == 0 || lp_nr == INT_MIN)
3708 remove_note (insn, note);
3712 else
3714 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3715 reg note to indicate that this call cannot throw or execute a nonlocal
3716 goto (unless there is already a REG_EH_REGION note, in which case
3717 we update it). */
3718 for (insn = insns; insn; insn = NEXT_INSN (insn))
3719 if (CALL_P (insn))
3720 make_reg_eh_region_note_nothrow_nononlocal (insn);
3723 /* First emit all insns that set pseudos. Remove them from the list as
3724 we go. Avoid insns that set pseudos which were referenced in previous
3725 insns. These can be generated by move_by_pieces, for example,
3726 to update an address. Similarly, avoid insns that reference things
3727 set in previous insns. */
3729 for (insn = insns; insn; insn = next)
3731 rtx set = single_set (insn);
3733 next = NEXT_INSN (insn);
3735 if (set != 0 && REG_P (SET_DEST (set))
3736 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3738 struct no_conflict_data data;
3740 data.target = const0_rtx;
3741 data.first = insns;
3742 data.insn = insn;
3743 data.must_stay = 0;
3744 note_stores (insn, no_conflict_move_test, &data);
3745 if (! data.must_stay)
3747 if (PREV_INSN (insn))
3748 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3749 else
3750 insns = next;
3752 if (next)
3753 SET_PREV_INSN (next) = PREV_INSN (insn);
3755 add_insn (insn);
3759 /* Some ports use a loop to copy large arguments onto the stack.
3760 Don't move anything outside such a loop. */
3761 if (LABEL_P (insn))
3762 break;
3765 /* Write the remaining insns followed by the final copy. */
3766 for (insn = insns; insn; insn = next)
3768 next = NEXT_INSN (insn);
3770 add_insn (insn);
3773 last = emit_move_insn (target, result);
3774 if (equiv)
3775 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3777 if (final_dest != target)
3778 emit_move_insn (final_dest, target);
3781 void
3782 emit_libcall_block (rtx_insn *insns, rtx target, rtx result, rtx equiv)
3784 emit_libcall_block_1 (insns, target, result, equiv, false);
3787 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3788 PURPOSE describes how this comparison will be used. CODE is the rtx
3789 comparison code we will be using.
3791 ??? Actually, CODE is slightly weaker than that. A target is still
3792 required to implement all of the normal bcc operations, but not
3793 required to implement all (or any) of the unordered bcc operations. */
3796 can_compare_p (enum rtx_code code, machine_mode mode,
3797 enum can_compare_purpose purpose)
3799 rtx test;
3800 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3803 enum insn_code icode;
3805 if (purpose == ccp_jump
3806 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3807 && insn_operand_matches (icode, 0, test))
3808 return 1;
3809 if (purpose == ccp_store_flag
3810 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3811 && insn_operand_matches (icode, 1, test))
3812 return 1;
3813 if (purpose == ccp_cmov
3814 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3815 return 1;
3817 mode = GET_MODE_WIDER_MODE (mode).else_void ();
3818 PUT_MODE (test, mode);
3820 while (mode != VOIDmode);
3822 return 0;
3825 /* Return whether the backend can emit a vector comparison for code CODE,
3826 comparing operands of mode CMP_OP_MODE and producing a result with
3827 VALUE_MODE. */
3829 bool
3830 can_vcond_compare_p (enum rtx_code code, machine_mode value_mode,
3831 machine_mode cmp_op_mode)
3833 enum insn_code icode;
3834 bool unsigned_p = (code == LTU || code == LEU || code == GTU || code == GEU);
3835 rtx reg1 = alloca_raw_REG (cmp_op_mode, LAST_VIRTUAL_REGISTER + 1);
3836 rtx reg2 = alloca_raw_REG (cmp_op_mode, LAST_VIRTUAL_REGISTER + 2);
3837 rtx test = alloca_rtx_fmt_ee (code, value_mode, reg1, reg2);
3839 return (icode = get_vcond_icode (value_mode, cmp_op_mode, unsigned_p))
3840 != CODE_FOR_nothing
3841 && insn_operand_matches (icode, 3, test);
3844 /* This function is called when we are going to emit a compare instruction that
3845 compares the values found in X and Y, using the rtl operator COMPARISON.
3847 If they have mode BLKmode, then SIZE specifies the size of both operands.
3849 UNSIGNEDP nonzero says that the operands are unsigned;
3850 this matters if they need to be widened (as given by METHODS).
3852 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3853 if we failed to produce one.
3855 *PMODE is the mode of the inputs (in case they are const_int).
3857 This function performs all the setup necessary so that the caller only has
3858 to emit a single comparison insn. This setup can involve doing a BLKmode
3859 comparison or emitting a library call to perform the comparison if no insn
3860 is available to handle it.
3861 The values which are passed in through pointers can be modified; the caller
3862 should perform the comparison on the modified values. Constant
3863 comparisons must have already been folded. */
3865 static void
3866 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3867 int unsignedp, enum optab_methods methods,
3868 rtx *ptest, machine_mode *pmode)
3870 machine_mode mode = *pmode;
3871 rtx libfunc, test;
3872 machine_mode cmp_mode;
3873 enum mode_class mclass;
3875 /* The other methods are not needed. */
3876 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3877 || methods == OPTAB_LIB_WIDEN);
3879 if (CONST_SCALAR_INT_P (y))
3880 canonicalize_comparison (mode, &comparison, &y);
3882 /* If we are optimizing, force expensive constants into a register. */
3883 if (CONSTANT_P (x) && optimize
3884 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3885 > COSTS_N_INSNS (1)))
3886 x = force_reg (mode, x);
3888 if (CONSTANT_P (y) && optimize
3889 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3890 > COSTS_N_INSNS (1)))
3891 y = force_reg (mode, y);
3893 #if HAVE_cc0
3894 /* Make sure if we have a canonical comparison. The RTL
3895 documentation states that canonical comparisons are required only
3896 for targets which have cc0. */
3897 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3898 #endif
3900 /* Don't let both operands fail to indicate the mode. */
3901 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3902 x = force_reg (mode, x);
3903 if (mode == VOIDmode)
3904 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3906 /* Handle all BLKmode compares. */
3908 if (mode == BLKmode)
3910 machine_mode result_mode;
3911 enum insn_code cmp_code;
3912 rtx result;
3913 rtx opalign
3914 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3916 gcc_assert (size);
3918 /* Try to use a memory block compare insn - either cmpstr
3919 or cmpmem will do. */
3920 opt_scalar_int_mode cmp_mode_iter;
3921 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
3923 scalar_int_mode cmp_mode = cmp_mode_iter.require ();
3924 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3925 if (cmp_code == CODE_FOR_nothing)
3926 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3927 if (cmp_code == CODE_FOR_nothing)
3928 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3929 if (cmp_code == CODE_FOR_nothing)
3930 continue;
3932 /* Must make sure the size fits the insn's mode. */
3933 if (CONST_INT_P (size)
3934 ? UINTVAL (size) > GET_MODE_MASK (cmp_mode)
3935 : (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (size)))
3936 > GET_MODE_BITSIZE (cmp_mode)))
3937 continue;
3939 result_mode = insn_data[cmp_code].operand[0].mode;
3940 result = gen_reg_rtx (result_mode);
3941 size = convert_to_mode (cmp_mode, size, 1);
3942 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3944 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3945 *pmode = result_mode;
3946 return;
3949 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3950 goto fail;
3952 /* Otherwise call a library function. */
3953 result = emit_block_comp_via_libcall (x, y, size);
3955 x = result;
3956 y = const0_rtx;
3957 mode = TYPE_MODE (integer_type_node);
3958 methods = OPTAB_LIB_WIDEN;
3959 unsignedp = false;
3962 /* Don't allow operands to the compare to trap, as that can put the
3963 compare and branch in different basic blocks. */
3964 if (cfun->can_throw_non_call_exceptions)
3966 if (may_trap_p (x))
3967 x = copy_to_reg (x);
3968 if (may_trap_p (y))
3969 y = copy_to_reg (y);
3972 if (GET_MODE_CLASS (mode) == MODE_CC)
3974 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
3975 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3976 gcc_assert (icode != CODE_FOR_nothing
3977 && insn_operand_matches (icode, 0, test));
3978 *ptest = test;
3979 return;
3982 mclass = GET_MODE_CLASS (mode);
3983 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3984 FOR_EACH_MODE_FROM (cmp_mode, mode)
3986 enum insn_code icode;
3987 icode = optab_handler (cbranch_optab, cmp_mode);
3988 if (icode != CODE_FOR_nothing
3989 && insn_operand_matches (icode, 0, test))
3991 rtx_insn *last = get_last_insn ();
3992 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3993 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3994 if (op0 && op1
3995 && insn_operand_matches (icode, 1, op0)
3996 && insn_operand_matches (icode, 2, op1))
3998 XEXP (test, 0) = op0;
3999 XEXP (test, 1) = op1;
4000 *ptest = test;
4001 *pmode = cmp_mode;
4002 return;
4004 delete_insns_since (last);
4007 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
4008 break;
4011 if (methods != OPTAB_LIB_WIDEN)
4012 goto fail;
4014 if (SCALAR_FLOAT_MODE_P (mode))
4016 /* Small trick if UNORDERED isn't implemented by the hardware. */
4017 if (comparison == UNORDERED && rtx_equal_p (x, y))
4019 prepare_cmp_insn (x, y, UNLT, NULL_RTX, unsignedp, OPTAB_WIDEN,
4020 ptest, pmode);
4021 if (*ptest)
4022 return;
4025 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
4027 else
4029 rtx result;
4030 machine_mode ret_mode;
4032 /* Handle a libcall just for the mode we are using. */
4033 libfunc = optab_libfunc (cmp_optab, mode);
4034 gcc_assert (libfunc);
4036 /* If we want unsigned, and this mode has a distinct unsigned
4037 comparison routine, use that. */
4038 if (unsignedp)
4040 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4041 if (ulibfunc)
4042 libfunc = ulibfunc;
4045 ret_mode = targetm.libgcc_cmp_return_mode ();
4046 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4047 ret_mode, x, mode, y, mode);
4049 /* There are two kinds of comparison routines. Biased routines
4050 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4051 of gcc expect that the comparison operation is equivalent
4052 to the modified comparison. For signed comparisons compare the
4053 result against 1 in the biased case, and zero in the unbiased
4054 case. For unsigned comparisons always compare against 1 after
4055 biasing the unbiased result by adding 1. This gives us a way to
4056 represent LTU.
4057 The comparisons in the fixed-point helper library are always
4058 biased. */
4059 x = result;
4060 y = const1_rtx;
4062 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4064 if (unsignedp)
4065 x = plus_constant (ret_mode, result, 1);
4066 else
4067 y = const0_rtx;
4070 *pmode = ret_mode;
4071 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4072 ptest, pmode);
4075 return;
4077 fail:
4078 *ptest = NULL_RTX;
4081 /* Before emitting an insn with code ICODE, make sure that X, which is going
4082 to be used for operand OPNUM of the insn, is converted from mode MODE to
4083 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4084 that it is accepted by the operand predicate. Return the new value. */
4087 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4088 machine_mode wider_mode, int unsignedp)
4090 if (mode != wider_mode)
4091 x = convert_modes (wider_mode, mode, x, unsignedp);
4093 if (!insn_operand_matches (icode, opnum, x))
4095 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4096 if (reload_completed)
4097 return NULL_RTX;
4098 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4099 return NULL_RTX;
4100 x = copy_to_mode_reg (op_mode, x);
4103 return x;
4106 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4107 we can do the branch. */
4109 static void
4110 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label,
4111 profile_probability prob)
4113 machine_mode optab_mode;
4114 enum mode_class mclass;
4115 enum insn_code icode;
4116 rtx_insn *insn;
4118 mclass = GET_MODE_CLASS (mode);
4119 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4120 icode = optab_handler (cbranch_optab, optab_mode);
4122 gcc_assert (icode != CODE_FOR_nothing);
4123 gcc_assert (insn_operand_matches (icode, 0, test));
4124 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4125 XEXP (test, 1), label));
4126 if (prob.initialized_p ()
4127 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4128 && insn
4129 && JUMP_P (insn)
4130 && any_condjump_p (insn)
4131 && !find_reg_note (insn, REG_BR_PROB, 0))
4132 add_reg_br_prob_note (insn, prob);
4135 /* Generate code to compare X with Y so that the condition codes are
4136 set and to jump to LABEL if the condition is true. If X is a
4137 constant and Y is not a constant, then the comparison is swapped to
4138 ensure that the comparison RTL has the canonical form.
4140 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4141 need to be widened. UNSIGNEDP is also used to select the proper
4142 branch condition code.
4144 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4146 MODE is the mode of the inputs (in case they are const_int).
4148 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4149 It will be potentially converted into an unsigned variant based on
4150 UNSIGNEDP to select a proper jump instruction.
4152 PROB is the probability of jumping to LABEL. */
4154 void
4155 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4156 machine_mode mode, int unsignedp, rtx label,
4157 profile_probability prob)
4159 rtx op0 = x, op1 = y;
4160 rtx test;
4162 /* Swap operands and condition to ensure canonical RTL. */
4163 if (swap_commutative_operands_p (x, y)
4164 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4166 op0 = y, op1 = x;
4167 comparison = swap_condition (comparison);
4170 /* If OP0 is still a constant, then both X and Y must be constants
4171 or the opposite comparison is not supported. Force X into a register
4172 to create canonical RTL. */
4173 if (CONSTANT_P (op0))
4174 op0 = force_reg (mode, op0);
4176 if (unsignedp)
4177 comparison = unsigned_condition (comparison);
4179 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4180 &test, &mode);
4181 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4185 /* Emit a library call comparison between floating point X and Y.
