* tree.c (find_tree_t, find_tree): Remove.
[official-gcc.git] / gcc / expr.c
blob92048ff7304320f09ada9204c090e42ff7052077
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1413 block_move_fn = fn;
1416 if (asmspec)
1417 set_user_assembler_name (block_move_fn, asmspec);
1420 static tree
1421 emit_block_move_libcall_fn (int for_call)
1423 static bool emitted_extern;
1425 if (!block_move_fn)
1426 init_block_move_fn (NULL);
1428 if (for_call && !emitted_extern)
1430 emitted_extern = true;
1431 make_decl_rtl (block_move_fn);
1432 assemble_external (block_move_fn);
1435 return block_move_fn;
1438 /* A subroutine of emit_block_move. Copy the data via an explicit
1439 loop. This is used only when libcalls are forbidden. */
1440 /* ??? It'd be nice to copy in hunks larger than QImode. */
1442 static void
1443 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1444 unsigned int align ATTRIBUTE_UNUSED)
1446 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1447 enum machine_mode iter_mode;
1449 iter_mode = GET_MODE (size);
1450 if (iter_mode == VOIDmode)
1451 iter_mode = word_mode;
1453 top_label = gen_label_rtx ();
1454 cmp_label = gen_label_rtx ();
1455 iter = gen_reg_rtx (iter_mode);
1457 emit_move_insn (iter, const0_rtx);
1459 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1460 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1461 do_pending_stack_adjust ();
1463 emit_jump (cmp_label);
1464 emit_label (top_label);
1466 tmp = convert_modes (Pmode, iter_mode, iter, true);
1467 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1468 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1469 x = change_address (x, QImode, x_addr);
1470 y = change_address (y, QImode, y_addr);
1472 emit_move_insn (x, y);
1474 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1475 true, OPTAB_LIB_WIDEN);
1476 if (tmp != iter)
1477 emit_move_insn (iter, tmp);
1479 emit_label (cmp_label);
1481 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1482 true, top_label);
1485 /* Copy all or part of a value X into registers starting at REGNO.
1486 The number of registers to be filled is NREGS. */
1488 void
1489 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1491 int i;
1492 #ifdef HAVE_load_multiple
1493 rtx pat;
1494 rtx last;
1495 #endif
1497 if (nregs == 0)
1498 return;
1500 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1501 x = validize_mem (force_const_mem (mode, x));
1503 /* See if the machine can do this with a load multiple insn. */
1504 #ifdef HAVE_load_multiple
1505 if (HAVE_load_multiple)
1507 last = get_last_insn ();
1508 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1509 GEN_INT (nregs));
1510 if (pat)
1512 emit_insn (pat);
1513 return;
1515 else
1516 delete_insns_since (last);
1518 #endif
1520 for (i = 0; i < nregs; i++)
1521 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1522 operand_subword_force (x, i, mode));
1525 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1528 void
1529 move_block_from_reg (int regno, rtx x, int nregs)
1531 int i;
1533 if (nregs == 0)
1534 return;
1536 /* See if the machine can do this with a store multiple insn. */
1537 #ifdef HAVE_store_multiple
1538 if (HAVE_store_multiple)
1540 rtx last = get_last_insn ();
1541 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1542 GEN_INT (nregs));
1543 if (pat)
1545 emit_insn (pat);
1546 return;
1548 else
1549 delete_insns_since (last);
1551 #endif
1553 for (i = 0; i < nregs; i++)
1555 rtx tem = operand_subword (x, i, 1, BLKmode);
1557 gcc_assert (tem);
1559 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1563 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1564 ORIG, where ORIG is a non-consecutive group of registers represented by
1565 a PARALLEL. The clone is identical to the original except in that the
1566 original set of registers is replaced by a new set of pseudo registers.
1567 The new set has the same modes as the original set. */
1570 gen_group_rtx (rtx orig)
1572 int i, length;
1573 rtx *tmps;
1575 gcc_assert (GET_CODE (orig) == PARALLEL);
1577 length = XVECLEN (orig, 0);
1578 tmps = alloca (sizeof (rtx) * length);
1580 /* Skip a NULL entry in first slot. */
1581 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1583 if (i)
1584 tmps[0] = 0;
1586 for (; i < length; i++)
1588 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1589 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1591 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1594 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1597 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1598 except that values are placed in TMPS[i], and must later be moved
1599 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1601 static void
1602 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1604 rtx src;
1605 int start, i;
1606 enum machine_mode m = GET_MODE (orig_src);
1608 gcc_assert (GET_CODE (dst) == PARALLEL);
1610 if (m != VOIDmode
1611 && !SCALAR_INT_MODE_P (m)
1612 && !MEM_P (orig_src)
1613 && GET_CODE (orig_src) != CONCAT)
1615 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1616 if (imode == BLKmode)
1617 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1618 else
1619 src = gen_reg_rtx (imode);
1620 if (imode != BLKmode)
1621 src = gen_lowpart (GET_MODE (orig_src), src);
1622 emit_move_insn (src, orig_src);
1623 /* ...and back again. */
1624 if (imode != BLKmode)
1625 src = gen_lowpart (imode, src);
1626 emit_group_load_1 (tmps, dst, src, type, ssize);
1627 return;
1630 /* Check for a NULL entry, used to indicate that the parameter goes
1631 both on the stack and in registers. */
1632 if (XEXP (XVECEXP (dst, 0, 0), 0))
1633 start = 0;
1634 else
1635 start = 1;
1637 /* Process the pieces. */
1638 for (i = start; i < XVECLEN (dst, 0); i++)
1640 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1641 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1642 unsigned int bytelen = GET_MODE_SIZE (mode);
1643 int shift = 0;
1645 /* Handle trailing fragments that run over the size of the struct. */
1646 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1648 /* Arrange to shift the fragment to where it belongs.
1649 extract_bit_field loads to the lsb of the reg. */
1650 if (
1651 #ifdef BLOCK_REG_PADDING
1652 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1653 == (BYTES_BIG_ENDIAN ? upward : downward)
1654 #else
1655 BYTES_BIG_ENDIAN
1656 #endif
1658 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1659 bytelen = ssize - bytepos;
1660 gcc_assert (bytelen > 0);
1663 /* If we won't be loading directly from memory, protect the real source
1664 from strange tricks we might play; but make sure that the source can
1665 be loaded directly into the destination. */
1666 src = orig_src;
1667 if (!MEM_P (orig_src)
1668 && (!CONSTANT_P (orig_src)
1669 || (GET_MODE (orig_src) != mode
1670 && GET_MODE (orig_src) != VOIDmode)))
1672 if (GET_MODE (orig_src) == VOIDmode)
1673 src = gen_reg_rtx (mode);
1674 else
1675 src = gen_reg_rtx (GET_MODE (orig_src));
1677 emit_move_insn (src, orig_src);
1680 /* Optimize the access just a bit. */
1681 if (MEM_P (src)
1682 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1683 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1684 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1685 && bytelen == GET_MODE_SIZE (mode))
1687 tmps[i] = gen_reg_rtx (mode);
1688 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1690 else if (COMPLEX_MODE_P (mode)
1691 && GET_MODE (src) == mode
1692 && bytelen == GET_MODE_SIZE (mode))
1693 /* Let emit_move_complex do the bulk of the work. */
1694 tmps[i] = src;
1695 else if (GET_CODE (src) == CONCAT)
1697 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1698 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1700 if ((bytepos == 0 && bytelen == slen0)
1701 || (bytepos != 0 && bytepos + bytelen <= slen))
1703 /* The following assumes that the concatenated objects all
1704 have the same size. In this case, a simple calculation
1705 can be used to determine the object and the bit field
1706 to be extracted. */
1707 tmps[i] = XEXP (src, bytepos / slen0);
1708 if (! CONSTANT_P (tmps[i])
1709 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1710 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1711 (bytepos % slen0) * BITS_PER_UNIT,
1712 1, NULL_RTX, mode, mode);
1714 else
1716 rtx mem;
1718 gcc_assert (!bytepos);
1719 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1720 emit_move_insn (mem, src);
1721 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1722 0, 1, NULL_RTX, mode, mode);
1725 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1726 SIMD register, which is currently broken. While we get GCC
1727 to emit proper RTL for these cases, let's dump to memory. */
1728 else if (VECTOR_MODE_P (GET_MODE (dst))
1729 && REG_P (src))
1731 int slen = GET_MODE_SIZE (GET_MODE (src));
1732 rtx mem;
1734 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1735 emit_move_insn (mem, src);
1736 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1738 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1739 && XVECLEN (dst, 0) > 1)
1740 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1741 else if (CONSTANT_P (src)
1742 || (REG_P (src) && GET_MODE (src) == mode))
1743 tmps[i] = src;
1744 else
1745 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1746 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1747 mode, mode);
1749 if (shift)
1750 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1751 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1755 /* Emit code to move a block SRC of type TYPE to a block DST,
1756 where DST is non-consecutive registers represented by a PARALLEL.
1757 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1758 if not known. */
1760 void
1761 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1763 rtx *tmps;
1764 int i;
1766 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1767 emit_group_load_1 (tmps, dst, src, type, ssize);
1769 /* Copy the extracted pieces into the proper (probable) hard regs. */
1770 for (i = 0; i < XVECLEN (dst, 0); i++)
1772 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1773 if (d == NULL)
1774 continue;
1775 emit_move_insn (d, tmps[i]);
1779 /* Similar, but load SRC into new pseudos in a format that looks like
1780 PARALLEL. This can later be fed to emit_group_move to get things
1781 in the right place. */
1784 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1786 rtvec vec;
1787 int i;
1789 vec = rtvec_alloc (XVECLEN (parallel, 0));
1790 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1792 /* Convert the vector to look just like the original PARALLEL, except
1793 with the computed values. */
1794 for (i = 0; i < XVECLEN (parallel, 0); i++)
1796 rtx e = XVECEXP (parallel, 0, i);
1797 rtx d = XEXP (e, 0);
1799 if (d)
1801 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1802 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1804 RTVEC_ELT (vec, i) = e;
1807 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1810 /* Emit code to move a block SRC to block DST, where SRC and DST are
1811 non-consecutive groups of registers, each represented by a PARALLEL. */
1813 void
1814 emit_group_move (rtx dst, rtx src)
1816 int i;
1818 gcc_assert (GET_CODE (src) == PARALLEL
1819 && GET_CODE (dst) == PARALLEL
1820 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1822 /* Skip first entry if NULL. */
1823 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1824 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1825 XEXP (XVECEXP (src, 0, i), 0));
1828 /* Move a group of registers represented by a PARALLEL into pseudos. */
1831 emit_group_move_into_temps (rtx src)
1833 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1834 int i;
1836 for (i = 0; i < XVECLEN (src, 0); i++)
1838 rtx e = XVECEXP (src, 0, i);
1839 rtx d = XEXP (e, 0);
1841 if (d)
1842 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1843 RTVEC_ELT (vec, i) = e;
1846 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1849 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1850 where SRC is non-consecutive registers represented by a PARALLEL.
1851 SSIZE represents the total size of block ORIG_DST, or -1 if not
1852 known. */
1854 void
1855 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1857 rtx *tmps, dst;
1858 int start, i;
1859 enum machine_mode m = GET_MODE (orig_dst);
1861 gcc_assert (GET_CODE (src) == PARALLEL);
1863 if (!SCALAR_INT_MODE_P (m)
1864 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1866 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1867 if (imode == BLKmode)
1868 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1869 else
1870 dst = gen_reg_rtx (imode);
1871 emit_group_store (dst, src, type, ssize);
1872 if (imode != BLKmode)
1873 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1874 emit_move_insn (orig_dst, dst);
1875 return;
1878 /* Check for a NULL entry, used to indicate that the parameter goes
1879 both on the stack and in registers. */
1880 if (XEXP (XVECEXP (src, 0, 0), 0))
1881 start = 0;
1882 else
1883 start = 1;
1885 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1887 /* Copy the (probable) hard regs into pseudos. */
1888 for (i = start; i < XVECLEN (src, 0); i++)
1890 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1891 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1892 emit_move_insn (tmps[i], reg);
1895 /* If we won't be storing directly into memory, protect the real destination
1896 from strange tricks we might play. */
1897 dst = orig_dst;
1898 if (GET_CODE (dst) == PARALLEL)
1900 rtx temp;
1902 /* We can get a PARALLEL dst if there is a conditional expression in
1903 a return statement. In that case, the dst and src are the same,
1904 so no action is necessary. */
1905 if (rtx_equal_p (dst, src))
1906 return;
1908 /* It is unclear if we can ever reach here, but we may as well handle
1909 it. Allocate a temporary, and split this into a store/load to/from
1910 the temporary. */
1912 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1913 emit_group_store (temp, src, type, ssize);
1914 emit_group_load (dst, temp, type, ssize);
1915 return;
1917 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1919 dst = gen_reg_rtx (GET_MODE (orig_dst));
1920 /* Make life a bit easier for combine. */
1921 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1924 /* Process the pieces. */
1925 for (i = start; i < XVECLEN (src, 0); i++)
1927 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1928 enum machine_mode mode = GET_MODE (tmps[i]);
1929 unsigned int bytelen = GET_MODE_SIZE (mode);
1930 rtx dest = dst;
1932 /* Handle trailing fragments that run over the size of the struct. */
1933 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1935 /* store_bit_field always takes its value from the lsb.
1936 Move the fragment to the lsb if it's not already there. */
1937 if (
1938 #ifdef BLOCK_REG_PADDING
1939 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1940 == (BYTES_BIG_ENDIAN ? upward : downward)
1941 #else
1942 BYTES_BIG_ENDIAN
1943 #endif
1946 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1947 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1948 build_int_cst (NULL_TREE, shift),
1949 tmps[i], 0);
1951 bytelen = ssize - bytepos;
1954 if (GET_CODE (dst) == CONCAT)
1956 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1957 dest = XEXP (dst, 0);
1958 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1960 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1961 dest = XEXP (dst, 1);
1963 else
1965 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1966 dest = assign_stack_temp (GET_MODE (dest),
1967 GET_MODE_SIZE (GET_MODE (dest)), 0);
1968 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1969 tmps[i]);
1970 dst = dest;
1971 break;
1975 /* Optimize the access just a bit. */
1976 if (MEM_P (dest)
1977 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1978 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1979 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1980 && bytelen == GET_MODE_SIZE (mode))
1981 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1982 else
1983 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1984 mode, tmps[i]);
1987 /* Copy from the pseudo into the (probable) hard reg. */
1988 if (orig_dst != dst)
1989 emit_move_insn (orig_dst, dst);
1992 /* Generate code to copy a BLKmode object of TYPE out of a
1993 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1994 is null, a stack temporary is created. TGTBLK is returned.
1996 The purpose of this routine is to handle functions that return
1997 BLKmode structures in registers. Some machines (the PA for example)
1998 want to return all small structures in registers regardless of the
1999 structure's alignment. */
2002 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2004 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2005 rtx src = NULL, dst = NULL;
2006 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2007 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2009 if (tgtblk == 0)
2011 tgtblk = assign_temp (build_qualified_type (type,
2012 (TYPE_QUALS (type)
2013 | TYPE_QUAL_CONST)),
2014 0, 1, 1);
2015 preserve_temp_slots (tgtblk);
2018 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2019 into a new pseudo which is a full word. */
2021 if (GET_MODE (srcreg) != BLKmode
2022 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2023 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2025 /* If the structure doesn't take up a whole number of words, see whether
2026 SRCREG is padded on the left or on the right. If it's on the left,
2027 set PADDING_CORRECTION to the number of bits to skip.
2029 In most ABIs, the structure will be returned at the least end of
2030 the register, which translates to right padding on little-endian
2031 targets and left padding on big-endian targets. The opposite
2032 holds if the structure is returned at the most significant
2033 end of the register. */
2034 if (bytes % UNITS_PER_WORD != 0
2035 && (targetm.calls.return_in_msb (type)
2036 ? !BYTES_BIG_ENDIAN
2037 : BYTES_BIG_ENDIAN))
2038 padding_correction
2039 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2041 /* Copy the structure BITSIZE bites at a time.
2043 We could probably emit more efficient code for machines which do not use
2044 strict alignment, but it doesn't seem worth the effort at the current
2045 time. */
2046 for (bitpos = 0, xbitpos = padding_correction;
2047 bitpos < bytes * BITS_PER_UNIT;
2048 bitpos += bitsize, xbitpos += bitsize)
2050 /* We need a new source operand each time xbitpos is on a
2051 word boundary and when xbitpos == padding_correction
2052 (the first time through). */
2053 if (xbitpos % BITS_PER_WORD == 0
2054 || xbitpos == padding_correction)
2055 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2056 GET_MODE (srcreg));
2058 /* We need a new destination operand each time bitpos is on
2059 a word boundary. */
2060 if (bitpos % BITS_PER_WORD == 0)
2061 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2063 /* Use xbitpos for the source extraction (right justified) and
2064 xbitpos for the destination store (left justified). */
2065 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2066 extract_bit_field (src, bitsize,
2067 xbitpos % BITS_PER_WORD, 1,
2068 NULL_RTX, word_mode, word_mode));
2071 return tgtblk;
2074 /* Add a USE expression for REG to the (possibly empty) list pointed
2075 to by CALL_FUSAGE. REG must denote a hard register. */
2077 void
2078 use_reg (rtx *call_fusage, rtx reg)
2080 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2082 *call_fusage
2083 = gen_rtx_EXPR_LIST (VOIDmode,
2084 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2087 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2088 starting at REGNO. All of these registers must be hard registers. */
2090 void
2091 use_regs (rtx *call_fusage, int regno, int nregs)
2093 int i;
2095 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2097 for (i = 0; i < nregs; i++)
2098 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2101 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2102 PARALLEL REGS. This is for calls that pass values in multiple
2103 non-contiguous locations. The Irix 6 ABI has examples of this. */
2105 void
2106 use_group_regs (rtx *call_fusage, rtx regs)
2108 int i;
2110 for (i = 0; i < XVECLEN (regs, 0); i++)
2112 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2114 /* A NULL entry means the parameter goes both on the stack and in
2115 registers. This can also be a MEM for targets that pass values
2116 partially on the stack and partially in registers. */
2117 if (reg != 0 && REG_P (reg))
2118 use_reg (call_fusage, reg);
2123 /* Determine whether the LEN bytes generated by CONSTFUN can be
2124 stored to memory using several move instructions. CONSTFUNDATA is
2125 a pointer which will be passed as argument in every CONSTFUN call.
2126 ALIGN is maximum alignment we can assume. Return nonzero if a
2127 call to store_by_pieces should succeed. */
2130 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2131 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2132 void *constfundata, unsigned int align)
2134 unsigned HOST_WIDE_INT l;
2135 unsigned int max_size;
2136 HOST_WIDE_INT offset = 0;
2137 enum machine_mode mode, tmode;
2138 enum insn_code icode;
2139 int reverse;
2140 rtx cst;
2142 if (len == 0)
2143 return 1;
2145 if (! STORE_BY_PIECES_P (len, align))
2146 return 0;
2148 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2149 if (align >= GET_MODE_ALIGNMENT (tmode))
2150 align = GET_MODE_ALIGNMENT (tmode);
2151 else
2153 enum machine_mode xmode;
2155 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2156 tmode != VOIDmode;
2157 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2158 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2159 || SLOW_UNALIGNED_ACCESS (tmode, align))
2160 break;
2162 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2165 /* We would first store what we can in the largest integer mode, then go to
2166 successively smaller modes. */
2168 for (reverse = 0;
2169 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2170 reverse++)
2172 l = len;
2173 mode = VOIDmode;
2174 max_size = STORE_MAX_PIECES + 1;
2175 while (max_size > 1)
2177 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2178 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2179 if (GET_MODE_SIZE (tmode) < max_size)
2180 mode = tmode;
2182 if (mode == VOIDmode)
2183 break;
2185 icode = mov_optab->handlers[(int) mode].insn_code;
2186 if (icode != CODE_FOR_nothing
2187 && align >= GET_MODE_ALIGNMENT (mode))
2189 unsigned int size = GET_MODE_SIZE (mode);
2191 while (l >= size)
2193 if (reverse)
2194 offset -= size;
2196 cst = (*constfun) (constfundata, offset, mode);
2197 if (!LEGITIMATE_CONSTANT_P (cst))
2198 return 0;
2200 if (!reverse)
2201 offset += size;
2203 l -= size;
2207 max_size = GET_MODE_SIZE (mode);
2210 /* The code above should have handled everything. */
2211 gcc_assert (!l);
2214 return 1;
2217 /* Generate several move instructions to store LEN bytes generated by
2218 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2219 pointer which will be passed as argument in every CONSTFUN call.
2220 ALIGN is maximum alignment we can assume.
2221 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2222 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2223 stpcpy. */
2226 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2227 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2228 void *constfundata, unsigned int align, int endp)
2230 struct store_by_pieces data;
2232 if (len == 0)
2234 gcc_assert (endp != 2);
2235 return to;
2238 gcc_assert (STORE_BY_PIECES_P (len, align));
2239 data.constfun = constfun;
2240 data.constfundata = constfundata;
2241 data.len = len;
2242 data.to = to;
2243 store_by_pieces_1 (&data, align);
2244 if (endp)
2246 rtx to1;
2248 gcc_assert (!data.reverse);
2249 if (data.autinc_to)
2251 if (endp == 2)
2253 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2254 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2255 else
2256 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2257 -1));
2259 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2260 data.offset);
2262 else
2264 if (endp == 2)
2265 --data.offset;
2266 to1 = adjust_address (data.to, QImode, data.offset);
2268 return to1;
2270 else
2271 return data.to;
2274 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2275 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2277 static void
2278 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2280 struct store_by_pieces data;
2282 if (len == 0)
2283 return;
2285 data.constfun = clear_by_pieces_1;
2286 data.constfundata = NULL;
2287 data.len = len;
2288 data.to = to;
2289 store_by_pieces_1 (&data, align);
2292 /* Callback routine for clear_by_pieces.
2293 Return const0_rtx unconditionally. */
2295 static rtx
2296 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2297 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2298 enum machine_mode mode ATTRIBUTE_UNUSED)
2300 return const0_rtx;
2303 /* Subroutine of clear_by_pieces and store_by_pieces.
2304 Generate several move instructions to store LEN bytes of block TO. (A MEM
2305 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2307 static void
2308 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2309 unsigned int align ATTRIBUTE_UNUSED)
2311 rtx to_addr = XEXP (data->to, 0);
2312 unsigned int max_size = STORE_MAX_PIECES + 1;
2313 enum machine_mode mode = VOIDmode, tmode;
2314 enum insn_code icode;
2316 data->offset = 0;
2317 data->to_addr = to_addr;
2318 data->autinc_to
2319 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2320 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2322 data->explicit_inc_to = 0;
2323 data->reverse
2324 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2325 if (data->reverse)
2326 data->offset = data->len;
2328 /* If storing requires more than two move insns,
2329 copy addresses to registers (to make displacements shorter)
2330 and use post-increment if available. */
2331 if (!data->autinc_to
2332 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2334 /* Determine the main mode we'll be using. */
2335 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2336 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2337 if (GET_MODE_SIZE (tmode) < max_size)
2338 mode = tmode;
2340 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2342 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2343 data->autinc_to = 1;
2344 data->explicit_inc_to = -1;
2347 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2348 && ! data->autinc_to)
2350 data->to_addr = copy_addr_to_reg (to_addr);
2351 data->autinc_to = 1;
2352 data->explicit_inc_to = 1;
2355 if ( !data->autinc_to && CONSTANT_P (to_addr))
2356 data->to_addr = copy_addr_to_reg (to_addr);
2359 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2360 if (align >= GET_MODE_ALIGNMENT (tmode))
2361 align = GET_MODE_ALIGNMENT (tmode);
2362 else
2364 enum machine_mode xmode;
2366 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2367 tmode != VOIDmode;
2368 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2369 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2370 || SLOW_UNALIGNED_ACCESS (tmode, align))
2371 break;
2373 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2376 /* First store what we can in the largest integer mode, then go to
2377 successively smaller modes. */
2379 while (max_size > 1)
2381 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2382 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2383 if (GET_MODE_SIZE (tmode) < max_size)
2384 mode = tmode;
2386 if (mode == VOIDmode)
2387 break;
2389 icode = mov_optab->handlers[(int) mode].insn_code;
2390 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2391 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2393 max_size = GET_MODE_SIZE (mode);
2396 /* The code above should have handled everything. */
2397 gcc_assert (!data->len);
2400 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2401 with move instructions for mode MODE. GENFUN is the gen_... function
2402 to make a move insn for that mode. DATA has all the other info. */
2404 static void
2405 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2406 struct store_by_pieces *data)
2408 unsigned int size = GET_MODE_SIZE (mode);
2409 rtx to1, cst;
2411 while (data->len >= size)
2413 if (data->reverse)
2414 data->offset -= size;
2416 if (data->autinc_to)
2417 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2418 data->offset);
2419 else
2420 to1 = adjust_address (data->to, mode, data->offset);
2422 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2423 emit_insn (gen_add2_insn (data->to_addr,
2424 GEN_INT (-(HOST_WIDE_INT) size)));
2426 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2427 emit_insn ((*genfun) (to1, cst));
2429 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2430 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2432 if (! data->reverse)
2433 data->offset += size;
2435 data->len -= size;
2439 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2440 its length in bytes. */
2443 clear_storage (rtx object, rtx size, enum block_op_methods method)
2445 enum machine_mode mode = GET_MODE (object);
2446 unsigned int align;
2448 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2450 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2451 just move a zero. Otherwise, do this a piece at a time. */
2452 if (mode != BLKmode
2453 && GET_CODE (size) == CONST_INT
2454 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2456 rtx zero = CONST0_RTX (mode);
2457 if (zero != NULL)
2459 emit_move_insn (object, zero);
2460 return NULL;
2463 if (COMPLEX_MODE_P (mode))
2465 zero = CONST0_RTX (GET_MODE_INNER (mode));
2466 if (zero != NULL)
2468 write_complex_part (object, zero, 0);
2469 write_complex_part (object, zero, 1);
2470 return NULL;
2475 if (size == const0_rtx)
2476 return NULL;
2478 align = MEM_ALIGN (object);
2480 if (GET_CODE (size) == CONST_INT
2481 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2482 clear_by_pieces (object, INTVAL (size), align);
2483 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2485 else
2486 return clear_storage_via_libcall (object, size,
2487 method == BLOCK_OP_TAILCALL);
2489 return NULL;
2492 /* A subroutine of clear_storage. Expand a call to memset.
