gcc/:
[official-gcc.git] / gcc / emit-rtl.c
blob871ca386b02368a3938217e25a4239da3dc8b989
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "toplev.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "tm_p.h"
45 #include "flags.h"
46 #include "function.h"
47 #include "expr.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "hashtab.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "real.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num = 1;
74 /* Nonzero means do not generate NOTEs for source line numbers. */
76 static int no_line_numbers;
78 /* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
81 of these. */
83 rtx global_rtl[GR_MAX];
85 /* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
95 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97 rtx const_true_rtx;
99 REAL_VALUE_TYPE dconst0;
100 REAL_VALUE_TYPE dconst1;
101 REAL_VALUE_TYPE dconst2;
102 REAL_VALUE_TYPE dconst3;
103 REAL_VALUE_TYPE dconst10;
104 REAL_VALUE_TYPE dconstm1;
105 REAL_VALUE_TYPE dconstm2;
106 REAL_VALUE_TYPE dconsthalf;
107 REAL_VALUE_TYPE dconstthird;
108 REAL_VALUE_TYPE dconstpi;
109 REAL_VALUE_TYPE dconste;
111 /* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
125 same.
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133 /* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137 /* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
140 integers. */
142 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
144 /* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
148 htab_t const_int_htab;
150 /* A hash table storing memory attribute structures. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
152 htab_t mem_attrs_htab;
154 /* A hash table storing register attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
156 htab_t reg_attrs_htab;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
160 htab_t const_double_htab;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
168 static rtx make_call_insn_raw (rtx);
169 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
170 static void unshare_all_decls (tree);
171 static void reset_used_decls (tree);
172 static void mark_label_nuses (rtx);
173 static hashval_t const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx lookup_const_double (rtx);
178 static hashval_t mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
181 enum machine_mode);
182 static hashval_t reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs *get_reg_attrs (tree, int);
185 static tree component_ref_for_mem_expr (tree);
186 static rtx gen_const_vector (enum machine_mode, int);
187 static void copy_rtx_if_shared_1 (rtx *orig);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability = -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
195 static hashval_t
196 const_int_htab_hash (const void *x)
198 return (hashval_t) INTVAL ((rtx) x);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
203 HOST_WIDE_INT *). */
205 static int
206 const_int_htab_eq (const void *x, const void *y)
208 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
212 static hashval_t
213 const_double_htab_hash (const void *x)
215 rtx value = (rtx) x;
216 hashval_t h;
218 if (GET_MODE (value) == VOIDmode)
219 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
220 else
222 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h ^= GET_MODE (value);
226 return h;
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
231 static int
232 const_double_htab_eq (const void *x, const void *y)
234 rtx a = (rtx)x, b = (rtx)y;
236 if (GET_MODE (a) != GET_MODE (b))
237 return 0;
238 if (GET_MODE (a) == VOIDmode)
239 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
240 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
241 else
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
243 CONST_DOUBLE_REAL_VALUE (b));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
248 static hashval_t
249 mem_attrs_htab_hash (const void *x)
251 mem_attrs *p = (mem_attrs *) x;
253 return (p->alias ^ (p->align * 1000)
254 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
255 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p->expr, 0));
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
261 mem_attrs *). */
263 static int
264 mem_attrs_htab_eq (const void *x, const void *y)
266 mem_attrs *p = (mem_attrs *) x;
267 mem_attrs *q = (mem_attrs *) y;
269 return (p->alias == q->alias && p->offset == q->offset
270 && p->size == q->size && p->align == q->align
271 && (p->expr == q->expr
272 || (p->expr != NULL_TREE && q->expr != NULL_TREE
273 && operand_equal_p (p->expr, q->expr, 0))));
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
278 MEM of mode MODE. */
280 static mem_attrs *
281 get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
282 unsigned int align, enum machine_mode mode)
284 mem_attrs attrs;
285 void **slot;
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias == 0 && expr == 0 && offset == 0
291 && (size == 0
292 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
293 && (STRICT_ALIGNMENT && mode != BLKmode
294 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
295 return 0;
297 attrs.alias = alias;
298 attrs.expr = expr;
299 attrs.offset = offset;
300 attrs.size = size;
301 attrs.align = align;
303 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
304 if (*slot == 0)
306 *slot = ggc_alloc (sizeof (mem_attrs));
307 memcpy (*slot, &attrs, sizeof (mem_attrs));
310 return *slot;
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
315 static hashval_t
316 reg_attrs_htab_hash (const void *x)
318 reg_attrs *p = (reg_attrs *) x;
320 return ((p->offset * 1000) ^ (long) p->decl);
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
325 reg_attrs *). */
327 static int
328 reg_attrs_htab_eq (const void *x, const void *y)
330 reg_attrs *p = (reg_attrs *) x;
331 reg_attrs *q = (reg_attrs *) y;
333 return (p->decl == q->decl && p->offset == q->offset);
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
337 MEM of mode MODE. */
339 static reg_attrs *
340 get_reg_attrs (tree decl, int offset)
342 reg_attrs attrs;
343 void **slot;
345 /* If everything is the default, we can just return zero. */
346 if (decl == 0 && offset == 0)
347 return 0;
349 attrs.decl = decl;
350 attrs.offset = offset;
352 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
353 if (*slot == 0)
355 *slot = ggc_alloc (sizeof (reg_attrs));
356 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 return *slot;
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
367 gen_raw_REG (enum machine_mode mode, int regno)
369 rtx x = gen_rtx_raw_REG (mode, regno);
370 ORIGINAL_REGNO (x) = regno;
371 return x;
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
381 void **slot;
383 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
384 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx && arg == STORE_FLAG_VALUE)
388 return const_true_rtx;
389 #endif
391 /* Look up the CONST_INT in the hash table. */
392 slot = htab_find_slot_with_hash (const_int_htab, &arg,
393 (hashval_t) arg, INSERT);
394 if (*slot == 0)
395 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
397 return (rtx) *slot;
401 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
403 return GEN_INT (trunc_int_for_mode (c, mode));
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
413 static rtx
414 lookup_const_double (rtx real)
416 void **slot = htab_find_slot (const_double_htab, real, INSERT);
417 if (*slot == 0)
418 *slot = real;
420 return (rtx) *slot;
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
426 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
428 rtx real = rtx_alloc (CONST_DOUBLE);
429 PUT_MODE (real, mode);
431 real->u.rv = value;
433 return lookup_const_double (real);
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
442 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
444 rtx value;
445 unsigned int i;
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
451 gen_int_mode.
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode != VOIDmode)
459 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
460 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
465 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
466 return gen_int_mode (i0, mode);
468 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
473 return GEN_INT (i0);
475 /* We use VOIDmode for integers. */
476 value = rtx_alloc (CONST_DOUBLE);
477 PUT_MODE (value, VOIDmode);
479 CONST_DOUBLE_LOW (value) = i0;
480 CONST_DOUBLE_HIGH (value) = i1;
482 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
483 XWINT (value, i) = 0;
485 return lookup_const_double (value);
489 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
495 assigned to them.
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
505 if (mode == Pmode && !reload_in_progress)
507 if (regno == FRAME_POINTER_REGNUM
508 && (!reload_completed || frame_pointer_needed))
509 return frame_pointer_rtx;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno == HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed || frame_pointer_needed))
513 return hard_frame_pointer_rtx;
514 #endif
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno == ARG_POINTER_REGNUM)
517 return arg_pointer_rtx;
518 #endif
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
521 return return_address_pointer_rtx;
522 #endif
523 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
525 return pic_offset_table_rtx;
526 if (regno == STACK_POINTER_REGNUM)
527 return stack_pointer_rtx;
530 #if 0
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
542 if (cfun
543 && cfun->emit
544 && regno_reg_rtx
545 && regno < FIRST_PSEUDO_REGISTER
546 && reg_raw_mode[regno] == mode)
547 return regno_reg_rtx[regno];
548 #endif
550 return gen_raw_REG (mode, regno);
554 gen_rtx_MEM (enum machine_mode mode, rtx addr)
556 rtx rt = gen_rtx_raw_MEM (mode, addr);
558 /* This field is not cleared by the mere allocation of the rtx, so
559 we clear it here. */
560 MEM_ATTRS (rt) = 0;
562 return rt;
565 /* Generate a memory referring to non-trapping constant memory. */
568 gen_const_mem (enum machine_mode mode, rtx addr)
570 rtx mem = gen_rtx_MEM (mode, addr);
571 MEM_READONLY_P (mem) = 1;
572 MEM_NOTRAP_P (mem) = 1;
573 return mem;
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
577 save areas. */
580 gen_frame_mem (enum machine_mode mode, rtx addr)
582 rtx mem = gen_rtx_MEM (mode, addr);
583 MEM_NOTRAP_P (mem) = 1;
584 set_mem_alias_set (mem, get_frame_alias_set ());
585 return mem;
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
592 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
594 rtx mem = gen_rtx_MEM (mode, addr);
595 MEM_NOTRAP_P (mem) = 1;
596 if (!current_function_calls_alloca)
597 set_mem_alias_set (mem, get_frame_alias_set ());
598 return mem;
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
604 bool
605 validate_subreg (enum machine_mode omode, enum machine_mode imode,
606 rtx reg, unsigned int offset)
608 unsigned int isize = GET_MODE_SIZE (imode);
609 unsigned int osize = GET_MODE_SIZE (omode);
611 /* All subregs must be aligned. */
612 if (offset % osize != 0)
613 return false;
615 /* The subreg offset cannot be outside the inner object. */
616 if (offset >= isize)
617 return false;
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
622 fix them all. */
623 if (omode == word_mode)
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize >= UNITS_PER_WORD && isize >= osize)
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
632 && GET_MODE_INNER (imode) == omode)
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
646 if (isize != osize)
647 return false;
650 /* Paradoxical subregs must have offset zero. */
651 if (osize > isize)
652 return offset == 0;
654 /* This is a normal subreg. Verify that the offset is representable. */
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
660 unsigned int regno = REGNO (reg);
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
664 && GET_MODE_INNER (imode) == omode)
666 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
667 return false;
668 #endif
670 return subreg_offset_representable_p (regno, imode, offset, omode);
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize < UNITS_PER_WORD)
681 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
682 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
683 if (offset % UNITS_PER_WORD != low_off)
684 return false;
686 return true;
690 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
692 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
693 return gen_rtx_raw_SUBREG (mode, reg, offset);
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
700 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
702 enum machine_mode inmode;
704 inmode = GET_MODE (reg);
705 if (inmode == VOIDmode)
706 inmode = mode;
707 return gen_rtx_SUBREG (mode, reg,
708 subreg_lowpart_offset (mode, inmode));
711 /* gen_rtvec (n, [rt1, ..., rtn])
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
717 /*VARARGS1*/
718 rtvec
719 gen_rtvec (int n, ...)
721 int i, save_n;
722 rtx *vector;
723 va_list p;
725 va_start (p, n);
727 if (n == 0)
728 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
730 vector = alloca (n * sizeof (rtx));
732 for (i = 0; i < n; i++)
733 vector[i] = va_arg (p, rtx);
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
736 save_n = n;
737 va_end (p);
739 return gen_rtvec_v (save_n, vector);
742 rtvec
743 gen_rtvec_v (int n, rtx *argp)
745 int i;
746 rtvec rt_val;
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
751 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
753 for (i = 0; i < n; i++)
754 rt_val->elem[i] = *argp++;
756 return rt_val;
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
763 gen_reg_rtx (enum machine_mode mode)
765 struct function *f = cfun;
766 rtx val;
768 /* Don't let anything called after initial flow analysis create new
769 registers. */
770 gcc_assert (!no_new_pseudos);
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart, imagpart;
782 enum machine_mode partmode = GET_MODE_INNER (mode);
784 realpart = gen_reg_rtx (partmode);
785 imagpart = gen_reg_rtx (partmode);
786 return gen_rtx_CONCAT (mode, realpart, imagpart);
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
792 if (reg_rtx_no == f->emit->regno_pointer_align_length)
794 int old_size = f->emit->regno_pointer_align_length;
795 char *new;
796 rtx *new1;
798 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
799 memset (new + old_size, 0, old_size);
800 f->emit->regno_pointer_align = (unsigned char *) new;
802 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
803 old_size * 2 * sizeof (rtx));
804 memset (new1 + old_size, 0, old_size * sizeof (rtx));
805 regno_reg_rtx = new1;
807 f->emit->regno_pointer_align_length = old_size * 2;
810 val = gen_raw_REG (mode, reg_rtx_no);
811 regno_reg_rtx[reg_rtx_no++] = val;
812 return val;
815 /* Update NEW with the same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
818 static void
819 update_reg_offset (rtx new, rtx reg, int offset)
821 tree decl;
822 HOST_WIDE_INT var_size;
824 /* PR middle-end/14084
825 The problem appears when a variable is stored in a larger register
826 and later it is used in the original mode or some mode in between
827 or some part of variable is accessed.
829 On little endian machines there is no problem because
830 the REG_OFFSET of the start of the variable is the same when
831 accessed in any mode (it is 0).
833 However, this is not true on big endian machines.
834 The offset of the start of the variable is different when accessed
835 in different modes.
836 When we are taking a part of the REG we have to change the OFFSET
837 from offset WRT size of mode of REG to offset WRT size of variable.
839 If we would not do the big endian correction the resulting REG_OFFSET
840 would be larger than the size of the DECL.
842 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
844 REG.mode MODE DECL size old offset new offset description
845 DI SI 4 4 0 int32 in SImode
846 DI SI 1 4 0 char in SImode
847 DI QI 1 7 0 char in QImode
848 DI QI 4 5 1 1st element in QImode
849 of char[4]
850 DI HI 4 6 2 1st element in HImode
851 of int16[2]
853 If the size of DECL is equal or greater than the size of REG
854 we can't do this correction because the register holds the
855 whole variable or a part of the variable and thus the REG_OFFSET
856 is already correct. */
858 decl = REG_EXPR (reg);
859 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
860 && decl != NULL
861 && offset > 0
862 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
863 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
864 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
866 int offset_le;
868 /* Convert machine endian to little endian WRT size of mode of REG. */
869 if (WORDS_BIG_ENDIAN)
870 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
871 / UNITS_PER_WORD) * UNITS_PER_WORD;
872 else
873 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
875 if (BYTES_BIG_ENDIAN)
876 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
877 % UNITS_PER_WORD);
878 else
879 offset_le += offset % UNITS_PER_WORD;
881 if (offset_le >= var_size)
883 /* MODE is wider than the variable so the new reg will cover
884 the whole variable so the resulting OFFSET should be 0. */
885 offset = 0;
887 else
889 /* Convert little endian to machine endian WRT size of variable. */
890 if (WORDS_BIG_ENDIAN)
891 offset = ((var_size - 1 - offset_le)
892 / UNITS_PER_WORD) * UNITS_PER_WORD;
893 else
894 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
896 if (BYTES_BIG_ENDIAN)
897 offset += ((var_size - 1 - offset_le)
898 % UNITS_PER_WORD);
899 else
900 offset += offset_le % UNITS_PER_WORD;
904 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
905 REG_OFFSET (reg) + offset);
908 /* Generate a register with same attributes as REG, but offsetted by
909 OFFSET. */
912 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
913 int offset)
915 rtx new = gen_rtx_REG (mode, regno);
917 update_reg_offset (new, reg, offset);
918 return new;
921 /* Generate a new pseudo-register with the same attributes as REG, but
922 offsetted by OFFSET. */
925 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
927 rtx new = gen_reg_rtx (mode);
929 update_reg_offset (new, reg, offset);
930 return new;
933 /* Set the decl for MEM to DECL. */
935 void
936 set_reg_attrs_from_mem (rtx reg, rtx mem)
938 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
939 REG_ATTRS (reg)
940 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
943 /* Set the register attributes for registers contained in PARM_RTX.