4186 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4188 static void
4189 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4190 rtx *ptest, machine_mode *pmode)
4192 enum rtx_code swapped = swap_condition (comparison);
4193 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4194 machine_mode orig_mode = GET_MODE (x);
4195 machine_mode mode;
4196 rtx true_rtx, false_rtx;
4197 rtx value, target, equiv;
4198 rtx_insn *insns;
4199 rtx libfunc = 0;
4200 bool reversed_p = false;
4201 scalar_int_mode cmp_mode = targetm.libgcc_cmp_return_mode ();
4203 FOR_EACH_MODE_FROM (mode, orig_mode)
4205 if (code_to_optab (comparison)
4206 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4207 break;
4209 if (code_to_optab (swapped)
4210 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4212 std::swap (x, y);
4213 comparison = swapped;
4214 break;
4217 if (code_to_optab (reversed)
4218 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4220 comparison = reversed;
4221 reversed_p = true;
4222 break;
4226 gcc_assert (mode != VOIDmode);
4228 if (mode != orig_mode)
4230 x = convert_to_mode (mode, x, 0);
4231 y = convert_to_mode (mode, y, 0);
4234 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4235 the RTL. The allows the RTL optimizers to delete the libcall if the
4236 condition can be determined at compile-time. */
4237 if (comparison == UNORDERED
4238 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4240 true_rtx = const_true_rtx;
4241 false_rtx = const0_rtx;
4243 else
4245 switch (comparison)
4247 case EQ:
4248 true_rtx = const0_rtx;
4249 false_rtx = const_true_rtx;
4250 break;
4252 case NE:
4253 true_rtx = const_true_rtx;
4254 false_rtx = const0_rtx;
4255 break;
4257 case GT:
4258 true_rtx = const1_rtx;
4259 false_rtx = const0_rtx;
4260 break;
4262 case GE:
4263 true_rtx = const0_rtx;
4264 false_rtx = constm1_rtx;
4265 break;
4267 case LT:
4268 true_rtx = constm1_rtx;
4269 false_rtx = const0_rtx;
4270 break;
4272 case LE:
4273 true_rtx = const0_rtx;
4274 false_rtx = const1_rtx;
4275 break;
4277 default:
4278 gcc_unreachable ();
4282 if (comparison == UNORDERED)
4284 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4285 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4286 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4287 temp, const_true_rtx, equiv);
4289 else
4291 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4292 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4293 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4294 equiv, true_rtx, false_rtx);
4297 start_sequence ();
4298 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4299 cmp_mode, x, mode, y, mode);
4300 insns = get_insns ();
4301 end_sequence ();
4303 target = gen_reg_rtx (cmp_mode);
4304 emit_libcall_block (insns, target, value, equiv);
4306 if (comparison == UNORDERED
4307 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4308 || reversed_p)
4309 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4310 else
4311 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4313 *pmode = cmp_mode;
4316 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4318 void
4319 emit_indirect_jump (rtx loc)
4321 if (!targetm.have_indirect_jump ())
4322 sorry ("indirect jumps are not available on this target");
4323 else
4325 class expand_operand ops[1];
4326 create_address_operand (&ops[0], loc);
4327 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4328 emit_barrier ();
4333 /* Emit a conditional move instruction if the machine supports one for that
4334 condition and machine mode.
4336 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4337 the mode to use should they be constants. If it is VOIDmode, they cannot
4338 both be constants.
4340 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4341 should be stored there. MODE is the mode to use should they be constants.
4342 If it is VOIDmode, they cannot both be constants.
4344 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4345 is not supported. */
4348 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4349 machine_mode cmode, rtx op2, rtx op3,
4350 machine_mode mode, int unsignedp)
4352 rtx comparison;
4353 rtx_insn *last;
4354 enum insn_code icode;
4355 enum rtx_code reversed;
4357 /* If the two source operands are identical, that's just a move. */
4359 if (rtx_equal_p (op2, op3))
4361 if (!target)
4362 target = gen_reg_rtx (mode);
4364 emit_move_insn (target, op3);
4365 return target;
4368 /* If one operand is constant, make it the second one. Only do this
4369 if the other operand is not constant as well. */
4371 if (swap_commutative_operands_p (op0, op1))
4373 std::swap (op0, op1);
4374 code = swap_condition (code);
4377 /* get_condition will prefer to generate LT and GT even if the old
4378 comparison was against zero, so undo that canonicalization here since
4379 comparisons against zero are cheaper. */
4380 if (code == LT && op1 == const1_rtx)
4381 code = LE, op1 = const0_rtx;
4382 else if (code == GT && op1 == constm1_rtx)
4383 code = GE, op1 = const0_rtx;
4385 if (cmode == VOIDmode)
4386 cmode = GET_MODE (op0);
4388 enum rtx_code orig_code = code;
4389 bool swapped = false;
4390 if (swap_commutative_operands_p (op2, op3)
4391 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4392 != UNKNOWN))
4394 std::swap (op2, op3);
4395 code = reversed;
4396 swapped = true;
4399 if (mode == VOIDmode)
4400 mode = GET_MODE (op2);
4402 icode = direct_optab_handler (movcc_optab, mode);
4404 if (icode == CODE_FOR_nothing)
4405 return NULL_RTX;
4407 if (!target)
4408 target = gen_reg_rtx (mode);
4410 for (int pass = 0; ; pass++)
4412 code = unsignedp ? unsigned_condition (code) : code;
4413 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4415 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4416 punt and let the caller figure out how best to deal with this
4417 situation. */
4418 if (COMPARISON_P (comparison))
4420 saved_pending_stack_adjust save;
4421 save_pending_stack_adjust (&save);
4422 last = get_last_insn ();
4423 do_pending_stack_adjust ();
4424 machine_mode cmpmode = cmode;
4425 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4426 GET_CODE (comparison), NULL_RTX, unsignedp,
4427 OPTAB_WIDEN, &comparison, &cmpmode);
4428 if (comparison)
4430 class expand_operand ops[4];
4432 create_output_operand (&ops[0], target, mode);
4433 create_fixed_operand (&ops[1], comparison);
4434 create_input_operand (&ops[2], op2, mode);
4435 create_input_operand (&ops[3], op3, mode);
4436 if (maybe_expand_insn (icode, 4, ops))
4438 if (ops[0].value != target)
4439 convert_move (target, ops[0].value, false);
4440 return target;
4443 delete_insns_since (last);
4444 restore_pending_stack_adjust (&save);
4447 if (pass == 1)
4448 return NULL_RTX;
4450 /* If the preferred op2/op3 order is not usable, retry with other
4451 operand order, perhaps it will expand successfully. */
4452 if (swapped)
4453 code = orig_code;
4454 else if ((reversed = reversed_comparison_code_parts (orig_code, op0, op1,
4455 NULL))
4456 != UNKNOWN)
4457 code = reversed;
4458 else
4459 return NULL_RTX;
4460 std::swap (op2, op3);
4465 /* Emit a conditional negate or bitwise complement using the
4466 negcc or notcc optabs if available. Return NULL_RTX if such operations
4467 are not available. Otherwise return the RTX holding the result.
4468 TARGET is the desired destination of the result. COMP is the comparison
4469 on which to negate. If COND is true move into TARGET the negation
4470 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4471 CODE is either NEG or NOT. MODE is the machine mode in which the
4472 operation is performed. */
4475 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4476 machine_mode mode, rtx cond, rtx op1,
4477 rtx op2)
4479 optab op = unknown_optab;
4480 if (code == NEG)
4481 op = negcc_optab;
4482 else if (code == NOT)
4483 op = notcc_optab;
4484 else
4485 gcc_unreachable ();
4487 insn_code icode = direct_optab_handler (op, mode);
4489 if (icode == CODE_FOR_nothing)
4490 return NULL_RTX;
4492 if (!target)
4493 target = gen_reg_rtx (mode);
4495 rtx_insn *last = get_last_insn ();
4496 class expand_operand ops[4];
4498 create_output_operand (&ops[0], target, mode);
4499 create_fixed_operand (&ops[1], cond);
4500 create_input_operand (&ops[2], op1, mode);
4501 create_input_operand (&ops[3], op2, mode);
4503 if (maybe_expand_insn (icode, 4, ops))
4505 if (ops[0].value != target)
4506 convert_move (target, ops[0].value, false);
4508 return target;
4510 delete_insns_since (last);
4511 return NULL_RTX;
4514 /* Emit a conditional addition instruction if the machine supports one for that
4515 condition and machine mode.
4517 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4518 the mode to use should they be constants. If it is VOIDmode, they cannot
4519 both be constants.
4521 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4522 should be stored there. MODE is the mode to use should they be constants.
4523 If it is VOIDmode, they cannot both be constants.
4525 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4526 is not supported. */
4529 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4530 machine_mode cmode, rtx op2, rtx op3,
4531 machine_mode mode, int unsignedp)
4533 rtx comparison;
4534 rtx_insn *last;
4535 enum insn_code icode;
4537 /* If one operand is constant, make it the second one. Only do this
4538 if the other operand is not constant as well. */
4540 if (swap_commutative_operands_p (op0, op1))
4542 std::swap (op0, op1);
4543 code = swap_condition (code);
4546 /* get_condition will prefer to generate LT and GT even if the old
4547 comparison was against zero, so undo that canonicalization here since
4548 comparisons against zero are cheaper. */
4549 if (code == LT && op1 == const1_rtx)
4550 code = LE, op1 = const0_rtx;
4551 else if (code == GT && op1 == constm1_rtx)
4552 code = GE, op1 = const0_rtx;
4554 if (cmode == VOIDmode)
4555 cmode = GET_MODE (op0);
4557 if (mode == VOIDmode)
4558 mode = GET_MODE (op2);
4560 icode = optab_handler (addcc_optab, mode);
4562 if (icode == CODE_FOR_nothing)
4563 return 0;
4565 if (!target)
4566 target = gen_reg_rtx (mode);
4568 code = unsignedp ? unsigned_condition (code) : code;
4569 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4571 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4572 return NULL and let the caller figure out how best to deal with this
4573 situation. */
4574 if (!COMPARISON_P (comparison))
4575 return NULL_RTX;
4577 do_pending_stack_adjust ();
4578 last = get_last_insn ();
4579 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4580 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4581 &comparison, &cmode);
4582 if (comparison)
4584 class expand_operand ops[4];
4586 create_output_operand (&ops[0], target, mode);
4587 create_fixed_operand (&ops[1], comparison);
4588 create_input_operand (&ops[2], op2, mode);
4589 create_input_operand (&ops[3], op3, mode);
4590 if (maybe_expand_insn (icode, 4, ops))
4592 if (ops[0].value != target)
4593 convert_move (target, ops[0].value, false);
4594 return target;
4597 delete_insns_since (last);
4598 return NULL_RTX;
4601 /* These functions attempt to generate an insn body, rather than
4602 emitting the insn, but if the gen function already emits them, we
4603 make no attempt to turn them back into naked patterns. */
4605 /* Generate and return an insn body to add Y to X. */
4607 rtx_insn *
4608 gen_add2_insn (rtx x, rtx y)
4610 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4612 gcc_assert (insn_operand_matches (icode, 0, x));
4613 gcc_assert (insn_operand_matches (icode, 1, x));
4614 gcc_assert (insn_operand_matches (icode, 2, y));
4616 return GEN_FCN (icode) (x, x, y);
4619 /* Generate and return an insn body to add r1 and c,
4620 storing the result in r0. */
4622 rtx_insn *
4623 gen_add3_insn (rtx r0, rtx r1, rtx c)
4625 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4627 if (icode == CODE_FOR_nothing
4628 || !insn_operand_matches (icode, 0, r0)
4629 || !insn_operand_matches (icode, 1, r1)
4630 || !insn_operand_matches (icode, 2, c))
4631 return NULL;
4633 return GEN_FCN (icode) (r0, r1, c);
4637 have_add2_insn (rtx x, rtx y)
4639 enum insn_code icode;
4641 gcc_assert (GET_MODE (x) != VOIDmode);
4643 icode = optab_handler (add_optab, GET_MODE (x));
4645 if (icode == CODE_FOR_nothing)
4646 return 0;
4648 if (!insn_operand_matches (icode, 0, x)
4649 || !insn_operand_matches (icode, 1, x)
4650 || !insn_operand_matches (icode, 2, y))
4651 return 0;
4653 return 1;
4656 /* Generate and return an insn body to add Y to X. */
4658 rtx_insn *
4659 gen_addptr3_insn (rtx x, rtx y, rtx z)
4661 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4663 gcc_assert (insn_operand_matches (icode, 0, x));
4664 gcc_assert (insn_operand_matches (icode, 1, y));
4665 gcc_assert (insn_operand_matches (icode, 2, z));
4667 return GEN_FCN (icode) (x, y, z);
4670 /* Return true if the target implements an addptr pattern and X, Y,
4671 and Z are valid for the pattern predicates. */
4674 have_addptr3_insn (rtx x, rtx y, rtx z)
4676 enum insn_code icode;
4678 gcc_assert (GET_MODE (x) != VOIDmode);
4680 icode = optab_handler (addptr3_optab, GET_MODE (x));
4682 if (icode == CODE_FOR_nothing)
4683 return 0;
4685 if (!insn_operand_matches (icode, 0, x)
4686 || !insn_operand_matches (icode, 1, y)
4687 || !insn_operand_matches (icode, 2, z))
4688 return 0;
4690 return 1;
4693 /* Generate and return an insn body to subtract Y from X. */
4695 rtx_insn *
4696 gen_sub2_insn (rtx x, rtx y)
4698 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4700 gcc_assert (insn_operand_matches (icode, 0, x));
4701 gcc_assert (insn_operand_matches (icode, 1, x));
4702 gcc_assert (insn_operand_matches (icode, 2, y));
4704 return GEN_FCN (icode) (x, x, y);
4707 /* Generate and return an insn body to subtract r1 and c,
4708 storing the result in r0. */
4710 rtx_insn *
4711 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4713 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4715 if (icode == CODE_FOR_nothing
4716 || !insn_operand_matches (icode, 0, r0)
4717 || !insn_operand_matches (icode, 1, r1)
4718 || !insn_operand_matches (icode, 2, c))
4719 return NULL;
4721 return GEN_FCN (icode) (r0, r1, c);
4725 have_sub2_insn (rtx x, rtx y)
4727 enum insn_code icode;
4729 gcc_assert (GET_MODE (x) != VOIDmode);
4731 icode = optab_handler (sub_optab, GET_MODE (x));
4733 if (icode == CODE_FOR_nothing)
4734 return 0;
4736 if (!insn_operand_matches (icode, 0, x)
4737 || !insn_operand_matches (icode, 1, x)
4738 || !insn_operand_matches (icode, 2, y))
4739 return 0;
4741 return 1;
4744 /* Generate the body of an insn to extend Y (with mode MFROM)
4745 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4747 rtx_insn *
4748 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4749 machine_mode mfrom, int unsignedp)
4751 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4752 return GEN_FCN (icode) (x, y);
4755 /* Generate code to convert FROM to floating point
4756 and store in TO. FROM must be fixed point and not VOIDmode.