2493 Return the return value of memset, 0 otherwise. */
2495 static rtx
2496 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2498 tree call_expr, arg_list, fn, object_tree, size_tree;
2499 enum machine_mode size_mode;
2500 rtx retval;
2502 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2503 place those into new pseudos into a VAR_DECL and use them later. */
2505 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2507 size_mode = TYPE_MODE (sizetype);
2508 size = convert_to_mode (size_mode, size, 1);
2509 size = copy_to_mode_reg (size_mode, size);
2511 /* It is incorrect to use the libcall calling conventions to call
2512 memset in this context. This could be a user call to memset and
2513 the user may wish to examine the return value from memset. For
2514 targets where libcalls and normal calls have different conventions
2515 for returning pointers, we could end up generating incorrect code. */
2517 object_tree = make_tree (ptr_type_node, object);
2518 size_tree = make_tree (sizetype, size);
2520 fn = clear_storage_libcall_fn (true);
2521 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2522 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2523 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2525 /* Now we have to build up the CALL_EXPR itself. */
2526 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2527 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2528 call_expr, arg_list, NULL_TREE);
2529 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2531 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2533 return retval;
2536 /* A subroutine of clear_storage_via_libcall. Create the tree node
2537 for the function we use for block clears. The first time FOR_CALL
2538 is true, we call assemble_external. */
2540 static GTY(()) tree block_clear_fn;
2542 void
2543 init_block_clear_fn (const char *asmspec)
2545 if (!block_clear_fn)
2547 tree fn, args;
2549 fn = get_identifier ("memset");
2550 args = build_function_type_list (ptr_type_node, ptr_type_node,
2551 integer_type_node, sizetype,
2552 NULL_TREE);
2554 fn = build_decl (FUNCTION_DECL, fn, args);
2555 DECL_EXTERNAL (fn) = 1;
2556 TREE_PUBLIC (fn) = 1;
2557 DECL_ARTIFICIAL (fn) = 1;
2558 TREE_NOTHROW (fn) = 1;
2560 block_clear_fn = fn;
2563 if (asmspec)
2564 set_user_assembler_name (block_clear_fn, asmspec);
2567 static tree
2568 clear_storage_libcall_fn (int for_call)
2570 static bool emitted_extern;
2572 if (!block_clear_fn)
2573 init_block_clear_fn (NULL);
2575 if (for_call && !emitted_extern)
2577 emitted_extern = true;
2578 make_decl_rtl (block_clear_fn);
2579 assemble_external (block_clear_fn);
2582 return block_clear_fn;
2585 /* Expand a setmem pattern; return true if successful. */
2587 bool
2588 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2590 /* Try the most limited insn first, because there's no point
2591 including more than one in the machine description unless
2592 the more limited one has some advantage. */
2594 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2595 enum machine_mode mode;
2597 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2598 mode = GET_MODE_WIDER_MODE (mode))
2600 enum insn_code code = setmem_optab[(int) mode];
2601 insn_operand_predicate_fn pred;
2603 if (code != CODE_FOR_nothing
2604 /* We don't need MODE to be narrower than
2605 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2606 the mode mask, as it is returned by the macro, it will
2607 definitely be less than the actual mode mask. */
2608 && ((GET_CODE (size) == CONST_INT
2609 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2610 <= (GET_MODE_MASK (mode) >> 1)))
2611 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2612 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2613 || (*pred) (object, BLKmode))
2614 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2615 || (*pred) (opalign, VOIDmode)))
2617 rtx opsize, opchar;
2618 enum machine_mode char_mode;
2619 rtx last = get_last_insn ();
2620 rtx pat;
2622 opsize = convert_to_mode (mode, size, 1);
2623 pred = insn_data[(int) code].operand[1].predicate;
2624 if (pred != 0 && ! (*pred) (opsize, mode))
2625 opsize = copy_to_mode_reg (mode, opsize);
2627 opchar = val;
2628 char_mode = insn_data[(int) code].operand[2].mode;
2629 if (char_mode != VOIDmode)
2631 opchar = convert_to_mode (char_mode, opchar, 1);
2632 pred = insn_data[(int) code].operand[2].predicate;
2633 if (pred != 0 && ! (*pred) (opchar, char_mode))
2634 opchar = copy_to_mode_reg (char_mode, opchar);
2637 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2638 if (pat)
2640 emit_insn (pat);
2641 return true;
2643 else
2644 delete_insns_since (last);
2648 return false;
2652 /* Write to one of the components of the complex value CPLX. Write VAL to
2653 the real part if IMAG_P is false, and the imaginary part if its true. */
2655 static void
2656 write_complex_part (rtx cplx, rtx val, bool imag_p)
2658 enum machine_mode cmode;
2659 enum machine_mode imode;
2660 unsigned ibitsize;
2662 if (GET_CODE (cplx) == CONCAT)
2664 emit_move_insn (XEXP (cplx, imag_p), val);
2665 return;
2668 cmode = GET_MODE (cplx);
2669 imode = GET_MODE_INNER (cmode);
2670 ibitsize = GET_MODE_BITSIZE (imode);
2672 /* For MEMs simplify_gen_subreg may generate an invalid new address
2673 because, e.g., the original address is considered mode-dependent
2674 by the target, which restricts simplify_subreg from invoking
2675 adjust_address_nv. Instead of preparing fallback support for an
2676 invalid address, we call adjust_address_nv directly. */
2677 if (MEM_P (cplx))
2679 emit_move_insn (adjust_address_nv (cplx, imode,
2680 imag_p ? GET_MODE_SIZE (imode) : 0),
2681 val);
2682 return;
2685 /* If the sub-object is at least word sized, then we know that subregging
2686 will work. This special case is important, since store_bit_field
2687 wants to operate on integer modes, and there's rarely an OImode to
2688 correspond to TCmode. */
2689 if (ibitsize >= BITS_PER_WORD
2690 /* For hard regs we have exact predicates. Assume we can split
2691 the original object if it spans an even number of hard regs.
2692 This special case is important for SCmode on 64-bit platforms
2693 where the natural size of floating-point regs is 32-bit. */
2694 || (REG_P (cplx)
2695 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2696 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2698 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2699 imag_p ? GET_MODE_SIZE (imode) : 0);
2700 if (part)
2702 emit_move_insn (part, val);
2703 return;
2705 else
2706 /* simplify_gen_subreg may fail for sub-word MEMs. */
2707 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2710 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2713 /* Extract one of the components of the complex value CPLX. Extract the
2714 real part if IMAG_P is false, and the imaginary part if it's true. */
2716 static rtx
2717 read_complex_part (rtx cplx, bool imag_p)
2719 enum machine_mode cmode, imode;
2720 unsigned ibitsize;
2722 if (GET_CODE (cplx) == CONCAT)
2723 return XEXP (cplx, imag_p);
2725 cmode = GET_MODE (cplx);
2726 imode = GET_MODE_INNER (cmode);
2727 ibitsize = GET_MODE_BITSIZE (imode);
2729 /* Special case reads from complex constants that got spilled to memory. */
2730 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2732 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2733 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2735 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2736 if (CONSTANT_CLASS_P (part))
2737 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2741 /* For MEMs simplify_gen_subreg may generate an invalid new address
2742 because, e.g., the original address is considered mode-dependent
2743 by the target, which restricts simplify_subreg from invoking
2744 adjust_address_nv. Instead of preparing fallback support for an
2745 invalid address, we call adjust_address_nv directly. */
2746 if (MEM_P (cplx))
2747 return adjust_address_nv (cplx, imode,
2748 imag_p ? GET_MODE_SIZE (imode) : 0);
2750 /* If the sub-object is at least word sized, then we know that subregging
2751 will work. This special case is important, since extract_bit_field
2752 wants to operate on integer modes, and there's rarely an OImode to
2753 correspond to TCmode. */
2754 if (ibitsize >= BITS_PER_WORD
2755 /* For hard regs we have exact predicates. Assume we can split
2756 the original object if it spans an even number of hard regs.
2757 This special case is important for SCmode on 64-bit platforms
2758 where the natural size of floating-point regs is 32-bit. */
2759 || (REG_P (cplx)
2760 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2761 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2763 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2764 imag_p ? GET_MODE_SIZE (imode) : 0);
2765 if (ret)
2766 return ret;
2767 else
2768 /* simplify_gen_subreg may fail for sub-word MEMs. */
2769 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2772 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2773 true, NULL_RTX, imode, imode);
2776 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2777 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2778 represented in NEW_MODE. If FORCE is true, this will never happen, as
2779 we'll force-create a SUBREG if needed. */
2781 static rtx
2782 emit_move_change_mode (enum machine_mode new_mode,
2783 enum machine_mode old_mode, rtx x, bool force)
2785 rtx ret;
2787 if (MEM_P (x))
2789 /* We don't have to worry about changing the address since the
2790 size in bytes is supposed to be the same. */
2791 if (reload_in_progress)
2793 /* Copy the MEM to change the mode and move any
2794 substitutions from the old MEM to the new one. */
2795 ret = adjust_address_nv (x, new_mode, 0);
2796 copy_replacements (x, ret);
2798 else
2799 ret = adjust_address (x, new_mode, 0);
2801 else
2803 /* Note that we do want simplify_subreg's behavior of validating
2804 that the new mode is ok for a hard register. If we were to use
2805 simplify_gen_subreg, we would create the subreg, but would
2806 probably run into the target not being able to implement it. */
2807 /* Except, of course, when FORCE is true, when this is exactly what
2808 we want. Which is needed for CCmodes on some targets. */
2809 if (force)
2810 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2811 else
2812 ret = simplify_subreg (new_mode, x, old_mode, 0);
2815 return ret;
2818 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2819 an integer mode of the same size as MODE. Returns the instruction
2820 emitted, or NULL if such a move could not be generated. */
2822 static rtx
2823 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2825 enum machine_mode imode;
2826 enum insn_code code;
2828 /* There must exist a mode of the exact size we require. */
2829 imode = int_mode_for_mode (mode);
2830 if (imode == BLKmode)
2831 return NULL_RTX;
2833 /* The target must support moves in this mode. */
2834 code = mov_optab->handlers[imode].insn_code;
2835 if (code == CODE_FOR_nothing)
2836 return NULL_RTX;
2838 x = emit_move_change_mode (imode, mode, x, force);
2839 if (x == NULL_RTX)
2840 return NULL_RTX;
2841 y = emit_move_change_mode (imode, mode, y, force);
2842 if (y == NULL_RTX)
2843 return NULL_RTX;
2844 return emit_insn (GEN_FCN (code) (x, y));
2847 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2848 Return an equivalent MEM that does not use an auto-increment. */
2850 static rtx
2851 emit_move_resolve_push (enum machine_mode mode, rtx x)
2853 enum rtx_code code = GET_CODE (XEXP (x, 0));
2854 HOST_WIDE_INT adjust;
2855 rtx temp;
2857 adjust = GET_MODE_SIZE (mode);
2858 #ifdef PUSH_ROUNDING
2859 adjust = PUSH_ROUNDING (adjust);
2860 #endif
2861 if (code == PRE_DEC || code == POST_DEC)
2862 adjust = -adjust;
2863 else if (code == PRE_MODIFY || code == POST_MODIFY)
2865 rtx expr = XEXP (XEXP (x, 0), 1);
2866 HOST_WIDE_INT val;
2868 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2869 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2870 val = INTVAL (XEXP (expr, 1));
2871 if (GET_CODE (expr) == MINUS)
2872 val = -val;
2873 gcc_assert (adjust == val || adjust == -val);
2874 adjust = val;
2877 /* Do not use anti_adjust_stack, since we don't want to update
2878 stack_pointer_delta. */
2879 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2880 GEN_INT (adjust), stack_pointer_rtx,
2881 0, OPTAB_LIB_WIDEN);
2882 if (temp != stack_pointer_rtx)
2883 emit_move_insn (stack_pointer_rtx, temp);
2885 switch (code)
2887 case PRE_INC:
2888 case PRE_DEC:
2889 case PRE_MODIFY:
2890 temp = stack_pointer_rtx;
2891 break;
2892 case POST_INC:
2893 case POST_DEC:
2894 case POST_MODIFY:
2895 temp = plus_constant (stack_pointer_rtx, -adjust);
2896 break;
2897 default:
2898 gcc_unreachable ();
2901 return replace_equiv_address (x, temp);
2904 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2905 X is known to satisfy push_operand, and MODE is known to be complex.
2906 Returns the last instruction emitted. */
2908 static rtx
2909 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2911 enum machine_mode submode = GET_MODE_INNER (mode);
2912 bool imag_first;
2914 #ifdef PUSH_ROUNDING
2915 unsigned int submodesize = GET_MODE_SIZE (submode);
2917 /* In case we output to the stack, but the size is smaller than the
2918 machine can push exactly, we need to use move instructions. */
2919 if (PUSH_ROUNDING (submodesize) != submodesize)
2921 x = emit_move_resolve_push (mode, x);
2922 return emit_move_insn (x, y);
2924 #endif
2926 /* Note that the real part always precedes the imag part in memory
2927 regardless of machine's endianness. */
2928 switch (GET_CODE (XEXP (x, 0)))
2930 case PRE_DEC:
2931 case POST_DEC:
2932 imag_first = true;
2933 break;
2934 case PRE_INC:
2935 case POST_INC:
2936 imag_first = false;
2937 break;
2938 default:
2939 gcc_unreachable ();
2942 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2943 read_complex_part (y, imag_first));
2944 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2945 read_complex_part (y, !imag_first));
2948 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
2949 MODE is known to be complex. Returns the last instruction emitted. */
2951 static rtx
2952 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
2954 bool try_int;
2956 /* Need to take special care for pushes, to maintain proper ordering
2957 of the data, and possibly extra padding. */
2958 if (push_operand (x, mode))
2959 return emit_move_complex_push (mode, x, y);
2961 /* See if we can coerce the target into moving both values at once. */
2963 /* Move floating point as parts. */
2964 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
2965 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
2966 try_int = false;
2967 /* Not possible if the values are inherently not adjacent. */
2968 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
2969 try_int = false;
2970 /* Is possible if both are registers (or subregs of registers). */
2971 else if (register_operand (x, mode) && register_operand (y, mode))
2972 try_int = true;
2973 /* If one of the operands is a memory, and alignment constraints
2974 are friendly enough, we may be able to do combined memory operations.
2975 We do not attempt this if Y is a constant because that combination is
2976 usually better with the by-parts thing below. */
2977 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
2978 && (!STRICT_ALIGNMENT
2979 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
2980 try_int = true;
2981 else
2982 try_int = false;
2984 if (try_int)
2986 rtx ret;
2988 /* For memory to memory moves, optimal behavior can be had with the
2989 existing block move logic. */
2990 if (MEM_P (x) && MEM_P (y))
2992 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
2993 BLOCK_OP_NO_LIBCALL);
2994 return get_last_insn ();
2997 ret = emit_move_via_integer (mode, x, y, true);
2998 if (ret)
2999 return ret;
3002 /* Show the output dies here. This is necessary for SUBREGs
3003 of pseudos since we cannot track their lifetimes correctly;
3004 hard regs shouldn't appear here except as return values. */
3005 if (!reload_completed && !reload_in_progress
3006 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3007 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3009 write_complex_part (x, read_complex_part (y, false), false);
3010 write_complex_part (x, read_complex_part (y, true), true);
3011 return get_last_insn ();
3014 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3015 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3017 static rtx
3018 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3020 rtx ret;
3022 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3023 if (mode != CCmode)
3025 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3026 if (code != CODE_FOR_nothing)
3028 x = emit_move_change_mode (CCmode, mode, x, true);
3029 y = emit_move_change_mode (CCmode, mode, y, true);
3030 return emit_insn (GEN_FCN (code) (x, y));
3034 /* Otherwise, find the MODE_INT mode of the same width. */
3035 ret = emit_move_via_integer (mode, x, y, false);
3036 gcc_assert (ret != NULL);
3037 return ret;
3040 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3041 MODE is any multi-word or full-word mode that lacks a move_insn
3042 pattern. Note that you will get better code if you define such
3043 patterns, even if they must turn into multiple assembler instructions. */
3045 static rtx
3046 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3048 rtx last_insn = 0;
3049 rtx seq, inner;
3050 bool need_clobber;
3051 int i;
3053 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3055 /* If X is a push on the stack, do the push now and replace
3056 X with a reference to the stack pointer. */
3057 if (push_operand (x, mode))
3058 x = emit_move_resolve_push (mode, x);
3060 /* If we are in reload, see if either operand is a MEM whose address
3061 is scheduled for replacement. */
3062 if (reload_in_progress && MEM_P (x)
3063 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3064 x = replace_equiv_address_nv (x, inner);
3065 if (reload_in_progress && MEM_P (y)
3066 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3067 y = replace_equiv_address_nv (y, inner);
3069 start_sequence ();
3071 need_clobber = false;
3072 for (i = 0;
3073 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3074 i++)
3076 rtx xpart = operand_subword (x, i, 1, mode);
3077 rtx ypart = operand_subword (y, i, 1, mode);
3079 /* If we can't get a part of Y, put Y into memory if it is a
3080 constant. Otherwise, force it into a register. Then we must
3081 be able to get a part of Y. */
3082 if (ypart == 0 && CONSTANT_P (y))
3084 y = force_const_mem (mode, y);
3085 ypart = operand_subword (y, i, 1, mode);
3087 else if (ypart == 0)
3088 ypart = operand_subword_force (y, i, mode);
3090 gcc_assert (xpart && ypart);
3092 need_clobber |= (GET_CODE (xpart) == SUBREG);
3094 last_insn = emit_move_insn (xpart, ypart);
3097 seq = get_insns ();
3098 end_sequence ();
3100 /* Show the output dies here. This is necessary for SUBREGs
3101 of pseudos since we cannot track their lifetimes correctly;
3102 hard regs shouldn't appear here except as return values.
3103 We never want to emit such a clobber after reload. */
3104 if (x != y
3105 && ! (reload_in_progress || reload_completed)
3106 && need_clobber != 0)
3107 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3109 emit_insn (seq);
3111 return last_insn;
3114 /* Low level part of emit_move_insn.
3115 Called just like emit_move_insn, but assumes X and Y
3116 are basically valid. */
3119 emit_move_insn_1 (rtx x, rtx y)
3121 enum machine_mode mode = GET_MODE (x);
3122 enum insn_code code;
3124 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3126 code = mov_optab->handlers[mode].insn_code;
3127 if (code != CODE_FOR_nothing)
3128 return emit_insn (GEN_FCN (code) (x, y));
3130 /* Expand complex moves by moving real part and imag part. */
3131 if (COMPLEX_MODE_P (mode))
3132 return emit_move_complex (mode, x, y);
3134 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3136 rtx result = emit_move_via_integer (mode, x, y, true);
3138 /* If we can't find an integer mode, use multi words. */
3139 if (result)
3140 return result;
3141 else
3142 return emit_move_multi_word (mode, x, y);
3145 if (GET_MODE_CLASS (mode) == MODE_CC)
3146 return emit_move_ccmode (mode, x, y);
3148 /* Try using a move pattern for the corresponding integer mode. This is
3149 only safe when simplify_subreg can convert MODE constants into integer
3150 constants. At present, it can only do this reliably if the value
3151 fits within a HOST_WIDE_INT. */
3152 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3154 rtx ret = emit_move_via_integer (mode, x, y, false);
3155 if (ret)
3156 return ret;
3159 return emit_move_multi_word (mode, x, y);
3162 /* Generate code to copy Y into X.
3163 Both Y and X must have the same mode, except that
3164 Y can be a constant with VOIDmode.
3165 This mode cannot be BLKmode; use emit_block_move for that.
3167 Return the last instruction emitted. */
3170 emit_move_insn (rtx x, rtx y)
3172 enum machine_mode mode = GET_MODE (x);
3173 rtx y_cst = NULL_RTX;
3174 rtx last_insn, set;
3176 gcc_assert (mode != BLKmode
3177 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3179 if (CONSTANT_P (y))
3181 if (optimize
3182 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3183 && (last_insn = compress_float_constant (x, y)))
3184 return last_insn;
3186 y_cst = y;
3188 if (!LEGITIMATE_CONSTANT_P (y))
3190 y = force_const_mem (mode, y);
3192 /* If the target's cannot_force_const_mem prevented the spill,
3193 assume that the target's move expanders will also take care
3194 of the non-legitimate constant. */
3195 if (!y)
3196 y = y_cst;
3200 /* If X or Y are memory references, verify that their addresses are valid
3201 for the machine. */
3202 if (MEM_P (x)
3203 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3204 && ! push_operand (x, GET_MODE (x)))
3205 || (flag_force_addr
3206 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3207 x = validize_mem (x);
3209 if (MEM_P (y)
3210 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3211 || (flag_force_addr
3212 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3213 y = validize_mem (y);
3215 gcc_assert (mode != BLKmode);
3217 last_insn = emit_move_insn_1 (x, y);
3219 if (y_cst && REG_P (x)
3220 && (set = single_set (last_insn)) != NULL_RTX
3221 && SET_DEST (set) == x
3222 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3223 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3225 return last_insn;
3228 /* If Y is representable exactly in a narrower mode, and the target can
3229 perform the extension directly from constant or memory, then emit the
3230 move as an extension. */
3232 static rtx
3233 compress_float_constant (rtx x, rtx y)
3235 enum machine_mode dstmode = GET_MODE (x);
3236 enum machine_mode orig_srcmode = GET_MODE (y);
3237 enum machine_mode srcmode;
3238 REAL_VALUE_TYPE r;
3239 int oldcost, newcost;
3241 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3243 if (LEGITIMATE_CONSTANT_P (y))
3244 oldcost = rtx_cost (y, SET);
3245 else
3246 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3248 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3249 srcmode != orig_srcmode;
3250 srcmode = GET_MODE_WIDER_MODE (srcmode))
3252 enum insn_code ic;
3253 rtx trunc_y, last_insn;
3255 /* Skip if the target can't extend this way. */
3256 ic = can_extend_p (dstmode, srcmode, 0);
3257 if (ic == CODE_FOR_nothing)
3258 continue;
3260 /* Skip if the narrowed value isn't exact. */
3261 if (! exact_real_truncate (srcmode, &r))
3262 continue;
3264 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3266 if (LEGITIMATE_CONSTANT_P (trunc_y))
3268 /* Skip if the target needs extra instructions to perform
3269 the extension. */
3270 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3271 continue;
3272 /* This is valid, but may not be cheaper than the original. */
3273 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3274 if (oldcost < newcost)
3275 continue;
3277 else if (float_extend_from_mem[dstmode][srcmode])
3279 trunc_y = force_const_mem (srcmode, trunc_y);
3280 /* This is valid, but may not be cheaper than the original. */
3281 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3282 if (oldcost < newcost)
3283 continue;
3284 trunc_y = validize_mem (trunc_y);
3286 else
3287 continue;
3289 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3290 last_insn = get_last_insn ();
3292 if (REG_P (x))
3293 set_unique_reg_note (last_insn, REG_EQUAL, y);
3295 return last_insn;
3298 return NULL_RTX;
3301 /* Pushing data onto the stack. */
3303 /* Push a block of length SIZE (perhaps variable)
3304 and return an rtx to address the beginning of the block.
3305 The value may be virtual_outgoing_args_rtx.
3307 EXTRA is the number of bytes of padding to push in addition to SIZE.
3308 BELOW nonzero means this padding comes at low addresses;
3309 otherwise, the padding comes at high addresses. */
3312 push_block (rtx size, int extra, int below)
3314 rtx temp;
3316 size = convert_modes (Pmode, ptr_mode, size, 1);
3317 if (CONSTANT_P (size))
3318 anti_adjust_stack (plus_constant (size, extra));
3319 else if (REG_P (size) && extra == 0)
3320 anti_adjust_stack (size);
3321 else
3323 temp = copy_to_mode_reg (Pmode, size);
3324 if (extra != 0)
3325 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3326 temp, 0, OPTAB_LIB_WIDEN);
3327 anti_adjust_stack (temp);
3330 #ifndef STACK_GROWS_DOWNWARD
3331 if (0)
3332 #else
3333 if (1)
3334 #endif
3336 temp = virtual_outgoing_args_rtx;
3337 if (extra != 0 && below)
3338 temp = plus_constant (temp, extra);
3340 else
3342 if (GET_CODE (size) == CONST_INT)
3343 temp = plus_constant (virtual_outgoing_args_rtx,
3344 -INTVAL (size) - (below ? 0 : extra));
3345 else if (extra != 0 && !below)
3346 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3347 negate_rtx (Pmode, plus_constant (size, extra)));
3348 else
3349 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3350 negate_rtx (Pmode, size));
3353 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3356 #ifdef PUSH_ROUNDING
3358 /* Emit single push insn. */
3360 static void
3361 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3363 rtx dest_addr;
3364 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3365 rtx dest;
3366 enum insn_code icode;
3367 insn_operand_predicate_fn pred;
3369 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3370 /* If there is push pattern, use it. Otherwise try old way of throwing
3371 MEM representing push operation to move expander. */
3372 icode = push_optab->handlers[(int) mode].insn_code;
3373 if (icode != CODE_FOR_nothing)
3375 if (((pred = insn_data[(int) icode].operand[0].predicate)
3376 && !((*pred) (x, mode))))
3377 x = force_reg (mode, x);
3378 emit_insn (GEN_FCN (icode) (x));
3379 return;
3381 if (GET_MODE_SIZE (mode) == rounded_size)
3382 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3383 /* If we are to pad downward, adjust the stack pointer first and
3384 then store X into the stack location using an offset. This is
3385 because emit_move_insn does not know how to pad; it does not have
3386 access to type. */
3387 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3389 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3390 HOST_WIDE_INT offset;
3392 emit_move_insn (stack_pointer_rtx,
3393 expand_binop (Pmode,
3394 #ifdef STACK_GROWS_DOWNWARD
3395 sub_optab,
3396 #else
3397 add_optab,
3398 #endif
3399 stack_pointer_rtx,
3400 GEN_INT (rounded_size),
3401 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3403 offset = (HOST_WIDE_INT) padding_size;
3404 #ifdef STACK_GROWS_DOWNWARD
3405 if (STACK_PUSH_CODE == POST_DEC)
3406 /* We have already decremented the stack pointer, so get the
3407 previous value. */
3408 offset += (HOST_WIDE_INT) rounded_size;
3409 #else
3410 if (STACK_PUSH_CODE == POST_INC)
3411 /* We have already incremented the stack pointer, so get the
3412 previous value. */
3413 offset -= (HOST_WIDE_INT) rounded_size;
3414 #endif
3415 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3417 else
3419 #ifdef STACK_GROWS_DOWNWARD
3420 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3421 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3422 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3423 #else
3424 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3425 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3426 GEN_INT (rounded_size));
3427 #endif
3428 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3431 dest = gen_rtx_MEM (mode, dest_addr);
3433 if (type != 0)
3435 set_mem_attributes (dest, type, 1);
3437 if (flag_optimize_sibling_calls)
3438 /* Function incoming arguments may overlap with sibling call
3439 outgoing arguments and we cannot allow reordering of reads
3440 from function arguments with stores to outgoing arguments
3441 of sibling calls. */
3442 set_mem_alias_set (dest, 0);
3444 emit_move_insn (dest, x);
3446 #endif
3448 /* Generate code to push X onto the stack, assuming it has mode MODE and
3449 type TYPE.
3450 MODE is redundant except when X is a CONST_INT (since they don't
3451 carry mode info).
3452 SIZE is an rtx for the size of data to be copied (in bytes),
3453 needed only if X is BLKmode.
3455 ALIGN (in bits) is maximum alignment we can assume.
3457 If PARTIAL and REG are both nonzero, then copy that many of the first
3458 bytes of X into registers starting with REG, and push the rest of X.
3459 The amount of space pushed is decreased by PARTIAL bytes.
3460 REG must be a hard register in this case.
3461 If REG is zero but PARTIAL is not, take any all others actions for an
3462 argument partially in registers, but do not actually load any
3463 registers.
3465 EXTRA is the amount in bytes of extra space to leave next to this arg.
3466 This is ignored if an argument block has already been allocated.
3468 On a machine that lacks real push insns, ARGS_ADDR is the address of
3469 the bottom of the argument block for this call. We use indexing off there
3470 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3471 argument block has not been preallocated.
3473 ARGS_SO_FAR is the size of args previously pushed for this call.
3475 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3476 for arguments passed in registers. If nonzero, it will be the number
3477 of bytes required. */
3479 void
3480 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3481 unsigned int align, int partial, rtx reg, int extra,
3482 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3483 rtx alignment_pad)
3485 rtx xinner;
3486 enum direction stack_direction
3487 #ifdef STACK_GROWS_DOWNWARD
3488 = downward;
3489 #else
3490 = upward;
3491 #endif
3493 /* Decide where to pad the argument: `downward' for below,
3494 `upward' for above, or `none' for don't pad it.
3495 Default is below for small data on big-endian machines; else above. */
3496 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3498 /* Invert direction if stack is post-decrement.
3499 FIXME: why? */
3500 if (STACK_PUSH_CODE == POST_DEC)
3501 if (where_pad != none)
3502 where_pad = (where_pad == downward ? upward : downward);
3504 xinner = x;
3506 if (mode == BLKmode)
3508 /* Copy a block into the stack, entirely or partially. */
3510 rtx temp;
3511 int used;
3512 int offset;
3513 int skip;
3515 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3516 used = partial - offset;
3518 gcc_assert (size);
3520 /* USED is now the # of bytes we need not copy to the stack
3521 because registers will take care of them. */
3523 if (partial != 0)
3524 xinner = adjust_address (xinner, BLKmode, used);
3526 /* If the partial register-part of the arg counts in its stack size,
3527 skip the part of stack space corresponding to the registers.