944 Use needed values from memory attributes of MEM. */
946 void
947 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
949 if (REG_P (parm_rtx))
950 set_reg_attrs_from_mem (parm_rtx, mem);
951 else if (GET_CODE (parm_rtx) == PARALLEL)
953 /* Check for a NULL entry in the first slot, used to indicate that the
954 parameter goes both on the stack and in registers. */
955 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
956 for (; i < XVECLEN (parm_rtx, 0); i++)
958 rtx x = XVECEXP (parm_rtx, 0, i);
959 if (REG_P (XEXP (x, 0)))
960 REG_ATTRS (XEXP (x, 0))
961 = get_reg_attrs (MEM_EXPR (mem),
962 INTVAL (XEXP (x, 1)));
967 /* Assign the RTX X to declaration T. */
968 void
969 set_decl_rtl (tree t, rtx x)
971 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
973 if (!x)
974 return;
975 /* For register, we maintain the reverse information too. */
976 if (REG_P (x))
977 REG_ATTRS (x) = get_reg_attrs (t, 0);
978 else if (GET_CODE (x) == SUBREG)
979 REG_ATTRS (SUBREG_REG (x))
980 = get_reg_attrs (t, -SUBREG_BYTE (x));
981 if (GET_CODE (x) == CONCAT)
983 if (REG_P (XEXP (x, 0)))
984 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
985 if (REG_P (XEXP (x, 1)))
986 REG_ATTRS (XEXP (x, 1))
987 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
989 if (GET_CODE (x) == PARALLEL)
991 int i;
992 for (i = 0; i < XVECLEN (x, 0); i++)
994 rtx y = XVECEXP (x, 0, i);
995 if (REG_P (XEXP (y, 0)))
996 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1001 /* Assign the RTX X to parameter declaration T. */
1002 void
1003 set_decl_incoming_rtl (tree t, rtx x)
1005 DECL_INCOMING_RTL (t) = x;
1007 if (!x)
1008 return;
1009 /* For register, we maintain the reverse information too. */
1010 if (REG_P (x))
1011 REG_ATTRS (x) = get_reg_attrs (t, 0);
1012 else if (GET_CODE (x) == SUBREG)
1013 REG_ATTRS (SUBREG_REG (x))
1014 = get_reg_attrs (t, -SUBREG_BYTE (x));
1015 if (GET_CODE (x) == CONCAT)
1017 if (REG_P (XEXP (x, 0)))
1018 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1019 if (REG_P (XEXP (x, 1)))
1020 REG_ATTRS (XEXP (x, 1))
1021 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1023 if (GET_CODE (x) == PARALLEL)
1025 int i, start;
1027 /* Check for a NULL entry, used to indicate that the parameter goes
1028 both on the stack and in registers. */
1029 if (XEXP (XVECEXP (x, 0, 0), 0))
1030 start = 0;
1031 else
1032 start = 1;
1034 for (i = start; i < XVECLEN (x, 0); i++)
1036 rtx y = XVECEXP (x, 0, i);
1037 if (REG_P (XEXP (y, 0)))
1038 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1043 /* Identify REG (which may be a CONCAT) as a user register. */
1045 void
1046 mark_user_reg (rtx reg)
1048 if (GET_CODE (reg) == CONCAT)
1050 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1051 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1053 else
1055 gcc_assert (REG_P (reg));
1056 REG_USERVAR_P (reg) = 1;
1060 /* Identify REG as a probable pointer register and show its alignment
1061 as ALIGN, if nonzero. */
1063 void
1064 mark_reg_pointer (rtx reg, int align)
1066 if (! REG_POINTER (reg))
1068 REG_POINTER (reg) = 1;
1070 if (align)
1071 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1073 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1074 /* We can no-longer be sure just how aligned this pointer is. */
1075 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1078 /* Return 1 plus largest pseudo reg number used in the current function. */
1081 max_reg_num (void)
1083 return reg_rtx_no;
1086 /* Return 1 + the largest label number used so far in the current function. */
1089 max_label_num (void)
1091 return label_num;
1094 /* Return first label number used in this function (if any were used). */
1097 get_first_label_num (void)
1099 return first_label_num;
1102 /* If the rtx for label was created during the expansion of a nested
1103 function, then first_label_num won't include this label number.
1104 Fix this now so that array indicies work later. */
1106 void
1107 maybe_set_first_label_num (rtx x)
1109 if (CODE_LABEL_NUMBER (x) < first_label_num)
1110 first_label_num = CODE_LABEL_NUMBER (x);
1113 /* Return a value representing some low-order bits of X, where the number
1114 of low-order bits is given by MODE. Note that no conversion is done
1115 between floating-point and fixed-point values, rather, the bit
1116 representation is returned.
1118 This function handles the cases in common between gen_lowpart, below,
1119 and two variants in cse.c and combine.c. These are the cases that can
1120 be safely handled at all points in the compilation.
1122 If this is not a case we can handle, return 0. */
1125 gen_lowpart_common (enum machine_mode mode, rtx x)
1127 int msize = GET_MODE_SIZE (mode);
1128 int xsize;
1129 int offset = 0;
1130 enum machine_mode innermode;
1132 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1133 so we have to make one up. Yuk. */
1134 innermode = GET_MODE (x);
1135 if (GET_CODE (x) == CONST_INT
1136 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1137 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1138 else if (innermode == VOIDmode)
1139 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1141 xsize = GET_MODE_SIZE (innermode);
1143 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1145 if (innermode == mode)
1146 return x;
1148 /* MODE must occupy no more words than the mode of X. */
1149 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1150 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1151 return 0;
1153 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1154 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1155 return 0;
1157 offset = subreg_lowpart_offset (mode, innermode);
1159 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1160 && (GET_MODE_CLASS (mode) == MODE_INT
1161 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1163 /* If we are getting the low-order part of something that has been
1164 sign- or zero-extended, we can either just use the object being
1165 extended or make a narrower extension. If we want an even smaller
1166 piece than the size of the object being extended, call ourselves
1167 recursively.
1169 This case is used mostly by combine and cse. */
1171 if (GET_MODE (XEXP (x, 0)) == mode)
1172 return XEXP (x, 0);
1173 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1174 return gen_lowpart_common (mode, XEXP (x, 0));
1175 else if (msize < xsize)
1176 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1178 else if (GET_CODE (x) == SUBREG || REG_P (x)
1179 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1180 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1181 return simplify_gen_subreg (mode, x, innermode, offset);
1183 /* Otherwise, we can't do this. */
1184 return 0;
1188 gen_highpart (enum machine_mode mode, rtx x)
1190 unsigned int msize = GET_MODE_SIZE (mode);
1191 rtx result;
1193 /* This case loses if X is a subreg. To catch bugs early,
1194 complain if an invalid MODE is used even in other cases. */
1195 gcc_assert (msize <= UNITS_PER_WORD
1196 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1198 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1199 subreg_highpart_offset (mode, GET_MODE (x)));
1200 gcc_assert (result);
1202 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1203 the target if we have a MEM. gen_highpart must return a valid operand,
1204 emitting code if necessary to do so. */
1205 if (MEM_P (result))
1207 result = validize_mem (result);
1208 gcc_assert (result);
1211 return result;
1214 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1215 be VOIDmode constant. */
1217 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1219 if (GET_MODE (exp) != VOIDmode)
1221 gcc_assert (GET_MODE (exp) == innermode);
1222 return gen_highpart (outermode, exp);
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1228 /* Return offset in bytes to get OUTERMODE low part
1229 of the value in mode INNERMODE stored in memory in target format. */
1231 unsigned int
1232 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1237 if (difference > 0)
1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
1245 return offset;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250 unsigned int
1251 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1253 unsigned int offset = 0;
1254 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1256 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1258 if (difference > 0)
1260 if (! WORDS_BIG_ENDIAN)
1261 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1262 if (! BYTES_BIG_ENDIAN)
1263 offset += difference % UNITS_PER_WORD;
1266 return offset;
1269 /* Return 1 iff X, assumed to be a SUBREG,
1270 refers to the least significant part of its containing reg.
1271 If X is not a SUBREG, always return 1 (it is its own low part!). */
1274 subreg_lowpart_p (rtx x)
1276 if (GET_CODE (x) != SUBREG)
1277 return 1;
1278 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1279 return 0;
1281 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1282 == SUBREG_BYTE (x));
1285 /* Return subword OFFSET of operand OP.
1286 The word number, OFFSET, is interpreted as the word number starting
1287 at the low-order address. OFFSET 0 is the low-order word if not
1288 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1290 If we cannot extract the required word, we return zero. Otherwise,
1291 an rtx corresponding to the requested word will be returned.
1293 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1294 reload has completed, a valid address will always be returned. After
1295 reload, if a valid address cannot be returned, we return zero.
1297 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1298 it is the responsibility of the caller.
1300 MODE is the mode of OP in case it is a CONST_INT.
1302 ??? This is still rather broken for some cases. The problem for the
1303 moment is that all callers of this thing provide no 'goal mode' to
1304 tell us to work with. This exists because all callers were written
1305 in a word based SUBREG world.
1306 Now use of this function can be deprecated by simplify_subreg in most
1307 cases.
1311 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1313 if (mode == VOIDmode)
1314 mode = GET_MODE (op);
1316 gcc_assert (mode != VOIDmode);
1318 /* If OP is narrower than a word, fail. */
1319 if (mode != BLKmode
1320 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1321 return 0;
1323 /* If we want a word outside OP, return zero. */
1324 if (mode != BLKmode
1325 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1326 return const0_rtx;
1328 /* Form a new MEM at the requested address. */
1329 if (MEM_P (op))
1331 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1333 if (! validate_address)
1334 return new;
1336 else if (reload_completed)
1338 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1339 return 0;
1341 else
1342 return replace_equiv_address (new, XEXP (new, 0));
1345 /* Rest can be handled by simplify_subreg. */
1346 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1349 /* Similar to `operand_subword', but never return 0. If we can't
1350 extract the required subword, put OP into a register and try again.
1351 The second attempt must succeed. We always validate the address in
1352 this case.
1354 MODE is the mode of OP, in case it is CONST_INT. */
1357 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1359 rtx result = operand_subword (op, offset, 1, mode);
1361 if (result)
1362 return result;
1364 if (mode != BLKmode && mode != VOIDmode)
1366 /* If this is a register which can not be accessed by words, copy it
1367 to a pseudo register. */
1368 if (REG_P (op))
1369 op = copy_to_reg (op);
1370 else
1371 op = force_reg (mode, op);
1374 result = operand_subword (op, offset, 1, mode);
1375 gcc_assert (result);
1377 return result;
1380 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1381 or (2) a component ref of something variable. Represent the later with
1382 a NULL expression. */
1384 static tree
1385 component_ref_for_mem_expr (tree ref)
1387 tree inner = TREE_OPERAND (ref, 0);
1389 if (TREE_CODE (inner) == COMPONENT_REF)
1390 inner = component_ref_for_mem_expr (inner);
1391 else
1393 /* Now remove any conversions: they don't change what the underlying
1394 object is. Likewise for SAVE_EXPR. */
1395 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1396 || TREE_CODE (inner) == NON_LVALUE_EXPR
1397 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1398 || TREE_CODE (inner) == SAVE_EXPR)
1399 inner = TREE_OPERAND (inner, 0);
1401 if (! DECL_P (inner))
1402 inner = NULL_TREE;
1405 if (inner == TREE_OPERAND (ref, 0))
1406 return ref;
1407 else
1408 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1409 TREE_OPERAND (ref, 1), NULL_TREE);
1412 /* Returns 1 if both MEM_EXPR can be considered equal
1413 and 0 otherwise. */
1416 mem_expr_equal_p (tree expr1, tree expr2)
1418 if (expr1 == expr2)
1419 return 1;
1421 if (! expr1 || ! expr2)
1422 return 0;
1424 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1425 return 0;
1427 if (TREE_CODE (expr1) == COMPONENT_REF)
1428 return
1429 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1430 TREE_OPERAND (expr2, 0))
1431 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1432 TREE_OPERAND (expr2, 1));
1434 if (INDIRECT_REF_P (expr1))
1435 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1436 TREE_OPERAND (expr2, 0));
1438 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1439 have been resolved here. */
1440 gcc_assert (DECL_P (expr1));
1442 /* Decls with different pointers can't be equal. */
1443 return 0;
1446 /* Given REF, a MEM, and T, either the type of X or the expression
1447 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1448 if we are making a new object of this type. BITPOS is nonzero if
1449 there is an offset outstanding on T that will be applied later. */
1451 void
1452 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1453 HOST_WIDE_INT bitpos)
1455 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
1456 tree expr = MEM_EXPR (ref);
1457 rtx offset = MEM_OFFSET (ref);
1458 rtx size = MEM_SIZE (ref);
1459 unsigned int align = MEM_ALIGN (ref);
1460 HOST_WIDE_INT apply_bitpos = 0;
1461 tree type;
1463 /* It can happen that type_for_mode was given a mode for which there
1464 is no language-level type. In which case it returns NULL, which
1465 we can see here. */
1466 if (t == NULL_TREE)
1467 return;
1469 type = TYPE_P (t) ? t : TREE_TYPE (t);
1470 if (type == error_mark_node)
1471 return;
1473 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1474 wrong answer, as it assumes that DECL_RTL already has the right alias
1475 info. Callers should not set DECL_RTL until after the call to
1476 set_mem_attributes. */
1477 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1479 /* Get the alias set from the expression or type (perhaps using a
1480 front-end routine) and use it. */
1481 alias = get_alias_set (t);
1483 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1484 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1485 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1487 /* If we are making an object of this type, or if this is a DECL, we know
1488 that it is a scalar if the type is not an aggregate. */
1489 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
1490 MEM_SCALAR_P (ref) = 1;
1492 /* We can set the alignment from the type if we are making an object,
1493 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1494 if (objectp || TREE_CODE (t) == INDIRECT_REF
1495 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1496 || TYPE_ALIGN_OK (type))
1497 align = MAX (align, TYPE_ALIGN (type));
1498 else
1499 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1501 if (integer_zerop (TREE_OPERAND (t, 1)))
1502 /* We don't know anything about the alignment. */
1503 align = BITS_PER_UNIT;
1504 else
1505 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1508 /* If the size is known, we can set that. */
1509 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1510 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1512 /* If T is not a type, we may be able to deduce some more information about
1513 the expression. */
1514 if (! TYPE_P (t))
1516 tree base;
1518 if (TREE_THIS_VOLATILE (t))
1519 MEM_VOLATILE_P (ref) = 1;
1521 /* Now remove any conversions: they don't change what the underlying
1522 object is. Likewise for SAVE_EXPR. */
1523 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1524 || TREE_CODE (t) == NON_LVALUE_EXPR
1525 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1526 || TREE_CODE (t) == SAVE_EXPR)
1527 t = TREE_OPERAND (t, 0);
1529 /* We may look through structure-like accesses for the purposes of
1530 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1531 base = t;
1532 while (TREE_CODE (base) == COMPONENT_REF
1533 || TREE_CODE (base) == REALPART_EXPR
1534 || TREE_CODE (base) == IMAGPART_EXPR
1535 || TREE_CODE (base) == BIT_FIELD_REF)
1536 base = TREE_OPERAND (base, 0);
1538 if (DECL_P (base))
1540 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1541 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1542 else
1543 MEM_NOTRAP_P (ref) = 1;
1545 else
1546 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1548 base = get_base_address (base);
1549 if (base && DECL_P (base)
1550 && TREE_READONLY (base)
1551 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1553 tree base_type = TREE_TYPE (base);
1554 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1555 || DECL_ARTIFICIAL (base));
1556 MEM_READONLY_P (ref) = 1;
1559 /* If this expression uses it's parent's alias set, mark it such
1560 that we won't change it. */
1561 if (component_uses_parent_alias_set (t))
1562 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1564 /* If this is a decl, set the attributes of the MEM from it. */
1565 if (DECL_P (t))
1567 expr = t;
1568 offset = const0_rtx;
1569 apply_bitpos = bitpos;
1570 size = (DECL_SIZE_UNIT (t)
1571 && host_integerp (DECL_SIZE_UNIT (t), 1)
1572 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1573 align = DECL_ALIGN (t);
1576 /* If this is a constant, we know the alignment. */
1577 else if (CONSTANT_CLASS_P (t))
1579 align = TYPE_ALIGN (type);
1580 #ifdef CONSTANT_ALIGNMENT
1581 align = CONSTANT_ALIGNMENT (t, align);
1582 #endif
1585 /* If this is a field reference and not a bit-field, record it. */
1586 /* ??? There is some information that can be gleened from bit-fields,
1587 such as the word offset in the structure that might be modified.