4757 UNSIGNEDP nonzero means regard FROM as unsigned.
4758 Normally this is done by correcting the final value
4759 if it is negative. */
4761 void
4762 expand_float (rtx to, rtx from, int unsignedp)
4764 enum insn_code icode;
4765 rtx target = to;
4766 scalar_mode from_mode, to_mode;
4767 machine_mode fmode, imode;
4768 bool can_do_signed = false;
4770 /* Crash now, because we won't be able to decide which mode to use. */
4771 gcc_assert (GET_MODE (from) != VOIDmode);
4773 /* Look for an insn to do the conversion. Do it in the specified
4774 modes if possible; otherwise convert either input, output or both to
4775 wider mode. If the integer mode is wider than the mode of FROM,
4776 we can do the conversion signed even if the input is unsigned. */
4778 FOR_EACH_MODE_FROM (fmode, GET_MODE (to))
4779 FOR_EACH_MODE_FROM (imode, GET_MODE (from))
4781 int doing_unsigned = unsignedp;
4783 if (fmode != GET_MODE (to)
4784 && (significand_size (fmode)
4785 < GET_MODE_UNIT_PRECISION (GET_MODE (from))))
4786 continue;
4788 icode = can_float_p (fmode, imode, unsignedp);
4789 if (icode == CODE_FOR_nothing && unsignedp)
4791 enum insn_code scode = can_float_p (fmode, imode, 0);
4792 if (scode != CODE_FOR_nothing)
4793 can_do_signed = true;
4794 if (imode != GET_MODE (from))
4795 icode = scode, doing_unsigned = 0;
4798 if (icode != CODE_FOR_nothing)
4800 if (imode != GET_MODE (from))
4801 from = convert_to_mode (imode, from, unsignedp);
4803 if (fmode != GET_MODE (to))
4804 target = gen_reg_rtx (fmode);
4806 emit_unop_insn (icode, target, from,
4807 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4809 if (target != to)
4810 convert_move (to, target, 0);
4811 return;
4815 /* Unsigned integer, and no way to convert directly. Convert as signed,
4816 then unconditionally adjust the result. */
4817 if (unsignedp
4818 && can_do_signed
4819 && is_a <scalar_mode> (GET_MODE (to), &to_mode)
4820 && is_a <scalar_mode> (GET_MODE (from), &from_mode))
4822 opt_scalar_mode fmode_iter;
4823 rtx_code_label *label = gen_label_rtx ();
4824 rtx temp;
4825 REAL_VALUE_TYPE offset;
4827 /* Look for a usable floating mode FMODE wider than the source and at
4828 least as wide as the target. Using FMODE will avoid rounding woes
4829 with unsigned values greater than the signed maximum value. */
4831 FOR_EACH_MODE_FROM (fmode_iter, to_mode)
4833 scalar_mode fmode = fmode_iter.require ();
4834 if (GET_MODE_PRECISION (from_mode) < GET_MODE_BITSIZE (fmode)
4835 && can_float_p (fmode, from_mode, 0) != CODE_FOR_nothing)
4836 break;
4839 if (!fmode_iter.exists (&fmode))
4841 /* There is no such mode. Pretend the target is wide enough. */
4842 fmode = to_mode;
4844 /* Avoid double-rounding when TO is narrower than FROM. */
4845 if ((significand_size (fmode) + 1)
4846 < GET_MODE_PRECISION (from_mode))
4848 rtx temp1;
4849 rtx_code_label *neglabel = gen_label_rtx ();
4851 /* Don't use TARGET if it isn't a register, is a hard register,
4852 or is the wrong mode. */
4853 if (!REG_P (target)
4854 || REGNO (target) < FIRST_PSEUDO_REGISTER
4855 || GET_MODE (target) != fmode)
4856 target = gen_reg_rtx (fmode);
4858 imode = from_mode;
4859 do_pending_stack_adjust ();
4861 /* Test whether the sign bit is set. */
4862 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4863 0, neglabel);
4865 /* The sign bit is not set. Convert as signed. */
4866 expand_float (target, from, 0);
4867 emit_jump_insn (targetm.gen_jump (label));
4868 emit_barrier ();
4870 /* The sign bit is set.
4871 Convert to a usable (positive signed) value by shifting right
4872 one bit, while remembering if a nonzero bit was shifted
4873 out; i.e., compute (from & 1) | (from >> 1). */
4875 emit_label (neglabel);
4876 temp = expand_binop (imode, and_optab, from, const1_rtx,
4877 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4878 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4879 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4880 OPTAB_LIB_WIDEN);
4881 expand_float (target, temp, 0);
4883 /* Multiply by 2 to undo the shift above. */
4884 temp = expand_binop (fmode, add_optab, target, target,
4885 target, 0, OPTAB_LIB_WIDEN);
4886 if (temp != target)
4887 emit_move_insn (target, temp);
4889 do_pending_stack_adjust ();
4890 emit_label (label);
4891 goto done;
4895 /* If we are about to do some arithmetic to correct for an
4896 unsigned operand, do it in a pseudo-register. */
4898 if (to_mode != fmode
4899 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4900 target = gen_reg_rtx (fmode);
4902 /* Convert as signed integer to floating. */
4903 expand_float (target, from, 0);
4905 /* If FROM is negative (and therefore TO is negative),
4906 correct its value by 2**bitwidth. */
4908 do_pending_stack_adjust ();
4909 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, from_mode,
4910 0, label);
4913 real_2expN (&offset, GET_MODE_PRECISION (from_mode), fmode);
4914 temp = expand_binop (fmode, add_optab, target,
4915 const_double_from_real_value (offset, fmode),
4916 target, 0, OPTAB_LIB_WIDEN);
4917 if (temp != target)
4918 emit_move_insn (target, temp);
4920 do_pending_stack_adjust ();
4921 emit_label (label);
4922 goto done;
4925 /* No hardware instruction available; call a library routine. */
4927 rtx libfunc;
4928 rtx_insn *insns;
4929 rtx value;
4930 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4932 if (is_narrower_int_mode (GET_MODE (from), SImode))
4933 from = convert_to_mode (SImode, from, unsignedp);
4935 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4936 gcc_assert (libfunc);
4938 start_sequence ();
4940 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4941 GET_MODE (to), from, GET_MODE (from));
4942 insns = get_insns ();
4943 end_sequence ();
4945 emit_libcall_block (insns, target, value,
4946 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4947 GET_MODE (to), from));
4950 done:
4952 /* Copy result to requested destination
4953 if we have been computing in a temp location. */
4955 if (target != to)
4957 if (GET_MODE (target) == GET_MODE (to))
4958 emit_move_insn (to, target);
4959 else
4960 convert_move (to, target, 0);
4964 /* Generate code to convert FROM to fixed point and store in TO. FROM
4965 must be floating point. */
4967 void
4968 expand_fix (rtx to, rtx from, int unsignedp)
4970 enum insn_code icode;
4971 rtx target = to;
4972 machine_mode fmode, imode;
4973 opt_scalar_mode fmode_iter;
4974 bool must_trunc = false;
4976 /* We first try to find a pair of modes, one real and one integer, at
4977 least as wide as FROM and TO, respectively, in which we can open-code
4978 this conversion. If the integer mode is wider than the mode of TO,
4979 we can do the conversion either signed or unsigned. */
4981 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
4982 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
4984 int doing_unsigned = unsignedp;
4986 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4987 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4988 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4990 if (icode != CODE_FOR_nothing)
4992 rtx_insn *last = get_last_insn ();
4993 if (fmode != GET_MODE (from))
4994 from = convert_to_mode (fmode, from, 0);
4996 if (must_trunc)
4998 rtx temp = gen_reg_rtx (GET_MODE (from));
4999 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
5000 temp, 0);
5003 if (imode != GET_MODE (to))
5004 target = gen_reg_rtx (imode);
5006 if (maybe_emit_unop_insn (icode, target, from,
5007 doing_unsigned ? UNSIGNED_FIX : FIX))
5009 if (target != to)
5010 convert_move (to, target, unsignedp);
5011 return;
5013 delete_insns_since (last);
5017 /* For an unsigned conversion, there is one more way to do it.
5018 If we have a signed conversion, we generate code that compares
5019 the real value to the largest representable positive number. If if
5020 is smaller, the conversion is done normally. Otherwise, subtract
5021 one plus the highest signed number, convert, and add it back.
5023 We only need to check all real modes, since we know we didn't find
5024 anything with a wider integer mode.
5026 This code used to extend FP value into mode wider than the destination.
5027 This is needed for decimal float modes which cannot accurately
5028 represent one plus the highest signed number of the same size, but
5029 not for binary modes. Consider, for instance conversion from SFmode
5030 into DImode.
5032 The hot path through the code is dealing with inputs smaller than 2^63
5033 and doing just the conversion, so there is no bits to lose.
5035 In the other path we know the value is positive in the range 2^63..2^64-1
5036 inclusive. (as for other input overflow happens and result is undefined)
5037 So we know that the most important bit set in mantissa corresponds to
5038 2^63. The subtraction of 2^63 should not generate any rounding as it
5039 simply clears out that bit. The rest is trivial. */
5041 scalar_int_mode to_mode;
5042 if (unsignedp
5043 && is_a <scalar_int_mode> (GET_MODE (to), &to_mode)
5044 && HWI_COMPUTABLE_MODE_P (to_mode))
5045 FOR_EACH_MODE_FROM (fmode_iter, as_a <scalar_mode> (GET_MODE (from)))
5047 scalar_mode fmode = fmode_iter.require ();
5048 if (CODE_FOR_nothing != can_fix_p (to_mode, fmode,
5049 0, &must_trunc)
5050 && (!DECIMAL_FLOAT_MODE_P (fmode)
5051 || (GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (to_mode))))
5053 int bitsize;
5054 REAL_VALUE_TYPE offset;
5055 rtx limit;
5056 rtx_code_label *lab1, *lab2;
5057 rtx_insn *insn;
5059 bitsize = GET_MODE_PRECISION (to_mode);
5060 real_2expN (&offset, bitsize - 1, fmode);
5061 limit = const_double_from_real_value (offset, fmode);
5062 lab1 = gen_label_rtx ();
5063 lab2 = gen_label_rtx ();
5065 if (fmode != GET_MODE (from))
5066 from = convert_to_mode (fmode, from, 0);
5068 /* See if we need to do the subtraction. */
5069 do_pending_stack_adjust ();
5070 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX,
5071 GET_MODE (from), 0, lab1);
5073 /* If not, do the signed "fix" and branch around fixup code. */
5074 expand_fix (to, from, 0);
5075 emit_jump_insn (targetm.gen_jump (lab2));
5076 emit_barrier ();
5078 /* Otherwise, subtract 2**(N-1), convert to signed number,
5079 then add 2**(N-1). Do the addition using XOR since this
5080 will often generate better code. */
5081 emit_label (lab1);
5082 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5083 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5084 expand_fix (to, target, 0);
5085 target = expand_binop (to_mode, xor_optab, to,
5086 gen_int_mode
5087 (HOST_WIDE_INT_1 << (bitsize - 1),
5088 to_mode),
5089 to, 1, OPTAB_LIB_WIDEN);
5091 if (target != to)
5092 emit_move_insn (to, target);
5094 emit_label (lab2);
5096 if (optab_handler (mov_optab, to_mode) != CODE_FOR_nothing)
5098 /* Make a place for a REG_NOTE and add it. */
5099 insn = emit_move_insn (to, to);
5100 set_dst_reg_note (insn, REG_EQUAL,
5101 gen_rtx_fmt_e (UNSIGNED_FIX, to_mode,
5102 copy_rtx (from)),
5103 to);
5106 return;
5110 /* We can't do it with an insn, so use a library call. But first ensure
5111 that the mode of TO is at least as wide as SImode, since those are the
5112 only library calls we know about. */
5114 if (is_narrower_int_mode (GET_MODE (to), SImode))
5116 target = gen_reg_rtx (SImode);
5118 expand_fix (target, from, unsignedp);
5120 else
5122 rtx_insn *insns;
5123 rtx value;
5124 rtx libfunc;
5126 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5127 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5128 gcc_assert (libfunc);
5130 start_sequence ();
5132 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5133 GET_MODE (to), from, GET_MODE (from));
5134 insns = get_insns ();
5135 end_sequence ();
5137 emit_libcall_block (insns, target, value,
5138 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5139 GET_MODE (to), from));
5142 if (target != to)
5144 if (GET_MODE (to) == GET_MODE (target))
5145 emit_move_insn (to, target);
5146 else
5147 convert_move (to, target, 0);
5152 /* Promote integer arguments for a libcall if necessary.
