1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Contracts
; use Contracts
;
30 with Debug
; use Debug
;
31 with Elists
; use Elists
;
32 with Einfo
; use Einfo
;
33 with Errout
; use Errout
;
34 with Eval_Fat
; use Eval_Fat
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch9
; use Exp_Ch9
;
37 with Exp_Disp
; use Exp_Disp
;
38 with Exp_Dist
; use Exp_Dist
;
39 with Exp_Tss
; use Exp_Tss
;
40 with Exp_Util
; use Exp_Util
;
41 with Freeze
; use Freeze
;
42 with Ghost
; use Ghost
;
43 with Itypes
; use Itypes
;
44 with Layout
; use Layout
;
46 with Lib
.Xref
; use Lib
.Xref
;
47 with Namet
; use Namet
;
48 with Nmake
; use Nmake
;
50 with Restrict
; use Restrict
;
51 with Rident
; use Rident
;
52 with Rtsfind
; use Rtsfind
;
54 with Sem_Aux
; use Sem_Aux
;
55 with Sem_Case
; use Sem_Case
;
56 with Sem_Cat
; use Sem_Cat
;
57 with Sem_Ch6
; use Sem_Ch6
;
58 with Sem_Ch7
; use Sem_Ch7
;
59 with Sem_Ch8
; use Sem_Ch8
;
60 with Sem_Ch13
; use Sem_Ch13
;
61 with Sem_Dim
; use Sem_Dim
;
62 with Sem_Disp
; use Sem_Disp
;
63 with Sem_Dist
; use Sem_Dist
;
64 with Sem_Elim
; use Sem_Elim
;
65 with Sem_Eval
; use Sem_Eval
;
66 with Sem_Mech
; use Sem_Mech
;
67 with Sem_Res
; use Sem_Res
;
68 with Sem_Smem
; use Sem_Smem
;
69 with Sem_Type
; use Sem_Type
;
70 with Sem_Util
; use Sem_Util
;
71 with Sem_Warn
; use Sem_Warn
;
72 with Stand
; use Stand
;
73 with Sinfo
; use Sinfo
;
74 with Sinput
; use Sinput
;
75 with Snames
; use Snames
;
76 with Targparm
; use Targparm
;
77 with Tbuild
; use Tbuild
;
78 with Ttypes
; use Ttypes
;
79 with Uintp
; use Uintp
;
80 with Urealp
; use Urealp
;
82 package body Sem_Ch3
is
84 -----------------------
85 -- Local Subprograms --
86 -----------------------
88 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
);
89 -- Ada 2005 (AI-251): Add the tag components corresponding to all the
90 -- abstract interface types implemented by a record type or a derived
93 procedure Build_Derived_Type
95 Parent_Type
: Entity_Id
;
96 Derived_Type
: Entity_Id
;
97 Is_Completion
: Boolean;
98 Derive_Subps
: Boolean := True);
99 -- Create and decorate a Derived_Type given the Parent_Type entity. N is
100 -- the N_Full_Type_Declaration node containing the derived type definition.
101 -- Parent_Type is the entity for the parent type in the derived type
102 -- definition and Derived_Type the actual derived type. Is_Completion must
103 -- be set to False if Derived_Type is the N_Defining_Identifier node in N
104 -- (i.e. Derived_Type = Defining_Identifier (N)). In this case N is not the
105 -- completion of a private type declaration. If Is_Completion is set to
106 -- True, N is the completion of a private type declaration and Derived_Type
107 -- is different from the defining identifier inside N (i.e. Derived_Type /=
108 -- Defining_Identifier (N)). Derive_Subps indicates whether the parent
109 -- subprograms should be derived. The only case where this parameter is
110 -- False is when Build_Derived_Type is recursively called to process an
111 -- implicit derived full type for a type derived from a private type (in
112 -- that case the subprograms must only be derived for the private view of
115 -- ??? These flags need a bit of re-examination and re-documentation:
116 -- ??? are they both necessary (both seem related to the recursion)?
118 procedure Build_Derived_Access_Type
120 Parent_Type
: Entity_Id
;
121 Derived_Type
: Entity_Id
);
122 -- Subsidiary procedure to Build_Derived_Type. For a derived access type,
123 -- create an implicit base if the parent type is constrained or if the
124 -- subtype indication has a constraint.
126 procedure Build_Derived_Array_Type
128 Parent_Type
: Entity_Id
;
129 Derived_Type
: Entity_Id
);
130 -- Subsidiary procedure to Build_Derived_Type. For a derived array type,
131 -- create an implicit base if the parent type is constrained or if the
132 -- subtype indication has a constraint.
134 procedure Build_Derived_Concurrent_Type
136 Parent_Type
: Entity_Id
;
137 Derived_Type
: Entity_Id
);
138 -- Subsidiary procedure to Build_Derived_Type. For a derived task or
139 -- protected type, inherit entries and protected subprograms, check
140 -- legality of discriminant constraints if any.
142 procedure Build_Derived_Enumeration_Type
144 Parent_Type
: Entity_Id
;
145 Derived_Type
: Entity_Id
);
146 -- Subsidiary procedure to Build_Derived_Type. For a derived enumeration
147 -- type, we must create a new list of literals. Types derived from
148 -- Character and [Wide_]Wide_Character are special-cased.
150 procedure Build_Derived_Numeric_Type
152 Parent_Type
: Entity_Id
;
153 Derived_Type
: Entity_Id
);
154 -- Subsidiary procedure to Build_Derived_Type. For numeric types, create
155 -- an anonymous base type, and propagate constraint to subtype if needed.
157 procedure Build_Derived_Private_Type
159 Parent_Type
: Entity_Id
;
160 Derived_Type
: Entity_Id
;
161 Is_Completion
: Boolean;
162 Derive_Subps
: Boolean := True);
163 -- Subsidiary procedure to Build_Derived_Type. This procedure is complex
164 -- because the parent may or may not have a completion, and the derivation
165 -- may itself be a completion.
167 procedure Build_Derived_Record_Type
169 Parent_Type
: Entity_Id
;
170 Derived_Type
: Entity_Id
;
171 Derive_Subps
: Boolean := True);
172 -- Subsidiary procedure used for tagged and untagged record types
173 -- by Build_Derived_Type and Analyze_Private_Extension_Declaration.
174 -- All parameters are as in Build_Derived_Type except that N, in
175 -- addition to being an N_Full_Type_Declaration node, can also be an
176 -- N_Private_Extension_Declaration node. See the definition of this routine
177 -- for much more info. Derive_Subps indicates whether subprograms should be
178 -- derived from the parent type. The only case where Derive_Subps is False
179 -- is for an implicit derived full type for a type derived from a private
180 -- type (see Build_Derived_Type).
182 procedure Build_Discriminal
(Discrim
: Entity_Id
);
183 -- Create the discriminal corresponding to discriminant Discrim, that is
184 -- the parameter corresponding to Discrim to be used in initialization
185 -- procedures for the type where Discrim is a discriminant. Discriminals
186 -- are not used during semantic analysis, and are not fully defined
187 -- entities until expansion. Thus they are not given a scope until
188 -- initialization procedures are built.
190 function Build_Discriminant_Constraints
193 Derived_Def
: Boolean := False) return Elist_Id
;
194 -- Validate discriminant constraints and return the list of the constraints
195 -- in order of discriminant declarations, where T is the discriminated
196 -- unconstrained type. Def is the N_Subtype_Indication node where the
197 -- discriminants constraints for T are specified. Derived_Def is True
198 -- when building the discriminant constraints in a derived type definition
199 -- of the form "type D (...) is new T (xxx)". In this case T is the parent
200 -- type and Def is the constraint "(xxx)" on T and this routine sets the
201 -- Corresponding_Discriminant field of the discriminants in the derived
202 -- type D to point to the corresponding discriminants in the parent type T.
204 procedure Build_Discriminated_Subtype
208 Related_Nod
: Node_Id
;
209 For_Access
: Boolean := False);
210 -- Subsidiary procedure to Constrain_Discriminated_Type and to
211 -- Process_Incomplete_Dependents. Given
213 -- T (a possibly discriminated base type)
214 -- Def_Id (a very partially built subtype for T),
216 -- the call completes Def_Id to be the appropriate E_*_Subtype.
218 -- The Elist is the list of discriminant constraints if any (it is set
219 -- to No_Elist if T is not a discriminated type, and to an empty list if
220 -- T has discriminants but there are no discriminant constraints). The
221 -- Related_Nod is the same as Decl_Node in Create_Constrained_Components.
222 -- The For_Access says whether or not this subtype is really constraining
223 -- an access type. That is its sole purpose is the designated type of an
224 -- access type -- in which case a Private_Subtype Is_For_Access_Subtype
225 -- is built to avoid freezing T when the access subtype is frozen.
227 function Build_Scalar_Bound
230 Der_T
: Entity_Id
) return Node_Id
;
231 -- The bounds of a derived scalar type are conversions of the bounds of
232 -- the parent type. Optimize the representation if the bounds are literals.
233 -- Needs a more complete spec--what are the parameters exactly, and what
234 -- exactly is the returned value, and how is Bound affected???
236 procedure Build_Underlying_Full_View
240 -- If the completion of a private type is itself derived from a private
241 -- type, or if the full view of a private subtype is itself private, the
242 -- back-end has no way to compute the actual size of this type. We build
243 -- an internal subtype declaration of the proper parent type to convey
244 -- this information. This extra mechanism is needed because a full
245 -- view cannot itself have a full view (it would get clobbered during
248 procedure Check_Access_Discriminant_Requires_Limited
251 -- Check the restriction that the type to which an access discriminant
252 -- belongs must be a concurrent type or a descendant of a type with
253 -- the reserved word 'limited' in its declaration.
255 procedure Check_Anonymous_Access_Components
259 Comp_List
: Node_Id
);
260 -- Ada 2005 AI-382: an access component in a record definition can refer to
261 -- the enclosing record, in which case it denotes the type itself, and not
262 -- the current instance of the type. We create an anonymous access type for
263 -- the component, and flag it as an access to a component, so accessibility
264 -- checks are properly performed on it. The declaration of the access type
265 -- is placed ahead of that of the record to prevent order-of-elaboration
266 -- circularity issues in Gigi. We create an incomplete type for the record
267 -- declaration, which is the designated type of the anonymous access.
269 procedure Check_Delta_Expression
(E
: Node_Id
);
270 -- Check that the expression represented by E is suitable for use as a
271 -- delta expression, i.e. it is of real type and is static.
273 procedure Check_Digits_Expression
(E
: Node_Id
);
274 -- Check that the expression represented by E is suitable for use as a
275 -- digits expression, i.e. it is of integer type, positive and static.
277 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
);
278 -- Validate the initialization of an object declaration. T is the required
279 -- type, and Exp is the initialization expression.
281 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
);
282 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
284 procedure Check_Or_Process_Discriminants
287 Prev
: Entity_Id
:= Empty
);
288 -- If N is the full declaration of the completion T of an incomplete or
289 -- private type, check its discriminants (which are already known to be
290 -- conformant with those of the partial view, see Find_Type_Name),
291 -- otherwise process them. Prev is the entity of the partial declaration,
294 procedure Check_Real_Bound
(Bound
: Node_Id
);
295 -- Check given bound for being of real type and static. If not, post an
296 -- appropriate message, and rewrite the bound with the real literal zero.
298 procedure Constant_Redeclaration
302 -- Various checks on legality of full declaration of deferred constant.
303 -- Id is the entity for the redeclaration, N is the N_Object_Declaration,
304 -- node. The caller has not yet set any attributes of this entity.
306 function Contain_Interface
308 Ifaces
: Elist_Id
) return Boolean;
309 -- Ada 2005: Determine whether Iface is present in the list Ifaces
311 procedure Convert_Scalar_Bounds
313 Parent_Type
: Entity_Id
;
314 Derived_Type
: Entity_Id
;
316 -- For derived scalar types, convert the bounds in the type definition to
317 -- the derived type, and complete their analysis. Given a constraint of the
318 -- form ".. new T range Lo .. Hi", Lo and Hi are analyzed and resolved with
319 -- T'Base, the parent_type. The bounds of the derived type (the anonymous
320 -- base) are copies of Lo and Hi. Finally, the bounds of the derived
321 -- subtype are conversions of those bounds to the derived_type, so that
322 -- their typing is consistent.
324 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
);
325 -- Copies attributes from array base type T2 to array base type T1. Copies
326 -- only attributes that apply to base types, but not subtypes.
328 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
);
329 -- Copies attributes from array subtype T2 to array subtype T1. Copies
330 -- attributes that apply to both subtypes and base types.
332 procedure Create_Constrained_Components
336 Constraints
: Elist_Id
);
337 -- Build the list of entities for a constrained discriminated record
338 -- subtype. If a component depends on a discriminant, replace its subtype
339 -- using the discriminant values in the discriminant constraint. Subt
340 -- is the defining identifier for the subtype whose list of constrained
341 -- entities we will create. Decl_Node is the type declaration node where
342 -- we will attach all the itypes created. Typ is the base discriminated
343 -- type for the subtype Subt. Constraints is the list of discriminant
344 -- constraints for Typ.
346 function Constrain_Component_Type
348 Constrained_Typ
: Entity_Id
;
349 Related_Node
: Node_Id
;
351 Constraints
: Elist_Id
) return Entity_Id
;
352 -- Given a discriminated base type Typ, a list of discriminant constraints,
353 -- Constraints, for Typ and a component Comp of Typ, create and return the
354 -- type corresponding to Etype (Comp) where all discriminant references
355 -- are replaced with the corresponding constraint. If Etype (Comp) contains
356 -- no discriminant references then it is returned as-is. Constrained_Typ
357 -- is the final constrained subtype to which the constrained component
358 -- belongs. Related_Node is the node where we attach all created itypes.
360 procedure Constrain_Access
361 (Def_Id
: in out Entity_Id
;
363 Related_Nod
: Node_Id
);
364 -- Apply a list of constraints to an access type. If Def_Id is empty, it is
365 -- an anonymous type created for a subtype indication. In that case it is
366 -- created in the procedure and attached to Related_Nod.
368 procedure Constrain_Array
369 (Def_Id
: in out Entity_Id
;
371 Related_Nod
: Node_Id
;
372 Related_Id
: Entity_Id
;
374 -- Apply a list of index constraints to an unconstrained array type. The
375 -- first parameter is the entity for the resulting subtype. A value of
376 -- Empty for Def_Id indicates that an implicit type must be created, but
377 -- creation is delayed (and must be done by this procedure) because other
378 -- subsidiary implicit types must be created first (which is why Def_Id
379 -- is an in/out parameter). The second parameter is a subtype indication
380 -- node for the constrained array to be created (e.g. something of the
381 -- form string (1 .. 10)). Related_Nod gives the place where this type
382 -- has to be inserted in the tree. The Related_Id and Suffix parameters
383 -- are used to build the associated Implicit type name.
385 procedure Constrain_Concurrent
386 (Def_Id
: in out Entity_Id
;
388 Related_Nod
: Node_Id
;
389 Related_Id
: Entity_Id
;
391 -- Apply list of discriminant constraints to an unconstrained concurrent
394 -- SI is the N_Subtype_Indication node containing the constraint and
395 -- the unconstrained type to constrain.
397 -- Def_Id is the entity for the resulting constrained subtype. A value
398 -- of Empty for Def_Id indicates that an implicit type must be created,
399 -- but creation is delayed (and must be done by this procedure) because
400 -- other subsidiary implicit types must be created first (which is why
401 -- Def_Id is an in/out parameter).
403 -- Related_Nod gives the place where this type has to be inserted
406 -- The last two arguments are used to create its external name if needed.
408 function Constrain_Corresponding_Record
409 (Prot_Subt
: Entity_Id
;
410 Corr_Rec
: Entity_Id
;
411 Related_Nod
: Node_Id
) return Entity_Id
;
412 -- When constraining a protected type or task type with discriminants,
413 -- constrain the corresponding record with the same discriminant values.
415 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
);
416 -- Constrain a decimal fixed point type with a digits constraint and/or a
417 -- range constraint, and build E_Decimal_Fixed_Point_Subtype entity.
419 procedure Constrain_Discriminated_Type
422 Related_Nod
: Node_Id
;
423 For_Access
: Boolean := False);
424 -- Process discriminant constraints of composite type. Verify that values
425 -- have been provided for all discriminants, that the original type is
426 -- unconstrained, and that the types of the supplied expressions match
427 -- the discriminant types. The first three parameters are like in routine
428 -- Constrain_Concurrent. See Build_Discriminated_Subtype for an explanation
431 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
);
432 -- Constrain an enumeration type with a range constraint. This is identical
433 -- to Constrain_Integer, but for the Ekind of the resulting subtype.
435 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
);
436 -- Constrain a floating point type with either a digits constraint
437 -- and/or a range constraint, building a E_Floating_Point_Subtype.
439 procedure Constrain_Index
442 Related_Nod
: Node_Id
;
443 Related_Id
: Entity_Id
;
446 -- Process an index constraint S in a constrained array declaration. The
447 -- constraint can be a subtype name, or a range with or without an explicit
448 -- subtype mark. The index is the corresponding index of the unconstrained
449 -- array. The Related_Id and Suffix parameters are used to build the
450 -- associated Implicit type name.
452 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
);
453 -- Build subtype of a signed or modular integer type
455 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
);
456 -- Constrain an ordinary fixed point type with a range constraint, and
457 -- build an E_Ordinary_Fixed_Point_Subtype entity.
459 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
);
460 -- Copy the Priv entity into the entity of its full declaration then swap
461 -- the two entities in such a manner that the former private type is now
462 -- seen as a full type.
464 procedure Decimal_Fixed_Point_Type_Declaration
467 -- Create a new decimal fixed point type, and apply the constraint to
468 -- obtain a subtype of this new type.
470 procedure Complete_Private_Subtype
473 Full_Base
: Entity_Id
;
474 Related_Nod
: Node_Id
);
475 -- Complete the implicit full view of a private subtype by setting the
476 -- appropriate semantic fields. If the full view of the parent is a record
477 -- type, build constrained components of subtype.
479 procedure Derive_Progenitor_Subprograms
480 (Parent_Type
: Entity_Id
;
481 Tagged_Type
: Entity_Id
);
482 -- Ada 2005 (AI-251): To complete type derivation, collect the primitive
483 -- operations of progenitors of Tagged_Type, and replace the subsidiary
484 -- subtypes with Tagged_Type, to build the specs of the inherited interface
485 -- primitives. The derived primitives are aliased to those of the
486 -- interface. This routine takes care also of transferring to the full view
487 -- subprograms associated with the partial view of Tagged_Type that cover
488 -- interface primitives.
490 procedure Derived_Standard_Character
492 Parent_Type
: Entity_Id
;
493 Derived_Type
: Entity_Id
);
494 -- Subsidiary procedure to Build_Derived_Enumeration_Type which handles
495 -- derivations from types Standard.Character and Standard.Wide_Character.
497 procedure Derived_Type_Declaration
500 Is_Completion
: Boolean);
501 -- Process a derived type declaration. Build_Derived_Type is invoked
502 -- to process the actual derived type definition. Parameters N and
503 -- Is_Completion have the same meaning as in Build_Derived_Type.
504 -- T is the N_Defining_Identifier for the entity defined in the
505 -- N_Full_Type_Declaration node N, that is T is the derived type.
507 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
508 -- Insert each literal in symbol table, as an overloadable identifier. Each
509 -- enumeration type is mapped into a sequence of integers, and each literal
510 -- is defined as a constant with integer value. If any of the literals are
511 -- character literals, the type is a character type, which means that
512 -- strings are legal aggregates for arrays of components of the type.
514 function Expand_To_Stored_Constraint
516 Constraint
: Elist_Id
) return Elist_Id
;
517 -- Given a constraint (i.e. a list of expressions) on the discriminants of
518 -- Typ, expand it into a constraint on the stored discriminants and return
519 -- the new list of expressions constraining the stored discriminants.
521 function Find_Type_Of_Object
523 Related_Nod
: Node_Id
) return Entity_Id
;
524 -- Get type entity for object referenced by Obj_Def, attaching the implicit
525 -- types generated to Related_Nod.
527 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
528 -- Create a new float and apply the constraint to obtain subtype of it
530 function Has_Range_Constraint
(N
: Node_Id
) return Boolean;
531 -- Given an N_Subtype_Indication node N, return True if a range constraint
532 -- is present, either directly, or as part of a digits or delta constraint.
533 -- In addition, a digits constraint in the decimal case returns True, since
534 -- it establishes a default range if no explicit range is present.
536 function Inherit_Components
538 Parent_Base
: Entity_Id
;
539 Derived_Base
: Entity_Id
;
541 Inherit_Discr
: Boolean;
542 Discs
: Elist_Id
) return Elist_Id
;
543 -- Called from Build_Derived_Record_Type to inherit the components of
544 -- Parent_Base (a base type) into the Derived_Base (the derived base type).
545 -- For more information on derived types and component inheritance please
546 -- consult the comment above the body of Build_Derived_Record_Type.
548 -- N is the original derived type declaration
550 -- Is_Tagged is set if we are dealing with tagged types
552 -- If Inherit_Discr is set, Derived_Base inherits its discriminants from
553 -- Parent_Base, otherwise no discriminants are inherited.
555 -- Discs gives the list of constraints that apply to Parent_Base in the
556 -- derived type declaration. If Discs is set to No_Elist, then we have
557 -- the following situation:
559 -- type Parent (D1..Dn : ..) is [tagged] record ...;
560 -- type Derived is new Parent [with ...];
562 -- which gets treated as
564 -- type Derived (D1..Dn : ..) is new Parent (D1,..,Dn) [with ...];
566 -- For untagged types the returned value is an association list. The list
567 -- starts from the association (Parent_Base => Derived_Base), and then it
568 -- contains a sequence of the associations of the form
570 -- (Old_Component => New_Component),
572 -- where Old_Component is the Entity_Id of a component in Parent_Base and
573 -- New_Component is the Entity_Id of the corresponding component in
574 -- Derived_Base. For untagged records, this association list is needed when
575 -- copying the record declaration for the derived base. In the tagged case
576 -- the value returned is irrelevant.
578 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
);
579 -- Propagate static and dynamic predicate flags from a parent to the
580 -- subtype in a subtype declaration with and without constraints.
582 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean;
583 -- Subsidiary to Check_Abstract_Overriding and Derive_Subprogram.
584 -- Determine whether subprogram Subp is a procedure subject to pragma
585 -- Extensions_Visible with value False and has at least one controlling
586 -- parameter of mode OUT.
588 function Is_Valid_Constraint_Kind
590 Constraint_Kind
: Node_Kind
) return Boolean;
591 -- Returns True if it is legal to apply the given kind of constraint to the
592 -- given kind of type (index constraint to an array type, for example).
594 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
595 -- Create new modular type. Verify that modulus is in bounds
597 procedure New_Concatenation_Op
(Typ
: Entity_Id
);
598 -- Create an abbreviated declaration for an operator in order to
599 -- materialize concatenation on array types.
601 procedure Ordinary_Fixed_Point_Type_Declaration
604 -- Create a new ordinary fixed point type, and apply the constraint to
605 -- obtain subtype of it.
607 procedure Prepare_Private_Subtype_Completion
609 Related_Nod
: Node_Id
);
610 -- Id is a subtype of some private type. Creates the full declaration
611 -- associated with Id whenever possible, i.e. when the full declaration
612 -- of the base type is already known. Records each subtype into
613 -- Private_Dependents of the base type.
615 procedure Process_Incomplete_Dependents
619 -- Process all entities that depend on an incomplete type. There include
620 -- subtypes, subprogram types that mention the incomplete type in their
621 -- profiles, and subprogram with access parameters that designate the
624 -- Inc_T is the defining identifier of an incomplete type declaration, its
625 -- Ekind is E_Incomplete_Type.
627 -- N is the corresponding N_Full_Type_Declaration for Inc_T.
629 -- Full_T is N's defining identifier.
631 -- Subtypes of incomplete types with discriminants are completed when the
632 -- parent type is. This is simpler than private subtypes, because they can
633 -- only appear in the same scope, and there is no need to exchange views.
634 -- Similarly, access_to_subprogram types may have a parameter or a return
635 -- type that is an incomplete type, and that must be replaced with the
638 -- If the full type is tagged, subprogram with access parameters that
639 -- designated the incomplete may be primitive operations of the full type,
640 -- and have to be processed accordingly.
642 procedure Process_Real_Range_Specification
(Def
: Node_Id
);
643 -- Given the type definition for a real type, this procedure processes and
644 -- checks the real range specification of this type definition if one is
645 -- present. If errors are found, error messages are posted, and the
646 -- Real_Range_Specification of Def is reset to Empty.
648 procedure Record_Type_Declaration
652 -- Process a record type declaration (for both untagged and tagged
653 -- records). Parameters T and N are exactly like in procedure
654 -- Derived_Type_Declaration, except that no flag Is_Completion is needed
655 -- for this routine. If this is the completion of an incomplete type
656 -- declaration, Prev is the entity of the incomplete declaration, used for
657 -- cross-referencing. Otherwise Prev = T.
659 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
);
660 -- This routine is used to process the actual record type definition (both
661 -- for untagged and tagged records). Def is a record type definition node.
662 -- This procedure analyzes the components in this record type definition.
663 -- Prev_T is the entity for the enclosing record type. It is provided so
664 -- that its Has_Task flag can be set if any of the component have Has_Task
665 -- set. If the declaration is the completion of an incomplete type
666 -- declaration, Prev_T is the original incomplete type, whose full view is
669 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
);
670 -- Subsidiary to Build_Derived_Record_Type. For untagged records, we
671 -- build a copy of the declaration tree of the parent, and we create
672 -- independently the list of components for the derived type. Semantic
673 -- information uses the component entities, but record representation
674 -- clauses are validated on the declaration tree. This procedure replaces
675 -- discriminants and components in the declaration with those that have
676 -- been created by Inherit_Components.
678 procedure Set_Fixed_Range
683 -- Build a range node with the given bounds and set it as the Scalar_Range
684 -- of the given fixed-point type entity. Loc is the source location used
685 -- for the constructed range. See body for further details.
687 procedure Set_Scalar_Range_For_Subtype
691 -- This routine is used to set the scalar range field for a subtype given
692 -- Def_Id, the entity for the subtype, and R, the range expression for the
693 -- scalar range. Subt provides the parent subtype to be used to analyze,
694 -- resolve, and check the given range.
696 procedure Set_Default_SSO
(T
: Entity_Id
);
697 -- T is the entity for an array or record being declared. This procedure
698 -- sets the flags SSO_Set_Low_By_Default/SSO_Set_High_By_Default according
699 -- to the setting of Opt.Default_SSO.
701 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
);
702 -- Create a new signed integer entity, and apply the constraint to obtain
703 -- the required first named subtype of this type.
705 procedure Set_Stored_Constraint_From_Discriminant_Constraint
707 -- E is some record type. This routine computes E's Stored_Constraint
708 -- from its Discriminant_Constraint.
710 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
);
711 -- Check that an entity in a list of progenitors is an interface,
712 -- emit error otherwise.
714 -----------------------
715 -- Access_Definition --
716 -----------------------
718 function Access_Definition
719 (Related_Nod
: Node_Id
;
720 N
: Node_Id
) return Entity_Id
722 Anon_Type
: Entity_Id
;
723 Anon_Scope
: Entity_Id
;
724 Desig_Type
: Entity_Id
;
725 Enclosing_Prot_Type
: Entity_Id
:= Empty
;
728 Check_SPARK_05_Restriction
("access type is not allowed", N
);
730 if Is_Entry
(Current_Scope
)
731 and then Is_Task_Type
(Etype
(Scope
(Current_Scope
)))
733 Error_Msg_N
("task entries cannot have access parameters", N
);
737 -- Ada 2005: For an object declaration the corresponding anonymous
738 -- type is declared in the current scope.
740 -- If the access definition is the return type of another access to
741 -- function, scope is the current one, because it is the one of the
742 -- current type declaration, except for the pathological case below.
744 if Nkind_In
(Related_Nod
, N_Object_Declaration
,
745 N_Access_Function_Definition
)
747 Anon_Scope
:= Current_Scope
;
749 -- A pathological case: function returning access functions that
750 -- return access functions, etc. Each anonymous access type created
751 -- is in the enclosing scope of the outermost function.
758 while Nkind_In
(Par
, N_Access_Function_Definition
,
764 if Nkind
(Par
) = N_Function_Specification
then
765 Anon_Scope
:= Scope
(Defining_Entity
(Par
));
769 -- For the anonymous function result case, retrieve the scope of the
770 -- function specification's associated entity rather than using the
771 -- current scope. The current scope will be the function itself if the
772 -- formal part is currently being analyzed, but will be the parent scope
773 -- in the case of a parameterless function, and we always want to use
774 -- the function's parent scope. Finally, if the function is a child
775 -- unit, we must traverse the tree to retrieve the proper entity.
777 elsif Nkind
(Related_Nod
) = N_Function_Specification
778 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
780 -- If the current scope is a protected type, the anonymous access
781 -- is associated with one of the protected operations, and must
782 -- be available in the scope that encloses the protected declaration.
783 -- Otherwise the type is in the scope enclosing the subprogram.
785 -- If the function has formals, The return type of a subprogram
786 -- declaration is analyzed in the scope of the subprogram (see
787 -- Process_Formals) and thus the protected type, if present, is
788 -- the scope of the current function scope.
790 if Ekind
(Current_Scope
) = E_Protected_Type
then
791 Enclosing_Prot_Type
:= Current_Scope
;
793 elsif Ekind
(Current_Scope
) = E_Function
794 and then Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
796 Enclosing_Prot_Type
:= Scope
(Current_Scope
);
799 if Present
(Enclosing_Prot_Type
) then
800 Anon_Scope
:= Scope
(Enclosing_Prot_Type
);
803 Anon_Scope
:= Scope
(Defining_Entity
(Related_Nod
));
806 -- For an access type definition, if the current scope is a child
807 -- unit it is the scope of the type.
809 elsif Is_Compilation_Unit
(Current_Scope
) then
810 Anon_Scope
:= Current_Scope
;
812 -- For access formals, access components, and access discriminants, the
813 -- scope is that of the enclosing declaration,
816 Anon_Scope
:= Scope
(Current_Scope
);
821 (E_Anonymous_Access_Type
, Related_Nod
, Scope_Id
=> Anon_Scope
);
824 and then Ada_Version
>= Ada_2005
826 Error_Msg_N
("ALL is not permitted for anonymous access types", N
);
829 -- Ada 2005 (AI-254): In case of anonymous access to subprograms call
830 -- the corresponding semantic routine
832 if Present
(Access_To_Subprogram_Definition
(N
)) then
834 -- Compiler runtime units are compiled in Ada 2005 mode when building
835 -- the runtime library but must also be compilable in Ada 95 mode
836 -- (when bootstrapping the compiler).
838 Check_Compiler_Unit
("anonymous access to subprogram", N
);
840 Access_Subprogram_Declaration
841 (T_Name
=> Anon_Type
,
842 T_Def
=> Access_To_Subprogram_Definition
(N
));
844 if Ekind
(Anon_Type
) = E_Access_Protected_Subprogram_Type
then
846 (Anon_Type
, E_Anonymous_Access_Protected_Subprogram_Type
);
848 Set_Ekind
(Anon_Type
, E_Anonymous_Access_Subprogram_Type
);
851 Set_Can_Use_Internal_Rep
852 (Anon_Type
, not Always_Compatible_Rep_On_Target
);
854 -- If the anonymous access is associated with a protected operation,
855 -- create a reference to it after the enclosing protected definition
856 -- because the itype will be used in the subsequent bodies.
858 -- If the anonymous access itself is protected, a full type
859 -- declaratiton will be created for it, so that the equivalent
860 -- record type can be constructed. For further details, see
861 -- Replace_Anonymous_Access_To_Protected-Subprogram.
863 if Ekind
(Current_Scope
) = E_Protected_Type
864 and then not Protected_Present
(Access_To_Subprogram_Definition
(N
))
866 Build_Itype_Reference
(Anon_Type
, Parent
(Current_Scope
));
872 Find_Type
(Subtype_Mark
(N
));
873 Desig_Type
:= Entity
(Subtype_Mark
(N
));
875 Set_Directly_Designated_Type
(Anon_Type
, Desig_Type
);
876 Set_Etype
(Anon_Type
, Anon_Type
);
878 -- Make sure the anonymous access type has size and alignment fields
879 -- set, as required by gigi. This is necessary in the case of the
880 -- Task_Body_Procedure.
882 if not Has_Private_Component
(Desig_Type
) then
883 Layout_Type
(Anon_Type
);
886 -- Ada 2005 (AI-231): Ada 2005 semantics for anonymous access differs
887 -- from Ada 95 semantics. In Ada 2005, anonymous access must specify if
888 -- the null value is allowed. In Ada 95 the null value is never allowed.
890 if Ada_Version
>= Ada_2005
then
891 Set_Can_Never_Be_Null
(Anon_Type
, Null_Exclusion_Present
(N
));
893 Set_Can_Never_Be_Null
(Anon_Type
, True);
896 -- The anonymous access type is as public as the discriminated type or
897 -- subprogram that defines it. It is imported (for back-end purposes)
898 -- if the designated type is.
900 Set_Is_Public
(Anon_Type
, Is_Public
(Scope
(Anon_Type
)));
902 -- Ada 2005 (AI-231): Propagate the access-constant attribute
904 Set_Is_Access_Constant
(Anon_Type
, Constant_Present
(N
));
906 -- The context is either a subprogram declaration, object declaration,
907 -- or an access discriminant, in a private or a full type declaration.
908 -- In the case of a subprogram, if the designated type is incomplete,
909 -- the operation will be a primitive operation of the full type, to be
910 -- updated subsequently. If the type is imported through a limited_with
911 -- clause, the subprogram is not a primitive operation of the type
912 -- (which is declared elsewhere in some other scope).
914 if Ekind
(Desig_Type
) = E_Incomplete_Type
915 and then not From_Limited_With
(Desig_Type
)
916 and then Is_Overloadable
(Current_Scope
)
918 Append_Elmt
(Current_Scope
, Private_Dependents
(Desig_Type
));
919 Set_Has_Delayed_Freeze
(Current_Scope
);
922 -- Ada 2005: If the designated type is an interface that may contain
923 -- tasks, create a Master entity for the declaration. This must be done
924 -- before expansion of the full declaration, because the declaration may
925 -- include an expression that is an allocator, whose expansion needs the
926 -- proper Master for the created tasks.
928 if Nkind
(Related_Nod
) = N_Object_Declaration
and then Expander_Active
930 if Is_Interface
(Desig_Type
) and then Is_Limited_Record
(Desig_Type
)
932 Build_Class_Wide_Master
(Anon_Type
);
934 -- Similarly, if the type is an anonymous access that designates
935 -- tasks, create a master entity for it in the current context.
937 elsif Has_Task
(Desig_Type
) and then Comes_From_Source
(Related_Nod
)
939 Build_Master_Entity
(Defining_Identifier
(Related_Nod
));
940 Build_Master_Renaming
(Anon_Type
);
944 -- For a private component of a protected type, it is imperative that
945 -- the back-end elaborate the type immediately after the protected
946 -- declaration, because this type will be used in the declarations
947 -- created for the component within each protected body, so we must
948 -- create an itype reference for it now.
950 if Nkind
(Parent
(Related_Nod
)) = N_Protected_Definition
then
951 Build_Itype_Reference
(Anon_Type
, Parent
(Parent
(Related_Nod
)));
953 -- Similarly, if the access definition is the return result of a
954 -- function, create an itype reference for it because it will be used
955 -- within the function body. For a regular function that is not a
956 -- compilation unit, insert reference after the declaration. For a
957 -- protected operation, insert it after the enclosing protected type
958 -- declaration. In either case, do not create a reference for a type
959 -- obtained through a limited_with clause, because this would introduce
960 -- semantic dependencies.
962 -- Similarly, do not create a reference if the designated type is a
963 -- generic formal, because no use of it will reach the backend.
965 elsif Nkind
(Related_Nod
) = N_Function_Specification
966 and then not From_Limited_With
(Desig_Type
)
967 and then not Is_Generic_Type
(Desig_Type
)
969 if Present
(Enclosing_Prot_Type
) then
970 Build_Itype_Reference
(Anon_Type
, Parent
(Enclosing_Prot_Type
));
972 elsif Is_List_Member
(Parent
(Related_Nod
))
973 and then Nkind
(Parent
(N
)) /= N_Parameter_Specification
975 Build_Itype_Reference
(Anon_Type
, Parent
(Related_Nod
));
978 -- Finally, create an itype reference for an object declaration of an
979 -- anonymous access type. This is strictly necessary only for deferred
980 -- constants, but in any case will avoid out-of-scope problems in the
983 elsif Nkind
(Related_Nod
) = N_Object_Declaration
then
984 Build_Itype_Reference
(Anon_Type
, Related_Nod
);
988 end Access_Definition
;
990 -----------------------------------
991 -- Access_Subprogram_Declaration --
992 -----------------------------------
994 procedure Access_Subprogram_Declaration
998 procedure Check_For_Premature_Usage
(Def
: Node_Id
);
999 -- Check that type T_Name is not used, directly or recursively, as a
1000 -- parameter or a return type in Def. Def is either a subtype, an
1001 -- access_definition, or an access_to_subprogram_definition.