3528 Otherwise, start copying to the beginning of the stack space,
3529 by setting SKIP to 0. */
3530 skip = (reg_parm_stack_space == 0) ? 0 : used;
3532 #ifdef PUSH_ROUNDING
3533 /* Do it with several push insns if that doesn't take lots of insns
3534 and if there is no difficulty with push insns that skip bytes
3535 on the stack for alignment purposes. */
3536 if (args_addr == 0
3537 && PUSH_ARGS
3538 && GET_CODE (size) == CONST_INT
3539 && skip == 0
3540 && MEM_ALIGN (xinner) >= align
3541 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3542 /* Here we avoid the case of a structure whose weak alignment
3543 forces many pushes of a small amount of data,
3544 and such small pushes do rounding that causes trouble. */
3545 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3546 || align >= BIGGEST_ALIGNMENT
3547 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3548 == (align / BITS_PER_UNIT)))
3549 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3551 /* Push padding now if padding above and stack grows down,
3552 or if padding below and stack grows up.
3553 But if space already allocated, this has already been done. */
3554 if (extra && args_addr == 0
3555 && where_pad != none && where_pad != stack_direction)
3556 anti_adjust_stack (GEN_INT (extra));
3558 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3560 else
3561 #endif /* PUSH_ROUNDING */
3563 rtx target;
3565 /* Otherwise make space on the stack and copy the data
3566 to the address of that space. */
3568 /* Deduct words put into registers from the size we must copy. */
3569 if (partial != 0)
3571 if (GET_CODE (size) == CONST_INT)
3572 size = GEN_INT (INTVAL (size) - used);
3573 else
3574 size = expand_binop (GET_MODE (size), sub_optab, size,
3575 GEN_INT (used), NULL_RTX, 0,
3576 OPTAB_LIB_WIDEN);
3579 /* Get the address of the stack space.
3580 In this case, we do not deal with EXTRA separately.
3581 A single stack adjust will do. */
3582 if (! args_addr)
3584 temp = push_block (size, extra, where_pad == downward);
3585 extra = 0;
3587 else if (GET_CODE (args_so_far) == CONST_INT)
3588 temp = memory_address (BLKmode,
3589 plus_constant (args_addr,
3590 skip + INTVAL (args_so_far)));
3591 else
3592 temp = memory_address (BLKmode,
3593 plus_constant (gen_rtx_PLUS (Pmode,
3594 args_addr,
3595 args_so_far),
3596 skip));
3598 if (!ACCUMULATE_OUTGOING_ARGS)
3600 /* If the source is referenced relative to the stack pointer,
3601 copy it to another register to stabilize it. We do not need
3602 to do this if we know that we won't be changing sp. */
3604 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3605 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3606 temp = copy_to_reg (temp);
3609 target = gen_rtx_MEM (BLKmode, temp);
3611 /* We do *not* set_mem_attributes here, because incoming arguments
3612 may overlap with sibling call outgoing arguments and we cannot
3613 allow reordering of reads from function arguments with stores
3614 to outgoing arguments of sibling calls. We do, however, want
3615 to record the alignment of the stack slot. */
3616 /* ALIGN may well be better aligned than TYPE, e.g. due to
3617 PARM_BOUNDARY. Assume the caller isn't lying. */
3618 set_mem_align (target, align);
3620 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3623 else if (partial > 0)
3625 /* Scalar partly in registers. */
3627 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3628 int i;
3629 int not_stack;
3630 /* # bytes of start of argument
3631 that we must make space for but need not store. */
3632 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3633 int args_offset = INTVAL (args_so_far);
3634 int skip;
3636 /* Push padding now if padding above and stack grows down,
3637 or if padding below and stack grows up.
3638 But if space already allocated, this has already been done. */
3639 if (extra && args_addr == 0
3640 && where_pad != none && where_pad != stack_direction)
3641 anti_adjust_stack (GEN_INT (extra));
3643 /* If we make space by pushing it, we might as well push
3644 the real data. Otherwise, we can leave OFFSET nonzero
3645 and leave the space uninitialized. */
3646 if (args_addr == 0)
3647 offset = 0;
3649 /* Now NOT_STACK gets the number of words that we don't need to
3650 allocate on the stack. Convert OFFSET to words too. */
3651 not_stack = (partial - offset) / UNITS_PER_WORD;
3652 offset /= UNITS_PER_WORD;
3654 /* If the partial register-part of the arg counts in its stack size,
3655 skip the part of stack space corresponding to the registers.
3656 Otherwise, start copying to the beginning of the stack space,
3657 by setting SKIP to 0. */
3658 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3660 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3661 x = validize_mem (force_const_mem (mode, x));
3663 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3664 SUBREGs of such registers are not allowed. */
3665 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3666 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3667 x = copy_to_reg (x);
3669 /* Loop over all the words allocated on the stack for this arg. */
3670 /* We can do it by words, because any scalar bigger than a word
3671 has a size a multiple of a word. */
3672 #ifndef PUSH_ARGS_REVERSED
3673 for (i = not_stack; i < size; i++)
3674 #else
3675 for (i = size - 1; i >= not_stack; i--)
3676 #endif
3677 if (i >= not_stack + offset)
3678 emit_push_insn (operand_subword_force (x, i, mode),
3679 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3680 0, args_addr,
3681 GEN_INT (args_offset + ((i - not_stack + skip)
3682 * UNITS_PER_WORD)),
3683 reg_parm_stack_space, alignment_pad);
3685 else
3687 rtx addr;
3688 rtx dest;
3690 /* Push padding now if padding above and stack grows down,
3691 or if padding below and stack grows up.
3692 But if space already allocated, this has already been done. */
3693 if (extra && args_addr == 0
3694 && where_pad != none && where_pad != stack_direction)
3695 anti_adjust_stack (GEN_INT (extra));
3697 #ifdef PUSH_ROUNDING
3698 if (args_addr == 0 && PUSH_ARGS)
3699 emit_single_push_insn (mode, x, type);
3700 else
3701 #endif
3703 if (GET_CODE (args_so_far) == CONST_INT)
3704 addr
3705 = memory_address (mode,
3706 plus_constant (args_addr,
3707 INTVAL (args_so_far)));
3708 else
3709 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3710 args_so_far));
3711 dest = gen_rtx_MEM (mode, addr);
3713 /* We do *not* set_mem_attributes here, because incoming arguments
3714 may overlap with sibling call outgoing arguments and we cannot
3715 allow reordering of reads from function arguments with stores
3716 to outgoing arguments of sibling calls. We do, however, want
3717 to record the alignment of the stack slot. */
3718 /* ALIGN may well be better aligned than TYPE, e.g. due to
3719 PARM_BOUNDARY. Assume the caller isn't lying. */
3720 set_mem_align (dest, align);
3722 emit_move_insn (dest, x);
3726 /* If part should go in registers, copy that part
3727 into the appropriate registers. Do this now, at the end,
3728 since mem-to-mem copies above may do function calls. */
3729 if (partial > 0 && reg != 0)
3731 /* Handle calls that pass values in multiple non-contiguous locations.
3732 The Irix 6 ABI has examples of this. */
3733 if (GET_CODE (reg) == PARALLEL)
3734 emit_group_load (reg, x, type, -1);
3735 else
3737 gcc_assert (partial % UNITS_PER_WORD == 0);
3738 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3742 if (extra && args_addr == 0 && where_pad == stack_direction)
3743 anti_adjust_stack (GEN_INT (extra));
3745 if (alignment_pad && args_addr == 0)
3746 anti_adjust_stack (alignment_pad);
3749 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3750 operations. */
3752 static rtx
3753 get_subtarget (rtx x)
3755 return (optimize
3756 || x == 0
3757 /* Only registers can be subtargets. */
3758 || !REG_P (x)
3759 /* Don't use hard regs to avoid extending their life. */
3760 || REGNO (x) < FIRST_PSEUDO_REGISTER
3761 ? 0 : x);
3764 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3765 FIELD is a bitfield. Returns true if the optimization was successful,
3766 and there's nothing else to do. */
3768 static bool
3769 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3770 unsigned HOST_WIDE_INT bitpos,
3771 enum machine_mode mode1, rtx str_rtx,
3772 tree to, tree src)
3774 enum machine_mode str_mode = GET_MODE (str_rtx);
3775 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3776 tree op0, op1;
3777 rtx value, result;
3778 optab binop;
3780 if (mode1 != VOIDmode
3781 || bitsize >= BITS_PER_WORD
3782 || str_bitsize > BITS_PER_WORD
3783 || TREE_SIDE_EFFECTS (to)
3784 || TREE_THIS_VOLATILE (to))
3785 return false;
3787 STRIP_NOPS (src);
3788 if (!BINARY_CLASS_P (src)
3789 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3790 return false;
3792 op0 = TREE_OPERAND (src, 0);
3793 op1 = TREE_OPERAND (src, 1);
3794 STRIP_NOPS (op0);
3796 if (!operand_equal_p (to, op0, 0))
3797 return false;
3799 if (MEM_P (str_rtx))
3801 unsigned HOST_WIDE_INT offset1;
3803 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3804 str_mode = word_mode;
3805 str_mode = get_best_mode (bitsize, bitpos,
3806 MEM_ALIGN (str_rtx), str_mode, 0);
3807 if (str_mode == VOIDmode)
3808 return false;
3809 str_bitsize = GET_MODE_BITSIZE (str_mode);
3811 offset1 = bitpos;
3812 bitpos %= str_bitsize;
3813 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3814 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3816 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3817 return false;
3819 /* If the bit field covers the whole REG/MEM, store_field
3820 will likely generate better code. */
3821 if (bitsize >= str_bitsize)
3822 return false;
3824 /* We can't handle fields split across multiple entities. */
3825 if (bitpos + bitsize > str_bitsize)
3826 return false;
3828 if (BYTES_BIG_ENDIAN)
3829 bitpos = str_bitsize - bitpos - bitsize;
3831 switch (TREE_CODE (src))
3833 case PLUS_EXPR:
3834 case MINUS_EXPR:
3835 /* For now, just optimize the case of the topmost bitfield
3836 where we don't need to do any masking and also
3837 1 bit bitfields where xor can be used.
3838 We might win by one instruction for the other bitfields
3839 too if insv/extv instructions aren't used, so that
3840 can be added later. */
3841 if (bitpos + bitsize != str_bitsize
3842 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3843 break;
3845 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3846 value = convert_modes (str_mode,
3847 TYPE_MODE (TREE_TYPE (op1)), value,
3848 TYPE_UNSIGNED (TREE_TYPE (op1)));
3850 /* We may be accessing data outside the field, which means
3851 we can alias adjacent data. */
3852 if (MEM_P (str_rtx))
3854 str_rtx = shallow_copy_rtx (str_rtx);
3855 set_mem_alias_set (str_rtx, 0);
3856 set_mem_expr (str_rtx, 0);
3859 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3860 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3862 value = expand_and (str_mode, value, const1_rtx, NULL);
3863 binop = xor_optab;
3865 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3866 build_int_cst (NULL_TREE, bitpos),
3867 NULL_RTX, 1);
3868 result = expand_binop (str_mode, binop, str_rtx,
3869 value, str_rtx, 1, OPTAB_WIDEN);
3870 if (result != str_rtx)
3871 emit_move_insn (str_rtx, result);
3872 return true;
3874 case BIT_IOR_EXPR:
3875 case BIT_XOR_EXPR:
3876 if (TREE_CODE (op1) != INTEGER_CST)
3877 break;
3878 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3879 value = convert_modes (GET_MODE (str_rtx),
3880 TYPE_MODE (TREE_TYPE (op1)), value,
3881 TYPE_UNSIGNED (TREE_TYPE (op1)));
3883 /* We may be accessing data outside the field, which means
3884 we can alias adjacent data. */
3885 if (MEM_P (str_rtx))
3887 str_rtx = shallow_copy_rtx (str_rtx);
3888 set_mem_alias_set (str_rtx, 0);
3889 set_mem_expr (str_rtx, 0);
3892 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3893 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3895 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
3896 - 1);
3897 value = expand_and (GET_MODE (str_rtx), value, mask,
3898 NULL_RTX);
3900 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
3901 build_int_cst (NULL_TREE, bitpos),
3902 NULL_RTX, 1);
3903 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
3904 value, str_rtx, 1, OPTAB_WIDEN);
3905 if (result != str_rtx)
3906 emit_move_insn (str_rtx, result);
3907 return true;
3909 default:
3910 break;
3913 return false;
3917 /* Expand an assignment that stores the value of FROM into TO. */
3919 void
3920 expand_assignment (tree to, tree from)
3922 rtx to_rtx = 0;
3923 rtx result;
3925 /* Don't crash if the lhs of the assignment was erroneous. */
3927 if (TREE_CODE (to) == ERROR_MARK)
3929 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3930 return;
3933 /* Assignment of a structure component needs special treatment
3934 if the structure component's rtx is not simply a MEM.
3935 Assignment of an array element at a constant index, and assignment of
3936 an array element in an unaligned packed structure field, has the same
3937 problem. */
3938 if (handled_component_p (to)
3939 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3941 enum machine_mode mode1;
3942 HOST_WIDE_INT bitsize, bitpos;
3943 tree offset;
3944 int unsignedp;
3945 int volatilep = 0;
3946 tree tem;
3948 push_temp_slots ();
3949 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3950 &unsignedp, &volatilep, true);
3952 /* If we are going to use store_bit_field and extract_bit_field,
3953 make sure to_rtx will be safe for multiple use. */
3955 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
3957 if (offset != 0)
3959 rtx offset_rtx;
3961 if (!MEM_P (to_rtx))
3963 /* We can get constant negative offsets into arrays with broken
3964 user code. Translate this to a trap instead of ICEing. */
3965 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
3966 expand_builtin_trap ();
3967 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
3970 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3971 #ifdef POINTERS_EXTEND_UNSIGNED
3972 if (GET_MODE (offset_rtx) != Pmode)
3973 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3974 #else
3975 if (GET_MODE (offset_rtx) != ptr_mode)
3976 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3977 #endif
3979 /* A constant address in TO_RTX can have VOIDmode, we must not try
3980 to call force_reg for that case. Avoid that case. */
3981 if (MEM_P (to_rtx)
3982 && GET_MODE (to_rtx) == BLKmode
3983 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3984 && bitsize > 0
3985 && (bitpos % bitsize) == 0
3986 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3987 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3989 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3990 bitpos = 0;
3993 to_rtx = offset_address (to_rtx, offset_rtx,
3994 highest_pow2_factor_for_target (to,
3995 offset));
3998 /* Handle expand_expr of a complex value returning a CONCAT. */
3999 if (GET_CODE (to_rtx) == CONCAT)
4001 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4003 gcc_assert (bitpos == 0);
4004 result = store_expr (from, to_rtx, false);
4006 else
4008 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4009 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4012 else
4014 if (MEM_P (to_rtx))
4016 /* If the field is at offset zero, we could have been given the
4017 DECL_RTX of the parent struct. Don't munge it. */
4018 to_rtx = shallow_copy_rtx (to_rtx);
4020 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4022 /* Deal with volatile and readonly fields. The former is only
4023 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4024 if (volatilep)
4025 MEM_VOLATILE_P (to_rtx) = 1;
4026 if (component_uses_parent_alias_set (to))
4027 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4030 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4031 to_rtx, to, from))
4032 result = NULL;
4033 else
4034 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4035 TREE_TYPE (tem), get_alias_set (to));
4038 if (result)
4039 preserve_temp_slots (result);
4040 free_temp_slots ();
4041 pop_temp_slots ();
4042 return;
4045 /* If the rhs is a function call and its value is not an aggregate,
4046 call the function before we start to compute the lhs.
4047 This is needed for correct code for cases such as
4048 val = setjmp (buf) on machines where reference to val
4049 requires loading up part of an address in a separate insn.
4051 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4052 since it might be a promoted variable where the zero- or sign- extension
4053 needs to be done. Handling this in the normal way is safe because no
4054 computation is done before the call. */
4055 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4056 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4057 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4058 && REG_P (DECL_RTL (to))))
4060 rtx value;
4062 push_temp_slots ();
4063 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
4064 if (to_rtx == 0)
4065 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4067 /* Handle calls that return values in multiple non-contiguous locations.
4068 The Irix 6 ABI has examples of this. */
4069 if (GET_CODE (to_rtx) == PARALLEL)
4070 emit_group_load (to_rtx, value, TREE_TYPE (from),
4071 int_size_in_bytes (TREE_TYPE (from)));
4072 else if (GET_MODE (to_rtx) == BLKmode)
4073 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4074 else
4076 if (POINTER_TYPE_P (TREE_TYPE (to)))
4077 value = convert_memory_address (GET_MODE (to_rtx), value);
4078 emit_move_insn (to_rtx, value);
4080 preserve_temp_slots (to_rtx);
4081 free_temp_slots ();
4082 pop_temp_slots ();
4083 return;
4086 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4087 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4089 if (to_rtx == 0)
4090 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4092 /* Don't move directly into a return register. */
4093 if (TREE_CODE (to) == RESULT_DECL
4094 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4096 rtx temp;
4098 push_temp_slots ();
4099 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4101 if (GET_CODE (to_rtx) == PARALLEL)
4102 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4103 int_size_in_bytes (TREE_TYPE (from)));
4104 else
4105 emit_move_insn (to_rtx, temp);
4107 preserve_temp_slots (to_rtx);
4108 free_temp_slots ();
4109 pop_temp_slots ();
4110 return;
4113 /* In case we are returning the contents of an object which overlaps
4114 the place the value is being stored, use a safe function when copying
4115 a value through a pointer into a structure value return block. */
4116 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4117 && current_function_returns_struct
4118 && !current_function_returns_pcc_struct)
4120 rtx from_rtx, size;
4122 push_temp_slots ();
4123 size = expr_size (from);
4124 from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
4126 emit_library_call (memmove_libfunc, LCT_NORMAL,
4127 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4128 XEXP (from_rtx, 0), Pmode,
4129 convert_to_mode (TYPE_MODE (sizetype),
4130 size, TYPE_UNSIGNED (sizetype)),
4131 TYPE_MODE (sizetype));
4133 preserve_temp_slots (to_rtx);
4134 free_temp_slots ();
4135 pop_temp_slots ();
4136 return;
4139 /* Compute FROM and store the value in the rtx we got. */
4141 push_temp_slots ();
4142 result = store_expr (from, to_rtx, 0);
4143 preserve_temp_slots (result);
4144 free_temp_slots ();
4145 pop_temp_slots ();
4146 return;
4149 /* Generate code for computing expression EXP,
4150 and storing the value into TARGET.
4152 If the mode is BLKmode then we may return TARGET itself.
4153 It turns out that in BLKmode it doesn't cause a problem.
4154 because C has no operators that could combine two different
4155 assignments into the same BLKmode object with different values
4156 with no sequence point. Will other languages need this to
4157 be more thorough?
4159 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4160 stack, and block moves may need to be treated specially. */
4163 store_expr (tree exp, rtx target, int call_param_p)
4165 rtx temp;
4166 rtx alt_rtl = NULL_RTX;
4167 int dont_return_target = 0;
4169 if (VOID_TYPE_P (TREE_TYPE (exp)))
4171 /* C++ can generate ?: expressions with a throw expression in one
4172 branch and an rvalue in the other. Here, we resolve attempts to
4173 store the throw expression's nonexistent result. */
4174 gcc_assert (!call_param_p);
4175 expand_expr (exp, const0_rtx, VOIDmode, 0);
4176 return NULL_RTX;
4178 if (TREE_CODE (exp) == COMPOUND_EXPR)
4180 /* Perform first part of compound expression, then assign from second
4181 part. */
4182 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4183 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4184 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4186 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4188 /* For conditional expression, get safe form of the target. Then
4189 test the condition, doing the appropriate assignment on either
4190 side. This avoids the creation of unnecessary temporaries.
4191 For non-BLKmode, it is more efficient not to do this. */
4193 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4195 do_pending_stack_adjust ();
4196 NO_DEFER_POP;
4197 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4198 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4199 emit_jump_insn (gen_jump (lab2));
4200 emit_barrier ();
4201 emit_label (lab1);
4202 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4203 emit_label (lab2);
4204 OK_DEFER_POP;
4206 return NULL_RTX;
4208 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4209 /* If this is a scalar in a register that is stored in a wider mode
4210 than the declared mode, compute the result into its declared mode
4211 and then convert to the wider mode. Our value is the computed
4212 expression. */
4214 rtx inner_target = 0;
4216 /* We can do the conversion inside EXP, which will often result
4217 in some optimizations. Do the conversion in two steps: first
4218 change the signedness, if needed, then the extend. But don't
4219 do this if the type of EXP is a subtype of something else
4220 since then the conversion might involve more than just
4221 converting modes. */
4222 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4223 && TREE_TYPE (TREE_TYPE (exp)) == 0
4224 && (!lang_hooks.reduce_bit_field_operations
4225 || (GET_MODE_PRECISION (GET_MODE (target))
4226 == TYPE_PRECISION (TREE_TYPE (exp)))))
4228 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4229 != SUBREG_PROMOTED_UNSIGNED_P (target))
4230 exp = convert
4231 (lang_hooks.types.signed_or_unsigned_type
4232 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4234 exp = convert (lang_hooks.types.type_for_mode
4235 (GET_MODE (SUBREG_REG (target)),
4236 SUBREG_PROMOTED_UNSIGNED_P (target)),
4237 exp);
4239 inner_target = SUBREG_REG (target);
4242 temp = expand_expr (exp, inner_target, VOIDmode,
4243 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4245 /* If TEMP is a VOIDmode constant, use convert_modes to make
4246 sure that we properly convert it. */
4247 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4249 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4250 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4251 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4252 GET_MODE (target), temp,
4253 SUBREG_PROMOTED_UNSIGNED_P (target));
4256 convert_move (SUBREG_REG (target), temp,
4257 SUBREG_PROMOTED_UNSIGNED_P (target));
4259 return NULL_RTX;
4261 else
4263 temp = expand_expr_real (exp, target, GET_MODE (target),
4264 (call_param_p
4265 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4266 &alt_rtl);
4267 /* Return TARGET if it's a specified hardware register.
4268 If TARGET is a volatile mem ref, either return TARGET
4269 or return a reg copied *from* TARGET; ANSI requires this.
4271 Otherwise, if TEMP is not TARGET, return TEMP
4272 if it is constant (for efficiency),
4273 or if we really want the correct value. */
4274 if (!(target && REG_P (target)
4275 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4276 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4277 && ! rtx_equal_p (temp, target)
4278 && CONSTANT_P (temp))
4279 dont_return_target = 1;
4282 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4283 the same as that of TARGET, adjust the constant. This is needed, for
4284 example, in case it is a CONST_DOUBLE and we want only a word-sized
4285 value. */
4286 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4287 && TREE_CODE (exp) != ERROR_MARK
4288 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4289 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4290 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4292 /* If value was not generated in the target, store it there.
4293 Convert the value to TARGET's type first if necessary and emit the
4294 pending incrementations that have been queued when expanding EXP.
4295 Note that we cannot emit the whole queue blindly because this will
4296 effectively disable the POST_INC optimization later.
4298 If TEMP and TARGET compare equal according to rtx_equal_p, but
4299 one or both of them are volatile memory refs, we have to distinguish
4300 two cases:
4301 - expand_expr has used TARGET. In this case, we must not generate
4302 another copy. This can be detected by TARGET being equal according
4303 to == .
4304 - expand_expr has not used TARGET - that means that the source just
4305 happens to have the same RTX form. Since temp will have been created
4306 by expand_expr, it will compare unequal according to == .
4307 We must generate a copy in this case, to reach the correct number
4308 of volatile memory references. */
4310 if ((! rtx_equal_p (temp, target)
4311 || (temp != target && (side_effects_p (temp)
4312 || side_effects_p (target))))
4313 && TREE_CODE (exp) != ERROR_MARK
4314 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4315 but TARGET is not valid memory reference, TEMP will differ
4316 from TARGET although it is really the same location. */
4317 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4318 /* If there's nothing to copy, don't bother. Don't call
4319 expr_size unless necessary, because some front-ends (C++)
4320 expr_size-hook must not be given objects that are not
4321 supposed to be bit-copied or bit-initialized. */
4322 && expr_size (exp) != const0_rtx)
4324 if (GET_MODE (temp) != GET_MODE (target)
4325 && GET_MODE (temp) != VOIDmode)
4327 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4328 if (dont_return_target)
4330 /* In this case, we will return TEMP,
4331 so make sure it has the proper mode.
4332 But don't forget to store the value into TARGET. */
4333 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4334 emit_move_insn (target, temp);
4336 else
4337 convert_move (target, temp, unsignedp);
4340 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4342 /* Handle copying a string constant into an array. The string
4343 constant may be shorter than the array. So copy just the string's
4344 actual length, and clear the rest. First get the size of the data
4345 type of the string, which is actually the size of the target. */
4346 rtx size = expr_size (exp);
4348 if (GET_CODE (size) == CONST_INT
4349 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4350 emit_block_move (target, temp, size,
4351 (call_param_p
4352 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4353 else
4355 /* Compute the size of the data to copy from the string. */
4356 tree copy_size
4357 = size_binop (MIN_EXPR,
4358 make_tree (sizetype, size),
4359 size_int (TREE_STRING_LENGTH (exp)));
4360 rtx copy_size_rtx
4361 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4362 (call_param_p
4363 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4364 rtx label = 0;
4366 /* Copy that much. */
4367 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4368 TYPE_UNSIGNED (sizetype));
4369 emit_block_move (target, temp, copy_size_rtx,
4370 (call_param_p
4371 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4373 /* Figure out how much is left in TARGET that we have to clear.
4374 Do all calculations in ptr_mode. */
4375 if (GET_CODE (copy_size_rtx) == CONST_INT)
4377 size = plus_constant (size, -INTVAL (copy_size_rtx));
4378 target = adjust_address (target, BLKmode,
4379 INTVAL (copy_size_rtx));
4381 else
4383 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4384 copy_size_rtx, NULL_RTX, 0,
4385 OPTAB_LIB_WIDEN);
4387 #ifdef POINTERS_EXTEND_UNSIGNED
4388 if (GET_MODE (copy_size_rtx) != Pmode)
4389 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4390 TYPE_UNSIGNED (sizetype));
4391 #endif
4393 target = offset_address (target, copy_size_rtx,
4394 highest_pow2_factor (copy_size));
4395 label = gen_label_rtx ();
4396 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4397 GET_MODE (size), 0, label);
4400 if (size != const0_rtx)
4401 clear_storage (target, size, BLOCK_OP_NORMAL);
4403 if (label)
4404 emit_label (label);
4407 /* Handle calls that return values in multiple non-contiguous locations.
4408 The Irix 6 ABI has examples of this. */
4409 else if (GET_CODE (target) == PARALLEL)
4410 emit_group_load (target, temp, TREE_TYPE (exp),
4411 int_size_in_bytes (TREE_TYPE (exp)));
4412 else if (GET_MODE (temp) == BLKmode)
4413 emit_block_move (target, temp, expr_size (exp),
4414 (call_param_p
4415 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4416 else
4418 temp = force_operand (temp, target);
4419 if (temp != target)
4420 emit_move_insn (target, temp);
4424 return NULL_RTX;
4427 /* Examine CTOR to discover:
4428 * how many scalar fields are set to nonzero values,
4429 and place it in *P_NZ_ELTS;
4430 * how many scalar fields are set to non-constant values,
4431 and place it in *P_NC_ELTS; and
4432 * how many scalar fields in total are in CTOR,
4433 and place it in *P_ELT_COUNT.