5153 emit_library_call_value cannot do the promotion because it does not
5154 know if it should do a signed or unsigned promotion. This is because
5155 there are no tree types defined for libcalls. */
5157 static rtx
5158 prepare_libcall_arg (rtx arg, int uintp)
5160 scalar_int_mode mode;
5161 machine_mode arg_mode;
5162 if (is_a <scalar_int_mode> (GET_MODE (arg), &mode))
5164 /* If we need to promote the integer function argument we need to do
5165 it here instead of inside emit_library_call_value because in
5166 emit_library_call_value we don't know if we should do a signed or
5167 unsigned promotion. */
5169 int unsigned_p = 0;
5170 arg_mode = promote_function_mode (NULL_TREE, mode,
5171 &unsigned_p, NULL_TREE, 0);
5172 if (arg_mode != mode)
5173 return convert_to_mode (arg_mode, arg, uintp);
5175 return arg;
5178 /* Generate code to convert FROM or TO a fixed-point.
5179 If UINTP is true, either TO or FROM is an unsigned integer.
5180 If SATP is true, we need to saturate the result. */
5182 void
5183 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5185 machine_mode to_mode = GET_MODE (to);
5186 machine_mode from_mode = GET_MODE (from);
5187 convert_optab tab;
5188 enum rtx_code this_code;
5189 enum insn_code code;
5190 rtx_insn *insns;
5191 rtx value;
5192 rtx libfunc;
5194 if (to_mode == from_mode)
5196 emit_move_insn (to, from);
5197 return;
5200 if (uintp)
5202 tab = satp ? satfractuns_optab : fractuns_optab;
5203 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5205 else
5207 tab = satp ? satfract_optab : fract_optab;
5208 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5210 code = convert_optab_handler (tab, to_mode, from_mode);
5211 if (code != CODE_FOR_nothing)
5213 emit_unop_insn (code, to, from, this_code);
5214 return;
5217 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5218 gcc_assert (libfunc);
5220 from = prepare_libcall_arg (from, uintp);
5221 from_mode = GET_MODE (from);
5223 start_sequence ();
5224 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5225 from, from_mode);
5226 insns = get_insns ();
5227 end_sequence ();
5229 emit_libcall_block (insns, to, value,
5230 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5233 /* Generate code to convert FROM to fixed point and store in TO. FROM
5234 must be floating point, TO must be signed. Use the conversion optab
5235 TAB to do the conversion. */
5237 bool
5238 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5240 enum insn_code icode;
5241 rtx target = to;
5242 machine_mode fmode, imode;
5244 /* We first try to find a pair of modes, one real and one integer, at
5245 least as wide as FROM and TO, respectively, in which we can open-code
5246 this conversion. If the integer mode is wider than the mode of TO,
5247 we can do the conversion either signed or unsigned. */
5249 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
5250 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
5252 icode = convert_optab_handler (tab, imode, fmode);
5253 if (icode != CODE_FOR_nothing)
5255 rtx_insn *last = get_last_insn ();
5256 if (fmode != GET_MODE (from))
5257 from = convert_to_mode (fmode, from, 0);
5259 if (imode != GET_MODE (to))
5260 target = gen_reg_rtx (imode);
5262 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5264 delete_insns_since (last);
5265 continue;
5267 if (target != to)
5268 convert_move (to, target, 0);
5269 return true;
5273 return false;
5276 /* Report whether we have an instruction to perform the operation
5277 specified by CODE on operands of mode MODE. */
5279 have_insn_for (enum rtx_code code, machine_mode mode)
5281 return (code_to_optab (code)
5282 && (optab_handler (code_to_optab (code), mode)
5283 != CODE_FOR_nothing));
5286 /* Print information about the current contents of the optabs on
5287 STDERR. */
5289 DEBUG_FUNCTION void
5290 debug_optab_libfuncs (void)
5292 int i, j, k;
5294 /* Dump the arithmetic optabs. */
5295 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5296 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5298 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5299 if (l)
5301 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5302 fprintf (stderr, "%s\t%s:\t%s\n",
5303 GET_RTX_NAME (optab_to_code ((optab) i)),
5304 GET_MODE_NAME (j),
5305 XSTR (l, 0));
5309 /* Dump the conversion optabs. */
5310 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5311 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5312 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5314 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5315 (machine_mode) k);
5316 if (l)
5318 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5319 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5320 GET_RTX_NAME (optab_to_code ((optab) i)),
5321 GET_MODE_NAME (j),
5322 GET_MODE_NAME (k),
5323 XSTR (l, 0));
5328 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5329 CODE. Return 0 on failure. */
5331 rtx_insn *
5332 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5334 machine_mode mode = GET_MODE (op1);
5335 enum insn_code icode;
5336 rtx_insn *insn;
5337 rtx trap_rtx;
5339 if (mode == VOIDmode)
5340 return 0;
5342 icode = optab_handler (ctrap_optab, mode);
5343 if (icode == CODE_FOR_nothing)
5344 return 0;
5346 /* Some targets only accept a zero trap code. */
5347 if (!insn_operand_matches (icode, 3, tcode))
5348 return 0;
5350 do_pending_stack_adjust ();
5351 start_sequence ();
5352 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5353 &trap_rtx, &mode);
5354 if (!trap_rtx)
5355 insn = NULL;
5356 else
5357 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5358 tcode);
5360 /* If that failed, then give up. */
5361 if (insn == 0)
5363 end_sequence ();
5364 return 0;
5367 emit_insn (insn);
5368 insn = get_insns ();
5369 end_sequence ();
5370 return insn;
5373 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5374 or unsigned operation code. */
5376 enum rtx_code
5377 get_rtx_code (enum tree_code tcode, bool unsignedp)
5379 enum rtx_code code;
5380 switch (tcode)
5382 case EQ_EXPR:
5383 code = EQ;
5384 break;
5385 case NE_EXPR:
5386 code = NE;
5387 break;
5388 case LT_EXPR:
5389 code = unsignedp ? LTU : LT;
5390 break;
5391 case LE_EXPR:
5392 code = unsignedp ? LEU : LE;
5393 break;
5394 case GT_EXPR:
5395 code = unsignedp ? GTU : GT;
5396 break;
5397 case GE_EXPR:
5398 code = unsignedp ? GEU : GE;
5399 break;
5401 case UNORDERED_EXPR:
5402 code = UNORDERED;
5403 break;
5404 case ORDERED_EXPR:
5405 code = ORDERED;
5406 break;
5407 case UNLT_EXPR:
5408 code = UNLT;
5409 break;
5410 case UNLE_EXPR:
5411 code = UNLE;
5412 break;
5413 case UNGT_EXPR:
5414 code = UNGT;
5415 break;
5416 case UNGE_EXPR:
5417 code = UNGE;
5418 break;
5419 case UNEQ_EXPR:
5420 code = UNEQ;
5421 break;
5422 case LTGT_EXPR:
5423 code = LTGT;
5424 break;
5426 case BIT_AND_EXPR:
5427 code = AND;
5428 break;
5430 case BIT_IOR_EXPR:
5431 code = IOR;
5432 break;
5434 default:
5435 gcc_unreachable ();
5437 return code;
5440 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5441 select signed or unsigned operators. OPNO holds the index of the
5442 first comparison operand for insn ICODE. Do not generate the
5443 compare instruction itself. */
5446 vector_compare_rtx (machine_mode cmp_mode, enum tree_code tcode,
5447 tree t_op0, tree t_op1, bool unsignedp,
5448 enum insn_code icode, unsigned int opno)
5450 class expand_operand ops[2];
5451 rtx rtx_op0, rtx_op1;
5452 machine_mode m0, m1;
5453 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5455 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5457 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5458 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5459 cases, use the original mode. */
5460 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5461 EXPAND_STACK_PARM);
5462 m0 = GET_MODE (rtx_op0);
5463 if (m0 == VOIDmode)
5464 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5466 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5467 EXPAND_STACK_PARM);
5468 m1 = GET_MODE (rtx_op1);
5469 if (m1 == VOIDmode)
5470 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5472 create_input_operand (&ops[0], rtx_op0, m0);
5473 create_input_operand (&ops[1], rtx_op1, m1);
5474 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5475 gcc_unreachable ();
5476 return gen_rtx_fmt_ee (rcode, cmp_mode, ops[0].value, ops[1].value);
5479 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5480 the first vec_perm operand, assuming the second operand (for left shift
5481 first operand) is a constant vector of zeros. Return the shift distance
5482 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
5483 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
5484 shift or vec_shl_optab for left shift. */
5485 static rtx
5486 shift_amt_for_vec_perm_mask (machine_mode mode, const vec_perm_indices &sel,
5487 optab shift_optab)
5489 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (mode);
5490 poly_int64 first = sel[0];
5491 if (maybe_ge (sel[0], GET_MODE_NUNITS (mode)))
5492 return NULL_RTX;
5494 if (shift_optab == vec_shl_optab)
5496 unsigned int nelt;
5497 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5498 return NULL_RTX;
5499 unsigned firstidx = 0;
5500 for (unsigned int i = 0; i < nelt; i++)
5502 if (known_eq (sel[i], nelt))
5504 if (i == 0 || firstidx)
5505 return NULL_RTX;
5506 firstidx = i;
5508 else if (firstidx
5509 ? maybe_ne (sel[i], nelt + i - firstidx)
5510 : maybe_ge (sel[i], nelt))
5511 return NULL_RTX;
5514 if (firstidx == 0)
5515 return NULL_RTX;
5516 first = firstidx;
5518 else if (!sel.series_p (0, 1, first, 1))
5520 unsigned int nelt;
5521 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5522 return NULL_RTX;
5523 for (unsigned int i = 1; i < nelt; i++)
5525 poly_int64 expected = i + first;
5526 /* Indices into the second vector are all equivalent. */
5527 if (maybe_lt (sel[i], nelt)
5528 ? maybe_ne (sel[i], expected)
5529 : maybe_lt (expected, nelt))
5530 return NULL_RTX;
5534 return gen_int_shift_amount (mode, first * bitsize);
5537 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5539 static rtx
5540 expand_vec_perm_1 (enum insn_code icode, rtx target,
5541 rtx v0, rtx v1, rtx sel)
5543 machine_mode tmode = GET_MODE (target);
5544 machine_mode smode = GET_MODE (sel);
5545 class expand_operand ops[4];
5547 gcc_assert (GET_MODE_CLASS (smode) == MODE_VECTOR_INT
5548 || related_int_vector_mode (tmode).require () == smode);
5549 create_output_operand (&ops[0], target, tmode);
5550 create_input_operand (&ops[3], sel, smode);
5552 /* Make an effort to preserve v0 == v1. The target expander is able to
5553 rely on this to determine if we're permuting a single input operand. */
5554 if (rtx_equal_p (v0, v1))
5556 if (!insn_operand_matches (icode, 1, v0))
5557 v0 = force_reg (tmode, v0);
5558 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5559 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5561 create_fixed_operand (&ops[1], v0);
5562 create_fixed_operand (&ops[2], v0);
5564 else
5566 create_input_operand (&ops[1], v0, tmode);
5567 create_input_operand (&ops[2], v1, tmode);
5570 if (maybe_expand_insn (icode, 4, ops))
5571 return ops[0].value;
5572 return NULL_RTX;
5575 /* Implement a permutation of vectors v0 and v1 using the permutation
5576 vector in SEL and return the result. Use TARGET to hold the result
5577 if nonnull and convenient.
5579 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5580 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5581 to have a particular mode. */
5584 expand_vec_perm_const (machine_mode mode, rtx v0, rtx v1,
5585 const vec_perm_builder &sel, machine_mode sel_mode,
5586 rtx target)
5588 if (!target || !register_operand (target, mode))
5589 target = gen_reg_rtx (mode);
5591 /* Set QIMODE to a different vector mode with byte elements.