1003 -------------------------------
1004 -- Check_For_Premature_Usage --
1005 -------------------------------
1007 procedure Check_For_Premature_Usage
(Def
: Node_Id
) is
1011 -- Check for a subtype mark
1013 if Nkind
(Def
) in N_Has_Etype
then
1014 if Etype
(Def
) = T_Name
then
1016 ("type& cannot be used before end of its declaration", Def
);
1019 -- If this is not a subtype, then this is an access_definition
1021 elsif Nkind
(Def
) = N_Access_Definition
then
1022 if Present
(Access_To_Subprogram_Definition
(Def
)) then
1023 Check_For_Premature_Usage
1024 (Access_To_Subprogram_Definition
(Def
));
1026 Check_For_Premature_Usage
(Subtype_Mark
(Def
));
1029 -- The only cases left are N_Access_Function_Definition and
1030 -- N_Access_Procedure_Definition.
1033 if Present
(Parameter_Specifications
(Def
)) then
1034 Param
:= First
(Parameter_Specifications
(Def
));
1035 while Present
(Param
) loop
1036 Check_For_Premature_Usage
(Parameter_Type
(Param
));
1037 Param
:= Next
(Param
);
1041 if Nkind
(Def
) = N_Access_Function_Definition
then
1042 Check_For_Premature_Usage
(Result_Definition
(Def
));
1045 end Check_For_Premature_Usage
;
1049 Formals
: constant List_Id
:= Parameter_Specifications
(T_Def
);
1052 Desig_Type
: constant Entity_Id
:=
1053 Create_Itype
(E_Subprogram_Type
, Parent
(T_Def
));
1055 -- Start of processing for Access_Subprogram_Declaration
1058 Check_SPARK_05_Restriction
("access type is not allowed", T_Def
);
1060 -- Associate the Itype node with the inner full-type declaration or
1061 -- subprogram spec or entry body. This is required to handle nested
1062 -- anonymous declarations. For example:
1065 -- (X : access procedure
1066 -- (Y : access procedure
1069 D_Ityp
:= Associated_Node_For_Itype
(Desig_Type
);
1070 while not (Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1071 N_Private_Type_Declaration
,
1072 N_Private_Extension_Declaration
,
1073 N_Procedure_Specification
,
1074 N_Function_Specification
,
1078 Nkind_In
(D_Ityp
, N_Object_Declaration
,
1079 N_Object_Renaming_Declaration
,
1080 N_Formal_Object_Declaration
,
1081 N_Formal_Type_Declaration
,
1082 N_Task_Type_Declaration
,
1083 N_Protected_Type_Declaration
))
1085 D_Ityp
:= Parent
(D_Ityp
);
1086 pragma Assert
(D_Ityp
/= Empty
);
1089 Set_Associated_Node_For_Itype
(Desig_Type
, D_Ityp
);
1091 if Nkind_In
(D_Ityp
, N_Procedure_Specification
,
1092 N_Function_Specification
)
1094 Set_Scope
(Desig_Type
, Scope
(Defining_Entity
(D_Ityp
)));
1096 elsif Nkind_In
(D_Ityp
, N_Full_Type_Declaration
,
1097 N_Object_Declaration
,
1098 N_Object_Renaming_Declaration
,
1099 N_Formal_Type_Declaration
)
1101 Set_Scope
(Desig_Type
, Scope
(Defining_Identifier
(D_Ityp
)));
1104 if Nkind
(T_Def
) = N_Access_Function_Definition
then
1105 if Nkind
(Result_Definition
(T_Def
)) = N_Access_Definition
then
1107 Acc
: constant Node_Id
:= Result_Definition
(T_Def
);
1110 if Present
(Access_To_Subprogram_Definition
(Acc
))
1112 Protected_Present
(Access_To_Subprogram_Definition
(Acc
))
1116 Replace_Anonymous_Access_To_Protected_Subprogram
1122 Access_Definition
(T_Def
, Result_Definition
(T_Def
)));
1127 Analyze
(Result_Definition
(T_Def
));
1130 Typ
: constant Entity_Id
:= Entity
(Result_Definition
(T_Def
));
1133 -- If a null exclusion is imposed on the result type, then
1134 -- create a null-excluding itype (an access subtype) and use
1135 -- it as the function's Etype.
1137 if Is_Access_Type
(Typ
)
1138 and then Null_Exclusion_In_Return_Present
(T_Def
)
1140 Set_Etype
(Desig_Type
,
1141 Create_Null_Excluding_Itype
1143 Related_Nod
=> T_Def
,
1144 Scope_Id
=> Current_Scope
));
1147 if From_Limited_With
(Typ
) then
1149 -- AI05-151: Incomplete types are allowed in all basic
1150 -- declarations, including access to subprograms.
1152 if Ada_Version
>= Ada_2012
then
1157 ("illegal use of incomplete type&",
1158 Result_Definition
(T_Def
), Typ
);
1161 elsif Ekind
(Current_Scope
) = E_Package
1162 and then In_Private_Part
(Current_Scope
)
1164 if Ekind
(Typ
) = E_Incomplete_Type
then
1165 Append_Elmt
(Desig_Type
, Private_Dependents
(Typ
));
1167 elsif Is_Class_Wide_Type
(Typ
)
1168 and then Ekind
(Etype
(Typ
)) = E_Incomplete_Type
1171 (Desig_Type
, Private_Dependents
(Etype
(Typ
)));
1175 Set_Etype
(Desig_Type
, Typ
);
1180 if not (Is_Type
(Etype
(Desig_Type
))) then
1182 ("expect type in function specification",
1183 Result_Definition
(T_Def
));
1187 Set_Etype
(Desig_Type
, Standard_Void_Type
);
1190 if Present
(Formals
) then
1191 Push_Scope
(Desig_Type
);
1193 -- Some special tests here. These special tests can be removed
1194 -- if and when Itypes always have proper parent pointers to their
1197 -- Special test 1) Link defining_identifier of formals. Required by
1198 -- First_Formal to provide its functionality.
1204 F
:= First
(Formals
);
1206 -- In ASIS mode, the access_to_subprogram may be analyzed twice,
1207 -- when it is part of an unconstrained type and subtype expansion
1208 -- is disabled. To avoid back-end problems with shared profiles,
1209 -- use previous subprogram type as the designated type, and then
1210 -- remove scope added above.
1212 if ASIS_Mode
and then Present
(Scope
(Defining_Identifier
(F
)))
1214 Set_Etype
(T_Name
, T_Name
);
1215 Init_Size_Align
(T_Name
);
1216 Set_Directly_Designated_Type
(T_Name
,
1217 Scope
(Defining_Identifier
(F
)));
1222 while Present
(F
) loop
1223 if No
(Parent
(Defining_Identifier
(F
))) then
1224 Set_Parent
(Defining_Identifier
(F
), F
);
1231 Process_Formals
(Formals
, Parent
(T_Def
));
1233 -- Special test 2) End_Scope requires that the parent pointer be set
1234 -- to something reasonable, but Itypes don't have parent pointers. So
1235 -- we set it and then unset it ???
1237 Set_Parent
(Desig_Type
, T_Name
);
1239 Set_Parent
(Desig_Type
, Empty
);
1242 -- Check for premature usage of the type being defined
1244 Check_For_Premature_Usage
(T_Def
);
1246 -- The return type and/or any parameter type may be incomplete. Mark the
1247 -- subprogram_type as depending on the incomplete type, so that it can
1248 -- be updated when the full type declaration is seen. This only applies
1249 -- to incomplete types declared in some enclosing scope, not to limited
1250 -- views from other packages.
1252 -- Prior to Ada 2012, access to functions can only have in_parameters.
1254 if Present
(Formals
) then
1255 Formal
:= First_Formal
(Desig_Type
);
1256 while Present
(Formal
) loop
1257 if Ekind
(Formal
) /= E_In_Parameter
1258 and then Nkind
(T_Def
) = N_Access_Function_Definition
1259 and then Ada_Version
< Ada_2012
1261 Error_Msg_N
("functions can only have IN parameters", Formal
);
1264 if Ekind
(Etype
(Formal
)) = E_Incomplete_Type
1265 and then In_Open_Scopes
(Scope
(Etype
(Formal
)))
1267 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Formal
)));
1268 Set_Has_Delayed_Freeze
(Desig_Type
);
1271 Next_Formal
(Formal
);
1275 -- Check whether an indirect call without actuals may be possible. This
1276 -- is used when resolving calls whose result is then indexed.
1278 May_Need_Actuals
(Desig_Type
);
1280 -- If the return type is incomplete, this is legal as long as the type
1281 -- is declared in the current scope and will be completed in it (rather
1282 -- than being part of limited view).
1284 if Ekind
(Etype
(Desig_Type
)) = E_Incomplete_Type
1285 and then not Has_Delayed_Freeze
(Desig_Type
)
1286 and then In_Open_Scopes
(Scope
(Etype
(Desig_Type
)))
1288 Append_Elmt
(Desig_Type
, Private_Dependents
(Etype
(Desig_Type
)));
1289 Set_Has_Delayed_Freeze
(Desig_Type
);
1292 Check_Delayed_Subprogram
(Desig_Type
);
1294 if Protected_Present
(T_Def
) then
1295 Set_Ekind
(T_Name
, E_Access_Protected_Subprogram_Type
);
1296 Set_Convention
(Desig_Type
, Convention_Protected
);
1298 Set_Ekind
(T_Name
, E_Access_Subprogram_Type
);
1301 Set_Can_Use_Internal_Rep
(T_Name
, not Always_Compatible_Rep_On_Target
);
1303 Set_Etype
(T_Name
, T_Name
);
1304 Init_Size_Align
(T_Name
);
1305 Set_Directly_Designated_Type
(T_Name
, Desig_Type
);
1307 Generate_Reference_To_Formals
(T_Name
);
1309 -- Ada 2005 (AI-231): Propagate the null-excluding attribute
1311 Set_Can_Never_Be_Null
(T_Name
, Null_Exclusion_Present
(T_Def
));
1313 Check_Restriction
(No_Access_Subprograms
, T_Def
);
1314 end Access_Subprogram_Declaration
;
1316 ----------------------------
1317 -- Access_Type_Declaration --
1318 ----------------------------
1320 procedure Access_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
1321 P
: constant Node_Id
:= Parent
(Def
);
1322 S
: constant Node_Id
:= Subtype_Indication
(Def
);
1324 Full_Desig
: Entity_Id
;
1327 Check_SPARK_05_Restriction
("access type is not allowed", Def
);
1329 -- Check for permissible use of incomplete type
1331 if Nkind
(S
) /= N_Subtype_Indication
then
1334 if Present
(Entity
(S
))
1335 and then Ekind
(Root_Type
(Entity
(S
))) = E_Incomplete_Type
1337 Set_Directly_Designated_Type
(T
, Entity
(S
));
1339 -- If the designated type is a limited view, we cannot tell if
1340 -- the full view contains tasks, and there is no way to handle
1341 -- that full view in a client. We create a master entity for the
1342 -- scope, which will be used when a client determines that one
1345 if From_Limited_With
(Entity
(S
))
1346 and then not Is_Class_Wide_Type
(Entity
(S
))
1348 Set_Ekind
(T
, E_Access_Type
);
1349 Build_Master_Entity
(T
);
1350 Build_Master_Renaming
(T
);
1354 Set_Directly_Designated_Type
(T
, Process_Subtype
(S
, P
, T
, 'P'));
1357 -- If the access definition is of the form: ACCESS NOT NULL ..
1358 -- the subtype indication must be of an access type. Create
1359 -- a null-excluding subtype of it.
1361 if Null_Excluding_Subtype
(Def
) then
1362 if not Is_Access_Type
(Entity
(S
)) then
1363 Error_Msg_N
("null exclusion must apply to access type", Def
);
1367 Loc
: constant Source_Ptr
:= Sloc
(S
);
1369 Nam
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
1373 Make_Subtype_Declaration
(Loc
,
1374 Defining_Identifier
=> Nam
,
1375 Subtype_Indication
=>
1376 New_Occurrence_Of
(Entity
(S
), Loc
));
1377 Set_Null_Exclusion_Present
(Decl
);
1378 Insert_Before
(Parent
(Def
), Decl
);
1380 Set_Entity
(S
, Nam
);
1386 Set_Directly_Designated_Type
(T
,
1387 Process_Subtype
(S
, P
, T
, 'P'));
1390 if All_Present
(Def
) or Constant_Present
(Def
) then
1391 Set_Ekind
(T
, E_General_Access_Type
);
1393 Set_Ekind
(T
, E_Access_Type
);
1396 Full_Desig
:= Designated_Type
(T
);
1398 if Base_Type
(Full_Desig
) = T
then
1399 Error_Msg_N
("access type cannot designate itself", S
);
1401 -- In Ada 2005, the type may have a limited view through some unit in
1402 -- its own context, allowing the following circularity that cannot be
1403 -- detected earlier.
1405 elsif Is_Class_Wide_Type
(Full_Desig
) and then Etype
(Full_Desig
) = T
1408 ("access type cannot designate its own class-wide type", S
);
1410 -- Clean up indication of tagged status to prevent cascaded errors
1412 Set_Is_Tagged_Type
(T
, False);
1417 -- If the type has appeared already in a with_type clause, it is frozen
1418 -- and the pointer size is already set. Else, initialize.
1420 if not From_Limited_With
(T
) then
1421 Init_Size_Align
(T
);
1424 -- Note that Has_Task is always false, since the access type itself
1425 -- is not a task type. See Einfo for more description on this point.
1426 -- Exactly the same consideration applies to Has_Controlled_Component
1427 -- and to Has_Protected.
1429 Set_Has_Task
(T
, False);
1430 Set_Has_Protected
(T
, False);
1431 Set_Has_Timing_Event
(T
, False);
1432 Set_Has_Controlled_Component
(T
, False);
1434 -- Initialize field Finalization_Master explicitly to Empty, to avoid
1435 -- problems where an incomplete view of this entity has been previously
1436 -- established by a limited with and an overlaid version of this field
1437 -- (Stored_Constraint) was initialized for the incomplete view.
1439 -- This reset is performed in most cases except where the access type
1440 -- has been created for the purposes of allocating or deallocating a
1441 -- build-in-place object. Such access types have explicitly set pools
1442 -- and finalization masters.
1444 if No
(Associated_Storage_Pool
(T
)) then
1445 Set_Finalization_Master
(T
, Empty
);
1448 -- Ada 2005 (AI-231): Propagate the null-excluding and access-constant
1451 Set_Can_Never_Be_Null
(T
, Null_Exclusion_Present
(Def
));
1452 Set_Is_Access_Constant
(T
, Constant_Present
(Def
));
1453 end Access_Type_Declaration
;
1455 ----------------------------------
1456 -- Add_Interface_Tag_Components --
1457 ----------------------------------
1459 procedure Add_Interface_Tag_Components
(N
: Node_Id
; Typ
: Entity_Id
) is
1460 Loc
: constant Source_Ptr
:= Sloc
(N
);
1464 procedure Add_Tag
(Iface
: Entity_Id
);
1465 -- Add tag for one of the progenitor interfaces
1471 procedure Add_Tag
(Iface
: Entity_Id
) is
1478 pragma Assert
(Is_Tagged_Type
(Iface
) and then Is_Interface
(Iface
));
1480 -- This is a reasonable place to propagate predicates
1482 if Has_Predicates
(Iface
) then
1483 Set_Has_Predicates
(Typ
);
1487 Make_Component_Definition
(Loc
,
1488 Aliased_Present
=> True,
1489 Subtype_Indication
=>
1490 New_Occurrence_Of
(RTE
(RE_Interface_Tag
), Loc
));
1492 Tag
:= Make_Temporary
(Loc
, 'V');
1495 Make_Component_Declaration
(Loc
,
1496 Defining_Identifier
=> Tag
,
1497 Component_Definition
=> Def
);
1499 Analyze_Component_Declaration
(Decl
);
1501 Set_Analyzed
(Decl
);
1502 Set_Ekind
(Tag
, E_Component
);
1504 Set_Is_Aliased
(Tag
);
1505 Set_Related_Type
(Tag
, Iface
);
1506 Init_Component_Location
(Tag
);
1508 pragma Assert
(Is_Frozen
(Iface
));
1510 Set_DT_Entry_Count
(Tag
,
1511 DT_Entry_Count
(First_Entity
(Iface
)));
1513 if No
(Last_Tag
) then
1516 Insert_After
(Last_Tag
, Decl
);
1521 -- If the ancestor has discriminants we need to give special support
1522 -- to store the offset_to_top value of the secondary dispatch tables.
1523 -- For this purpose we add a supplementary component just after the
1524 -- field that contains the tag associated with each secondary DT.
1526 if Typ
/= Etype
(Typ
) and then Has_Discriminants
(Etype
(Typ
)) then
1528 Make_Component_Definition
(Loc
,
1529 Subtype_Indication
=>
1530 New_Occurrence_Of
(RTE
(RE_Storage_Offset
), Loc
));
1532 Offset
:= Make_Temporary
(Loc
, 'V');
1535 Make_Component_Declaration
(Loc
,
1536 Defining_Identifier
=> Offset
,
1537 Component_Definition
=> Def
);
1539 Analyze_Component_Declaration
(Decl
);
1541 Set_Analyzed
(Decl
);
1542 Set_Ekind
(Offset
, E_Component
);
1543 Set_Is_Aliased
(Offset
);
1544 Set_Related_Type
(Offset
, Iface
);
1545 Init_Component_Location
(Offset
);
1546 Insert_After
(Last_Tag
, Decl
);
1557 -- Start of processing for Add_Interface_Tag_Components
1560 if not RTE_Available
(RE_Interface_Tag
) then
1562 ("(Ada 2005) interface types not supported by this run-time!",
1567 if Ekind
(Typ
) /= E_Record_Type
1568 or else (Is_Concurrent_Record_Type
(Typ
)
1569 and then Is_Empty_List
(Abstract_Interface_List
(Typ
)))
1570 or else (not Is_Concurrent_Record_Type
(Typ
)
1571 and then No
(Interfaces
(Typ
))
1572 and then Is_Empty_Elmt_List
(Interfaces
(Typ
)))
1577 -- Find the current last tag
1579 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1580 Ext
:= Record_Extension_Part
(Type_Definition
(N
));
1582 pragma Assert
(Nkind
(Type_Definition
(N
)) = N_Record_Definition
);
1583 Ext
:= Type_Definition
(N
);
1588 if not (Present
(Component_List
(Ext
))) then
1589 Set_Null_Present
(Ext
, False);
1591 Set_Component_List
(Ext
,
1592 Make_Component_List
(Loc
,
1593 Component_Items
=> L
,
1594 Null_Present
=> False));
1596 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
1597 L
:= Component_Items
1599 (Record_Extension_Part
1600 (Type_Definition
(N
))));
1602 L
:= Component_Items
1604 (Type_Definition
(N
)));
1607 -- Find the last tag component
1610 while Present
(Comp
) loop
1611 if Nkind
(Comp
) = N_Component_Declaration
1612 and then Is_Tag
(Defining_Identifier
(Comp
))
1621 -- At this point L references the list of components and Last_Tag
1622 -- references the current last tag (if any). Now we add the tag
1623 -- corresponding with all the interfaces that are not implemented
1626 if Present
(Interfaces
(Typ
)) then
1627 Elmt
:= First_Elmt
(Interfaces
(Typ
));
1628 while Present
(Elmt
) loop
1629 Add_Tag
(Node
(Elmt
));
1633 end Add_Interface_Tag_Components
;
1635 -------------------------------------
1636 -- Add_Internal_Interface_Entities --
1637 -------------------------------------
1639 procedure Add_Internal_Interface_Entities
(Tagged_Type
: Entity_Id
) is
1642 Iface_Elmt
: Elmt_Id
;
1643 Iface_Prim
: Entity_Id
;
1644 Ifaces_List
: Elist_Id
;
1645 New_Subp
: Entity_Id
:= Empty
;
1647 Restore_Scope
: Boolean := False;
1650 pragma Assert
(Ada_Version
>= Ada_2005
1651 and then Is_Record_Type
(Tagged_Type
)
1652 and then Is_Tagged_Type
(Tagged_Type
)
1653 and then Has_Interfaces
(Tagged_Type
)
1654 and then not Is_Interface
(Tagged_Type
));
1656 -- Ensure that the internal entities are added to the scope of the type
1658 if Scope
(Tagged_Type
) /= Current_Scope
then
1659 Push_Scope
(Scope
(Tagged_Type
));
1660 Restore_Scope
:= True;
1663 Collect_Interfaces
(Tagged_Type
, Ifaces_List
);
1665 Iface_Elmt
:= First_Elmt
(Ifaces_List
);
1666 while Present
(Iface_Elmt
) loop
1667 Iface
:= Node
(Iface_Elmt
);
1669 -- Originally we excluded here from this processing interfaces that
1670 -- are parents of Tagged_Type because their primitives are located
1671 -- in the primary dispatch table (and hence no auxiliary internal
1672 -- entities are required to handle secondary dispatch tables in such
1673 -- case). However, these auxiliary entities are also required to
1674 -- handle derivations of interfaces in formals of generics (see
1675 -- Derive_Subprograms).
1677 Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
1678 while Present
(Elmt
) loop
1679 Iface_Prim
:= Node
(Elmt
);
1681 if not Is_Predefined_Dispatching_Operation
(Iface_Prim
) then
1683 Find_Primitive_Covering_Interface
1684 (Tagged_Type
=> Tagged_Type
,
1685 Iface_Prim
=> Iface_Prim
);
1687 if No
(Prim
) and then Serious_Errors_Detected
> 0 then
1691 pragma Assert
(Present
(Prim
));
1693 -- Ada 2012 (AI05-0197): If the name of the covering primitive
1694 -- differs from the name of the interface primitive then it is
1695 -- a private primitive inherited from a parent type. In such
1696 -- case, given that Tagged_Type covers the interface, the
1697 -- inherited private primitive becomes visible. For such
1698 -- purpose we add a new entity that renames the inherited
1699 -- private primitive.
1701 if Chars
(Prim
) /= Chars
(Iface_Prim
) then
1702 pragma Assert
(Has_Suffix
(Prim
, 'P'));
1704 (New_Subp
=> New_Subp
,
1705 Parent_Subp
=> Iface_Prim
,
1706 Derived_Type
=> Tagged_Type
,
1707 Parent_Type
=> Iface
);
1708 Set_Alias
(New_Subp
, Prim
);
1709 Set_Is_Abstract_Subprogram
1710 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1714 (New_Subp
=> New_Subp
,
1715 Parent_Subp
=> Iface_Prim
,
1716 Derived_Type
=> Tagged_Type
,
1717 Parent_Type
=> Iface
);
1722 if Is_Inherited_Operation
(Prim
)
1723 and then Present
(Alias
(Prim
))
1725 Anc
:= Alias
(Prim
);
1727 Anc
:= Overridden_Operation
(Prim
);
1730 -- Apply legality checks in RM 6.1.1 (10-13) concerning
1731 -- nonconforming preconditions in both an ancestor and
1732 -- a progenitor operation.
1735 and then Has_Non_Trivial_Precondition
(Anc
)
1736 and then Has_Non_Trivial_Precondition
(Iface_Prim
)
1738 if Is_Abstract_Subprogram
(Prim
)
1740 (Ekind
(Prim
) = E_Procedure
1741 and then Nkind
(Parent
(Prim
)) =
1742 N_Procedure_Specification
1743 and then Null_Present
(Parent
(Prim
)))
1747 -- The inherited operation must be overridden
1749 elsif not Comes_From_Source
(Prim
) then
1751 ("&inherits non-conforming preconditions and must "
1752 & "be overridden (RM 6.1.1 (10-16)",
1753 Parent
(Tagged_Type
), Prim
);
1758 -- Ada 2005 (AI-251): Decorate internal entity Iface_Subp
1759 -- associated with interface types. These entities are
1760 -- only registered in the list of primitives of its
1761 -- corresponding tagged type because they are only used
1762 -- to fill the contents of the secondary dispatch tables.
1763 -- Therefore they are removed from the homonym chains.
1765 Set_Is_Hidden
(New_Subp
);
1766 Set_Is_Internal
(New_Subp
);
1767 Set_Alias
(New_Subp
, Prim
);
1768 Set_Is_Abstract_Subprogram
1769 (New_Subp
, Is_Abstract_Subprogram
(Prim
));
1770 Set_Interface_Alias
(New_Subp
, Iface_Prim
);
1772 -- If the returned type is an interface then propagate it to
1773 -- the returned type. Needed by the thunk to generate the code
1774 -- which displaces "this" to reference the corresponding
1775 -- secondary dispatch table in the returned object.
1777 if Is_Interface
(Etype
(Iface_Prim
)) then
1778 Set_Etype
(New_Subp
, Etype
(Iface_Prim
));
1781 -- Internal entities associated with interface types are only
1782 -- registered in the list of primitives of the tagged type.
1783 -- They are only used to fill the contents of the secondary
1784 -- dispatch tables. Therefore they are not needed in the
1787 Remove_Homonym
(New_Subp
);
1789 -- Hidden entities associated with interfaces must have set
1790 -- the Has_Delay_Freeze attribute to ensure that, in case
1791 -- of locally defined tagged types (or compiling with static
1792 -- dispatch tables generation disabled) the corresponding
1793 -- entry of the secondary dispatch table is filled when such
1794 -- an entity is frozen. This is an expansion activity that must
1795 -- be suppressed for ASIS because it leads to gigi elaboration
1796 -- issues in annotate mode.
1798 if not ASIS_Mode
then
1799 Set_Has_Delayed_Freeze
(New_Subp
);
1807 Next_Elmt
(Iface_Elmt
);
1810 if Restore_Scope
then
1813 end Add_Internal_Interface_Entities
;
1815 -----------------------------------
1816 -- Analyze_Component_Declaration --
1817 -----------------------------------
1819 procedure Analyze_Component_Declaration
(N
: Node_Id
) is
1820 Loc
: constant Source_Ptr
:= Sloc
(Component_Definition
(N
));
1821 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
1822 E
: constant Node_Id
:= Expression
(N
);
1823 Typ
: constant Node_Id
:=
1824 Subtype_Indication
(Component_Definition
(N
));
1828 function Contains_POC
(Constr
: Node_Id
) return Boolean;
1829 -- Determines whether a constraint uses the discriminant of a record
1830 -- type thus becoming a per-object constraint (POC).
1832 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean;
1833 -- Typ is the type of the current component, check whether this type is
1834 -- a limited type. Used to validate declaration against that of
1835 -- enclosing record.
1841 function Contains_POC
(Constr
: Node_Id
) return Boolean is
1843 -- Prevent cascaded errors
1845 if Error_Posted
(Constr
) then
1849 case Nkind
(Constr
) is
1850 when N_Attribute_Reference
=>
1851 return Attribute_Name
(Constr
) = Name_Access
1852 and then Prefix
(Constr
) = Scope
(Entity
(Prefix
(Constr
)));
1854 when N_Discriminant_Association
=>
1855 return Denotes_Discriminant
(Expression
(Constr
));
1857 when N_Identifier
=>
1858 return Denotes_Discriminant
(Constr
);
1860 when N_Index_Or_Discriminant_Constraint
=>
1865 IDC
:= First
(Constraints
(Constr
));
1866 while Present
(IDC
) loop
1868 -- One per-object constraint is sufficient
1870 if Contains_POC
(IDC
) then
1881 return Denotes_Discriminant
(Low_Bound
(Constr
))
1883 Denotes_Discriminant
(High_Bound
(Constr
));
1885 when N_Range_Constraint
=>
1886 return Denotes_Discriminant
(Range_Expression
(Constr
));
1893 ----------------------
1894 -- Is_Known_Limited --
1895 ----------------------
1897 function Is_Known_Limited
(Typ
: Entity_Id
) return Boolean is
1898 P
: constant Entity_Id
:= Etype
(Typ
);
1899 R
: constant Entity_Id
:= Root_Type
(Typ
);
1902 if Is_Limited_Record
(Typ
) then
1905 -- If the root type is limited (and not a limited interface)
1906 -- so is the current type
1908 elsif Is_Limited_Record
(R
)
1909 and then (not Is_Interface
(R
) or else not Is_Limited_Interface
(R
))
1913 -- Else the type may have a limited interface progenitor, but a
1914 -- limited record parent.
1916 elsif R
/= P
and then Is_Limited_Record
(P
) then
1922 end Is_Known_Limited
;
1924 -- Start of processing for Analyze_Component_Declaration
1927 Generate_Definition
(Id
);
1930 if Present
(Typ
) then
1931 T
:= Find_Type_Of_Object
1932 (Subtype_Indication
(Component_Definition
(N
)), N
);
1934 if not Nkind_In
(Typ
, N_Identifier
, N_Expanded_Name
) then
1935 Check_SPARK_05_Restriction
("subtype mark required", Typ
);
1938 -- Ada 2005 (AI-230): Access Definition case
1941 pragma Assert
(Present
1942 (Access_Definition
(Component_Definition
(N
))));
1944 T
:= Access_Definition
1946 N
=> Access_Definition
(Component_Definition
(N
)));
1947 Set_Is_Local_Anonymous_Access
(T
);
1949 -- Ada 2005 (AI-254)
1951 if Present
(Access_To_Subprogram_Definition
1952 (Access_Definition
(Component_Definition
(N
))))
1953 and then Protected_Present
(Access_To_Subprogram_Definition
1955 (Component_Definition
(N
))))
1957 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
1961 -- If the subtype is a constrained subtype of the enclosing record,
1962 -- (which must have a partial view) the back-end does not properly
1963 -- handle the recursion. Rewrite the component declaration with an
1964 -- explicit subtype indication, which is acceptable to Gigi. We can copy
1965 -- the tree directly because side effects have already been removed from
1966 -- discriminant constraints.
1968 if Ekind
(T
) = E_Access_Subtype
1969 and then Is_Entity_Name
(Subtype_Indication
(Component_Definition
(N
)))
1970 and then Comes_From_Source
(T
)
1971 and then Nkind
(Parent
(T
)) = N_Subtype_Declaration
1972 and then Etype
(Directly_Designated_Type
(T
)) = Current_Scope
1975 (Subtype_Indication
(Component_Definition
(N
)),
1976 New_Copy_Tree
(Subtype_Indication
(Parent
(T
))));
1977 T
:= Find_Type_Of_Object
1978 (Subtype_Indication
(Component_Definition
(N
)), N
);
1981 -- If the component declaration includes a default expression, then we
1982 -- check that the component is not of a limited type (RM 3.7(5)),
1983 -- and do the special preanalysis of the expression (see section on
1984 -- "Handling of Default and Per-Object Expressions" in the spec of
1988 Check_SPARK_05_Restriction
("default expression is not allowed", E
);
1989 Preanalyze_Default_Expression
(E
, T
);
1990 Check_Initialization
(T
, E
);
1992 if Ada_Version
>= Ada_2005
1993 and then Ekind
(T
) = E_Anonymous_Access_Type
1994 and then Etype
(E
) /= Any_Type
1996 -- Check RM 3.9.2(9): "if the expected type for an expression is
1997 -- an anonymous access-to-specific tagged type, then the object
1998 -- designated by the expression shall not be dynamically tagged
1999 -- unless it is a controlling operand in a call on a dispatching
2002 if Is_Tagged_Type
(Directly_Designated_Type
(T
))
2004 Ekind
(Directly_Designated_Type
(T
)) /= E_Class_Wide_Type
2006 Ekind
(Directly_Designated_Type
(Etype
(E
))) =
2010 ("access to specific tagged type required (RM 3.9.2(9))", E
);
2013 -- (Ada 2005: AI-230): Accessibility check for anonymous
2016 if Type_Access_Level
(Etype
(E
)) >
2017 Deepest_Type_Access_Level
(T
)
2020 ("expression has deeper access level than component " &
2021 "(RM 3.10.2 (12.2))", E
);
2024 -- The initialization expression is a reference to an access
2025 -- discriminant. The type of the discriminant is always deeper
2026 -- than any access type.
2028 if Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
2029 and then Is_Entity_Name
(E
)
2030 and then Ekind
(Entity
(E
)) = E_In_Parameter
2031 and then Present
(Discriminal_Link
(Entity
(E
)))
2034 ("discriminant has deeper accessibility level than target",
2040 -- The parent type may be a private view with unknown discriminants,
2041 -- and thus unconstrained. Regular components must be constrained.
2043 if not Is_Definite_Subtype
(T
) and then Chars
(Id
) /= Name_uParent
then
2044 if Is_Class_Wide_Type
(T
) then
2046 ("class-wide subtype with unknown discriminants" &
2047 " in component declaration",
2048 Subtype_Indication
(Component_Definition
(N
)));
2051 ("unconstrained subtype in component declaration",
2052 Subtype_Indication
(Component_Definition
(N
)));
2055 -- Components cannot be abstract, except for the special case of
2056 -- the _Parent field (case of extending an abstract tagged type)
2058 elsif Is_Abstract_Type
(T
) and then Chars
(Id
) /= Name_uParent
then
2059 Error_Msg_N
("type of a component cannot be abstract", N
);
2063 Set_Is_Aliased
(Id
, Aliased_Present
(Component_Definition
(N
)));
2065 -- The component declaration may have a per-object constraint, set
2066 -- the appropriate flag in the defining identifier of the subtype.
2068 if Present
(Subtype_Indication
(Component_Definition
(N
))) then
2070 Sindic
: constant Node_Id
:=
2071 Subtype_Indication
(Component_Definition
(N
));
2073 if Nkind
(Sindic
) = N_Subtype_Indication
2074 and then Present
(Constraint
(Sindic
))
2075 and then Contains_POC
(Constraint
(Sindic
))
2077 Set_Has_Per_Object_Constraint
(Id
);
2082 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
2083 -- out some static checks.
2085 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(T
) then
2086 Null_Exclusion_Static_Checks
(N
);
2089 -- If this component is private (or depends on a private type), flag the
2090 -- record type to indicate that some operations are not available.
2092 P
:= Private_Component
(T
);
2096 -- Check for circular definitions
2098 if P
= Any_Type
then
2099 Set_Etype
(Id
, Any_Type
);
2101 -- There is a gap in the visibility of operations only if the
2102 -- component type is not defined in the scope of the record type.
2104 elsif Scope
(P
) = Scope
(Current_Scope
) then
2107 elsif Is_Limited_Type
(P
) then
2108 Set_Is_Limited_Composite
(Current_Scope
);
2111 Set_Is_Private_Composite
(Current_Scope
);
2116 and then Is_Limited_Type
(T
)
2117 and then Chars
(Id
) /= Name_uParent
2118 and then Is_Tagged_Type
(Current_Scope
)
2120 if Is_Derived_Type
(Current_Scope
)
2121 and then not Is_Known_Limited
(Current_Scope
)
2124 ("extension of nonlimited type cannot have limited components",
2127 if Is_Interface
(Root_Type
(Current_Scope
)) then
2129 ("\limitedness is not inherited from limited interface", N
);
2130 Error_Msg_N
("\add LIMITED to type indication", N
);
2133 Explain_Limited_Type
(T
, N
);
2134 Set_Etype
(Id
, Any_Type
);
2135 Set_Is_Limited_Composite
(Current_Scope
, False);
2137 elsif not Is_Derived_Type
(Current_Scope
)
2138 and then not Is_Limited_Record
(Current_Scope
)
2139 and then not Is_Concurrent_Type
(Current_Scope
)
2142 ("nonlimited tagged type cannot have limited components", N
);
2143 Explain_Limited_Type
(T
, N
);
2144 Set_Etype
(Id
, Any_Type
);
2145 Set_Is_Limited_Composite
(Current_Scope
, False);
2149 -- If the component is an unconstrained task or protected type with
2150 -- discriminants, the component and the enclosing record are limited
2151 -- and the component is constrained by its default values. Compute
2152 -- its actual subtype, else it may be allocated the maximum size by
2153 -- the backend, and possibly overflow.
2155 if Is_Concurrent_Type
(T
)
2156 and then not Is_Constrained
(T
)
2157 and then Has_Discriminants
(T
)
2158 and then not Has_Discriminants
(Current_Scope
)
2161 Act_T
: constant Entity_Id
:= Build_Default_Subtype
(T
, N
);
2164 Set_Etype
(Id
, Act_T
);
2166 -- Rewrite component definition to use the constrained subtype
2168 Rewrite
(Component_Definition
(N
),
2169 Make_Component_Definition
(Loc
,
2170 Subtype_Indication
=> New_Occurrence_Of
(Act_T
, Loc
)));
2174 Set_Original_Record_Component
(Id
, Id
);
2176 if Has_Aspects
(N
) then
2177 Analyze_Aspect_Specifications
(N
, Id
);
2180 Analyze_Dimension
(N
);
2181 end Analyze_Component_Declaration
;
2183 --------------------------
2184 -- Analyze_Declarations --
2185 --------------------------
2187 procedure Analyze_Declarations
(L
: List_Id
) is
2190 procedure Adjust_Decl
;
2191 -- Adjust Decl not to include implicit label declarations, since these
2192 -- have strange Sloc values that result in elaboration check problems.