1588 But skip it for now. */
1589 else if (TREE_CODE (t) == COMPONENT_REF
1590 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1592 expr = component_ref_for_mem_expr (t);
1593 offset = const0_rtx;
1594 apply_bitpos = bitpos;
1595 /* ??? Any reason the field size would be different than
1596 the size we got from the type? */
1599 /* If this is an array reference, look for an outer field reference. */
1600 else if (TREE_CODE (t) == ARRAY_REF)
1602 tree off_tree = size_zero_node;
1603 /* We can't modify t, because we use it at the end of the
1604 function. */
1605 tree t2 = t;
1609 tree index = TREE_OPERAND (t2, 1);
1610 tree low_bound = array_ref_low_bound (t2);
1611 tree unit_size = array_ref_element_size (t2);
1613 /* We assume all arrays have sizes that are a multiple of a byte.
1614 First subtract the lower bound, if any, in the type of the
1615 index, then convert to sizetype and multiply by the size of
1616 the array element. */
1617 if (! integer_zerop (low_bound))
1618 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1619 index, low_bound);
1621 off_tree = size_binop (PLUS_EXPR,
1622 size_binop (MULT_EXPR,
1623 fold_convert (sizetype,
1624 index),
1625 unit_size),
1626 off_tree);
1627 t2 = TREE_OPERAND (t2, 0);
1629 while (TREE_CODE (t2) == ARRAY_REF);
1631 if (DECL_P (t2))
1633 expr = t2;
1634 offset = NULL;
1635 if (host_integerp (off_tree, 1))
1637 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1638 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1639 align = DECL_ALIGN (t2);
1640 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1641 align = aoff;
1642 offset = GEN_INT (ioff);
1643 apply_bitpos = bitpos;
1646 else if (TREE_CODE (t2) == COMPONENT_REF)
1648 expr = component_ref_for_mem_expr (t2);
1649 if (host_integerp (off_tree, 1))
1651 offset = GEN_INT (tree_low_cst (off_tree, 1));
1652 apply_bitpos = bitpos;
1654 /* ??? Any reason the field size would be different than
1655 the size we got from the type? */
1657 else if (flag_argument_noalias > 1
1658 && (INDIRECT_REF_P (t2))
1659 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1661 expr = t2;
1662 offset = NULL;
1666 /* If this is a Fortran indirect argument reference, record the
1667 parameter decl. */
1668 else if (flag_argument_noalias > 1
1669 && (INDIRECT_REF_P (t))
1670 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1672 expr = t;
1673 offset = NULL;
1677 /* If we modified OFFSET based on T, then subtract the outstanding
1678 bit position offset. Similarly, increase the size of the accessed
1679 object to contain the negative offset. */
1680 if (apply_bitpos)
1682 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1683 if (size)
1684 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1687 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1689 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1690 we're overlapping. */
1691 offset = NULL;
1692 expr = NULL;
1695 /* Now set the attributes we computed above. */
1696 MEM_ATTRS (ref)
1697 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1699 /* If this is already known to be a scalar or aggregate, we are done. */
1700 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1701 return;
1703 /* If it is a reference into an aggregate, this is part of an aggregate.
1704 Otherwise we don't know. */
1705 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1706 || TREE_CODE (t) == ARRAY_RANGE_REF
1707 || TREE_CODE (t) == BIT_FIELD_REF)
1708 MEM_IN_STRUCT_P (ref) = 1;
1711 void
1712 set_mem_attributes (rtx ref, tree t, int objectp)
1714 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1717 /* Set the decl for MEM to DECL. */
1719 void
1720 set_mem_attrs_from_reg (rtx mem, rtx reg)
1722 MEM_ATTRS (mem)
1723 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1724 GEN_INT (REG_OFFSET (reg)),
1725 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1728 /* Set the alias set of MEM to SET. */
1730 void
1731 set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
1733 #ifdef ENABLE_CHECKING
1734 /* If the new and old alias sets don't conflict, something is wrong. */
1735 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1736 #endif
1738 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1739 MEM_SIZE (mem), MEM_ALIGN (mem),
1740 GET_MODE (mem));
1743 /* Set the alignment of MEM to ALIGN bits. */
1745 void
1746 set_mem_align (rtx mem, unsigned int align)
1748 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1749 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1750 GET_MODE (mem));
1753 /* Set the expr for MEM to EXPR. */
1755 void
1756 set_mem_expr (rtx mem, tree expr)
1758 MEM_ATTRS (mem)
1759 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1760 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1763 /* Set the offset of MEM to OFFSET. */
1765 void
1766 set_mem_offset (rtx mem, rtx offset)
1768 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1769 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1770 GET_MODE (mem));
1773 /* Set the size of MEM to SIZE. */
1775 void
1776 set_mem_size (rtx mem, rtx size)
1778 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1779 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1780 GET_MODE (mem));
1783 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1784 and its address changed to ADDR. (VOIDmode means don't change the mode.
1785 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1786 returned memory location is required to be valid. The memory
1787 attributes are not changed. */
1789 static rtx
1790 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1792 rtx new;
1794 gcc_assert (MEM_P (memref));
1795 if (mode == VOIDmode)
1796 mode = GET_MODE (memref);
1797 if (addr == 0)
1798 addr = XEXP (memref, 0);
1799 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1800 && (!validate || memory_address_p (mode, addr)))
1801 return memref;
1803 if (validate)
1805 if (reload_in_progress || reload_completed)
1806 gcc_assert (memory_address_p (mode, addr));
1807 else
1808 addr = memory_address (mode, addr);
1811 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1812 return memref;
1814 new = gen_rtx_MEM (mode, addr);
1815 MEM_COPY_ATTRIBUTES (new, memref);
1816 return new;
1819 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1820 way we are changing MEMREF, so we only preserve the alias set. */
1823 change_address (rtx memref, enum machine_mode mode, rtx addr)
1825 rtx new = change_address_1 (memref, mode, addr, 1), size;
1826 enum machine_mode mmode = GET_MODE (new);
1827 unsigned int align;
1829 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1830 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1832 /* If there are no changes, just return the original memory reference. */
1833 if (new == memref)
1835 if (MEM_ATTRS (memref) == 0
1836 || (MEM_EXPR (memref) == NULL
1837 && MEM_OFFSET (memref) == NULL
1838 && MEM_SIZE (memref) == size
1839 && MEM_ALIGN (memref) == align))
1840 return new;
1842 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1843 MEM_COPY_ATTRIBUTES (new, memref);
1846 MEM_ATTRS (new)
1847 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1849 return new;
1852 /* Return a memory reference like MEMREF, but with its mode changed
1853 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1854 nonzero, the memory address is forced to be valid.
1855 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1856 and caller is responsible for adjusting MEMREF base register. */
1859 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1860 int validate, int adjust)
1862 rtx addr = XEXP (memref, 0);
1863 rtx new;
1864 rtx memoffset = MEM_OFFSET (memref);
1865 rtx size = 0;
1866 unsigned int memalign = MEM_ALIGN (memref);
1868 /* If there are no changes, just return the original memory reference. */
1869 if (mode == GET_MODE (memref) && !offset
1870 && (!validate || memory_address_p (mode, addr)))
1871 return memref;
1873 /* ??? Prefer to create garbage instead of creating shared rtl.
1874 This may happen even if offset is nonzero -- consider
1875 (plus (plus reg reg) const_int) -- so do this always. */
1876 addr = copy_rtx (addr);
1878 if (adjust)
1880 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1881 object, we can merge it into the LO_SUM. */
1882 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1883 && offset >= 0
1884 && (unsigned HOST_WIDE_INT) offset
1885 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1886 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1887 plus_constant (XEXP (addr, 1), offset));
1888 else
1889 addr = plus_constant (addr, offset);
1892 new = change_address_1 (memref, mode, addr, validate);
1894 /* Compute the new values of the memory attributes due to this adjustment.
1895 We add the offsets and update the alignment. */
1896 if (memoffset)
1897 memoffset = GEN_INT (offset + INTVAL (memoffset));
1899 /* Compute the new alignment by taking the MIN of the alignment and the
1900 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1901 if zero. */
1902 if (offset != 0)
1903 memalign
1904 = MIN (memalign,
1905 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1907 /* We can compute the size in a number of ways. */
1908 if (GET_MODE (new) != BLKmode)
1909 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1910 else if (MEM_SIZE (memref))
1911 size = plus_constant (MEM_SIZE (memref), -offset);
1913 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1914 memoffset, size, memalign, GET_MODE (new));
1916 /* At some point, we should validate that this offset is within the object,
1917 if all the appropriate values are known. */
1918 return new;
1921 /* Return a memory reference like MEMREF, but with its mode changed
1922 to MODE and its address changed to ADDR, which is assumed to be
1923 MEMREF offseted by OFFSET bytes. If VALIDATE is
1924 nonzero, the memory address is forced to be valid. */
1927 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1928 HOST_WIDE_INT offset, int validate)
1930 memref = change_address_1 (memref, VOIDmode, addr, validate);
1931 return adjust_address_1 (memref, mode, offset, validate, 0);
1934 /* Return a memory reference like MEMREF, but whose address is changed by
1935 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1936 known to be in OFFSET (possibly 1). */
1939 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1941 rtx new, addr = XEXP (memref, 0);
1943 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1945 /* At this point we don't know _why_ the address is invalid. It
1946 could have secondary memory references, multiplies or anything.
1948 However, if we did go and rearrange things, we can wind up not
1949 being able to recognize the magic around pic_offset_table_rtx.
1950 This stuff is fragile, and is yet another example of why it is
1951 bad to expose PIC machinery too early. */
1952 if (! memory_address_p (GET_MODE (memref), new)
1953 && GET_CODE (addr) == PLUS
1954 && XEXP (addr, 0) == pic_offset_table_rtx)
1956 addr = force_reg (GET_MODE (addr), addr);
1957 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1960 update_temp_slot_address (XEXP (memref, 0), new);
1961 new = change_address_1 (memref, VOIDmode, new, 1);
1963 /* If there are no changes, just return the original memory reference. */
1964 if (new == memref)
1965 return new;
1967 /* Update the alignment to reflect the offset. Reset the offset, which
1968 we don't know. */
1969 MEM_ATTRS (new)
1970 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1971 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1972 GET_MODE (new));
1973 return new;
1976 /* Return a memory reference like MEMREF, but with its address changed to
1977 ADDR. The caller is asserting that the actual piece of memory pointed
1978 to is the same, just the form of the address is being changed, such as
1979 by putting something into a register. */
1982 replace_equiv_address (rtx memref, rtx addr)
1984 /* change_address_1 copies the memory attribute structure without change
1985 and that's exactly what we want here. */
1986 update_temp_slot_address (XEXP (memref, 0), addr);
1987 return change_address_1 (memref, VOIDmode, addr, 1);
1990 /* Likewise, but the reference is not required to be valid. */
1993 replace_equiv_address_nv (rtx memref, rtx addr)
1995 return change_address_1 (memref, VOIDmode, addr, 0);
1998 /* Return a memory reference like MEMREF, but with its mode widened to
1999 MODE and offset by OFFSET. This would be used by targets that e.g.
2000 cannot issue QImode memory operations and have to use SImode memory
2001 operations plus masking logic. */
2004 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2006 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2007 tree expr = MEM_EXPR (new);
2008 rtx memoffset = MEM_OFFSET (new);
2009 unsigned int size = GET_MODE_SIZE (mode);
2011 /* If there are no changes, just return the original memory reference. */
2012 if (new == memref)
2013 return new;
2015 /* If we don't know what offset we were at within the expression, then
2016 we can't know if we've overstepped the bounds. */
2017 if (! memoffset)
2018 expr = NULL_TREE;
2020 while (expr)
2022 if (TREE_CODE (expr) == COMPONENT_REF)
2024 tree field = TREE_OPERAND (expr, 1);
2025 tree offset = component_ref_field_offset (expr);
2027 if (! DECL_SIZE_UNIT (field))
2029 expr = NULL_TREE;
2030 break;
2033 /* Is the field at least as large as the access? If so, ok,
2034 otherwise strip back to the containing structure. */
2035 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2036 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2037 && INTVAL (memoffset) >= 0)
2038 break;
2040 if (! host_integerp (offset, 1))
2042 expr = NULL_TREE;
2043 break;
2046 expr = TREE_OPERAND (expr, 0);
2047 memoffset
2048 = (GEN_INT (INTVAL (memoffset)
2049 + tree_low_cst (offset, 1)
2050 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2051 / BITS_PER_UNIT)));
2053 /* Similarly for the decl. */
2054 else if (DECL_P (expr)
2055 && DECL_SIZE_UNIT (expr)
2056 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2057 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2058 && (! memoffset || INTVAL (memoffset) >= 0))
2059 break;
2060 else
2062 /* The widened memory access overflows the expression, which means
2063 that it could alias another expression. Zap it. */
2064 expr = NULL_TREE;
2065 break;
2069 if (! expr)
2070 memoffset = NULL_RTX;
2072 /* The widened memory may alias other stuff, so zap the alias set. */
2073 /* ??? Maybe use get_alias_set on any remaining expression. */
2075 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2076 MEM_ALIGN (new), mode);
2078 return new;
2081 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2084 gen_label_rtx (void)
2086 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2087 NULL, label_num++, NULL);
2090 /* For procedure integration. */
2092 /* Install new pointers to the first and last insns in the chain.