5592 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5593 machine_mode qimode;
5594 if (!qimode_for_vec_perm (mode).exists (&qimode))
5595 qimode = VOIDmode;
5597 rtx_insn *last = get_last_insn ();
5599 bool single_arg_p = rtx_equal_p (v0, v1);
5600 /* Always specify two input vectors here and leave the target to handle
5601 cases in which the inputs are equal. Not all backends can cope with
5602 the single-input representation when testing for a double-input
5603 target instruction. */
5604 vec_perm_indices indices (sel, 2, GET_MODE_NUNITS (mode));
5606 /* See if this can be handled with a vec_shr or vec_shl. We only do this
5607 if the second (for vec_shr) or first (for vec_shl) vector is all
5608 zeroes. */
5609 insn_code shift_code = CODE_FOR_nothing;
5610 insn_code shift_code_qi = CODE_FOR_nothing;
5611 optab shift_optab = unknown_optab;
5612 rtx v2 = v0;
5613 if (v1 == CONST0_RTX (GET_MODE (v1)))
5614 shift_optab = vec_shr_optab;
5615 else if (v0 == CONST0_RTX (GET_MODE (v0)))
5617 shift_optab = vec_shl_optab;
5618 v2 = v1;
5620 if (shift_optab != unknown_optab)
5622 shift_code = optab_handler (shift_optab, mode);
5623 shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5624 ? optab_handler (shift_optab, qimode)
5625 : CODE_FOR_nothing);
5627 if (shift_code != CODE_FOR_nothing || shift_code_qi != CODE_FOR_nothing)
5629 rtx shift_amt = shift_amt_for_vec_perm_mask (mode, indices, shift_optab);
5630 if (shift_amt)
5632 class expand_operand ops[3];
5633 if (shift_amt == const0_rtx)
5634 return v2;
5635 if (shift_code != CODE_FOR_nothing)
5637 create_output_operand (&ops[0], target, mode);
5638 create_input_operand (&ops[1], v2, mode);
5639 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5640 if (maybe_expand_insn (shift_code, 3, ops))
5641 return ops[0].value;
5643 if (shift_code_qi != CODE_FOR_nothing)
5645 rtx tmp = gen_reg_rtx (qimode);
5646 create_output_operand (&ops[0], tmp, qimode);
5647 create_input_operand (&ops[1], gen_lowpart (qimode, v2), qimode);
5648 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5649 if (maybe_expand_insn (shift_code_qi, 3, ops))
5650 return gen_lowpart (mode, ops[0].value);
5655 if (targetm.vectorize.vec_perm_const != NULL)
5657 v0 = force_reg (mode, v0);
5658 if (single_arg_p)
5659 v1 = v0;
5660 else
5661 v1 = force_reg (mode, v1);
5663 if (targetm.vectorize.vec_perm_const (mode, target, v0, v1, indices))
5664 return target;
5667 /* Fall back to a constant byte-based permutation. */
5668 vec_perm_indices qimode_indices;
5669 rtx target_qi = NULL_RTX, v0_qi = NULL_RTX, v1_qi = NULL_RTX;
5670 if (qimode != VOIDmode)
5672 qimode_indices.new_expanded_vector (indices, GET_MODE_UNIT_SIZE (mode));
5673 target_qi = gen_reg_rtx (qimode);
5674 v0_qi = gen_lowpart (qimode, v0);
5675 v1_qi = gen_lowpart (qimode, v1);
5676 if (targetm.vectorize.vec_perm_const != NULL
5677 && targetm.vectorize.vec_perm_const (qimode, target_qi, v0_qi,
5678 v1_qi, qimode_indices))
5679 return gen_lowpart (mode, target_qi);
5682 /* Otherwise expand as a fully variable permuation. */
5684 /* The optabs are only defined for selectors with the same width
5685 as the values being permuted. */
5686 machine_mode required_sel_mode;
5687 if (!related_int_vector_mode (mode).exists (&required_sel_mode))
5689 delete_insns_since (last);
5690 return NULL_RTX;
5693 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5694 If that isn't the mode we want then we need to prove that using
5695 REQUIRED_SEL_MODE is OK. */
5696 if (sel_mode != required_sel_mode)
5698 if (!selector_fits_mode_p (required_sel_mode, indices))
5700 delete_insns_since (last);
5701 return NULL_RTX;
5703 sel_mode = required_sel_mode;
5706 insn_code icode = direct_optab_handler (vec_perm_optab, mode);
5707 if (icode != CODE_FOR_nothing)
5709 rtx sel_rtx = vec_perm_indices_to_rtx (sel_mode, indices);
5710 rtx tmp = expand_vec_perm_1 (icode, target, v0, v1, sel_rtx);
5711 if (tmp)
5712 return tmp;
5715 if (qimode != VOIDmode
5716 && selector_fits_mode_p (qimode, qimode_indices))
5718 icode = direct_optab_handler (vec_perm_optab, qimode);
5719 if (icode != CODE_FOR_nothing)
5721 rtx sel_qi = vec_perm_indices_to_rtx (qimode, qimode_indices);
5722 rtx tmp = expand_vec_perm_1 (icode, target_qi, v0_qi, v1_qi, sel_qi);
5723 if (tmp)
5724 return gen_lowpart (mode, tmp);
5728 delete_insns_since (last);
5729 return NULL_RTX;
5732 /* Implement a permutation of vectors v0 and v1 using the permutation
5733 vector in SEL and return the result. Use TARGET to hold the result
5734 if nonnull and convenient.
5736 MODE is the mode of the vectors being permuted (V0 and V1).
5737 SEL must have the integer equivalent of MODE and is known to be
5738 unsuitable for permutes with a constant permutation vector. */
5741 expand_vec_perm_var (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5743 enum insn_code icode;
5744 unsigned int i, u;
5745 rtx tmp, sel_qi;
5747 u = GET_MODE_UNIT_SIZE (mode);
5749 if (!target || GET_MODE (target) != mode)
5750 target = gen_reg_rtx (mode);
5752 icode = direct_optab_handler (vec_perm_optab, mode);
5753 if (icode != CODE_FOR_nothing)
5755 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5756 if (tmp)
5757 return tmp;
5760 /* As a special case to aid several targets, lower the element-based
5761 permutation to a byte-based permutation and try again. */
5762 machine_mode qimode;
5763 if (!qimode_for_vec_perm (mode).exists (&qimode)
5764 || maybe_gt (GET_MODE_NUNITS (qimode), GET_MODE_MASK (QImode) + 1))
5765 return NULL_RTX;
5766 icode = direct_optab_handler (vec_perm_optab, qimode);
5767 if (icode == CODE_FOR_nothing)
5768 return NULL_RTX;
5770 /* Multiply each element by its byte size. */
5771 machine_mode selmode = GET_MODE (sel);
5772 if (u == 2)
5773 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5774 NULL, 0, OPTAB_DIRECT);
5775 else
5776 sel = expand_simple_binop (selmode, ASHIFT, sel,
5777 gen_int_shift_amount (selmode, exact_log2 (u)),
5778 NULL, 0, OPTAB_DIRECT);
5779 gcc_assert (sel != NULL);
5781 /* Broadcast the low byte each element into each of its bytes.
5782 The encoding has U interleaved stepped patterns, one for each
5783 byte of an element. */
5784 vec_perm_builder const_sel (GET_MODE_SIZE (mode), u, 3);
5785 unsigned int low_byte_in_u = BYTES_BIG_ENDIAN ? u - 1 : 0;
5786 for (i = 0; i < 3; ++i)
5787 for (unsigned int j = 0; j < u; ++j)
5788 const_sel.quick_push (i * u + low_byte_in_u);
5789 sel = gen_lowpart (qimode, sel);
5790 sel = expand_vec_perm_const (qimode, sel, sel, const_sel, qimode, NULL);
5791 gcc_assert (sel != NULL);
5793 /* Add the byte offset to each byte element. */
5794 /* Note that the definition of the indicies here is memory ordering,
5795 so there should be no difference between big and little endian. */
5796 rtx_vector_builder byte_indices (qimode, u, 1);
5797 for (i = 0; i < u; ++i)
5798 byte_indices.quick_push (GEN_INT (i));
5799 tmp = byte_indices.build ();
5800 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5801 sel, 0, OPTAB_DIRECT);
5802 gcc_assert (sel_qi != NULL);
5804 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5805 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5806 gen_lowpart (qimode, v1), sel_qi);
5807 if (tmp)
5808 tmp = gen_lowpart (mode, tmp);
5809 return tmp;
5812 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5813 Use TARGET for the result if nonnull and convenient. */
5816 expand_vec_series_expr (machine_mode vmode, rtx op0, rtx op1, rtx target)
5818 class expand_operand ops[3];
5819 enum insn_code icode;
5820 machine_mode emode = GET_MODE_INNER (vmode);
5822 icode = direct_optab_handler (vec_series_optab, vmode);
5823 gcc_assert (icode != CODE_FOR_nothing);
5825 create_output_operand (&ops[0], target, vmode);
5826 create_input_operand (&ops[1], op0, emode);
5827 create_input_operand (&ops[2], op1, emode);
5829 expand_insn (icode, 3, ops);
5830 return ops[0].value;
5833 /* Generate insns for a vector comparison into a mask. */
5836 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5838 class expand_operand ops[4];
5839 enum insn_code icode;
5840 rtx comparison;
5841 machine_mode mask_mode = TYPE_MODE (type);
5842 machine_mode vmode;
5843 bool unsignedp;
5844 tree op0a, op0b;
5845 enum tree_code tcode;
5847 op0a = TREE_OPERAND (exp, 0);
5848 op0b = TREE_OPERAND (exp, 1);
5849 tcode = TREE_CODE (exp);
5851 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5852 vmode = TYPE_MODE (TREE_TYPE (op0a));
5854 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5855 if (icode == CODE_FOR_nothing)
5857 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5858 icode = get_vec_cmp_eq_icode (vmode, mask_mode);
5859 if (icode == CODE_FOR_nothing)
5860 return 0;
5863 comparison = vector_compare_rtx (mask_mode, tcode, op0a, op0b,
5864 unsignedp, icode, 2);
5865 create_output_operand (&ops[0], target, mask_mode);
5866 create_fixed_operand (&ops[1], comparison);
5867 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5868 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5869 expand_insn (icode, 4, ops);
5870 return ops[0].value;
5873 /* Expand a highpart multiply. */
5876 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5877 rtx target, bool uns_p)
5879 class expand_operand eops[3];
5880 enum insn_code icode;
5881 int method, i;
5882 machine_mode wmode;
5883 rtx m1, m2;
5884 optab tab1, tab2;
5886 method = can_mult_highpart_p (mode, uns_p);
5887 switch (method)
5889 case 0:
5890 return NULL_RTX;
5891 case 1:
5892 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5893 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5894 OPTAB_LIB_WIDEN);
5895 case 2:
5896 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5897 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5898 break;
5899 case 3:
5900 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5901 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5902 if (BYTES_BIG_ENDIAN)
5903 std::swap (tab1, tab2);
5904 break;
5905 default:
5906 gcc_unreachable ();
5909 icode = optab_handler (tab1, mode);
5910 wmode = insn_data[icode].operand[0].mode;
5911 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode),
5912 GET_MODE_NUNITS (mode)));
5913 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode), GET_MODE_SIZE (mode)));
5915 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5916 create_input_operand (&eops[1], op0, mode);
5917 create_input_operand (&eops[2], op1, mode);
5918 expand_insn (icode, 3, eops);
5919 m1 = gen_lowpart (mode, eops[0].value);
5921 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5922 create_input_operand (&eops[1], op0, mode);
5923 create_input_operand (&eops[2], op1, mode);
5924 expand_insn (optab_handler (tab2, mode), 3, eops);
5925 m2 = gen_lowpart (mode, eops[0].value);
5927 vec_perm_builder sel;
5928 if (method == 2)
5930 /* The encoding has 2 interleaved stepped patterns. */
5931 sel.new_vector (GET_MODE_NUNITS (mode), 2, 3);
5932 for (i = 0; i < 6; ++i)
5933 sel.quick_push (!BYTES_BIG_ENDIAN + (i & ~1)
5934 + ((i & 1) ? GET_MODE_NUNITS (mode) : 0));
5936 else
5938 /* The encoding has a single interleaved stepped pattern. */
5939 sel.new_vector (GET_MODE_NUNITS (mode), 1, 3);
5940 for (i = 0; i < 3; ++i)
5941 sel.quick_push (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
5944 return expand_vec_perm_const (mode, m1, m2, sel, BLKmode, target);
5947 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5948 pattern. */
5950 static void
5951 find_cc_set (rtx x, const_rtx pat, void *data)
5953 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
5954 && GET_CODE (pat) == SET)
5956 rtx *p_cc_reg = (rtx *) data;
5957 gcc_assert (!*p_cc_reg);
5958 *p_cc_reg = x;
5962 /* This is a helper function for the other atomic operations. This function
5963 emits a loop that contains SEQ that iterates until a compare-and-swap
5964 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5965 a set of instructions that takes a value from OLD_REG as an input and
5966 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5967 set to the current contents of MEM. After SEQ, a compare-and-swap will
5968 attempt to update MEM with NEW_REG. The function returns true when the
5969 loop was generated successfully. */
5971 static bool
5972 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
5974 machine_mode mode = GET_MODE (mem);
5975 rtx_code_label *label;
5976 rtx cmp_reg, success, oldval;
5978 /* The loop we want to generate looks like
5980 cmp_reg = mem;
5981 label:
5982 old_reg = cmp_reg;
5983 seq;
5984 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
5985 if (success)
5986 goto label;
5988 Note that we only do the plain load from memory once. Subsequent
5989 iterations use the value loaded by the compare-and-swap pattern. */
5991 label = gen_label_rtx ();
5992 cmp_reg = gen_reg_rtx (mode);
5994 emit_move_insn (cmp_reg, mem);
5995 emit_label (label);
5996 emit_move_insn (old_reg, cmp_reg);
5997 if (seq)
5998 emit_insn (seq);
6000 success = NULL_RTX;
6001 oldval = cmp_reg;
6002 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6003 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
6004 MEMMODEL_RELAXED))
6005 return false;
6007 if (oldval != cmp_reg)
6008 emit_move_insn (cmp_reg, oldval);
6010 /* Mark this jump predicted not taken. */
6011 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6012 GET_MODE (success), 1, label,
6013 profile_probability::guessed_never ());
6014 return true;
6018 /* This function tries to emit an atomic_exchange intruction. VAL is written
6019 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6020 using TARGET if possible. */
6022 static rtx
6023 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6025 machine_mode mode = GET_MODE (mem);
6026 enum insn_code icode;
6028 /* If the target supports the exchange directly, great. */
6029 icode = direct_optab_handler (atomic_exchange_optab, mode);
6030 if (icode != CODE_FOR_nothing)
6032 class expand_operand ops[4];
6034 create_output_operand (&ops[0], target, mode);
6035 create_fixed_operand (&ops[1], mem);
6036 create_input_operand (&ops[2], val, mode);
6037 create_integer_operand (&ops[3], model);
6038 if (maybe_expand_insn (icode, 4, ops))
6039 return ops[0].value;
6042 return NULL_RTX;
6045 /* This function tries to implement an atomic exchange operation using
6046 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6047 The previous contents of *MEM are returned, using TARGET if possible.