2193 -- (They have the sloc of the label as found in the source, and that
2194 -- is ahead of the current declarative part).
2196 procedure Build_Assertion_Bodies
(Decls
: List_Id
; Context
: Node_Id
);
2197 -- Create the subprogram bodies which verify the run-time semantics of
2198 -- the pragmas listed below for each elibigle type found in declarative
2199 -- list Decls. The pragmas are:
2201 -- Default_Initial_Condition
2205 -- Context denotes the owner of the declarative list.
2207 procedure Check_Entry_Contracts
;
2208 -- Perform a pre-analysis of the pre- and postconditions of an entry
2209 -- declaration. This must be done before full resolution and creation
2210 -- of the parameter block, etc. to catch illegal uses within the
2211 -- contract expression. Full analysis of the expression is done when
2212 -- the contract is processed.
2214 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
);
2215 -- Determine whether Body_Decl denotes the body of a late controlled
2216 -- primitive (either Initialize, Adjust or Finalize). If this is the
2217 -- case, add a proper spec if the body lacks one. The spec is inserted
2218 -- before Body_Decl and immediately analyzed.
2220 procedure Remove_Partial_Visible_Refinements
(Spec_Id
: Entity_Id
);
2221 -- Spec_Id is the entity of a package that may define abstract states,
2222 -- and in the case of a child unit, whose ancestors may define abstract
2223 -- states. If the states have partial visible refinement, remove the
2224 -- partial visibility of each constituent at the end of the package
2225 -- spec and body declarations.
2227 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
);
2228 -- Spec_Id is the entity of a package that may define abstract states.
2229 -- If the states have visible refinement, remove the visibility of each
2230 -- constituent at the end of the package body declaration.
2232 procedure Resolve_Aspects
;
2233 -- Utility to resolve the expressions of aspects at the end of a list of
2236 function Uses_Unseen_Lib_Unit_Priv
(Pkg
: Entity_Id
) return Boolean;
2237 -- Check if an inner package has entities within it that rely on library
2238 -- level private types where the full view has not been seen.
2244 procedure Adjust_Decl
is
2246 while Present
(Prev
(Decl
))
2247 and then Nkind
(Decl
) = N_Implicit_Label_Declaration
2253 ----------------------------
2254 -- Build_Assertion_Bodies --
2255 ----------------------------
2257 procedure Build_Assertion_Bodies
(Decls
: List_Id
; Context
: Node_Id
) is
2258 procedure Build_Assertion_Bodies_For_Type
(Typ
: Entity_Id
);
2259 -- Create the subprogram bodies which verify the run-time semantics
2260 -- of the pragmas listed below for type Typ. The pragmas are:
2262 -- Default_Initial_Condition
2266 -------------------------------------
2267 -- Build_Assertion_Bodies_For_Type --
2268 -------------------------------------
2270 procedure Build_Assertion_Bodies_For_Type
(Typ
: Entity_Id
) is
2272 -- Preanalyze and resolve the Default_Initial_Condition assertion
2273 -- expression at the end of the declarations to catch any errors.
2275 if Has_DIC
(Typ
) then
2276 Build_DIC_Procedure_Body
(Typ
);
2279 if Nkind
(Context
) = N_Package_Specification
then
2281 -- Preanalyze and resolve the class-wide invariants of an
2282 -- interface at the end of whichever declarative part has the
2283 -- interface type. Note that an interface may be declared in
2284 -- any non-package declarative part, but reaching the end of
2285 -- such a declarative part will always freeze the type and
2286 -- generate the invariant procedure (see Freeze_Type).
2288 if Is_Interface
(Typ
) then
2290 -- Interfaces are treated as the partial view of a private
2291 -- type, in order to achieve uniformity with the general
2292 -- case. As a result, an interface receives only a "partial"
2293 -- invariant procedure, which is never called.
2295 if Has_Own_Invariants
(Typ
) then
2296 Build_Invariant_Procedure_Body
2298 Partial_Invariant
=> True);
2301 -- Preanalyze and resolve the invariants of a private type
2302 -- at the end of the visible declarations to catch potential
2303 -- errors. Inherited class-wide invariants are not included
2304 -- because they have already been resolved.
2306 elsif Decls
= Visible_Declarations
(Context
)
2307 and then Ekind_In
(Typ
, E_Limited_Private_Type
,
2309 E_Record_Type_With_Private
)
2310 and then Has_Own_Invariants
(Typ
)
2312 Build_Invariant_Procedure_Body
2314 Partial_Invariant
=> True);
2316 -- Preanalyze and resolve the invariants of a private type's
2317 -- full view at the end of the private declarations to catch
2318 -- potential errors.
2320 elsif Decls
= Private_Declarations
(Context
)
2321 and then not Is_Private_Type
(Typ
)
2322 and then Has_Private_Declaration
(Typ
)
2323 and then Has_Invariants
(Typ
)
2325 Build_Invariant_Procedure_Body
(Typ
);
2328 end Build_Assertion_Bodies_For_Type
;
2333 Decl_Id
: Entity_Id
;
2335 -- Start of processing for Build_Assertion_Bodies
2338 Decl
:= First
(Decls
);
2339 while Present
(Decl
) loop
2340 if Is_Declaration
(Decl
) then
2341 Decl_Id
:= Defining_Entity
(Decl
);
2343 if Is_Type
(Decl_Id
) then
2344 Build_Assertion_Bodies_For_Type
(Decl_Id
);
2350 end Build_Assertion_Bodies
;
2352 ---------------------------
2353 -- Check_Entry_Contracts --
2354 ---------------------------
2356 procedure Check_Entry_Contracts
is
2362 Ent
:= First_Entity
(Current_Scope
);
2363 while Present
(Ent
) loop
2365 -- This only concerns entries with pre/postconditions
2367 if Ekind
(Ent
) = E_Entry
2368 and then Present
(Contract
(Ent
))
2369 and then Present
(Pre_Post_Conditions
(Contract
(Ent
)))
2371 ASN
:= Pre_Post_Conditions
(Contract
(Ent
));
2373 Install_Formals
(Ent
);
2375 -- Pre/postconditions are rewritten as Check pragmas. Analysis
2376 -- is performed on a copy of the pragma expression, to prevent
2377 -- modifying the original expression.
2379 while Present
(ASN
) loop
2380 if Nkind
(ASN
) = N_Pragma
then
2384 (First
(Pragma_Argument_Associations
(ASN
))));
2385 Set_Parent
(Exp
, ASN
);
2387 Preanalyze_Assert_Expression
(Exp
, Standard_Boolean
);
2390 ASN
:= Next_Pragma
(ASN
);
2398 end Check_Entry_Contracts
;
2400 --------------------------------------
2401 -- Handle_Late_Controlled_Primitive --
2402 --------------------------------------
2404 procedure Handle_Late_Controlled_Primitive
(Body_Decl
: Node_Id
) is
2405 Body_Spec
: constant Node_Id
:= Specification
(Body_Decl
);
2406 Body_Id
: constant Entity_Id
:= Defining_Entity
(Body_Spec
);
2407 Loc
: constant Source_Ptr
:= Sloc
(Body_Id
);
2408 Params
: constant List_Id
:=
2409 Parameter_Specifications
(Body_Spec
);
2411 Spec_Id
: Entity_Id
;
2415 -- Consider only procedure bodies whose name matches one of the three
2416 -- controlled primitives.
2418 if Nkind
(Body_Spec
) /= N_Procedure_Specification
2419 or else not Nam_In
(Chars
(Body_Id
), Name_Adjust
,
2425 -- A controlled primitive must have exactly one formal which is not
2426 -- an anonymous access type.
2428 elsif List_Length
(Params
) /= 1 then
2432 Typ
:= Parameter_Type
(First
(Params
));
2434 if Nkind
(Typ
) = N_Access_Definition
then
2440 -- The type of the formal must be derived from [Limited_]Controlled
2442 if not Is_Controlled
(Entity
(Typ
)) then
2446 -- Check whether a specification exists for this body. We do not
2447 -- analyze the spec of the body in full, because it will be analyzed
2448 -- again when the body is properly analyzed, and we cannot create
2449 -- duplicate entries in the formals chain. We look for an explicit
2450 -- specification because the body may be an overriding operation and
2451 -- an inherited spec may be present.
2453 Spec_Id
:= Current_Entity
(Body_Id
);
2455 while Present
(Spec_Id
) loop
2456 if Ekind_In
(Spec_Id
, E_Procedure
, E_Generic_Procedure
)
2457 and then Scope
(Spec_Id
) = Current_Scope
2458 and then Present
(First_Formal
(Spec_Id
))
2459 and then No
(Next_Formal
(First_Formal
(Spec_Id
)))
2460 and then Etype
(First_Formal
(Spec_Id
)) = Entity
(Typ
)
2461 and then Comes_From_Source
(Spec_Id
)
2466 Spec_Id
:= Homonym
(Spec_Id
);
2469 -- At this point the body is known to be a late controlled primitive.
2470 -- Generate a matching spec and insert it before the body. Note the
2471 -- use of Copy_Separate_Tree - we want an entirely separate semantic
2472 -- tree in this case.
2474 Spec
:= Copy_Separate_Tree
(Body_Spec
);
2476 -- Ensure that the subprogram declaration does not inherit the null
2477 -- indicator from the body as we now have a proper spec/body pair.
2479 Set_Null_Present
(Spec
, False);
2481 -- Ensure that the freeze node is inserted after the declaration of
2482 -- the primitive since its expansion will freeze the primitive.
2484 Decl
:= Make_Subprogram_Declaration
(Loc
, Specification
=> Spec
);
2486 Insert_Before_And_Analyze
(Body_Decl
, Decl
);
2487 end Handle_Late_Controlled_Primitive
;
2489 ----------------------------------------
2490 -- Remove_Partial_Visible_Refinements --
2491 ----------------------------------------
2493 procedure Remove_Partial_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2494 State_Elmt
: Elmt_Id
;
2496 if Present
(Abstract_States
(Spec_Id
)) then
2497 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2498 while Present
(State_Elmt
) loop
2499 Set_Has_Partial_Visible_Refinement
(Node
(State_Elmt
), False);
2500 Next_Elmt
(State_Elmt
);
2504 -- For a child unit, also hide the partial state refinement from
2505 -- ancestor packages.
2507 if Is_Child_Unit
(Spec_Id
) then
2508 Remove_Partial_Visible_Refinements
(Scope
(Spec_Id
));
2510 end Remove_Partial_Visible_Refinements
;
2512 --------------------------------
2513 -- Remove_Visible_Refinements --
2514 --------------------------------
2516 procedure Remove_Visible_Refinements
(Spec_Id
: Entity_Id
) is
2517 State_Elmt
: Elmt_Id
;
2519 if Present
(Abstract_States
(Spec_Id
)) then
2520 State_Elmt
:= First_Elmt
(Abstract_States
(Spec_Id
));
2521 while Present
(State_Elmt
) loop
2522 Set_Has_Visible_Refinement
(Node
(State_Elmt
), False);
2523 Next_Elmt
(State_Elmt
);
2526 end Remove_Visible_Refinements
;
2528 ---------------------
2529 -- Resolve_Aspects --
2530 ---------------------
2532 procedure Resolve_Aspects
is
2536 E
:= First_Entity
(Current_Scope
);
2537 while Present
(E
) loop
2538 Resolve_Aspect_Expressions
(E
);
2541 end Resolve_Aspects
;
2543 -------------------------------
2544 -- Uses_Unseen_Lib_Unit_Priv --
2545 -------------------------------
2547 function Uses_Unseen_Lib_Unit_Priv
(Pkg
: Entity_Id
) return Boolean is
2551 -- Avoid looking through scopes that do not meet the precondition of
2552 -- Pkg not being within a library unit spec.
2554 if not Is_Compilation_Unit
(Pkg
)
2555 and then not Is_Generic_Instance
(Pkg
)
2556 and then not In_Package_Body
(Enclosing_Lib_Unit_Entity
(Pkg
))
2558 -- Loop through all entities in the current scope to identify
2559 -- an entity that depends on a private type.
2561 Curr
:= First_Entity
(Pkg
);
2563 if Nkind
(Curr
) in N_Entity
2564 and then Depends_On_Private
(Curr
)
2569 exit when Last_Entity
(Current_Scope
) = Curr
;
2570 Curr
:= Next_Entity
(Curr
);
2575 end Uses_Unseen_Lib_Unit_Priv
;
2579 Context
: Node_Id
:= Empty
;
2580 Freeze_From
: Entity_Id
:= Empty
;
2581 Next_Decl
: Node_Id
;
2583 Body_Seen
: Boolean := False;
2584 -- Flag set when the first body [stub] is encountered
2586 -- Start of processing for Analyze_Declarations
2589 if Restriction_Check_Required
(SPARK_05
) then
2590 Check_Later_Vs_Basic_Declarations
(L
, During_Parsing
=> False);
2594 while Present
(Decl
) loop
2596 -- Package spec cannot contain a package declaration in SPARK
2598 if Nkind
(Decl
) = N_Package_Declaration
2599 and then Nkind
(Parent
(L
)) = N_Package_Specification
2601 Check_SPARK_05_Restriction
2602 ("package specification cannot contain a package declaration",
2606 -- Complete analysis of declaration
2609 Next_Decl
:= Next
(Decl
);
2611 if No
(Freeze_From
) then
2612 Freeze_From
:= First_Entity
(Current_Scope
);
2615 -- At the end of a declarative part, freeze remaining entities
2616 -- declared in it. The end of the visible declarations of package
2617 -- specification is not the end of a declarative part if private
2618 -- declarations are present. The end of a package declaration is a
2619 -- freezing point only if it a library package. A task definition or
2620 -- protected type definition is not a freeze point either. Finally,
2621 -- we do not freeze entities in generic scopes, because there is no
2622 -- code generated for them and freeze nodes will be generated for
2625 -- The end of a package instantiation is not a freeze point, but
2626 -- for now we make it one, because the generic body is inserted
2627 -- (currently) immediately after. Generic instantiations will not
2628 -- be a freeze point once delayed freezing of bodies is implemented.
2629 -- (This is needed in any case for early instantiations ???).
2631 if No
(Next_Decl
) then
2632 if Nkind
(Parent
(L
)) = N_Component_List
then
2635 elsif Nkind_In
(Parent
(L
), N_Protected_Definition
,
2638 Check_Entry_Contracts
;
2640 elsif Nkind
(Parent
(L
)) /= N_Package_Specification
then
2641 if Nkind
(Parent
(L
)) = N_Package_Body
then
2642 Freeze_From
:= First_Entity
(Current_Scope
);
2645 -- There may have been several freezing points previously,
2646 -- for example object declarations or subprogram bodies, but
2647 -- at the end of a declarative part we check freezing from
2648 -- the beginning, even though entities may already be frozen,
2649 -- in order to perform visibility checks on delayed aspects.
2652 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2653 Freeze_From
:= Last_Entity
(Current_Scope
);
2655 -- Current scope is a package specification
2657 elsif Scope
(Current_Scope
) /= Standard_Standard
2658 and then not Is_Child_Unit
(Current_Scope
)
2659 and then No
(Generic_Parent
(Parent
(L
)))
2661 -- This is needed in all cases to catch visibility errors in
2662 -- aspect expressions, but several large user tests are now
2663 -- rejected. Pending notification we restrict this call to
2670 elsif L
/= Visible_Declarations
(Parent
(L
))
2671 or else No
(Private_Declarations
(Parent
(L
)))
2672 or else Is_Empty_List
(Private_Declarations
(Parent
(L
)))
2676 -- End of a package declaration
2678 -- In compilation mode the expansion of freeze node takes care
2679 -- of resolving expressions of all aspects in the list. In ASIS
2680 -- mode this must be done explicitly.
2683 and then Scope
(Current_Scope
) = Standard_Standard
2688 -- This is a freeze point because it is the end of a
2689 -- compilation unit.
2691 Freeze_All
(First_Entity
(Current_Scope
), Decl
);
2692 Freeze_From
:= Last_Entity
(Current_Scope
);
2694 -- At the end of the visible declarations the expressions in
2695 -- aspects of all entities declared so far must be resolved.
2696 -- The entities themselves might be frozen later, and the
2697 -- generated pragmas and attribute definition clauses analyzed
2698 -- in full at that point, but name resolution must take place
2700 -- In addition to being the proper semantics, this is mandatory
2701 -- within generic units, because global name capture requires
2702 -- those expressions to be analyzed, given that the generated
2703 -- pragmas do not appear in the original generic tree.
2705 elsif Serious_Errors_Detected
= 0 then
2709 -- If next node is a body then freeze all types before the body.
2710 -- An exception occurs for some expander-generated bodies. If these
2711 -- are generated at places where in general language rules would not
2712 -- allow a freeze point, then we assume that the expander has
2713 -- explicitly checked that all required types are properly frozen,
2714 -- and we do not cause general freezing here. This special circuit
2715 -- is used when the encountered body is marked as having already
2718 -- In all other cases (bodies that come from source, and expander
2719 -- generated bodies that have not been analyzed yet), freeze all
2720 -- types now. Note that in the latter case, the expander must take
2721 -- care to attach the bodies at a proper place in the tree so as to
2722 -- not cause unwanted freezing at that point.
2724 -- It is also necessary to check for a case where both an expression
2725 -- function is used and the current scope depends on an unseen
2726 -- private type from a library unit, otherwise premature freezing of
2727 -- the private type will occur.
2729 elsif not Analyzed
(Next_Decl
) and then Is_Body
(Next_Decl
)
2730 and then ((Nkind
(Next_Decl
) /= N_Subprogram_Body
2731 or else not Was_Expression_Function
(Next_Decl
))
2732 or else not Uses_Unseen_Lib_Unit_Priv
(Current_Scope
))
2734 -- When a controlled type is frozen, the expander generates stream
2735 -- and controlled-type support routines. If the freeze is caused
2736 -- by the stand-alone body of Initialize, Adjust, or Finalize, the
2737 -- expander will end up using the wrong version of these routines,
2738 -- as the body has not been processed yet. To remedy this, detect
2739 -- a late controlled primitive and create a proper spec for it.
2740 -- This ensures that the primitive will override its inherited
2741 -- counterpart before the freeze takes place.
2743 -- If the declaration we just processed is a body, do not attempt
2744 -- to examine Next_Decl as the late primitive idiom can only apply
2745 -- to the first encountered body.
2747 -- The spec of the late primitive is not generated in ASIS mode to
2748 -- ensure a consistent list of primitives that indicates the true
2749 -- semantic structure of the program (which is not relevant when
2750 -- generating executable code).
2752 -- ??? A cleaner approach may be possible and/or this solution
2753 -- could be extended to general-purpose late primitives, TBD.
2756 and then not Body_Seen
2757 and then not Is_Body
(Decl
)
2761 if Nkind
(Next_Decl
) = N_Subprogram_Body
then
2762 Handle_Late_Controlled_Primitive
(Next_Decl
);
2768 -- The generated body of an expression function does not freeze,
2769 -- unless it is a completion, in which case only the expression
2770 -- itself freezes. This is handled when the body itself is
2771 -- analyzed (see Freeze_Expr_Types, sem_ch6.adb).
2773 Freeze_All
(Freeze_From
, Decl
);
2774 Freeze_From
:= Last_Entity
(Current_Scope
);
2780 -- Post-freezing actions
2783 Context
:= Parent
(L
);
2785 -- Analyze the contracts of packages and their bodies
2787 if Nkind
(Context
) = N_Package_Specification
then
2789 -- When a package has private declarations, its contract must be
2790 -- analyzed at the end of the said declarations. This way both the
2791 -- analysis and freeze actions are properly synchronized in case
2792 -- of private type use within the contract.
2794 if L
= Private_Declarations
(Context
) then
2795 Analyze_Package_Contract
(Defining_Entity
(Context
));
2797 -- Otherwise the contract is analyzed at the end of the visible
2800 elsif L
= Visible_Declarations
(Context
)
2801 and then No
(Private_Declarations
(Context
))
2803 Analyze_Package_Contract
(Defining_Entity
(Context
));
2806 elsif Nkind
(Context
) = N_Package_Body
then
2807 Analyze_Package_Body_Contract
(Defining_Entity
(Context
));
2810 -- Analyze the contracts of various constructs now due to the delayed
2811 -- visibility needs of their aspects and pragmas.
2813 Analyze_Contracts
(L
);
2815 if Nkind
(Context
) = N_Package_Body
then
2817 -- Ensure that all abstract states and objects declared in the
2818 -- state space of a package body are utilized as constituents.
2820 Check_Unused_Body_States
(Defining_Entity
(Context
));
2822 -- State refinements are visible up to the end of the package body
2823 -- declarations. Hide the state refinements from visibility to
2824 -- restore the original state conditions.
2826 Remove_Visible_Refinements
(Corresponding_Spec
(Context
));
2827 Remove_Partial_Visible_Refinements
(Corresponding_Spec
(Context
));
2829 elsif Nkind
(Context
) = N_Package_Declaration
then
2831 -- Partial state refinements are visible up to the end of the
2832 -- package spec declarations. Hide the partial state refinements
2833 -- from visibility to restore the original state conditions.
2835 Remove_Partial_Visible_Refinements
(Corresponding_Spec
(Context
));
2838 -- Verify that all abstract states found in any package declared in
2839 -- the input declarative list have proper refinements. The check is
2840 -- performed only when the context denotes a block, entry, package,
2841 -- protected, subprogram, or task body (SPARK RM 7.2.2(3)).
2843 Check_State_Refinements
(Context
);
2845 -- Create the subprogram bodies which verify the run-time semantics
2846 -- of pragmas Default_Initial_Condition and [Type_]Invariant for all
2847 -- types within the current declarative list. This ensures that all
2848 -- assertion expressions are preanalyzed and resolved at the end of
2849 -- the declarative part. Note that the resolution happens even when
2850 -- freezing does not take place.
2852 Build_Assertion_Bodies
(L
, Context
);
2854 end Analyze_Declarations
;
2856 -----------------------------------
2857 -- Analyze_Full_Type_Declaration --
2858 -----------------------------------
2860 procedure Analyze_Full_Type_Declaration
(N
: Node_Id
) is
2861 Def
: constant Node_Id
:= Type_Definition
(N
);
2862 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2866 Is_Remote
: constant Boolean :=
2867 (Is_Remote_Types
(Current_Scope
)
2868 or else Is_Remote_Call_Interface
(Current_Scope
))
2869 and then not (In_Private_Part
(Current_Scope
)
2870 or else In_Package_Body
(Current_Scope
));
2872 procedure Check_Nonoverridable_Aspects
;
2873 -- Apply the rule in RM 13.1.1(18.4/4) on iterator aspects that cannot
2874 -- be overridden, and can only be confirmed on derivation.
2876 procedure Check_Ops_From_Incomplete_Type
;
2877 -- If there is a tagged incomplete partial view of the type, traverse
2878 -- the primitives of the incomplete view and change the type of any
2879 -- controlling formals and result to indicate the full view. The
2880 -- primitives will be added to the full type's primitive operations
2881 -- list later in Sem_Disp.Check_Operation_From_Incomplete_Type (which
2882 -- is called from Process_Incomplete_Dependents).
2884 ----------------------------------
2885 -- Check_Nonoverridable_Aspects --
2886 ----------------------------------
2888 procedure Check_Nonoverridable_Aspects
is
2889 function Get_Aspect_Spec
2891 Aspect_Name
: Name_Id
) return Node_Id
;
2892 -- Check whether a list of aspect specifications includes an entry
2893 -- for a specific aspect. The list is either that of a partial or
2896 ---------------------
2897 -- Get_Aspect_Spec --
2898 ---------------------
2900 function Get_Aspect_Spec
2902 Aspect_Name
: Name_Id
) return Node_Id
2907 Spec
:= First
(Specs
);
2908 while Present
(Spec
) loop
2909 if Chars
(Identifier
(Spec
)) = Aspect_Name
then
2916 end Get_Aspect_Spec
;
2920 Prev_Aspects
: constant List_Id
:=
2921 Aspect_Specifications
(Parent
(Def_Id
));
2922 Par_Type
: Entity_Id
;
2923 Prev_Aspect
: Node_Id
;
2925 -- Start of processing for Check_Nonoverridable_Aspects
2928 -- Get parent type of derived type. Note that Prev is the entity in
2929 -- the partial declaration, but its contents are now those of full
2930 -- view, while Def_Id reflects the partial view.
2932 if Is_Private_Type
(Def_Id
) then
2933 Par_Type
:= Etype
(Full_View
(Def_Id
));
2935 Par_Type
:= Etype
(Def_Id
);
2938 -- If there is an inherited Implicit_Dereference, verify that it is
2939 -- made explicit in the partial view.
2941 if Has_Discriminants
(Base_Type
(Par_Type
))
2942 and then Nkind
(Parent
(Prev
)) = N_Full_Type_Declaration
2943 and then Present
(Discriminant_Specifications
(Parent
(Prev
)))
2944 and then Present
(Get_Reference_Discriminant
(Par_Type
))
2947 Get_Aspect_Spec
(Prev_Aspects
, Name_Implicit_Dereference
);
2951 (Discriminant_Specifications
2952 (Original_Node
(Parent
(Prev
))))
2955 ("type does not inherit implicit dereference", Prev
);
2958 -- If one of the views has the aspect specified, verify that it
2959 -- is consistent with that of the parent.
2962 Par_Discr
: constant Entity_Id
:=
2963 Get_Reference_Discriminant
(Par_Type
);
2964 Cur_Discr
: constant Entity_Id
:=
2965 Get_Reference_Discriminant
(Prev
);
2968 if Corresponding_Discriminant
(Cur_Discr
) /= Par_Discr
then
2969 Error_Msg_N
("aspect incosistent with that of parent", N
);
2972 -- Check that specification in partial view matches the
2973 -- inherited aspect. Compare names directly because aspect
2974 -- expression may not be analyzed.
2976 if Present
(Prev_Aspect
)
2977 and then Nkind
(Expression
(Prev_Aspect
)) = N_Identifier
2978 and then Chars
(Expression
(Prev_Aspect
)) /=
2982 ("aspect incosistent with that of parent", N
);
2988 -- TBD : other nonoverridable aspects.
2989 end Check_Nonoverridable_Aspects
;
2991 ------------------------------------
2992 -- Check_Ops_From_Incomplete_Type --
2993 ------------------------------------
2995 procedure Check_Ops_From_Incomplete_Type
is
3002 and then Ekind
(Prev
) = E_Incomplete_Type
3003 and then Is_Tagged_Type
(Prev
)
3004 and then Is_Tagged_Type
(T
)
3006 Elmt
:= First_Elmt
(Primitive_Operations
(Prev
));
3007 while Present
(Elmt
) loop
3010 Formal
:= First_Formal
(Op
);
3011 while Present
(Formal
) loop
3012 if Etype
(Formal
) = Prev
then
3013 Set_Etype
(Formal
, T
);
3016 Next_Formal
(Formal
);
3019 if Etype
(Op
) = Prev
then
3026 end Check_Ops_From_Incomplete_Type
;
3028 -- Start of processing for Analyze_Full_Type_Declaration
3031 Prev
:= Find_Type_Name
(N
);
3033 -- The full view, if present, now points to the current type. If there
3034 -- is an incomplete partial view, set a link to it, to simplify the
3035 -- retrieval of primitive operations of the type.
3037 -- Ada 2005 (AI-50217): If the type was previously decorated when
3038 -- imported through a LIMITED WITH clause, it appears as incomplete
3039 -- but has no full view.
3041 if Ekind
(Prev
) = E_Incomplete_Type
3042 and then Present
(Full_View
(Prev
))
3044 T
:= Full_View
(Prev
);
3045 Set_Incomplete_View
(N
, Parent
(Prev
));
3050 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
3052 -- We set the flag Is_First_Subtype here. It is needed to set the
3053 -- corresponding flag for the Implicit class-wide-type created
3054 -- during tagged types processing.
3056 Set_Is_First_Subtype
(T
, True);
3058 -- Only composite types other than array types are allowed to have
3063 -- For derived types, the rule will be checked once we've figured
3064 -- out the parent type.
3066 when N_Derived_Type_Definition
=>
3069 -- For record types, discriminants are allowed, unless we are in
3072 when N_Record_Definition
=>
3073 if Present
(Discriminant_Specifications
(N
)) then
3074 Check_SPARK_05_Restriction
3075 ("discriminant type is not allowed",
3077 (First
(Discriminant_Specifications
(N
))));
3081 if Present
(Discriminant_Specifications
(N
)) then
3083 ("elementary or array type cannot have discriminants",
3085 (First
(Discriminant_Specifications
(N
))));
3089 -- Elaborate the type definition according to kind, and generate
3090 -- subsidiary (implicit) subtypes where needed. We skip this if it was
3091 -- already done (this happens during the reanalysis that follows a call
3092 -- to the high level optimizer).
3094 if not Analyzed
(T
) then
3098 when N_Access_To_Subprogram_Definition
=>
3099 Access_Subprogram_Declaration
(T
, Def
);
3101 -- If this is a remote access to subprogram, we must create the
3102 -- equivalent fat pointer type, and related subprograms.
3105 Process_Remote_AST_Declaration
(N
);
3108 -- Validate categorization rule against access type declaration
3109 -- usually a violation in Pure unit, Shared_Passive unit.
3111 Validate_Access_Type_Declaration
(T
, N
);
3113 when N_Access_To_Object_Definition
=>
3114 Access_Type_Declaration
(T
, Def
);
3116 -- Validate categorization rule against access type declaration
3117 -- usually a violation in Pure unit, Shared_Passive unit.
3119 Validate_Access_Type_Declaration
(T
, N
);
3121 -- If we are in a Remote_Call_Interface package and define a
3122 -- RACW, then calling stubs and specific stream attributes
3126 and then Is_Remote_Access_To_Class_Wide_Type
(Def_Id
)
3128 Add_RACW_Features
(Def_Id
);
3131 when N_Array_Type_Definition
=>
3132 Array_Type_Declaration
(T
, Def
);
3134 when N_Derived_Type_Definition
=>
3135 Derived_Type_Declaration
(T
, N
, T
/= Def_Id
);
3137 -- Inherit predicates from parent, and protect against illegal
3140 if Is_Type
(T
) and then Has_Predicates
(T
) then
3141 Set_Has_Predicates
(Def_Id
);
3144 when N_Enumeration_Type_Definition
=>
3145 Enumeration_Type_Declaration
(T
, Def
);
3147 when N_Floating_Point_Definition
=>
3148 Floating_Point_Type_Declaration
(T
, Def
);
3150 when N_Decimal_Fixed_Point_Definition
=>
3151 Decimal_Fixed_Point_Type_Declaration
(T
, Def
);
3153 when N_Ordinary_Fixed_Point_Definition
=>
3154 Ordinary_Fixed_Point_Type_Declaration
(T
, Def
);
3156 when N_Signed_Integer_Type_Definition
=>
3157 Signed_Integer_Type_Declaration
(T
, Def
);
3159 when N_Modular_Type_Definition
=>
3160 Modular_Type_Declaration
(T
, Def
);
3162 when N_Record_Definition
=>
3163 Record_Type_Declaration
(T
, N
, Prev
);
3165 -- If declaration has a parse error, nothing to elaborate.
3171 raise Program_Error
;
3175 if Etype
(T
) = Any_Type
then
3179 -- Controlled type is not allowed in SPARK
3181 if Is_Visibly_Controlled
(T
) then
3182 Check_SPARK_05_Restriction
("controlled type is not allowed", N
);
3185 -- Some common processing for all types
3187 Set_Depends_On_Private
(T
, Has_Private_Component
(T
));
3188 Check_Ops_From_Incomplete_Type
;
3190 -- Both the declared entity, and its anonymous base type if one was
3191 -- created, need freeze nodes allocated.
3194 B
: constant Entity_Id
:= Base_Type
(T
);
3197 -- In the case where the base type differs from the first subtype, we
3198 -- pre-allocate a freeze node, and set the proper link to the first
3199 -- subtype. Freeze_Entity will use this preallocated freeze node when
3200 -- it freezes the entity.
3202 -- This does not apply if the base type is a generic type, whose
3203 -- declaration is independent of the current derived definition.
3205 if B
/= T
and then not Is_Generic_Type
(B
) then
3206 Ensure_Freeze_Node
(B
);
3207 Set_First_Subtype_Link
(Freeze_Node
(B
), T
);
3210 -- A type that is imported through a limited_with clause cannot
3211 -- generate any code, and thus need not be frozen. However, an access
3212 -- type with an imported designated type needs a finalization list,
3213 -- which may be referenced in some other package that has non-limited
3214 -- visibility on the designated type. Thus we must create the
3215 -- finalization list at the point the access type is frozen, to
3216 -- prevent unsatisfied references at link time.
3218 if not From_Limited_With
(T
) or else Is_Access_Type
(T
) then
3219 Set_Has_Delayed_Freeze
(T
);
3223 -- Case where T is the full declaration of some private type which has
3224 -- been swapped in Defining_Identifier (N).
3226 if T
/= Def_Id
and then Is_Private_Type
(Def_Id
) then
3227 Process_Full_View
(N
, T
, Def_Id
);
3229 -- Record the reference. The form of this is a little strange, since
3230 -- the full declaration has been swapped in. So the first parameter
3231 -- here represents the entity to which a reference is made which is
3232 -- the "real" entity, i.e. the one swapped in, and the second
3233 -- parameter provides the reference location.
3235 -- Also, we want to kill Has_Pragma_Unreferenced temporarily here
3236 -- since we don't want a complaint about the full type being an
3237 -- unwanted reference to the private type
3240 B
: constant Boolean := Has_Pragma_Unreferenced
(T
);
3242 Set_Has_Pragma_Unreferenced
(T
, False);
3243 Generate_Reference
(T
, T
, 'c');
3244 Set_Has_Pragma_Unreferenced
(T
, B
);
3247 Set_Completion_Referenced
(Def_Id
);
3249 -- For completion of incomplete type, process incomplete dependents
3250 -- and always mark the full type as referenced (it is the incomplete
3251 -- type that we get for any real reference).
3253 elsif Ekind
(Prev
) = E_Incomplete_Type
then
3254 Process_Incomplete_Dependents
(N
, T
, Prev
);
3255 Generate_Reference
(Prev
, Def_Id
, 'c');
3256 Set_Completion_Referenced
(Def_Id
);
3258 -- If not private type or incomplete type completion, this is a real
3259 -- definition of a new entity, so record it.
3262 Generate_Definition
(Def_Id
);
3265 -- Propagate any pending access types whose finalization masters need to
3266 -- be fully initialized from the partial to the full view. Guard against
3267 -- an illegal full view that remains unanalyzed.
3269 if Is_Type
(Def_Id
) and then Is_Incomplete_Or_Private_Type
(Prev
) then
3270 Set_Pending_Access_Types
(Def_Id
, Pending_Access_Types
(Prev
));
3273 if Chars
(Scope
(Def_Id
)) = Name_System
3274 and then Chars
(Def_Id
) = Name_Address
3275 and then In_Predefined_Unit
(N
)
3277 Set_Is_Descendant_Of_Address
(Def_Id
);
3278 Set_Is_Descendant_Of_Address
(Base_Type
(Def_Id
));
3279 Set_Is_Descendant_Of_Address
(Prev
);
3282 Set_Optimize_Alignment_Flags
(Def_Id
);
3283 Check_Eliminated
(Def_Id
);
3285 -- If the declaration is a completion and aspects are present, apply
3286 -- them to the entity for the type which is currently the partial
3287 -- view, but which is the one that will be frozen.
3289 if Has_Aspects
(N
) then
3291 -- In most cases the partial view is a private type, and both views
3292 -- appear in different declarative parts. In the unusual case where
3293 -- the partial view is incomplete, perform the analysis on the
3294 -- full view, to prevent freezing anomalies with the corresponding
3295 -- class-wide type, which otherwise might be frozen before the
3296 -- dispatch table is built.
3299 and then Ekind
(Prev
) /= E_Incomplete_Type
3301 Analyze_Aspect_Specifications
(N
, Prev
);
3306 Analyze_Aspect_Specifications
(N
, Def_Id
);
3310 if Is_Derived_Type
(Prev
)
3311 and then Def_Id
/= Prev
3313 Check_Nonoverridable_Aspects
;
3315 end Analyze_Full_Type_Declaration
;
3317 ----------------------------------
3318 -- Analyze_Incomplete_Type_Decl --
3319 ----------------------------------
3321 procedure Analyze_Incomplete_Type_Decl
(N
: Node_Id
) is
3322 F
: constant Boolean := Is_Pure
(Current_Scope
);
3326 Check_SPARK_05_Restriction
("incomplete type is not allowed", N
);
3328 Generate_Definition
(Defining_Identifier
(N
));
3330 -- Process an incomplete declaration. The identifier must not have been
3331 -- declared already in the scope. However, an incomplete declaration may
3332 -- appear in the private part of a package, for a private type that has
3333 -- already been declared.