2093 Also, set cur_insn_uid to one higher than the last in use.
2094 Used for an inline-procedure after copying the insn chain. */
2096 void
2097 set_new_first_and_last_insn (rtx first, rtx last)
2099 rtx insn;
2101 first_insn = first;
2102 last_insn = last;
2103 cur_insn_uid = 0;
2105 for (insn = first; insn; insn = NEXT_INSN (insn))
2106 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2108 cur_insn_uid++;
2111 /* Go through all the RTL insn bodies and copy any invalid shared
2112 structure. This routine should only be called once. */
2114 static void
2115 unshare_all_rtl_1 (tree fndecl, rtx insn)
2117 tree decl;
2119 /* Make sure that virtual parameters are not shared. */
2120 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
2121 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2123 /* Make sure that virtual stack slots are not shared. */
2124 unshare_all_decls (DECL_INITIAL (fndecl));
2126 /* Unshare just about everything else. */
2127 unshare_all_rtl_in_chain (insn);
2129 /* Make sure the addresses of stack slots found outside the insn chain
2130 (such as, in DECL_RTL of a variable) are not shared
2131 with the insn chain.
2133 This special care is necessary when the stack slot MEM does not
2134 actually appear in the insn chain. If it does appear, its address
2135 is unshared from all else at that point. */
2136 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2139 /* Go through all the RTL insn bodies and copy any invalid shared
2140 structure, again. This is a fairly expensive thing to do so it
2141 should be done sparingly. */
2143 void
2144 unshare_all_rtl_again (rtx insn)
2146 rtx p;
2147 tree decl;
2149 for (p = insn; p; p = NEXT_INSN (p))
2150 if (INSN_P (p))
2152 reset_used_flags (PATTERN (p));
2153 reset_used_flags (REG_NOTES (p));
2154 reset_used_flags (LOG_LINKS (p));
2157 /* Make sure that virtual stack slots are not shared. */
2158 reset_used_decls (DECL_INITIAL (cfun->decl));
2160 /* Make sure that virtual parameters are not shared. */
2161 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2162 reset_used_flags (DECL_RTL (decl));
2164 reset_used_flags (stack_slot_list);
2166 unshare_all_rtl_1 (cfun->decl, insn);
2169 unsigned int
2170 unshare_all_rtl (void)
2172 unshare_all_rtl_1 (current_function_decl, get_insns ());
2173 return 0;
2176 struct tree_opt_pass pass_unshare_all_rtl =
2178 "unshare", /* name */
2179 NULL, /* gate */
2180 unshare_all_rtl, /* execute */
2181 NULL, /* sub */
2182 NULL, /* next */
2183 0, /* static_pass_number */
2184 0, /* tv_id */
2185 0, /* properties_required */
2186 0, /* properties_provided */
2187 0, /* properties_destroyed */
2188 0, /* todo_flags_start */
2189 TODO_dump_func, /* todo_flags_finish */
2190 0 /* letter */
2194 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2195 Recursively does the same for subexpressions. */
2197 static void
2198 verify_rtx_sharing (rtx orig, rtx insn)
2200 rtx x = orig;
2201 int i;
2202 enum rtx_code code;
2203 const char *format_ptr;
2205 if (x == 0)
2206 return;
2208 code = GET_CODE (x);
2210 /* These types may be freely shared. */
2212 switch (code)
2214 case REG:
2215 case CONST_INT:
2216 case CONST_DOUBLE:
2217 case CONST_VECTOR:
2218 case SYMBOL_REF:
2219 case LABEL_REF:
2220 case CODE_LABEL:
2221 case PC:
2222 case CC0:
2223 case SCRATCH:
2224 return;
2225 /* SCRATCH must be shared because they represent distinct values. */
2226 case CLOBBER:
2227 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2228 return;
2229 break;
2231 case CONST:
2232 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2233 a LABEL_REF, it isn't sharable. */
2234 if (GET_CODE (XEXP (x, 0)) == PLUS
2235 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2236 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2237 return;
2238 break;
2240 case MEM:
2241 /* A MEM is allowed to be shared if its address is constant. */
2242 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2243 || reload_completed || reload_in_progress)
2244 return;
2246 break;
2248 default:
2249 break;
2252 /* This rtx may not be shared. If it has already been seen,
2253 replace it with a copy of itself. */
2254 #ifdef ENABLE_CHECKING
2255 if (RTX_FLAG (x, used))
2257 error ("invalid rtl sharing found in the insn");
2258 debug_rtx (insn);
2259 error ("shared rtx");
2260 debug_rtx (x);
2261 internal_error ("internal consistency failure");
2263 #endif
2264 gcc_assert (!RTX_FLAG (x, used));
2266 RTX_FLAG (x, used) = 1;
2268 /* Now scan the subexpressions recursively. */
2270 format_ptr = GET_RTX_FORMAT (code);
2272 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2274 switch (*format_ptr++)
2276 case 'e':
2277 verify_rtx_sharing (XEXP (x, i), insn);
2278 break;
2280 case 'E':
2281 if (XVEC (x, i) != NULL)
2283 int j;
2284 int len = XVECLEN (x, i);
2286 for (j = 0; j < len; j++)
2288 /* We allow sharing of ASM_OPERANDS inside single
2289 instruction. */
2290 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2291 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2292 == ASM_OPERANDS))
2293 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2294 else
2295 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2298 break;
2301 return;
2304 /* Go through all the RTL insn bodies and check that there is no unexpected
2305 sharing in between the subexpressions. */
2307 void
2308 verify_rtl_sharing (void)
2310 rtx p;
2312 for (p = get_insns (); p; p = NEXT_INSN (p))
2313 if (INSN_P (p))
2315 reset_used_flags (PATTERN (p));
2316 reset_used_flags (REG_NOTES (p));
2317 reset_used_flags (LOG_LINKS (p));
2318 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2320 int i;
2321 rtx q, sequence = PATTERN (p);
2323 for (i = 0; i < XVECLEN (sequence, 0); i++)
2325 q = XVECEXP (sequence, 0, i);
2326 gcc_assert (INSN_P (q));
2327 reset_used_flags (PATTERN (q));
2328 reset_used_flags (REG_NOTES (q));
2329 reset_used_flags (LOG_LINKS (q));
2334 for (p = get_insns (); p; p = NEXT_INSN (p))
2335 if (INSN_P (p))
2337 verify_rtx_sharing (PATTERN (p), p);
2338 verify_rtx_sharing (REG_NOTES (p), p);
2339 verify_rtx_sharing (LOG_LINKS (p), p);
2343 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2344 Assumes the mark bits are cleared at entry. */
2346 void
2347 unshare_all_rtl_in_chain (rtx insn)
2349 for (; insn; insn = NEXT_INSN (insn))
2350 if (INSN_P (insn))
2352 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2353 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2354 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2358 /* Go through all virtual stack slots of a function and copy any
2359 shared structure. */
2360 static void
2361 unshare_all_decls (tree blk)
2363 tree t;
2365 /* Copy shared decls. */
2366 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2367 if (DECL_RTL_SET_P (t))
2368 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
2370 /* Now process sub-blocks. */
2371 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2372 unshare_all_decls (t);
2375 /* Go through all virtual stack slots of a function and mark them as
2376 not shared. */
2377 static void
2378 reset_used_decls (tree blk)
2380 tree t;
2382 /* Mark decls. */
2383 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2384 if (DECL_RTL_SET_P (t))
2385 reset_used_flags (DECL_RTL (t));
2387 /* Now process sub-blocks. */
2388 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2389 reset_used_decls (t);
2392 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2393 Recursively does the same for subexpressions. Uses
2394 copy_rtx_if_shared_1 to reduce stack space. */
2397 copy_rtx_if_shared (rtx orig)
2399 copy_rtx_if_shared_1 (&orig);
2400 return orig;
2403 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2404 use. Recursively does the same for subexpressions. */
2406 static void
2407 copy_rtx_if_shared_1 (rtx *orig1)
2409 rtx x;
2410 int i;
2411 enum rtx_code code;
2412 rtx *last_ptr;
2413 const char *format_ptr;
2414 int copied = 0;
2415 int length;
2417 /* Repeat is used to turn tail-recursion into iteration. */
2418 repeat:
2419 x = *orig1;
2421 if (x == 0)
2422 return;
2424 code = GET_CODE (x);
2426 /* These types may be freely shared. */
2428 switch (code)
2430 case REG:
2431 case CONST_INT:
2432 case CONST_DOUBLE:
2433 case CONST_VECTOR:
2434 case SYMBOL_REF:
2435 case LABEL_REF:
2436 case CODE_LABEL:
2437 case PC:
2438 case CC0:
2439 case SCRATCH:
2440 /* SCRATCH must be shared because they represent distinct values. */
2441 return;
2442 case CLOBBER:
2443 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2444 return;
2445 break;
2447 case CONST:
2448 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2449 a LABEL_REF, it isn't sharable. */
2450 if (GET_CODE (XEXP (x, 0)) == PLUS
2451 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2452 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2453 return;
2454 break;
2456 case INSN:
2457 case JUMP_INSN:
2458 case CALL_INSN:
2459 case NOTE:
2460 case BARRIER:
2461 /* The chain of insns is not being copied. */
2462 return;
2464 default:
2465 break;
2468 /* This rtx may not be shared. If it has already been seen,
2469 replace it with a copy of itself. */
2471 if (RTX_FLAG (x, used))
2473 x = shallow_copy_rtx (x);
2474 copied = 1;
2476 RTX_FLAG (x, used) = 1;
2478 /* Now scan the subexpressions recursively.
2479 We can store any replaced subexpressions directly into X
2480 since we know X is not shared! Any vectors in X
2481 must be copied if X was copied. */
2483 format_ptr = GET_RTX_FORMAT (code);
2484 length = GET_RTX_LENGTH (code);
2485 last_ptr = NULL;
2487 for (i = 0; i < length; i++)
2489 switch (*format_ptr++)
2491 case 'e':
2492 if (last_ptr)
2493 copy_rtx_if_shared_1 (last_ptr);
2494 last_ptr = &XEXP (x, i);
2495 break;
2497 case 'E':
2498 if (XVEC (x, i) != NULL)
2500 int j;
2501 int len = XVECLEN (x, i);
2503 /* Copy the vector iff I copied the rtx and the length
2504 is nonzero. */
2505 if (copied && len > 0)
2506 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2508 /* Call recursively on all inside the vector. */
2509 for (j = 0; j < len; j++)
2511 if (last_ptr)
2512 copy_rtx_if_shared_1 (last_ptr);
2513 last_ptr = &XVECEXP (x, i, j);
2516 break;
2519 *orig1 = x;
2520 if (last_ptr)
2522 orig1 = last_ptr;
2523 goto repeat;
2525 return;
2528 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2529 to look for shared sub-parts. */
2531 void
2532 reset_used_flags (rtx x)
2534 int i, j;
2535 enum rtx_code code;
2536 const char *format_ptr;
2537 int length;
2539 /* Repeat is used to turn tail-recursion into iteration. */
2540 repeat:
2541 if (x == 0)
2542 return;
2544 code = GET_CODE (x);
2546 /* These types may be freely shared so we needn't do any resetting
2547 for them. */
2549 switch (code)
2551 case REG:
2552 case CONST_INT:
2553 case CONST_DOUBLE:
2554 case CONST_VECTOR:
2555 case SYMBOL_REF:
2556 case CODE_LABEL:
2557 case PC:
2558 case CC0:
2559 return;
2561 case INSN:
2562 case JUMP_INSN:
2563 case CALL_INSN:
2564 case NOTE:
2565 case LABEL_REF:
2566 case BARRIER:
2567 /* The chain of insns is not being copied. */
2568 return;
2570 default:
2571 break;
2574 RTX_FLAG (x, used) = 0;
2576 format_ptr = GET_RTX_FORMAT (code);
2577 length = GET_RTX_LENGTH (code);
2579 for (i = 0; i < length; i++)
2581 switch (*format_ptr++)
2583 case 'e':
2584 if (i == length-1)
2586 x = XEXP (x, i);
2587 goto repeat;
2589 reset_used_flags (XEXP (x, i));
2590 break;
2592 case 'E':
2593 for (j = 0; j < XVECLEN (x, i); j++)
2594 reset_used_flags (XVECEXP (x, i, j));
2595 break;
2600 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2601 to look for shared sub-parts. */
2603 void
2604 set_used_flags (rtx x)
2606 int i, j;
2607 enum rtx_code code;
2608 const char *format_ptr;
2610 if (x == 0)
2611 return;
2613 code = GET_CODE (x);
2615 /* These types may be freely shared so we needn't do any resetting
2616 for them. */
2618 switch (code)
2620 case REG:
2621 case CONST_INT:
2622 case CONST_DOUBLE:
2623 case CONST_VECTOR:
2624 case SYMBOL_REF:
2625 case CODE_LABEL:
2626 case PC:
2627 case CC0:
2628 return;
2630 case INSN:
2631 case JUMP_INSN:
2632 case CALL_INSN:
2633 case NOTE:
2634 case LABEL_REF:
2635 case BARRIER:
2636 /* The chain of insns is not being copied. */
2637 return;
2639 default:
2640 break;
2643 RTX_FLAG (x, used) = 1;
2645 format_ptr = GET_RTX_FORMAT (code);
2646 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2648 switch (*format_ptr++)
2650 case 'e':
2651 set_used_flags (XEXP (x, i));
2652 break;
2654 case 'E':
2655 for (j = 0; j < XVECLEN (x, i); j++)
2656 set_used_flags (XVECEXP (x, i, j));
2657 break;
2662 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2663 Return X or the rtx for the pseudo reg the value of X was copied into.