6048 Since this instructionn is an acquire barrier only, stronger memory
6049 models may require additional barriers to be emitted. */
6051 static rtx
6052 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
6053 enum memmodel model)
6055 machine_mode mode = GET_MODE (mem);
6056 enum insn_code icode;
6057 rtx_insn *last_insn = get_last_insn ();
6059 icode = optab_handler (sync_lock_test_and_set_optab, mode);
6061 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6062 exists, and the memory model is stronger than acquire, add a release
6063 barrier before the instruction. */
6065 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
6066 expand_mem_thread_fence (model);
6068 if (icode != CODE_FOR_nothing)
6070 class expand_operand ops[3];
6071 create_output_operand (&ops[0], target, mode);
6072 create_fixed_operand (&ops[1], mem);
6073 create_input_operand (&ops[2], val, mode);
6074 if (maybe_expand_insn (icode, 3, ops))
6075 return ops[0].value;
6078 /* If an external test-and-set libcall is provided, use that instead of
6079 any external compare-and-swap that we might get from the compare-and-
6080 swap-loop expansion later. */
6081 if (!can_compare_and_swap_p (mode, false))
6083 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
6084 if (libfunc != NULL)
6086 rtx addr;
6088 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6089 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6090 mode, addr, ptr_mode,
6091 val, mode);
6095 /* If the test_and_set can't be emitted, eliminate any barrier that might
6096 have been emitted. */
6097 delete_insns_since (last_insn);
6098 return NULL_RTX;
6101 /* This function tries to implement an atomic exchange operation using a
6102 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6103 *MEM are returned, using TARGET if possible. No memory model is required
6104 since a compare_and_swap loop is seq-cst. */
6106 static rtx
6107 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
6109 machine_mode mode = GET_MODE (mem);
6111 if (can_compare_and_swap_p (mode, true))
6113 if (!target || !register_operand (target, mode))
6114 target = gen_reg_rtx (mode);
6115 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
6116 return target;
6119 return NULL_RTX;
6122 /* This function tries to implement an atomic test-and-set operation
6123 using the atomic_test_and_set instruction pattern. A boolean value
6124 is returned from the operation, using TARGET if possible. */
6126 static rtx
6127 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6129 machine_mode pat_bool_mode;
6130 class expand_operand ops[3];
6132 if (!targetm.have_atomic_test_and_set ())
6133 return NULL_RTX;
6135 /* While we always get QImode from __atomic_test_and_set, we get
6136 other memory modes from __sync_lock_test_and_set. Note that we
6137 use no endian adjustment here. This matches the 4.6 behavior
6138 in the Sparc backend. */
6139 enum insn_code icode = targetm.code_for_atomic_test_and_set;
6140 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
6141 if (GET_MODE (mem) != QImode)
6142 mem = adjust_address_nv (mem, QImode, 0);
6144 pat_bool_mode = insn_data[icode].operand[0].mode;
6145 create_output_operand (&ops[0], target, pat_bool_mode);
6146 create_fixed_operand (&ops[1], mem);
6147 create_integer_operand (&ops[2], model);
6149 if (maybe_expand_insn (icode, 3, ops))
6150 return ops[0].value;
6151 return NULL_RTX;
6154 /* This function expands the legacy _sync_lock test_and_set operation which is
6155 generally an atomic exchange. Some limited targets only allow the
6156 constant 1 to be stored. This is an ACQUIRE operation.
6158 TARGET is an optional place to stick the return value.
6159 MEM is where VAL is stored. */
6162 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
6164 rtx ret;
6166 /* Try an atomic_exchange first. */
6167 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
6168 if (ret)
6169 return ret;
6171 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
6172 MEMMODEL_SYNC_ACQUIRE);
6173 if (ret)
6174 return ret;
6176 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6177 if (ret)
6178 return ret;
6180 /* If there are no other options, try atomic_test_and_set if the value
6181 being stored is 1. */
6182 if (val == const1_rtx)
6183 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
6185 return ret;
6188 /* This function expands the atomic test_and_set operation:
6189 atomically store a boolean TRUE into MEM and return the previous value.
6191 MEMMODEL is the memory model variant to use.
6192 TARGET is an optional place to stick the return value. */
6195 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6197 machine_mode mode = GET_MODE (mem);
6198 rtx ret, trueval, subtarget;
6200 ret = maybe_emit_atomic_test_and_set (target, mem, model);
6201 if (ret)
6202 return ret;
6204 /* Be binary compatible with non-default settings of trueval, and different
6205 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6206 another only has atomic-exchange. */
6207 if (targetm.atomic_test_and_set_trueval == 1)
6209 trueval = const1_rtx;
6210 subtarget = target ? target : gen_reg_rtx (mode);
6212 else
6214 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6215 subtarget = gen_reg_rtx (mode);
6218 /* Try the atomic-exchange optab... */
6219 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6221 /* ... then an atomic-compare-and-swap loop ... */
6222 if (!ret)
6223 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6225 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6226 if (!ret)
6227 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6229 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6230 things with the value 1. Thus we try again without trueval. */
6231 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6232 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6234 /* Failing all else, assume a single threaded environment and simply
6235 perform the operation. */
6236 if (!ret)
6238 /* If the result is ignored skip the move to target. */
6239 if (subtarget != const0_rtx)
6240 emit_move_insn (subtarget, mem);
6242 emit_move_insn (mem, trueval);
6243 ret = subtarget;
6246 /* Recall that have to return a boolean value; rectify if trueval
6247 is not exactly one. */
6248 if (targetm.atomic_test_and_set_trueval != 1)
6249 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6251 return ret;
6254 /* This function expands the atomic exchange operation:
6255 atomically store VAL in MEM and return the previous value in MEM.
6257 MEMMODEL is the memory model variant to use.
6258 TARGET is an optional place to stick the return value. */
6261 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6263 machine_mode mode = GET_MODE (mem);
6264 rtx ret;
6266 /* If loads are not atomic for the required size and we are not called to
6267 provide a __sync builtin, do not do anything so that we stay consistent
6268 with atomic loads of the same size. */
6269 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6270 return NULL_RTX;
6272 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6274 /* Next try a compare-and-swap loop for the exchange. */
6275 if (!ret)
6276 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6278 return ret;
6281 /* This function expands the atomic compare exchange operation:
6283 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6284 *PTARGET_OVAL is an optional place to store the old value from memory.
6285 Both target parameters may be NULL or const0_rtx to indicate that we do
6286 not care about that return value. Both target parameters are updated on
6287 success to the actual location of the corresponding result.
6289 MEMMODEL is the memory model variant to use.
6291 The return value of the function is true for success. */
6293 bool
6294 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6295 rtx mem, rtx expected, rtx desired,
6296 bool is_weak, enum memmodel succ_model,
6297 enum memmodel fail_model)
6299 machine_mode mode = GET_MODE (mem);
6300 class expand_operand ops[8];
6301 enum insn_code icode;
6302 rtx target_oval, target_bool = NULL_RTX;
6303 rtx libfunc;
6305 /* If loads are not atomic for the required size and we are not called to
6306 provide a __sync builtin, do not do anything so that we stay consistent
6307 with atomic loads of the same size. */
6308 if (!can_atomic_load_p (mode) && !is_mm_sync (succ_model))
6309 return false;
6311 /* Load expected into a register for the compare and swap. */
6312 if (MEM_P (expected))
6313 expected = copy_to_reg (expected);
6315 /* Make sure we always have some place to put the return oldval.
6316 Further, make sure that place is distinct from the input expected,
6317 just in case we need that path down below. */
6318 if (ptarget_oval && *ptarget_oval == const0_rtx)
6319 ptarget_oval = NULL;
6321 if (ptarget_oval == NULL
6322 || (target_oval = *ptarget_oval) == NULL
6323 || reg_overlap_mentioned_p (expected, target_oval))
6324 target_oval = gen_reg_rtx (mode);
6326 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6327 if (icode != CODE_FOR_nothing)
6329 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6331 if (ptarget_bool && *ptarget_bool == const0_rtx)
6332 ptarget_bool = NULL;
6334 /* Make sure we always have a place for the bool operand. */
6335 if (ptarget_bool == NULL
6336 || (target_bool = *ptarget_bool) == NULL
6337 || GET_MODE (target_bool) != bool_mode)
6338 target_bool = gen_reg_rtx (bool_mode);
6340 /* Emit the compare_and_swap. */
6341 create_output_operand (&ops[0], target_bool, bool_mode);
6342 create_output_operand (&ops[1], target_oval, mode);
6343 create_fixed_operand (&ops[2], mem);
6344 create_input_operand (&ops[3], expected, mode);
6345 create_input_operand (&ops[4], desired, mode);
6346 create_integer_operand (&ops[5], is_weak);
6347 create_integer_operand (&ops[6], succ_model);
6348 create_integer_operand (&ops[7], fail_model);
6349 if (maybe_expand_insn (icode, 8, ops))
6351 /* Return success/failure. */
6352 target_bool = ops[0].value;
6353 target_oval = ops[1].value;
6354 goto success;
6358 /* Otherwise fall back to the original __sync_val_compare_and_swap
6359 which is always seq-cst. */
6360 icode = optab_handler (sync_compare_and_swap_optab, mode);
6361 if (icode != CODE_FOR_nothing)
6363 rtx cc_reg;
6365 create_output_operand (&ops[0], target_oval, mode);
6366 create_fixed_operand (&ops[1], mem);
6367 create_input_operand (&ops[2], expected, mode);
6368 create_input_operand (&ops[3], desired, mode);
6369 if (!maybe_expand_insn (icode, 4, ops))
6370 return false;
6372 target_oval = ops[0].value;
6374 /* If the caller isn't interested in the boolean return value,
6375 skip the computation of it. */
6376 if (ptarget_bool == NULL)
6377 goto success;
6379 /* Otherwise, work out if the compare-and-swap succeeded. */
6380 cc_reg = NULL_RTX;
6381 if (have_insn_for (COMPARE, CCmode))
6382 note_stores (get_last_insn (), find_cc_set, &cc_reg);
6383 if (cc_reg)
6385 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6386 const0_rtx, VOIDmode, 0, 1);
6387 goto success;
6389 goto success_bool_from_val;
6392 /* Also check for library support for __sync_val_compare_and_swap. */
6393 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6394 if (libfunc != NULL)
6396 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6397 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6398 mode, addr, ptr_mode,
6399 expected, mode, desired, mode);
6400 emit_move_insn (target_oval, target);
6402 /* Compute the boolean return value only if requested. */
6403 if (ptarget_bool)
6404 goto success_bool_from_val;
6405 else
6406 goto success;
6409 /* Failure. */
6410 return false;
6412 success_bool_from_val:
6413 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6414 expected, VOIDmode, 1, 1);
6415 success:
6416 /* Make sure that the oval output winds up where the caller asked. */
6417 if (ptarget_oval)
6418 *ptarget_oval = target_oval;
6419 if (ptarget_bool)
6420 *ptarget_bool = target_bool;
6421 return true;
6424 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6426 static void
6427 expand_asm_memory_blockage (void)
6429 rtx asm_op, clob;
6431 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, "", "", 0,
6432 rtvec_alloc (0), rtvec_alloc (0),
6433 rtvec_alloc (0), UNKNOWN_LOCATION);
6434 MEM_VOLATILE_P (asm_op) = 1;
6436 clob = gen_rtx_SCRATCH (VOIDmode);
6437 clob = gen_rtx_MEM (BLKmode, clob);
6438 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6440 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6443 /* Do not propagate memory accesses across this point. */
6445 static void
6446 expand_memory_blockage (void)
6448 if (targetm.have_memory_blockage ())
6449 emit_insn (targetm.gen_memory_blockage ());
6450 else
6451 expand_asm_memory_blockage ();
6454 /* This routine will either emit the mem_thread_fence pattern or issue a
6455 sync_synchronize to generate a fence for memory model MEMMODEL. */
6457 void
6458 expand_mem_thread_fence (enum memmodel model)
6460 if (is_mm_relaxed (model))
6461 return;
6462 if (targetm.have_mem_thread_fence ())
6464 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6465 expand_memory_blockage ();
6467 else if (targetm.have_memory_barrier ())
6468 emit_insn (targetm.gen_memory_barrier ());
6469 else if (synchronize_libfunc != NULL_RTX)
6470 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode);
6471 else
6472 expand_memory_blockage ();
6475 /* Emit a signal fence with given memory model. */
6477 void
6478 expand_mem_signal_fence (enum memmodel model)
6480 /* No machine barrier is required to implement a signal fence, but
6481 a compiler memory barrier must be issued, except for relaxed MM. */
6482 if (!is_mm_relaxed (model))
6483 expand_memory_blockage ();
6486 /* This function expands the atomic load operation:
6487 return the atomically loaded value in MEM.