3335 -- In this case, the discriminants (if any) must match
3337 T
:= Find_Type_Name
(N
);
3339 Set_Ekind
(T
, E_Incomplete_Type
);
3340 Init_Size_Align
(T
);
3341 Set_Is_First_Subtype
(T
, True);
3344 -- Ada 2005 (AI-326): Minimum decoration to give support to tagged
3345 -- incomplete types.
3347 if Tagged_Present
(N
) then
3348 Set_Is_Tagged_Type
(T
, True);
3349 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3350 Make_Class_Wide_Type
(T
);
3351 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3354 Set_Stored_Constraint
(T
, No_Elist
);
3356 if Present
(Discriminant_Specifications
(N
)) then
3358 Process_Discriminants
(N
);
3362 -- If the type has discriminants, nontrivial subtypes may be declared
3363 -- before the full view of the type. The full views of those subtypes
3364 -- will be built after the full view of the type.
3366 Set_Private_Dependents
(T
, New_Elmt_List
);
3368 end Analyze_Incomplete_Type_Decl
;
3370 -----------------------------------
3371 -- Analyze_Interface_Declaration --
3372 -----------------------------------
3374 procedure Analyze_Interface_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
3375 CW
: constant Entity_Id
:= Class_Wide_Type
(T
);
3378 Set_Is_Tagged_Type
(T
);
3379 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
3381 Set_Is_Limited_Record
(T
, Limited_Present
(Def
)
3382 or else Task_Present
(Def
)
3383 or else Protected_Present
(Def
)
3384 or else Synchronized_Present
(Def
));
3386 -- Type is abstract if full declaration carries keyword, or if previous
3387 -- partial view did.
3389 Set_Is_Abstract_Type
(T
);
3390 Set_Is_Interface
(T
);
3392 -- Type is a limited interface if it includes the keyword limited, task,
3393 -- protected, or synchronized.
3395 Set_Is_Limited_Interface
3396 (T
, Limited_Present
(Def
)
3397 or else Protected_Present
(Def
)
3398 or else Synchronized_Present
(Def
)
3399 or else Task_Present
(Def
));
3401 Set_Interfaces
(T
, New_Elmt_List
);
3402 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
3404 -- Complete the decoration of the class-wide entity if it was already
3405 -- built (i.e. during the creation of the limited view)
3407 if Present
(CW
) then
3408 Set_Is_Interface
(CW
);
3409 Set_Is_Limited_Interface
(CW
, Is_Limited_Interface
(T
));
3412 -- Check runtime support for synchronized interfaces
3414 if (Is_Task_Interface
(T
)
3415 or else Is_Protected_Interface
(T
)
3416 or else Is_Synchronized_Interface
(T
))
3417 and then not RTE_Available
(RE_Select_Specific_Data
)
3419 Error_Msg_CRT
("synchronized interfaces", T
);
3421 end Analyze_Interface_Declaration
;
3423 -----------------------------
3424 -- Analyze_Itype_Reference --
3425 -----------------------------
3427 -- Nothing to do. This node is placed in the tree only for the benefit of
3428 -- back end processing, and has no effect on the semantic processing.
3430 procedure Analyze_Itype_Reference
(N
: Node_Id
) is
3432 pragma Assert
(Is_Itype
(Itype
(N
)));
3434 end Analyze_Itype_Reference
;
3436 --------------------------------
3437 -- Analyze_Number_Declaration --
3438 --------------------------------
3440 procedure Analyze_Number_Declaration
(N
: Node_Id
) is
3441 E
: constant Node_Id
:= Expression
(N
);
3442 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3443 Index
: Interp_Index
;
3448 Generate_Definition
(Id
);
3451 -- This is an optimization of a common case of an integer literal
3453 if Nkind
(E
) = N_Integer_Literal
then
3454 Set_Is_Static_Expression
(E
, True);
3455 Set_Etype
(E
, Universal_Integer
);
3457 Set_Etype
(Id
, Universal_Integer
);
3458 Set_Ekind
(Id
, E_Named_Integer
);
3459 Set_Is_Frozen
(Id
, True);
3463 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
3465 -- Process expression, replacing error by integer zero, to avoid
3466 -- cascaded errors or aborts further along in the processing
3468 -- Replace Error by integer zero, which seems least likely to cause
3472 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), Uint_0
));
3473 Set_Error_Posted
(E
);
3478 -- Verify that the expression is static and numeric. If
3479 -- the expression is overloaded, we apply the preference
3480 -- rule that favors root numeric types.
3482 if not Is_Overloaded
(E
) then
3484 if Has_Dynamic_Predicate_Aspect
(T
) then
3486 ("subtype has dynamic predicate, "
3487 & "not allowed in number declaration", N
);
3493 Get_First_Interp
(E
, Index
, It
);
3494 while Present
(It
.Typ
) loop
3495 if (Is_Integer_Type
(It
.Typ
) or else Is_Real_Type
(It
.Typ
))
3496 and then (Scope
(Base_Type
(It
.Typ
))) = Standard_Standard
3498 if T
= Any_Type
then
3501 elsif It
.Typ
= Universal_Real
3503 It
.Typ
= Universal_Integer
3505 -- Choose universal interpretation over any other
3512 Get_Next_Interp
(Index
, It
);
3516 if Is_Integer_Type
(T
) then
3518 Set_Etype
(Id
, Universal_Integer
);
3519 Set_Ekind
(Id
, E_Named_Integer
);
3521 elsif Is_Real_Type
(T
) then
3523 -- Because the real value is converted to universal_real, this is a
3524 -- legal context for a universal fixed expression.
3526 if T
= Universal_Fixed
then
3528 Loc
: constant Source_Ptr
:= Sloc
(N
);
3529 Conv
: constant Node_Id
:= Make_Type_Conversion
(Loc
,
3531 New_Occurrence_Of
(Universal_Real
, Loc
),
3532 Expression
=> Relocate_Node
(E
));
3539 elsif T
= Any_Fixed
then
3540 Error_Msg_N
("illegal context for mixed mode operation", E
);
3542 -- Expression is of the form : universal_fixed * integer. Try to
3543 -- resolve as universal_real.
3545 T
:= Universal_Real
;
3550 Set_Etype
(Id
, Universal_Real
);
3551 Set_Ekind
(Id
, E_Named_Real
);
3554 Wrong_Type
(E
, Any_Numeric
);
3558 Set_Ekind
(Id
, E_Constant
);
3559 Set_Never_Set_In_Source
(Id
, True);
3560 Set_Is_True_Constant
(Id
, True);
3564 if Nkind_In
(E
, N_Integer_Literal
, N_Real_Literal
) then
3565 Set_Etype
(E
, Etype
(Id
));
3568 if not Is_OK_Static_Expression
(E
) then
3569 Flag_Non_Static_Expr
3570 ("non-static expression used in number declaration!", E
);
3571 Rewrite
(E
, Make_Integer_Literal
(Sloc
(N
), 1));
3572 Set_Etype
(E
, Any_Type
);
3575 Analyze_Dimension
(N
);
3576 end Analyze_Number_Declaration
;
3578 --------------------------------
3579 -- Analyze_Object_Declaration --
3580 --------------------------------
3582 -- WARNING: This routine manages Ghost regions. Return statements must be
3583 -- replaced by gotos which jump to the end of the routine and restore the
3586 procedure Analyze_Object_Declaration
(N
: Node_Id
) is
3587 Loc
: constant Source_Ptr
:= Sloc
(N
);
3588 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3592 E
: Node_Id
:= Expression
(N
);
3593 -- E is set to Expression (N) throughout this routine. When Expression
3594 -- (N) is modified, E is changed accordingly.
3596 Prev_Entity
: Entity_Id
:= Empty
;
3598 procedure Check_Dynamic_Object
(Typ
: Entity_Id
);
3599 -- A library-level object with non-static discriminant constraints may
3600 -- require dynamic allocation. The declaration is illegal if the
3601 -- profile includes the restriction No_Implicit_Heap_Allocations.
3603 procedure Check_For_Null_Excluding_Components
3604 (Obj_Typ
: Entity_Id
;
3605 Obj_Decl
: Node_Id
);
3606 -- Verify that each null-excluding component of object declaration
3607 -- Obj_Decl carrying type Obj_Typ has explicit initialization. Emit
3608 -- a compile-time warning if this is not the case.
3610 function Count_Tasks
(T
: Entity_Id
) return Uint
;
3611 -- This function is called when a non-generic library level object of a
3612 -- task type is declared. Its function is to count the static number of
3613 -- tasks declared within the type (it is only called if Has_Task is set
3614 -- for T). As a side effect, if an array of tasks with non-static bounds
3615 -- or a variant record type is encountered, Check_Restriction is called
3616 -- indicating the count is unknown.
3618 function Delayed_Aspect_Present
return Boolean;
3619 -- If the declaration has an expression that is an aggregate, and it
3620 -- has aspects that require delayed analysis, the resolution of the
3621 -- aggregate must be deferred to the freeze point of the objet. This
3622 -- special processing was created for address clauses, but it must
3623 -- also apply to Alignment. This must be done before the aspect
3624 -- specifications are analyzed because we must handle the aggregate
3625 -- before the analysis of the object declaration is complete.
3627 -- Any other relevant delayed aspects on object declarations ???
3629 --------------------------
3630 -- Check_Dynamic_Object --
3631 --------------------------
3633 procedure Check_Dynamic_Object
(Typ
: Entity_Id
) is
3635 Obj_Type
: Entity_Id
;
3640 if Is_Private_Type
(Obj_Type
)
3641 and then Present
(Full_View
(Obj_Type
))
3643 Obj_Type
:= Full_View
(Obj_Type
);
3646 if Known_Static_Esize
(Obj_Type
) then
3650 if Restriction_Active
(No_Implicit_Heap_Allocations
)
3651 and then Expander_Active
3652 and then Has_Discriminants
(Obj_Type
)
3654 Comp
:= First_Component
(Obj_Type
);
3655 while Present
(Comp
) loop
3656 if Known_Static_Esize
(Etype
(Comp
))
3657 or else Size_Known_At_Compile_Time
(Etype
(Comp
))
3661 elsif not Discriminated_Size
(Comp
)
3662 and then Comes_From_Source
(Comp
)
3665 ("component& of non-static size will violate restriction "
3666 & "No_Implicit_Heap_Allocation?", N
, Comp
);
3668 elsif Is_Record_Type
(Etype
(Comp
)) then
3669 Check_Dynamic_Object
(Etype
(Comp
));
3672 Next_Component
(Comp
);
3675 end Check_Dynamic_Object
;
3677 -----------------------------------------
3678 -- Check_For_Null_Excluding_Components --
3679 -----------------------------------------
3681 procedure Check_For_Null_Excluding_Components
3682 (Obj_Typ
: Entity_Id
;
3685 procedure Check_Component
3686 (Comp_Typ
: Entity_Id
;
3687 Comp_Decl
: Node_Id
:= Empty
;
3688 Array_Comp
: Boolean := False);
3689 -- Apply a compile-time null-exclusion check on a component denoted
3690 -- by its declaration Comp_Decl and type Comp_Typ, and all of its
3691 -- subcomponents (if any).
3693 ---------------------
3694 -- Check_Component --
3695 ---------------------
3697 procedure Check_Component
3698 (Comp_Typ
: Entity_Id
;
3699 Comp_Decl
: Node_Id
:= Empty
;
3700 Array_Comp
: Boolean := False)
3706 -- Do not consider internally-generated components or those that
3707 -- are already initialized.
3709 if Present
(Comp_Decl
)
3710 and then (not Comes_From_Source
(Comp_Decl
)
3711 or else Present
(Expression
(Comp_Decl
)))
3716 if Is_Incomplete_Or_Private_Type
(Comp_Typ
)
3717 and then Present
(Full_View
(Comp_Typ
))
3719 T
:= Full_View
(Comp_Typ
);
3724 -- Verify a component of a null-excluding access type
3726 if Is_Access_Type
(T
)
3727 and then Can_Never_Be_Null
(T
)
3729 if Comp_Decl
= Obj_Decl
then
3730 Null_Exclusion_Static_Checks
3733 Array_Comp
=> Array_Comp
);
3736 Null_Exclusion_Static_Checks
3739 Array_Comp
=> Array_Comp
);
3742 -- Check array components
3744 elsif Is_Array_Type
(T
) then
3746 -- There is no suitable component when the object is of an
3747 -- array type. However, a namable component may appear at some
3748 -- point during the recursive inspection, but not at the top
3749 -- level. At the top level just indicate array component case.
3751 if Comp_Decl
= Obj_Decl
then
3752 Check_Component
(Component_Type
(T
), Array_Comp
=> True);
3754 Check_Component
(Component_Type
(T
), Comp_Decl
);
3757 -- Verify all components of type T
3759 -- Note: No checks are performed on types with discriminants due
3760 -- to complexities involving variants. ???
3762 elsif (Is_Concurrent_Type
(T
)
3763 or else Is_Incomplete_Or_Private_Type
(T
)
3764 or else Is_Record_Type
(T
))
3765 and then not Has_Discriminants
(T
)
3767 Comp
:= First_Component
(T
);
3768 while Present
(Comp
) loop
3769 Check_Component
(Etype
(Comp
), Parent
(Comp
));
3771 Comp
:= Next_Component
(Comp
);
3774 end Check_Component
;
3776 -- Start processing for Check_For_Null_Excluding_Components
3779 Check_Component
(Obj_Typ
, Obj_Decl
);
3780 end Check_For_Null_Excluding_Components
;
3786 function Count_Tasks
(T
: Entity_Id
) return Uint
is
3792 if Is_Task_Type
(T
) then
3795 elsif Is_Record_Type
(T
) then
3796 if Has_Discriminants
(T
) then
3797 Check_Restriction
(Max_Tasks
, N
);
3802 C
:= First_Component
(T
);
3803 while Present
(C
) loop
3804 V
:= V
+ Count_Tasks
(Etype
(C
));
3811 elsif Is_Array_Type
(T
) then
3812 X
:= First_Index
(T
);
3813 V
:= Count_Tasks
(Component_Type
(T
));
3814 while Present
(X
) loop
3817 if not Is_OK_Static_Subtype
(C
) then
3818 Check_Restriction
(Max_Tasks
, N
);
3821 V
:= V
* (UI_Max
(Uint_0
,
3822 Expr_Value
(Type_High_Bound
(C
)) -
3823 Expr_Value
(Type_Low_Bound
(C
)) + Uint_1
));
3836 ----------------------------
3837 -- Delayed_Aspect_Present --
3838 ----------------------------
3840 function Delayed_Aspect_Present
return Boolean is
3845 if Present
(Aspect_Specifications
(N
)) then
3846 A
:= First
(Aspect_Specifications
(N
));
3847 A_Id
:= Get_Aspect_Id
(Chars
(Identifier
(A
)));
3848 while Present
(A
) loop
3849 if A_Id
= Aspect_Alignment
or else A_Id
= Aspect_Address
then
3858 end Delayed_Aspect_Present
;
3862 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
3863 -- Save the Ghost mode to restore on exit
3865 Related_Id
: Entity_Id
;
3867 -- Start of processing for Analyze_Object_Declaration
3870 -- There are three kinds of implicit types generated by an
3871 -- object declaration:
3873 -- 1. Those generated by the original Object Definition
3875 -- 2. Those generated by the Expression
3877 -- 3. Those used to constrain the Object Definition with the
3878 -- expression constraints when the definition is unconstrained.
3880 -- They must be generated in this order to avoid order of elaboration
3881 -- issues. Thus the first step (after entering the name) is to analyze
3882 -- the object definition.
3884 if Constant_Present
(N
) then
3885 Prev_Entity
:= Current_Entity_In_Scope
(Id
);
3887 if Present
(Prev_Entity
)
3889 -- If the homograph is an implicit subprogram, it is overridden
3890 -- by the current declaration.
3892 ((Is_Overloadable
(Prev_Entity
)
3893 and then Is_Inherited_Operation
(Prev_Entity
))
3895 -- The current object is a discriminal generated for an entry
3896 -- family index. Even though the index is a constant, in this
3897 -- particular context there is no true constant redeclaration.
3898 -- Enter_Name will handle the visibility.
3901 (Is_Discriminal
(Id
)
3902 and then Ekind
(Discriminal_Link
(Id
)) =
3903 E_Entry_Index_Parameter
)
3905 -- The current object is the renaming for a generic declared
3906 -- within the instance.
3909 (Ekind
(Prev_Entity
) = E_Package
3910 and then Nkind
(Parent
(Prev_Entity
)) =
3911 N_Package_Renaming_Declaration
3912 and then not Comes_From_Source
(Prev_Entity
)
3914 Is_Generic_Instance
(Renamed_Entity
(Prev_Entity
)))
3916 -- The entity may be a homonym of a private component of the
3917 -- enclosing protected object, for which we create a local
3918 -- renaming declaration. The declaration is legal, even if
3919 -- useless when it just captures that component.
3922 (Ekind
(Scope
(Current_Scope
)) = E_Protected_Type
3923 and then Nkind
(Parent
(Prev_Entity
)) =
3924 N_Object_Renaming_Declaration
))
3926 Prev_Entity
:= Empty
;
3930 if Present
(Prev_Entity
) then
3932 -- The object declaration is Ghost when it completes a deferred Ghost
3935 Mark_And_Set_Ghost_Completion
(N
, Prev_Entity
);
3937 Constant_Redeclaration
(Id
, N
, T
);
3939 Generate_Reference
(Prev_Entity
, Id
, 'c');
3940 Set_Completion_Referenced
(Id
);
3942 if Error_Posted
(N
) then
3944 -- Type mismatch or illegal redeclaration; do not analyze
3945 -- expression to avoid cascaded errors.
3947 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3949 Set_Ekind
(Id
, E_Variable
);
3953 -- In the normal case, enter identifier at the start to catch premature
3954 -- usage in the initialization expression.
3957 Generate_Definition
(Id
);
3960 Mark_Coextensions
(N
, Object_Definition
(N
));
3962 T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
3964 if Nkind
(Object_Definition
(N
)) = N_Access_Definition
3966 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3967 and then Protected_Present
3968 (Access_To_Subprogram_Definition
(Object_Definition
(N
)))
3970 T
:= Replace_Anonymous_Access_To_Protected_Subprogram
(N
);
3973 if Error_Posted
(Id
) then
3975 Set_Ekind
(Id
, E_Variable
);
3980 -- Ada 2005 (AI-231): Propagate the null-excluding attribute and carry
3981 -- out some static checks.
3983 if Ada_Version
>= Ada_2005
then
3985 -- In case of aggregates we must also take care of the correct
3986 -- initialization of nested aggregates bug this is done at the
3987 -- point of the analysis of the aggregate (see sem_aggr.adb) ???
3989 if Can_Never_Be_Null
(T
) then
3990 if Present
(Expression
(N
))
3991 and then Nkind
(Expression
(N
)) = N_Aggregate
3997 Save_Typ
: constant Entity_Id
:= Etype
(Id
);
3999 Set_Etype
(Id
, T
); -- Temp. decoration for static checks
4000 Null_Exclusion_Static_Checks
(N
);
4001 Set_Etype
(Id
, Save_Typ
);
4005 -- We might be dealing with an object of a composite type containing
4006 -- null-excluding components without an aggregate, so we must verify
4007 -- that such components have default initialization.
4010 Check_For_Null_Excluding_Components
(T
, N
);
4014 -- Object is marked pure if it is in a pure scope
4016 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
4018 -- If deferred constant, make sure context is appropriate. We detect
4019 -- a deferred constant as a constant declaration with no expression.
4020 -- A deferred constant can appear in a package body if its completion
4021 -- is by means of an interface pragma.
4023 if Constant_Present
(N
) and then No
(E
) then
4025 -- A deferred constant may appear in the declarative part of the
4026 -- following constructs:
4030 -- extended return statements
4033 -- subprogram bodies
4036 -- When declared inside a package spec, a deferred constant must be
4037 -- completed by a full constant declaration or pragma Import. In all
4038 -- other cases, the only proper completion is pragma Import. Extended
4039 -- return statements are flagged as invalid contexts because they do
4040 -- not have a declarative part and so cannot accommodate the pragma.
4042 if Ekind
(Current_Scope
) = E_Return_Statement
then
4044 ("invalid context for deferred constant declaration (RM 7.4)",
4047 ("\declaration requires an initialization expression",
4049 Set_Constant_Present
(N
, False);
4051 -- In Ada 83, deferred constant must be of private type
4053 elsif not Is_Private_Type
(T
) then
4054 if Ada_Version
= Ada_83
and then Comes_From_Source
(N
) then
4056 ("(Ada 83) deferred constant must be private type", N
);
4060 -- If not a deferred constant, then the object declaration freezes
4061 -- its type, unless the object is of an anonymous type and has delayed
4062 -- aspects. In that case the type is frozen when the object itself is.
4065 Check_Fully_Declared
(T
, N
);
4067 if Has_Delayed_Aspects
(Id
)
4068 and then Is_Array_Type
(T
)
4069 and then Is_Itype
(T
)
4071 Set_Has_Delayed_Freeze
(T
);
4073 Freeze_Before
(N
, T
);
4077 -- If the object was created by a constrained array definition, then
4078 -- set the link in both the anonymous base type and anonymous subtype
4079 -- that are built to represent the array type to point to the object.
4081 if Nkind
(Object_Definition
(Declaration_Node
(Id
))) =
4082 N_Constrained_Array_Definition
4084 Set_Related_Array_Object
(T
, Id
);
4085 Set_Related_Array_Object
(Base_Type
(T
), Id
);
4088 -- Special checks for protected objects not at library level
4090 if Has_Protected
(T
) and then not Is_Library_Level_Entity
(Id
) then
4091 Check_Restriction
(No_Local_Protected_Objects
, Id
);
4093 -- Protected objects with interrupt handlers must be at library level
4095 -- Ada 2005: This test is not needed (and the corresponding clause
4096 -- in the RM is removed) because accessibility checks are sufficient
4097 -- to make handlers not at the library level illegal.
4099 -- AI05-0303: The AI is in fact a binding interpretation, and thus
4100 -- applies to the '95 version of the language as well.
4102 if Is_Protected_Type
(T
)
4103 and then Has_Interrupt_Handler
(T
)
4104 and then Ada_Version
< Ada_95
4107 ("interrupt object can only be declared at library level", Id
);
4111 -- Check for violation of No_Local_Timing_Events
4113 if Has_Timing_Event
(T
) and then not Is_Library_Level_Entity
(Id
) then
4114 Check_Restriction
(No_Local_Timing_Events
, Id
);
4117 -- The actual subtype of the object is the nominal subtype, unless
4118 -- the nominal one is unconstrained and obtained from the expression.
4122 -- These checks should be performed before the initialization expression
4123 -- is considered, so that the Object_Definition node is still the same
4124 -- as in source code.
4126 -- In SPARK, the nominal subtype is always given by a subtype mark
4127 -- and must not be unconstrained. (The only exception to this is the
4128 -- acceptance of declarations of constants of type String.)
4130 if not Nkind_In
(Object_Definition
(N
), N_Expanded_Name
, N_Identifier
)
4132 Check_SPARK_05_Restriction
4133 ("subtype mark required", Object_Definition
(N
));
4135 elsif Is_Array_Type
(T
)
4136 and then not Is_Constrained
(T
)
4137 and then T
/= Standard_String
4139 Check_SPARK_05_Restriction
4140 ("subtype mark of constrained type expected",
4141 Object_Definition
(N
));
4144 if Is_Library_Level_Entity
(Id
) then
4145 Check_Dynamic_Object
(T
);
4148 -- There are no aliased objects in SPARK
4150 if Aliased_Present
(N
) then
4151 Check_SPARK_05_Restriction
("aliased object is not allowed", N
);
4154 -- Process initialization expression if present and not in error
4156 if Present
(E
) and then E
/= Error
then
4158 -- Generate an error in case of CPP class-wide object initialization.
4159 -- Required because otherwise the expansion of the class-wide
4160 -- assignment would try to use 'size to initialize the object
4161 -- (primitive that is not available in CPP tagged types).
4163 if Is_Class_Wide_Type
(Act_T
)
4165 (Is_CPP_Class
(Root_Type
(Etype
(Act_T
)))
4167 (Present
(Full_View
(Root_Type
(Etype
(Act_T
))))
4169 Is_CPP_Class
(Full_View
(Root_Type
(Etype
(Act_T
))))))
4172 ("predefined assignment not available for 'C'P'P tagged types",
4176 Mark_Coextensions
(N
, E
);
4179 -- In case of errors detected in the analysis of the expression,
4180 -- decorate it with the expected type to avoid cascaded errors
4182 if No
(Etype
(E
)) then
4186 -- If an initialization expression is present, then we set the
4187 -- Is_True_Constant flag. It will be reset if this is a variable
4188 -- and it is indeed modified.
4190 Set_Is_True_Constant
(Id
, True);
4192 -- If we are analyzing a constant declaration, set its completion
4193 -- flag after analyzing and resolving the expression.
4195 if Constant_Present
(N
) then
4196 Set_Has_Completion
(Id
);
4199 -- Set type and resolve (type may be overridden later on). Note:
4200 -- Ekind (Id) must still be E_Void at this point so that incorrect
4201 -- early usage within E is properly diagnosed.
4205 -- If the expression is an aggregate we must look ahead to detect
4206 -- the possible presence of an address clause, and defer resolution
4207 -- and expansion of the aggregate to the freeze point of the entity.
4209 -- This is not always legal because the aggregate may contain other
4210 -- references that need freezing, e.g. references to other entities
4211 -- with address clauses. In any case, when compiling with -gnatI the
4212 -- presence of the address clause must be ignored.
4214 if Comes_From_Source
(N
)
4215 and then Expander_Active
4216 and then Nkind
(E
) = N_Aggregate
4218 ((Present
(Following_Address_Clause
(N
))
4219 and then not Ignore_Rep_Clauses
)
4220 or else Delayed_Aspect_Present
)
4228 -- No further action needed if E is a call to an inlined function
4229 -- which returns an unconstrained type and it has been expanded into
4230 -- a procedure call. In that case N has been replaced by an object
4231 -- declaration without initializing expression and it has been
4232 -- analyzed (see Expand_Inlined_Call).
4234 if Back_End_Inlining
4235 and then Expander_Active
4236 and then Nkind
(E
) = N_Function_Call
4237 and then Nkind
(Name
(E
)) in N_Has_Entity
4238 and then Is_Inlined
(Entity
(Name
(E
)))
4239 and then not Is_Constrained
(Etype
(E
))
4240 and then Analyzed
(N
)
4241 and then No
(Expression
(N
))
4246 -- If E is null and has been replaced by an N_Raise_Constraint_Error
4247 -- node (which was marked already-analyzed), we need to set the type
4248 -- to something other than Any_Access in order to keep gigi happy.
4250 if Etype
(E
) = Any_Access
then
4254 -- If the object is an access to variable, the initialization
4255 -- expression cannot be an access to constant.
4257 if Is_Access_Type
(T
)
4258 and then not Is_Access_Constant
(T
)
4259 and then Is_Access_Type
(Etype
(E
))
4260 and then Is_Access_Constant
(Etype
(E
))
4263 ("access to variable cannot be initialized with an "
4264 & "access-to-constant expression", E
);
4267 if not Assignment_OK
(N
) then
4268 Check_Initialization
(T
, E
);
4271 Check_Unset_Reference
(E
);
4273 -- If this is a variable, then set current value. If this is a
4274 -- declared constant of a scalar type with a static expression,
4275 -- indicate that it is always valid.
4277 if not Constant_Present
(N
) then
4278 if Compile_Time_Known_Value
(E
) then
4279 Set_Current_Value
(Id
, E
);
4282 elsif Is_Scalar_Type
(T
) and then Is_OK_Static_Expression
(E
) then
4283 Set_Is_Known_Valid
(Id
);
4286 -- Deal with setting of null flags
4288 if Is_Access_Type
(T
) then
4289 if Known_Non_Null
(E
) then
4290 Set_Is_Known_Non_Null
(Id
, True);
4291 elsif Known_Null
(E
) and then not Can_Never_Be_Null
(Id
) then
4292 Set_Is_Known_Null
(Id
, True);
4296 -- Check incorrect use of dynamically tagged expressions
4298 if Is_Tagged_Type
(T
) then
4299 Check_Dynamically_Tagged_Expression
4305 Apply_Scalar_Range_Check
(E
, T
);
4306 Apply_Static_Length_Check
(E
, T
);
4308 if Nkind
(Original_Node
(N
)) = N_Object_Declaration
4309 and then Comes_From_Source
(Original_Node
(N
))
4311 -- Only call test if needed
4313 and then Restriction_Check_Required
(SPARK_05
)
4314 and then not Is_SPARK_05_Initialization_Expr
(Original_Node
(E
))
4316 Check_SPARK_05_Restriction
4317 ("initialization expression is not appropriate", E
);
4320 -- A formal parameter of a specific tagged type whose related
4321 -- subprogram is subject to pragma Extensions_Visible with value
4322 -- "False" cannot be implicitly converted to a class-wide type by
4323 -- means of an initialization expression (SPARK RM 6.1.7(3)). Do
4324 -- not consider internally generated expressions.
4326 if Is_Class_Wide_Type
(T
)
4327 and then Comes_From_Source
(E
)
4328 and then Is_EVF_Expression
(E
)
4331 ("formal parameter cannot be implicitly converted to "
4332 & "class-wide type when Extensions_Visible is False", E
);
4336 -- If the No_Streams restriction is set, check that the type of the
4337 -- object is not, and does not contain, any subtype derived from
4338 -- Ada.Streams.Root_Stream_Type. Note that we guard the call to
4339 -- Has_Stream just for efficiency reasons. There is no point in
4340 -- spending time on a Has_Stream check if the restriction is not set.
4342 if Restriction_Check_Required
(No_Streams
) then
4343 if Has_Stream
(T
) then
4344 Check_Restriction
(No_Streams
, N
);
4348 -- Deal with predicate check before we start to do major rewriting. It
4349 -- is OK to initialize and then check the initialized value, since the
4350 -- object goes out of scope if we get a predicate failure. Note that we
4351 -- do this in the analyzer and not the expander because the analyzer
4352 -- does some substantial rewriting in some cases.
4354 -- We need a predicate check if the type has predicates that are not
4355 -- ignored, and if either there is an initializing expression, or for
4356 -- default initialization when we have at least one case of an explicit
4357 -- default initial value and then this is not an internal declaration
4358 -- whose initialization comes later (as for an aggregate expansion).
4360 if not Suppress_Assignment_Checks
(N
)
4361 and then Present
(Predicate_Function
(T
))
4362 and then not Predicates_Ignored
(T
)
4363 and then not No_Initialization
(N
)
4367 Is_Partially_Initialized_Type
(T
, Include_Implicit
=> False))
4369 -- If the type has a static predicate and the expression is known at
4370 -- compile time, see if the expression satisfies the predicate.
4373 Check_Expression_Against_Static_Predicate
(E
, T
);
4376 -- If the type is a null record and there is no explicit initial
4377 -- expression, no predicate check applies.
4379 if No
(E
) and then Is_Null_Record_Type
(T
) then
4382 -- Do not generate a predicate check if the initialization expression
4383 -- is a type conversion because the conversion has been subjected to
4384 -- the same check. This is a small optimization which avoid redundant
4387 elsif Present
(E
) and then Nkind
(E
) = N_Type_Conversion
then
4392 Make_Predicate_Check
(T
, New_Occurrence_Of
(Id
, Loc
)));
4396 -- Case of unconstrained type
4398 if not Is_Definite_Subtype
(T
) then
4400 -- In SPARK, a declaration of unconstrained type is allowed
4401 -- only for constants of type string.
4403 if Is_String_Type
(T
) and then not Constant_Present
(N
) then
4404 Check_SPARK_05_Restriction
4405 ("declaration of object of unconstrained type not allowed", N
);
4408 -- Nothing to do in deferred constant case
4410 if Constant_Present
(N
) and then No
(E
) then
4413 -- Case of no initialization present
4416 if No_Initialization
(N
) then
4419 elsif Is_Class_Wide_Type
(T
) then
4421 ("initialization required in class-wide declaration ", N
);
4425 ("unconstrained subtype not allowed (need initialization)",
4426 Object_Definition
(N
));
4428 if Is_Record_Type
(T
) and then Has_Discriminants
(T
) then
4430 ("\provide initial value or explicit discriminant values",
4431 Object_Definition
(N
));
4434 ("\or give default discriminant values for type&",
4435 Object_Definition
(N
), T
);
4437 elsif Is_Array_Type
(T
) then
4439 ("\provide initial value or explicit array bounds",
4440 Object_Definition
(N
));
4444 -- Case of initialization present but in error. Set initial
4445 -- expression as absent (but do not make above complaints)
4447 elsif E
= Error
then
4448 Set_Expression
(N
, Empty
);
4451 -- Case of initialization present
4454 -- Check restrictions in Ada 83
4456 if not Constant_Present
(N
) then
4458 -- Unconstrained variables not allowed in Ada 83 mode
4460 if Ada_Version
= Ada_83
4461 and then Comes_From_Source
(Object_Definition
(N
))
4464 ("(Ada 83) unconstrained variable not allowed",
4465 Object_Definition
(N
));
4469 -- Now we constrain the variable from the initializing expression
4471 -- If the expression is an aggregate, it has been expanded into
4472 -- individual assignments. Retrieve the actual type from the
4473 -- expanded construct.
4475 if Is_Array_Type
(T
)
4476 and then No_Initialization
(N
)
4477 and then Nkind
(Original_Node
(E
)) = N_Aggregate
4481 -- In case of class-wide interface object declarations we delay
4482 -- the generation of the equivalent record type declarations until
4483 -- its expansion because there are cases in they are not required.
4485 elsif Is_Interface
(T
) then
4488 -- In GNATprove mode, Expand_Subtype_From_Expr does nothing. Thus,
4489 -- we should prevent the generation of another Itype with the
4490 -- same name as the one already generated, or we end up with
4491 -- two identical types in GNATprove.
4493 elsif GNATprove_Mode
then
4496 -- If the type is an unchecked union, no subtype can be built from
4497 -- the expression. Rewrite declaration as a renaming, which the
4498 -- back-end can handle properly. This is a rather unusual case,
4499 -- because most unchecked_union declarations have default values
4500 -- for discriminants and are thus not indefinite.
4502 elsif Is_Unchecked_Union
(T
) then
4503 if Constant_Present
(N
) or else Nkind
(E
) = N_Function_Call
then
4504 Set_Ekind
(Id
, E_Constant
);
4506 Set_Ekind
(Id
, E_Variable
);
4510 Make_Object_Renaming_Declaration
(Loc
,
4511 Defining_Identifier
=> Id
,
4512 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4515 Set_Renamed_Object
(Id
, E
);
4516 Freeze_Before
(N
, T
);
4521 -- Ensure that the generated subtype has a unique external name
4522 -- when the related object is public. This guarantees that the
4523 -- subtype and its bounds will not be affected by switches or
4524 -- pragmas that may offset the internal counter due to extra
4527 if Is_Public
(Id
) then
4530 Related_Id
:= Empty
;
4533 Expand_Subtype_From_Expr
4536 Subtype_Indic
=> Object_Definition
(N
),
4538 Related_Id
=> Related_Id
);
4540 Act_T
:= Find_Type_Of_Object
(Object_Definition
(N
), N
);
4543 Set_Is_Constr_Subt_For_U_Nominal
(Act_T
);
4545 if Aliased_Present
(N
) then
4546 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4549 Freeze_Before
(N
, Act_T
);
4550 Freeze_Before
(N
, T
);
4553 elsif Is_Array_Type
(T
)
4554 and then No_Initialization
(N
)
4555 and then (Nkind
(Original_Node
(E
)) = N_Aggregate
4556 or else (Nkind
(Original_Node
(E
)) = N_Qualified_Expression
4557 and then Nkind
(Original_Node
(Expression
4558 (Original_Node
(E
)))) = N_Aggregate
))
4560 if not Is_Entity_Name
(Object_Definition
(N
)) then
4562 Check_Compile_Time_Size
(Act_T
);
4564 if Aliased_Present
(N
) then
4565 Set_Is_Constr_Subt_For_UN_Aliased
(Act_T
);
4569 -- When the given object definition and the aggregate are specified
4570 -- independently, and their lengths might differ do a length check.
4571 -- This cannot happen if the aggregate is of the form (others =>...)
4573 if not Is_Constrained
(T
) then
4576 elsif Nkind
(E
) = N_Raise_Constraint_Error
then
4578 -- Aggregate is statically illegal. Place back in declaration
4580 Set_Expression
(N
, E
);
4581 Set_No_Initialization
(N
, False);
4583 elsif T
= Etype
(E
) then
4586 elsif Nkind
(E
) = N_Aggregate
4587 and then Present
(Component_Associations
(E
))
4588 and then Present
(Choice_List
(First
(Component_Associations
(E
))))
4590 Nkind
(First
(Choice_List
(First
(Component_Associations
(E
))))) =
4596 Apply_Length_Check
(E
, T
);
4599 -- If the type is limited unconstrained with defaulted discriminants and
4600 -- there is no expression, then the object is constrained by the
4601 -- defaults, so it is worthwhile building the corresponding subtype.