2664 OTHER must be valid as a SET_DEST. */
2667 make_safe_from (rtx x, rtx other)
2669 while (1)
2670 switch (GET_CODE (other))
2672 case SUBREG:
2673 other = SUBREG_REG (other);
2674 break;
2675 case STRICT_LOW_PART:
2676 case SIGN_EXTEND:
2677 case ZERO_EXTEND:
2678 other = XEXP (other, 0);
2679 break;
2680 default:
2681 goto done;
2683 done:
2684 if ((MEM_P (other)
2685 && ! CONSTANT_P (x)
2686 && !REG_P (x)
2687 && GET_CODE (x) != SUBREG)
2688 || (REG_P (other)
2689 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2690 || reg_mentioned_p (other, x))))
2692 rtx temp = gen_reg_rtx (GET_MODE (x));
2693 emit_move_insn (temp, x);
2694 return temp;
2696 return x;
2699 /* Emission of insns (adding them to the doubly-linked list). */
2701 /* Return the first insn of the current sequence or current function. */
2704 get_insns (void)
2706 return first_insn;
2709 /* Specify a new insn as the first in the chain. */
2711 void
2712 set_first_insn (rtx insn)
2714 gcc_assert (!PREV_INSN (insn));
2715 first_insn = insn;
2718 /* Return the last insn emitted in current sequence or current function. */
2721 get_last_insn (void)
2723 return last_insn;
2726 /* Specify a new insn as the last in the chain. */
2728 void
2729 set_last_insn (rtx insn)
2731 gcc_assert (!NEXT_INSN (insn));
2732 last_insn = insn;
2735 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2738 get_last_insn_anywhere (void)
2740 struct sequence_stack *stack;
2741 if (last_insn)
2742 return last_insn;
2743 for (stack = seq_stack; stack; stack = stack->next)
2744 if (stack->last != 0)
2745 return stack->last;
2746 return 0;
2749 /* Return the first nonnote insn emitted in current sequence or current
2750 function. This routine looks inside SEQUENCEs. */
2753 get_first_nonnote_insn (void)
2755 rtx insn = first_insn;
2757 if (insn)
2759 if (NOTE_P (insn))
2760 for (insn = next_insn (insn);
2761 insn && NOTE_P (insn);
2762 insn = next_insn (insn))
2763 continue;
2764 else
2766 if (NONJUMP_INSN_P (insn)
2767 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2768 insn = XVECEXP (PATTERN (insn), 0, 0);
2772 return insn;
2775 /* Return the last nonnote insn emitted in current sequence or current
2776 function. This routine looks inside SEQUENCEs. */
2779 get_last_nonnote_insn (void)
2781 rtx insn = last_insn;
2783 if (insn)
2785 if (NOTE_P (insn))
2786 for (insn = previous_insn (insn);
2787 insn && NOTE_P (insn);
2788 insn = previous_insn (insn))
2789 continue;
2790 else
2792 if (NONJUMP_INSN_P (insn)
2793 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2794 insn = XVECEXP (PATTERN (insn), 0,
2795 XVECLEN (PATTERN (insn), 0) - 1);
2799 return insn;
2802 /* Return a number larger than any instruction's uid in this function. */
2805 get_max_uid (void)
2807 return cur_insn_uid;
2810 /* Renumber instructions so that no instruction UIDs are wasted. */
2812 void
2813 renumber_insns (void)
2815 rtx insn;
2817 /* If we're not supposed to renumber instructions, don't. */
2818 if (!flag_renumber_insns)
2819 return;
2821 /* If there aren't that many instructions, then it's not really
2822 worth renumbering them. */
2823 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
2824 return;
2826 cur_insn_uid = 1;
2828 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2830 if (dump_file)
2831 fprintf (dump_file, "Renumbering insn %d to %d\n",
2832 INSN_UID (insn), cur_insn_uid);
2833 INSN_UID (insn) = cur_insn_uid++;
2837 /* Return the next insn. If it is a SEQUENCE, return the first insn
2838 of the sequence. */
2841 next_insn (rtx insn)
2843 if (insn)
2845 insn = NEXT_INSN (insn);
2846 if (insn && NONJUMP_INSN_P (insn)
2847 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2848 insn = XVECEXP (PATTERN (insn), 0, 0);
2851 return insn;
2854 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2855 of the sequence. */
2858 previous_insn (rtx insn)
2860 if (insn)
2862 insn = PREV_INSN (insn);
2863 if (insn && NONJUMP_INSN_P (insn)
2864 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2865 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2868 return insn;
2871 /* Return the next insn after INSN that is not a NOTE. This routine does not
2872 look inside SEQUENCEs. */
2875 next_nonnote_insn (rtx insn)
2877 while (insn)
2879 insn = NEXT_INSN (insn);
2880 if (insn == 0 || !NOTE_P (insn))
2881 break;
2884 return insn;
2887 /* Return the previous insn before INSN that is not a NOTE. This routine does
2888 not look inside SEQUENCEs. */
2891 prev_nonnote_insn (rtx insn)
2893 while (insn)
2895 insn = PREV_INSN (insn);
2896 if (insn == 0 || !NOTE_P (insn))
2897 break;
2900 return insn;
2903 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2904 or 0, if there is none. This routine does not look inside
2905 SEQUENCEs. */
2908 next_real_insn (rtx insn)
2910 while (insn)
2912 insn = NEXT_INSN (insn);
2913 if (insn == 0 || INSN_P (insn))
2914 break;
2917 return insn;
2920 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2921 or 0, if there is none. This routine does not look inside
2922 SEQUENCEs. */
2925 prev_real_insn (rtx insn)
2927 while (insn)
2929 insn = PREV_INSN (insn);
2930 if (insn == 0 || INSN_P (insn))
2931 break;
2934 return insn;
2937 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2938 This routine does not look inside SEQUENCEs. */
2941 last_call_insn (void)
2943 rtx insn;
2945 for (insn = get_last_insn ();
2946 insn && !CALL_P (insn);
2947 insn = PREV_INSN (insn))
2950 return insn;
2953 /* Find the next insn after INSN that really does something. This routine
2954 does not look inside SEQUENCEs. Until reload has completed, this is the
2955 same as next_real_insn. */
2958 active_insn_p (rtx insn)
2960 return (CALL_P (insn) || JUMP_P (insn)
2961 || (NONJUMP_INSN_P (insn)
2962 && (! reload_completed
2963 || (GET_CODE (PATTERN (insn)) != USE
2964 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2968 next_active_insn (rtx insn)
2970 while (insn)
2972 insn = NEXT_INSN (insn);
2973 if (insn == 0 || active_insn_p (insn))
2974 break;
2977 return insn;
2980 /* Find the last insn before INSN that really does something. This routine
2981 does not look inside SEQUENCEs. Until reload has completed, this is the
2982 same as prev_real_insn. */
2985 prev_active_insn (rtx insn)
2987 while (insn)
2989 insn = PREV_INSN (insn);
2990 if (insn == 0 || active_insn_p (insn))
2991 break;
2994 return insn;
2997 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3000 next_label (rtx insn)
3002 while (insn)
3004 insn = NEXT_INSN (insn);
3005 if (insn == 0 || LABEL_P (insn))
3006 break;
3009 return insn;
3012 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3015 prev_label (rtx insn)
3017 while (insn)
3019 insn = PREV_INSN (insn);
3020 if (insn == 0 || LABEL_P (insn))
3021 break;
3024 return insn;
3027 /* Return the last label to mark the same position as LABEL. Return null
3028 if LABEL itself is null. */
3031 skip_consecutive_labels (rtx label)
3033 rtx insn;
3035 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3036 if (LABEL_P (insn))
3037 label = insn;
3039 return label;
3042 #ifdef HAVE_cc0
3043 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3044 and REG_CC_USER notes so we can find it. */
3046 void
3047 link_cc0_insns (rtx insn)
3049 rtx user = next_nonnote_insn (insn);
3051 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3052 user = XVECEXP (PATTERN (user), 0, 0);
3054 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3055 REG_NOTES (user));
3056 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3059 /* Return the next insn that uses CC0 after INSN, which is assumed to
3060 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3061 applied to the result of this function should yield INSN).
3063 Normally, this is simply the next insn. However, if a REG_CC_USER note
3064 is present, it contains the insn that uses CC0.
3066 Return 0 if we can't find the insn. */
3069 next_cc0_user (rtx insn)
3071 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3073 if (note)
3074 return XEXP (note, 0);
3076 insn = next_nonnote_insn (insn);
3077 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3078 insn = XVECEXP (PATTERN (insn), 0, 0);
3080 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3081 return insn;
3083 return 0;
3086 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3087 note, it is the previous insn. */
3090 prev_cc0_setter (rtx insn)
3092 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3094 if (note)
3095 return XEXP (note, 0);
3097 insn = prev_nonnote_insn (insn);
3098 gcc_assert (sets_cc0_p (PATTERN (insn)));
3100 return insn;
3102 #endif
3104 /* Increment the label uses for all labels present in rtx. */
3106 static void
3107 mark_label_nuses (rtx x)
3109 enum rtx_code code;
3110 int i, j;
3111 const char *fmt;
3113 code = GET_CODE (x);
3114 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3115 LABEL_NUSES (XEXP (x, 0))++;
3117 fmt = GET_RTX_FORMAT (code);
3118 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3120 if (fmt[i] == 'e')
3121 mark_label_nuses (XEXP (x, i));
3122 else if (fmt[i] == 'E')
3123 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3124 mark_label_nuses (XVECEXP (x, i, j));
3129 /* Try splitting insns that can be split for better scheduling.
3130 PAT is the pattern which might split.
3131 TRIAL is the insn providing PAT.
3132 LAST is nonzero if we should return the last insn of the sequence produced.
3134 If this routine succeeds in splitting, it returns the first or last
3135 replacement insn depending on the value of LAST. Otherwise, it
3136 returns TRIAL. If the insn to be returned can be split, it will be. */
3139 try_split (rtx pat, rtx trial, int last)
3141 rtx before = PREV_INSN (trial);
3142 rtx after = NEXT_INSN (trial);
3143 int has_barrier = 0;
3144 rtx tem;
3145 rtx note, seq;
3146 int probability;
3147 rtx insn_last, insn;
3148 int njumps = 0;
3150 if (any_condjump_p (trial)
3151 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3152 split_branch_probability = INTVAL (XEXP (note, 0));
3153 probability = split_branch_probability;
3155 seq = split_insns (pat, trial);
3157 split_branch_probability = -1;
3159 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3160 We may need to handle this specially. */
3161 if (after && BARRIER_P (after))
3163 has_barrier = 1;
3164 after = NEXT_INSN (after);
3167 if (!seq)
3168 return trial;
3170 /* Avoid infinite loop if any insn of the result matches
3171 the original pattern. */
3172 insn_last = seq;
3173 while (1)
3175 if (INSN_P (insn_last)
3176 && rtx_equal_p (PATTERN (insn_last), pat))
3177 return trial;
3178 if (!NEXT_INSN (insn_last))
3179 break;
3180 insn_last = NEXT_INSN (insn_last);
3183 /* Mark labels. */
3184 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3186 if (JUMP_P (insn))
3188 mark_jump_label (PATTERN (insn), insn, 0);
3189 njumps++;
3190 if (probability != -1
3191 && any_condjump_p (insn)
3192 && !find_reg_note (insn, REG_BR_PROB, 0))
3194 /* We can preserve the REG_BR_PROB notes only if exactly
3195 one jump is created, otherwise the machine description
3196 is responsible for this step using
3197 split_branch_probability variable. */
3198 gcc_assert (njumps == 1);
3199 REG_NOTES (insn)
3200 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3201 GEN_INT (probability),
3202 REG_NOTES (insn));
3207 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3208 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3209 if (CALL_P (trial))
3211 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3212 if (CALL_P (insn))
3214 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3215 while (*p)
3216 p = &XEXP (*p, 1);
3217 *p = CALL_INSN_FUNCTION_USAGE (trial);
3218 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3222 /* Copy notes, particularly those related to the CFG. */
3223 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3225 switch (REG_NOTE_KIND (note))
3227 case REG_EH_REGION:
3228 insn = insn_last;
3229 while (insn != NULL_RTX)
3231 if (CALL_P (insn)
3232 || (flag_non_call_exceptions && INSN_P (insn)
3233 && may_trap_p (PATTERN (insn))))
3234 REG_NOTES (insn)
3235 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3236 XEXP (note, 0),
3237 REG_NOTES (insn));
3238 insn = PREV_INSN (insn);
3240 break;
3242 case REG_NORETURN:
3243 case REG_SETJMP:
3244 insn = insn_last;
3245 while (insn != NULL_RTX)
3247 if (CALL_P (insn))
3248 REG_NOTES (insn)
3249 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3250 XEXP (note, 0),
3251 REG_NOTES (insn));
3252 insn = PREV_INSN (insn);
3254 break;
3256 case REG_NON_LOCAL_GOTO:
3257 insn = insn_last;
3258 while (insn != NULL_RTX)
3260 if (JUMP_P (insn))
3261 REG_NOTES (insn)
3262 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3263 XEXP (note, 0),
3264 REG_NOTES (insn));
3265 insn = PREV_INSN (insn);
3267 break;
3269 default:
3270 break;
3274 /* If there are LABELS inside the split insns increment the
3275 usage count so we don't delete the label. */
3276 if (NONJUMP_INSN_P (trial))
3278 insn = insn_last;
3279 while (insn != NULL_RTX)
3281 if (NONJUMP_INSN_P (insn))
3282 mark_label_nuses (PATTERN (insn));
3284 insn = PREV_INSN (insn);
3288 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3290 delete_insn (trial);
3291 if (has_barrier)
3292 emit_barrier_after (tem);
3294 /* Recursively call try_split for each new insn created; by the
3295 time control returns here that insn will be fully split, so
3296 set LAST and continue from the insn after the one returned.
3297 We can't use next_active_insn here since AFTER may be a note.
3298 Ignore deleted insns, which can be occur if not optimizing. */
3299 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3300 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3301 tem = try_split (PATTERN (tem), tem, 1);
3303 /* Return either the first or the last insn, depending on which was
3304 requested. */
3305 return last
3306 ? (after ? PREV_INSN (after) : last_insn)
3307 : NEXT_INSN (before);
3310 /* Make and return an INSN rtx, initializing all its slots.
3311 Store PATTERN in the pattern slots. */
3314 make_insn_raw (rtx pattern)
3316 rtx insn;
3318 insn = rtx_alloc (INSN);
3320 INSN_UID (insn) = cur_insn_uid++;
3321 PATTERN (insn) = pattern;
3322 INSN_CODE (insn) = -1;
3323 LOG_LINKS (insn) = NULL;
3324 REG_NOTES (insn) = NULL;
3325 INSN_LOCATOR (insn) = 0;
3326 BLOCK_FOR_INSN (insn) = NULL;
3328 #ifdef ENABLE_RTL_CHECKING
3329 if (insn
3330 && INSN_P (insn)
3331 && (returnjump_p (insn)
3332 || (GET_CODE (insn) == SET
3333 && SET_DEST (insn) == pc_rtx)))
3335 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3336 debug_rtx (insn);
3338 #endif
3340 return insn;
3343 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3346 make_jump_insn_raw (rtx pattern)
3348 rtx insn;
3350 insn = rtx_alloc (JUMP_INSN);
3351 INSN_UID (insn) = cur_insn_uid++;
3353 PATTERN (insn) = pattern;
3354 INSN_CODE (insn) = -1;
3355 LOG_LINKS (insn) = NULL;
3356 REG_NOTES (insn) = NULL;
3357 JUMP_LABEL (insn) = NULL;
3358 INSN_LOCATOR (insn) = 0;
3359 BLOCK_FOR_INSN (insn) = NULL;
3361 return insn;
3364 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3366 static rtx
3367 make_call_insn_raw (rtx pattern)
3369 rtx insn;
3371 insn = rtx_alloc (CALL_INSN);
3372 INSN_UID (insn) = cur_insn_uid++;
3374 PATTERN (insn) = pattern;
3375 INSN_CODE (insn) = -1;
3376 LOG_LINKS (insn) = NULL;
3377 REG_NOTES (insn) = NULL;
3378 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3379 INSN_LOCATOR (insn) = 0;
3380 BLOCK_FOR_INSN (insn) = NULL;
3382 return insn;
3385 /* Add INSN to the end of the doubly-linked list.