6489 MEMMODEL is the memory model variant to use.
6490 TARGET is an option place to stick the return value. */
6493 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6495 machine_mode mode = GET_MODE (mem);
6496 enum insn_code icode;
6498 /* If the target supports the load directly, great. */
6499 icode = direct_optab_handler (atomic_load_optab, mode);
6500 if (icode != CODE_FOR_nothing)
6502 class expand_operand ops[3];
6503 rtx_insn *last = get_last_insn ();
6504 if (is_mm_seq_cst (model))
6505 expand_memory_blockage ();
6507 create_output_operand (&ops[0], target, mode);
6508 create_fixed_operand (&ops[1], mem);
6509 create_integer_operand (&ops[2], model);
6510 if (maybe_expand_insn (icode, 3, ops))
6512 if (!is_mm_relaxed (model))
6513 expand_memory_blockage ();
6514 return ops[0].value;
6516 delete_insns_since (last);
6519 /* If the size of the object is greater than word size on this target,
6520 then we assume that a load will not be atomic. We could try to
6521 emulate a load with a compare-and-swap operation, but the store that
6522 doing this could result in would be incorrect if this is a volatile
6523 atomic load or targetting read-only-mapped memory. */
6524 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6525 /* If there is no atomic load, leave the library call. */
6526 return NULL_RTX;
6528 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6529 if (!target || target == const0_rtx)
6530 target = gen_reg_rtx (mode);
6532 /* For SEQ_CST, emit a barrier before the load. */
6533 if (is_mm_seq_cst (model))
6534 expand_mem_thread_fence (model);
6536 emit_move_insn (target, mem);
6538 /* Emit the appropriate barrier after the load. */
6539 expand_mem_thread_fence (model);
6541 return target;
6544 /* This function expands the atomic store operation:
6545 Atomically store VAL in MEM.
6546 MEMMODEL is the memory model variant to use.
6547 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6548 function returns const0_rtx if a pattern was emitted. */
6551 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6553 machine_mode mode = GET_MODE (mem);
6554 enum insn_code icode;
6555 class expand_operand ops[3];
6557 /* If the target supports the store directly, great. */
6558 icode = direct_optab_handler (atomic_store_optab, mode);
6559 if (icode != CODE_FOR_nothing)
6561 rtx_insn *last = get_last_insn ();
6562 if (!is_mm_relaxed (model))
6563 expand_memory_blockage ();
6564 create_fixed_operand (&ops[0], mem);
6565 create_input_operand (&ops[1], val, mode);
6566 create_integer_operand (&ops[2], model);
6567 if (maybe_expand_insn (icode, 3, ops))
6569 if (is_mm_seq_cst (model))
6570 expand_memory_blockage ();
6571 return const0_rtx;
6573 delete_insns_since (last);
6576 /* If using __sync_lock_release is a viable alternative, try it.
6577 Note that this will not be set to true if we are expanding a generic
6578 __atomic_store_n. */
6579 if (use_release)
6581 icode = direct_optab_handler (sync_lock_release_optab, mode);
6582 if (icode != CODE_FOR_nothing)
6584 create_fixed_operand (&ops[0], mem);
6585 create_input_operand (&ops[1], const0_rtx, mode);
6586 if (maybe_expand_insn (icode, 2, ops))
6588 /* lock_release is only a release barrier. */
6589 if (is_mm_seq_cst (model))
6590 expand_mem_thread_fence (model);
6591 return const0_rtx;
6596 /* If the size of the object is greater than word size on this target,
6597 a default store will not be atomic. */
6598 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6600 /* If loads are atomic or we are called to provide a __sync builtin,
6601 we can try a atomic_exchange and throw away the result. Otherwise,
6602 don't do anything so that we do not create an inconsistency between
6603 loads and stores. */
6604 if (can_atomic_load_p (mode) || is_mm_sync (model))
6606 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6607 if (!target)
6608 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem,
6609 val);
6610 if (target)
6611 return const0_rtx;
6613 return NULL_RTX;
6616 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6617 expand_mem_thread_fence (model);
6619 emit_move_insn (mem, val);
6621 /* For SEQ_CST, also emit a barrier after the store. */
6622 if (is_mm_seq_cst (model))
6623 expand_mem_thread_fence (model);
6625 return const0_rtx;
6629 /* Structure containing the pointers and values required to process the
6630 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6632 struct atomic_op_functions
6634 direct_optab mem_fetch_before;
6635 direct_optab mem_fetch_after;
6636 direct_optab mem_no_result;
6637 optab fetch_before;
6638 optab fetch_after;
6639 direct_optab no_result;
6640 enum rtx_code reverse_code;
6644 /* Fill in structure pointed to by OP with the various optab entries for an
6645 operation of type CODE. */
6647 static void
6648 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6650 gcc_assert (op!= NULL);
6652 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6653 in the source code during compilation, and the optab entries are not
6654 computable until runtime. Fill in the values at runtime. */
6655 switch (code)
6657 case PLUS:
6658 op->mem_fetch_before = atomic_fetch_add_optab;
6659 op->mem_fetch_after = atomic_add_fetch_optab;
6660 op->mem_no_result = atomic_add_optab;
6661 op->fetch_before = sync_old_add_optab;
6662 op->fetch_after = sync_new_add_optab;
6663 op->no_result = sync_add_optab;
6664 op->reverse_code = MINUS;
6665 break;
6666 case MINUS:
6667 op->mem_fetch_before = atomic_fetch_sub_optab;
6668 op->mem_fetch_after = atomic_sub_fetch_optab;
6669 op->mem_no_result = atomic_sub_optab;
6670 op->fetch_before = sync_old_sub_optab;
6671 op->fetch_after = sync_new_sub_optab;
6672 op->no_result = sync_sub_optab;
6673 op->reverse_code = PLUS;
6674 break;
6675 case XOR:
6676 op->mem_fetch_before = atomic_fetch_xor_optab;
6677 op->mem_fetch_after = atomic_xor_fetch_optab;
6678 op->mem_no_result = atomic_xor_optab;
6679 op->fetch_before = sync_old_xor_optab;
6680 op->fetch_after = sync_new_xor_optab;
6681 op->no_result = sync_xor_optab;
6682 op->reverse_code = XOR;
6683 break;
6684 case AND:
6685 op->mem_fetch_before = atomic_fetch_and_optab;
6686 op->mem_fetch_after = atomic_and_fetch_optab;
6687 op->mem_no_result = atomic_and_optab;
6688 op->fetch_before = sync_old_and_optab;
6689 op->fetch_after = sync_new_and_optab;
6690 op->no_result = sync_and_optab;
6691 op->reverse_code = UNKNOWN;
6692 break;
6693 case IOR:
6694 op->mem_fetch_before = atomic_fetch_or_optab;
6695 op->mem_fetch_after = atomic_or_fetch_optab;
6696 op->mem_no_result = atomic_or_optab;
6697 op->fetch_before = sync_old_ior_optab;
6698 op->fetch_after = sync_new_ior_optab;
6699 op->no_result = sync_ior_optab;
6700 op->reverse_code = UNKNOWN;
6701 break;
6702 case NOT:
6703 op->mem_fetch_before = atomic_fetch_nand_optab;
6704 op->mem_fetch_after = atomic_nand_fetch_optab;
6705 op->mem_no_result = atomic_nand_optab;
6706 op->fetch_before = sync_old_nand_optab;
6707 op->fetch_after = sync_new_nand_optab;
6708 op->no_result = sync_nand_optab;
6709 op->reverse_code = UNKNOWN;
6710 break;
6711 default:
6712 gcc_unreachable ();
6716 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6717 using memory order MODEL. If AFTER is true the operation needs to return
6718 the value of *MEM after the operation, otherwise the previous value.
6719 TARGET is an optional place to place the result. The result is unused if
6720 it is const0_rtx.
6721 Return the result if there is a better sequence, otherwise NULL_RTX. */
6723 static rtx
6724 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6725 enum memmodel model, bool after)
6727 /* If the value is prefetched, or not used, it may be possible to replace
6728 the sequence with a native exchange operation. */
6729 if (!after || target == const0_rtx)
6731 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6732 if (code == AND && val == const0_rtx)
6734 if (target == const0_rtx)
6735 target = gen_reg_rtx (GET_MODE (mem));
6736 return maybe_emit_atomic_exchange (target, mem, val, model);
6739 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6740 if (code == IOR && val == constm1_rtx)
6742 if (target == const0_rtx)
6743 target = gen_reg_rtx (GET_MODE (mem));
6744 return maybe_emit_atomic_exchange (target, mem, val, model);
6748 return NULL_RTX;
6751 /* Try to emit an instruction for a specific operation varaition.
6752 OPTAB contains the OP functions.
6753 TARGET is an optional place to return the result. const0_rtx means unused.
6754 MEM is the memory location to operate on.
6755 VAL is the value to use in the operation.
6756 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6757 MODEL is the memory model, if used.
6758 AFTER is true if the returned result is the value after the operation. */
6760 static rtx
6761 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6762 rtx val, bool use_memmodel, enum memmodel model, bool after)
6764 machine_mode mode = GET_MODE (mem);
6765 class expand_operand ops[4];
6766 enum insn_code icode;
6767 int op_counter = 0;
6768 int num_ops;
6770 /* Check to see if there is a result returned. */
6771 if (target == const0_rtx)
6773 if (use_memmodel)
6775 icode = direct_optab_handler (optab->mem_no_result, mode);
6776 create_integer_operand (&ops[2], model);
6777 num_ops = 3;
6779 else
6781 icode = direct_optab_handler (optab->no_result, mode);
6782 num_ops = 2;
6785 /* Otherwise, we need to generate a result. */
6786 else
6788 if (use_memmodel)
6790 icode = direct_optab_handler (after ? optab->mem_fetch_after
6791 : optab->mem_fetch_before, mode);
6792 create_integer_operand (&ops[3], model);
6793 num_ops = 4;
6795 else
6797 icode = optab_handler (after ? optab->fetch_after
6798 : optab->fetch_before, mode);
6799 num_ops = 3;
6801 create_output_operand (&ops[op_counter++], target, mode);
6803 if (icode == CODE_FOR_nothing)
6804 return NULL_RTX;
6806 create_fixed_operand (&ops[op_counter++], mem);
6807 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6808 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6810 if (maybe_expand_insn (icode, num_ops, ops))
6811 return (target == const0_rtx ? const0_rtx : ops[0].value);
6813 return NULL_RTX;
6817 /* This function expands an atomic fetch_OP or OP_fetch operation:
6818 TARGET is an option place to stick the return value. const0_rtx indicates
6819 the result is unused.
6820 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6821 CODE is the operation being performed (OP)
6822 MEMMODEL is the memory model variant to use.
6823 AFTER is true to return the result of the operation (OP_fetch).
6824 AFTER is false to return the value before the operation (fetch_OP).
6826 This function will *only* generate instructions if there is a direct
6827 optab. No compare and swap loops or libcalls will be generated. */
6829 static rtx
6830 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6831 enum rtx_code code, enum memmodel model,
6832 bool after)
6834 machine_mode mode = GET_MODE (mem);
6835 struct atomic_op_functions optab;
6836 rtx result;
6837 bool unused_result = (target == const0_rtx);
6839 get_atomic_op_for_code (&optab, code);
6841 /* Check to see if there are any better instructions. */
6842 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6843 if (result)
6844 return result;
6846 /* Check for the case where the result isn't used and try those patterns. */
6847 if (unused_result)
6849 /* Try the memory model variant first. */
6850 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6851 if (result)
6852 return result;
6854 /* Next try the old style withuot a memory model. */
6855 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6856 if (result)
6857 return result;
6859 /* There is no no-result pattern, so try patterns with a result. */
6860 target = NULL_RTX;
6863 /* Try the __atomic version. */
6864 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6865 if (result)
6866 return result;
6868 /* Try the older __sync version. */
6869 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6870 if (result)
6871 return result;
6873 /* If the fetch value can be calculated from the other variation of fetch,
6874 try that operation. */
6875 if (after || unused_result || optab.reverse_code != UNKNOWN)
6877 /* Try the __atomic version, then the older __sync version. */
6878 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6879 if (!result)
6880 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6882 if (result)
6884 /* If the result isn't used, no need to do compensation code. */
6885 if (unused_result)
6886 return result;
6888 /* Issue compensation code. Fetch_after == fetch_before OP val.
6889 Fetch_before == after REVERSE_OP val. */
6890 if (!after)
6891 code = optab.reverse_code;
6892 if (code == NOT)
6894 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6895 true, OPTAB_LIB_WIDEN);
6896 result = expand_simple_unop (mode, NOT, result, target, true);
6898 else
6899 result = expand_simple_binop (mode, code, result, val, target,
6900 true, OPTAB_LIB_WIDEN);
6901 return result;
6905 /* No direct opcode can be generated. */
6906 return NULL_RTX;
6911 /* This function expands an atomic fetch_OP or OP_fetch operation:
6912 TARGET is an option place to stick the return value. const0_rtx indicates
6913 the result is unused.