4603 elsif (Is_Limited_Record
(T
) or else Is_Concurrent_Type
(T
))
4604 and then not Is_Constrained
(T
)
4605 and then Has_Discriminants
(T
)
4608 Act_T
:= Build_Default_Subtype
(T
, N
);
4610 -- Ada 2005: A limited object may be initialized by means of an
4611 -- aggregate. If the type has default discriminants it has an
4612 -- unconstrained nominal type, Its actual subtype will be obtained
4613 -- from the aggregate, and not from the default discriminants.
4618 Rewrite
(Object_Definition
(N
), New_Occurrence_Of
(Act_T
, Loc
));
4620 elsif Nkind
(E
) = N_Function_Call
4621 and then Constant_Present
(N
)
4622 and then Has_Unconstrained_Elements
(Etype
(E
))
4624 -- The back-end has problems with constants of a discriminated type
4625 -- with defaults, if the initial value is a function call. We
4626 -- generate an intermediate temporary that will receive a reference
4627 -- to the result of the call. The initialization expression then
4628 -- becomes a dereference of that temporary.
4630 Remove_Side_Effects
(E
);
4632 -- If this is a constant declaration of an unconstrained type and
4633 -- the initialization is an aggregate, we can use the subtype of the
4634 -- aggregate for the declared entity because it is immutable.
4636 elsif not Is_Constrained
(T
)
4637 and then Has_Discriminants
(T
)
4638 and then Constant_Present
(N
)
4639 and then not Has_Unchecked_Union
(T
)
4640 and then Nkind
(E
) = N_Aggregate
4645 -- Check No_Wide_Characters restriction
4647 Check_Wide_Character_Restriction
(T
, Object_Definition
(N
));
4649 -- Indicate this is not set in source. Certainly true for constants, and
4650 -- true for variables so far (will be reset for a variable if and when
4651 -- we encounter a modification in the source).
4653 Set_Never_Set_In_Source
(Id
);
4655 -- Now establish the proper kind and type of the object
4657 if Constant_Present
(N
) then
4658 Set_Ekind
(Id
, E_Constant
);
4659 Set_Is_True_Constant
(Id
);
4662 Set_Ekind
(Id
, E_Variable
);
4664 -- A variable is set as shared passive if it appears in a shared
4665 -- passive package, and is at the outer level. This is not done for
4666 -- entities generated during expansion, because those are always
4667 -- manipulated locally.
4669 if Is_Shared_Passive
(Current_Scope
)
4670 and then Is_Library_Level_Entity
(Id
)
4671 and then Comes_From_Source
(Id
)
4673 Set_Is_Shared_Passive
(Id
);
4674 Check_Shared_Var
(Id
, T
, N
);
4677 -- Set Has_Initial_Value if initializing expression present. Note
4678 -- that if there is no initializing expression, we leave the state
4679 -- of this flag unchanged (usually it will be False, but notably in
4680 -- the case of exception choice variables, it will already be true).
4683 Set_Has_Initial_Value
(Id
);
4687 -- Initialize alignment and size and capture alignment setting
4689 Init_Alignment
(Id
);
4691 Set_Optimize_Alignment_Flags
(Id
);
4693 -- Deal with aliased case
4695 if Aliased_Present
(N
) then
4696 Set_Is_Aliased
(Id
);
4698 -- If the object is aliased and the type is unconstrained with
4699 -- defaulted discriminants and there is no expression, then the
4700 -- object is constrained by the defaults, so it is worthwhile
4701 -- building the corresponding subtype.
4703 -- Ada 2005 (AI-363): If the aliased object is discriminated and
4704 -- unconstrained, then only establish an actual subtype if the
4705 -- nominal subtype is indefinite. In definite cases the object is
4706 -- unconstrained in Ada 2005.
4709 and then Is_Record_Type
(T
)
4710 and then not Is_Constrained
(T
)
4711 and then Has_Discriminants
(T
)
4712 and then (Ada_Version
< Ada_2005
4713 or else not Is_Definite_Subtype
(T
))
4715 Set_Actual_Subtype
(Id
, Build_Default_Subtype
(T
, N
));
4719 -- Now we can set the type of the object
4721 Set_Etype
(Id
, Act_T
);
4723 -- Non-constant object is marked to be treated as volatile if type is
4724 -- volatile and we clear the Current_Value setting that may have been
4725 -- set above. Doing so for constants isn't required and might interfere
4726 -- with possible uses of the object as a static expression in contexts
4727 -- incompatible with volatility (e.g. as a case-statement alternative).
4729 if Ekind
(Id
) /= E_Constant
and then Treat_As_Volatile
(Etype
(Id
)) then
4730 Set_Treat_As_Volatile
(Id
);
4731 Set_Current_Value
(Id
, Empty
);
4734 -- Deal with controlled types
4736 if Has_Controlled_Component
(Etype
(Id
))
4737 or else Is_Controlled
(Etype
(Id
))
4739 if not Is_Library_Level_Entity
(Id
) then
4740 Check_Restriction
(No_Nested_Finalization
, N
);
4742 Validate_Controlled_Object
(Id
);
4746 if Has_Task
(Etype
(Id
)) then
4747 Check_Restriction
(No_Tasking
, N
);
4749 -- Deal with counting max tasks
4751 -- Nothing to do if inside a generic
4753 if Inside_A_Generic
then
4756 -- If library level entity, then count tasks
4758 elsif Is_Library_Level_Entity
(Id
) then
4759 Check_Restriction
(Max_Tasks
, N
, Count_Tasks
(Etype
(Id
)));
4761 -- If not library level entity, then indicate we don't know max
4762 -- tasks and also check task hierarchy restriction and blocking
4763 -- operation (since starting a task is definitely blocking).
4766 Check_Restriction
(Max_Tasks
, N
);
4767 Check_Restriction
(No_Task_Hierarchy
, N
);
4768 Check_Potentially_Blocking_Operation
(N
);
4771 -- A rather specialized test. If we see two tasks being declared
4772 -- of the same type in the same object declaration, and the task
4773 -- has an entry with an address clause, we know that program error
4774 -- will be raised at run time since we can't have two tasks with
4775 -- entries at the same address.
4777 if Is_Task_Type
(Etype
(Id
)) and then More_Ids
(N
) then
4782 E
:= First_Entity
(Etype
(Id
));
4783 while Present
(E
) loop
4784 if Ekind
(E
) = E_Entry
4785 and then Present
(Get_Attribute_Definition_Clause
4786 (E
, Attribute_Address
))
4788 Error_Msg_Warn
:= SPARK_Mode
/= On
;
4790 ("more than one task with same entry address<<", N
);
4791 Error_Msg_N
("\Program_Error [<<", N
);
4793 Make_Raise_Program_Error
(Loc
,
4794 Reason
=> PE_Duplicated_Entry_Address
));
4804 -- Some simple constant-propagation: if the expression is a constant
4805 -- string initialized with a literal, share the literal. This avoids
4809 and then Is_Entity_Name
(E
)
4810 and then Ekind
(Entity
(E
)) = E_Constant
4811 and then Base_Type
(Etype
(E
)) = Standard_String
4814 Val
: constant Node_Id
:= Constant_Value
(Entity
(E
));
4816 if Present
(Val
) and then Nkind
(Val
) = N_String_Literal
then
4817 Rewrite
(E
, New_Copy
(Val
));
4822 -- Another optimization: if the nominal subtype is unconstrained and
4823 -- the expression is a function call that returns an unconstrained
4824 -- type, rewrite the declaration as a renaming of the result of the
4825 -- call. The exceptions below are cases where the copy is expected,
4826 -- either by the back end (Aliased case) or by the semantics, as for
4827 -- initializing controlled types or copying tags for class-wide types.
4830 and then Nkind
(E
) = N_Explicit_Dereference
4831 and then Nkind
(Original_Node
(E
)) = N_Function_Call
4832 and then not Is_Library_Level_Entity
(Id
)
4833 and then not Is_Constrained
(Underlying_Type
(T
))
4834 and then not Is_Aliased
(Id
)
4835 and then not Is_Class_Wide_Type
(T
)
4836 and then not Is_Controlled_Active
(T
)
4837 and then not Has_Controlled_Component
(Base_Type
(T
))
4838 and then Expander_Active
4841 Make_Object_Renaming_Declaration
(Loc
,
4842 Defining_Identifier
=> Id
,
4843 Access_Definition
=> Empty
,
4844 Subtype_Mark
=> New_Occurrence_Of
4845 (Base_Type
(Etype
(Id
)), Loc
),
4848 Set_Renamed_Object
(Id
, E
);
4850 -- Force generation of debugging information for the constant and for
4851 -- the renamed function call.
4853 Set_Debug_Info_Needed
(Id
);
4854 Set_Debug_Info_Needed
(Entity
(Prefix
(E
)));
4857 if Present
(Prev_Entity
)
4858 and then Is_Frozen
(Prev_Entity
)
4859 and then not Error_Posted
(Id
)
4861 Error_Msg_N
("full constant declaration appears too late", N
);
4864 Check_Eliminated
(Id
);
4866 -- Deal with setting In_Private_Part flag if in private part
4868 if Ekind
(Scope
(Id
)) = E_Package
4869 and then In_Private_Part
(Scope
(Id
))
4871 Set_In_Private_Part
(Id
);
4875 -- Initialize the refined state of a variable here because this is a
4876 -- common destination for legal and illegal object declarations.
4878 if Ekind
(Id
) = E_Variable
then
4879 Set_Encapsulating_State
(Id
, Empty
);
4882 if Has_Aspects
(N
) then
4883 Analyze_Aspect_Specifications
(N
, Id
);
4886 Analyze_Dimension
(N
);
4888 -- Verify whether the object declaration introduces an illegal hidden
4889 -- state within a package subject to a null abstract state.
4891 if Ekind
(Id
) = E_Variable
then
4892 Check_No_Hidden_State
(Id
);
4895 Restore_Ghost_Mode
(Saved_GM
);
4896 end Analyze_Object_Declaration
;
4898 ---------------------------
4899 -- Analyze_Others_Choice --
4900 ---------------------------
4902 -- Nothing to do for the others choice node itself, the semantic analysis
4903 -- of the others choice will occur as part of the processing of the parent
4905 procedure Analyze_Others_Choice
(N
: Node_Id
) is
4906 pragma Warnings
(Off
, N
);
4909 end Analyze_Others_Choice
;
4911 -------------------------------------------
4912 -- Analyze_Private_Extension_Declaration --
4913 -------------------------------------------
4915 procedure Analyze_Private_Extension_Declaration
(N
: Node_Id
) is
4916 Indic
: constant Node_Id
:= Subtype_Indication
(N
);
4917 T
: constant Entity_Id
:= Defining_Identifier
(N
);
4919 Iface_Elmt
: Elmt_Id
;
4920 Parent_Base
: Entity_Id
;
4921 Parent_Type
: Entity_Id
;
4924 -- Ada 2005 (AI-251): Decorate all names in list of ancestor interfaces
4926 if Is_Non_Empty_List
(Interface_List
(N
)) then
4932 Intf
:= First
(Interface_List
(N
));
4933 while Present
(Intf
) loop
4934 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
4936 Diagnose_Interface
(Intf
, T
);
4942 Generate_Definition
(T
);
4944 -- For other than Ada 2012, just enter the name in the current scope
4946 if Ada_Version
< Ada_2012
then
4949 -- Ada 2012 (AI05-0162): Enter the name in the current scope handling
4950 -- case of private type that completes an incomplete type.
4957 Prev
:= Find_Type_Name
(N
);
4959 pragma Assert
(Prev
= T
4960 or else (Ekind
(Prev
) = E_Incomplete_Type
4961 and then Present
(Full_View
(Prev
))
4962 and then Full_View
(Prev
) = T
));
4966 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
4967 Parent_Base
:= Base_Type
(Parent_Type
);
4969 if Parent_Type
= Any_Type
or else Etype
(Parent_Type
) = Any_Type
then
4970 Set_Ekind
(T
, Ekind
(Parent_Type
));
4971 Set_Etype
(T
, Any_Type
);
4974 elsif not Is_Tagged_Type
(Parent_Type
) then
4976 ("parent of type extension must be a tagged type ", Indic
);
4979 elsif Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
4980 Error_Msg_N
("premature derivation of incomplete type", Indic
);
4983 elsif Is_Concurrent_Type
(Parent_Type
) then
4985 ("parent type of a private extension cannot be a synchronized "
4986 & "tagged type (RM 3.9.1 (3/1))", N
);
4988 Set_Etype
(T
, Any_Type
);
4989 Set_Ekind
(T
, E_Limited_Private_Type
);
4990 Set_Private_Dependents
(T
, New_Elmt_List
);
4991 Set_Error_Posted
(T
);
4995 -- Perhaps the parent type should be changed to the class-wide type's
4996 -- specific type in this case to prevent cascading errors ???
4998 if Is_Class_Wide_Type
(Parent_Type
) then
5000 ("parent of type extension must not be a class-wide type", Indic
);
5004 if (not Is_Package_Or_Generic_Package
(Current_Scope
)
5005 and then Nkind
(Parent
(N
)) /= N_Generic_Subprogram_Declaration
)
5006 or else In_Private_Part
(Current_Scope
)
5008 Error_Msg_N
("invalid context for private extension", N
);
5011 -- Set common attributes
5013 Set_Is_Pure
(T
, Is_Pure
(Current_Scope
));
5014 Set_Scope
(T
, Current_Scope
);
5015 Set_Ekind
(T
, E_Record_Type_With_Private
);
5016 Init_Size_Align
(T
);
5017 Set_Default_SSO
(T
);
5019 Set_Etype
(T
, Parent_Base
);
5020 Propagate_Concurrent_Flags
(T
, Parent_Base
);
5022 Set_Convention
(T
, Convention
(Parent_Type
));
5023 Set_First_Rep_Item
(T
, First_Rep_Item
(Parent_Type
));
5024 Set_Is_First_Subtype
(T
);
5025 Make_Class_Wide_Type
(T
);
5027 if Unknown_Discriminants_Present
(N
) then
5028 Set_Discriminant_Constraint
(T
, No_Elist
);
5031 Build_Derived_Record_Type
(N
, Parent_Type
, T
);
5033 -- A private extension inherits the Default_Initial_Condition pragma
5034 -- coming from any parent type within the derivation chain.
5036 if Has_DIC
(Parent_Type
) then
5037 Set_Has_Inherited_DIC
(T
);
5040 -- A private extension inherits any class-wide invariants coming from a
5041 -- parent type or an interface. Note that the invariant procedure of the
5042 -- parent type should not be inherited because the private extension may
5043 -- define invariants of its own.
5045 if Has_Inherited_Invariants
(Parent_Type
)
5046 or else Has_Inheritable_Invariants
(Parent_Type
)
5048 Set_Has_Inherited_Invariants
(T
);
5050 elsif Present
(Interfaces
(T
)) then
5051 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
5052 while Present
(Iface_Elmt
) loop
5053 Iface
:= Node
(Iface_Elmt
);
5055 if Has_Inheritable_Invariants
(Iface
) then
5056 Set_Has_Inherited_Invariants
(T
);
5060 Next_Elmt
(Iface_Elmt
);
5064 -- Ada 2005 (AI-443): Synchronized private extension or a rewritten
5065 -- synchronized formal derived type.
5067 if Ada_Version
>= Ada_2005
and then Synchronized_Present
(N
) then
5068 Set_Is_Limited_Record
(T
);
5070 -- Formal derived type case
5072 if Is_Generic_Type
(T
) then
5074 -- The parent must be a tagged limited type or a synchronized
5077 if (not Is_Tagged_Type
(Parent_Type
)
5078 or else not Is_Limited_Type
(Parent_Type
))
5080 (not Is_Interface
(Parent_Type
)
5081 or else not Is_Synchronized_Interface
(Parent_Type
))
5084 ("parent type of & must be tagged limited or synchronized",
5088 -- The progenitors (if any) must be limited or synchronized
5091 if Present
(Interfaces
(T
)) then
5092 Iface_Elmt
:= First_Elmt
(Interfaces
(T
));
5093 while Present
(Iface_Elmt
) loop
5094 Iface
:= Node
(Iface_Elmt
);
5096 if not Is_Limited_Interface
(Iface
)
5097 and then not Is_Synchronized_Interface
(Iface
)
5100 ("progenitor & must be limited or synchronized",
5104 Next_Elmt
(Iface_Elmt
);
5108 -- Regular derived extension, the parent must be a limited or
5109 -- synchronized interface.
5112 if not Is_Interface
(Parent_Type
)
5113 or else (not Is_Limited_Interface
(Parent_Type
)
5114 and then not Is_Synchronized_Interface
(Parent_Type
))
5117 ("parent type of & must be limited interface", N
, T
);
5121 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
5122 -- extension with a synchronized parent must be explicitly declared
5123 -- synchronized, because the full view will be a synchronized type.
5124 -- This must be checked before the check for limited types below,
5125 -- to ensure that types declared limited are not allowed to extend
5126 -- synchronized interfaces.
5128 elsif Is_Interface
(Parent_Type
)
5129 and then Is_Synchronized_Interface
(Parent_Type
)
5130 and then not Synchronized_Present
(N
)
5133 ("private extension of& must be explicitly synchronized",
5136 elsif Limited_Present
(N
) then
5137 Set_Is_Limited_Record
(T
);
5139 if not Is_Limited_Type
(Parent_Type
)
5141 (not Is_Interface
(Parent_Type
)
5142 or else not Is_Limited_Interface
(Parent_Type
))
5144 Error_Msg_NE
("parent type& of limited extension must be limited",
5149 -- Remember that its parent type has a private extension. Used to warn
5150 -- on public primitives of the parent type defined after its private
5151 -- extensions (see Check_Dispatching_Operation).
5153 Set_Has_Private_Extension
(Parent_Type
);
5156 if Has_Aspects
(N
) then
5157 Analyze_Aspect_Specifications
(N
, T
);
5159 end Analyze_Private_Extension_Declaration
;
5161 ---------------------------------
5162 -- Analyze_Subtype_Declaration --
5163 ---------------------------------
5165 procedure Analyze_Subtype_Declaration
5167 Skip
: Boolean := False)
5169 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
5170 R_Checks
: Check_Result
;
5174 Generate_Definition
(Id
);
5175 Set_Is_Pure
(Id
, Is_Pure
(Current_Scope
));
5176 Init_Size_Align
(Id
);
5178 -- The following guard condition on Enter_Name is to handle cases where
5179 -- the defining identifier has already been entered into the scope but
5180 -- the declaration as a whole needs to be analyzed.
5182 -- This case in particular happens for derived enumeration types. The
5183 -- derived enumeration type is processed as an inserted enumeration type
5184 -- declaration followed by a rewritten subtype declaration. The defining
5185 -- identifier, however, is entered into the name scope very early in the
5186 -- processing of the original type declaration and therefore needs to be
5187 -- avoided here, when the created subtype declaration is analyzed. (See
5188 -- Build_Derived_Types)
5190 -- This also happens when the full view of a private type is derived
5191 -- type with constraints. In this case the entity has been introduced
5192 -- in the private declaration.
5194 -- Finally this happens in some complex cases when validity checks are
5195 -- enabled, where the same subtype declaration may be analyzed twice.
5196 -- This can happen if the subtype is created by the pre-analysis of
5197 -- an attribute tht gives the range of a loop statement, and the loop
5198 -- itself appears within an if_statement that will be rewritten during
5202 or else (Present
(Etype
(Id
))
5203 and then (Is_Private_Type
(Etype
(Id
))
5204 or else Is_Task_Type
(Etype
(Id
))
5205 or else Is_Rewrite_Substitution
(N
)))
5209 elsif Current_Entity
(Id
) = Id
then
5216 T
:= Process_Subtype
(Subtype_Indication
(N
), N
, Id
, 'P');
5218 -- Class-wide equivalent types of records with unknown discriminants
5219 -- involve the generation of an itype which serves as the private view
5220 -- of a constrained record subtype. In such cases the base type of the
5221 -- current subtype we are processing is the private itype. Use the full
5222 -- of the private itype when decorating various attributes.
5225 and then Is_Private_Type
(T
)
5226 and then Present
(Full_View
(T
))
5231 -- Inherit common attributes
5233 Set_Is_Volatile
(Id
, Is_Volatile
(T
));
5234 Set_Treat_As_Volatile
(Id
, Treat_As_Volatile
(T
));
5235 Set_Is_Generic_Type
(Id
, Is_Generic_Type
(Base_Type
(T
)));
5236 Set_Convention
(Id
, Convention
(T
));
5238 -- If ancestor has predicates then so does the subtype, and in addition
5239 -- we must delay the freeze to properly arrange predicate inheritance.
5241 -- The Ancestor_Type test is really unpleasant, there seem to be cases
5242 -- in which T = ID, so the above tests and assignments do nothing???
5244 if Has_Predicates
(T
)
5245 or else (Present
(Ancestor_Subtype
(T
))
5246 and then Has_Predicates
(Ancestor_Subtype
(T
)))
5248 Set_Has_Predicates
(Id
);
5249 Set_Has_Delayed_Freeze
(Id
);
5251 -- Generated subtypes inherit the predicate function from the parent
5252 -- (no aspects to examine on the generated declaration).
5254 if not Comes_From_Source
(N
) then
5255 Set_Ekind
(Id
, Ekind
(T
));
5257 if Present
(Predicate_Function
(T
)) then
5258 Set_Predicate_Function
(Id
, Predicate_Function
(T
));
5260 elsif Present
(Ancestor_Subtype
(T
))
5261 and then Has_Predicates
(Ancestor_Subtype
(T
))
5262 and then Present
(Predicate_Function
(Ancestor_Subtype
(T
)))
5264 Set_Predicate_Function
(Id
,
5265 Predicate_Function
(Ancestor_Subtype
(T
)));
5270 -- Subtype of Boolean cannot have a constraint in SPARK
5272 if Is_Boolean_Type
(T
)
5273 and then Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
5275 Check_SPARK_05_Restriction
5276 ("subtype of Boolean cannot have constraint", N
);
5279 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5281 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5287 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
then
5288 One_Cstr
:= First
(Constraints
(Cstr
));
5289 while Present
(One_Cstr
) loop
5291 -- Index or discriminant constraint in SPARK must be a
5295 Nkind_In
(One_Cstr
, N_Identifier
, N_Expanded_Name
)
5297 Check_SPARK_05_Restriction
5298 ("subtype mark required", One_Cstr
);
5300 -- String subtype must have a lower bound of 1 in SPARK.
5301 -- Note that we do not need to test for the non-static case
5302 -- here, since that was already taken care of in
5303 -- Process_Range_Expr_In_Decl.
5305 elsif Base_Type
(T
) = Standard_String
then
5306 Get_Index_Bounds
(One_Cstr
, Low
, High
);
5308 if Is_OK_Static_Expression
(Low
)
5309 and then Expr_Value
(Low
) /= 1
5311 Check_SPARK_05_Restriction
5312 ("String subtype must have lower bound of 1", N
);
5322 -- In the case where there is no constraint given in the subtype
5323 -- indication, Process_Subtype just returns the Subtype_Mark, so its
5324 -- semantic attributes must be established here.
5326 if Nkind
(Subtype_Indication
(N
)) /= N_Subtype_Indication
then
5327 Set_Etype
(Id
, Base_Type
(T
));
5329 -- Subtype of unconstrained array without constraint is not allowed
5332 if Is_Array_Type
(T
) and then not Is_Constrained
(T
) then
5333 Check_SPARK_05_Restriction
5334 ("subtype of unconstrained array must have constraint", N
);
5339 Set_Ekind
(Id
, E_Array_Subtype
);
5340 Copy_Array_Subtype_Attributes
(Id
, T
);
5342 when Decimal_Fixed_Point_Kind
=>
5343 Set_Ekind
(Id
, E_Decimal_Fixed_Point_Subtype
);
5344 Set_Digits_Value
(Id
, Digits_Value
(T
));
5345 Set_Delta_Value
(Id
, Delta_Value
(T
));
5346 Set_Scale_Value
(Id
, Scale_Value
(T
));
5347 Set_Small_Value
(Id
, Small_Value
(T
));
5348 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5349 Set_Machine_Radix_10
(Id
, Machine_Radix_10
(T
));
5350 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5351 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5352 Set_RM_Size
(Id
, RM_Size
(T
));
5354 when Enumeration_Kind
=>
5355 Set_Ekind
(Id
, E_Enumeration_Subtype
);
5356 Set_First_Literal
(Id
, First_Literal
(Base_Type
(T
)));
5357 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5358 Set_Is_Character_Type
(Id
, Is_Character_Type
(T
));
5359 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5360 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5361 Set_RM_Size
(Id
, RM_Size
(T
));
5362 Inherit_Predicate_Flags
(Id
, T
);
5364 when Ordinary_Fixed_Point_Kind
=>
5365 Set_Ekind
(Id
, E_Ordinary_Fixed_Point_Subtype
);
5366 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5367 Set_Small_Value
(Id
, Small_Value
(T
));
5368 Set_Delta_Value
(Id
, Delta_Value
(T
));
5369 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5370 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5371 Set_RM_Size
(Id
, RM_Size
(T
));
5374 Set_Ekind
(Id
, E_Floating_Point_Subtype
);
5375 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5376 Set_Digits_Value
(Id
, Digits_Value
(T
));
5377 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5379 -- If the floating point type has dimensions, these will be
5380 -- inherited subsequently when Analyze_Dimensions is called.
5382 when Signed_Integer_Kind
=>
5383 Set_Ekind
(Id
, E_Signed_Integer_Subtype
);
5384 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5385 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5386 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5387 Set_RM_Size
(Id
, RM_Size
(T
));
5388 Inherit_Predicate_Flags
(Id
, T
);
5390 when Modular_Integer_Kind
=>
5391 Set_Ekind
(Id
, E_Modular_Integer_Subtype
);
5392 Set_Scalar_Range
(Id
, Scalar_Range
(T
));
5393 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5394 Set_Is_Known_Valid
(Id
, Is_Known_Valid
(T
));
5395 Set_RM_Size
(Id
, RM_Size
(T
));
5396 Inherit_Predicate_Flags
(Id
, T
);
5398 when Class_Wide_Kind
=>
5399 Set_Ekind
(Id
, E_Class_Wide_Subtype
);
5400 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5401 Set_Cloned_Subtype
(Id
, T
);
5402 Set_Is_Tagged_Type
(Id
, True);
5403 Set_Has_Unknown_Discriminants
5405 Set_No_Tagged_Streams_Pragma
5406 (Id
, No_Tagged_Streams_Pragma
(T
));
5408 if Ekind
(T
) = E_Class_Wide_Subtype
then
5409 Set_Equivalent_Type
(Id
, Equivalent_Type
(T
));
5412 when E_Record_Subtype
5415 Set_Ekind
(Id
, E_Record_Subtype
);
5417 if Ekind
(T
) = E_Record_Subtype
5418 and then Present
(Cloned_Subtype
(T
))
5420 Set_Cloned_Subtype
(Id
, Cloned_Subtype
(T
));
5422 Set_Cloned_Subtype
(Id
, T
);
5425 Set_First_Entity
(Id
, First_Entity
(T
));
5426 Set_Last_Entity
(Id
, Last_Entity
(T
));
5427 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5428 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5429 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5430 Set_Has_Implicit_Dereference
5431 (Id
, Has_Implicit_Dereference
(T
));
5432 Set_Has_Unknown_Discriminants
5433 (Id
, Has_Unknown_Discriminants
(T
));
5435 if Has_Discriminants
(T
) then
5436 Set_Discriminant_Constraint
5437 (Id
, Discriminant_Constraint
(T
));
5438 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5440 elsif Has_Unknown_Discriminants
(Id
) then
5441 Set_Discriminant_Constraint
(Id
, No_Elist
);
5444 if Is_Tagged_Type
(T
) then
5445 Set_Is_Tagged_Type
(Id
, True);
5446 Set_No_Tagged_Streams_Pragma
5447 (Id
, No_Tagged_Streams_Pragma
(T
));
5448 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5449 Set_Direct_Primitive_Operations
5450 (Id
, Direct_Primitive_Operations
(T
));
5451 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5453 if Is_Interface
(T
) then
5454 Set_Is_Interface
(Id
);
5455 Set_Is_Limited_Interface
(Id
, Is_Limited_Interface
(T
));
5459 when Private_Kind
=>
5460 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5461 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5462 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5463 Set_First_Entity
(Id
, First_Entity
(T
));
5464 Set_Last_Entity
(Id
, Last_Entity
(T
));
5465 Set_Private_Dependents
(Id
, New_Elmt_List
);
5466 Set_Is_Limited_Record
(Id
, Is_Limited_Record
(T
));
5467 Set_Has_Implicit_Dereference
5468 (Id
, Has_Implicit_Dereference
(T
));
5469 Set_Has_Unknown_Discriminants
5470 (Id
, Has_Unknown_Discriminants
(T
));
5471 Set_Known_To_Have_Preelab_Init
5472 (Id
, Known_To_Have_Preelab_Init
(T
));
5474 if Is_Tagged_Type
(T
) then
5475 Set_Is_Tagged_Type
(Id
);
5476 Set_No_Tagged_Streams_Pragma
(Id
,
5477 No_Tagged_Streams_Pragma
(T
));
5478 Set_Is_Abstract_Type
(Id
, Is_Abstract_Type
(T
));
5479 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(T
));
5480 Set_Direct_Primitive_Operations
(Id
,
5481 Direct_Primitive_Operations
(T
));
5484 -- In general the attributes of the subtype of a private type
5485 -- are the attributes of the partial view of parent. However,
5486 -- the full view may be a discriminated type, and the subtype
5487 -- must share the discriminant constraint to generate correct
5488 -- calls to initialization procedures.
5490 if Has_Discriminants
(T
) then
5491 Set_Discriminant_Constraint
5492 (Id
, Discriminant_Constraint
(T
));
5493 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5495 elsif Present
(Full_View
(T
))
5496 and then Has_Discriminants
(Full_View
(T
))
5498 Set_Discriminant_Constraint
5499 (Id
, Discriminant_Constraint
(Full_View
(T
)));
5500 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5502 -- This would seem semantically correct, but apparently
5503 -- generates spurious errors about missing components ???
5505 -- Set_Has_Discriminants (Id);
5508 Prepare_Private_Subtype_Completion
(Id
, N
);
5510 -- If this is the subtype of a constrained private type with
5511 -- discriminants that has got a full view and we also have
5512 -- built a completion just above, show that the completion
5513 -- is a clone of the full view to the back-end.
5515 if Has_Discriminants
(T
)
5516 and then not Has_Unknown_Discriminants
(T
)
5517 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(T
))
5518 and then Present
(Full_View
(T
))
5519 and then Present
(Full_View
(Id
))
5521 Set_Cloned_Subtype
(Full_View
(Id
), Full_View
(T
));
5525 Set_Ekind
(Id
, E_Access_Subtype
);
5526 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5527 Set_Is_Access_Constant
5528 (Id
, Is_Access_Constant
(T
));
5529 Set_Directly_Designated_Type
5530 (Id
, Designated_Type
(T
));
5531 Set_Can_Never_Be_Null
(Id
, Can_Never_Be_Null
(T
));
5533 -- A Pure library_item must not contain the declaration of a
5534 -- named access type, except within a subprogram, generic
5535 -- subprogram, task unit, or protected unit, or if it has
5536 -- a specified Storage_Size of zero (RM05-10.2.1(15.4-15.5)).
5538 if Comes_From_Source
(Id
)
5539 and then In_Pure_Unit
5540 and then not In_Subprogram_Task_Protected_Unit
5541 and then not No_Pool_Assigned
(Id
)
5544 ("named access types not allowed in pure unit", N
);
5547 when Concurrent_Kind
=>
5548 Set_Ekind
(Id
, Subtype_Kind
(Ekind
(T
)));
5549 Set_Corresponding_Record_Type
(Id
,
5550 Corresponding_Record_Type
(T
));
5551 Set_First_Entity
(Id
, First_Entity
(T
));
5552 Set_First_Private_Entity
(Id
, First_Private_Entity
(T
));
5553 Set_Has_Discriminants
(Id
, Has_Discriminants
(T
));
5554 Set_Is_Constrained
(Id
, Is_Constrained
(T
));
5555 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5556 Set_Last_Entity
(Id
, Last_Entity
(T
));
5558 if Is_Tagged_Type
(T
) then
5559 Set_No_Tagged_Streams_Pragma
5560 (Id
, No_Tagged_Streams_Pragma
(T
));
5563 if Has_Discriminants
(T
) then
5564 Set_Discriminant_Constraint
5565 (Id
, Discriminant_Constraint
(T
));
5566 Set_Stored_Constraint_From_Discriminant_Constraint
(Id
);
5569 when Incomplete_Kind
=>
5570 if Ada_Version
>= Ada_2005
then
5572 -- In Ada 2005 an incomplete type can be explicitly tagged:
5573 -- propagate indication. Note that we also have to include
5574 -- subtypes for Ada 2012 extended use of incomplete types.
5576 Set_Ekind
(Id
, E_Incomplete_Subtype
);
5577 Set_Is_Tagged_Type
(Id
, Is_Tagged_Type
(T
));
5578 Set_Private_Dependents
(Id
, New_Elmt_List
);
5580 if Is_Tagged_Type
(Id
) then
5581 Set_No_Tagged_Streams_Pragma
5582 (Id
, No_Tagged_Streams_Pragma
(T
));
5583 Set_Direct_Primitive_Operations
(Id
, New_Elmt_List
);
5586 -- Ada 2005 (AI-412): Decorate an incomplete subtype of an
5587 -- incomplete type visible through a limited with clause.
5589 if From_Limited_With
(T
)
5590 and then Present
(Non_Limited_View
(T
))
5592 Set_From_Limited_With
(Id
);
5593 Set_Non_Limited_View
(Id
, Non_Limited_View
(T
));
5595 -- Ada 2005 (AI-412): Add the regular incomplete subtype
5596 -- to the private dependents of the original incomplete
5597 -- type for future transformation.
5600 Append_Elmt
(Id
, Private_Dependents
(T
));
5603 -- If the subtype name denotes an incomplete type an error
5604 -- was already reported by Process_Subtype.
5607 Set_Etype
(Id
, Any_Type
);
5611 raise Program_Error
;
5615 if Etype
(Id
) = Any_Type
then
5619 -- Some common processing on all types
5621 Set_Size_Info
(Id
, T
);
5622 Set_First_Rep_Item
(Id
, First_Rep_Item
(T
));
5624 -- If the parent type is a generic actual, so is the subtype. This may
5625 -- happen in a nested instance. Why Comes_From_Source test???
5627 if not Comes_From_Source
(N
) then
5628 Set_Is_Generic_Actual_Type
(Id
, Is_Generic_Actual_Type
(T
));
5631 -- If this is a subtype declaration for an actual in an instance,
5632 -- inherit static and dynamic predicates if any.
5634 -- If declaration has no aspect specifications, inherit predicate
5635 -- info as well. Unclear how to handle the case of both specified
5636 -- and inherited predicates ??? Other inherited aspects, such as
5637 -- invariants, should be OK, but the combination with later pragmas
5638 -- may also require special merging.
5640 if Has_Predicates
(T
)
5641 and then Present
(Predicate_Function
(T
))
5643 ((In_Instance
and then not Comes_From_Source
(N
))
5644 or else No
(Aspect_Specifications
(N
)))
5646 Set_Subprograms_For_Type
(Id
, Subprograms_For_Type
(T
));
5648 if Has_Static_Predicate
(T
) then
5649 Set_Has_Static_Predicate
(Id
);
5650 Set_Static_Discrete_Predicate
(Id
, Static_Discrete_Predicate
(T
));
5654 -- Remaining processing depends on characteristics of base type
5658 Set_Is_Immediately_Visible
(Id
, True);
5659 Set_Depends_On_Private
(Id
, Has_Private_Component
(T
));
5660 Set_Is_Descendant_Of_Address
(Id
, Is_Descendant_Of_Address
(T
));
5662 if Is_Interface
(T
) then
5663 Set_Is_Interface
(Id
);
5666 if Present
(Generic_Parent_Type
(N
))
5668 (Nkind
(Parent
(Generic_Parent_Type
(N
))) /=
5669 N_Formal_Type_Declaration
5670 or else Nkind
(Formal_Type_Definition
5671 (Parent
(Generic_Parent_Type
(N
)))) /=
5672 N_Formal_Private_Type_Definition
)
5674 if Is_Tagged_Type
(Id
) then
5676 -- If this is a generic actual subtype for a synchronized type,
5677 -- the primitive operations are those of the corresponding record
5678 -- for which there is a separate subtype declaration.