3386 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3388 void
3389 add_insn (rtx insn)
3391 PREV_INSN (insn) = last_insn;
3392 NEXT_INSN (insn) = 0;
3394 if (NULL != last_insn)
3395 NEXT_INSN (last_insn) = insn;
3397 if (NULL == first_insn)
3398 first_insn = insn;
3400 last_insn = insn;
3403 /* Add INSN into the doubly-linked list after insn AFTER. This and
3404 the next should be the only functions called to insert an insn once
3405 delay slots have been filled since only they know how to update a
3406 SEQUENCE. */
3408 void
3409 add_insn_after (rtx insn, rtx after)
3411 rtx next = NEXT_INSN (after);
3412 basic_block bb;
3414 gcc_assert (!optimize || !INSN_DELETED_P (after));
3416 NEXT_INSN (insn) = next;
3417 PREV_INSN (insn) = after;
3419 if (next)
3421 PREV_INSN (next) = insn;
3422 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3423 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3425 else if (last_insn == after)
3426 last_insn = insn;
3427 else
3429 struct sequence_stack *stack = seq_stack;
3430 /* Scan all pending sequences too. */
3431 for (; stack; stack = stack->next)
3432 if (after == stack->last)
3434 stack->last = insn;
3435 break;
3438 gcc_assert (stack);
3441 if (!BARRIER_P (after)
3442 && !BARRIER_P (insn)
3443 && (bb = BLOCK_FOR_INSN (after)))
3445 set_block_for_insn (insn, bb);
3446 if (INSN_P (insn))
3447 bb->flags |= BB_DIRTY;
3448 /* Should not happen as first in the BB is always
3449 either NOTE or LABEL. */
3450 if (BB_END (bb) == after
3451 /* Avoid clobbering of structure when creating new BB. */
3452 && !BARRIER_P (insn)
3453 && (!NOTE_P (insn)
3454 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3455 BB_END (bb) = insn;
3458 NEXT_INSN (after) = insn;
3459 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3461 rtx sequence = PATTERN (after);
3462 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3466 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3467 the previous should be the only functions called to insert an insn once
3468 delay slots have been filled since only they know how to update a
3469 SEQUENCE. */
3471 void
3472 add_insn_before (rtx insn, rtx before)
3474 rtx prev = PREV_INSN (before);
3475 basic_block bb;
3477 gcc_assert (!optimize || !INSN_DELETED_P (before));
3479 PREV_INSN (insn) = prev;
3480 NEXT_INSN (insn) = before;
3482 if (prev)
3484 NEXT_INSN (prev) = insn;
3485 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3487 rtx sequence = PATTERN (prev);
3488 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3491 else if (first_insn == before)
3492 first_insn = insn;
3493 else
3495 struct sequence_stack *stack = seq_stack;
3496 /* Scan all pending sequences too. */
3497 for (; stack; stack = stack->next)
3498 if (before == stack->first)
3500 stack->first = insn;
3501 break;
3504 gcc_assert (stack);
3507 if (!BARRIER_P (before)
3508 && !BARRIER_P (insn)
3509 && (bb = BLOCK_FOR_INSN (before)))
3511 set_block_for_insn (insn, bb);
3512 if (INSN_P (insn))
3513 bb->flags |= BB_DIRTY;
3514 /* Should not happen as first in the BB is always either NOTE or
3515 LABEL. */
3516 gcc_assert (BB_HEAD (bb) != insn
3517 /* Avoid clobbering of structure when creating new BB. */
3518 || BARRIER_P (insn)
3519 || (NOTE_P (insn)
3520 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_BASIC_BLOCK));
3523 PREV_INSN (before) = insn;
3524 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3525 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3528 /* Remove an insn from its doubly-linked list. This function knows how
3529 to handle sequences. */
3530 void
3531 remove_insn (rtx insn)
3533 rtx next = NEXT_INSN (insn);
3534 rtx prev = PREV_INSN (insn);
3535 basic_block bb;
3537 if (prev)
3539 NEXT_INSN (prev) = next;
3540 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3542 rtx sequence = PATTERN (prev);
3543 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3546 else if (first_insn == insn)
3547 first_insn = next;
3548 else
3550 struct sequence_stack *stack = seq_stack;
3551 /* Scan all pending sequences too. */
3552 for (; stack; stack = stack->next)
3553 if (insn == stack->first)
3555 stack->first = next;
3556 break;
3559 gcc_assert (stack);
3562 if (next)
3564 PREV_INSN (next) = prev;
3565 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3566 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3568 else if (last_insn == insn)
3569 last_insn = prev;
3570 else
3572 struct sequence_stack *stack = seq_stack;
3573 /* Scan all pending sequences too. */
3574 for (; stack; stack = stack->next)
3575 if (insn == stack->last)
3577 stack->last = prev;
3578 break;
3581 gcc_assert (stack);
3583 if (!BARRIER_P (insn)
3584 && (bb = BLOCK_FOR_INSN (insn)))
3586 if (INSN_P (insn))
3587 bb->flags |= BB_DIRTY;
3588 if (BB_HEAD (bb) == insn)
3590 /* Never ever delete the basic block note without deleting whole
3591 basic block. */
3592 gcc_assert (!NOTE_P (insn));
3593 BB_HEAD (bb) = next;
3595 if (BB_END (bb) == insn)
3596 BB_END (bb) = prev;
3600 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3602 void
3603 add_function_usage_to (rtx call_insn, rtx call_fusage)
3605 gcc_assert (call_insn && CALL_P (call_insn));
3607 /* Put the register usage information on the CALL. If there is already
3608 some usage information, put ours at the end. */
3609 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3611 rtx link;
3613 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3614 link = XEXP (link, 1))
3617 XEXP (link, 1) = call_fusage;
3619 else
3620 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3623 /* Delete all insns made since FROM.
3624 FROM becomes the new last instruction. */
3626 void
3627 delete_insns_since (rtx from)
3629 if (from == 0)
3630 first_insn = 0;
3631 else
3632 NEXT_INSN (from) = 0;
3633 last_insn = from;
3636 /* This function is deprecated, please use sequences instead.
3638 Move a consecutive bunch of insns to a different place in the chain.
3639 The insns to be moved are those between FROM and TO.
3640 They are moved to a new position after the insn AFTER.
3641 AFTER must not be FROM or TO or any insn in between.
3643 This function does not know about SEQUENCEs and hence should not be
3644 called after delay-slot filling has been done. */
3646 void
3647 reorder_insns_nobb (rtx from, rtx to, rtx after)
3649 /* Splice this bunch out of where it is now. */
3650 if (PREV_INSN (from))
3651 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3652 if (NEXT_INSN (to))
3653 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3654 if (last_insn == to)
3655 last_insn = PREV_INSN (from);
3656 if (first_insn == from)
3657 first_insn = NEXT_INSN (to);
3659 /* Make the new neighbors point to it and it to them. */
3660 if (NEXT_INSN (after))
3661 PREV_INSN (NEXT_INSN (after)) = to;
3663 NEXT_INSN (to) = NEXT_INSN (after);
3664 PREV_INSN (from) = after;
3665 NEXT_INSN (after) = from;
3666 if (after == last_insn)
3667 last_insn = to;
3670 /* Same as function above, but take care to update BB boundaries. */
3671 void
3672 reorder_insns (rtx from, rtx to, rtx after)
3674 rtx prev = PREV_INSN (from);
3675 basic_block bb, bb2;
3677 reorder_insns_nobb (from, to, after);
3679 if (!BARRIER_P (after)
3680 && (bb = BLOCK_FOR_INSN (after)))
3682 rtx x;
3683 bb->flags |= BB_DIRTY;
3685 if (!BARRIER_P (from)
3686 && (bb2 = BLOCK_FOR_INSN (from)))
3688 if (BB_END (bb2) == to)
3689 BB_END (bb2) = prev;
3690 bb2->flags |= BB_DIRTY;
3693 if (BB_END (bb) == after)
3694 BB_END (bb) = to;
3696 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3697 if (!BARRIER_P (x))
3698 set_block_for_insn (x, bb);
3703 /* Emit insn(s) of given code and pattern
3704 at a specified place within the doubly-linked list.
3706 All of the emit_foo global entry points accept an object
3707 X which is either an insn list or a PATTERN of a single
3708 instruction.
3710 There are thus a few canonical ways to generate code and
3711 emit it at a specific place in the instruction stream. For
3712 example, consider the instruction named SPOT and the fact that
3713 we would like to emit some instructions before SPOT. We might
3714 do it like this:
3716 start_sequence ();
3717 ... emit the new instructions ...
3718 insns_head = get_insns ();
3719 end_sequence ();
3721 emit_insn_before (insns_head, SPOT);
3723 It used to be common to generate SEQUENCE rtl instead, but that
3724 is a relic of the past which no longer occurs. The reason is that
3725 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3726 generated would almost certainly die right after it was created. */
3728 /* Make X be output before the instruction BEFORE. */
3731 emit_insn_before_noloc (rtx x, rtx before)
3733 rtx last = before;
3734 rtx insn;
3736 gcc_assert (before);
3738 if (x == NULL_RTX)
3739 return last;
3741 switch (GET_CODE (x))
3743 case INSN:
3744 case JUMP_INSN:
3745 case CALL_INSN:
3746 case CODE_LABEL:
3747 case BARRIER:
3748 case NOTE:
3749 insn = x;
3750 while (insn)
3752 rtx next = NEXT_INSN (insn);
3753 add_insn_before (insn, before);
3754 last = insn;
3755 insn = next;
3757 break;
3759 #ifdef ENABLE_RTL_CHECKING
3760 case SEQUENCE:
3761 gcc_unreachable ();
3762 break;
3763 #endif
3765 default:
3766 last = make_insn_raw (x);
3767 add_insn_before (last, before);
3768 break;
3771 return last;
3774 /* Make an instruction with body X and code JUMP_INSN
3775 and output it before the instruction BEFORE. */
3778 emit_jump_insn_before_noloc (rtx x, rtx before)
3780 rtx insn, last = NULL_RTX;
3782 gcc_assert (before);
3784 switch (GET_CODE (x))
3786 case INSN:
3787 case JUMP_INSN:
3788 case CALL_INSN:
3789 case CODE_LABEL:
3790 case BARRIER:
3791 case NOTE:
3792 insn = x;
3793 while (insn)
3795 rtx next = NEXT_INSN (insn);
3796 add_insn_before (insn, before);
3797 last = insn;
3798 insn = next;
3800 break;
3802 #ifdef ENABLE_RTL_CHECKING
3803 case SEQUENCE:
3804 gcc_unreachable ();
3805 break;
3806 #endif
3808 default:
3809 last = make_jump_insn_raw (x);
3810 add_insn_before (last, before);
3811 break;
3814 return last;
3817 /* Make an instruction with body X and code CALL_INSN
3818 and output it before the instruction BEFORE. */
3821 emit_call_insn_before_noloc (rtx x, rtx before)
3823 rtx last = NULL_RTX, insn;
3825 gcc_assert (before);
3827 switch (GET_CODE (x))
3829 case INSN:
3830 case JUMP_INSN:
3831 case CALL_INSN:
3832 case CODE_LABEL:
3833 case BARRIER:
3834 case NOTE:
3835 insn = x;
3836 while (insn)
3838 rtx next = NEXT_INSN (insn);
3839 add_insn_before (insn, before);
3840 last = insn;
3841 insn = next;
3843 break;
3845 #ifdef ENABLE_RTL_CHECKING
3846 case SEQUENCE:
3847 gcc_unreachable ();
3848 break;
3849 #endif
3851 default:
3852 last = make_call_insn_raw (x);
3853 add_insn_before (last, before);
3854 break;
3857 return last;
3860 /* Make an insn of code BARRIER
3861 and output it before the insn BEFORE. */
3864 emit_barrier_before (rtx before)
3866 rtx insn = rtx_alloc (BARRIER);
3868 INSN_UID (insn) = cur_insn_uid++;
3870 add_insn_before (insn, before);
3871 return insn;
3874 /* Emit the label LABEL before the insn BEFORE. */
3877 emit_label_before (rtx label, rtx before)
3879 /* This can be called twice for the same label as a result of the
3880 confusion that follows a syntax error! So make it harmless. */
3881 if (INSN_UID (label) == 0)
3883 INSN_UID (label) = cur_insn_uid++;
3884 add_insn_before (label, before);
3887 return label;
3890 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3893 emit_note_before (int subtype, rtx before)
3895 rtx note = rtx_alloc (NOTE);
3896 INSN_UID (note) = cur_insn_uid++;
3897 #ifndef USE_MAPPED_LOCATION
3898 NOTE_SOURCE_FILE (note) = 0;
3899 #endif
3900 NOTE_LINE_NUMBER (note) = subtype;
3901 BLOCK_FOR_INSN (note) = NULL;
3903 add_insn_before (note, before);
3904 return note;
3907 /* Helper for emit_insn_after, handles lists of instructions
3908 efficiently. */
3910 static rtx emit_insn_after_1 (rtx, rtx);
3912 static rtx
3913 emit_insn_after_1 (rtx first, rtx after)
3915 rtx last;
3916 rtx after_after;
3917 basic_block bb;
3919 if (!BARRIER_P (after)
3920 && (bb = BLOCK_FOR_INSN (after)))
3922 bb->flags |= BB_DIRTY;
3923 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3924 if (!BARRIER_P (last))
3925 set_block_for_insn (last, bb);
3926 if (!BARRIER_P (last))
3927 set_block_for_insn (last, bb);
3928 if (BB_END (bb) == after)
3929 BB_END (bb) = last;
3931 else
3932 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3933 continue;
3935 after_after = NEXT_INSN (after);
3937 NEXT_INSN (after) = first;
3938 PREV_INSN (first) = after;
3939 NEXT_INSN (last) = after_after;
3940 if (after_after)
3941 PREV_INSN (after_after) = last;
3943 if (after == last_insn)
3944 last_insn = last;
3945 return last;
3948 /* Make X be output after the insn AFTER. */
3951 emit_insn_after_noloc (rtx x, rtx after)
3953 rtx last = after;
3955 gcc_assert (after);
3957 if (x == NULL_RTX)
3958 return last;
3960 switch (GET_CODE (x))
3962 case INSN:
3963 case JUMP_INSN:
3964 case CALL_INSN:
3965 case CODE_LABEL:
3966 case BARRIER:
3967 case NOTE:
3968 last = emit_insn_after_1 (x, after);
3969 break;
3971 #ifdef ENABLE_RTL_CHECKING
3972 case SEQUENCE:
3973 gcc_unreachable ();
3974 break;
3975 #endif
3977 default:
3978 last = make_insn_raw (x);
3979 add_insn_after (last, after);
3980 break;
3983 return last;
3987 /* Make an insn of code JUMP_INSN with body X
3988 and output it after the insn AFTER. */
3991 emit_jump_insn_after_noloc (rtx x, rtx after)
3993 rtx last;
3995 gcc_assert (after);
3997 switch (GET_CODE (x))
3999 case INSN:
4000 case JUMP_INSN:
4001 case CALL_INSN:
4002 case CODE_LABEL:
4003 case BARRIER:
4004 case NOTE:
4005 last = emit_insn_after_1 (x, after);
4006 break;
4008 #ifdef ENABLE_RTL_CHECKING
4009 case SEQUENCE:
4010 gcc_unreachable ();
4011 break;
4012 #endif
4014 default:
4015 last = make_jump_insn_raw (x);
4016 add_insn_after (last, after);
4017 break;
4020 return last;
4023 /* Make an instruction with body X and code CALL_INSN
4024 and output it after the instruction AFTER. */
4027 emit_call_insn_after_noloc (rtx x, rtx after)
4029 rtx last;
4031 gcc_assert (after);
4033 switch (GET_CODE (x))
4035 case INSN:
4036 case JUMP_INSN:
4037 case CALL_INSN:
4038 case CODE_LABEL:
4039 case BARRIER:
4040 case NOTE:
4041 last = emit_insn_after_1 (x, after);
4042 break;
4044 #ifdef ENABLE_RTL_CHECKING
4045 case SEQUENCE:
4046 gcc_unreachable ();
4047 break;
4048 #endif
4050 default:
4051 last = make_call_insn_raw (x);
4052 add_insn_after (last, after);
4053 break;
4056 return last;
4059 /* Make an insn of code BARRIER
4060 and output it after the insn AFTER. */
4063 emit_barrier_after (rtx after)
4065 rtx insn = rtx_alloc (BARRIER);
4067 INSN_UID (insn) = cur_insn_uid++;
4069 add_insn_after (insn, after);
4070 return insn;
4073 /* Emit the label LABEL after the insn AFTER. */
4076 emit_label_after (rtx label, rtx after)
4078 /* This can be called twice for the same label
4079 as a result of the confusion that follows a syntax error!