4434 * if a type is a union, and the initializer from the constructor
4435 is not the largest element in the union, then set *p_must_clear. */
4437 static void
4438 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4439 HOST_WIDE_INT *p_nc_elts,
4440 HOST_WIDE_INT *p_elt_count,
4441 bool *p_must_clear)
4443 unsigned HOST_WIDE_INT idx;
4444 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4445 tree value, purpose;
4447 nz_elts = 0;
4448 nc_elts = 0;
4449 elt_count = 0;
4451 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4453 HOST_WIDE_INT mult;
4455 mult = 1;
4456 if (TREE_CODE (purpose) == RANGE_EXPR)
4458 tree lo_index = TREE_OPERAND (purpose, 0);
4459 tree hi_index = TREE_OPERAND (purpose, 1);
4461 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4462 mult = (tree_low_cst (hi_index, 1)
4463 - tree_low_cst (lo_index, 1) + 1);
4466 switch (TREE_CODE (value))
4468 case CONSTRUCTOR:
4470 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4471 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4472 nz_elts += mult * nz;
4473 nc_elts += mult * nc;
4474 elt_count += mult * ic;
4476 break;
4478 case INTEGER_CST:
4479 case REAL_CST:
4480 if (!initializer_zerop (value))
4481 nz_elts += mult;
4482 elt_count += mult;
4483 break;
4485 case STRING_CST:
4486 nz_elts += mult * TREE_STRING_LENGTH (value);
4487 elt_count += mult * TREE_STRING_LENGTH (value);
4488 break;
4490 case COMPLEX_CST:
4491 if (!initializer_zerop (TREE_REALPART (value)))
4492 nz_elts += mult;
4493 if (!initializer_zerop (TREE_IMAGPART (value)))
4494 nz_elts += mult;
4495 elt_count += mult;
4496 break;
4498 case VECTOR_CST:
4500 tree v;
4501 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4503 if (!initializer_zerop (TREE_VALUE (v)))
4504 nz_elts += mult;
4505 elt_count += mult;
4508 break;
4510 default:
4511 nz_elts += mult;
4512 elt_count += mult;
4513 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4514 nc_elts += mult;
4515 break;
4519 if (!*p_must_clear
4520 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4521 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4523 tree init_sub_type;
4524 bool clear_this = true;
4526 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4528 /* We don't expect more than one element of the union to be
4529 initialized. Not sure what we should do otherwise... */
4530 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4531 == 1);
4533 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4534 CONSTRUCTOR_ELTS (ctor),
4535 0)->value);
4537 /* ??? We could look at each element of the union, and find the
4538 largest element. Which would avoid comparing the size of the
4539 initialized element against any tail padding in the union.
4540 Doesn't seem worth the effort... */
4541 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4542 TYPE_SIZE (init_sub_type)) == 1)
4544 /* And now we have to find out if the element itself is fully
4545 constructed. E.g. for union { struct { int a, b; } s; } u
4546 = { .s = { .a = 1 } }. */
4547 if (elt_count == count_type_elements (init_sub_type, false))
4548 clear_this = false;
4552 *p_must_clear = clear_this;
4555 *p_nz_elts += nz_elts;
4556 *p_nc_elts += nc_elts;
4557 *p_elt_count += elt_count;
4560 void
4561 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4562 HOST_WIDE_INT *p_nc_elts,
4563 HOST_WIDE_INT *p_elt_count,
4564 bool *p_must_clear)
4566 *p_nz_elts = 0;
4567 *p_nc_elts = 0;
4568 *p_elt_count = 0;
4569 *p_must_clear = false;
4570 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4571 p_must_clear);
4574 /* Count the number of scalars in TYPE. Return -1 on overflow or
4575 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4576 array member at the end of the structure. */
4578 HOST_WIDE_INT
4579 count_type_elements (tree type, bool allow_flexarr)
4581 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4582 switch (TREE_CODE (type))
4584 case ARRAY_TYPE:
4586 tree telts = array_type_nelts (type);
4587 if (telts && host_integerp (telts, 1))
4589 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4590 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4591 if (n == 0)
4592 return 0;
4593 else if (max / n > m)
4594 return n * m;
4596 return -1;
4599 case RECORD_TYPE:
4601 HOST_WIDE_INT n = 0, t;
4602 tree f;
4604 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4605 if (TREE_CODE (f) == FIELD_DECL)
4607 t = count_type_elements (TREE_TYPE (f), false);
4608 if (t < 0)
4610 /* Check for structures with flexible array member. */
4611 tree tf = TREE_TYPE (f);
4612 if (allow_flexarr
4613 && TREE_CHAIN (f) == NULL
4614 && TREE_CODE (tf) == ARRAY_TYPE
4615 && TYPE_DOMAIN (tf)
4616 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4617 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4618 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4619 && int_size_in_bytes (type) >= 0)
4620 break;
4622 return -1;
4624 n += t;
4627 return n;
4630 case UNION_TYPE:
4631 case QUAL_UNION_TYPE:
4633 /* Ho hum. How in the world do we guess here? Clearly it isn't
4634 right to count the fields. Guess based on the number of words. */
4635 HOST_WIDE_INT n = int_size_in_bytes (type);
4636 if (n < 0)
4637 return -1;
4638 return n / UNITS_PER_WORD;
4641 case COMPLEX_TYPE:
4642 return 2;
4644 case VECTOR_TYPE:
4645 return TYPE_VECTOR_SUBPARTS (type);
4647 case INTEGER_TYPE:
4648 case REAL_TYPE:
4649 case ENUMERAL_TYPE:
4650 case BOOLEAN_TYPE:
4651 case CHAR_TYPE:
4652 case POINTER_TYPE:
4653 case OFFSET_TYPE:
4654 case REFERENCE_TYPE:
4655 return 1;
4657 case VOID_TYPE:
4658 case METHOD_TYPE:
4659 case FUNCTION_TYPE:
4660 case LANG_TYPE:
4661 default:
4662 gcc_unreachable ();
4666 /* Return 1 if EXP contains mostly (3/4) zeros. */
4668 static int
4669 mostly_zeros_p (tree exp)
4671 if (TREE_CODE (exp) == CONSTRUCTOR)
4674 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4675 bool must_clear;
4677 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4678 if (must_clear)
4679 return 1;
4681 elts = count_type_elements (TREE_TYPE (exp), false);
4683 return nz_elts < elts / 4;
4686 return initializer_zerop (exp);
4689 /* Return 1 if EXP contains all zeros. */
4691 static int
4692 all_zeros_p (tree exp)
4694 if (TREE_CODE (exp) == CONSTRUCTOR)
4697 HOST_WIDE_INT nz_elts, nc_elts, count;
4698 bool must_clear;
4700 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4701 return nz_elts == 0;
4704 return initializer_zerop (exp);
4707 /* Helper function for store_constructor.
4708 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4709 TYPE is the type of the CONSTRUCTOR, not the element type.
4710 CLEARED is as for store_constructor.
4711 ALIAS_SET is the alias set to use for any stores.
4713 This provides a recursive shortcut back to store_constructor when it isn't
4714 necessary to go through store_field. This is so that we can pass through
4715 the cleared field to let store_constructor know that we may not have to
4716 clear a substructure if the outer structure has already been cleared. */
4718 static void
4719 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4720 HOST_WIDE_INT bitpos, enum machine_mode mode,
4721 tree exp, tree type, int cleared, int alias_set)
4723 if (TREE_CODE (exp) == CONSTRUCTOR
4724 /* We can only call store_constructor recursively if the size and
4725 bit position are on a byte boundary. */
4726 && bitpos % BITS_PER_UNIT == 0
4727 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4728 /* If we have a nonzero bitpos for a register target, then we just
4729 let store_field do the bitfield handling. This is unlikely to
4730 generate unnecessary clear instructions anyways. */
4731 && (bitpos == 0 || MEM_P (target)))
4733 if (MEM_P (target))
4734 target
4735 = adjust_address (target,
4736 GET_MODE (target) == BLKmode
4737 || 0 != (bitpos
4738 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4739 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4742 /* Update the alias set, if required. */
4743 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4744 && MEM_ALIAS_SET (target) != 0)
4746 target = copy_rtx (target);
4747 set_mem_alias_set (target, alias_set);
4750 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4752 else
4753 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4756 /* Store the value of constructor EXP into the rtx TARGET.
4757 TARGET is either a REG or a MEM; we know it cannot conflict, since
4758 safe_from_p has been called.
4759 CLEARED is true if TARGET is known to have been zero'd.
4760 SIZE is the number of bytes of TARGET we are allowed to modify: this
4761 may not be the same as the size of EXP if we are assigning to a field
4762 which has been packed to exclude padding bits. */
4764 static void
4765 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4767 tree type = TREE_TYPE (exp);
4768 #ifdef WORD_REGISTER_OPERATIONS
4769 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4770 #endif
4772 switch (TREE_CODE (type))
4774 case RECORD_TYPE:
4775 case UNION_TYPE:
4776 case QUAL_UNION_TYPE:
4778 unsigned HOST_WIDE_INT idx;
4779 tree field, value;
4781 /* If size is zero or the target is already cleared, do nothing. */
4782 if (size == 0 || cleared)
4783 cleared = 1;
4784 /* We either clear the aggregate or indicate the value is dead. */
4785 else if ((TREE_CODE (type) == UNION_TYPE
4786 || TREE_CODE (type) == QUAL_UNION_TYPE)
4787 && ! CONSTRUCTOR_ELTS (exp))
4788 /* If the constructor is empty, clear the union. */
4790 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4791 cleared = 1;
4794 /* If we are building a static constructor into a register,
4795 set the initial value as zero so we can fold the value into
4796 a constant. But if more than one register is involved,
4797 this probably loses. */
4798 else if (REG_P (target) && TREE_STATIC (exp)
4799 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4801 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4802 cleared = 1;
4805 /* If the constructor has fewer fields than the structure or
4806 if we are initializing the structure to mostly zeros, clear
4807 the whole structure first. Don't do this if TARGET is a
4808 register whose mode size isn't equal to SIZE since
4809 clear_storage can't handle this case. */
4810 else if (size > 0
4811 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4812 != fields_length (type))
4813 || mostly_zeros_p (exp))
4814 && (!REG_P (target)
4815 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4816 == size)))
4818 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4819 cleared = 1;
4822 if (! cleared)
4823 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4825 /* Store each element of the constructor into the
4826 corresponding field of TARGET. */
4827 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4829 enum machine_mode mode;
4830 HOST_WIDE_INT bitsize;
4831 HOST_WIDE_INT bitpos = 0;
4832 tree offset;
4833 rtx to_rtx = target;
4835 /* Just ignore missing fields. We cleared the whole
4836 structure, above, if any fields are missing. */
4837 if (field == 0)
4838 continue;
4840 if (cleared && initializer_zerop (value))
4841 continue;
4843 if (host_integerp (DECL_SIZE (field), 1))
4844 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4845 else
4846 bitsize = -1;
4848 mode = DECL_MODE (field);
4849 if (DECL_BIT_FIELD (field))
4850 mode = VOIDmode;
4852 offset = DECL_FIELD_OFFSET (field);
4853 if (host_integerp (offset, 0)
4854 && host_integerp (bit_position (field), 0))
4856 bitpos = int_bit_position (field);
4857 offset = 0;
4859 else
4860 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4862 if (offset)
4864 rtx offset_rtx;
4866 offset
4867 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4868 make_tree (TREE_TYPE (exp),
4869 target));
4871 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4872 gcc_assert (MEM_P (to_rtx));
4874 #ifdef POINTERS_EXTEND_UNSIGNED
4875 if (GET_MODE (offset_rtx) != Pmode)
4876 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4877 #else
4878 if (GET_MODE (offset_rtx) != ptr_mode)
4879 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4880 #endif
4882 to_rtx = offset_address (to_rtx, offset_rtx,
4883 highest_pow2_factor (offset));
4886 #ifdef WORD_REGISTER_OPERATIONS
4887 /* If this initializes a field that is smaller than a
4888 word, at the start of a word, try to widen it to a full
4889 word. This special case allows us to output C++ member
4890 function initializations in a form that the optimizers
4891 can understand. */
4892 if (REG_P (target)
4893 && bitsize < BITS_PER_WORD
4894 && bitpos % BITS_PER_WORD == 0
4895 && GET_MODE_CLASS (mode) == MODE_INT
4896 && TREE_CODE (value) == INTEGER_CST
4897 && exp_size >= 0
4898 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4900 tree type = TREE_TYPE (value);
4902 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4904 type = lang_hooks.types.type_for_size
4905 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4906 value = convert (type, value);
4909 if (BYTES_BIG_ENDIAN)
4910 value
4911 = fold_build2 (LSHIFT_EXPR, type, value,
4912 build_int_cst (NULL_TREE,
4913 BITS_PER_WORD - bitsize));
4914 bitsize = BITS_PER_WORD;
4915 mode = word_mode;
4917 #endif
4919 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4920 && DECL_NONADDRESSABLE_P (field))
4922 to_rtx = copy_rtx (to_rtx);
4923 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4926 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4927 value, type, cleared,
4928 get_alias_set (TREE_TYPE (field)));
4930 break;
4932 case ARRAY_TYPE:
4934 tree value, index;
4935 unsigned HOST_WIDE_INT i;
4936 int need_to_clear;
4937 tree domain;
4938 tree elttype = TREE_TYPE (type);
4939 int const_bounds_p;
4940 HOST_WIDE_INT minelt = 0;
4941 HOST_WIDE_INT maxelt = 0;
4943 domain = TYPE_DOMAIN (type);
4944 const_bounds_p = (TYPE_MIN_VALUE (domain)
4945 && TYPE_MAX_VALUE (domain)
4946 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4947 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4949 /* If we have constant bounds for the range of the type, get them. */
4950 if (const_bounds_p)
4952 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4953 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4956 /* If the constructor has fewer elements than the array, clear
4957 the whole array first. Similarly if this is static
4958 constructor of a non-BLKmode object. */
4959 if (cleared)
4960 need_to_clear = 0;
4961 else if (REG_P (target) && TREE_STATIC (exp))
4962 need_to_clear = 1;
4963 else
4965 unsigned HOST_WIDE_INT idx;
4966 tree index, value;
4967 HOST_WIDE_INT count = 0, zero_count = 0;
4968 need_to_clear = ! const_bounds_p;
4970 /* This loop is a more accurate version of the loop in
4971 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4972 is also needed to check for missing elements. */
4973 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
4975 HOST_WIDE_INT this_node_count;
4977 if (need_to_clear)
4978 break;
4980 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4982 tree lo_index = TREE_OPERAND (index, 0);
4983 tree hi_index = TREE_OPERAND (index, 1);
4985 if (! host_integerp (lo_index, 1)
4986 || ! host_integerp (hi_index, 1))
4988 need_to_clear = 1;
4989 break;
4992 this_node_count = (tree_low_cst (hi_index, 1)
4993 - tree_low_cst (lo_index, 1) + 1);
4995 else
4996 this_node_count = 1;
4998 count += this_node_count;
4999 if (mostly_zeros_p (value))
5000 zero_count += this_node_count;
5003 /* Clear the entire array first if there are any missing
5004 elements, or if the incidence of zero elements is >=
5005 75%. */
5006 if (! need_to_clear
5007 && (count < maxelt - minelt + 1
5008 || 4 * zero_count >= 3 * count))
5009 need_to_clear = 1;
5012 if (need_to_clear && size > 0)
5014 if (REG_P (target))
5015 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5016 else
5017 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5018 cleared = 1;
5021 if (!cleared && REG_P (target))
5022 /* Inform later passes that the old value is dead. */
5023 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5025 /* Store each element of the constructor into the
5026 corresponding element of TARGET, determined by counting the
5027 elements. */
5028 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5030 enum machine_mode mode;
5031 HOST_WIDE_INT bitsize;
5032 HOST_WIDE_INT bitpos;
5033 int unsignedp;
5034 rtx xtarget = target;
5036 if (cleared && initializer_zerop (value))
5037 continue;
5039 unsignedp = TYPE_UNSIGNED (elttype);
5040 mode = TYPE_MODE (elttype);
5041 if (mode == BLKmode)
5042 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5043 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5044 : -1);
5045 else
5046 bitsize = GET_MODE_BITSIZE (mode);
5048 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5050 tree lo_index = TREE_OPERAND (index, 0);
5051 tree hi_index = TREE_OPERAND (index, 1);
5052 rtx index_r, pos_rtx;
5053 HOST_WIDE_INT lo, hi, count;
5054 tree position;
5056 /* If the range is constant and "small", unroll the loop. */
5057 if (const_bounds_p
5058 && host_integerp (lo_index, 0)
5059 && host_integerp (hi_index, 0)
5060 && (lo = tree_low_cst (lo_index, 0),
5061 hi = tree_low_cst (hi_index, 0),
5062 count = hi - lo + 1,
5063 (!MEM_P (target)
5064 || count <= 2
5065 || (host_integerp (TYPE_SIZE (elttype), 1)
5066 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5067 <= 40 * 8)))))
5069 lo -= minelt; hi -= minelt;
5070 for (; lo <= hi; lo++)
5072 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5074 if (MEM_P (target)
5075 && !MEM_KEEP_ALIAS_SET_P (target)
5076 && TREE_CODE (type) == ARRAY_TYPE
5077 && TYPE_NONALIASED_COMPONENT (type))
5079 target = copy_rtx (target);
5080 MEM_KEEP_ALIAS_SET_P (target) = 1;
5083 store_constructor_field
5084 (target, bitsize, bitpos, mode, value, type, cleared,
5085 get_alias_set (elttype));
5088 else
5090 rtx loop_start = gen_label_rtx ();
5091 rtx loop_end = gen_label_rtx ();
5092 tree exit_cond;
5094 expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
5095 unsignedp = TYPE_UNSIGNED (domain);
5097 index = build_decl (VAR_DECL, NULL_TREE, domain);
5099 index_r
5100 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5101 &unsignedp, 0));
5102 SET_DECL_RTL (index, index_r);
5103 store_expr (lo_index, index_r, 0);
5105 /* Build the head of the loop. */
5106 do_pending_stack_adjust ();
5107 emit_label (loop_start);
5109 /* Assign value to element index. */
5110 position
5111 = convert (ssizetype,
5112 fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5113 index, TYPE_MIN_VALUE (domain)));
5114 position = size_binop (MULT_EXPR, position,
5115 convert (ssizetype,
5116 TYPE_SIZE_UNIT (elttype)));
5118 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
5119 xtarget = offset_address (target, pos_rtx,
5120 highest_pow2_factor (position));
5121 xtarget = adjust_address (xtarget, mode, 0);
5122 if (TREE_CODE (value) == CONSTRUCTOR)
5123 store_constructor (value, xtarget, cleared,
5124 bitsize / BITS_PER_UNIT);
5125 else
5126 store_expr (value, xtarget, 0);
5128 /* Generate a conditional jump to exit the loop. */
5129 exit_cond = build2 (LT_EXPR, integer_type_node,
5130 index, hi_index);
5131 jumpif (exit_cond, loop_end);
5133 /* Update the loop counter, and jump to the head of
5134 the loop. */
5135 expand_assignment (index,
5136 build2 (PLUS_EXPR, TREE_TYPE (index),
5137 index, integer_one_node));
5139 emit_jump (loop_start);
5141 /* Build the end of the loop. */
5142 emit_label (loop_end);
5145 else if ((index != 0 && ! host_integerp (index, 0))
5146 || ! host_integerp (TYPE_SIZE (elttype), 1))
5148 tree position;
5150 if (index == 0)
5151 index = ssize_int (1);
5153 if (minelt)
5154 index = fold_convert (ssizetype,
5155 fold_build2 (MINUS_EXPR,
5156 TREE_TYPE (index),
5157 index,
5158 TYPE_MIN_VALUE (domain)));
5160 position = size_binop (MULT_EXPR, index,
5161 convert (ssizetype,
5162 TYPE_SIZE_UNIT (elttype)));
5163 xtarget = offset_address (target,
5164 expand_expr (position, 0, VOIDmode, 0),
5165 highest_pow2_factor (position));
5166 xtarget = adjust_address (xtarget, mode, 0);
5167 store_expr (value, xtarget, 0);
5169 else
5171 if (index != 0)
5172 bitpos = ((tree_low_cst (index, 0) - minelt)
5173 * tree_low_cst (TYPE_SIZE (elttype), 1));
5174 else
5175 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5177 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5178 && TREE_CODE (type) == ARRAY_TYPE
5179 && TYPE_NONALIASED_COMPONENT (type))
5181 target = copy_rtx (target);
5182 MEM_KEEP_ALIAS_SET_P (target) = 1;
5184 store_constructor_field (target, bitsize, bitpos, mode, value,
5185 type, cleared, get_alias_set (elttype));
5188 break;
5191 case VECTOR_TYPE:
5193 unsigned HOST_WIDE_INT idx;
5194 constructor_elt *ce;
5195 int i;
5196 int need_to_clear;
5197 int icode = 0;
5198 tree elttype = TREE_TYPE (type);
5199 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5200 enum machine_mode eltmode = TYPE_MODE (elttype);
5201 HOST_WIDE_INT bitsize;
5202 HOST_WIDE_INT bitpos;
5203 rtvec vector = NULL;
5204 unsigned n_elts;
5206 gcc_assert (eltmode != BLKmode);
5208 n_elts = TYPE_VECTOR_SUBPARTS (type);
5209 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5211 enum machine_mode mode = GET_MODE (target);
5213 icode = (int) vec_init_optab->handlers[mode].insn_code;
5214 if (icode != CODE_FOR_nothing)
5216 unsigned int i;
5218 vector = rtvec_alloc (n_elts);
5219 for (i = 0; i < n_elts; i++)
5220 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5224 /* If the constructor has fewer elements than the vector,
5225 clear the whole array first. Similarly if this is static
5226 constructor of a non-BLKmode object. */
5227 if (cleared)
5228 need_to_clear = 0;
5229 else if (REG_P (target) && TREE_STATIC (exp))
5230 need_to_clear = 1;
5231 else
5233 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5234 tree value;
5236 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5238 int n_elts_here = tree_low_cst
5239 (int_const_binop (TRUNC_DIV_EXPR,
5240 TYPE_SIZE (TREE_TYPE (value)),
5241 TYPE_SIZE (elttype), 0), 1);
5243 count += n_elts_here;
5244 if (mostly_zeros_p (value))
5245 zero_count += n_elts_here;
5248 /* Clear the entire vector first if there are any missing elements,
5249 or if the incidence of zero elements is >= 75%. */
5250 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5253 if (need_to_clear && size > 0 && !vector)
5255 if (REG_P (target))
5256 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5257 else
5258 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5259 cleared = 1;
5262 /* Inform later passes that the old value is dead. */
5263 if (!cleared && REG_P (target))
5264 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5266 /* Store each element of the constructor into the corresponding
5267 element of TARGET, determined by counting the elements. */
5268 for (idx = 0, i = 0;
5269 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5270 idx++, i += bitsize / elt_size)
5272 HOST_WIDE_INT eltpos;
5273 tree value = ce->value;
5275 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5276 if (cleared && initializer_zerop (value))
5277 continue;
5279 if (ce->index)
5280 eltpos = tree_low_cst (ce->index, 1);
5281 else
5282 eltpos = i;
5284 if (vector)
5286 /* Vector CONSTRUCTORs should only be built from smaller
5287 vectors in the case of BLKmode vectors. */
5288 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5289 RTVEC_ELT (vector, eltpos)
5290 = expand_expr (value, NULL_RTX, VOIDmode, 0);
5292 else
5294 enum machine_mode value_mode =
5295 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5296 ? TYPE_MODE (TREE_TYPE (value))
5297 : eltmode;
5298 bitpos = eltpos * elt_size;
5299 store_constructor_field (target, bitsize, bitpos,
5300 value_mode, value, type,
5301 cleared, get_alias_set (elttype));
5305 if (vector)
5306 emit_insn (GEN_FCN (icode)
5307 (target,
5308 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5309 break;
5312 default:
5313 gcc_unreachable ();
5317 /* Store the value of EXP (an expression tree)
5318 into a subfield of TARGET which has mode MODE and occupies
5319 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5320 If MODE is VOIDmode, it means that we are storing into a bit-field.
5322 Always return const0_rtx unless we have something particular to
5323 return.
5325 TYPE is the type of the underlying object,
5327 ALIAS_SET is the alias set for the destination. This value will
5328 (in general) be different from that for TARGET, since TARGET is a
5329 reference to the containing structure. */
5331 static rtx
5332 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5333 enum machine_mode mode, tree exp, tree type, int alias_set)
5335 HOST_WIDE_INT width_mask = 0;
5337 if (TREE_CODE (exp) == ERROR_MARK)
5338 return const0_rtx;
5340 /* If we have nothing to store, do nothing unless the expression has
5341 side-effects. */
5342 if (bitsize == 0)
5343 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5344 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5345 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5347 /* If we are storing into an unaligned field of an aligned union that is
5348 in a register, we may have the mode of TARGET being an integer mode but
5349 MODE == BLKmode. In that case, get an aligned object whose size and
5350 alignment are the same as TARGET and store TARGET into it (we can avoid
5351 the store if the field being stored is the entire width of TARGET). Then
5352 call ourselves recursively to store the field into a BLKmode version of
5353 that object. Finally, load from the object into TARGET. This is not
5354 very efficient in general, but should only be slightly more expensive
5355 than the otherwise-required unaligned accesses. Perhaps this can be
5356 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5357 twice, once with emit_move_insn and once via store_field. */
5359 if (mode == BLKmode
5360 && (REG_P (target) || GET_CODE (target) == SUBREG))
5362 rtx object = assign_temp (type, 0, 1, 1);
5363 rtx blk_object = adjust_address (object, BLKmode, 0);
5365 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5366 emit_move_insn (object, target);
5368 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5370 emit_move_insn (target, object);
5372 /* We want to return the BLKmode version of the data. */
5373 return blk_object;
5376 if (GET_CODE (target) == CONCAT)
5378 /* We're storing into a struct containing a single __complex. */
5380 gcc_assert (!bitpos);
5381 return store_expr (exp, target, 0);
5384 /* If the structure is in a register or if the component
5385 is a bit field, we cannot use addressing to access it.
5386 Use bit-field techniques or SUBREG to store in it. */
5388 if (mode == VOIDmode
5389 || (mode != BLKmode && ! direct_store[(int) mode]
5390 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5391 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5392 || REG_P (target)
5393 || GET_CODE (target) == SUBREG
5394 /* If the field isn't aligned enough to store as an ordinary memref,
5395 store it as a bit field. */
5396 || (mode != BLKmode
5397 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5398 || bitpos % GET_MODE_ALIGNMENT (mode))
5399 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5400 || (bitpos % BITS_PER_UNIT != 0)))
5401 /* If the RHS and field are a constant size and the size of the
5402 RHS isn't the same size as the bitfield, we must use bitfield
5403 operations. */
5404 || (bitsize >= 0
5405 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5406 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5408 rtx temp;
5410 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5411 implies a mask operation. If the precision is the same size as
5412 the field we're storing into, that mask is redundant. This is
5413 particularly common with bit field assignments generated by the
5414 C front end. */
5415 if (TREE_CODE (exp) == NOP_EXPR)
5417 tree type = TREE_TYPE (exp);
5418 if (INTEGRAL_TYPE_P (type)
5419 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5420 && bitsize == TYPE_PRECISION (type))
5422 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5423 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5424 exp = TREE_OPERAND (exp, 0);
5428 temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
5430 /* If BITSIZE is narrower than the size of the type of EXP
5431 we will be narrowing TEMP. Normally, what's wanted are the
5432 low-order bits. However, if EXP's type is a record and this is
5433 big-endian machine, we want the upper BITSIZE bits. */
5434 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5435 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5436 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5437 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5438 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5439 - bitsize),
5440 NULL_RTX, 1);
5442 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5443 MODE. */
5444 if (mode != VOIDmode && mode != BLKmode
5445 && mode != TYPE_MODE (TREE_TYPE (exp)))
5446 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5448 /* If the modes of TARGET and TEMP are both BLKmode, both
5449 must be in memory and BITPOS must be aligned on a byte
5450 boundary. If so, we simply do a block copy. */
5451 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5453 gcc_assert (MEM_P (target) && MEM_P (temp)
5454 && !(bitpos % BITS_PER_UNIT));
5456 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5457 emit_block_move (target, temp,
5458 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5459 / BITS_PER_UNIT),
5460 BLOCK_OP_NORMAL);
5462 return const0_rtx;
5465 /* Store the value in the bitfield. */
5466 store_bit_field (target, bitsize, bitpos, mode, temp);
5468 return const0_rtx;
5470 else
5472 /* Now build a reference to just the desired component. */
5473 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5475 if (to_rtx == target)
5476 to_rtx = copy_rtx (to_rtx);
5478 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5479 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5480 set_mem_alias_set (to_rtx, alias_set);
5482 return store_expr (exp, to_rtx, 0);
5486 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5487 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5488 codes and find the ultimate containing object, which we return.