5680 if Is_Concurrent_Type
(Id
) then
5682 elsif Is_Class_Wide_Type
(Id
) then
5683 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, Etype
(T
));
5685 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
, T
);
5688 elsif Scope
(Etype
(Id
)) /= Standard_Standard
then
5689 Derive_Subprograms
(Generic_Parent_Type
(N
), Id
);
5693 if Is_Private_Type
(T
) and then Present
(Full_View
(T
)) then
5694 Conditional_Delay
(Id
, Full_View
(T
));
5696 -- The subtypes of components or subcomponents of protected types
5697 -- do not need freeze nodes, which would otherwise appear in the
5698 -- wrong scope (before the freeze node for the protected type). The
5699 -- proper subtypes are those of the subcomponents of the corresponding
5702 elsif Ekind
(Scope
(Id
)) /= E_Protected_Type
5703 and then Present
(Scope
(Scope
(Id
))) -- error defense
5704 and then Ekind
(Scope
(Scope
(Id
))) /= E_Protected_Type
5706 Conditional_Delay
(Id
, T
);
5709 -- Check that Constraint_Error is raised for a scalar subtype indication
5710 -- when the lower or upper bound of a non-null range lies outside the
5711 -- range of the type mark.
5713 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5714 if Is_Scalar_Type
(Etype
(Id
))
5715 and then Scalar_Range
(Id
) /=
5717 (Etype
(Subtype_Mark
(Subtype_Indication
(N
))))
5721 Etype
(Subtype_Mark
(Subtype_Indication
(N
))));
5723 -- In the array case, check compatibility for each index
5725 elsif Is_Array_Type
(Etype
(Id
)) and then Present
(First_Index
(Id
))
5727 -- This really should be a subprogram that finds the indications
5731 Subt_Index
: Node_Id
:= First_Index
(Id
);
5732 Target_Index
: Node_Id
:=
5734 (Subtype_Mark
(Subtype_Indication
(N
))));
5735 Has_Dyn_Chk
: Boolean := Has_Dynamic_Range_Check
(N
);
5738 while Present
(Subt_Index
) loop
5739 if ((Nkind
(Subt_Index
) = N_Identifier
5740 and then Ekind
(Entity
(Subt_Index
)) in Scalar_Kind
)
5741 or else Nkind
(Subt_Index
) = N_Subtype_Indication
)
5743 Nkind
(Scalar_Range
(Etype
(Subt_Index
))) = N_Range
5746 Target_Typ
: constant Entity_Id
:=
5747 Etype
(Target_Index
);
5751 (Scalar_Range
(Etype
(Subt_Index
)),
5754 Defining_Identifier
(N
));
5756 -- Reset Has_Dynamic_Range_Check on the subtype to
5757 -- prevent elision of the index check due to a dynamic
5758 -- check generated for a preceding index (needed since
5759 -- Insert_Range_Checks tries to avoid generating
5760 -- redundant checks on a given declaration).
5762 Set_Has_Dynamic_Range_Check
(N
, False);
5768 Sloc
(Defining_Identifier
(N
)));
5770 -- Record whether this index involved a dynamic check
5773 Has_Dyn_Chk
or else Has_Dynamic_Range_Check
(N
);
5777 Next_Index
(Subt_Index
);
5778 Next_Index
(Target_Index
);
5781 -- Finally, mark whether the subtype involves dynamic checks
5783 Set_Has_Dynamic_Range_Check
(N
, Has_Dyn_Chk
);
5788 Set_Optimize_Alignment_Flags
(Id
);
5789 Check_Eliminated
(Id
);
5792 if Has_Aspects
(N
) then
5793 Analyze_Aspect_Specifications
(N
, Id
);
5796 Analyze_Dimension
(N
);
5798 -- Check No_Dynamic_Sized_Objects restriction, which disallows subtype
5799 -- indications on composite types where the constraints are dynamic.
5800 -- Note that object declarations and aggregates generate implicit
5801 -- subtype declarations, which this covers. One special case is that the
5802 -- implicitly generated "=" for discriminated types includes an
5803 -- offending subtype declaration, which is harmless, so we ignore it
5806 if Nkind
(Subtype_Indication
(N
)) = N_Subtype_Indication
then
5808 Cstr
: constant Node_Id
:= Constraint
(Subtype_Indication
(N
));
5810 if Nkind
(Cstr
) = N_Index_Or_Discriminant_Constraint
5811 and then not (Is_Internal
(Id
)
5812 and then Is_TSS
(Scope
(Id
),
5813 TSS_Composite_Equality
))
5814 and then not Within_Init_Proc
5815 and then not All_Composite_Constraints_Static
(Cstr
)
5817 Check_Restriction
(No_Dynamic_Sized_Objects
, Cstr
);
5821 end Analyze_Subtype_Declaration
;
5823 --------------------------------
5824 -- Analyze_Subtype_Indication --
5825 --------------------------------
5827 procedure Analyze_Subtype_Indication
(N
: Node_Id
) is
5828 T
: constant Entity_Id
:= Subtype_Mark
(N
);
5829 R
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
5836 Set_Etype
(N
, Etype
(R
));
5837 Resolve
(R
, Entity
(T
));
5839 Set_Error_Posted
(R
);
5840 Set_Error_Posted
(T
);
5842 end Analyze_Subtype_Indication
;
5844 --------------------------
5845 -- Analyze_Variant_Part --
5846 --------------------------
5848 procedure Analyze_Variant_Part
(N
: Node_Id
) is
5849 Discr_Name
: Node_Id
;
5850 Discr_Type
: Entity_Id
;
5852 procedure Process_Variant
(A
: Node_Id
);
5853 -- Analyze declarations for a single variant
5855 package Analyze_Variant_Choices
is
5856 new Generic_Analyze_Choices
(Process_Variant
);
5857 use Analyze_Variant_Choices
;
5859 ---------------------
5860 -- Process_Variant --
5861 ---------------------
5863 procedure Process_Variant
(A
: Node_Id
) is
5864 CL
: constant Node_Id
:= Component_List
(A
);
5866 if not Null_Present
(CL
) then
5867 Analyze_Declarations
(Component_Items
(CL
));
5869 if Present
(Variant_Part
(CL
)) then
5870 Analyze
(Variant_Part
(CL
));
5873 end Process_Variant
;
5875 -- Start of processing for Analyze_Variant_Part
5878 Discr_Name
:= Name
(N
);
5879 Analyze
(Discr_Name
);
5881 -- If Discr_Name bad, get out (prevent cascaded errors)
5883 if Etype
(Discr_Name
) = Any_Type
then
5887 -- Check invalid discriminant in variant part
5889 if Ekind
(Entity
(Discr_Name
)) /= E_Discriminant
then
5890 Error_Msg_N
("invalid discriminant name in variant part", Discr_Name
);
5893 Discr_Type
:= Etype
(Entity
(Discr_Name
));
5895 if not Is_Discrete_Type
(Discr_Type
) then
5897 ("discriminant in a variant part must be of a discrete type",
5902 -- Now analyze the choices, which also analyzes the declarations that
5903 -- are associated with each choice.
5905 Analyze_Choices
(Variants
(N
), Discr_Type
);
5907 -- Note: we used to instantiate and call Check_Choices here to check
5908 -- that the choices covered the discriminant, but it's too early to do
5909 -- that because of statically predicated subtypes, whose analysis may
5910 -- be deferred to their freeze point which may be as late as the freeze
5911 -- point of the containing record. So this call is now to be found in
5912 -- Freeze_Record_Declaration.
5914 end Analyze_Variant_Part
;
5916 ----------------------------
5917 -- Array_Type_Declaration --
5918 ----------------------------
5920 procedure Array_Type_Declaration
(T
: in out Entity_Id
; Def
: Node_Id
) is
5921 Component_Def
: constant Node_Id
:= Component_Definition
(Def
);
5922 Component_Typ
: constant Node_Id
:= Subtype_Indication
(Component_Def
);
5923 P
: constant Node_Id
:= Parent
(Def
);
5924 Element_Type
: Entity_Id
;
5925 Implicit_Base
: Entity_Id
;
5929 Related_Id
: Entity_Id
:= Empty
;
5932 if Nkind
(Def
) = N_Constrained_Array_Definition
then
5933 Index
:= First
(Discrete_Subtype_Definitions
(Def
));
5935 Index
:= First
(Subtype_Marks
(Def
));
5938 -- Find proper names for the implicit types which may be public. In case
5939 -- of anonymous arrays we use the name of the first object of that type
5943 Related_Id
:= Defining_Identifier
(P
);
5949 while Present
(Index
) loop
5952 -- Test for odd case of trying to index a type by the type itself
5954 if Is_Entity_Name
(Index
) and then Entity
(Index
) = T
then
5955 Error_Msg_N
("type& cannot be indexed by itself", Index
);
5956 Set_Entity
(Index
, Standard_Boolean
);
5957 Set_Etype
(Index
, Standard_Boolean
);
5960 -- Check SPARK restriction requiring a subtype mark
5962 if not Nkind_In
(Index
, N_Identifier
, N_Expanded_Name
) then
5963 Check_SPARK_05_Restriction
("subtype mark required", Index
);
5966 -- Add a subtype declaration for each index of private array type
5967 -- declaration whose etype is also private. For example:
5970 -- type Index is private;
5972 -- type Table is array (Index) of ...
5975 -- This is currently required by the expander for the internally
5976 -- generated equality subprogram of records with variant parts in
5977 -- which the etype of some component is such private type.
5979 if Ekind
(Current_Scope
) = E_Package
5980 and then In_Private_Part
(Current_Scope
)
5981 and then Has_Private_Declaration
(Etype
(Index
))
5984 Loc
: constant Source_Ptr
:= Sloc
(Def
);
5989 New_E
:= Make_Temporary
(Loc
, 'T');
5990 Set_Is_Internal
(New_E
);
5993 Make_Subtype_Declaration
(Loc
,
5994 Defining_Identifier
=> New_E
,
5995 Subtype_Indication
=>
5996 New_Occurrence_Of
(Etype
(Index
), Loc
));
5998 Insert_Before
(Parent
(Def
), Decl
);
6000 Set_Etype
(Index
, New_E
);
6002 -- If the index is a range the Entity attribute is not
6003 -- available. Example:
6006 -- type T is private;
6008 -- type T is new Natural;
6009 -- Table : array (T(1) .. T(10)) of Boolean;
6012 if Nkind
(Index
) /= N_Range
then
6013 Set_Entity
(Index
, New_E
);
6018 Make_Index
(Index
, P
, Related_Id
, Nb_Index
);
6020 -- Check error of subtype with predicate for index type
6022 Bad_Predicated_Subtype_Use
6023 ("subtype& has predicate, not allowed as index subtype",
6024 Index
, Etype
(Index
));
6026 -- Move to next index
6029 Nb_Index
:= Nb_Index
+ 1;
6032 -- Process subtype indication if one is present
6034 if Present
(Component_Typ
) then
6035 Element_Type
:= Process_Subtype
(Component_Typ
, P
, Related_Id
, 'C');
6037 Set_Etype
(Component_Typ
, Element_Type
);
6039 if not Nkind_In
(Component_Typ
, N_Identifier
, N_Expanded_Name
) then
6040 Check_SPARK_05_Restriction
6041 ("subtype mark required", Component_Typ
);
6044 -- Ada 2005 (AI-230): Access Definition case
6046 else pragma Assert
(Present
(Access_Definition
(Component_Def
)));
6048 -- Indicate that the anonymous access type is created by the
6049 -- array type declaration.
6051 Element_Type
:= Access_Definition
6053 N
=> Access_Definition
(Component_Def
));
6054 Set_Is_Local_Anonymous_Access
(Element_Type
);
6056 -- Propagate the parent. This field is needed if we have to generate
6057 -- the master_id associated with an anonymous access to task type
6058 -- component (see Expand_N_Full_Type_Declaration.Build_Master)
6060 Set_Parent
(Element_Type
, Parent
(T
));
6062 -- Ada 2005 (AI-230): In case of components that are anonymous access
6063 -- types the level of accessibility depends on the enclosing type
6066 Set_Scope
(Element_Type
, Current_Scope
); -- Ada 2005 (AI-230)
6068 -- Ada 2005 (AI-254)
6071 CD
: constant Node_Id
:=
6072 Access_To_Subprogram_Definition
6073 (Access_Definition
(Component_Def
));
6075 if Present
(CD
) and then Protected_Present
(CD
) then
6077 Replace_Anonymous_Access_To_Protected_Subprogram
(Def
);
6082 -- Constrained array case
6085 T
:= Create_Itype
(E_Void
, P
, Related_Id
, 'T');
6088 if Nkind
(Def
) = N_Constrained_Array_Definition
then
6090 -- Establish Implicit_Base as unconstrained base type
6092 Implicit_Base
:= Create_Itype
(E_Array_Type
, P
, Related_Id
, 'B');
6094 Set_Etype
(Implicit_Base
, Implicit_Base
);
6095 Set_Scope
(Implicit_Base
, Current_Scope
);
6096 Set_Has_Delayed_Freeze
(Implicit_Base
);
6097 Set_Default_SSO
(Implicit_Base
);
6099 -- The constrained array type is a subtype of the unconstrained one
6101 Set_Ekind
(T
, E_Array_Subtype
);
6102 Init_Size_Align
(T
);
6103 Set_Etype
(T
, Implicit_Base
);
6104 Set_Scope
(T
, Current_Scope
);
6105 Set_Is_Constrained
(T
);
6107 First
(Discrete_Subtype_Definitions
(Def
)));
6108 Set_Has_Delayed_Freeze
(T
);
6110 -- Complete setup of implicit base type
6112 Set_Component_Size
(Implicit_Base
, Uint_0
);
6113 Set_Component_Type
(Implicit_Base
, Element_Type
);
6114 Set_Finalize_Storage_Only
6116 Finalize_Storage_Only
(Element_Type
));
6117 Set_First_Index
(Implicit_Base
, First_Index
(T
));
6118 Set_Has_Controlled_Component
6120 Has_Controlled_Component
(Element_Type
)
6121 or else Is_Controlled_Active
(Element_Type
));
6122 Set_Packed_Array_Impl_Type
6123 (Implicit_Base
, Empty
);
6125 Propagate_Concurrent_Flags
(Implicit_Base
, Element_Type
);
6127 -- Unconstrained array case
6130 Set_Ekind
(T
, E_Array_Type
);
6131 Init_Size_Align
(T
);
6133 Set_Scope
(T
, Current_Scope
);
6134 Set_Component_Size
(T
, Uint_0
);
6135 Set_Is_Constrained
(T
, False);
6136 Set_First_Index
(T
, First
(Subtype_Marks
(Def
)));
6137 Set_Has_Delayed_Freeze
(T
, True);
6138 Propagate_Concurrent_Flags
(T
, Element_Type
);
6139 Set_Has_Controlled_Component
(T
, Has_Controlled_Component
6142 Is_Controlled_Active
(Element_Type
));
6143 Set_Finalize_Storage_Only
(T
, Finalize_Storage_Only
6145 Set_Default_SSO
(T
);
6148 -- Common attributes for both cases
6150 Set_Component_Type
(Base_Type
(T
), Element_Type
);
6151 Set_Packed_Array_Impl_Type
(T
, Empty
);
6153 if Aliased_Present
(Component_Definition
(Def
)) then
6154 Check_SPARK_05_Restriction
6155 ("aliased is not allowed", Component_Definition
(Def
));
6156 Set_Has_Aliased_Components
(Etype
(T
));
6159 -- Ada 2005 (AI-231): Propagate the null-excluding attribute to the
6160 -- array type to ensure that objects of this type are initialized.
6162 if Ada_Version
>= Ada_2005
and then Can_Never_Be_Null
(Element_Type
) then
6163 Set_Can_Never_Be_Null
(T
);
6165 if Null_Exclusion_Present
(Component_Definition
(Def
))
6167 -- No need to check itypes because in their case this check was
6168 -- done at their point of creation
6170 and then not Is_Itype
(Element_Type
)
6173 ("`NOT NULL` not allowed (null already excluded)",
6174 Subtype_Indication
(Component_Definition
(Def
)));
6178 Priv
:= Private_Component
(Element_Type
);
6180 if Present
(Priv
) then
6182 -- Check for circular definitions
6184 if Priv
= Any_Type
then
6185 Set_Component_Type
(Etype
(T
), Any_Type
);
6187 -- There is a gap in the visibility of operations on the composite
6188 -- type only if the component type is defined in a different scope.
6190 elsif Scope
(Priv
) = Current_Scope
then
6193 elsif Is_Limited_Type
(Priv
) then
6194 Set_Is_Limited_Composite
(Etype
(T
));
6195 Set_Is_Limited_Composite
(T
);
6197 Set_Is_Private_Composite
(Etype
(T
));
6198 Set_Is_Private_Composite
(T
);
6202 -- A syntax error in the declaration itself may lead to an empty index
6203 -- list, in which case do a minimal patch.
6205 if No
(First_Index
(T
)) then
6206 Error_Msg_N
("missing index definition in array type declaration", T
);
6209 Indexes
: constant List_Id
:=
6210 New_List
(New_Occurrence_Of
(Any_Id
, Sloc
(T
)));
6212 Set_Discrete_Subtype_Definitions
(Def
, Indexes
);
6213 Set_First_Index
(T
, First
(Indexes
));
6218 -- Create a concatenation operator for the new type. Internal array
6219 -- types created for packed entities do not need such, they are
6220 -- compatible with the user-defined type.
6222 if Number_Dimensions
(T
) = 1
6223 and then not Is_Packed_Array_Impl_Type
(T
)
6225 New_Concatenation_Op
(T
);
6228 -- In the case of an unconstrained array the parser has already verified
6229 -- that all the indexes are unconstrained but we still need to make sure
6230 -- that the element type is constrained.
6232 if not Is_Definite_Subtype
(Element_Type
) then
6234 ("unconstrained element type in array declaration",
6235 Subtype_Indication
(Component_Def
));
6237 elsif Is_Abstract_Type
(Element_Type
) then
6239 ("the type of a component cannot be abstract",
6240 Subtype_Indication
(Component_Def
));
6243 -- There may be an invariant declared for the component type, but
6244 -- the construction of the component invariant checking procedure
6245 -- takes place during expansion.
6246 end Array_Type_Declaration
;
6248 ------------------------------------------------------
6249 -- Replace_Anonymous_Access_To_Protected_Subprogram --
6250 ------------------------------------------------------
6252 function Replace_Anonymous_Access_To_Protected_Subprogram
6253 (N
: Node_Id
) return Entity_Id
6255 Loc
: constant Source_Ptr
:= Sloc
(N
);
6257 Curr_Scope
: constant Scope_Stack_Entry
:=
6258 Scope_Stack
.Table
(Scope_Stack
.Last
);
6260 Anon
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
6263 -- Access definition in declaration
6266 -- Object definition or formal definition with an access definition
6269 -- Declaration of anonymous access to subprogram type
6272 -- Original specification in access to subprogram
6277 Set_Is_Internal
(Anon
);
6280 when N_Constrained_Array_Definition
6281 | N_Component_Declaration
6282 | N_Unconstrained_Array_Definition
6284 Comp
:= Component_Definition
(N
);
6285 Acc
:= Access_Definition
(Comp
);
6287 when N_Discriminant_Specification
=>
6288 Comp
:= Discriminant_Type
(N
);
6291 when N_Parameter_Specification
=>
6292 Comp
:= Parameter_Type
(N
);
6295 when N_Access_Function_Definition
=>
6296 Comp
:= Result_Definition
(N
);
6299 when N_Object_Declaration
=>
6300 Comp
:= Object_Definition
(N
);
6303 when N_Function_Specification
=>
6304 Comp
:= Result_Definition
(N
);
6308 raise Program_Error
;
6311 Spec
:= Access_To_Subprogram_Definition
(Acc
);
6314 Make_Full_Type_Declaration
(Loc
,
6315 Defining_Identifier
=> Anon
,
6316 Type_Definition
=> Copy_Separate_Tree
(Spec
));
6318 Mark_Rewrite_Insertion
(Decl
);
6320 -- In ASIS mode, analyze the profile on the original node, because
6321 -- the separate copy does not provide enough links to recover the
6322 -- original tree. Analysis is limited to type annotations, within
6323 -- a temporary scope that serves as an anonymous subprogram to collect
6324 -- otherwise useless temporaries and itypes.
6328 Typ
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
6331 if Nkind
(Spec
) = N_Access_Function_Definition
then
6332 Set_Ekind
(Typ
, E_Function
);
6334 Set_Ekind
(Typ
, E_Procedure
);
6337 Set_Parent
(Typ
, N
);
6338 Set_Scope
(Typ
, Current_Scope
);
6341 -- Nothing to do if procedure is parameterless
6343 if Present
(Parameter_Specifications
(Spec
)) then
6344 Process_Formals
(Parameter_Specifications
(Spec
), Spec
);
6347 if Nkind
(Spec
) = N_Access_Function_Definition
then
6349 Def
: constant Node_Id
:= Result_Definition
(Spec
);
6352 -- The result might itself be an anonymous access type, so
6355 if Nkind
(Def
) = N_Access_Definition
then
6356 if Present
(Access_To_Subprogram_Definition
(Def
)) then
6359 Replace_Anonymous_Access_To_Protected_Subprogram
6362 Find_Type
(Subtype_Mark
(Def
));
6375 -- Insert the new declaration in the nearest enclosing scope. If the
6376 -- parent is a body and N is its return type, the declaration belongs
6377 -- in the enclosing scope. Likewise if N is the type of a parameter.
6381 if Nkind
(N
) = N_Function_Specification
6382 and then Nkind
(P
) = N_Subprogram_Body
6385 elsif Nkind
(N
) = N_Parameter_Specification
6386 and then Nkind
(P
) in N_Subprogram_Specification
6387 and then Nkind
(Parent
(P
)) = N_Subprogram_Body
6389 P
:= Parent
(Parent
(P
));
6392 while Present
(P
) and then not Has_Declarations
(P
) loop
6396 pragma Assert
(Present
(P
));
6398 if Nkind
(P
) = N_Package_Specification
then
6399 Prepend
(Decl
, Visible_Declarations
(P
));
6401 Prepend
(Decl
, Declarations
(P
));
6404 -- Replace the anonymous type with an occurrence of the new declaration.
6405 -- In all cases the rewritten node does not have the null-exclusion
6406 -- attribute because (if present) it was already inherited by the
6407 -- anonymous entity (Anon). Thus, in case of components we do not
6408 -- inherit this attribute.
6410 if Nkind
(N
) = N_Parameter_Specification
then
6411 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6412 Set_Etype
(Defining_Identifier
(N
), Anon
);
6413 Set_Null_Exclusion_Present
(N
, False);
6415 elsif Nkind
(N
) = N_Object_Declaration
then
6416 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6417 Set_Etype
(Defining_Identifier
(N
), Anon
);
6419 elsif Nkind
(N
) = N_Access_Function_Definition
then
6420 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6422 elsif Nkind
(N
) = N_Function_Specification
then
6423 Rewrite
(Comp
, New_Occurrence_Of
(Anon
, Loc
));
6424 Set_Etype
(Defining_Unit_Name
(N
), Anon
);
6428 Make_Component_Definition
(Loc
,
6429 Subtype_Indication
=> New_Occurrence_Of
(Anon
, Loc
)));
6432 Mark_Rewrite_Insertion
(Comp
);
6434 if Nkind_In
(N
, N_Object_Declaration
, N_Access_Function_Definition
)
6435 or else (Nkind
(Parent
(N
)) = N_Full_Type_Declaration
6436 and then not Is_Type
(Current_Scope
))
6439 -- Declaration can be analyzed in the current scope.
6444 -- Temporarily remove the current scope (record or subprogram) from
6445 -- the stack to add the new declarations to the enclosing scope.
6446 -- The anonymous entity is an Itype with the proper attributes.
6448 Scope_Stack
.Decrement_Last
;
6450 Set_Is_Itype
(Anon
);
6451 Set_Associated_Node_For_Itype
(Anon
, N
);
6452 Scope_Stack
.Append
(Curr_Scope
);
6455 Set_Ekind
(Anon
, E_Anonymous_Access_Protected_Subprogram_Type
);
6456 Set_Can_Use_Internal_Rep
(Anon
, not Always_Compatible_Rep_On_Target
);
6458 end Replace_Anonymous_Access_To_Protected_Subprogram
;
6460 -------------------------------
6461 -- Build_Derived_Access_Type --
6462 -------------------------------
6464 procedure Build_Derived_Access_Type
6466 Parent_Type
: Entity_Id
;
6467 Derived_Type
: Entity_Id
)
6469 S
: constant Node_Id
:= Subtype_Indication
(Type_Definition
(N
));
6471 Desig_Type
: Entity_Id
;
6473 Discr_Con_Elist
: Elist_Id
;
6474 Discr_Con_El
: Elmt_Id
;
6478 -- Set the designated type so it is available in case this is an access
6479 -- to a self-referential type, e.g. a standard list type with a next
6480 -- pointer. Will be reset after subtype is built.
6482 Set_Directly_Designated_Type
6483 (Derived_Type
, Designated_Type
(Parent_Type
));
6485 Subt
:= Process_Subtype
(S
, N
);
6487 if Nkind
(S
) /= N_Subtype_Indication
6488 and then Subt
/= Base_Type
(Subt
)
6490 Set_Ekind
(Derived_Type
, E_Access_Subtype
);
6493 if Ekind
(Derived_Type
) = E_Access_Subtype
then
6495 Pbase
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6496 Ibase
: constant Entity_Id
:=
6497 Create_Itype
(Ekind
(Pbase
), N
, Derived_Type
, 'B');
6498 Svg_Chars
: constant Name_Id
:= Chars
(Ibase
);
6499 Svg_Next_E
: constant Entity_Id
:= Next_Entity
(Ibase
);
6502 Copy_Node
(Pbase
, Ibase
);
6504 -- Restore Itype status after Copy_Node
6506 Set_Is_Itype
(Ibase
);
6507 Set_Associated_Node_For_Itype
(Ibase
, N
);
6509 Set_Chars
(Ibase
, Svg_Chars
);
6510 Set_Next_Entity
(Ibase
, Svg_Next_E
);
6511 Set_Sloc
(Ibase
, Sloc
(Derived_Type
));
6512 Set_Scope
(Ibase
, Scope
(Derived_Type
));
6513 Set_Freeze_Node
(Ibase
, Empty
);
6514 Set_Is_Frozen
(Ibase
, False);
6515 Set_Comes_From_Source
(Ibase
, False);
6516 Set_Is_First_Subtype
(Ibase
, False);
6518 Set_Etype
(Ibase
, Pbase
);
6519 Set_Etype
(Derived_Type
, Ibase
);
6523 Set_Directly_Designated_Type
6524 (Derived_Type
, Designated_Type
(Subt
));
6526 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Subt
));
6527 Set_Is_Access_Constant
(Derived_Type
, Is_Access_Constant
(Parent_Type
));
6528 Set_Size_Info
(Derived_Type
, Parent_Type
);
6529 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
6530 Set_Depends_On_Private
(Derived_Type
,
6531 Has_Private_Component
(Derived_Type
));
6532 Conditional_Delay
(Derived_Type
, Subt
);
6534 -- Ada 2005 (AI-231): Set the null-exclusion attribute, and verify
6535 -- that it is not redundant.
6537 if Null_Exclusion_Present
(Type_Definition
(N
)) then
6538 Set_Can_Never_Be_Null
(Derived_Type
);
6540 elsif Can_Never_Be_Null
(Parent_Type
) then
6541 Set_Can_Never_Be_Null
(Derived_Type
);
6544 -- Note: we do not copy the Storage_Size_Variable, since we always go to
6545 -- the root type for this information.
6547 -- Apply range checks to discriminants for derived record case
6548 -- ??? THIS CODE SHOULD NOT BE HERE REALLY.
6550 Desig_Type
:= Designated_Type
(Derived_Type
);
6552 if Is_Composite_Type
(Desig_Type
)
6553 and then (not Is_Array_Type
(Desig_Type
))
6554 and then Has_Discriminants
(Desig_Type
)
6555 and then Base_Type
(Desig_Type
) /= Desig_Type
6557 Discr_Con_Elist
:= Discriminant_Constraint
(Desig_Type
);
6558 Discr_Con_El
:= First_Elmt
(Discr_Con_Elist
);
6560 Discr
:= First_Discriminant
(Base_Type
(Desig_Type
));
6561 while Present
(Discr_Con_El
) loop
6562 Apply_Range_Check
(Node
(Discr_Con_El
), Etype
(Discr
));
6563 Next_Elmt
(Discr_Con_El
);
6564 Next_Discriminant
(Discr
);
6567 end Build_Derived_Access_Type
;
6569 ------------------------------
6570 -- Build_Derived_Array_Type --
6571 ------------------------------
6573 procedure Build_Derived_Array_Type
6575 Parent_Type
: Entity_Id
;
6576 Derived_Type
: Entity_Id
)
6578 Loc
: constant Source_Ptr
:= Sloc
(N
);
6579 Tdef
: constant Node_Id
:= Type_Definition
(N
);
6580 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
6581 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
6582 Implicit_Base
: Entity_Id
;
6583 New_Indic
: Node_Id
;
6585 procedure Make_Implicit_Base
;
6586 -- If the parent subtype is constrained, the derived type is a subtype
6587 -- of an implicit base type derived from the parent base.
6589 ------------------------
6590 -- Make_Implicit_Base --
6591 ------------------------
6593 procedure Make_Implicit_Base
is
6596 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
6598 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
6599 Set_Etype
(Implicit_Base
, Parent_Base
);
6601 Copy_Array_Subtype_Attributes
(Implicit_Base
, Parent_Base
);
6602 Copy_Array_Base_Type_Attributes
(Implicit_Base
, Parent_Base
);
6604 Set_Has_Delayed_Freeze
(Implicit_Base
, True);
6605 end Make_Implicit_Base
;
6607 -- Start of processing for Build_Derived_Array_Type
6610 if not Is_Constrained
(Parent_Type
) then
6611 if Nkind
(Indic
) /= N_Subtype_Indication
then
6612 Set_Ekind
(Derived_Type
, E_Array_Type
);
6614 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6615 Copy_Array_Base_Type_Attributes
(Derived_Type
, Parent_Type
);
6617 Set_Has_Delayed_Freeze
(Derived_Type
, True);
6621 Set_Etype
(Derived_Type
, Implicit_Base
);
6624 Make_Subtype_Declaration
(Loc
,
6625 Defining_Identifier
=> Derived_Type
,
6626 Subtype_Indication
=>
6627 Make_Subtype_Indication
(Loc
,
6628 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
6629 Constraint
=> Constraint
(Indic
)));
6631 Rewrite
(N
, New_Indic
);
6636 if Nkind
(Indic
) /= N_Subtype_Indication
then
6639 Set_Ekind
(Derived_Type
, Ekind
(Parent_Type
));
6640 Set_Etype
(Derived_Type
, Implicit_Base
);
6641 Copy_Array_Subtype_Attributes
(Derived_Type
, Parent_Type
);
6644 Error_Msg_N
("illegal constraint on constrained type", Indic
);
6648 -- If parent type is not a derived type itself, and is declared in
6649 -- closed scope (e.g. a subprogram), then we must explicitly introduce
6650 -- the new type's concatenation operator since Derive_Subprograms
6651 -- will not inherit the parent's operator. If the parent type is
6652 -- unconstrained, the operator is of the unconstrained base type.
6654 if Number_Dimensions
(Parent_Type
) = 1
6655 and then not Is_Limited_Type
(Parent_Type
)
6656 and then not Is_Derived_Type
(Parent_Type
)
6657 and then not Is_Package_Or_Generic_Package
6658 (Scope
(Base_Type
(Parent_Type
)))
6660 if not Is_Constrained
(Parent_Type
)
6661 and then Is_Constrained
(Derived_Type
)
6663 New_Concatenation_Op
(Implicit_Base
);
6665 New_Concatenation_Op
(Derived_Type
);
6668 end Build_Derived_Array_Type
;
6670 -----------------------------------
6671 -- Build_Derived_Concurrent_Type --
6672 -----------------------------------
6674 procedure Build_Derived_Concurrent_Type
6676 Parent_Type
: Entity_Id
;
6677 Derived_Type
: Entity_Id
)
6679 Loc
: constant Source_Ptr
:= Sloc
(N
);
6681 Corr_Record
: constant Entity_Id
:= Make_Temporary
(Loc
, 'C');
6682 Corr_Decl
: Node_Id
;
6683 Corr_Decl_Needed
: Boolean;
6684 -- If the derived type has fewer discriminants than its parent, the
6685 -- corresponding record is also a derived type, in order to account for
6686 -- the bound discriminants. We create a full type declaration for it in
6689 Constraint_Present
: constant Boolean :=
6690 Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
6691 N_Subtype_Indication
;
6693 D_Constraint
: Node_Id
;
6694 New_Constraint
: Elist_Id
;
6695 Old_Disc
: Entity_Id
;
6696 New_Disc
: Entity_Id
;
6700 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
6701 Corr_Decl_Needed
:= False;
6704 if Present
(Discriminant_Specifications
(N
))
6705 and then Constraint_Present
6707 Old_Disc
:= First_Discriminant
(Parent_Type
);
6708 New_Disc
:= First
(Discriminant_Specifications
(N
));
6709 while Present
(New_Disc
) and then Present
(Old_Disc
) loop
6710 Next_Discriminant
(Old_Disc
);
6715 if Present
(Old_Disc
) and then Expander_Active
then
6717 -- The new type has fewer discriminants, so we need to create a new
6718 -- corresponding record, which is derived from the corresponding
6719 -- record of the parent, and has a stored constraint that captures
6720 -- the values of the discriminant constraints. The corresponding
6721 -- record is needed only if expander is active and code generation is
6724 -- The type declaration for the derived corresponding record has the
6725 -- same discriminant part and constraints as the current declaration.
6726 -- Copy the unanalyzed tree to build declaration.
6728 Corr_Decl_Needed
:= True;
6729 New_N
:= Copy_Separate_Tree
(N
);
6732 Make_Full_Type_Declaration
(Loc
,
6733 Defining_Identifier
=> Corr_Record
,
6734 Discriminant_Specifications
=>
6735 Discriminant_Specifications
(New_N
),
6737 Make_Derived_Type_Definition
(Loc
,
6738 Subtype_Indication
=>
6739 Make_Subtype_Indication
(Loc
,
6742 (Corresponding_Record_Type
(Parent_Type
), Loc
),
6745 (Subtype_Indication
(Type_Definition
(New_N
))))));
6748 -- Copy Storage_Size and Relative_Deadline variables if task case
6750 if Is_Task_Type
(Parent_Type
) then
6751 Set_Storage_Size_Variable
(Derived_Type
,
6752 Storage_Size_Variable
(Parent_Type
));
6753 Set_Relative_Deadline_Variable
(Derived_Type
,
6754 Relative_Deadline_Variable
(Parent_Type
));
6757 if Present
(Discriminant_Specifications
(N
)) then
6758 Push_Scope
(Derived_Type
);
6759 Check_Or_Process_Discriminants
(N
, Derived_Type
);
6761 if Constraint_Present
then
6763 Expand_To_Stored_Constraint
6765 Build_Discriminant_Constraints
6767 Subtype_Indication
(Type_Definition
(N
)), True));
6772 elsif Constraint_Present
then
6774 -- Build constrained subtype, copying the constraint, and derive
6775 -- from it to create a derived constrained type.
6778 Loc
: constant Source_Ptr
:= Sloc
(N
);
6779 Anon
: constant Entity_Id
:=
6780 Make_Defining_Identifier
(Loc
,
6781 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'T'));
6786 Make_Subtype_Declaration
(Loc
,
6787 Defining_Identifier
=> Anon
,
6788 Subtype_Indication
=>
6789 New_Copy_Tree
(Subtype_Indication
(Type_Definition
(N
))));
6790 Insert_Before
(N
, Decl
);
6793 Rewrite
(Subtype_Indication
(Type_Definition
(N
)),
6794 New_Occurrence_Of
(Anon
, Loc
));
6795 Set_Analyzed
(Derived_Type
, False);
6801 -- By default, operations and private data are inherited from parent.
6802 -- However, in the presence of bound discriminants, a new corresponding
6803 -- record will be created, see below.
6805 Set_Has_Discriminants
6806 (Derived_Type
, Has_Discriminants
(Parent_Type
));
6807 Set_Corresponding_Record_Type
6808 (Derived_Type
, Corresponding_Record_Type
(Parent_Type
));
6810 -- Is_Constrained is set according the parent subtype, but is set to
6811 -- False if the derived type is declared with new discriminants.
6815 (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
6816 and then not Present
(Discriminant_Specifications
(N
)));
6818 if Constraint_Present
then
6819 if not Has_Discriminants
(Parent_Type
) then
6820 Error_Msg_N
("untagged parent must have discriminants", N
);
6822 elsif Present
(Discriminant_Specifications
(N
)) then
6824 -- Verify that new discriminants are used to constrain old ones
6829 (Constraint
(Subtype_Indication
(Type_Definition
(N
)))));
6831 Old_Disc
:= First_Discriminant
(Parent_Type
);
6833 while Present
(D_Constraint
) loop
6834 if Nkind
(D_Constraint
) /= N_Discriminant_Association
then
6836 -- Positional constraint. If it is a reference to a new
6837 -- discriminant, it constrains the corresponding old one.