4080 So make it harmless. */
4081 if (INSN_UID (label) == 0)
4083 INSN_UID (label) = cur_insn_uid++;
4084 add_insn_after (label, after);
4087 return label;
4090 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4093 emit_note_after (int subtype, rtx after)
4095 rtx note = rtx_alloc (NOTE);
4096 INSN_UID (note) = cur_insn_uid++;
4097 #ifndef USE_MAPPED_LOCATION
4098 NOTE_SOURCE_FILE (note) = 0;
4099 #endif
4100 NOTE_LINE_NUMBER (note) = subtype;
4101 BLOCK_FOR_INSN (note) = NULL;
4102 add_insn_after (note, after);
4103 return note;
4106 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4108 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4110 rtx last = emit_insn_after_noloc (pattern, after);
4112 if (pattern == NULL_RTX || !loc)
4113 return last;
4115 after = NEXT_INSN (after);
4116 while (1)
4118 if (active_insn_p (after) && !INSN_LOCATOR (after))
4119 INSN_LOCATOR (after) = loc;
4120 if (after == last)
4121 break;
4122 after = NEXT_INSN (after);
4124 return last;
4127 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4129 emit_insn_after (rtx pattern, rtx after)
4131 if (INSN_P (after))
4132 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4133 else
4134 return emit_insn_after_noloc (pattern, after);
4137 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4139 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4141 rtx last = emit_jump_insn_after_noloc (pattern, after);
4143 if (pattern == NULL_RTX || !loc)
4144 return last;
4146 after = NEXT_INSN (after);
4147 while (1)
4149 if (active_insn_p (after) && !INSN_LOCATOR (after))
4150 INSN_LOCATOR (after) = loc;
4151 if (after == last)
4152 break;
4153 after = NEXT_INSN (after);
4155 return last;
4158 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4160 emit_jump_insn_after (rtx pattern, rtx after)
4162 if (INSN_P (after))
4163 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4164 else
4165 return emit_jump_insn_after_noloc (pattern, after);
4168 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4170 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4172 rtx last = emit_call_insn_after_noloc (pattern, after);
4174 if (pattern == NULL_RTX || !loc)
4175 return last;
4177 after = NEXT_INSN (after);
4178 while (1)
4180 if (active_insn_p (after) && !INSN_LOCATOR (after))
4181 INSN_LOCATOR (after) = loc;
4182 if (after == last)
4183 break;
4184 after = NEXT_INSN (after);
4186 return last;
4189 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4191 emit_call_insn_after (rtx pattern, rtx after)
4193 if (INSN_P (after))
4194 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4195 else
4196 return emit_call_insn_after_noloc (pattern, after);
4199 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4201 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4203 rtx first = PREV_INSN (before);
4204 rtx last = emit_insn_before_noloc (pattern, before);
4206 if (pattern == NULL_RTX || !loc)
4207 return last;
4209 first = NEXT_INSN (first);
4210 while (1)
4212 if (active_insn_p (first) && !INSN_LOCATOR (first))
4213 INSN_LOCATOR (first) = loc;
4214 if (first == last)
4215 break;
4216 first = NEXT_INSN (first);
4218 return last;
4221 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4223 emit_insn_before (rtx pattern, rtx before)
4225 if (INSN_P (before))
4226 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4227 else
4228 return emit_insn_before_noloc (pattern, before);
4231 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4233 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4235 rtx first = PREV_INSN (before);
4236 rtx last = emit_jump_insn_before_noloc (pattern, before);
4238 if (pattern == NULL_RTX)
4239 return last;
4241 first = NEXT_INSN (first);
4242 while (1)
4244 if (active_insn_p (first) && !INSN_LOCATOR (first))
4245 INSN_LOCATOR (first) = loc;
4246 if (first == last)
4247 break;
4248 first = NEXT_INSN (first);
4250 return last;
4253 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4255 emit_jump_insn_before (rtx pattern, rtx before)
4257 if (INSN_P (before))
4258 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4259 else
4260 return emit_jump_insn_before_noloc (pattern, before);
4263 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4265 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4267 rtx first = PREV_INSN (before);
4268 rtx last = emit_call_insn_before_noloc (pattern, before);
4270 if (pattern == NULL_RTX)
4271 return last;
4273 first = NEXT_INSN (first);
4274 while (1)
4276 if (active_insn_p (first) && !INSN_LOCATOR (first))
4277 INSN_LOCATOR (first) = loc;
4278 if (first == last)
4279 break;
4280 first = NEXT_INSN (first);
4282 return last;
4285 /* like emit_call_insn_before_noloc,
4286 but set insn_locator according to before. */
4288 emit_call_insn_before (rtx pattern, rtx before)
4290 if (INSN_P (before))
4291 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4292 else
4293 return emit_call_insn_before_noloc (pattern, before);
4296 /* Take X and emit it at the end of the doubly-linked
4297 INSN list.
4299 Returns the last insn emitted. */
4302 emit_insn (rtx x)
4304 rtx last = last_insn;
4305 rtx insn;
4307 if (x == NULL_RTX)
4308 return last;
4310 switch (GET_CODE (x))
4312 case INSN:
4313 case JUMP_INSN:
4314 case CALL_INSN:
4315 case CODE_LABEL:
4316 case BARRIER:
4317 case NOTE:
4318 insn = x;
4319 while (insn)
4321 rtx next = NEXT_INSN (insn);
4322 add_insn (insn);
4323 last = insn;
4324 insn = next;
4326 break;
4328 #ifdef ENABLE_RTL_CHECKING
4329 case SEQUENCE:
4330 gcc_unreachable ();
4331 break;
4332 #endif
4334 default:
4335 last = make_insn_raw (x);
4336 add_insn (last);
4337 break;
4340 return last;
4343 /* Make an insn of code JUMP_INSN with pattern X
4344 and add it to the end of the doubly-linked list. */
4347 emit_jump_insn (rtx x)
4349 rtx last = NULL_RTX, insn;
4351 switch (GET_CODE (x))
4353 case INSN:
4354 case JUMP_INSN:
4355 case CALL_INSN:
4356 case CODE_LABEL:
4357 case BARRIER:
4358 case NOTE:
4359 insn = x;
4360 while (insn)
4362 rtx next = NEXT_INSN (insn);
4363 add_insn (insn);
4364 last = insn;
4365 insn = next;
4367 break;
4369 #ifdef ENABLE_RTL_CHECKING
4370 case SEQUENCE:
4371 gcc_unreachable ();
4372 break;
4373 #endif
4375 default:
4376 last = make_jump_insn_raw (x);
4377 add_insn (last);
4378 break;
4381 return last;
4384 /* Make an insn of code CALL_INSN with pattern X
4385 and add it to the end of the doubly-linked list. */
4388 emit_call_insn (rtx x)
4390 rtx insn;
4392 switch (GET_CODE (x))
4394 case INSN:
4395 case JUMP_INSN:
4396 case CALL_INSN:
4397 case CODE_LABEL:
4398 case BARRIER:
4399 case NOTE:
4400 insn = emit_insn (x);
4401 break;
4403 #ifdef ENABLE_RTL_CHECKING
4404 case SEQUENCE:
4405 gcc_unreachable ();
4406 break;
4407 #endif
4409 default:
4410 insn = make_call_insn_raw (x);
4411 add_insn (insn);
4412 break;
4415 return insn;
4418 /* Add the label LABEL to the end of the doubly-linked list. */
4421 emit_label (rtx label)
4423 /* This can be called twice for the same label
4424 as a result of the confusion that follows a syntax error!
4425 So make it harmless. */
4426 if (INSN_UID (label) == 0)
4428 INSN_UID (label) = cur_insn_uid++;
4429 add_insn (label);
4431 return label;
4434 /* Make an insn of code BARRIER
4435 and add it to the end of the doubly-linked list. */
4438 emit_barrier (void)
4440 rtx barrier = rtx_alloc (BARRIER);
4441 INSN_UID (barrier) = cur_insn_uid++;
4442 add_insn (barrier);
4443 return barrier;
4446 /* Make line numbering NOTE insn for LOCATION add it to the end
4447 of the doubly-linked list, but only if line-numbers are desired for
4448 debugging info and it doesn't match the previous one. */
4451 emit_line_note (location_t location)
4453 rtx note;
4455 #ifdef USE_MAPPED_LOCATION
4456 if (location == last_location)
4457 return NULL_RTX;
4458 #else
4459 if (location.file && last_location.file
4460 && !strcmp (location.file, last_location.file)
4461 && location.line == last_location.line)
4462 return NULL_RTX;
4463 #endif
4464 last_location = location;
4466 if (no_line_numbers)
4468 cur_insn_uid++;
4469 return NULL_RTX;
4472 #ifdef USE_MAPPED_LOCATION
4473 note = emit_note ((int) location);
4474 #else
4475 note = emit_note (location.line);
4476 NOTE_SOURCE_FILE (note) = location.file;
4477 #endif
4479 return note;
4482 /* Emit a copy of note ORIG. */
4485 emit_note_copy (rtx orig)
4487 rtx note;
4489 note = rtx_alloc (NOTE);
4491 INSN_UID (note) = cur_insn_uid++;
4492 NOTE_DATA (note) = NOTE_DATA (orig);
4493 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4494 BLOCK_FOR_INSN (note) = NULL;
4495 add_insn (note);
4497 return note;
4500 /* Make an insn of code NOTE or type NOTE_NO
4501 and add it to the end of the doubly-linked list. */
4504 emit_note (int note_no)
4506 rtx note;
4508 note = rtx_alloc (NOTE);
4509 INSN_UID (note) = cur_insn_uid++;
4510 NOTE_LINE_NUMBER (note) = note_no;
4511 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4512 BLOCK_FOR_INSN (note) = NULL;
4513 add_insn (note);
4514 return note;
4517 /* Cause next statement to emit a line note even if the line number
4518 has not changed. */
4520 void
4521 force_next_line_note (void)
4523 #ifdef USE_MAPPED_LOCATION
4524 last_location = -1;
4525 #else
4526 last_location.line = -1;
4527 #endif
4530 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4531 note of this type already exists, remove it first. */
4534 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4536 rtx note = find_reg_note (insn, kind, NULL_RTX);
4538 switch (kind)
4540 case REG_EQUAL:
4541 case REG_EQUIV:
4542 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4543 has multiple sets (some callers assume single_set
4544 means the insn only has one set, when in fact it
4545 means the insn only has one * useful * set). */
4546 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4548 gcc_assert (!note);
4549 return NULL_RTX;
4552 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4553 It serves no useful purpose and breaks eliminate_regs. */
4554 if (GET_CODE (datum) == ASM_OPERANDS)
4555 return NULL_RTX;
4556 break;
4558 default:
4559 break;
4562 if (note)
4564 XEXP (note, 0) = datum;
4565 return note;
4568 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4569 return REG_NOTES (insn);
4572 /* Return an indication of which type of insn should have X as a body.
4573 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4575 static enum rtx_code
4576 classify_insn (rtx x)
4578 if (LABEL_P (x))
4579 return CODE_LABEL;
4580 if (GET_CODE (x) == CALL)
4581 return CALL_INSN;
4582 if (GET_CODE (x) == RETURN)
4583 return JUMP_INSN;
4584 if (GET_CODE (x) == SET)
4586 if (SET_DEST (x) == pc_rtx)
4587 return JUMP_INSN;
4588 else if (GET_CODE (SET_SRC (x)) == CALL)
4589 return CALL_INSN;
4590 else
4591 return INSN;
4593 if (GET_CODE (x) == PARALLEL)
4595 int j;
4596 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4597 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4598 return CALL_INSN;
4599 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4600 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4601 return JUMP_INSN;
4602 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4603 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4604 return CALL_INSN;
4606 return INSN;
4609 /* Emit the rtl pattern X as an appropriate kind of insn.
4610 If X is a label, it is simply added into the insn chain. */
4613 emit (rtx x)
4615 enum rtx_code code = classify_insn (x);
4617 switch (code)
4619 case CODE_LABEL:
4620 return emit_label (x);
4621 case INSN:
4622 return emit_insn (x);
4623 case JUMP_INSN:
4625 rtx insn = emit_jump_insn (x);
4626 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4627 return emit_barrier ();
4628 return insn;
4630 case CALL_INSN:
4631 return emit_call_insn (x);
4632 default:
4633 gcc_unreachable ();
4637 /* Space for free sequence stack entries. */
4638 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4640 /* Begin emitting insns to a sequence. If this sequence will contain
4641 something that might cause the compiler to pop arguments to function
4642 calls (because those pops have previously been deferred; see
4643 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4644 before calling this function. That will ensure that the deferred
4645 pops are not accidentally emitted in the middle of this sequence. */
4647 void
4648 start_sequence (void)
4650 struct sequence_stack *tem;
4652 if (free_sequence_stack != NULL)
4654 tem = free_sequence_stack;
4655 free_sequence_stack = tem->next;
4657 else
4658 tem = ggc_alloc (sizeof (struct sequence_stack));
4660 tem->next = seq_stack;
4661 tem->first = first_insn;
4662 tem->last = last_insn;
4664 seq_stack = tem;
4666 first_insn = 0;
4667 last_insn = 0;
4670 /* Set up the insn chain starting with FIRST as the current sequence,
4671 saving the previously current one. See the documentation for
4672 start_sequence for more information about how to use this function. */
4674 void
4675 push_to_sequence (rtx first)
4677 rtx last;
4679 start_sequence ();
4681 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4683 first_insn = first;
4684 last_insn = last;
4687 /* Set up the outer-level insn chain
4688 as the current sequence, saving the previously current one. */
4690 void
4691 push_topmost_sequence (void)
4693 struct sequence_stack *stack, *top = NULL;
4695 start_sequence ();
4697 for (stack = seq_stack; stack; stack = stack->next)
4698 top = stack;
4700 first_insn = top->first;
4701 last_insn = top->last;
4704 /* After emitting to the outer-level insn chain, update the outer-level
4705 insn chain, and restore the previous saved state. */
4707 void
4708 pop_topmost_sequence (void)
4710 struct sequence_stack *stack, *top = NULL;
4712 for (stack = seq_stack; stack; stack = stack->next)
4713 top = stack;
4715 top->first = first_insn;
4716 top->last = last_insn;
4718 end_sequence ();
4721 /* After emitting to a sequence, restore previous saved state.
4723 To get the contents of the sequence just made, you must call
4724 `get_insns' *before* calling here.