5490 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5491 bit position, and *PUNSIGNEDP to the signedness of the field.
5492 If the position of the field is variable, we store a tree
5493 giving the variable offset (in units) in *POFFSET.
5494 This offset is in addition to the bit position.
5495 If the position is not variable, we store 0 in *POFFSET.
5497 If any of the extraction expressions is volatile,
5498 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5500 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5501 is a mode that can be used to access the field. In that case, *PBITSIZE
5502 is redundant.
5504 If the field describes a variable-sized object, *PMODE is set to
5505 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5506 this case, but the address of the object can be found.
5508 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5509 look through nodes that serve as markers of a greater alignment than
5510 the one that can be deduced from the expression. These nodes make it
5511 possible for front-ends to prevent temporaries from being created by
5512 the middle-end on alignment considerations. For that purpose, the
5513 normal operating mode at high-level is to always pass FALSE so that
5514 the ultimate containing object is really returned; moreover, the
5515 associated predicate handled_component_p will always return TRUE
5516 on these nodes, thus indicating that they are essentially handled
5517 by get_inner_reference. TRUE should only be passed when the caller
5518 is scanning the expression in order to build another representation
5519 and specifically knows how to handle these nodes; as such, this is
5520 the normal operating mode in the RTL expanders. */
5522 tree
5523 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5524 HOST_WIDE_INT *pbitpos, tree *poffset,
5525 enum machine_mode *pmode, int *punsignedp,
5526 int *pvolatilep, bool keep_aligning)
5528 tree size_tree = 0;
5529 enum machine_mode mode = VOIDmode;
5530 tree offset = size_zero_node;
5531 tree bit_offset = bitsize_zero_node;
5532 tree tem;
5534 /* First get the mode, signedness, and size. We do this from just the
5535 outermost expression. */
5536 if (TREE_CODE (exp) == COMPONENT_REF)
5538 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5539 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5540 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5542 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5544 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5546 size_tree = TREE_OPERAND (exp, 1);
5547 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5549 else
5551 mode = TYPE_MODE (TREE_TYPE (exp));
5552 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5554 if (mode == BLKmode)
5555 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5556 else
5557 *pbitsize = GET_MODE_BITSIZE (mode);
5560 if (size_tree != 0)
5562 if (! host_integerp (size_tree, 1))
5563 mode = BLKmode, *pbitsize = -1;
5564 else
5565 *pbitsize = tree_low_cst (size_tree, 1);
5568 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5569 and find the ultimate containing object. */
5570 while (1)
5572 switch (TREE_CODE (exp))
5574 case BIT_FIELD_REF:
5575 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5576 TREE_OPERAND (exp, 2));
5577 break;
5579 case COMPONENT_REF:
5581 tree field = TREE_OPERAND (exp, 1);
5582 tree this_offset = component_ref_field_offset (exp);
5584 /* If this field hasn't been filled in yet, don't go past it.
5585 This should only happen when folding expressions made during
5586 type construction. */
5587 if (this_offset == 0)
5588 break;
5590 offset = size_binop (PLUS_EXPR, offset, this_offset);
5591 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5592 DECL_FIELD_BIT_OFFSET (field));
5594 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5596 break;
5598 case ARRAY_REF:
5599 case ARRAY_RANGE_REF:
5601 tree index = TREE_OPERAND (exp, 1);
5602 tree low_bound = array_ref_low_bound (exp);
5603 tree unit_size = array_ref_element_size (exp);
5605 /* We assume all arrays have sizes that are a multiple of a byte.
5606 First subtract the lower bound, if any, in the type of the
5607 index, then convert to sizetype and multiply by the size of
5608 the array element. */
5609 if (! integer_zerop (low_bound))
5610 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5611 index, low_bound);
5613 offset = size_binop (PLUS_EXPR, offset,
5614 size_binop (MULT_EXPR,
5615 convert (sizetype, index),
5616 unit_size));
5618 break;
5620 case REALPART_EXPR:
5621 break;
5623 case IMAGPART_EXPR:
5624 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5625 bitsize_int (*pbitsize));
5626 break;
5628 case VIEW_CONVERT_EXPR:
5629 if (keep_aligning && STRICT_ALIGNMENT
5630 && (TYPE_ALIGN (TREE_TYPE (exp))
5631 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5632 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5633 < BIGGEST_ALIGNMENT)
5634 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5635 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5636 goto done;
5637 break;
5639 default:
5640 goto done;
5643 /* If any reference in the chain is volatile, the effect is volatile. */
5644 if (TREE_THIS_VOLATILE (exp))
5645 *pvolatilep = 1;
5647 exp = TREE_OPERAND (exp, 0);
5649 done:
5651 /* If OFFSET is constant, see if we can return the whole thing as a
5652 constant bit position. Otherwise, split it up. */
5653 if (host_integerp (offset, 0)
5654 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5655 bitsize_unit_node))
5656 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5657 && host_integerp (tem, 0))
5658 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5659 else
5660 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5662 *pmode = mode;
5663 return exp;
5666 /* Return a tree of sizetype representing the size, in bytes, of the element
5667 of EXP, an ARRAY_REF. */
5669 tree
5670 array_ref_element_size (tree exp)
5672 tree aligned_size = TREE_OPERAND (exp, 3);
5673 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5675 /* If a size was specified in the ARRAY_REF, it's the size measured
5676 in alignment units of the element type. So multiply by that value. */
5677 if (aligned_size)
5679 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5680 sizetype from another type of the same width and signedness. */
5681 if (TREE_TYPE (aligned_size) != sizetype)
5682 aligned_size = fold_convert (sizetype, aligned_size);
5683 return size_binop (MULT_EXPR, aligned_size,
5684 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5687 /* Otherwise, take the size from that of the element type. Substitute
5688 any PLACEHOLDER_EXPR that we have. */
5689 else
5690 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5693 /* Return a tree representing the lower bound of the array mentioned in
5694 EXP, an ARRAY_REF. */
5696 tree
5697 array_ref_low_bound (tree exp)
5699 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5701 /* If a lower bound is specified in EXP, use it. */
5702 if (TREE_OPERAND (exp, 2))
5703 return TREE_OPERAND (exp, 2);
5705 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5706 substituting for a PLACEHOLDER_EXPR as needed. */
5707 if (domain_type && TYPE_MIN_VALUE (domain_type))
5708 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5710 /* Otherwise, return a zero of the appropriate type. */
5711 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5714 /* Return a tree representing the upper bound of the array mentioned in
5715 EXP, an ARRAY_REF. */
5717 tree
5718 array_ref_up_bound (tree exp)
5720 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5722 /* If there is a domain type and it has an upper bound, use it, substituting
5723 for a PLACEHOLDER_EXPR as needed. */
5724 if (domain_type && TYPE_MAX_VALUE (domain_type))
5725 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5727 /* Otherwise fail. */
5728 return NULL_TREE;
5731 /* Return a tree representing the offset, in bytes, of the field referenced
5732 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5734 tree
5735 component_ref_field_offset (tree exp)
5737 tree aligned_offset = TREE_OPERAND (exp, 2);
5738 tree field = TREE_OPERAND (exp, 1);
5740 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5741 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5742 value. */
5743 if (aligned_offset)
5745 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5746 sizetype from another type of the same width and signedness. */
5747 if (TREE_TYPE (aligned_offset) != sizetype)
5748 aligned_offset = fold_convert (sizetype, aligned_offset);
5749 return size_binop (MULT_EXPR, aligned_offset,
5750 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5753 /* Otherwise, take the offset from that of the field. Substitute
5754 any PLACEHOLDER_EXPR that we have. */
5755 else
5756 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5759 /* Return 1 if T is an expression that get_inner_reference handles. */
5762 handled_component_p (tree t)
5764 switch (TREE_CODE (t))
5766 case BIT_FIELD_REF:
5767 case COMPONENT_REF:
5768 case ARRAY_REF:
5769 case ARRAY_RANGE_REF:
5770 case VIEW_CONVERT_EXPR:
5771 case REALPART_EXPR:
5772 case IMAGPART_EXPR:
5773 return 1;
5775 default:
5776 return 0;
5780 /* Given an rtx VALUE that may contain additions and multiplications, return
5781 an equivalent value that just refers to a register, memory, or constant.
5782 This is done by generating instructions to perform the arithmetic and
5783 returning a pseudo-register containing the value.
5785 The returned value may be a REG, SUBREG, MEM or constant. */
5788 force_operand (rtx value, rtx target)
5790 rtx op1, op2;
5791 /* Use subtarget as the target for operand 0 of a binary operation. */
5792 rtx subtarget = get_subtarget (target);
5793 enum rtx_code code = GET_CODE (value);
5795 /* Check for subreg applied to an expression produced by loop optimizer. */
5796 if (code == SUBREG
5797 && !REG_P (SUBREG_REG (value))
5798 && !MEM_P (SUBREG_REG (value)))
5800 value = simplify_gen_subreg (GET_MODE (value),
5801 force_reg (GET_MODE (SUBREG_REG (value)),
5802 force_operand (SUBREG_REG (value),
5803 NULL_RTX)),
5804 GET_MODE (SUBREG_REG (value)),
5805 SUBREG_BYTE (value));
5806 code = GET_CODE (value);
5809 /* Check for a PIC address load. */
5810 if ((code == PLUS || code == MINUS)
5811 && XEXP (value, 0) == pic_offset_table_rtx
5812 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5813 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5814 || GET_CODE (XEXP (value, 1)) == CONST))
5816 if (!subtarget)
5817 subtarget = gen_reg_rtx (GET_MODE (value));
5818 emit_move_insn (subtarget, value);
5819 return subtarget;
5822 if (ARITHMETIC_P (value))
5824 op2 = XEXP (value, 1);
5825 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5826 subtarget = 0;
5827 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5829 code = PLUS;
5830 op2 = negate_rtx (GET_MODE (value), op2);
5833 /* Check for an addition with OP2 a constant integer and our first
5834 operand a PLUS of a virtual register and something else. In that
5835 case, we want to emit the sum of the virtual register and the
5836 constant first and then add the other value. This allows virtual
5837 register instantiation to simply modify the constant rather than
5838 creating another one around this addition. */
5839 if (code == PLUS && GET_CODE (op2) == CONST_INT
5840 && GET_CODE (XEXP (value, 0)) == PLUS
5841 && REG_P (XEXP (XEXP (value, 0), 0))
5842 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5843 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5845 rtx temp = expand_simple_binop (GET_MODE (value), code,
5846 XEXP (XEXP (value, 0), 0), op2,
5847 subtarget, 0, OPTAB_LIB_WIDEN);
5848 return expand_simple_binop (GET_MODE (value), code, temp,
5849 force_operand (XEXP (XEXP (value,
5850 0), 1), 0),
5851 target, 0, OPTAB_LIB_WIDEN);
5854 op1 = force_operand (XEXP (value, 0), subtarget);
5855 op2 = force_operand (op2, NULL_RTX);
5856 switch (code)
5858 case MULT:
5859 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5860 case DIV:
5861 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5862 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5863 target, 1, OPTAB_LIB_WIDEN);
5864 else
5865 return expand_divmod (0,
5866 FLOAT_MODE_P (GET_MODE (value))
5867 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5868 GET_MODE (value), op1, op2, target, 0);
5869 break;
5870 case MOD:
5871 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5872 target, 0);
5873 break;
5874 case UDIV:
5875 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5876 target, 1);
5877 break;
5878 case UMOD:
5879 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5880 target, 1);
5881 break;
5882 case ASHIFTRT:
5883 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5884 target, 0, OPTAB_LIB_WIDEN);
5885 break;
5886 default:
5887 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5888 target, 1, OPTAB_LIB_WIDEN);
5891 if (UNARY_P (value))
5893 if (!target)
5894 target = gen_reg_rtx (GET_MODE (value));
5895 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5896 switch (code)
5898 case ZERO_EXTEND:
5899 case SIGN_EXTEND:
5900 case TRUNCATE:
5901 convert_move (target, op1, code == ZERO_EXTEND);
5902 return target;
5904 case FIX:
5905 case UNSIGNED_FIX:
5906 expand_fix (target, op1, code == UNSIGNED_FIX);
5907 return target;
5909 case FLOAT:
5910 case UNSIGNED_FLOAT:
5911 expand_float (target, op1, code == UNSIGNED_FLOAT);
5912 return target;
5914 default:
5915 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5919 #ifdef INSN_SCHEDULING
5920 /* On machines that have insn scheduling, we want all memory reference to be
5921 explicit, so we need to deal with such paradoxical SUBREGs. */
5922 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5923 && (GET_MODE_SIZE (GET_MODE (value))
5924 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5925 value
5926 = simplify_gen_subreg (GET_MODE (value),
5927 force_reg (GET_MODE (SUBREG_REG (value)),
5928 force_operand (SUBREG_REG (value),
5929 NULL_RTX)),
5930 GET_MODE (SUBREG_REG (value)),
5931 SUBREG_BYTE (value));
5932 #endif
5934 return value;
5937 /* Subroutine of expand_expr: return nonzero iff there is no way that
5938 EXP can reference X, which is being modified. TOP_P is nonzero if this
5939 call is going to be used to determine whether we need a temporary
5940 for EXP, as opposed to a recursive call to this function.
5942 It is always safe for this routine to return zero since it merely
5943 searches for optimization opportunities. */
5946 safe_from_p (rtx x, tree exp, int top_p)
5948 rtx exp_rtl = 0;
5949 int i, nops;
5951 if (x == 0
5952 /* If EXP has varying size, we MUST use a target since we currently
5953 have no way of allocating temporaries of variable size
5954 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5955 So we assume here that something at a higher level has prevented a
5956 clash. This is somewhat bogus, but the best we can do. Only
5957 do this when X is BLKmode and when we are at the top level. */
5958 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5959 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5960 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5961 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5962 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5963 != INTEGER_CST)
5964 && GET_MODE (x) == BLKmode)
5965 /* If X is in the outgoing argument area, it is always safe. */
5966 || (MEM_P (x)
5967 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5968 || (GET_CODE (XEXP (x, 0)) == PLUS
5969 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5970 return 1;
5972 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5973 find the underlying pseudo. */
5974 if (GET_CODE (x) == SUBREG)
5976 x = SUBREG_REG (x);
5977 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5978 return 0;
5981 /* Now look at our tree code and possibly recurse. */
5982 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5984 case tcc_declaration:
5985 exp_rtl = DECL_RTL_IF_SET (exp);
5986 break;
5988 case tcc_constant:
5989 return 1;
5991 case tcc_exceptional:
5992 if (TREE_CODE (exp) == TREE_LIST)
5994 while (1)
5996 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
5997 return 0;
5998 exp = TREE_CHAIN (exp);
5999 if (!exp)
6000 return 1;
6001 if (TREE_CODE (exp) != TREE_LIST)
6002 return safe_from_p (x, exp, 0);
6005 else if (TREE_CODE (exp) == ERROR_MARK)
6006 return 1; /* An already-visited SAVE_EXPR? */
6007 else
6008 return 0;
6010 case tcc_statement:
6011 /* The only case we look at here is the DECL_INITIAL inside a
6012 DECL_EXPR. */
6013 return (TREE_CODE (exp) != DECL_EXPR
6014 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6015 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6016 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6018 case tcc_binary:
6019 case tcc_comparison:
6020 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6021 return 0;
6022 /* Fall through. */
6024 case tcc_unary:
6025 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6027 case tcc_expression:
6028 case tcc_reference:
6029 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6030 the expression. If it is set, we conflict iff we are that rtx or
6031 both are in memory. Otherwise, we check all operands of the
6032 expression recursively. */
6034 switch (TREE_CODE (exp))
6036 case ADDR_EXPR:
6037 /* If the operand is static or we are static, we can't conflict.
6038 Likewise if we don't conflict with the operand at all. */
6039 if (staticp (TREE_OPERAND (exp, 0))
6040 || TREE_STATIC (exp)
6041 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6042 return 1;
6044 /* Otherwise, the only way this can conflict is if we are taking
6045 the address of a DECL a that address if part of X, which is
6046 very rare. */
6047 exp = TREE_OPERAND (exp, 0);
6048 if (DECL_P (exp))
6050 if (!DECL_RTL_SET_P (exp)
6051 || !MEM_P (DECL_RTL (exp)))
6052 return 0;
6053 else
6054 exp_rtl = XEXP (DECL_RTL (exp), 0);
6056 break;
6058 case MISALIGNED_INDIRECT_REF:
6059 case ALIGN_INDIRECT_REF:
6060 case INDIRECT_REF:
6061 if (MEM_P (x)
6062 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6063 get_alias_set (exp)))
6064 return 0;
6065 break;
6067 case CALL_EXPR:
6068 /* Assume that the call will clobber all hard registers and
6069 all of memory. */
6070 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6071 || MEM_P (x))
6072 return 0;
6073 break;
6075 case WITH_CLEANUP_EXPR:
6076 case CLEANUP_POINT_EXPR:
6077 /* Lowered by gimplify.c. */
6078 gcc_unreachable ();
6080 case SAVE_EXPR:
6081 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6083 default:
6084 break;
6087 /* If we have an rtx, we do not need to scan our operands. */
6088 if (exp_rtl)
6089 break;
6091 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6092 for (i = 0; i < nops; i++)
6093 if (TREE_OPERAND (exp, i) != 0
6094 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6095 return 0;
6097 /* If this is a language-specific tree code, it may require
6098 special handling. */
6099 if ((unsigned int) TREE_CODE (exp)
6100 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6101 && !lang_hooks.safe_from_p (x, exp))
6102 return 0;
6103 break;
6105 case tcc_type:
6106 /* Should never get a type here. */
6107 gcc_unreachable ();
6110 /* If we have an rtl, find any enclosed object. Then see if we conflict
6111 with it. */
6112 if (exp_rtl)
6114 if (GET_CODE (exp_rtl) == SUBREG)
6116 exp_rtl = SUBREG_REG (exp_rtl);
6117 if (REG_P (exp_rtl)
6118 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6119 return 0;
6122 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6123 are memory and they conflict. */
6124 return ! (rtx_equal_p (x, exp_rtl)
6125 || (MEM_P (x) && MEM_P (exp_rtl)
6126 && true_dependence (exp_rtl, VOIDmode, x,
6127 rtx_addr_varies_p)));
6130 /* If we reach here, it is safe. */
6131 return 1;
6135 /* Return the highest power of two that EXP is known to be a multiple of.
6136 This is used in updating alignment of MEMs in array references. */
6138 unsigned HOST_WIDE_INT
6139 highest_pow2_factor (tree exp)
6141 unsigned HOST_WIDE_INT c0, c1;
6143 switch (TREE_CODE (exp))
6145 case INTEGER_CST:
6146 /* We can find the lowest bit that's a one. If the low
6147 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6148 We need to handle this case since we can find it in a COND_EXPR,
6149 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6150 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6151 later ICE. */
6152 if (TREE_CONSTANT_OVERFLOW (exp))
6153 return BIGGEST_ALIGNMENT;
6154 else
6156 /* Note: tree_low_cst is intentionally not used here,
6157 we don't care about the upper bits. */
6158 c0 = TREE_INT_CST_LOW (exp);
6159 c0 &= -c0;
6160 return c0 ? c0 : BIGGEST_ALIGNMENT;
6162 break;
6164 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6165 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6166 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6167 return MIN (c0, c1);
6169 case MULT_EXPR:
6170 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6171 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6172 return c0 * c1;
6174 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6175 case CEIL_DIV_EXPR:
6176 if (integer_pow2p (TREE_OPERAND (exp, 1))
6177 && host_integerp (TREE_OPERAND (exp, 1), 1))
6179 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6180 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6181 return MAX (1, c0 / c1);
6183 break;
6185 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6186 case SAVE_EXPR:
6187 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6189 case COMPOUND_EXPR:
6190 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6192 case COND_EXPR:
6193 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6194 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6195 return MIN (c0, c1);
6197 default:
6198 break;
6201 return 1;
6204 /* Similar, except that the alignment requirements of TARGET are
6205 taken into account. Assume it is at least as aligned as its
6206 type, unless it is a COMPONENT_REF in which case the layout of
6207 the structure gives the alignment. */
6209 static unsigned HOST_WIDE_INT
6210 highest_pow2_factor_for_target (tree target, tree exp)
6212 unsigned HOST_WIDE_INT target_align, factor;
6214 factor = highest_pow2_factor (exp);
6215 if (TREE_CODE (target) == COMPONENT_REF)
6216 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6217 else
6218 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6219 return MAX (factor, target_align);
6222 /* Expands variable VAR. */
6224 void
6225 expand_var (tree var)
6227 if (DECL_EXTERNAL (var))
6228 return;
6230 if (TREE_STATIC (var))
6231 /* If this is an inlined copy of a static local variable,
6232 look up the original decl. */
6233 var = DECL_ORIGIN (var);
6235 if (TREE_STATIC (var)
6236 ? !TREE_ASM_WRITTEN (var)
6237 : !DECL_RTL_SET_P (var))
6239 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6240 /* Should be ignored. */;
6241 else if (lang_hooks.expand_decl (var))
6242 /* OK. */;
6243 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6244 expand_decl (var);
6245 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6246 rest_of_decl_compilation (var, 0, 0);
6247 else
6248 /* No expansion needed. */
6249 gcc_assert (TREE_CODE (var) == TYPE_DECL
6250 || TREE_CODE (var) == CONST_DECL
6251 || TREE_CODE (var) == FUNCTION_DECL
6252 || TREE_CODE (var) == LABEL_DECL);
6256 /* Subroutine of expand_expr. Expand the two operands of a binary
6257 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6258 The value may be stored in TARGET if TARGET is nonzero. The
6259 MODIFIER argument is as documented by expand_expr. */
6261 static void
6262 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6263 enum expand_modifier modifier)
6265 if (! safe_from_p (target, exp1, 1))
6266 target = 0;
6267 if (operand_equal_p (exp0, exp1, 0))
6269 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6270 *op1 = copy_rtx (*op0);
6272 else
6274 /* If we need to preserve evaluation order, copy exp0 into its own
6275 temporary variable so that it can't be clobbered by exp1. */
6276 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6277 exp0 = save_expr (exp0);
6278 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6279 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6284 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6285 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6287 static rtx
6288 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6289 enum expand_modifier modifier)
6291 rtx result, subtarget;
6292 tree inner, offset;
6293 HOST_WIDE_INT bitsize, bitpos;
6294 int volatilep, unsignedp;
6295 enum machine_mode mode1;
6297 /* If we are taking the address of a constant and are at the top level,
6298 we have to use output_constant_def since we can't call force_const_mem
6299 at top level. */
6300 /* ??? This should be considered a front-end bug. We should not be
6301 generating ADDR_EXPR of something that isn't an LVALUE. The only
6302 exception here is STRING_CST. */
6303 if (TREE_CODE (exp) == CONSTRUCTOR
6304 || CONSTANT_CLASS_P (exp))
6305 return XEXP (output_constant_def (exp, 0), 0);
6307 /* Everything must be something allowed by is_gimple_addressable. */
6308 switch (TREE_CODE (exp))
6310 case INDIRECT_REF:
6311 /* This case will happen via recursion for &a->b. */
6312 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, EXPAND_NORMAL);
6314 case CONST_DECL:
6315 /* Recurse and make the output_constant_def clause above handle this. */
6316 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6317 tmode, modifier);
6319 case REALPART_EXPR:
6320 /* The real part of the complex number is always first, therefore
6321 the address is the same as the address of the parent object. */
6322 offset = 0;
6323 bitpos = 0;
6324 inner = TREE_OPERAND (exp, 0);
6325 break;
6327 case IMAGPART_EXPR:
6328 /* The imaginary part of the complex number is always second.
6329 The expression is therefore always offset by the size of the
6330 scalar type. */
6331 offset = 0;
6332 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6333 inner = TREE_OPERAND (exp, 0);
6334 break;
6336 default:
6337 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6338 expand_expr, as that can have various side effects; LABEL_DECLs for
6339 example, may not have their DECL_RTL set yet. Assume language
6340 specific tree nodes can be expanded in some interesting way. */
6341 if (DECL_P (exp)
6342 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6344 result = expand_expr (exp, target, tmode,
6345 modifier == EXPAND_INITIALIZER
6346 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6348 /* If the DECL isn't in memory, then the DECL wasn't properly
6349 marked TREE_ADDRESSABLE, which will be either a front-end
6350 or a tree optimizer bug. */
6351 gcc_assert (MEM_P (result));
6352 result = XEXP (result, 0);
6354 /* ??? Is this needed anymore? */
6355 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6357 assemble_external (exp);
6358 TREE_USED (exp) = 1;
6361 if (modifier != EXPAND_INITIALIZER
6362 && modifier != EXPAND_CONST_ADDRESS)
6363 result = force_operand (result, target);
6364 return result;
6367 /* Pass FALSE as the last argument to get_inner_reference although
6368 we are expanding to RTL. The rationale is that we know how to
6369 handle "aligning nodes" here: we can just bypass them because
6370 they won't change the final object whose address will be returned
6371 (they actually exist only for that purpose). */
6372 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6373 &mode1, &unsignedp, &volatilep, false);
6374 break;
6377 /* We must have made progress. */
6378 gcc_assert (inner != exp);
6380 subtarget = offset || bitpos ? NULL_RTX : target;
6381 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6383 if (offset)
6385 rtx tmp;
6387 if (modifier != EXPAND_NORMAL)
6388 result = force_operand (result, NULL);
6389 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6391 result = convert_memory_address (tmode, result);
6392 tmp = convert_memory_address (tmode, tmp);
6394 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6395 result = gen_rtx_PLUS (tmode, result, tmp);
6396 else
6398 subtarget = bitpos ? NULL_RTX : target;
6399 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6400 1, OPTAB_LIB_WIDEN);
6404 if (bitpos)
6406 /* Someone beforehand should have rejected taking the address
6407 of such an object. */
6408 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6410 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6411 if (modifier < EXPAND_SUM)
6412 result = force_operand (result, target);
6415 return result;
6418 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6419 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6421 static rtx
6422 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6423 enum expand_modifier modifier)
6425 enum machine_mode rmode;
6426 rtx result;
6428 /* Target mode of VOIDmode says "whatever's natural". */
6429 if (tmode == VOIDmode)
6430 tmode = TYPE_MODE (TREE_TYPE (exp));
6432 /* We can get called with some Weird Things if the user does silliness
6433 like "(short) &a". In that case, convert_memory_address won't do
6434 the right thing, so ignore the given target mode. */
6435 if (tmode != Pmode && tmode != ptr_mode)
6436 tmode = Pmode;
6438 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6439 tmode, modifier);
6441 /* Despite expand_expr claims concerning ignoring TMODE when not
6442 strictly convenient, stuff breaks if we don't honor it. Note
6443 that combined with the above, we only do this for pointer modes. */
6444 rmode = GET_MODE (result);
6445 if (rmode == VOIDmode)
6446 rmode = tmode;
6447 if (rmode != tmode)
6448 result = convert_memory_address (tmode, result);
6450 return result;
6454 /* expand_expr: generate code for computing expression EXP.