6839 if Nkind
(D_Constraint
) = N_Identifier
then
6840 New_Disc
:= First_Discriminant
(Derived_Type
);
6841 while Present
(New_Disc
) loop
6842 exit when Chars
(New_Disc
) = Chars
(D_Constraint
);
6843 Next_Discriminant
(New_Disc
);
6846 if Present
(New_Disc
) then
6847 Set_Corresponding_Discriminant
(New_Disc
, Old_Disc
);
6851 Next_Discriminant
(Old_Disc
);
6853 -- if this is a named constraint, search by name for the old
6854 -- discriminants constrained by the new one.
6856 elsif Nkind
(Expression
(D_Constraint
)) = N_Identifier
then
6858 -- Find new discriminant with that name
6860 New_Disc
:= First_Discriminant
(Derived_Type
);
6861 while Present
(New_Disc
) loop
6863 Chars
(New_Disc
) = Chars
(Expression
(D_Constraint
));
6864 Next_Discriminant
(New_Disc
);
6867 if Present
(New_Disc
) then
6869 -- Verify that new discriminant renames some discriminant
6870 -- of the parent type, and associate the new discriminant
6871 -- with one or more old ones that it renames.
6877 Selector
:= First
(Selector_Names
(D_Constraint
));
6878 while Present
(Selector
) loop
6879 Old_Disc
:= First_Discriminant
(Parent_Type
);
6880 while Present
(Old_Disc
) loop
6881 exit when Chars
(Old_Disc
) = Chars
(Selector
);
6882 Next_Discriminant
(Old_Disc
);
6885 if Present
(Old_Disc
) then
6886 Set_Corresponding_Discriminant
6887 (New_Disc
, Old_Disc
);
6896 Next
(D_Constraint
);
6899 New_Disc
:= First_Discriminant
(Derived_Type
);
6900 while Present
(New_Disc
) loop
6901 if No
(Corresponding_Discriminant
(New_Disc
)) then
6903 ("new discriminant& must constrain old one", N
, New_Disc
);
6906 Subtypes_Statically_Compatible
6908 Etype
(Corresponding_Discriminant
(New_Disc
)))
6911 ("& not statically compatible with parent discriminant",
6915 Next_Discriminant
(New_Disc
);
6919 elsif Present
(Discriminant_Specifications
(N
)) then
6921 ("missing discriminant constraint in untagged derivation", N
);
6924 -- The entity chain of the derived type includes the new discriminants
6925 -- but shares operations with the parent.
6927 if Present
(Discriminant_Specifications
(N
)) then
6928 Old_Disc
:= First_Discriminant
(Parent_Type
);
6929 while Present
(Old_Disc
) loop
6930 if No
(Next_Entity
(Old_Disc
))
6931 or else Ekind
(Next_Entity
(Old_Disc
)) /= E_Discriminant
6934 (Last_Entity
(Derived_Type
), Next_Entity
(Old_Disc
));
6938 Next_Discriminant
(Old_Disc
);
6942 Set_First_Entity
(Derived_Type
, First_Entity
(Parent_Type
));
6943 if Has_Discriminants
(Parent_Type
) then
6944 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
6945 Set_Discriminant_Constraint
(
6946 Derived_Type
, Discriminant_Constraint
(Parent_Type
));
6950 Set_Last_Entity
(Derived_Type
, Last_Entity
(Parent_Type
));
6952 Set_Has_Completion
(Derived_Type
);
6954 if Corr_Decl_Needed
then
6955 Set_Stored_Constraint
(Derived_Type
, New_Constraint
);
6956 Insert_After
(N
, Corr_Decl
);
6957 Analyze
(Corr_Decl
);
6958 Set_Corresponding_Record_Type
(Derived_Type
, Corr_Record
);
6960 end Build_Derived_Concurrent_Type
;
6962 ------------------------------------
6963 -- Build_Derived_Enumeration_Type --
6964 ------------------------------------
6966 procedure Build_Derived_Enumeration_Type
6968 Parent_Type
: Entity_Id
;
6969 Derived_Type
: Entity_Id
)
6971 Loc
: constant Source_Ptr
:= Sloc
(N
);
6972 Def
: constant Node_Id
:= Type_Definition
(N
);
6973 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
6974 Implicit_Base
: Entity_Id
;
6975 Literal
: Entity_Id
;
6976 New_Lit
: Entity_Id
;
6977 Literals_List
: List_Id
;
6978 Type_Decl
: Node_Id
;
6980 Rang_Expr
: Node_Id
;
6983 -- Since types Standard.Character and Standard.[Wide_]Wide_Character do
6984 -- not have explicit literals lists we need to process types derived
6985 -- from them specially. This is handled by Derived_Standard_Character.
6986 -- If the parent type is a generic type, there are no literals either,
6987 -- and we construct the same skeletal representation as for the generic
6990 if Is_Standard_Character_Type
(Parent_Type
) then
6991 Derived_Standard_Character
(N
, Parent_Type
, Derived_Type
);
6993 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
6999 if Nkind
(Indic
) /= N_Subtype_Indication
then
7001 Make_Attribute_Reference
(Loc
,
7002 Attribute_Name
=> Name_First
,
7003 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
7004 Set_Etype
(Lo
, Derived_Type
);
7007 Make_Attribute_Reference
(Loc
,
7008 Attribute_Name
=> Name_Last
,
7009 Prefix
=> New_Occurrence_Of
(Derived_Type
, Loc
));
7010 Set_Etype
(Hi
, Derived_Type
);
7012 Set_Scalar_Range
(Derived_Type
,
7018 -- Analyze subtype indication and verify compatibility
7019 -- with parent type.
7021 if Base_Type
(Process_Subtype
(Indic
, N
)) /=
7022 Base_Type
(Parent_Type
)
7025 ("illegal constraint for formal discrete type", N
);
7031 -- If a constraint is present, analyze the bounds to catch
7032 -- premature usage of the derived literals.
7034 if Nkind
(Indic
) = N_Subtype_Indication
7035 and then Nkind
(Range_Expression
(Constraint
(Indic
))) = N_Range
7037 Analyze
(Low_Bound
(Range_Expression
(Constraint
(Indic
))));
7038 Analyze
(High_Bound
(Range_Expression
(Constraint
(Indic
))));
7041 -- Introduce an implicit base type for the derived type even if there
7042 -- is no constraint attached to it, since this seems closer to the
7043 -- Ada semantics. Build a full type declaration tree for the derived
7044 -- type using the implicit base type as the defining identifier. The
7045 -- build a subtype declaration tree which applies the constraint (if
7046 -- any) have it replace the derived type declaration.
7048 Literal
:= First_Literal
(Parent_Type
);
7049 Literals_List
:= New_List
;
7050 while Present
(Literal
)
7051 and then Ekind
(Literal
) = E_Enumeration_Literal
7053 -- Literals of the derived type have the same representation as
7054 -- those of the parent type, but this representation can be
7055 -- overridden by an explicit representation clause. Indicate
7056 -- that there is no explicit representation given yet. These
7057 -- derived literals are implicit operations of the new type,
7058 -- and can be overridden by explicit ones.
7060 if Nkind
(Literal
) = N_Defining_Character_Literal
then
7062 Make_Defining_Character_Literal
(Loc
, Chars
(Literal
));
7064 New_Lit
:= Make_Defining_Identifier
(Loc
, Chars
(Literal
));
7067 Set_Ekind
(New_Lit
, E_Enumeration_Literal
);
7068 Set_Enumeration_Pos
(New_Lit
, Enumeration_Pos
(Literal
));
7069 Set_Enumeration_Rep
(New_Lit
, Enumeration_Rep
(Literal
));
7070 Set_Enumeration_Rep_Expr
(New_Lit
, Empty
);
7071 Set_Alias
(New_Lit
, Literal
);
7072 Set_Is_Known_Valid
(New_Lit
, True);
7074 Append
(New_Lit
, Literals_List
);
7075 Next_Literal
(Literal
);
7079 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7080 Chars
=> New_External_Name
(Chars
(Derived_Type
), 'B'));
7082 -- Indicate the proper nature of the derived type. This must be done
7083 -- before analysis of the literals, to recognize cases when a literal
7084 -- may be hidden by a previous explicit function definition (cf.
7087 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
7088 Set_Etype
(Derived_Type
, Implicit_Base
);
7091 Make_Full_Type_Declaration
(Loc
,
7092 Defining_Identifier
=> Implicit_Base
,
7093 Discriminant_Specifications
=> No_List
,
7095 Make_Enumeration_Type_Definition
(Loc
, Literals_List
));
7097 Mark_Rewrite_Insertion
(Type_Decl
);
7098 Insert_Before
(N
, Type_Decl
);
7099 Analyze
(Type_Decl
);
7101 -- The anonymous base now has a full declaration, but this base
7102 -- is not a first subtype.
7104 Set_Is_First_Subtype
(Implicit_Base
, False);
7106 -- After the implicit base is analyzed its Etype needs to be changed
7107 -- to reflect the fact that it is derived from the parent type which
7108 -- was ignored during analysis. We also set the size at this point.
7110 Set_Etype
(Implicit_Base
, Parent_Type
);
7112 Set_Size_Info
(Implicit_Base
, Parent_Type
);
7113 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Type
));
7114 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Type
));
7116 -- Copy other flags from parent type
7118 Set_Has_Non_Standard_Rep
7119 (Implicit_Base
, Has_Non_Standard_Rep
7121 Set_Has_Pragma_Ordered
7122 (Implicit_Base
, Has_Pragma_Ordered
7124 Set_Has_Delayed_Freeze
(Implicit_Base
);
7126 -- Process the subtype indication including a validation check on the
7127 -- constraint, if any. If a constraint is given, its bounds must be
7128 -- implicitly converted to the new type.
7130 if Nkind
(Indic
) = N_Subtype_Indication
then
7132 R
: constant Node_Id
:=
7133 Range_Expression
(Constraint
(Indic
));
7136 if Nkind
(R
) = N_Range
then
7137 Hi
:= Build_Scalar_Bound
7138 (High_Bound
(R
), Parent_Type
, Implicit_Base
);
7139 Lo
:= Build_Scalar_Bound
7140 (Low_Bound
(R
), Parent_Type
, Implicit_Base
);
7143 -- Constraint is a Range attribute. Replace with explicit
7144 -- mention of the bounds of the prefix, which must be a
7147 Analyze
(Prefix
(R
));
7149 Convert_To
(Implicit_Base
,
7150 Make_Attribute_Reference
(Loc
,
7151 Attribute_Name
=> Name_Last
,
7153 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
7156 Convert_To
(Implicit_Base
,
7157 Make_Attribute_Reference
(Loc
,
7158 Attribute_Name
=> Name_First
,
7160 New_Occurrence_Of
(Entity
(Prefix
(R
)), Loc
)));
7167 (Type_High_Bound
(Parent_Type
),
7168 Parent_Type
, Implicit_Base
);
7171 (Type_Low_Bound
(Parent_Type
),
7172 Parent_Type
, Implicit_Base
);
7180 -- If we constructed a default range for the case where no range
7181 -- was given, then the expressions in the range must not freeze
7182 -- since they do not correspond to expressions in the source.
7183 -- However, if the type inherits predicates the expressions will
7184 -- be elaborated earlier and must freeze.
7186 if Nkind
(Indic
) /= N_Subtype_Indication
7187 and then not Has_Predicates
(Derived_Type
)
7189 Set_Must_Not_Freeze
(Lo
);
7190 Set_Must_Not_Freeze
(Hi
);
7191 Set_Must_Not_Freeze
(Rang_Expr
);
7195 Make_Subtype_Declaration
(Loc
,
7196 Defining_Identifier
=> Derived_Type
,
7197 Subtype_Indication
=>
7198 Make_Subtype_Indication
(Loc
,
7199 Subtype_Mark
=> New_Occurrence_Of
(Implicit_Base
, Loc
),
7201 Make_Range_Constraint
(Loc
,
7202 Range_Expression
=> Rang_Expr
))));
7206 -- Propagate the aspects from the original type declaration to the
7207 -- declaration of the implicit base.
7209 Move_Aspects
(From
=> Original_Node
(N
), To
=> Type_Decl
);
7211 -- Apply a range check. Since this range expression doesn't have an
7212 -- Etype, we have to specifically pass the Source_Typ parameter. Is
7215 if Nkind
(Indic
) = N_Subtype_Indication
then
7217 (Range_Expression
(Constraint
(Indic
)), Parent_Type
,
7218 Source_Typ
=> Entity
(Subtype_Mark
(Indic
)));
7221 end Build_Derived_Enumeration_Type
;
7223 --------------------------------
7224 -- Build_Derived_Numeric_Type --
7225 --------------------------------
7227 procedure Build_Derived_Numeric_Type
7229 Parent_Type
: Entity_Id
;
7230 Derived_Type
: Entity_Id
)
7232 Loc
: constant Source_Ptr
:= Sloc
(N
);
7233 Tdef
: constant Node_Id
:= Type_Definition
(N
);
7234 Indic
: constant Node_Id
:= Subtype_Indication
(Tdef
);
7235 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7236 No_Constraint
: constant Boolean := Nkind
(Indic
) /=
7237 N_Subtype_Indication
;
7238 Implicit_Base
: Entity_Id
;
7244 -- Process the subtype indication including a validation check on
7245 -- the constraint if any.
7247 Discard_Node
(Process_Subtype
(Indic
, N
));
7249 -- Introduce an implicit base type for the derived type even if there
7250 -- is no constraint attached to it, since this seems closer to the Ada
7254 Create_Itype
(Ekind
(Parent_Base
), N
, Derived_Type
, 'B');
7256 Set_Etype
(Implicit_Base
, Parent_Base
);
7257 Set_Ekind
(Implicit_Base
, Ekind
(Parent_Base
));
7258 Set_Size_Info
(Implicit_Base
, Parent_Base
);
7259 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Parent_Base
));
7260 Set_Parent
(Implicit_Base
, Parent
(Derived_Type
));
7261 Set_Is_Known_Valid
(Implicit_Base
, Is_Known_Valid
(Parent_Base
));
7263 -- Set RM Size for discrete type or decimal fixed-point type
7264 -- Ordinary fixed-point is excluded, why???
7266 if Is_Discrete_Type
(Parent_Base
)
7267 or else Is_Decimal_Fixed_Point_Type
(Parent_Base
)
7269 Set_RM_Size
(Implicit_Base
, RM_Size
(Parent_Base
));
7272 Set_Has_Delayed_Freeze
(Implicit_Base
);
7274 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
7275 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
7277 Set_Scalar_Range
(Implicit_Base
,
7282 if Has_Infinities
(Parent_Base
) then
7283 Set_Includes_Infinities
(Scalar_Range
(Implicit_Base
));
7286 -- The Derived_Type, which is the entity of the declaration, is a
7287 -- subtype of the implicit base. Its Ekind is a subtype, even in the
7288 -- absence of an explicit constraint.
7290 Set_Etype
(Derived_Type
, Implicit_Base
);
7292 -- If we did not have a constraint, then the Ekind is set from the
7293 -- parent type (otherwise Process_Subtype has set the bounds)
7295 if No_Constraint
then
7296 Set_Ekind
(Derived_Type
, Subtype_Kind
(Ekind
(Parent_Type
)));
7299 -- If we did not have a range constraint, then set the range from the
7300 -- parent type. Otherwise, the Process_Subtype call has set the bounds.
7302 if No_Constraint
or else not Has_Range_Constraint
(Indic
) then
7303 Set_Scalar_Range
(Derived_Type
,
7305 Low_Bound
=> New_Copy_Tree
(Type_Low_Bound
(Parent_Type
)),
7306 High_Bound
=> New_Copy_Tree
(Type_High_Bound
(Parent_Type
))));
7307 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7309 if Has_Infinities
(Parent_Type
) then
7310 Set_Includes_Infinities
(Scalar_Range
(Derived_Type
));
7313 Set_Is_Known_Valid
(Derived_Type
, Is_Known_Valid
(Parent_Type
));
7316 Set_Is_Descendant_Of_Address
(Derived_Type
,
7317 Is_Descendant_Of_Address
(Parent_Type
));
7318 Set_Is_Descendant_Of_Address
(Implicit_Base
,
7319 Is_Descendant_Of_Address
(Parent_Type
));
7321 -- Set remaining type-specific fields, depending on numeric type
7323 if Is_Modular_Integer_Type
(Parent_Type
) then
7324 Set_Modulus
(Implicit_Base
, Modulus
(Parent_Base
));
7326 Set_Non_Binary_Modulus
7327 (Implicit_Base
, Non_Binary_Modulus
(Parent_Base
));
7330 (Implicit_Base
, Is_Known_Valid
(Parent_Base
));
7332 elsif Is_Floating_Point_Type
(Parent_Type
) then
7334 -- Digits of base type is always copied from the digits value of
7335 -- the parent base type, but the digits of the derived type will
7336 -- already have been set if there was a constraint present.
7338 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
7339 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Parent_Base
));
7341 if No_Constraint
then
7342 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Type
));
7345 elsif Is_Fixed_Point_Type
(Parent_Type
) then
7347 -- Small of base type and derived type are always copied from the
7348 -- parent base type, since smalls never change. The delta of the
7349 -- base type is also copied from the parent base type. However the
7350 -- delta of the derived type will have been set already if a
7351 -- constraint was present.
7353 Set_Small_Value
(Derived_Type
, Small_Value
(Parent_Base
));
7354 Set_Small_Value
(Implicit_Base
, Small_Value
(Parent_Base
));
7355 Set_Delta_Value
(Implicit_Base
, Delta_Value
(Parent_Base
));
7357 if No_Constraint
then
7358 Set_Delta_Value
(Derived_Type
, Delta_Value
(Parent_Type
));
7361 -- The scale and machine radix in the decimal case are always
7362 -- copied from the parent base type.
7364 if Is_Decimal_Fixed_Point_Type
(Parent_Type
) then
7365 Set_Scale_Value
(Derived_Type
, Scale_Value
(Parent_Base
));
7366 Set_Scale_Value
(Implicit_Base
, Scale_Value
(Parent_Base
));
7368 Set_Machine_Radix_10
7369 (Derived_Type
, Machine_Radix_10
(Parent_Base
));
7370 Set_Machine_Radix_10
7371 (Implicit_Base
, Machine_Radix_10
(Parent_Base
));
7373 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Parent_Base
));
7375 if No_Constraint
then
7376 Set_Digits_Value
(Derived_Type
, Digits_Value
(Parent_Base
));
7379 -- the analysis of the subtype_indication sets the
7380 -- digits value of the derived type.
7387 if Is_Integer_Type
(Parent_Type
) then
7388 Set_Has_Shift_Operator
7389 (Implicit_Base
, Has_Shift_Operator
(Parent_Type
));
7392 -- The type of the bounds is that of the parent type, and they
7393 -- must be converted to the derived type.
7395 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
7397 -- The implicit_base should be frozen when the derived type is frozen,
7398 -- but note that it is used in the conversions of the bounds. For fixed
7399 -- types we delay the determination of the bounds until the proper
7400 -- freezing point. For other numeric types this is rejected by GCC, for
7401 -- reasons that are currently unclear (???), so we choose to freeze the
7402 -- implicit base now. In the case of integers and floating point types
7403 -- this is harmless because subsequent representation clauses cannot
7404 -- affect anything, but it is still baffling that we cannot use the
7405 -- same mechanism for all derived numeric types.
7407 -- There is a further complication: actually some representation
7408 -- clauses can affect the implicit base type. For example, attribute
7409 -- definition clauses for stream-oriented attributes need to set the
7410 -- corresponding TSS entries on the base type, and this normally
7411 -- cannot be done after the base type is frozen, so the circuitry in
7412 -- Sem_Ch13.New_Stream_Subprogram must account for this possibility
7413 -- and not use Set_TSS in this case.
7415 -- There are also consequences for the case of delayed representation
7416 -- aspects for some cases. For example, a Size aspect is delayed and
7417 -- should not be evaluated to the freeze point. This early freezing
7418 -- means that the size attribute evaluation happens too early???
7420 if Is_Fixed_Point_Type
(Parent_Type
) then
7421 Conditional_Delay
(Implicit_Base
, Parent_Type
);
7423 Freeze_Before
(N
, Implicit_Base
);
7425 end Build_Derived_Numeric_Type
;
7427 --------------------------------
7428 -- Build_Derived_Private_Type --
7429 --------------------------------
7431 procedure Build_Derived_Private_Type
7433 Parent_Type
: Entity_Id
;
7434 Derived_Type
: Entity_Id
;
7435 Is_Completion
: Boolean;
7436 Derive_Subps
: Boolean := True)
7438 Loc
: constant Source_Ptr
:= Sloc
(N
);
7439 Par_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
7440 Par_Scope
: constant Entity_Id
:= Scope
(Par_Base
);
7441 Full_N
: constant Node_Id
:= New_Copy_Tree
(N
);
7442 Full_Der
: Entity_Id
:= New_Copy
(Derived_Type
);
7445 procedure Build_Full_Derivation
;
7446 -- Build full derivation, i.e. derive from the full view
7448 procedure Copy_And_Build
;
7449 -- Copy derived type declaration, replace parent with its full view,
7450 -- and build derivation
7452 ---------------------------
7453 -- Build_Full_Derivation --
7454 ---------------------------
7456 procedure Build_Full_Derivation
is
7458 -- If parent scope is not open, install the declarations
7460 if not In_Open_Scopes
(Par_Scope
) then
7461 Install_Private_Declarations
(Par_Scope
);
7462 Install_Visible_Declarations
(Par_Scope
);
7464 Uninstall_Declarations
(Par_Scope
);
7466 -- If parent scope is open and in another unit, and parent has a
7467 -- completion, then the derivation is taking place in the visible
7468 -- part of a child unit. In that case retrieve the full view of
7469 -- the parent momentarily.
7471 elsif not In_Same_Source_Unit
(N
, Parent_Type
) then
7472 Full_P
:= Full_View
(Parent_Type
);
7473 Exchange_Declarations
(Parent_Type
);
7475 Exchange_Declarations
(Full_P
);
7477 -- Otherwise it is a local derivation
7482 end Build_Full_Derivation
;
7484 --------------------
7485 -- Copy_And_Build --
7486 --------------------
7488 procedure Copy_And_Build
is
7489 Full_Parent
: Entity_Id
:= Parent_Type
;
7492 -- If the parent is itself derived from another private type,
7493 -- installing the private declarations has not affected its
7494 -- privacy status, so use its own full view explicitly.
7496 if Is_Private_Type
(Full_Parent
)
7497 and then Present
(Full_View
(Full_Parent
))
7499 Full_Parent
:= Full_View
(Full_Parent
);
7502 -- And its underlying full view if necessary
7504 if Is_Private_Type
(Full_Parent
)
7505 and then Present
(Underlying_Full_View
(Full_Parent
))
7507 Full_Parent
:= Underlying_Full_View
(Full_Parent
);
7510 -- For record, access and most enumeration types, derivation from
7511 -- the full view requires a fully-fledged declaration. In the other
7512 -- cases, just use an itype.
7514 if Ekind
(Full_Parent
) in Record_Kind
7515 or else Ekind
(Full_Parent
) in Access_Kind
7517 (Ekind
(Full_Parent
) in Enumeration_Kind
7518 and then not Is_Standard_Character_Type
(Full_Parent
)
7519 and then not Is_Generic_Type
(Root_Type
(Full_Parent
)))
7521 -- Copy and adjust declaration to provide a completion for what
7522 -- is originally a private declaration. Indicate that full view
7523 -- is internally generated.
7525 Set_Comes_From_Source
(Full_N
, False);
7526 Set_Comes_From_Source
(Full_Der
, False);
7527 Set_Parent
(Full_Der
, Full_N
);
7528 Set_Defining_Identifier
(Full_N
, Full_Der
);
7530 -- If there are no constraints, adjust the subtype mark
7532 if Nkind
(Subtype_Indication
(Type_Definition
(Full_N
))) /=
7533 N_Subtype_Indication
7535 Set_Subtype_Indication
7536 (Type_Definition
(Full_N
),
7537 New_Occurrence_Of
(Full_Parent
, Sloc
(Full_N
)));
7540 Insert_After
(N
, Full_N
);
7542 -- Build full view of derived type from full view of parent which
7543 -- is now installed. Subprograms have been derived on the partial
7544 -- view, the completion does not derive them anew.
7546 if Ekind
(Full_Parent
) in Record_Kind
then
7548 -- If parent type is tagged, the completion inherits the proper
7549 -- primitive operations.
7551 if Is_Tagged_Type
(Parent_Type
) then
7552 Build_Derived_Record_Type
7553 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
);
7555 Build_Derived_Record_Type
7556 (Full_N
, Full_Parent
, Full_Der
, Derive_Subps
=> False);
7561 (Full_N
, Full_Parent
, Full_Der
,
7562 Is_Completion
=> False, Derive_Subps
=> False);
7565 -- The full declaration has been introduced into the tree and
7566 -- processed in the step above. It should not be analyzed again
7567 -- (when encountered later in the current list of declarations)
7568 -- to prevent spurious name conflicts. The full entity remains
7571 Set_Analyzed
(Full_N
);
7575 Make_Defining_Identifier
(Sloc
(Derived_Type
),
7576 Chars
=> Chars
(Derived_Type
));
7577 Set_Is_Itype
(Full_Der
);
7578 Set_Associated_Node_For_Itype
(Full_Der
, N
);
7579 Set_Parent
(Full_Der
, N
);
7581 (N
, Full_Parent
, Full_Der
,
7582 Is_Completion
=> False, Derive_Subps
=> False);
7585 Set_Has_Private_Declaration
(Full_Der
);
7586 Set_Has_Private_Declaration
(Derived_Type
);
7588 Set_Scope
(Full_Der
, Scope
(Derived_Type
));
7589 Set_Is_First_Subtype
(Full_Der
, Is_First_Subtype
(Derived_Type
));
7590 Set_Has_Size_Clause
(Full_Der
, False);
7591 Set_Has_Alignment_Clause
(Full_Der
, False);
7592 Set_Has_Delayed_Freeze
(Full_Der
);
7593 Set_Is_Frozen
(Full_Der
, False);
7594 Set_Freeze_Node
(Full_Der
, Empty
);
7595 Set_Depends_On_Private
(Full_Der
, Has_Private_Component
(Full_Der
));
7596 Set_Is_Public
(Full_Der
, Is_Public
(Derived_Type
));
7598 -- The convention on the base type may be set in the private part
7599 -- and not propagated to the subtype until later, so we obtain the
7600 -- convention from the base type of the parent.
7602 Set_Convention
(Full_Der
, Convention
(Base_Type
(Full_Parent
)));
7605 -- Start of processing for Build_Derived_Private_Type
7608 if Is_Tagged_Type
(Parent_Type
) then
7609 Full_P
:= Full_View
(Parent_Type
);
7611 -- A type extension of a type with unknown discriminants is an
7612 -- indefinite type that the back-end cannot handle directly.
7613 -- We treat it as a private type, and build a completion that is
7614 -- derived from the full view of the parent, and hopefully has
7615 -- known discriminants.
7617 -- If the full view of the parent type has an underlying record view,
7618 -- use it to generate the underlying record view of this derived type
7619 -- (required for chains of derivations with unknown discriminants).
7621 -- Minor optimization: we avoid the generation of useless underlying
7622 -- record view entities if the private type declaration has unknown
7623 -- discriminants but its corresponding full view has no
7626 if Has_Unknown_Discriminants
(Parent_Type
)
7627 and then Present
(Full_P
)
7628 and then (Has_Discriminants
(Full_P
)
7629 or else Present
(Underlying_Record_View
(Full_P
)))
7630 and then not In_Open_Scopes
(Par_Scope
)
7631 and then Expander_Active
7634 Full_Der
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
7635 New_Ext
: constant Node_Id
:=
7637 (Record_Extension_Part
(Type_Definition
(N
)));
7641 Build_Derived_Record_Type
7642 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7644 -- Build anonymous completion, as a derivation from the full
7645 -- view of the parent. This is not a completion in the usual
7646 -- sense, because the current type is not private.
7649 Make_Full_Type_Declaration
(Loc
,
7650 Defining_Identifier
=> Full_Der
,
7652 Make_Derived_Type_Definition
(Loc
,
7653 Subtype_Indication
=>
7655 (Subtype_Indication
(Type_Definition
(N
))),
7656 Record_Extension_Part
=> New_Ext
));
7658 -- If the parent type has an underlying record view, use it
7659 -- here to build the new underlying record view.
7661 if Present
(Underlying_Record_View
(Full_P
)) then
7663 (Nkind
(Subtype_Indication
(Type_Definition
(Decl
)))
7665 Set_Entity
(Subtype_Indication
(Type_Definition
(Decl
)),
7666 Underlying_Record_View
(Full_P
));
7669 Install_Private_Declarations
(Par_Scope
);
7670 Install_Visible_Declarations
(Par_Scope
);
7671 Insert_Before
(N
, Decl
);
7673 -- Mark entity as an underlying record view before analysis,
7674 -- to avoid generating the list of its primitive operations
7675 -- (which is not really required for this entity) and thus
7676 -- prevent spurious errors associated with missing overriding
7677 -- of abstract primitives (overridden only for Derived_Type).
7679 Set_Ekind
(Full_Der
, E_Record_Type
);
7680 Set_Is_Underlying_Record_View
(Full_Der
);
7681 Set_Default_SSO
(Full_Der
);
7685 pragma Assert
(Has_Discriminants
(Full_Der
)
7686 and then not Has_Unknown_Discriminants
(Full_Der
));
7688 Uninstall_Declarations
(Par_Scope
);
7690 -- Freeze the underlying record view, to prevent generation of
7691 -- useless dispatching information, which is simply shared with
7692 -- the real derived type.
7694 Set_Is_Frozen
(Full_Der
);
7696 -- If the derived type has access discriminants, create
7697 -- references to their anonymous types now, to prevent
7698 -- back-end problems when their first use is in generated
7699 -- bodies of primitives.
7705 E
:= First_Entity
(Full_Der
);
7707 while Present
(E
) loop
7708 if Ekind
(E
) = E_Discriminant
7709 and then Ekind
(Etype
(E
)) = E_Anonymous_Access_Type
7711 Build_Itype_Reference
(Etype
(E
), Decl
);
7718 -- Set up links between real entity and underlying record view
7720 Set_Underlying_Record_View
(Derived_Type
, Base_Type
(Full_Der
));
7721 Set_Underlying_Record_View
(Base_Type
(Full_Der
), Derived_Type
);
7724 -- If discriminants are known, build derived record
7727 Build_Derived_Record_Type
7728 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7733 elsif Has_Discriminants
(Parent_Type
) then
7735 -- Build partial view of derived type from partial view of parent.
7736 -- This must be done before building the full derivation because the
7737 -- second derivation will modify the discriminants of the first and
7738 -- the discriminants are chained with the rest of the components in
7739 -- the full derivation.
7741 Build_Derived_Record_Type
7742 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
7744 -- Build the full derivation if this is not the anonymous derived
7745 -- base type created by Build_Derived_Record_Type in the constrained
7746 -- case (see point 5. of its head comment) since we build it for the
7747 -- derived subtype. And skip it for protected types altogether, as
7748 -- gigi does not use these types directly.
7750 if Present
(Full_View
(Parent_Type
))
7751 and then not Is_Itype
(Derived_Type
)
7752 and then not (Ekind
(Full_View
(Parent_Type
)) in Protected_Kind
)
7755 Der_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
7757 Last_Discr
: Entity_Id
;
7760 -- If this is not a completion, construct the implicit full
7761 -- view by deriving from the full view of the parent type.
7762 -- But if this is a completion, the derived private type
7763 -- being built is a full view and the full derivation can
7764 -- only be its underlying full view.
7766 Build_Full_Derivation
;
7768 if not Is_Completion
then
7769 Set_Full_View
(Derived_Type
, Full_Der
);
7771 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7772 Set_Is_Underlying_Full_View
(Full_Der
);
7775 if not Is_Base_Type
(Derived_Type
) then
7776 Set_Full_View
(Der_Base
, Base_Type
(Full_Der
));
7779 -- Copy the discriminant list from full view to the partial
7780 -- view (base type and its subtype). Gigi requires that the
7781 -- partial and full views have the same discriminants.
7783 -- Note that since the partial view points to discriminants
7784 -- in the full view, their scope will be that of the full
7785 -- view. This might cause some front end problems and need
7788 Discr
:= First_Discriminant
(Base_Type
(Full_Der
));
7789 Set_First_Entity
(Der_Base
, Discr
);
7792 Last_Discr
:= Discr
;
7793 Next_Discriminant
(Discr
);
7794 exit when No
(Discr
);
7797 Set_Last_Entity
(Der_Base
, Last_Discr
);
7798 Set_First_Entity
(Derived_Type
, First_Entity
(Der_Base
));
7799 Set_Last_Entity
(Derived_Type
, Last_Entity
(Der_Base
));
7803 elsif Present
(Full_View
(Parent_Type
))
7804 and then Has_Discriminants
(Full_View
(Parent_Type
))
7806 if Has_Unknown_Discriminants
(Parent_Type
)
7807 and then Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7808 N_Subtype_Indication
7811 ("cannot constrain type with unknown discriminants",
7812 Subtype_Indication
(Type_Definition
(N
)));
7816 -- If this is not a completion, construct the implicit full view by
7817 -- deriving from the full view of the parent type. But if this is a
7818 -- completion, the derived private type being built is a full view
7819 -- and the full derivation can only be its underlying full view.
7821 Build_Full_Derivation
;
7823 if not Is_Completion
then
7824 Set_Full_View
(Derived_Type
, Full_Der
);
7826 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7827 Set_Is_Underlying_Full_View
(Full_Der
);
7830 -- In any case, the primitive operations are inherited from the
7831 -- parent type, not from the internal full view.
7833 Set_Etype
(Base_Type
(Derived_Type
), Base_Type
(Parent_Type
));
7835 if Derive_Subps
then
7836 Derive_Subprograms
(Parent_Type
, Derived_Type
);
7839 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7841 (Derived_Type
, Is_Constrained
(Full_View
(Parent_Type
)));
7844 -- Untagged type, No discriminants on either view
7846 if Nkind
(Subtype_Indication
(Type_Definition
(N
))) =
7847 N_Subtype_Indication
7850 ("illegal constraint on type without discriminants", N
);
7853 if Present
(Discriminant_Specifications
(N
))
7854 and then Present
(Full_View
(Parent_Type
))
7855 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7857 Error_Msg_N
("cannot add discriminants to untagged type", N
);
7860 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
7861 Set_Is_Constrained
(Derived_Type
, Is_Constrained
(Parent_Type
));
7862 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
7863 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
7865 Set_Has_Controlled_Component
7866 (Derived_Type
, Has_Controlled_Component
7869 -- Direct controlled types do not inherit Finalize_Storage_Only flag
7871 if not Is_Controlled_Active
(Parent_Type
) then
7872 Set_Finalize_Storage_Only
7873 (Base_Type
(Derived_Type
), Finalize_Storage_Only
(Parent_Type
));
7876 -- If this is not a completion, construct the implicit full view by
7877 -- deriving from the full view of the parent type.
7879 -- ??? If the parent is untagged private and its completion is
7880 -- tagged, this mechanism will not work because we cannot derive from
7881 -- the tagged full view unless we have an extension.
7883 if Present
(Full_View
(Parent_Type
))
7884 and then not Is_Tagged_Type
(Full_View
(Parent_Type
))
7885 and then not Is_Completion
7887 Build_Full_Derivation
;
7888 Set_Full_View
(Derived_Type
, Full_Der
);
7892 Set_Has_Unknown_Discriminants
(Derived_Type
,
7893 Has_Unknown_Discriminants
(Parent_Type
));
7895 if Is_Private_Type
(Derived_Type
) then
7896 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
7899 -- If the parent base type is in scope, add the derived type to its
7900 -- list of private dependents, because its full view may become
7901 -- visible subsequently (in a nested private part, a body, or in a
7902 -- further child unit).
7904 if Is_Private_Type
(Par_Base
) and then In_Open_Scopes
(Par_Scope
) then
7905 Append_Elmt
(Derived_Type
, Private_Dependents
(Parent_Type
));
7907 -- Check for unusual case where a type completed by a private
7908 -- derivation occurs within a package nested in a child unit, and
7909 -- the parent is declared in an ancestor.
7911 if Is_Child_Unit
(Scope
(Current_Scope
))
7912 and then Is_Completion
7913 and then In_Private_Part
(Current_Scope
)
7914 and then Scope
(Parent_Type
) /= Current_Scope
7916 -- Note that if the parent has a completion in the private part,
7917 -- (which is itself a derivation from some other private type)
7918 -- it is that completion that is visible, there is no full view
7919 -- available, and no special processing is needed.
7921 and then Present
(Full_View
(Parent_Type
))
7923 -- In this case, the full view of the parent type will become
7924 -- visible in the body of the enclosing child, and only then will
7925 -- the current type be possibly non-private. Build an underlying
7926 -- full view that will be installed when the enclosing child body
7929 if Present
(Underlying_Full_View
(Derived_Type
)) then
7930 Full_Der
:= Underlying_Full_View
(Derived_Type
);
7932 Build_Full_Derivation
;
7933 Set_Underlying_Full_View
(Derived_Type
, Full_Der
);
7934 Set_Is_Underlying_Full_View
(Full_Der
);
7937 -- The full view will be used to swap entities on entry/exit to
7938 -- the body, and must appear in the entity list for the package.