4726 If the compiler might have deferred popping arguments while
4727 generating this sequence, and this sequence will not be immediately
4728 inserted into the instruction stream, use do_pending_stack_adjust
4729 before calling get_insns. That will ensure that the deferred
4730 pops are inserted into this sequence, and not into some random
4731 location in the instruction stream. See INHIBIT_DEFER_POP for more
4732 information about deferred popping of arguments. */
4734 void
4735 end_sequence (void)
4737 struct sequence_stack *tem = seq_stack;
4739 first_insn = tem->first;
4740 last_insn = tem->last;
4741 seq_stack = tem->next;
4743 memset (tem, 0, sizeof (*tem));
4744 tem->next = free_sequence_stack;
4745 free_sequence_stack = tem;
4748 /* Return 1 if currently emitting into a sequence. */
4751 in_sequence_p (void)
4753 return seq_stack != 0;
4756 /* Put the various virtual registers into REGNO_REG_RTX. */
4758 static void
4759 init_virtual_regs (struct emit_status *es)
4761 rtx *ptr = es->x_regno_reg_rtx;
4762 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4763 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4764 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4765 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4766 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4770 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4771 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4772 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4773 static int copy_insn_n_scratches;
4775 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4776 copied an ASM_OPERANDS.
4777 In that case, it is the original input-operand vector. */
4778 static rtvec orig_asm_operands_vector;
4780 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4781 copied an ASM_OPERANDS.
4782 In that case, it is the copied input-operand vector. */
4783 static rtvec copy_asm_operands_vector;
4785 /* Likewise for the constraints vector. */
4786 static rtvec orig_asm_constraints_vector;
4787 static rtvec copy_asm_constraints_vector;
4789 /* Recursively create a new copy of an rtx for copy_insn.
4790 This function differs from copy_rtx in that it handles SCRATCHes and
4791 ASM_OPERANDs properly.
4792 Normally, this function is not used directly; use copy_insn as front end.
4793 However, you could first copy an insn pattern with copy_insn and then use
4794 this function afterwards to properly copy any REG_NOTEs containing
4795 SCRATCHes. */
4798 copy_insn_1 (rtx orig)
4800 rtx copy;
4801 int i, j;
4802 RTX_CODE code;
4803 const char *format_ptr;
4805 code = GET_CODE (orig);
4807 switch (code)
4809 case REG:
4810 case CONST_INT:
4811 case CONST_DOUBLE:
4812 case CONST_VECTOR:
4813 case SYMBOL_REF:
4814 case CODE_LABEL:
4815 case PC:
4816 case CC0:
4817 return orig;
4818 case CLOBBER:
4819 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4820 return orig;
4821 break;
4823 case SCRATCH:
4824 for (i = 0; i < copy_insn_n_scratches; i++)
4825 if (copy_insn_scratch_in[i] == orig)
4826 return copy_insn_scratch_out[i];
4827 break;
4829 case CONST:
4830 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4831 a LABEL_REF, it isn't sharable. */
4832 if (GET_CODE (XEXP (orig, 0)) == PLUS
4833 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4834 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4835 return orig;
4836 break;
4838 /* A MEM with a constant address is not sharable. The problem is that
4839 the constant address may need to be reloaded. If the mem is shared,
4840 then reloading one copy of this mem will cause all copies to appear
4841 to have been reloaded. */
4843 default:
4844 break;
4847 /* Copy the various flags, fields, and other information. We assume
4848 that all fields need copying, and then clear the fields that should
4849 not be copied. That is the sensible default behavior, and forces
4850 us to explicitly document why we are *not* copying a flag. */
4851 copy = shallow_copy_rtx (orig);
4853 /* We do not copy the USED flag, which is used as a mark bit during
4854 walks over the RTL. */
4855 RTX_FLAG (copy, used) = 0;
4857 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4858 if (INSN_P (orig))
4860 RTX_FLAG (copy, jump) = 0;
4861 RTX_FLAG (copy, call) = 0;
4862 RTX_FLAG (copy, frame_related) = 0;
4865 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4867 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4868 switch (*format_ptr++)
4870 case 'e':
4871 if (XEXP (orig, i) != NULL)
4872 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4873 break;
4875 case 'E':
4876 case 'V':
4877 if (XVEC (orig, i) == orig_asm_constraints_vector)
4878 XVEC (copy, i) = copy_asm_constraints_vector;
4879 else if (XVEC (orig, i) == orig_asm_operands_vector)
4880 XVEC (copy, i) = copy_asm_operands_vector;
4881 else if (XVEC (orig, i) != NULL)
4883 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4884 for (j = 0; j < XVECLEN (copy, i); j++)
4885 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4887 break;
4889 case 't':
4890 case 'w':
4891 case 'i':
4892 case 's':
4893 case 'S':
4894 case 'u':
4895 case '0':
4896 /* These are left unchanged. */
4897 break;
4899 default:
4900 gcc_unreachable ();
4903 if (code == SCRATCH)
4905 i = copy_insn_n_scratches++;
4906 gcc_assert (i < MAX_RECOG_OPERANDS);
4907 copy_insn_scratch_in[i] = orig;
4908 copy_insn_scratch_out[i] = copy;
4910 else if (code == ASM_OPERANDS)
4912 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4913 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4914 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4915 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4918 return copy;
4921 /* Create a new copy of an rtx.
4922 This function differs from copy_rtx in that it handles SCRATCHes and
4923 ASM_OPERANDs properly.
4924 INSN doesn't really have to be a full INSN; it could be just the
4925 pattern. */
4927 copy_insn (rtx insn)
4929 copy_insn_n_scratches = 0;
4930 orig_asm_operands_vector = 0;
4931 orig_asm_constraints_vector = 0;
4932 copy_asm_operands_vector = 0;
4933 copy_asm_constraints_vector = 0;
4934 return copy_insn_1 (insn);
4937 /* Initialize data structures and variables in this file
4938 before generating rtl for each function. */
4940 void
4941 init_emit (void)
4943 struct function *f = cfun;
4945 f->emit = ggc_alloc (sizeof (struct emit_status));
4946 first_insn = NULL;
4947 last_insn = NULL;
4948 cur_insn_uid = 1;
4949 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4950 last_location = UNKNOWN_LOCATION;
4951 first_label_num = label_num;
4952 seq_stack = NULL;
4954 /* Init the tables that describe all the pseudo regs. */
4956 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4958 f->emit->regno_pointer_align
4959 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
4960 * sizeof (unsigned char));
4962 regno_reg_rtx
4963 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
4965 /* Put copies of all the hard registers into regno_reg_rtx. */
4966 memcpy (regno_reg_rtx,
4967 static_regno_reg_rtx,
4968 FIRST_PSEUDO_REGISTER * sizeof (rtx));
4970 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4971 init_virtual_regs (f->emit);
4973 /* Indicate that the virtual registers and stack locations are
4974 all pointers. */
4975 REG_POINTER (stack_pointer_rtx) = 1;
4976 REG_POINTER (frame_pointer_rtx) = 1;
4977 REG_POINTER (hard_frame_pointer_rtx) = 1;
4978 REG_POINTER (arg_pointer_rtx) = 1;
4980 REG_POINTER (virtual_incoming_args_rtx) = 1;
4981 REG_POINTER (virtual_stack_vars_rtx) = 1;
4982 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4983 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4984 REG_POINTER (virtual_cfa_rtx) = 1;
4986 #ifdef STACK_BOUNDARY
4987 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4988 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4989 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4990 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4992 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4993 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4994 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4995 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4996 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
4997 #endif
4999 #ifdef INIT_EXPANDERS
5000 INIT_EXPANDERS;
5001 #endif
5004 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5006 static rtx
5007 gen_const_vector (enum machine_mode mode, int constant)
5009 rtx tem;
5010 rtvec v;
5011 int units, i;
5012 enum machine_mode inner;
5014 units = GET_MODE_NUNITS (mode);
5015 inner = GET_MODE_INNER (mode);
5017 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5019 v = rtvec_alloc (units);
5021 /* We need to call this function after we set the scalar const_tiny_rtx
5022 entries. */
5023 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5025 for (i = 0; i < units; ++i)
5026 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5028 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5029 return tem;
5032 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5033 all elements are zero, and the one vector when all elements are one. */
5035 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5037 enum machine_mode inner = GET_MODE_INNER (mode);
5038 int nunits = GET_MODE_NUNITS (mode);
5039 rtx x;
5040 int i;
5042 /* Check to see if all of the elements have the same value. */
5043 x = RTVEC_ELT (v, nunits - 1);
5044 for (i = nunits - 2; i >= 0; i--)
5045 if (RTVEC_ELT (v, i) != x)
5046 break;
5048 /* If the values are all the same, check to see if we can use one of the
5049 standard constant vectors. */
5050 if (i == -1)
5052 if (x == CONST0_RTX (inner))
5053 return CONST0_RTX (mode);
5054 else if (x == CONST1_RTX (inner))
5055 return CONST1_RTX (mode);
5058 return gen_rtx_raw_CONST_VECTOR (mode, v);
5061 /* Create some permanent unique rtl objects shared between all functions.
5062 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5064 void
5065 init_emit_once (int line_numbers)
5067 int i;
5068 enum machine_mode mode;
5069 enum machine_mode double_mode;
5071 /* We need reg_raw_mode, so initialize the modes now. */
5072 init_reg_modes_once ();
5074 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5075 tables. */
5076 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5077 const_int_htab_eq, NULL);
5079 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5080 const_double_htab_eq, NULL);
5082 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5083 mem_attrs_htab_eq, NULL);
5084 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5085 reg_attrs_htab_eq, NULL);
5087 no_line_numbers = ! line_numbers;
5089 /* Compute the word and byte modes. */
5091 byte_mode = VOIDmode;
5092 word_mode = VOIDmode;
5093 double_mode = VOIDmode;
5095 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5096 mode != VOIDmode;
5097 mode = GET_MODE_WIDER_MODE (mode))
5099 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5100 && byte_mode == VOIDmode)
5101 byte_mode = mode;
5103 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5104 && word_mode == VOIDmode)
5105 word_mode = mode;
5108 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5109 mode != VOIDmode;
5110 mode = GET_MODE_WIDER_MODE (mode))
5112 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5113 && double_mode == VOIDmode)
5114 double_mode = mode;
5117 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5119 /* Assign register numbers to the globally defined register rtx.
5120 This must be done at runtime because the register number field
5121 is in a union and some compilers can't initialize unions. */
5123 pc_rtx = gen_rtx_PC (VOIDmode);
5124 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5125 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5126 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5127 if (hard_frame_pointer_rtx == 0)
5128 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
5129 HARD_FRAME_POINTER_REGNUM);
5130 if (arg_pointer_rtx == 0)
5131 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5132 virtual_incoming_args_rtx =
5133 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5134 virtual_stack_vars_rtx =
5135 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5136 virtual_stack_dynamic_rtx =
5137 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5138 virtual_outgoing_args_rtx =
5139 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5140 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5142 /* Initialize RTL for commonly used hard registers. These are
5143 copied into regno_reg_rtx as we begin to compile each function. */
5144 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5145 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5147 #ifdef INIT_EXPANDERS
5148 /* This is to initialize {init|mark|free}_machine_status before the first
5149 call to push_function_context_to. This is needed by the Chill front
5150 end which calls push_function_context_to before the first call to
5151 init_function_start. */
5152 INIT_EXPANDERS;
5153 #endif
5155 /* Create the unique rtx's for certain rtx codes and operand values. */
5157 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5158 tries to use these variables. */
5159 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5160 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5161 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5163 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5164 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5165 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5166 else
5167 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5169 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5170 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5171 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5172 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5173 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5174 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5175 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5177 dconsthalf = dconst1;
5178 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5180 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5182 /* Initialize mathematical constants for constant folding builtins.
5183 These constants need to be given to at least 160 bits precision. */
5184 real_from_string (&dconstpi,
5185 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5186 real_from_string (&dconste,
5187 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5189 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5191 REAL_VALUE_TYPE *r =
5192 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5194 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5195 mode != VOIDmode;
5196 mode = GET_MODE_WIDER_MODE (mode))
5197 const_tiny_rtx[i][(int) mode] =
5198 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5200 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5201 mode != VOIDmode;
5202 mode = GET_MODE_WIDER_MODE (mode))
5203 const_tiny_rtx[i][(int) mode] =
5204 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5206 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5208 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5209 mode != VOIDmode;
5210 mode = GET_MODE_WIDER_MODE (mode))
5211 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5213 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5214 mode != VOIDmode;
5215 mode = GET_MODE_WIDER_MODE (mode))
5216 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5219 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5220 mode != VOIDmode;
5221 mode = GET_MODE_WIDER_MODE (mode))
5223 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5224 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5227 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5228 mode != VOIDmode;
5229 mode = GET_MODE_WIDER_MODE (mode))
5231 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5232 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5235 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5236 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5237 const_tiny_rtx[0][i] = const0_rtx;
5239 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5240 if (STORE_FLAG_VALUE == 1)
5241 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5243 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5244 return_address_pointer_rtx
5245 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5246 #endif
5248 #ifdef STATIC_CHAIN_REGNUM
5249 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5251 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5252 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5253 static_chain_incoming_rtx
5254 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5255 else
5256 #endif
5257 static_chain_incoming_rtx = static_chain_rtx;
5258 #endif
5260 #ifdef STATIC_CHAIN
5261 static_chain_rtx = STATIC_CHAIN;
5263 #ifdef STATIC_CHAIN_INCOMING
5264 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5265 #else
5266 static_chain_incoming_rtx = static_chain_rtx;
5267 #endif
5268 #endif
5270 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5271 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5274 /* Produce exact duplicate of insn INSN after AFTER.
5275 Care updating of libcall regions if present. */
5278 emit_copy_of_insn_after (rtx insn, rtx after)
5280 rtx new;
5281 rtx note1, note2, link;
5283 switch (GET_CODE (insn))
5285 case INSN:
5286 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5287 break;
5289 case JUMP_INSN:
5290 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5291 break;
5293 case CALL_INSN:
5294 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5295 if (CALL_INSN_FUNCTION_USAGE (insn))
5296 CALL_INSN_FUNCTION_USAGE (new)
5297 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5298 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5299 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5300 break;
5302 default:
5303 gcc_unreachable ();
5306 /* Update LABEL_NUSES. */
5307 mark_jump_label (PATTERN (new), new, 0);
5309 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5311 /* If the old insn is frame related, then so is the new one. This is
5312 primarily needed for IA-64 unwind info which marks epilogue insns,
5313 which may be duplicated by the basic block reordering code. */
5314 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5316 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5317 make them. */
5318 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5319 if (REG_NOTE_KIND (link) != REG_LABEL)
5321 if (GET_CODE (link) == EXPR_LIST)
5322 REG_NOTES (new)
5323 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5324 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5325 else
5326 REG_NOTES (new)
5327 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5328 XEXP (link, 0), REG_NOTES (new));
5331 /* Fix the libcall sequences. */
5332 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5334 rtx p = new;
5335 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5336 p = PREV_INSN (p);
5337 XEXP (note1, 0) = p;
5338 XEXP (note2, 0) = new;
5340 INSN_CODE (new) = INSN_CODE (insn);
5341 return new;
5344 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5346 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5348 if (hard_reg_clobbers[mode][regno])
5349 return hard_reg_clobbers[mode][regno];
5350 else
5351 return (hard_reg_clobbers[mode][regno] =
5352 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5355 #include "gt-emit-rtl.h"