6455 An rtx for the computed value is returned. The value is never null.
6456 In the case of a void EXP, const0_rtx is returned.
6458 The value may be stored in TARGET if TARGET is nonzero.
6459 TARGET is just a suggestion; callers must assume that
6460 the rtx returned may not be the same as TARGET.
6462 If TARGET is CONST0_RTX, it means that the value will be ignored.
6464 If TMODE is not VOIDmode, it suggests generating the
6465 result in mode TMODE. But this is done only when convenient.
6466 Otherwise, TMODE is ignored and the value generated in its natural mode.
6467 TMODE is just a suggestion; callers must assume that
6468 the rtx returned may not have mode TMODE.
6470 Note that TARGET may have neither TMODE nor MODE. In that case, it
6471 probably will not be used.
6473 If MODIFIER is EXPAND_SUM then when EXP is an addition
6474 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6475 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6476 products as above, or REG or MEM, or constant.
6477 Ordinarily in such cases we would output mul or add instructions
6478 and then return a pseudo reg containing the sum.
6480 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6481 it also marks a label as absolutely required (it can't be dead).
6482 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6483 This is used for outputting expressions used in initializers.
6485 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6486 with a constant address even if that address is not normally legitimate.
6487 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6489 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6490 a call parameter. Such targets require special care as we haven't yet
6491 marked TARGET so that it's safe from being trashed by libcalls. We
6492 don't want to use TARGET for anything but the final result;
6493 Intermediate values must go elsewhere. Additionally, calls to
6494 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6496 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6497 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6498 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6499 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6500 recursively. */
6502 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6503 enum expand_modifier, rtx *);
6506 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6507 enum expand_modifier modifier, rtx *alt_rtl)
6509 int rn = -1;
6510 rtx ret, last = NULL;
6512 /* Handle ERROR_MARK before anybody tries to access its type. */
6513 if (TREE_CODE (exp) == ERROR_MARK
6514 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6516 ret = CONST0_RTX (tmode);
6517 return ret ? ret : const0_rtx;
6520 if (flag_non_call_exceptions)
6522 rn = lookup_stmt_eh_region (exp);
6523 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6524 if (rn >= 0)
6525 last = get_last_insn ();
6528 /* If this is an expression of some kind and it has an associated line
6529 number, then emit the line number before expanding the expression.
6531 We need to save and restore the file and line information so that
6532 errors discovered during expansion are emitted with the right
6533 information. It would be better of the diagnostic routines
6534 used the file/line information embedded in the tree nodes rather
6535 than globals. */
6536 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6538 location_t saved_location = input_location;
6539 input_location = EXPR_LOCATION (exp);
6540 emit_line_note (input_location);
6542 /* Record where the insns produced belong. */
6543 record_block_change (TREE_BLOCK (exp));
6545 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6547 input_location = saved_location;
6549 else
6551 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6554 /* If using non-call exceptions, mark all insns that may trap.
6555 expand_call() will mark CALL_INSNs before we get to this code,
6556 but it doesn't handle libcalls, and these may trap. */
6557 if (rn >= 0)
6559 rtx insn;
6560 for (insn = next_real_insn (last); insn;
6561 insn = next_real_insn (insn))
6563 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6564 /* If we want exceptions for non-call insns, any
6565 may_trap_p instruction may throw. */
6566 && GET_CODE (PATTERN (insn)) != CLOBBER
6567 && GET_CODE (PATTERN (insn)) != USE
6568 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6570 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6571 REG_NOTES (insn));
6576 return ret;
6579 static rtx
6580 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6581 enum expand_modifier modifier, rtx *alt_rtl)
6583 rtx op0, op1, temp;
6584 tree type = TREE_TYPE (exp);
6585 int unsignedp;
6586 enum machine_mode mode;
6587 enum tree_code code = TREE_CODE (exp);
6588 optab this_optab;
6589 rtx subtarget, original_target;
6590 int ignore;
6591 tree context, subexp0, subexp1;
6592 bool reduce_bit_field = false;
6593 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6594 ? reduce_to_bit_field_precision ((expr), \
6595 target, \
6596 type) \
6597 : (expr))
6599 mode = TYPE_MODE (type);
6600 unsignedp = TYPE_UNSIGNED (type);
6601 if (lang_hooks.reduce_bit_field_operations
6602 && TREE_CODE (type) == INTEGER_TYPE
6603 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6605 /* An operation in what may be a bit-field type needs the
6606 result to be reduced to the precision of the bit-field type,
6607 which is narrower than that of the type's mode. */
6608 reduce_bit_field = true;
6609 if (modifier == EXPAND_STACK_PARM)
6610 target = 0;
6613 /* Use subtarget as the target for operand 0 of a binary operation. */
6614 subtarget = get_subtarget (target);
6615 original_target = target;
6616 ignore = (target == const0_rtx
6617 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6618 || code == CONVERT_EXPR || code == COND_EXPR
6619 || code == VIEW_CONVERT_EXPR)
6620 && TREE_CODE (type) == VOID_TYPE));
6622 /* If we are going to ignore this result, we need only do something
6623 if there is a side-effect somewhere in the expression. If there
6624 is, short-circuit the most common cases here. Note that we must
6625 not call expand_expr with anything but const0_rtx in case this
6626 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6628 if (ignore)
6630 if (! TREE_SIDE_EFFECTS (exp))
6631 return const0_rtx;
6633 /* Ensure we reference a volatile object even if value is ignored, but
6634 don't do this if all we are doing is taking its address. */
6635 if (TREE_THIS_VOLATILE (exp)
6636 && TREE_CODE (exp) != FUNCTION_DECL
6637 && mode != VOIDmode && mode != BLKmode
6638 && modifier != EXPAND_CONST_ADDRESS)
6640 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6641 if (MEM_P (temp))
6642 temp = copy_to_reg (temp);
6643 return const0_rtx;
6646 if (TREE_CODE_CLASS (code) == tcc_unary
6647 || code == COMPONENT_REF || code == INDIRECT_REF)
6648 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6649 modifier);
6651 else if (TREE_CODE_CLASS (code) == tcc_binary
6652 || TREE_CODE_CLASS (code) == tcc_comparison
6653 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6655 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6656 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6657 return const0_rtx;
6659 else if (code == BIT_FIELD_REF)
6661 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6662 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6663 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6664 return const0_rtx;
6667 target = 0;
6671 switch (code)
6673 case LABEL_DECL:
6675 tree function = decl_function_context (exp);
6677 temp = label_rtx (exp);
6678 temp = gen_rtx_LABEL_REF (Pmode, temp);
6680 if (function != current_function_decl
6681 && function != 0)
6682 LABEL_REF_NONLOCAL_P (temp) = 1;
6684 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6685 return temp;
6688 case SSA_NAME:
6689 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6690 NULL);
6692 case PARM_DECL:
6693 case VAR_DECL:
6694 /* If a static var's type was incomplete when the decl was written,
6695 but the type is complete now, lay out the decl now. */
6696 if (DECL_SIZE (exp) == 0
6697 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6698 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6699 layout_decl (exp, 0);
6701 /* ... fall through ... */
6703 case FUNCTION_DECL:
6704 case RESULT_DECL:
6705 gcc_assert (DECL_RTL (exp));
6707 /* Ensure variable marked as used even if it doesn't go through
6708 a parser. If it hasn't be used yet, write out an external
6709 definition. */
6710 if (! TREE_USED (exp))
6712 assemble_external (exp);
6713 TREE_USED (exp) = 1;
6716 /* Show we haven't gotten RTL for this yet. */
6717 temp = 0;
6719 /* Variables inherited from containing functions should have
6720 been lowered by this point. */
6721 context = decl_function_context (exp);
6722 gcc_assert (!context
6723 || context == current_function_decl
6724 || TREE_STATIC (exp)
6725 /* ??? C++ creates functions that are not TREE_STATIC. */
6726 || TREE_CODE (exp) == FUNCTION_DECL);
6728 /* This is the case of an array whose size is to be determined
6729 from its initializer, while the initializer is still being parsed.
6730 See expand_decl. */
6732 if (MEM_P (DECL_RTL (exp))
6733 && REG_P (XEXP (DECL_RTL (exp), 0)))
6734 temp = validize_mem (DECL_RTL (exp));
6736 /* If DECL_RTL is memory, we are in the normal case and either
6737 the address is not valid or it is not a register and -fforce-addr
6738 is specified, get the address into a register. */
6740 else if (MEM_P (DECL_RTL (exp))
6741 && modifier != EXPAND_CONST_ADDRESS
6742 && modifier != EXPAND_SUM
6743 && modifier != EXPAND_INITIALIZER
6744 && (! memory_address_p (DECL_MODE (exp),
6745 XEXP (DECL_RTL (exp), 0))
6746 || (flag_force_addr
6747 && !REG_P (XEXP (DECL_RTL (exp), 0)))))
6749 if (alt_rtl)
6750 *alt_rtl = DECL_RTL (exp);
6751 temp = replace_equiv_address (DECL_RTL (exp),
6752 copy_rtx (XEXP (DECL_RTL (exp), 0)));
6755 /* If we got something, return it. But first, set the alignment
6756 if the address is a register. */
6757 if (temp != 0)
6759 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6760 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6762 return temp;
6765 /* If the mode of DECL_RTL does not match that of the decl, it
6766 must be a promoted value. We return a SUBREG of the wanted mode,
6767 but mark it so that we know that it was already extended. */
6769 if (REG_P (DECL_RTL (exp))
6770 && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp))
6772 enum machine_mode pmode;
6774 /* Get the signedness used for this variable. Ensure we get the
6775 same mode we got when the variable was declared. */
6776 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6777 (TREE_CODE (exp) == RESULT_DECL ? 1 : 0));
6778 gcc_assert (GET_MODE (DECL_RTL (exp)) == pmode);
6780 temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
6781 SUBREG_PROMOTED_VAR_P (temp) = 1;
6782 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6783 return temp;
6786 return DECL_RTL (exp);
6788 case INTEGER_CST:
6789 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6790 TREE_INT_CST_HIGH (exp), mode);
6792 /* ??? If overflow is set, fold will have done an incomplete job,
6793 which can result in (plus xx (const_int 0)), which can get
6794 simplified by validate_replace_rtx during virtual register
6795 instantiation, which can result in unrecognizable insns.
6796 Avoid this by forcing all overflows into registers. */
6797 if (TREE_CONSTANT_OVERFLOW (exp)
6798 && modifier != EXPAND_INITIALIZER)
6799 temp = force_reg (mode, temp);
6801 return temp;
6803 case VECTOR_CST:
6804 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6805 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6806 return const_vector_from_tree (exp);
6807 else
6808 return expand_expr (build_constructor_from_list
6809 (TREE_TYPE (exp),
6810 TREE_VECTOR_CST_ELTS (exp)),
6811 ignore ? const0_rtx : target, tmode, modifier);
6813 case CONST_DECL:
6814 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6816 case REAL_CST:
6817 /* If optimized, generate immediate CONST_DOUBLE
6818 which will be turned into memory by reload if necessary.
6820 We used to force a register so that loop.c could see it. But
6821 this does not allow gen_* patterns to perform optimizations with
6822 the constants. It also produces two insns in cases like "x = 1.0;".
6823 On most machines, floating-point constants are not permitted in
6824 many insns, so we'd end up copying it to a register in any case.
6826 Now, we do the copying in expand_binop, if appropriate. */
6827 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6828 TYPE_MODE (TREE_TYPE (exp)));
6830 case COMPLEX_CST:
6831 /* Handle evaluating a complex constant in a CONCAT target. */
6832 if (original_target && GET_CODE (original_target) == CONCAT)
6834 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6835 rtx rtarg, itarg;
6837 rtarg = XEXP (original_target, 0);
6838 itarg = XEXP (original_target, 1);
6840 /* Move the real and imaginary parts separately. */
6841 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6842 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6844 if (op0 != rtarg)
6845 emit_move_insn (rtarg, op0);
6846 if (op1 != itarg)
6847 emit_move_insn (itarg, op1);
6849 return original_target;
6852 /* ... fall through ... */
6854 case STRING_CST:
6855 temp = output_constant_def (exp, 1);
6857 /* temp contains a constant address.
6858 On RISC machines where a constant address isn't valid,
6859 make some insns to get that address into a register. */
6860 if (modifier != EXPAND_CONST_ADDRESS
6861 && modifier != EXPAND_INITIALIZER
6862 && modifier != EXPAND_SUM
6863 && (! memory_address_p (mode, XEXP (temp, 0))
6864 || flag_force_addr))
6865 return replace_equiv_address (temp,
6866 copy_rtx (XEXP (temp, 0)));
6867 return temp;
6869 case SAVE_EXPR:
6871 tree val = TREE_OPERAND (exp, 0);
6872 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6874 if (!SAVE_EXPR_RESOLVED_P (exp))
6876 /* We can indeed still hit this case, typically via builtin
6877 expanders calling save_expr immediately before expanding
6878 something. Assume this means that we only have to deal
6879 with non-BLKmode values. */
6880 gcc_assert (GET_MODE (ret) != BLKmode);
6882 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6883 DECL_ARTIFICIAL (val) = 1;
6884 DECL_IGNORED_P (val) = 1;
6885 TREE_OPERAND (exp, 0) = val;
6886 SAVE_EXPR_RESOLVED_P (exp) = 1;
6888 if (!CONSTANT_P (ret))
6889 ret = copy_to_reg (ret);
6890 SET_DECL_RTL (val, ret);
6893 return ret;
6896 case GOTO_EXPR:
6897 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6898 expand_goto (TREE_OPERAND (exp, 0));
6899 else
6900 expand_computed_goto (TREE_OPERAND (exp, 0));
6901 return const0_rtx;
6903 case CONSTRUCTOR:
6904 /* If we don't need the result, just ensure we evaluate any
6905 subexpressions. */
6906 if (ignore)
6908 unsigned HOST_WIDE_INT idx;
6909 tree value;
6911 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6912 expand_expr (value, const0_rtx, VOIDmode, 0);
6914 return const0_rtx;
6917 /* Try to avoid creating a temporary at all. This is possible
6918 if all of the initializer is zero.
6919 FIXME: try to handle all [0..255] initializers we can handle
6920 with memset. */
6921 else if (TREE_STATIC (exp)
6922 && !TREE_ADDRESSABLE (exp)
6923 && target != 0 && mode == BLKmode
6924 && all_zeros_p (exp))
6926 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6927 return target;
6930 /* All elts simple constants => refer to a constant in memory. But
6931 if this is a non-BLKmode mode, let it store a field at a time
6932 since that should make a CONST_INT or CONST_DOUBLE when we
6933 fold. Likewise, if we have a target we can use, it is best to
6934 store directly into the target unless the type is large enough
6935 that memcpy will be used. If we are making an initializer and
6936 all operands are constant, put it in memory as well.
6938 FIXME: Avoid trying to fill vector constructors piece-meal.
6939 Output them with output_constant_def below unless we're sure
6940 they're zeros. This should go away when vector initializers
6941 are treated like VECTOR_CST instead of arrays.
6943 else if ((TREE_STATIC (exp)
6944 && ((mode == BLKmode
6945 && ! (target != 0 && safe_from_p (target, exp, 1)))
6946 || TREE_ADDRESSABLE (exp)
6947 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6948 && (! MOVE_BY_PIECES_P
6949 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6950 TYPE_ALIGN (type)))
6951 && ! mostly_zeros_p (exp))))
6952 || ((modifier == EXPAND_INITIALIZER
6953 || modifier == EXPAND_CONST_ADDRESS)
6954 && TREE_CONSTANT (exp)))
6956 rtx constructor = output_constant_def (exp, 1);
6958 if (modifier != EXPAND_CONST_ADDRESS
6959 && modifier != EXPAND_INITIALIZER
6960 && modifier != EXPAND_SUM)
6961 constructor = validize_mem (constructor);
6963 return constructor;
6965 else
6967 /* Handle calls that pass values in multiple non-contiguous
6968 locations. The Irix 6 ABI has examples of this. */
6969 if (target == 0 || ! safe_from_p (target, exp, 1)
6970 || GET_CODE (target) == PARALLEL
6971 || modifier == EXPAND_STACK_PARM)
6972 target
6973 = assign_temp (build_qualified_type (type,
6974 (TYPE_QUALS (type)
6975 | (TREE_READONLY (exp)
6976 * TYPE_QUAL_CONST))),
6977 0, TREE_ADDRESSABLE (exp), 1);
6979 store_constructor (exp, target, 0, int_expr_size (exp));
6980 return target;
6983 case MISALIGNED_INDIRECT_REF:
6984 case ALIGN_INDIRECT_REF:
6985 case INDIRECT_REF:
6987 tree exp1 = TREE_OPERAND (exp, 0);
6989 if (modifier != EXPAND_WRITE)
6991 tree t;
6993 t = fold_read_from_constant_string (exp);
6994 if (t)
6995 return expand_expr (t, target, tmode, modifier);
6998 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6999 op0 = memory_address (mode, op0);
7001 if (code == ALIGN_INDIRECT_REF)
7003 int align = TYPE_ALIGN_UNIT (type);
7004 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7005 op0 = memory_address (mode, op0);
7008 temp = gen_rtx_MEM (mode, op0);
7010 set_mem_attributes (temp, exp, 0);
7012 /* Resolve the misalignment now, so that we don't have to remember
7013 to resolve it later. Of course, this only works for reads. */
7014 /* ??? When we get around to supporting writes, we'll have to handle
7015 this in store_expr directly. The vectorizer isn't generating
7016 those yet, however. */
7017 if (code == MISALIGNED_INDIRECT_REF)
7019 int icode;
7020 rtx reg, insn;
7022 gcc_assert (modifier == EXPAND_NORMAL
7023 || modifier == EXPAND_STACK_PARM);
7025 /* The vectorizer should have already checked the mode. */
7026 icode = movmisalign_optab->handlers[mode].insn_code;
7027 gcc_assert (icode != CODE_FOR_nothing);
7029 /* We've already validated the memory, and we're creating a
7030 new pseudo destination. The predicates really can't fail. */
7031 reg = gen_reg_rtx (mode);
7033 /* Nor can the insn generator. */
7034 insn = GEN_FCN (icode) (reg, temp);
7035 emit_insn (insn);
7037 return reg;
7040 return temp;
7043 case TARGET_MEM_REF:
7045 struct mem_address addr;
7047 get_address_description (exp, &addr);
7048 op0 = addr_for_mem_ref (&addr, true);
7049 op0 = memory_address (mode, op0);
7050 temp = gen_rtx_MEM (mode, op0);
7051 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7053 return temp;
7055 case ARRAY_REF:
7058 tree array = TREE_OPERAND (exp, 0);
7059 tree index = TREE_OPERAND (exp, 1);
7061 /* Fold an expression like: "foo"[2].
7062 This is not done in fold so it won't happen inside &.
7063 Don't fold if this is for wide characters since it's too
7064 difficult to do correctly and this is a very rare case. */
7066 if (modifier != EXPAND_CONST_ADDRESS
7067 && modifier != EXPAND_INITIALIZER
7068 && modifier != EXPAND_MEMORY)
7070 tree t = fold_read_from_constant_string (exp);
7072 if (t)
7073 return expand_expr (t, target, tmode, modifier);
7076 /* If this is a constant index into a constant array,
7077 just get the value from the array. Handle both the cases when
7078 we have an explicit constructor and when our operand is a variable
7079 that was declared const. */
7081 if (modifier != EXPAND_CONST_ADDRESS
7082 && modifier != EXPAND_INITIALIZER
7083 && modifier != EXPAND_MEMORY
7084 && TREE_CODE (array) == CONSTRUCTOR
7085 && ! TREE_SIDE_EFFECTS (array)
7086 && TREE_CODE (index) == INTEGER_CST)
7088 unsigned HOST_WIDE_INT ix;
7089 tree field, value;
7091 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7092 field, value)
7093 if (tree_int_cst_equal (field, index))
7095 if (!TREE_SIDE_EFFECTS (value))
7096 return expand_expr (fold (value), target, tmode, modifier);
7097 break;
7101 else if (optimize >= 1
7102 && modifier != EXPAND_CONST_ADDRESS
7103 && modifier != EXPAND_INITIALIZER
7104 && modifier != EXPAND_MEMORY
7105 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7106 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7107 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7108 && targetm.binds_local_p (array))
7110 if (TREE_CODE (index) == INTEGER_CST)
7112 tree init = DECL_INITIAL (array);
7114 if (TREE_CODE (init) == CONSTRUCTOR)
7116 unsigned HOST_WIDE_INT ix;
7117 tree field, value;
7119 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7120 field, value)
7121 if (tree_int_cst_equal (field, index))
7123 if (!TREE_SIDE_EFFECTS (value))
7124 return expand_expr (fold (value), target, tmode,
7125 modifier);
7126 break;
7129 else if (TREE_CODE (init) == STRING_CST
7130 && 0 > compare_tree_int (index,
7131 TREE_STRING_LENGTH (init)))
7133 tree type = TREE_TYPE (TREE_TYPE (init));
7134 enum machine_mode mode = TYPE_MODE (type);
7136 if (GET_MODE_CLASS (mode) == MODE_INT
7137 && GET_MODE_SIZE (mode) == 1)
7138 return gen_int_mode (TREE_STRING_POINTER (init)
7139 [TREE_INT_CST_LOW (index)], mode);
7144 goto normal_inner_ref;
7146 case COMPONENT_REF:
7147 /* If the operand is a CONSTRUCTOR, we can just extract the
7148 appropriate field if it is present. */
7149 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7151 unsigned HOST_WIDE_INT idx;
7152 tree field, value;
7154 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7155 idx, field, value)
7156 if (field == TREE_OPERAND (exp, 1)
7157 /* We can normally use the value of the field in the
7158 CONSTRUCTOR. However, if this is a bitfield in
7159 an integral mode that we can fit in a HOST_WIDE_INT,
7160 we must mask only the number of bits in the bitfield,
7161 since this is done implicitly by the constructor. If
7162 the bitfield does not meet either of those conditions,
7163 we can't do this optimization. */
7164 && (! DECL_BIT_FIELD (field)
7165 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7166 && (GET_MODE_BITSIZE (DECL_MODE (field))
7167 <= HOST_BITS_PER_WIDE_INT))))
7169 if (DECL_BIT_FIELD (field)
7170 && modifier == EXPAND_STACK_PARM)
7171 target = 0;
7172 op0 = expand_expr (value, target, tmode, modifier);
7173 if (DECL_BIT_FIELD (field))
7175 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7176 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7178 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7180 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7181 op0 = expand_and (imode, op0, op1, target);
7183 else
7185 tree count
7186 = build_int_cst (NULL_TREE,
7187 GET_MODE_BITSIZE (imode) - bitsize);
7189 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7190 target, 0);
7191 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7192 target, 0);
7196 return op0;
7199 goto normal_inner_ref;
7201 case BIT_FIELD_REF:
7202 case ARRAY_RANGE_REF:
7203 normal_inner_ref:
7205 enum machine_mode mode1;
7206 HOST_WIDE_INT bitsize, bitpos;
7207 tree offset;
7208 int volatilep = 0;
7209 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7210 &mode1, &unsignedp, &volatilep, true);
7211 rtx orig_op0;
7213 /* If we got back the original object, something is wrong. Perhaps
7214 we are evaluating an expression too early. In any event, don't
7215 infinitely recurse. */
7216 gcc_assert (tem != exp);
7218 /* If TEM's type is a union of variable size, pass TARGET to the inner
7219 computation, since it will need a temporary and TARGET is known
7220 to have to do. This occurs in unchecked conversion in Ada. */
7222 orig_op0 = op0
7223 = expand_expr (tem,
7224 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7225 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7226 != INTEGER_CST)
7227 && modifier != EXPAND_STACK_PARM
7228 ? target : NULL_RTX),
7229 VOIDmode,
7230 (modifier == EXPAND_INITIALIZER
7231 || modifier == EXPAND_CONST_ADDRESS
7232 || modifier == EXPAND_STACK_PARM)
7233 ? modifier : EXPAND_NORMAL);
7235 /* If this is a constant, put it into a register if it is a legitimate
7236 constant, OFFSET is 0, and we won't try to extract outside the
7237 register (in case we were passed a partially uninitialized object
7238 or a view_conversion to a larger size). Force the constant to
7239 memory otherwise. */
7240 if (CONSTANT_P (op0))
7242 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7243 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7244 && offset == 0
7245 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7246 op0 = force_reg (mode, op0);
7247 else
7248 op0 = validize_mem (force_const_mem (mode, op0));
7251 /* Otherwise, if this object not in memory and we either have an
7252 offset, a BLKmode result, or a reference outside the object, put it
7253 there. Such cases can occur in Ada if we have unchecked conversion
7254 of an expression from a scalar type to an array or record type or
7255 for an ARRAY_RANGE_REF whose type is BLKmode. */
7256 else if (!MEM_P (op0)
7257 && (offset != 0
7258 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7259 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7261 tree nt = build_qualified_type (TREE_TYPE (tem),
7262 (TYPE_QUALS (TREE_TYPE (tem))
7263 | TYPE_QUAL_CONST));
7264 rtx memloc = assign_temp (nt, 1, 1, 1);
7266 emit_move_insn (memloc, op0);
7267 op0 = memloc;
7270 if (offset != 0)
7272 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7273 EXPAND_SUM);
7275 gcc_assert (MEM_P (op0));
7277 #ifdef POINTERS_EXTEND_UNSIGNED
7278 if (GET_MODE (offset_rtx) != Pmode)
7279 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7280 #else
7281 if (GET_MODE (offset_rtx) != ptr_mode)
7282 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7283 #endif
7285 if (GET_MODE (op0) == BLKmode
7286 /* A constant address in OP0 can have VOIDmode, we must
7287 not try to call force_reg in that case. */
7288 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7289 && bitsize != 0
7290 && (bitpos % bitsize) == 0
7291 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7292 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7294 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7295 bitpos = 0;
7298 op0 = offset_address (op0, offset_rtx,
7299 highest_pow2_factor (offset));
7302 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7303 record its alignment as BIGGEST_ALIGNMENT. */
7304 if (MEM_P (op0) && bitpos == 0 && offset != 0
7305 && is_aligning_offset (offset, tem))
7306 set_mem_align (op0, BIGGEST_ALIGNMENT);
7308 /* Don't forget about volatility even if this is a bitfield. */
7309 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7311 if (op0 == orig_op0)
7312 op0 = copy_rtx (op0);
7314 MEM_VOLATILE_P (op0) = 1;
7317 /* The following code doesn't handle CONCAT.