6914 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6915 CODE is the operation being performed (OP)
6916 MEMMODEL is the memory model variant to use.
6917 AFTER is true to return the result of the operation (OP_fetch).
6918 AFTER is false to return the value before the operation (fetch_OP). */
6920 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6921 enum memmodel model, bool after)
6923 machine_mode mode = GET_MODE (mem);
6924 rtx result;
6925 bool unused_result = (target == const0_rtx);
6927 /* If loads are not atomic for the required size and we are not called to
6928 provide a __sync builtin, do not do anything so that we stay consistent
6929 with atomic loads of the same size. */
6930 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6931 return NULL_RTX;
6933 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
6934 after);
6936 if (result)
6937 return result;
6939 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6940 if (code == PLUS || code == MINUS)
6942 rtx tmp;
6943 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
6945 start_sequence ();
6946 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
6947 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
6948 model, after);
6949 if (result)
6951 /* PLUS worked so emit the insns and return. */
6952 tmp = get_insns ();
6953 end_sequence ();
6954 emit_insn (tmp);
6955 return result;
6958 /* PLUS did not work, so throw away the negation code and continue. */
6959 end_sequence ();
6962 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6963 if (!can_compare_and_swap_p (mode, false))
6965 rtx libfunc;
6966 bool fixup = false;
6967 enum rtx_code orig_code = code;
6968 struct atomic_op_functions optab;
6970 get_atomic_op_for_code (&optab, code);
6971 libfunc = optab_libfunc (after ? optab.fetch_after
6972 : optab.fetch_before, mode);
6973 if (libfunc == NULL
6974 && (after || unused_result || optab.reverse_code != UNKNOWN))
6976 fixup = true;
6977 if (!after)
6978 code = optab.reverse_code;
6979 libfunc = optab_libfunc (after ? optab.fetch_before
6980 : optab.fetch_after, mode);
6982 if (libfunc != NULL)
6984 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6985 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
6986 addr, ptr_mode, val, mode);
6988 if (!unused_result && fixup)
6989 result = expand_simple_binop (mode, code, result, val, target,
6990 true, OPTAB_LIB_WIDEN);
6991 return result;
6994 /* We need the original code for any further attempts. */
6995 code = orig_code;
6998 /* If nothing else has succeeded, default to a compare and swap loop. */
6999 if (can_compare_and_swap_p (mode, true))
7001 rtx_insn *insn;
7002 rtx t0 = gen_reg_rtx (mode), t1;
7004 start_sequence ();
7006 /* If the result is used, get a register for it. */
7007 if (!unused_result)
7009 if (!target || !register_operand (target, mode))
7010 target = gen_reg_rtx (mode);
7011 /* If fetch_before, copy the value now. */
7012 if (!after)
7013 emit_move_insn (target, t0);
7015 else
7016 target = const0_rtx;
7018 t1 = t0;
7019 if (code == NOT)
7021 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7022 true, OPTAB_LIB_WIDEN);
7023 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7025 else
7026 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7027 OPTAB_LIB_WIDEN);
7029 /* For after, copy the value now. */
7030 if (!unused_result && after)
7031 emit_move_insn (target, t1);
7032 insn = get_insns ();
7033 end_sequence ();
7035 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7036 return target;
7039 return NULL_RTX;
7042 /* Return true if OPERAND is suitable for operand number OPNO of
7043 instruction ICODE. */
7045 bool
7046 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7048 return (!insn_data[(int) icode].operand[opno].predicate
7049 || (insn_data[(int) icode].operand[opno].predicate
7050 (operand, insn_data[(int) icode].operand[opno].mode)));
7053 /* TARGET is a target of a multiword operation that we are going to
7054 implement as a series of word-mode operations. Return true if
7055 TARGET is suitable for this purpose. */
7057 bool
7058 valid_multiword_target_p (rtx target)
7060 machine_mode mode;
7061 int i, size;
7063 mode = GET_MODE (target);
7064 if (!GET_MODE_SIZE (mode).is_constant (&size))
7065 return false;
7066 for (i = 0; i < size; i += UNITS_PER_WORD)
7067 if (!validate_subreg (word_mode, mode, target, i))
7068 return false;
7069 return true;
7072 /* Make OP describe an input operand that has value INTVAL and that has
7073 no inherent mode. This function should only be used for operands that
7074 are always expand-time constants. The backend may request that INTVAL
7075 be copied into a different kind of rtx, but it must specify the mode
7076 of that rtx if so. */
7078 void
7079 create_integer_operand (class expand_operand *op, poly_int64 intval)
7081 create_expand_operand (op, EXPAND_INTEGER,
7082 gen_int_mode (intval, MAX_MODE_INT),
7083 VOIDmode, false, intval);
7086 /* Like maybe_legitimize_operand, but do not change the code of the
7087 current rtx value. */
7089 static bool
7090 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7091 class expand_operand *op)
7093 /* See if the operand matches in its current form. */
7094 if (insn_operand_matches (icode, opno, op->value))
7095 return true;
7097 /* If the operand is a memory whose address has no side effects,
7098 try forcing the address into a non-virtual pseudo register.
7099 The check for side effects is important because copy_to_mode_reg
7100 cannot handle things like auto-modified addresses. */
7101 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
7103 rtx addr, mem;
7105 mem = op->value;
7106 addr = XEXP (mem, 0);
7107 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
7108 && !side_effects_p (addr))
7110 rtx_insn *last;
7111 machine_mode mode;
7113 last = get_last_insn ();
7114 mode = get_address_mode (mem);
7115 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
7116 if (insn_operand_matches (icode, opno, mem))
7118 op->value = mem;
7119 return true;
7121 delete_insns_since (last);
7125 return false;
7128 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7129 on success, storing the new operand value back in OP. */
7131 static bool
7132 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
7133 class expand_operand *op)
7135 machine_mode mode, imode, tmode;
7137 mode = op->mode;
7138 switch (op->type)
7140 case EXPAND_FIXED:
7142 temporary_volatile_ok v (true);
7143 return maybe_legitimize_operand_same_code (icode, opno, op);
7146 case EXPAND_OUTPUT:
7147 gcc_assert (mode != VOIDmode);
7148 if (op->value
7149 && op->value != const0_rtx
7150 && GET_MODE (op->value) == mode
7151 && maybe_legitimize_operand_same_code (icode, opno, op))
7152 return true;
7154 op->value = gen_reg_rtx (mode);
7155 op->target = 0;
7156 break;
7158 case EXPAND_INPUT:
7159 input:
7160 gcc_assert (mode != VOIDmode);
7161 gcc_assert (GET_MODE (op->value) == VOIDmode
7162 || GET_MODE (op->value) == mode);
7163 if (maybe_legitimize_operand_same_code (icode, opno, op))
7164 return true;
7166 op->value = copy_to_mode_reg (mode, op->value);
7167 break;
7169 case EXPAND_CONVERT_TO:
7170 gcc_assert (mode != VOIDmode);
7171 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
7172 goto input;
7174 case EXPAND_CONVERT_FROM:
7175 if (GET_MODE (op->value) != VOIDmode)
7176 mode = GET_MODE (op->value);
7177 else
7178 /* The caller must tell us what mode this value has. */
7179 gcc_assert (mode != VOIDmode);
7181 imode = insn_data[(int) icode].operand[opno].mode;
7182 tmode = (VECTOR_MODE_P (imode) && !VECTOR_MODE_P (mode)
7183 ? GET_MODE_INNER (imode) : imode);
7184 if (tmode != VOIDmode && tmode != mode)
7186 op->value = convert_modes (tmode, mode, op->value, op->unsigned_p);
7187 mode = tmode;
7189 if (imode != VOIDmode && imode != mode)
7191 gcc_assert (VECTOR_MODE_P (imode) && !VECTOR_MODE_P (mode));
7192 op->value = expand_vector_broadcast (imode, op->value);
7193 mode = imode;
7195 goto input;
7197 case EXPAND_ADDRESS:
7198 op->value = convert_memory_address (as_a <scalar_int_mode> (mode),
7199 op->value);
7200 goto input;
7202 case EXPAND_INTEGER:
7203 mode = insn_data[(int) icode].operand[opno].mode;
7204 if (mode != VOIDmode
7205 && known_eq (trunc_int_for_mode (op->int_value, mode),
7206 op->int_value))
7208 op->value = gen_int_mode (op->int_value, mode);
7209 goto input;
7211 break;
7213 return insn_operand_matches (icode, opno, op->value);
7216 /* Make OP describe an input operand that should have the same value
7217 as VALUE, after any mode conversion that the target might request.
7218 TYPE is the type of VALUE. */
7220 void
7221 create_convert_operand_from_type (class expand_operand *op,
7222 rtx value, tree type)
7224 create_convert_operand_from (op, value, TYPE_MODE (type),
7225 TYPE_UNSIGNED (type));
7228 /* Return true if the requirements on operands OP1 and OP2 of instruction
7229 ICODE are similar enough for the result of legitimizing OP1 to be
7230 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7231 with OP1 and OP2 respectively. */
7233 static inline bool
7234 can_reuse_operands_p (enum insn_code icode,
7235 unsigned int opno1, unsigned int opno2,
7236 const class expand_operand *op1,
7237 const class expand_operand *op2)
7239 /* Check requirements that are common to all types. */
7240 if (op1->type != op2->type
7241 || op1->mode != op2->mode
7242 || (insn_data[(int) icode].operand[opno1].mode
7243 != insn_data[(int) icode].operand[opno2].mode))
7244 return false;
7246 /* Check the requirements for specific types. */
7247 switch (op1->type)
7249 case EXPAND_OUTPUT:
7250 /* Outputs must remain distinct. */
7251 return false;
7253 case EXPAND_FIXED:
7254 case EXPAND_INPUT:
7255 case EXPAND_ADDRESS:
7256 case EXPAND_INTEGER:
7257 return true;
7259 case EXPAND_CONVERT_TO:
7260 case EXPAND_CONVERT_FROM:
7261 return op1->unsigned_p == op2->unsigned_p;
7263 gcc_unreachable ();
7266 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7267 of instruction ICODE. Return true on success, leaving the new operand
7268 values in the OPS themselves. Emit no code on failure. */
7270 bool
7271 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
7272 unsigned int nops, class expand_operand *ops)
7274 rtx_insn *last = get_last_insn ();
7275 rtx *orig_values = XALLOCAVEC (rtx, nops);
7276 for (unsigned int i = 0; i < nops; i++)
7278 orig_values[i] = ops[i].value;
7280 /* First try reusing the result of an earlier legitimization.
7281 This avoids duplicate rtl and ensures that tied operands
7282 remain tied.
7284 This search is linear, but NOPS is bounded at compile time
7285 to a small number (current a single digit). */
7286 unsigned int j = 0;
7287 for (; j < i; ++j)
7288 if (can_reuse_operands_p (icode, opno + j, opno + i, &ops[j], &ops[i])
7289 && rtx_equal_p (orig_values[j], orig_values[i])
7290 && ops[j].value
7291 && insn_operand_matches (icode, opno + i, ops[j].value))
7293 ops[i].value = copy_rtx (ops[j].value);
7294 break;
7297 /* Otherwise try legitimizing the operand on its own. */
7298 if (j == i && !maybe_legitimize_operand (icode, opno + i, &ops[i]))
7300 delete_insns_since (last);
7301 return false;
7304 return true;
7307 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7308 as its operands. Return the instruction pattern on success,
7309 and emit any necessary set-up code. Return null and emit no
7310 code on failure. */
7312 rtx_insn *
7313 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7314 class expand_operand *ops)
7316 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
7317 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7318 return NULL;
7320 switch (nops)
7322 case 1:
7323 return GEN_FCN (icode) (ops[0].value);
7324 case 2:
7325 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7326 case 3:
7327 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7328 case 4:
7329 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7330 ops[3].value);
7331 case 5:
7332 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7333 ops[3].value, ops[4].value);
7334 case 6:
7335 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7336 ops[3].value, ops[4].value, ops[5].value);
7337 case 7:
7338 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7339 ops[3].value, ops[4].value, ops[5].value,
7340 ops[6].value);
7341 case 8:
7342 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7343 ops[3].value, ops[4].value, ops[5].value,
7344 ops[6].value, ops[7].value);
7345 case 9:
7346 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7347 ops[3].value, ops[4].value, ops[5].value,
7348 ops[6].value, ops[7].value, ops[8].value);
7350 gcc_unreachable ();
7353 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7354 as its operands. Return true on success and emit no code on failure. */
7356 bool
7357 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7358 class expand_operand *ops)
7360 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7361 if (pat)
7363 emit_insn (pat);
7364 return true;
7366 return false;
7369 /* Like maybe_expand_insn, but for jumps. */
7371 bool
7372 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7373 class expand_operand *ops)
7375 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7376 if (pat)
7378 emit_jump_insn (pat);
7379 return true;
7381 return false;
7384 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7385 as its operands. */
7387 void
7388 expand_insn (enum insn_code icode, unsigned int nops,
7389 class expand_operand *ops)
7391 if (!maybe_expand_insn (icode, nops, ops))
7392 gcc_unreachable ();
7395 /* Like expand_insn, but for jumps. */
7397 void
7398 expand_jump_insn (enum insn_code icode, unsigned int nops,
7399 class expand_operand *ops)
7401 if (!maybe_expand_jump_insn (icode, nops, ops))
7402 gcc_unreachable ();