7318 Assume only bitpos == 0 can be used for CONCAT, due to
7319 one element arrays having the same mode as its element. */
7320 if (GET_CODE (op0) == CONCAT)
7322 gcc_assert (bitpos == 0
7323 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7324 return op0;
7327 /* In cases where an aligned union has an unaligned object
7328 as a field, we might be extracting a BLKmode value from
7329 an integer-mode (e.g., SImode) object. Handle this case
7330 by doing the extract into an object as wide as the field
7331 (which we know to be the width of a basic mode), then
7332 storing into memory, and changing the mode to BLKmode. */
7333 if (mode1 == VOIDmode
7334 || REG_P (op0) || GET_CODE (op0) == SUBREG
7335 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7336 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7337 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7338 && modifier != EXPAND_CONST_ADDRESS
7339 && modifier != EXPAND_INITIALIZER)
7340 /* If the field isn't aligned enough to fetch as a memref,
7341 fetch it as a bit field. */
7342 || (mode1 != BLKmode
7343 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7344 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7345 || (MEM_P (op0)
7346 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7347 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7348 && ((modifier == EXPAND_CONST_ADDRESS
7349 || modifier == EXPAND_INITIALIZER)
7350 ? STRICT_ALIGNMENT
7351 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7352 || (bitpos % BITS_PER_UNIT != 0)))
7353 /* If the type and the field are a constant size and the
7354 size of the type isn't the same size as the bitfield,
7355 we must use bitfield operations. */
7356 || (bitsize >= 0
7357 && TYPE_SIZE (TREE_TYPE (exp))
7358 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7359 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7360 bitsize)))
7362 enum machine_mode ext_mode = mode;
7364 if (ext_mode == BLKmode
7365 && ! (target != 0 && MEM_P (op0)
7366 && MEM_P (target)
7367 && bitpos % BITS_PER_UNIT == 0))
7368 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7370 if (ext_mode == BLKmode)
7372 if (target == 0)
7373 target = assign_temp (type, 0, 1, 1);
7375 if (bitsize == 0)
7376 return target;
7378 /* In this case, BITPOS must start at a byte boundary and
7379 TARGET, if specified, must be a MEM. */
7380 gcc_assert (MEM_P (op0)
7381 && (!target || MEM_P (target))
7382 && !(bitpos % BITS_PER_UNIT));
7384 emit_block_move (target,
7385 adjust_address (op0, VOIDmode,
7386 bitpos / BITS_PER_UNIT),
7387 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7388 / BITS_PER_UNIT),
7389 (modifier == EXPAND_STACK_PARM
7390 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7392 return target;
7395 op0 = validize_mem (op0);
7397 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7398 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7400 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7401 (modifier == EXPAND_STACK_PARM
7402 ? NULL_RTX : target),
7403 ext_mode, ext_mode);
7405 /* If the result is a record type and BITSIZE is narrower than
7406 the mode of OP0, an integral mode, and this is a big endian
7407 machine, we must put the field into the high-order bits. */
7408 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7409 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7410 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7411 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7412 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7413 - bitsize),
7414 op0, 1);
7416 /* If the result type is BLKmode, store the data into a temporary
7417 of the appropriate type, but with the mode corresponding to the
7418 mode for the data we have (op0's mode). It's tempting to make
7419 this a constant type, since we know it's only being stored once,
7420 but that can cause problems if we are taking the address of this
7421 COMPONENT_REF because the MEM of any reference via that address
7422 will have flags corresponding to the type, which will not
7423 necessarily be constant. */
7424 if (mode == BLKmode)
7426 rtx new
7427 = assign_stack_temp_for_type
7428 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7430 emit_move_insn (new, op0);
7431 op0 = copy_rtx (new);
7432 PUT_MODE (op0, BLKmode);
7433 set_mem_attributes (op0, exp, 1);
7436 return op0;
7439 /* If the result is BLKmode, use that to access the object
7440 now as well. */
7441 if (mode == BLKmode)
7442 mode1 = BLKmode;
7444 /* Get a reference to just this component. */
7445 if (modifier == EXPAND_CONST_ADDRESS
7446 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7447 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7448 else
7449 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7451 if (op0 == orig_op0)
7452 op0 = copy_rtx (op0);
7454 set_mem_attributes (op0, exp, 0);
7455 if (REG_P (XEXP (op0, 0)))
7456 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7458 MEM_VOLATILE_P (op0) |= volatilep;
7459 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7460 || modifier == EXPAND_CONST_ADDRESS
7461 || modifier == EXPAND_INITIALIZER)
7462 return op0;
7463 else if (target == 0)
7464 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7466 convert_move (target, op0, unsignedp);
7467 return target;
7470 case OBJ_TYPE_REF:
7471 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7473 case CALL_EXPR:
7474 /* Check for a built-in function. */
7475 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7476 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7477 == FUNCTION_DECL)
7478 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7480 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7481 == BUILT_IN_FRONTEND)
7482 return lang_hooks.expand_expr (exp, original_target,
7483 tmode, modifier,
7484 alt_rtl);
7485 else
7486 return expand_builtin (exp, target, subtarget, tmode, ignore);
7489 return expand_call (exp, target, ignore);
7491 case NON_LVALUE_EXPR:
7492 case NOP_EXPR:
7493 case CONVERT_EXPR:
7494 if (TREE_OPERAND (exp, 0) == error_mark_node)
7495 return const0_rtx;
7497 if (TREE_CODE (type) == UNION_TYPE)
7499 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7501 /* If both input and output are BLKmode, this conversion isn't doing
7502 anything except possibly changing memory attribute. */
7503 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7505 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7506 modifier);
7508 result = copy_rtx (result);
7509 set_mem_attributes (result, exp, 0);
7510 return result;
7513 if (target == 0)
7515 if (TYPE_MODE (type) != BLKmode)
7516 target = gen_reg_rtx (TYPE_MODE (type));
7517 else
7518 target = assign_temp (type, 0, 1, 1);
7521 if (MEM_P (target))
7522 /* Store data into beginning of memory target. */
7523 store_expr (TREE_OPERAND (exp, 0),
7524 adjust_address (target, TYPE_MODE (valtype), 0),
7525 modifier == EXPAND_STACK_PARM);
7527 else
7529 gcc_assert (REG_P (target));
7531 /* Store this field into a union of the proper type. */
7532 store_field (target,
7533 MIN ((int_size_in_bytes (TREE_TYPE
7534 (TREE_OPERAND (exp, 0)))
7535 * BITS_PER_UNIT),
7536 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7537 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7538 type, 0);
7541 /* Return the entire union. */
7542 return target;
7545 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7547 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7548 modifier);
7550 /* If the signedness of the conversion differs and OP0 is
7551 a promoted SUBREG, clear that indication since we now
7552 have to do the proper extension. */
7553 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7554 && GET_CODE (op0) == SUBREG)
7555 SUBREG_PROMOTED_VAR_P (op0) = 0;
7557 return REDUCE_BIT_FIELD (op0);
7560 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7561 if (GET_MODE (op0) == mode)
7564 /* If OP0 is a constant, just convert it into the proper mode. */
7565 else if (CONSTANT_P (op0))
7567 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7568 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7570 if (modifier == EXPAND_INITIALIZER)
7571 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7572 subreg_lowpart_offset (mode,
7573 inner_mode));
7574 else
7575 op0= convert_modes (mode, inner_mode, op0,
7576 TYPE_UNSIGNED (inner_type));
7579 else if (modifier == EXPAND_INITIALIZER)
7580 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7582 else if (target == 0)
7583 op0 = convert_to_mode (mode, op0,
7584 TYPE_UNSIGNED (TREE_TYPE
7585 (TREE_OPERAND (exp, 0))));
7586 else
7588 convert_move (target, op0,
7589 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7590 op0 = target;
7593 return REDUCE_BIT_FIELD (op0);
7595 case VIEW_CONVERT_EXPR:
7596 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7598 /* If the input and output modes are both the same, we are done. */
7599 if (TYPE_MODE (type) == GET_MODE (op0))
7601 /* If neither mode is BLKmode, and both modes are the same size
7602 then we can use gen_lowpart. */
7603 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7604 && GET_MODE_SIZE (TYPE_MODE (type))
7605 == GET_MODE_SIZE (GET_MODE (op0)))
7607 if (GET_CODE (op0) == SUBREG)
7608 op0 = force_reg (GET_MODE (op0), op0);
7609 op0 = gen_lowpart (TYPE_MODE (type), op0);
7611 /* If both modes are integral, then we can convert from one to the
7612 other. */
7613 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7614 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7615 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7616 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7617 /* As a last resort, spill op0 to memory, and reload it in a
7618 different mode. */
7619 else if (!MEM_P (op0))
7621 /* If the operand is not a MEM, force it into memory. Since we
7622 are going to be be changing the mode of the MEM, don't call
7623 force_const_mem for constants because we don't allow pool
7624 constants to change mode. */
7625 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7627 gcc_assert (!TREE_ADDRESSABLE (exp));
7629 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7630 target
7631 = assign_stack_temp_for_type
7632 (TYPE_MODE (inner_type),
7633 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7635 emit_move_insn (target, op0);
7636 op0 = target;
7639 /* At this point, OP0 is in the correct mode. If the output type is such
7640 that the operand is known to be aligned, indicate that it is.
7641 Otherwise, we need only be concerned about alignment for non-BLKmode
7642 results. */
7643 if (MEM_P (op0))
7645 op0 = copy_rtx (op0);
7647 if (TYPE_ALIGN_OK (type))
7648 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7649 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7650 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7652 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7653 HOST_WIDE_INT temp_size
7654 = MAX (int_size_in_bytes (inner_type),
7655 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7656 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7657 temp_size, 0, type);
7658 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7660 gcc_assert (!TREE_ADDRESSABLE (exp));
7662 if (GET_MODE (op0) == BLKmode)
7663 emit_block_move (new_with_op0_mode, op0,
7664 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7665 (modifier == EXPAND_STACK_PARM
7666 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7667 else
7668 emit_move_insn (new_with_op0_mode, op0);
7670 op0 = new;
7673 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7676 return op0;
7678 case PLUS_EXPR:
7679 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7680 something else, make sure we add the register to the constant and
7681 then to the other thing. This case can occur during strength
7682 reduction and doing it this way will produce better code if the
7683 frame pointer or argument pointer is eliminated.
7685 fold-const.c will ensure that the constant is always in the inner
7686 PLUS_EXPR, so the only case we need to do anything about is if
7687 sp, ap, or fp is our second argument, in which case we must swap
7688 the innermost first argument and our second argument. */
7690 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7691 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7692 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7693 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7694 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7695 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7697 tree t = TREE_OPERAND (exp, 1);
7699 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7700 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7703 /* If the result is to be ptr_mode and we are adding an integer to
7704 something, we might be forming a constant. So try to use
7705 plus_constant. If it produces a sum and we can't accept it,
7706 use force_operand. This allows P = &ARR[const] to generate
7707 efficient code on machines where a SYMBOL_REF is not a valid
7708 address.
7710 If this is an EXPAND_SUM call, always return the sum. */
7711 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7712 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7714 if (modifier == EXPAND_STACK_PARM)
7715 target = 0;
7716 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7717 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7718 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7720 rtx constant_part;
7722 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7723 EXPAND_SUM);
7724 /* Use immed_double_const to ensure that the constant is
7725 truncated according to the mode of OP1, then sign extended
7726 to a HOST_WIDE_INT. Using the constant directly can result
7727 in non-canonical RTL in a 64x32 cross compile. */
7728 constant_part
7729 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7730 (HOST_WIDE_INT) 0,
7731 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7732 op1 = plus_constant (op1, INTVAL (constant_part));
7733 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7734 op1 = force_operand (op1, target);
7735 return REDUCE_BIT_FIELD (op1);
7738 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7739 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7740 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7742 rtx constant_part;
7744 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7745 (modifier == EXPAND_INITIALIZER
7746 ? EXPAND_INITIALIZER : EXPAND_SUM));
7747 if (! CONSTANT_P (op0))
7749 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7750 VOIDmode, modifier);
7751 /* Return a PLUS if modifier says it's OK. */
7752 if (modifier == EXPAND_SUM
7753 || modifier == EXPAND_INITIALIZER)
7754 return simplify_gen_binary (PLUS, mode, op0, op1);
7755 goto binop2;
7757 /* Use immed_double_const to ensure that the constant is
7758 truncated according to the mode of OP1, then sign extended
7759 to a HOST_WIDE_INT. Using the constant directly can result
7760 in non-canonical RTL in a 64x32 cross compile. */
7761 constant_part
7762 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7763 (HOST_WIDE_INT) 0,
7764 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7765 op0 = plus_constant (op0, INTVAL (constant_part));
7766 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7767 op0 = force_operand (op0, target);
7768 return REDUCE_BIT_FIELD (op0);
7772 /* No sense saving up arithmetic to be done
7773 if it's all in the wrong mode to form part of an address.
7774 And force_operand won't know whether to sign-extend or
7775 zero-extend. */
7776 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7777 || mode != ptr_mode)
7779 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7780 subtarget, &op0, &op1, 0);
7781 if (op0 == const0_rtx)
7782 return op1;
7783 if (op1 == const0_rtx)
7784 return op0;
7785 goto binop2;
7788 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7789 subtarget, &op0, &op1, modifier);
7790 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7792 case MINUS_EXPR:
7793 /* For initializers, we are allowed to return a MINUS of two
7794 symbolic constants. Here we handle all cases when both operands
7795 are constant. */
7796 /* Handle difference of two symbolic constants,
7797 for the sake of an initializer. */
7798 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7799 && really_constant_p (TREE_OPERAND (exp, 0))
7800 && really_constant_p (TREE_OPERAND (exp, 1)))
7802 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7803 NULL_RTX, &op0, &op1, modifier);
7805 /* If the last operand is a CONST_INT, use plus_constant of
7806 the negated constant. Else make the MINUS. */
7807 if (GET_CODE (op1) == CONST_INT)
7808 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7809 else
7810 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7813 /* No sense saving up arithmetic to be done
7814 if it's all in the wrong mode to form part of an address.
7815 And force_operand won't know whether to sign-extend or
7816 zero-extend. */
7817 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7818 || mode != ptr_mode)
7819 goto binop;
7821 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7822 subtarget, &op0, &op1, modifier);
7824 /* Convert A - const to A + (-const). */
7825 if (GET_CODE (op1) == CONST_INT)
7827 op1 = negate_rtx (mode, op1);
7828 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7831 goto binop2;
7833 case MULT_EXPR:
7834 /* If first operand is constant, swap them.
7835 Thus the following special case checks need only
7836 check the second operand. */
7837 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7839 tree t1 = TREE_OPERAND (exp, 0);
7840 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7841 TREE_OPERAND (exp, 1) = t1;
7844 /* Attempt to return something suitable for generating an
7845 indexed address, for machines that support that. */
7847 if (modifier == EXPAND_SUM && mode == ptr_mode
7848 && host_integerp (TREE_OPERAND (exp, 1), 0))
7850 tree exp1 = TREE_OPERAND (exp, 1);
7852 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7853 EXPAND_SUM);
7855 if (!REG_P (op0))
7856 op0 = force_operand (op0, NULL_RTX);
7857 if (!REG_P (op0))
7858 op0 = copy_to_mode_reg (mode, op0);
7860 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7861 gen_int_mode (tree_low_cst (exp1, 0),
7862 TYPE_MODE (TREE_TYPE (exp1)))));
7865 if (modifier == EXPAND_STACK_PARM)
7866 target = 0;
7868 /* Check for multiplying things that have been extended
7869 from a narrower type. If this machine supports multiplying
7870 in that narrower type with a result in the desired type,
7871 do it that way, and avoid the explicit type-conversion. */
7873 subexp0 = TREE_OPERAND (exp, 0);
7874 subexp1 = TREE_OPERAND (exp, 1);
7875 /* First, check if we have a multiplication of one signed and one
7876 unsigned operand. */
7877 if (TREE_CODE (subexp0) == NOP_EXPR
7878 && TREE_CODE (subexp1) == NOP_EXPR
7879 && TREE_CODE (type) == INTEGER_TYPE
7880 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7881 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7882 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7883 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
7884 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
7885 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
7887 enum machine_mode innermode
7888 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
7889 this_optab = usmul_widen_optab;
7890 if (mode == GET_MODE_WIDER_MODE (innermode))
7892 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7894 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
7895 expand_operands (TREE_OPERAND (subexp0, 0),
7896 TREE_OPERAND (subexp1, 0),
7897 NULL_RTX, &op0, &op1, 0);
7898 else
7899 expand_operands (TREE_OPERAND (subexp0, 0),
7900 TREE_OPERAND (subexp1, 0),
7901 NULL_RTX, &op1, &op0, 0);
7903 goto binop3;
7907 /* Check for a multiplication with matching signedness. */
7908 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7909 && TREE_CODE (type) == INTEGER_TYPE
7910 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7911 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7912 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7913 && int_fits_type_p (TREE_OPERAND (exp, 1),
7914 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7915 /* Don't use a widening multiply if a shift will do. */
7916 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7917 > HOST_BITS_PER_WIDE_INT)
7918 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7920 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7921 && (TYPE_PRECISION (TREE_TYPE
7922 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7923 == TYPE_PRECISION (TREE_TYPE
7924 (TREE_OPERAND
7925 (TREE_OPERAND (exp, 0), 0))))
7926 /* If both operands are extended, they must either both
7927 be zero-extended or both be sign-extended. */
7928 && (TYPE_UNSIGNED (TREE_TYPE
7929 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7930 == TYPE_UNSIGNED (TREE_TYPE
7931 (TREE_OPERAND
7932 (TREE_OPERAND (exp, 0), 0)))))))
7934 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7935 enum machine_mode innermode = TYPE_MODE (op0type);
7936 bool zextend_p = TYPE_UNSIGNED (op0type);
7937 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7938 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7940 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7942 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7944 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7945 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7946 TREE_OPERAND (exp, 1),
7947 NULL_RTX, &op0, &op1, 0);
7948 else
7949 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7950 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7951 NULL_RTX, &op0, &op1, 0);
7952 goto binop3;
7954 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7955 && innermode == word_mode)
7957 rtx htem, hipart;
7958 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7959 NULL_RTX, VOIDmode, 0);
7960 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7961 op1 = convert_modes (innermode, mode,
7962 expand_expr (TREE_OPERAND (exp, 1),
7963 NULL_RTX, VOIDmode, 0),
7964 unsignedp);
7965 else
7966 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7967 NULL_RTX, VOIDmode, 0);
7968 temp = expand_binop (mode, other_optab, op0, op1, target,
7969 unsignedp, OPTAB_LIB_WIDEN);
7970 hipart = gen_highpart (innermode, temp);
7971 htem = expand_mult_highpart_adjust (innermode, hipart,
7972 op0, op1, hipart,
7973 zextend_p);
7974 if (htem != hipart)
7975 emit_move_insn (hipart, htem);
7976 return REDUCE_BIT_FIELD (temp);
7980 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7981 subtarget, &op0, &op1, 0);
7982 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7984 case TRUNC_DIV_EXPR:
7985 case FLOOR_DIV_EXPR:
7986 case CEIL_DIV_EXPR:
7987 case ROUND_DIV_EXPR:
7988 case EXACT_DIV_EXPR:
7989 if (modifier == EXPAND_STACK_PARM)
7990 target = 0;
7991 /* Possible optimization: compute the dividend with EXPAND_SUM
7992 then if the divisor is constant can optimize the case
7993 where some terms of the dividend have coeffs divisible by it. */
7994 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7995 subtarget, &op0, &op1, 0);
7996 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7998 case RDIV_EXPR:
7999 goto binop;
8001 case TRUNC_MOD_EXPR:
8002 case FLOOR_MOD_EXPR:
8003 case CEIL_MOD_EXPR:
8004 case ROUND_MOD_EXPR:
8005 if (modifier == EXPAND_STACK_PARM)
8006 target = 0;
8007 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8008 subtarget, &op0, &op1, 0);
8009 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8011 case FIX_ROUND_EXPR:
8012 case FIX_FLOOR_EXPR:
8013 case FIX_CEIL_EXPR:
8014 gcc_unreachable (); /* Not used for C. */
8016 case FIX_TRUNC_EXPR:
8017 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
8018 if (target == 0 || modifier == EXPAND_STACK_PARM)
8019 target = gen_reg_rtx (mode);
8020 expand_fix (target, op0, unsignedp);
8021 return target;
8023 case FLOAT_EXPR:
8024 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
8025 if (target == 0 || modifier == EXPAND_STACK_PARM)
8026 target = gen_reg_rtx (mode);
8027 /* expand_float can't figure out what to do if FROM has VOIDmode.
8028 So give it the correct mode. With -O, cse will optimize this. */
8029 if (GET_MODE (op0) == VOIDmode)
8030 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8031 op0);
8032 expand_float (target, op0,
8033 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8034 return target;
8036 case NEGATE_EXPR:
8037 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8038 if (modifier == EXPAND_STACK_PARM)
8039 target = 0;
8040 temp = expand_unop (mode,
8041 optab_for_tree_code (NEGATE_EXPR, type),
8042 op0, target, 0);
8043 gcc_assert (temp);
8044 return REDUCE_BIT_FIELD (temp);
8046 case ABS_EXPR:
8047 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8048 if (modifier == EXPAND_STACK_PARM)
8049 target = 0;
8051 /* ABS_EXPR is not valid for complex arguments. */
8052 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8053 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8055 /* Unsigned abs is simply the operand. Testing here means we don't
8056 risk generating incorrect code below. */
8057 if (TYPE_UNSIGNED (type))
8058 return op0;
8060 return expand_abs (mode, op0, target, unsignedp,
8061 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8063 case MAX_EXPR:
8064 case MIN_EXPR:
8065 target = original_target;
8066 if (target == 0
8067 || modifier == EXPAND_STACK_PARM
8068 || (MEM_P (target) && MEM_VOLATILE_P (target))
8069 || GET_MODE (target) != mode
8070 || (REG_P (target)
8071 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8072 target = gen_reg_rtx (mode);
8073 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8074 target, &op0, &op1, 0);
8076 /* First try to do it with a special MIN or MAX instruction.
8077 If that does not win, use a conditional jump to select the proper
8078 value. */
8079 this_optab = optab_for_tree_code (code, type);
8080 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8081 OPTAB_WIDEN);
8082 if (temp != 0)
8083 return temp;
8085 /* At this point, a MEM target is no longer useful; we will get better
8086 code without it. */
8088 if (! REG_P (target))
8089 target = gen_reg_rtx (mode);
8091 /* If op1 was placed in target, swap op0 and op1. */
8092 if (target != op0 && target == op1)
8094 temp = op0;
8095 op0 = op1;
8096 op1 = temp;
8099 /* We generate better code and avoid problems with op1 mentioning
8100 target by forcing op1 into a pseudo if it isn't a constant. */
8101 if (! CONSTANT_P (op1))
8102 op1 = force_reg (mode, op1);
8105 enum rtx_code comparison_code;
8106 rtx cmpop1 = op1;
8108 if (code == MAX_EXPR)
8109 comparison_code = unsignedp ? GEU : GE;
8110 else
8111 comparison_code = unsignedp ? LEU : LE;
8113 /* Canonicalize to comparisons against 0. */
8114 if (op1 == const1_rtx)
8116 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8117 or (a != 0 ? a : 1) for unsigned.
8118 For MIN we are safe converting (a <= 1 ? a : 1)
8119 into (a <= 0 ? a : 1) */
8120 cmpop1 = const0_rtx;
8121 if (code == MAX_EXPR)
8122 comparison_code = unsignedp ? NE : GT;
8124 if (op1 == constm1_rtx && !unsignedp)
8126 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8127 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8128 cmpop1 = const0_rtx;
8129 if (code == MIN_EXPR)
8130 comparison_code = LT;
8132 #ifdef HAVE_conditional_move
8133 /* Use a conditional move if possible. */
8134 if (can_conditionally_move_p (mode))
8136 rtx insn;
8138 /* ??? Same problem as in expmed.c: emit_conditional_move
8139 forces a stack adjustment via compare_from_rtx, and we
8140 lose the stack adjustment if the sequence we are about
8141 to create is discarded. */
8142 do_pending_stack_adjust ();
8144 start_sequence ();
8146 /* Try to emit the conditional move. */
8147 insn = emit_conditional_move (target, comparison_code,
8148 op0, cmpop1, mode,
8149 op0, op1, mode,
8150 unsignedp);
8152 /* If we could do the conditional move, emit the sequence,
8153 and return. */
8154 if (insn)
8156 rtx seq = get_insns ();
8157 end_sequence ();
8158 emit_insn (seq);
8159 return target;
8162 /* Otherwise discard the sequence and fall back to code with
8163 branches. */
8164 end_sequence ();
8166 #endif
8167 if (target != op0)
8168 emit_move_insn (target, op0);
8170 temp = gen_label_rtx ();
8172 /* If this mode is an integer too wide to compare properly,
8173 compare word by word. Rely on cse to optimize constant cases. */
8174 if (GET_MODE_CLASS (mode) == MODE_INT
8175 && ! can_compare_p (GE, mode, ccp_jump))
8177 if (code == MAX_EXPR)
8178 do_jump_by_parts_greater_rtx (mode, unsignedp, target, op1,
8179 NULL_RTX, temp);
8180 else
8181 do_jump_by_parts_greater_rtx (mode, unsignedp, op1, target,
8182 NULL_RTX, temp);
8184 else
8186 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8187 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8190 emit_move_insn (target, op1);
8191 emit_label (temp);
8192 return target;
8194 case BIT_NOT_EXPR:
8195 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8196 if (modifier == EXPAND_STACK_PARM)
8197 target = 0;
8198 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8199 gcc_assert (temp);
8200 return temp;
8202 /* ??? Can optimize bitwise operations with one arg constant.
8203 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8204 and (a bitwise1 b) bitwise2 b (etc)
8205 but that is probably not worth while. */
8207 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8208 boolean values when we want in all cases to compute both of them. In
8209 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8210 as actual zero-or-1 values and then bitwise anding. In cases where
8211 there cannot be any side effects, better code would be made by
8212 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8213 how to recognize those cases. */
8215 case TRUTH_AND_EXPR:
8216 code = BIT_AND_EXPR;
8217 case BIT_AND_EXPR:
8218 goto binop;
8220 case TRUTH_OR_EXPR:
8221 code = BIT_IOR_EXPR;
8222 case BIT_IOR_EXPR:
8223 goto binop;
8225 case TRUTH_XOR_EXPR:
8226 code = BIT_XOR_EXPR;
8227 case BIT_XOR_EXPR:
8228 goto binop;
8230 case LSHIFT_EXPR:
8231 case RSHIFT_EXPR:
8232 case LROTATE_EXPR:
8233 case RROTATE_EXPR:
8234 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8235 subtarget = 0;
8236 if (modifier == EXPAND_STACK_PARM)
8237 target = 0;
8238 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8239 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8240 unsignedp);
8242 /* Could determine the answer when only additive constants differ. Also,
8243 the addition of one can be handled by changing the condition. */
8244 case LT_EXPR:
8245 case LE_EXPR:
8246 case GT_EXPR:
8247 case GE_EXPR:
8248 case EQ_EXPR:
8249 case NE_EXPR:
8250 case UNORDERED_EXPR:
8251 case ORDERED_EXPR:
8252 case UNLT_EXPR:
8253 case UNLE_EXPR:
8254 case UNGT_EXPR:
8255 case UNGE_EXPR:
8256 case UNEQ_EXPR:
8257 case LTGT_EXPR:
8258 temp = do_store_flag (exp,
8259 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8260 tmode != VOIDmode ? tmode : mode, 0);
8261 if (temp != 0)
8262 return temp;
8264 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8265 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8266 && original_target
8267 && REG_P (original_target)
8268 && (GET_MODE (original_target)
8269 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8271 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8272 VOIDmode, 0);
8274 /* If temp is constant, we can just compute the result. */
8275 if (GET_CODE (temp) == CONST_INT)
8277 if (INTVAL (temp) != 0)
8278 emit_move_insn (target, const1_rtx);
8279 else
8280 emit_move_insn (target, const0_rtx);
8282 return target;
8285 if (temp != original_target)
8287 enum machine_mode mode1 = GET_MODE (temp);
8288 if (mode1 == VOIDmode)
8289 mode1 = tmode != VOIDmode ? tmode : mode;
8291 temp = copy_to_mode_reg (mode1, temp);
8294 op1 = gen_label_rtx ();
8295 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8296 GET_MODE (temp), unsignedp, op1);
8297 emit_move_insn (temp, const1_rtx);
8298 emit_label (op1);
8299 return temp;
8302 /* If no set-flag instruction, must generate a conditional store
8303 into a temporary variable. Drop through and handle this
8304 like && and ||. */
8306 if (! ignore
8307 && (target == 0
8308 || modifier == EXPAND_STACK_PARM
8309 || ! safe_from_p (target, exp, 1)
8310 /* Make sure we don't have a hard reg (such as function's return
8311 value) live across basic blocks, if not optimizing. */
8312 || (!optimize && REG_P (target)
8313 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8314 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8316 if (target)
8317 emit_move_insn (target, const0_rtx);
8319 op1 = gen_label_rtx ();
8320 jumpifnot (exp, op1);
8322 if (target)
8323 emit_move_insn (target, const1_rtx);
8325 emit_label (op1);
8326 return ignore ? const0_rtx : target;
8328 case TRUTH_NOT_EXPR:
8329 if (modifier == EXPAND_STACK_PARM)
8330 target = 0;
8331 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8332 /* The parser is careful to generate TRUTH_NOT_EXPR
8333 only with operands that are always zero or one. */
8334 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8335 target, 1, OPTAB_LIB_WIDEN);
8336 gcc_assert (temp);
8337 return temp;
8339 case STATEMENT_LIST:
8341 tree_stmt_iterator iter;
8343 gcc_assert (ignore);
8345 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8346 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8348 return const0_rtx;
8350 case COND_EXPR:
8351 /* A COND_EXPR with its type being VOID_TYPE represents a
8352 conditional jump and is handled in
8353 expand_gimple_cond_expr. */
8354 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8356 /* Note that COND_EXPRs whose type is a structure or union
8357 are required to be constructed to contain assignments of
8358 a temporary variable, so that we can evaluate them here
8359 for side effect only. If type is void, we must do likewise. */
8361 gcc_assert (!TREE_ADDRESSABLE (type)
8362 && !ignore
8363 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8364 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8366 /* If we are not to produce a result, we have no target. Otherwise,
8367 if a target was specified use it; it will not be used as an
8368 intermediate target unless it is safe. If no target, use a
8369 temporary. */
8371 if (modifier != EXPAND_STACK_PARM
8372 && original_target
8373 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8374 && GET_MODE (original_target) == mode
8375 #ifdef HAVE_conditional_move
8376 && (! can_conditionally_move_p (mode)
8377 || REG_P (original_target))
8378 #endif
8379 && !MEM_P (original_target))
8380 temp = original_target;
8381 else
8382 temp = assign_temp (type, 0, 0, 1);
8384 do_pending_stack_adjust ();
8385 NO_DEFER_POP;
8386 op0 = gen_label_rtx ();
8387 op1 = gen_label_rtx ();
8388 jumpifnot (TREE_OPERAND (exp, 0), op0);
8389 store_expr (TREE_OPERAND (exp, 1), temp,
8390 modifier == EXPAND_STACK_PARM);
8392 emit_jump_insn (gen_jump (op1));
8393 emit_barrier ();
8394 emit_label (op0);
8395 store_expr (TREE_OPERAND (exp, 2), temp,
8396 modifier == EXPAND_STACK_PARM);
8398 emit_label (op1);
8399 OK_DEFER_POP;
8400 return temp;
8402 case VEC_COND_EXPR:
8403 target = expand_vec_cond_expr (exp, target);
8404 return target;
8406 case MODIFY_EXPR:
8408 tree lhs = TREE_OPERAND (exp, 0);
8409 tree rhs = TREE_OPERAND (exp, 1);
8411 gcc_assert (ignore);
8413 /* Check for |= or &= of a bitfield of size one into another bitfield
8414 of size 1. In this case, (unless we need the result of the
8415 assignment) we can do this more efficiently with a
8416 test followed by an assignment, if necessary.
8418 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8419 things change so we do, this code should be enhanced to
8420 support it. */
8421 if (TREE_CODE (lhs) == COMPONENT_REF
8422 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8423 || TREE_CODE (rhs) == BIT_AND_EXPR)
8424 && TREE_OPERAND (rhs, 0) == lhs
8425 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8426 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8427 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8429 rtx label = gen_label_rtx ();
8431 do_jump (TREE_OPERAND (rhs, 1),
8432 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8433 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8434 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8435 (TREE_CODE (rhs) == BIT_IOR_EXPR
8436 ? integer_one_node
8437 : integer_zero_node)));
8438 do_pending_stack_adjust ();
8439 emit_label (label);
8440 return const0_rtx;
8443 expand_assignment (lhs, rhs);
8445 return const0_rtx;
8448 case RETURN_EXPR:
8449 if (!TREE_OPERAND (exp, 0))
8450 expand_null_return ();
8451 else
8452 expand_return (TREE_OPERAND (exp, 0));
8453 return const0_rtx;
8455 case ADDR_EXPR:
8456 return expand_expr_addr_expr (exp, target, tmode, modifier);
8458 case COMPLEX_EXPR:
8459 /* Get the rtx code of the operands. */
8460 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8461 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8463 if (!target)
8464 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8466 /* Move the real (op0) and imaginary (op1) parts to their location. */
8467 write_complex_part (target, op0, false);
8468 write_complex_part (target, op1, true);
8470 return target;
8472 case REALPART_EXPR:
8473 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8474 return read_complex_part (op0, false);
8476 case IMAGPART_EXPR:
8477 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8478 return read_complex_part (op0, true);
8480 case RESX_EXPR:
8481 expand_resx_expr (exp);
8482 return const0_rtx;
8484 case TRY_CATCH_EXPR:
8485 case CATCH_EXPR:
8486 case EH_FILTER_EXPR:
8487 case TRY_FINALLY_EXPR:
8488 /* Lowered by tree-eh.c. */
8489 gcc_unreachable ();
8491 case WITH_CLEANUP_EXPR:
8492 case CLEANUP_POINT_EXPR:
8493 case TARGET_EXPR:
8494 case CASE_LABEL_EXPR:
8495 case VA_ARG_EXPR:
8496 case BIND_EXPR:
8497 case INIT_EXPR:
8498 case CONJ_EXPR:
8499 case COMPOUND_EXPR:
8500 case PREINCREMENT_EXPR:
8501 case PREDECREMENT_EXPR:
8502 case POSTINCREMENT_EXPR:
8503 case POSTDECREMENT_EXPR:
8504 case LOOP_EXPR:
8505 case EXIT_EXPR:
8506 case TRUTH_ANDIF_EXPR:
8507 case TRUTH_ORIF_EXPR:
8508 /* Lowered by gimplify.c. */
8509 gcc_unreachable ();
8511 case EXC_PTR_EXPR:
8512 return get_exception_pointer (cfun);
8514 case FILTER_EXPR:
8515 return get_exception_filter (cfun);
8517 case FDESC_EXPR:
8518 /* Function descriptors are not valid except for as
8519 initialization constants, and should not be expanded. */
8520 gcc_unreachable ();
8522 case SWITCH_EXPR:
8523 expand_case (exp);
8524 return const0_rtx;
8526 case LABEL_EXPR:
8527 expand_label (TREE_OPERAND (exp, 0));
8528 return const0_rtx;
8530 case ASM_EXPR:
8531 expand_asm_expr (exp);
8532 return const0_rtx;
8534 case WITH_SIZE_EXPR:
8535 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8536 have pulled out the size to use in whatever context it needed. */
8537 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8538 modifier, alt_rtl);
8540 case REALIGN_LOAD_EXPR:
8542 tree oprnd0 = TREE_OPERAND (exp, 0);
8543 tree oprnd1 = TREE_OPERAND (exp, 1);
8544 tree oprnd2 = TREE_OPERAND (exp, 2);
8545 rtx op2;
8547 this_optab = optab_for_tree_code (code, type);
8548 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8549 op2 = expand_expr (oprnd2, NULL_RTX, VOIDmode, 0);
8550 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8551 target, unsignedp);
8552 gcc_assert (temp);
8553 return temp;
8556 case REDUC_MAX_EXPR:
8557 case REDUC_MIN_EXPR:
8558 case REDUC_PLUS_EXPR:
8560 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
8561 this_optab = optab_for_tree_code (code, type);
8562 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8563 gcc_assert (temp);
8564 return temp;
8567 case VEC_LSHIFT_EXPR:
8568 case VEC_RSHIFT_EXPR:
8570 target = expand_vec_shift_expr (exp, target);
8571 return target;
8574 default:
8575 return lang_hooks.expand_expr (exp, original_target, tmode,
8576 modifier, alt_rtl);
8579 /* Here to do an ordinary binary operator. */
8580 binop:
8581 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8582 subtarget, &op0, &op1, 0);
8583 binop2:
8584 this_optab = optab_for_tree_code (code, type);
8585 binop3:
8586 if (modifier == EXPAND_STACK_PARM)
8587 target = 0;
8588 temp = expand_binop (mode, this_optab, op0, op1, target,
8589 unsignedp, OPTAB_LIB_WIDEN);
8590 gcc_assert (temp);
8591 return REDUCE_BIT_FIELD (temp);
8593 #undef REDUCE_BIT_FIELD
8595 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8596 signedness of TYPE), possibly returning the result in TARGET. */
8597 static rtx
8598 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8600 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8601 if (target && GET_MODE (target) != GET_MODE (exp))
8602 target = 0;
8603 if (TYPE_UNSIGNED (type))
8605 rtx mask;
8606 if (prec < HOST_BITS_PER_WIDE_INT)
8607 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8608 GET_MODE (exp));
8609 else
8610 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8611 ((unsigned HOST_WIDE_INT) 1
8612 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8613 GET_MODE (exp));
8614 return expand_and (GET_MODE (exp), exp, mask, target);
8616 else
8618 tree count = build_int_cst (NULL_TREE,
8619 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8620 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8621 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8625 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8626 when applied to the address of EXP produces an address known to be
8627 aligned more than BIGGEST_ALIGNMENT. */
8629 static int
8630 is_aligning_offset (tree offset, tree exp)
8632 /* Strip off any conversions. */
8633 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8634 || TREE_CODE (offset) == NOP_EXPR
8635 || TREE_CODE (offset) == CONVERT_EXPR)
8636 offset = TREE_OPERAND (offset, 0);
8638 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8639 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8640 if (TREE_CODE (offset) != BIT_AND_EXPR
8641 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8642 || compare_tree_int (TREE_OPERAND (offset, 1),
8643 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8644 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8645 return 0;
8647 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8648 It must be NEGATE_EXPR. Then strip any more conversions. */
8649 offset = TREE_OPERAND (offset, 0);
8650 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8651 || TREE_CODE (offset) == NOP_EXPR
8652 || TREE_CODE (offset) == CONVERT_EXPR)
8653 offset = TREE_OPERAND (offset, 0);
8655 if (TREE_CODE (offset) != NEGATE_EXPR)
8656 return 0;
8658 offset = TREE_OPERAND (offset, 0);
8659 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8660 || TREE_CODE (offset) == NOP_EXPR
8661 || TREE_CODE (offset) == CONVERT_EXPR)
8662 offset = TREE_OPERAND (offset, 0);
8664 /* This must now be the address of EXP. */
8665 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8668 /* Return the tree node if an ARG corresponds to a string constant or zero
8669 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8670 in bytes within the string that ARG is accessing. The type of the
8671 offset will be `sizetype'. */
8673 tree
8674 string_constant (tree arg, tree *ptr_offset)
8676 tree array, offset;
8677 STRIP_NOPS (arg);
8679 if (TREE_CODE (arg) == ADDR_EXPR)
8681 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8683 *ptr_offset = size_zero_node;
8684 return TREE_OPERAND (arg, 0);
8686 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8688 array = TREE_OPERAND (arg, 0);
8689 offset = size_zero_node;
8691 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8693 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8694 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8695 if (TREE_CODE (array) != STRING_CST
8696 && TREE_CODE (array) != VAR_DECL)
8697 return 0;
8699 else
8700 return 0;
8702 else if (TREE_CODE (arg) == PLUS_EXPR)
8704 tree arg0 = TREE_OPERAND (arg, 0);
8705 tree arg1 = TREE_OPERAND (arg, 1);
8707 STRIP_NOPS (arg0);
8708 STRIP_NOPS (arg1);
8710 if (TREE_CODE (arg0) == ADDR_EXPR
8711 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8712 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8714 array = TREE_OPERAND (arg0, 0);
8715 offset = arg1;
8717 else if (TREE_CODE (arg1) == ADDR_EXPR
8718 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8719 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8721 array = TREE_OPERAND (arg1, 0);
8722 offset = arg0;
8724 else
8725 return 0;
8727 else
8728 return 0;
8730 if (TREE_CODE (array) == STRING_CST)
8732 *ptr_offset = convert (sizetype, offset);
8733 return array;
8735 else if (TREE_CODE (array) == VAR_DECL)
8737 int length;
8739 /* Variables initialized to string literals can be handled too. */
8740 if (DECL_INITIAL (array) == NULL_TREE
8741 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8742 return 0;
8744 /* If they are read-only, non-volatile and bind locally. */
8745 if (! TREE_READONLY (array)
8746 || TREE_SIDE_EFFECTS (array)
8747 || ! targetm.binds_local_p (array))
8748 return 0;
8750 /* Avoid const char foo[4] = "abcde"; */
8751 if (DECL_SIZE_UNIT (array) == NULL_TREE
8752 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8753 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8754 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8755 return 0;
8757 /* If variable is bigger than the string literal, OFFSET must be constant
8758 and inside of the bounds of the string literal. */
8759 offset = convert (sizetype, offset);
8760 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8761 && (! host_integerp (offset, 1)
8762 || compare_tree_int (offset, length) >= 0))
8763 return 0;
8765 *ptr_offset = offset;
8766 return DECL_INITIAL (array);
8769 return 0;
8772 /* Generate code to calculate EXP using a store-flag instruction
8773 and return an rtx for the result. EXP is either a comparison
8774 or a TRUTH_NOT_EXPR whose operand is a comparison.
8776 If TARGET is nonzero, store the result there if convenient.
8778 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8779 cheap.
8781 Return zero if there is no suitable set-flag instruction
8782 available on this machine.
8784 Once expand_expr has been called on the arguments of the comparison,
8785 we are committed to doing the store flag, since it is not safe to
8786 re-evaluate the expression. We emit the store-flag insn by calling
8787 emit_store_flag, but only expand the arguments if we have a reason
8788 to believe that emit_store_flag will be successful. If we think that
8789 it will, but it isn't, we have to simulate the store-flag with a
8790 set/jump/set sequence. */
8792 static rtx
8793 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8795 enum rtx_code code;
8796 tree arg0, arg1, type;
8797 tree tem;
8798 enum machine_mode operand_mode;
8799 int invert = 0;
8800 int unsignedp;
8801 rtx op0, op1;
8802 enum insn_code icode;
8803 rtx subtarget = target;
8804 rtx result, label;
8806 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8807 result at the end. We can't simply invert the test since it would
8808 have already been inverted if it were valid. This case occurs for
8809 some floating-point comparisons. */
8811 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8812 invert = 1, exp = TREE_OPERAND (exp, 0);
8814 arg0 = TREE_OPERAND (exp, 0);
8815 arg1 = TREE_OPERAND (exp, 1);
8817 /* Don't crash if the comparison was erroneous. */
8818 if (arg0 == error_mark_node || arg1 == error_mark_node)
8819 return const0_rtx;
8821 type = TREE_TYPE (arg0);
8822 operand_mode = TYPE_MODE (type);
8823 unsignedp = TYPE_UNSIGNED (type);
8825 /* We won't bother with BLKmode store-flag operations because it would mean
8826 passing a lot of information to emit_store_flag. */
8827 if (operand_mode == BLKmode)
8828 return 0;
8830 /* We won't bother with store-flag operations involving function pointers
8831 when function pointers must be canonicalized before comparisons. */
8832 #ifdef HAVE_canonicalize_funcptr_for_compare
8833 if (HAVE_canonicalize_funcptr_for_compare
8834 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8835 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8836 == FUNCTION_TYPE))
8837 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8838 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8839 == FUNCTION_TYPE))))
8840 return 0;
8841 #endif
8843 STRIP_NOPS (arg0);
8844 STRIP_NOPS (arg1);
8846 /* Get the rtx comparison code to use. We know that EXP is a comparison
8847 operation of some type. Some comparisons against 1 and -1 can be
8848 converted to comparisons with zero. Do so here so that the tests
8849 below will be aware that we have a comparison with zero. These
8850 tests will not catch constants in the first operand, but constants
8851 are rarely passed as the first operand. */
8853 switch (TREE_CODE (exp))
8855 case EQ_EXPR:
8856 code = EQ;
8857 break;
8858 case NE_EXPR:
8859 code = NE;
8860 break;
8861 case LT_EXPR:
8862 if (integer_onep (arg1))
8863 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8864 else
8865 code = unsignedp ? LTU : LT;
8866 break;
8867 case LE_EXPR:
8868 if (! unsignedp && integer_all_onesp (arg1))
8869 arg1 = integer_zero_node, code = LT;
8870 else
8871 code = unsignedp ? LEU : LE;
8872 break;
8873 case GT_EXPR:
8874 if (! unsignedp && integer_all_onesp (arg1))
8875 arg1 = integer_zero_node, code = GE;
8876 else
8877 code = unsignedp ? GTU : GT;
8878 break;
8879 case GE_EXPR:
8880 if (integer_onep (arg1))
8881 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8882 else
8883 code = unsignedp ? GEU : GE;
8884 break;
8886 case UNORDERED_EXPR:
8887 code = UNORDERED;
8888 break;
8889 case ORDERED_EXPR:
8890 code = ORDERED;
8891 break;
8892 case UNLT_EXPR:
8893 code = UNLT;
8894 break;
8895 case UNLE_EXPR:
8896 code = UNLE;
8897 break;
8898 case UNGT_EXPR:
8899 code = UNGT;
8900 break;
8901 case UNGE_EXPR:
8902 code = UNGE;
8903 break;
8904 case UNEQ_EXPR:
8905 code = UNEQ;
8906 break;
8907 case LTGT_EXPR:
8908 code = LTGT;
8909 break;
8911 default:
8912 gcc_unreachable ();
8915 /* Put a constant second. */
8916 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8918 tem = arg0; arg0 = arg1; arg1 = tem;
8919 code = swap_condition (code);
8922 /* If this is an equality or inequality test of a single bit, we can
8923 do this by shifting the bit being tested to the low-order bit and
8924 masking the result with the constant 1. If the condition was EQ,
8925 we xor it with 1. This does not require an scc insn and is faster
8926 than an scc insn even if we have it.
8928 The code to make this transformation was moved into fold_single_bit_test,
8929 so we just call into the folder and expand its result. */
8931 if ((code == NE || code == EQ)
8932 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8933 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8935 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8936 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8937 arg0, arg1, type),
8938 target, VOIDmode, EXPAND_NORMAL);
8941 /* Now see if we are likely to be able to do this. Return if not. */
8942 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8943 return 0;
8945 icode = setcc_gen_code[(int) code];
8946 if (icode == CODE_FOR_nothing
8947 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8949 /* We can only do this if it is one of the special cases that
8950 can be handled without an scc insn. */
8951 if ((code == LT && integer_zerop (arg1))
8952 || (! only_cheap && code == GE && integer_zerop (arg1)))
8954 else if (! only_cheap && (code == NE || code == EQ)
8955 && TREE_CODE (type) != REAL_TYPE
8956 && ((abs_optab->handlers[(int) operand_mode].insn_code
8957 != CODE_FOR_nothing)
8958 || (ffs_optab->handlers[(int) operand_mode].insn_code
8959 != CODE_FOR_nothing)))
8961 else
8962 return 0;
8965 if (! get_subtarget (target)
8966 || GET_MODE (subtarget) != operand_mode)
8967 subtarget = 0;
8969 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
8971 if (target == 0)
8972 target = gen_reg_rtx (mode);
8974 result = emit_store_flag (target, code, op0, op1,
8975 operand_mode, unsignedp, 1);
8977 if (result)
8979 if (invert)
8980 result = expand_binop (mode, xor_optab, result, const1_rtx,
8981 result, 0, OPTAB_LIB_WIDEN);
8982 return result;
8985 /* If this failed, we have to do this with set/compare/jump/set code. */
8986 if (!REG_P (target)
8987 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
8988 target = gen_reg_rtx (GET_MODE (target));
8990 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
8991 result = compare_from_rtx (op0, op1, code, unsignedp,
8992 operand_mode, NULL_RTX);
8993 if (GET_CODE (result) == CONST_INT)
8994 return (((result == const0_rtx && ! invert)
8995 || (result != const0_rtx && invert))
8996 ? const0_rtx : const1_rtx);
8998 /* The code of RESULT may not match CODE if compare_from_rtx
8999 decided to swap its operands and reverse the original code.
9001 We know that compare_from_rtx returns either a CONST_INT or
9002 a new comparison code, so it is safe to just extract the
9003 code from RESULT. */
9004 code = GET_CODE (result);
9006 label = gen_label_rtx ();
9007 gcc_assert (bcc_gen_fctn[(int) code]);
9009 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9010 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9011 emit_label (label);
9013 return target;
9017 /* Stubs in case we haven't got a casesi insn. */
9018 #ifndef HAVE_casesi
9019 # define HAVE_casesi 0
9020 # define gen_casesi(a, b, c, d, e) (0)
9021 # define CODE_FOR_casesi CODE_FOR_nothing
9022 #endif
9024 /* If the machine does not have a case insn that compares the bounds,
9025 this means extra overhead for dispatch tables, which raises the
9026 threshold for using them. */
9027 #ifndef CASE_VALUES_THRESHOLD
9028 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9029 #endif /* CASE_VALUES_THRESHOLD */
9031 unsigned int
9032 case_values_threshold (void)
9034 return CASE_VALUES_THRESHOLD;
9037 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9038 0 otherwise (i.e. if there is no casesi instruction). */
9040 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9041 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9043 enum machine_mode index_mode = SImode;
9044 int index_bits = GET_MODE_BITSIZE (index_mode);
9045 rtx op1, op2, index;
9046 enum machine_mode op_mode;
9048 if (! HAVE_casesi)
9049 return 0;
9051 /* Convert the index to SImode. */
9052 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9054 enum machine_mode omode = TYPE_MODE (index_type);
9055 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
9057 /* We must handle the endpoints in the original mode. */
9058 index_expr = build2 (MINUS_EXPR, index_type,
9059 index_expr, minval);
9060 minval = integer_zero_node;
9061 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
9062 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9063 omode, 1, default_label);
9064 /* Now we can safely truncate. */
9065 index = convert_to_mode (index_mode, index, 0);
9067 else
9069 if (TYPE_MODE (index_type) != index_mode)
9071 index_expr = convert (lang_hooks.types.type_for_size
9072 (index_bits, 0), index_expr);
9073 index_type = TREE_TYPE (index_expr);
9076 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
9079 do_pending_stack_adjust ();
9081 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9082 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9083 (index, op_mode))
9084 index = copy_to_mode_reg (op_mode, index);
9086 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
9088 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9089 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9090 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9091 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9092 (op1, op_mode))
9093 op1 = copy_to_mode_reg (op_mode, op1);
9095 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
9097 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9098 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9099 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9100 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9101 (op2, op_mode))
9102 op2 = copy_to_mode_reg (op_mode, op2);
9104 emit_jump_insn (gen_casesi (index, op1, op2,
9105 table_label, default_label));
9106 return 1;
9109 /* Attempt to generate a tablejump instruction; same concept. */
9110 #ifndef HAVE_tablejump
9111 #define HAVE_tablejump 0
9112 #define gen_tablejump(x, y) (0)
9113 #endif
9115 /* Subroutine of the next function.
9117 INDEX is the value being switched on, with the lowest value
9118 in the table already subtracted.
9119 MODE is its expected mode (needed if INDEX is constant).
9120 RANGE is the length of the jump table.
9121 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9123 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9124 index value is out of range. */
9126 static void
9127 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9128 rtx default_label)
9130 rtx temp, vector;
9132 if (INTVAL (range) > cfun->max_jumptable_ents)
9133 cfun->max_jumptable_ents = INTVAL (range);
9135 /* Do an unsigned comparison (in the proper mode) between the index
9136 expression and the value which represents the length of the range.
9137 Since we just finished subtracting the lower bound of the range
9138 from the index expression, this comparison allows us to simultaneously
9139 check that the original index expression value is both greater than
9140 or equal to the minimum value of the range and less than or equal to
9141 the maximum value of the range. */
9143 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9144 default_label);
9146 /* If index is in range, it must fit in Pmode.
9147 Convert to Pmode so we can index with it. */
9148 if (mode != Pmode)
9149 index = convert_to_mode (Pmode, index, 1);
9151 /* Don't let a MEM slip through, because then INDEX that comes
9152 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9153 and break_out_memory_refs will go to work on it and mess it up. */
9154 #ifdef PIC_CASE_VECTOR_ADDRESS
9155 if (flag_pic && !REG_P (index))
9156 index = copy_to_mode_reg (Pmode, index);
9157 #endif
9159 /* If flag_force_addr were to affect this address
9160 it could interfere with the tricky assumptions made
9161 about addresses that contain label-refs,
9162 which may be valid only very near the tablejump itself. */
9163 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9164 GET_MODE_SIZE, because this indicates how large insns are. The other
9165 uses should all be Pmode, because they are addresses. This code
9166 could fail if addresses and insns are not the same size. */
9167 index = gen_rtx_PLUS (Pmode,
9168 gen_rtx_MULT (Pmode, index,
9169 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9170 gen_rtx_LABEL_REF (Pmode, table_label));
9171 #ifdef PIC_CASE_VECTOR_ADDRESS
9172 if (flag_pic)
9173 index = PIC_CASE_VECTOR_ADDRESS (index);
9174 else
9175 #endif
9176 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9177 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9178 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9179 convert_move (temp, vector, 0);
9181 emit_jump_insn (gen_tablejump (temp, table_label));
9183 /* If we are generating PIC code or if the table is PC-relative, the
9184 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9185 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9186 emit_barrier ();
9190 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9191 rtx table_label, rtx default_label)
9193 rtx index;
9195 if (! HAVE_tablejump)
9196 return 0;
9198 index_expr = fold_build2 (MINUS_EXPR, index_type,
9199 convert (index_type, index_expr),
9200 convert (index_type, minval));
9201 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
9202 do_pending_stack_adjust ();
9204 do_tablejump (index, TYPE_MODE (index_type),
9205 convert_modes (TYPE_MODE (index_type),
9206 TYPE_MODE (TREE_TYPE (range)),
9207 expand_expr (range, NULL_RTX,
9208 VOIDmode, 0),
9209 TYPE_UNSIGNED (TREE_TYPE (range))),
9210 table_label, default_label);
9211 return 1;
9214 /* Nonzero if the mode is a valid vector mode for this architecture.
9215 This returns nonzero even if there is no hardware support for the
9216 vector mode, but we can emulate with narrower modes. */
9219 vector_mode_valid_p (enum machine_mode mode)
9221 enum mode_class class = GET_MODE_CLASS (mode);
9222 enum machine_mode innermode;
9224 /* Doh! What's going on? */
9225 if (class != MODE_VECTOR_INT
9226 && class != MODE_VECTOR_FLOAT)
9227 return 0;
9229 /* Hardware support. Woo hoo! */
9230 if (targetm.vector_mode_supported_p (mode))
9231 return 1;
9233 innermode = GET_MODE_INNER (mode);
9235 /* We should probably return 1 if requesting V4DI and we have no DI,
9236 but we have V2DI, but this is probably very unlikely. */
9238 /* If we have support for the inner mode, we can safely emulate it.
9239 We may not have V2DI, but me can emulate with a pair of DIs. */
9240 return targetm.scalar_mode_supported_p (innermode);
9243 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9244 static rtx
9245 const_vector_from_tree (tree exp)
9247 rtvec v;
9248 int units, i;
9249 tree link, elt;
9250 enum machine_mode inner, mode;
9252 mode = TYPE_MODE (TREE_TYPE (exp));
9254 if (initializer_zerop (exp))
9255 return CONST0_RTX (mode);
9257 units = GET_MODE_NUNITS (mode);
9258 inner = GET_MODE_INNER (mode);
9260 v = rtvec_alloc (units);
9262 link = TREE_VECTOR_CST_ELTS (exp);
9263 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9265 elt = TREE_VALUE (link);
9267 if (TREE_CODE (elt) == REAL_CST)
9268 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9269 inner);
9270 else
9271 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9272 TREE_INT_CST_HIGH (elt),
9273 inner);
9276 /* Initialize remaining elements to 0. */
9277 for (; i < units; ++i)
9278 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9280 return gen_rtx_CONST_VECTOR (mode, v);
9282 #include "gt-expr.h"