7940 Append_Entity
(Full_Der
, Scope
(Derived_Type
));
7943 end Build_Derived_Private_Type
;
7945 -------------------------------
7946 -- Build_Derived_Record_Type --
7947 -------------------------------
7951 -- Ideally we would like to use the same model of type derivation for
7952 -- tagged and untagged record types. Unfortunately this is not quite
7953 -- possible because the semantics of representation clauses is different
7954 -- for tagged and untagged records under inheritance. Consider the
7957 -- type R (...) is [tagged] record ... end record;
7958 -- type T (...) is new R (...) [with ...];
7960 -- The representation clauses for T can specify a completely different
7961 -- record layout from R's. Hence the same component can be placed in two
7962 -- very different positions in objects of type T and R. If R and T are
7963 -- tagged types, representation clauses for T can only specify the layout
7964 -- of non inherited components, thus components that are common in R and T
7965 -- have the same position in objects of type R and T.
7967 -- This has two implications. The first is that the entire tree for R's
7968 -- declaration needs to be copied for T in the untagged case, so that T
7969 -- can be viewed as a record type of its own with its own representation
7970 -- clauses. The second implication is the way we handle discriminants.
7971 -- Specifically, in the untagged case we need a way to communicate to Gigi
7972 -- what are the real discriminants in the record, while for the semantics
7973 -- we need to consider those introduced by the user to rename the
7974 -- discriminants in the parent type. This is handled by introducing the
7975 -- notion of stored discriminants. See below for more.
7977 -- Fortunately the way regular components are inherited can be handled in
7978 -- the same way in tagged and untagged types.
7980 -- To complicate things a bit more the private view of a private extension
7981 -- cannot be handled in the same way as the full view (for one thing the
7982 -- semantic rules are somewhat different). We will explain what differs
7985 -- 2. DISCRIMINANTS UNDER INHERITANCE
7987 -- The semantic rules governing the discriminants of derived types are
7990 -- type Derived_Type_Name [KNOWN_DISCRIMINANT_PART] is new
7991 -- [abstract] Parent_Type_Name [CONSTRAINT] [RECORD_EXTENSION_PART]
7993 -- If parent type has discriminants, then the discriminants that are
7994 -- declared in the derived type are [3.4 (11)]:
7996 -- o The discriminants specified by a new KNOWN_DISCRIMINANT_PART, if
7999 -- o Otherwise, each discriminant of the parent type (implicitly declared
8000 -- in the same order with the same specifications). In this case, the
8001 -- discriminants are said to be "inherited", or if unknown in the parent
8002 -- are also unknown in the derived type.
8004 -- Furthermore if a KNOWN_DISCRIMINANT_PART is provided, then [3.7(13-18)]:
8006 -- o The parent subtype must be constrained;
8008 -- o If the parent type is not a tagged type, then each discriminant of
8009 -- the derived type must be used in the constraint defining a parent
8010 -- subtype. [Implementation note: This ensures that the new discriminant
8011 -- can share storage with an existing discriminant.]
8013 -- For the derived type each discriminant of the parent type is either
8014 -- inherited, constrained to equal some new discriminant of the derived
8015 -- type, or constrained to the value of an expression.
8017 -- When inherited or constrained to equal some new discriminant, the
8018 -- parent discriminant and the discriminant of the derived type are said
8021 -- If a discriminant of the parent type is constrained to a specific value
8022 -- in the derived type definition, then the discriminant is said to be
8023 -- "specified" by that derived type definition.
8025 -- 3. DISCRIMINANTS IN DERIVED UNTAGGED RECORD TYPES
8027 -- We have spoken about stored discriminants in point 1 (introduction)
8028 -- above. There are two sorts of stored discriminants: implicit and
8029 -- explicit. As long as the derived type inherits the same discriminants as
8030 -- the root record type, stored discriminants are the same as regular
8031 -- discriminants, and are said to be implicit. However, if any discriminant
8032 -- in the root type was renamed in the derived type, then the derived
8033 -- type will contain explicit stored discriminants. Explicit stored
8034 -- discriminants are discriminants in addition to the semantically visible
8035 -- discriminants defined for the derived type. Stored discriminants are
8036 -- used by Gigi to figure out what are the physical discriminants in
8037 -- objects of the derived type (see precise definition in einfo.ads).
8038 -- As an example, consider the following:
8040 -- type R (D1, D2, D3 : Int) is record ... end record;
8041 -- type T1 is new R;
8042 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1);
8043 -- type T3 is new T2;
8044 -- type T4 (Y : Int) is new T3 (Y, 99);
8046 -- The following table summarizes the discriminants and stored
8047 -- discriminants in R and T1 through T4:
8049 -- Type Discrim Stored Discrim Comment
8050 -- R (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in R
8051 -- T1 (D1, D2, D3) (D1, D2, D3) Girder discrims implicit in T1
8052 -- T2 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T2
8053 -- T3 (X1, X2) (D1, D2, D3) Girder discrims EXPLICIT in T3
8054 -- T4 (Y) (D1, D2, D3) Girder discrims EXPLICIT in T4
8056 -- Field Corresponding_Discriminant (abbreviated CD below) allows us to
8057 -- find the corresponding discriminant in the parent type, while
8058 -- Original_Record_Component (abbreviated ORC below) the actual physical
8059 -- component that is renamed. Finally the field Is_Completely_Hidden
8060 -- (abbreviated ICH below) is set for all explicit stored discriminants
8061 -- (see einfo.ads for more info). For the above example this gives:
8063 -- Discrim CD ORC ICH
8064 -- ^^^^^^^ ^^ ^^^ ^^^
8065 -- D1 in R empty itself no
8066 -- D2 in R empty itself no
8067 -- D3 in R empty itself no
8069 -- D1 in T1 D1 in R itself no
8070 -- D2 in T1 D2 in R itself no
8071 -- D3 in T1 D3 in R itself no
8073 -- X1 in T2 D3 in T1 D3 in T2 no
8074 -- X2 in T2 D1 in T1 D1 in T2 no
8075 -- D1 in T2 empty itself yes
8076 -- D2 in T2 empty itself yes
8077 -- D3 in T2 empty itself yes
8079 -- X1 in T3 X1 in T2 D3 in T3 no
8080 -- X2 in T3 X2 in T2 D1 in T3 no
8081 -- D1 in T3 empty itself yes
8082 -- D2 in T3 empty itself yes
8083 -- D3 in T3 empty itself yes
8085 -- Y in T4 X1 in T3 D3 in T4 no
8086 -- D1 in T4 empty itself yes
8087 -- D2 in T4 empty itself yes
8088 -- D3 in T4 empty itself yes
8090 -- 4. DISCRIMINANTS IN DERIVED TAGGED RECORD TYPES
8092 -- Type derivation for tagged types is fairly straightforward. If no
8093 -- discriminants are specified by the derived type, these are inherited
8094 -- from the parent. No explicit stored discriminants are ever necessary.
8095 -- The only manipulation that is done to the tree is that of adding a
8096 -- _parent field with parent type and constrained to the same constraint
8097 -- specified for the parent in the derived type definition. For instance:
8099 -- type R (D1, D2, D3 : Int) is tagged record ... end record;
8100 -- type T1 is new R with null record;
8101 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with null record;
8103 -- are changed into:
8105 -- type T1 (D1, D2, D3 : Int) is new R (D1, D2, D3) with record
8106 -- _parent : R (D1, D2, D3);
8109 -- type T2 (X1, X2: Int) is new T1 (X2, 88, X1) with record
8110 -- _parent : T1 (X2, 88, X1);
8113 -- The discriminants actually present in R, T1 and T2 as well as their CD,
8114 -- ORC and ICH fields are:
8116 -- Discrim CD ORC ICH
8117 -- ^^^^^^^ ^^ ^^^ ^^^
8118 -- D1 in R empty itself no
8119 -- D2 in R empty itself no
8120 -- D3 in R empty itself no
8122 -- D1 in T1 D1 in R D1 in R no
8123 -- D2 in T1 D2 in R D2 in R no
8124 -- D3 in T1 D3 in R D3 in R no
8126 -- X1 in T2 D3 in T1 D3 in R no
8127 -- X2 in T2 D1 in T1 D1 in R no
8129 -- 5. FIRST TRANSFORMATION FOR DERIVED RECORDS
8131 -- Regardless of whether we dealing with a tagged or untagged type
8132 -- we will transform all derived type declarations of the form
8134 -- type T is new R (...) [with ...];
8136 -- subtype S is R (...);
8137 -- type T is new S [with ...];
8139 -- type BT is new R [with ...];
8140 -- subtype T is BT (...);
8142 -- That is, the base derived type is constrained only if it has no
8143 -- discriminants. The reason for doing this is that GNAT's semantic model
8144 -- assumes that a base type with discriminants is unconstrained.
8146 -- Note that, strictly speaking, the above transformation is not always
8147 -- correct. Consider for instance the following excerpt from ACVC b34011a:
8149 -- procedure B34011A is
8150 -- type REC (D : integer := 0) is record
8155 -- type T6 is new Rec;
8156 -- function F return T6;
8161 -- type U is new T6 (Q6.F.I); -- ERROR: Q6.F.
8164 -- The definition of Q6.U is illegal. However transforming Q6.U into
8166 -- type BaseU is new T6;
8167 -- subtype U is BaseU (Q6.F.I)
8169 -- turns U into a legal subtype, which is incorrect. To avoid this problem
8170 -- we always analyze the constraint (in this case (Q6.F.I)) before applying
8171 -- the transformation described above.
8173 -- There is another instance where the above transformation is incorrect.
8177 -- type Base (D : Integer) is tagged null record;
8178 -- procedure P (X : Base);
8180 -- type Der is new Base (2) with null record;
8181 -- procedure P (X : Der);
8184 -- Then the above transformation turns this into
8186 -- type Der_Base is new Base with null record;
8187 -- -- procedure P (X : Base) is implicitly inherited here
8188 -- -- as procedure P (X : Der_Base).
8190 -- subtype Der is Der_Base (2);
8191 -- procedure P (X : Der);
8192 -- -- The overriding of P (X : Der_Base) is illegal since we
8193 -- -- have a parameter conformance problem.
8195 -- To get around this problem, after having semantically processed Der_Base
8196 -- and the rewritten subtype declaration for Der, we copy Der_Base field
8197 -- Discriminant_Constraint from Der so that when parameter conformance is
8198 -- checked when P is overridden, no semantic errors are flagged.
8200 -- 6. SECOND TRANSFORMATION FOR DERIVED RECORDS
8202 -- Regardless of whether we are dealing with a tagged or untagged type
8203 -- we will transform all derived type declarations of the form
8205 -- type R (D1, .., Dn : ...) is [tagged] record ...;
8206 -- type T is new R [with ...];
8208 -- type T (D1, .., Dn : ...) is new R (D1, .., Dn) [with ...];
8210 -- The reason for such transformation is that it allows us to implement a
8211 -- very clean form of component inheritance as explained below.
8213 -- Note that this transformation is not achieved by direct tree rewriting
8214 -- and manipulation, but rather by redoing the semantic actions that the
8215 -- above transformation will entail. This is done directly in routine
8216 -- Inherit_Components.
8218 -- 7. TYPE DERIVATION AND COMPONENT INHERITANCE
8220 -- In both tagged and untagged derived types, regular non discriminant
8221 -- components are inherited in the derived type from the parent type. In
8222 -- the absence of discriminants component, inheritance is straightforward
8223 -- as components can simply be copied from the parent.
8225 -- If the parent has discriminants, inheriting components constrained with
8226 -- these discriminants requires caution. Consider the following example:
8228 -- type R (D1, D2 : Positive) is [tagged] record
8229 -- S : String (D1 .. D2);
8232 -- type T1 is new R [with null record];
8233 -- type T2 (X : positive) is new R (1, X) [with null record];
8235 -- As explained in 6. above, T1 is rewritten as
8236 -- type T1 (D1, D2 : Positive) is new R (D1, D2) [with null record];
8237 -- which makes the treatment for T1 and T2 identical.
8239 -- What we want when inheriting S, is that references to D1 and D2 in R are
8240 -- replaced with references to their correct constraints, i.e. D1 and D2 in
8241 -- T1 and 1 and X in T2. So all R's discriminant references are replaced
8242 -- with either discriminant references in the derived type or expressions.
8243 -- This replacement is achieved as follows: before inheriting R's
8244 -- components, a subtype R (D1, D2) for T1 (resp. R (1, X) for T2) is
8245 -- created in the scope of T1 (resp. scope of T2) so that discriminants D1
8246 -- and D2 of T1 are visible (resp. discriminant X of T2 is visible).
8247 -- For T2, for instance, this has the effect of replacing String (D1 .. D2)
8248 -- by String (1 .. X).
8250 -- 8. TYPE DERIVATION IN PRIVATE TYPE EXTENSIONS
8252 -- We explain here the rules governing private type extensions relevant to
8253 -- type derivation. These rules are explained on the following example:
8255 -- type D [(...)] is new A [(...)] with private; <-- partial view
8256 -- type D [(...)] is new P [(...)] with null record; <-- full view
8258 -- Type A is called the ancestor subtype of the private extension.
8259 -- Type P is the parent type of the full view of the private extension. It
8260 -- must be A or a type derived from A.
8262 -- The rules concerning the discriminants of private type extensions are
8265 -- o If a private extension inherits known discriminants from the ancestor
8266 -- subtype, then the full view must also inherit its discriminants from
8267 -- the ancestor subtype and the parent subtype of the full view must be
8268 -- constrained if and only if the ancestor subtype is constrained.
8270 -- o If a partial view has unknown discriminants, then the full view may
8271 -- define a definite or an indefinite subtype, with or without
8274 -- o If a partial view has neither known nor unknown discriminants, then
8275 -- the full view must define a definite subtype.
8277 -- o If the ancestor subtype of a private extension has constrained
8278 -- discriminants, then the parent subtype of the full view must impose a
8279 -- statically matching constraint on those discriminants.
8281 -- This means that only the following forms of private extensions are
8284 -- type D is new A with private; <-- partial view
8285 -- type D is new P with null record; <-- full view
8287 -- If A has no discriminants than P has no discriminants, otherwise P must
8288 -- inherit A's discriminants.
8290 -- type D is new A (...) with private; <-- partial view
8291 -- type D is new P (:::) with null record; <-- full view
8293 -- P must inherit A's discriminants and (...) and (:::) must statically
8296 -- subtype A is R (...);
8297 -- type D is new A with private; <-- partial view
8298 -- type D is new P with null record; <-- full view
8300 -- P must have inherited R's discriminants and must be derived from A or
8301 -- any of its subtypes.
8303 -- type D (..) is new A with private; <-- partial view
8304 -- type D (..) is new P [(:::)] with null record; <-- full view
8306 -- No specific constraints on P's discriminants or constraint (:::).
8307 -- Note that A can be unconstrained, but the parent subtype P must either
8308 -- be constrained or (:::) must be present.
8310 -- type D (..) is new A [(...)] with private; <-- partial view
8311 -- type D (..) is new P [(:::)] with null record; <-- full view
8313 -- P's constraints on A's discriminants must statically match those
8314 -- imposed by (...).
8316 -- 9. IMPLEMENTATION OF TYPE DERIVATION FOR PRIVATE EXTENSIONS
8318 -- The full view of a private extension is handled exactly as described
8319 -- above. The model chose for the private view of a private extension is
8320 -- the same for what concerns discriminants (i.e. they receive the same
8321 -- treatment as in the tagged case). However, the private view of the
8322 -- private extension always inherits the components of the parent base,
8323 -- without replacing any discriminant reference. Strictly speaking this is
8324 -- incorrect. However, Gigi never uses this view to generate code so this
8325 -- is a purely semantic issue. In theory, a set of transformations similar
8326 -- to those given in 5. and 6. above could be applied to private views of
8327 -- private extensions to have the same model of component inheritance as
8328 -- for non private extensions. However, this is not done because it would
8329 -- further complicate private type processing. Semantically speaking, this
8330 -- leaves us in an uncomfortable situation. As an example consider:
8333 -- type R (D : integer) is tagged record
8334 -- S : String (1 .. D);
8336 -- procedure P (X : R);
8337 -- type T is new R (1) with private;
8339 -- type T is new R (1) with null record;
8342 -- This is transformed into:
8345 -- type R (D : integer) is tagged record
8346 -- S : String (1 .. D);
8348 -- procedure P (X : R);
8349 -- type T is new R (1) with private;
8351 -- type BaseT is new R with null record;
8352 -- subtype T is BaseT (1);
8355 -- (strictly speaking the above is incorrect Ada)
8357 -- From the semantic standpoint the private view of private extension T
8358 -- should be flagged as constrained since one can clearly have
8362 -- in a unit withing Pack. However, when deriving subprograms for the
8363 -- private view of private extension T, T must be seen as unconstrained
8364 -- since T has discriminants (this is a constraint of the current
8365 -- subprogram derivation model). Thus, when processing the private view of
8366 -- a private extension such as T, we first mark T as unconstrained, we
8367 -- process it, we perform program derivation and just before returning from
8368 -- Build_Derived_Record_Type we mark T as constrained.
8370 -- ??? Are there are other uncomfortable cases that we will have to
8373 -- 10. RECORD_TYPE_WITH_PRIVATE complications
8375 -- Types that are derived from a visible record type and have a private
8376 -- extension present other peculiarities. They behave mostly like private
8377 -- types, but if they have primitive operations defined, these will not
8378 -- have the proper signatures for further inheritance, because other
8379 -- primitive operations will use the implicit base that we define for
8380 -- private derivations below. This affect subprogram inheritance (see
8381 -- Derive_Subprograms for details). We also derive the implicit base from
8382 -- the base type of the full view, so that the implicit base is a record
8383 -- type and not another private type, This avoids infinite loops.
8385 procedure Build_Derived_Record_Type
8387 Parent_Type
: Entity_Id
;
8388 Derived_Type
: Entity_Id
;
8389 Derive_Subps
: Boolean := True)
8391 Discriminant_Specs
: constant Boolean :=
8392 Present
(Discriminant_Specifications
(N
));
8393 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Parent_Type
);
8394 Loc
: constant Source_Ptr
:= Sloc
(N
);
8395 Private_Extension
: constant Boolean :=
8396 Nkind
(N
) = N_Private_Extension_Declaration
;
8397 Assoc_List
: Elist_Id
;
8398 Constraint_Present
: Boolean;
8400 Discrim
: Entity_Id
;
8402 Inherit_Discrims
: Boolean := False;
8403 Last_Discrim
: Entity_Id
;
8404 New_Base
: Entity_Id
;
8406 New_Discrs
: Elist_Id
;
8407 New_Indic
: Node_Id
;
8408 Parent_Base
: Entity_Id
;
8409 Save_Etype
: Entity_Id
;
8410 Save_Discr_Constr
: Elist_Id
;
8411 Save_Next_Entity
: Entity_Id
;
8414 Discs
: Elist_Id
:= New_Elmt_List
;
8415 -- An empty Discs list means that there were no constraints in the
8416 -- subtype indication or that there was an error processing it.
8419 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
8420 and then Present
(Full_View
(Parent_Type
))
8421 and then Has_Discriminants
(Parent_Type
)
8423 Parent_Base
:= Base_Type
(Full_View
(Parent_Type
));
8425 Parent_Base
:= Base_Type
(Parent_Type
);
8428 -- AI05-0115 : if this is a derivation from a private type in some
8429 -- other scope that may lead to invisible components for the derived
8430 -- type, mark it accordingly.
8432 if Is_Private_Type
(Parent_Type
) then
8433 if Scope
(Parent_Type
) = Scope
(Derived_Type
) then
8436 elsif In_Open_Scopes
(Scope
(Parent_Type
))
8437 and then In_Private_Part
(Scope
(Parent_Type
))
8442 Set_Has_Private_Ancestor
(Derived_Type
);
8446 Set_Has_Private_Ancestor
8447 (Derived_Type
, Has_Private_Ancestor
(Parent_Type
));
8450 -- Before we start the previously documented transformations, here is
8451 -- little fix for size and alignment of tagged types. Normally when we
8452 -- derive type D from type P, we copy the size and alignment of P as the
8453 -- default for D, and in the absence of explicit representation clauses
8454 -- for D, the size and alignment are indeed the same as the parent.
8456 -- But this is wrong for tagged types, since fields may be added, and
8457 -- the default size may need to be larger, and the default alignment may
8458 -- need to be larger.
8460 -- We therefore reset the size and alignment fields in the tagged case.
8461 -- Note that the size and alignment will in any case be at least as
8462 -- large as the parent type (since the derived type has a copy of the
8463 -- parent type in the _parent field)
8465 -- The type is also marked as being tagged here, which is needed when
8466 -- processing components with a self-referential anonymous access type
8467 -- in the call to Check_Anonymous_Access_Components below. Note that
8468 -- this flag is also set later on for completeness.
8471 Set_Is_Tagged_Type
(Derived_Type
);
8472 Init_Size_Align
(Derived_Type
);
8475 -- STEP 0a: figure out what kind of derived type declaration we have
8477 if Private_Extension
then
8479 Set_Ekind
(Derived_Type
, E_Record_Type_With_Private
);
8480 Set_Default_SSO
(Derived_Type
);
8483 Type_Def
:= Type_Definition
(N
);
8485 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
8486 -- Parent_Base can be a private type or private extension. However,
8487 -- for tagged types with an extension the newly added fields are
8488 -- visible and hence the Derived_Type is always an E_Record_Type.
8489 -- (except that the parent may have its own private fields).
8490 -- For untagged types we preserve the Ekind of the Parent_Base.
8492 if Present
(Record_Extension_Part
(Type_Def
)) then
8493 Set_Ekind
(Derived_Type
, E_Record_Type
);
8494 Set_Default_SSO
(Derived_Type
);
8496 -- Create internal access types for components with anonymous
8499 if Ada_Version
>= Ada_2005
then
8500 Check_Anonymous_Access_Components
8501 (N
, Derived_Type
, Derived_Type
,
8502 Component_List
(Record_Extension_Part
(Type_Def
)));
8506 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
8510 -- Indic can either be an N_Identifier if the subtype indication
8511 -- contains no constraint or an N_Subtype_Indication if the subtype
8512 -- indication has a constraint.
8514 Indic
:= Subtype_Indication
(Type_Def
);
8515 Constraint_Present
:= (Nkind
(Indic
) = N_Subtype_Indication
);
8517 -- Check that the type has visible discriminants. The type may be
8518 -- a private type with unknown discriminants whose full view has
8519 -- discriminants which are invisible.
8521 if Constraint_Present
then
8522 if not Has_Discriminants
(Parent_Base
)
8524 (Has_Unknown_Discriminants
(Parent_Base
)
8525 and then Is_Private_Type
(Parent_Base
))
8528 ("invalid constraint: type has no discriminant",
8529 Constraint
(Indic
));
8531 Constraint_Present
:= False;
8532 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8534 elsif Is_Constrained
(Parent_Type
) then
8536 ("invalid constraint: parent type is already constrained",
8537 Constraint
(Indic
));
8539 Constraint_Present
:= False;
8540 Rewrite
(Indic
, New_Copy_Tree
(Subtype_Mark
(Indic
)));
8544 -- STEP 0b: If needed, apply transformation given in point 5. above
8546 if not Private_Extension
8547 and then Has_Discriminants
(Parent_Type
)
8548 and then not Discriminant_Specs
8549 and then (Is_Constrained
(Parent_Type
) or else Constraint_Present
)
8551 -- First, we must analyze the constraint (see comment in point 5.)
8552 -- The constraint may come from the subtype indication of the full
8555 if Constraint_Present
then
8556 New_Discrs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
8558 -- If there is no explicit constraint, there might be one that is
8559 -- inherited from a constrained parent type. In that case verify that
8560 -- it conforms to the constraint in the partial view. In perverse
8561 -- cases the parent subtypes of the partial and full view can have
8562 -- different constraints.
8564 elsif Present
(Stored_Constraint
(Parent_Type
)) then
8565 New_Discrs
:= Stored_Constraint
(Parent_Type
);
8568 New_Discrs
:= No_Elist
;
8571 if Has_Discriminants
(Derived_Type
)
8572 and then Has_Private_Declaration
(Derived_Type
)
8573 and then Present
(Discriminant_Constraint
(Derived_Type
))
8574 and then Present
(New_Discrs
)
8576 -- Verify that constraints of the full view statically match
8577 -- those given in the partial view.
8583 C1
:= First_Elmt
(New_Discrs
);
8584 C2
:= First_Elmt
(Discriminant_Constraint
(Derived_Type
));
8585 while Present
(C1
) and then Present
(C2
) loop
8586 if Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
8588 (Is_OK_Static_Expression
(Node
(C1
))
8589 and then Is_OK_Static_Expression
(Node
(C2
))
8591 Expr_Value
(Node
(C1
)) = Expr_Value
(Node
(C2
)))
8596 if Constraint_Present
then
8598 ("constraint not conformant to previous declaration",
8602 ("constraint of full view is incompatible "
8603 & "with partial view", N
);
8613 -- Insert and analyze the declaration for the unconstrained base type
8615 New_Base
:= Create_Itype
(Ekind
(Derived_Type
), N
, Derived_Type
, 'B');
8618 Make_Full_Type_Declaration
(Loc
,
8619 Defining_Identifier
=> New_Base
,
8621 Make_Derived_Type_Definition
(Loc
,
8622 Abstract_Present
=> Abstract_Present
(Type_Def
),
8623 Limited_Present
=> Limited_Present
(Type_Def
),
8624 Subtype_Indication
=>
8625 New_Occurrence_Of
(Parent_Base
, Loc
),
8626 Record_Extension_Part
=>
8627 Relocate_Node
(Record_Extension_Part
(Type_Def
)),
8628 Interface_List
=> Interface_List
(Type_Def
)));
8630 Set_Parent
(New_Decl
, Parent
(N
));
8631 Mark_Rewrite_Insertion
(New_Decl
);
8632 Insert_Before
(N
, New_Decl
);
8634 -- In the extension case, make sure ancestor is frozen appropriately
8635 -- (see also non-discriminated case below).
8637 if Present
(Record_Extension_Part
(Type_Def
))
8638 or else Is_Interface
(Parent_Base
)
8640 Freeze_Before
(New_Decl
, Parent_Type
);
8643 -- Note that this call passes False for the Derive_Subps parameter
8644 -- because subprogram derivation is deferred until after creating
8645 -- the subtype (see below).
8648 (New_Decl
, Parent_Base
, New_Base
,
8649 Is_Completion
=> False, Derive_Subps
=> False);
8651 -- ??? This needs re-examination to determine whether the
8652 -- above call can simply be replaced by a call to Analyze.
8654 Set_Analyzed
(New_Decl
);
8656 -- Insert and analyze the declaration for the constrained subtype
8658 if Constraint_Present
then
8660 Make_Subtype_Indication
(Loc
,
8661 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8662 Constraint
=> Relocate_Node
(Constraint
(Indic
)));
8666 Constr_List
: constant List_Id
:= New_List
;
8671 C
:= First_Elmt
(Discriminant_Constraint
(Parent_Type
));
8672 while Present
(C
) loop
8675 -- It is safe here to call New_Copy_Tree since we called
8676 -- Force_Evaluation on each constraint previously
8677 -- in Build_Discriminant_Constraints.
8679 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
8685 Make_Subtype_Indication
(Loc
,
8686 Subtype_Mark
=> New_Occurrence_Of
(New_Base
, Loc
),
8688 Make_Index_Or_Discriminant_Constraint
(Loc
, Constr_List
));
8693 Make_Subtype_Declaration
(Loc
,
8694 Defining_Identifier
=> Derived_Type
,
8695 Subtype_Indication
=> New_Indic
));
8699 -- Derivation of subprograms must be delayed until the full subtype
8700 -- has been established, to ensure proper overriding of subprograms
8701 -- inherited by full types. If the derivations occurred as part of
8702 -- the call to Build_Derived_Type above, then the check for type
8703 -- conformance would fail because earlier primitive subprograms
8704 -- could still refer to the full type prior the change to the new
8705 -- subtype and hence would not match the new base type created here.
8706 -- Subprograms are not derived, however, when Derive_Subps is False
8707 -- (since otherwise there could be redundant derivations).
8709 if Derive_Subps
then
8710 Derive_Subprograms
(Parent_Type
, Derived_Type
);
8713 -- For tagged types the Discriminant_Constraint of the new base itype
8714 -- is inherited from the first subtype so that no subtype conformance
8715 -- problem arise when the first subtype overrides primitive
8716 -- operations inherited by the implicit base type.
8719 Set_Discriminant_Constraint
8720 (New_Base
, Discriminant_Constraint
(Derived_Type
));
8726 -- If we get here Derived_Type will have no discriminants or it will be
8727 -- a discriminated unconstrained base type.
8729 -- STEP 1a: perform preliminary actions/checks for derived tagged types
8733 -- The parent type is frozen for non-private extensions (RM 13.14(7))
8734 -- The declaration of a specific descendant of an interface type
8735 -- freezes the interface type (RM 13.14).
8737 if not Private_Extension
or else Is_Interface
(Parent_Base
) then
8738 Freeze_Before
(N
, Parent_Type
);
8741 -- In Ada 2005 (AI-344), the restriction that a derived tagged type
8742 -- cannot be declared at a deeper level than its parent type is
8743 -- removed. The check on derivation within a generic body is also
8744 -- relaxed, but there's a restriction that a derived tagged type
8745 -- cannot be declared in a generic body if it's derived directly
8746 -- or indirectly from a formal type of that generic.
8748 if Ada_Version
>= Ada_2005
then
8749 if Present
(Enclosing_Generic_Body
(Derived_Type
)) then
8751 Ancestor_Type
: Entity_Id
;
8754 -- Check to see if any ancestor of the derived type is a
8757 Ancestor_Type
:= Parent_Type
;
8758 while not Is_Generic_Type
(Ancestor_Type
)
8759 and then Etype
(Ancestor_Type
) /= Ancestor_Type
8761 Ancestor_Type
:= Etype
(Ancestor_Type
);
8764 -- If the derived type does have a formal type as an
8765 -- ancestor, then it's an error if the derived type is
8766 -- declared within the body of the generic unit that
8767 -- declares the formal type in its generic formal part. It's
8768 -- sufficient to check whether the ancestor type is declared
8769 -- inside the same generic body as the derived type (such as
8770 -- within a nested generic spec), in which case the
8771 -- derivation is legal. If the formal type is declared
8772 -- outside of that generic body, then it's guaranteed that
8773 -- the derived type is declared within the generic body of
8774 -- the generic unit declaring the formal type.
8776 if Is_Generic_Type
(Ancestor_Type
)
8777 and then Enclosing_Generic_Body
(Ancestor_Type
) /=
8778 Enclosing_Generic_Body
(Derived_Type
)
8781 ("parent type of& must not be descendant of formal type"
8782 & " of an enclosing generic body",
8783 Indic
, Derived_Type
);
8788 elsif Type_Access_Level
(Derived_Type
) /=
8789 Type_Access_Level
(Parent_Type
)
8790 and then not Is_Generic_Type
(Derived_Type
)
8792 if Is_Controlled
(Parent_Type
) then
8794 ("controlled type must be declared at the library level",
8798 ("type extension at deeper accessibility level than parent",
8804 GB
: constant Node_Id
:= Enclosing_Generic_Body
(Derived_Type
);
8807 and then GB
/= Enclosing_Generic_Body
(Parent_Base
)
8810 ("parent type of& must not be outside generic body"
8812 Indic
, Derived_Type
);
8818 -- Ada 2005 (AI-251)
8820 if Ada_Version
>= Ada_2005
and then Is_Tagged
then
8822 -- "The declaration of a specific descendant of an interface type
8823 -- freezes the interface type" (RM 13.14).
8828 if Is_Non_Empty_List
(Interface_List
(Type_Def
)) then
8829 Iface
:= First
(Interface_List
(Type_Def
));
8830 while Present
(Iface
) loop
8831 Freeze_Before
(N
, Etype
(Iface
));
8838 -- STEP 1b : preliminary cleanup of the full view of private types
8840 -- If the type is already marked as having discriminants, then it's the
8841 -- completion of a private type or private extension and we need to
8842 -- retain the discriminants from the partial view if the current
8843 -- declaration has Discriminant_Specifications so that we can verify
8844 -- conformance. However, we must remove any existing components that
8845 -- were inherited from the parent (and attached in Copy_And_Swap)
8846 -- because the full type inherits all appropriate components anyway, and
8847 -- we do not want the partial view's components interfering.
8849 if Has_Discriminants
(Derived_Type
) and then Discriminant_Specs
then
8850 Discrim
:= First_Discriminant
(Derived_Type
);
8852 Last_Discrim
:= Discrim
;
8853 Next_Discriminant
(Discrim
);
8854 exit when No
(Discrim
);
8857 Set_Last_Entity
(Derived_Type
, Last_Discrim
);
8859 -- In all other cases wipe out the list of inherited components (even
8860 -- inherited discriminants), it will be properly rebuilt here.
8863 Set_First_Entity
(Derived_Type
, Empty
);
8864 Set_Last_Entity
(Derived_Type
, Empty
);
8867 -- STEP 1c: Initialize some flags for the Derived_Type
8869 -- The following flags must be initialized here so that
8870 -- Process_Discriminants can check that discriminants of tagged types do
8871 -- not have a default initial value and that access discriminants are
8872 -- only specified for limited records. For completeness, these flags are
8873 -- also initialized along with all the other flags below.
8875 -- AI-419: Limitedness is not inherited from an interface parent, so to
8876 -- be limited in that case the type must be explicitly declared as
8877 -- limited. However, task and protected interfaces are always limited.
8879 if Limited_Present
(Type_Def
) then
8880 Set_Is_Limited_Record
(Derived_Type
);
8882 elsif Is_Limited_Record
(Parent_Type
)
8883 or else (Present
(Full_View
(Parent_Type
))
8884 and then Is_Limited_Record
(Full_View
(Parent_Type
)))
8886 if not Is_Interface
(Parent_Type
)
8887 or else Is_Synchronized_Interface
(Parent_Type
)
8888 or else Is_Protected_Interface
(Parent_Type
)
8889 or else Is_Task_Interface
(Parent_Type
)
8891 Set_Is_Limited_Record
(Derived_Type
);
8895 -- STEP 2a: process discriminants of derived type if any
8897 Push_Scope
(Derived_Type
);
8899 if Discriminant_Specs
then
8900 Set_Has_Unknown_Discriminants
(Derived_Type
, False);
8902 -- The following call initializes fields Has_Discriminants and
8903 -- Discriminant_Constraint, unless we are processing the completion
8904 -- of a private type declaration.
8906 Check_Or_Process_Discriminants
(N
, Derived_Type
);
8908 -- For untagged types, the constraint on the Parent_Type must be
8909 -- present and is used to rename the discriminants.
8911 if not Is_Tagged
and then not Has_Discriminants
(Parent_Type
) then
8912 Error_Msg_N
("untagged parent must have discriminants", Indic
);
8914 elsif not Is_Tagged
and then not Constraint_Present
then
8916 ("discriminant constraint needed for derived untagged records",
8919 -- Otherwise the parent subtype must be constrained unless we have a
8920 -- private extension.
8922 elsif not Constraint_Present
8923 and then not Private_Extension
8924 and then not Is_Constrained
(Parent_Type
)
8927 ("unconstrained type not allowed in this context", Indic
);
8929 elsif Constraint_Present
then
8930 -- The following call sets the field Corresponding_Discriminant
8931 -- for the discriminants in the Derived_Type.
8933 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
, True);
8935 -- For untagged types all new discriminants must rename
8936 -- discriminants in the parent. For private extensions new
8937 -- discriminants cannot rename old ones (implied by [7.3(13)]).
8939 Discrim
:= First_Discriminant
(Derived_Type
);
8940 while Present
(Discrim
) loop
8942 and then No
(Corresponding_Discriminant
(Discrim
))
8945 ("new discriminants must constrain old ones", Discrim
);
8947 elsif Private_Extension
8948 and then Present
(Corresponding_Discriminant
(Discrim
))
8951 ("only static constraints allowed for parent"
8952 & " discriminants in the partial view", Indic
);
8956 -- If a new discriminant is used in the constraint, then its
8957 -- subtype must be statically compatible with the parent
8958 -- discriminant's subtype (3.7(15)).
8960 -- However, if the record contains an array constrained by
8961 -- the discriminant but with some different bound, the compiler
8962 -- tries to create a smaller range for the discriminant type.
8963 -- (See exp_ch3.Adjust_Discriminants). In this case, where
8964 -- the discriminant type is a scalar type, the check must use
8965 -- the original discriminant type in the parent declaration.
8968 Corr_Disc
: constant Entity_Id
:=
8969 Corresponding_Discriminant
(Discrim
);
8970 Disc_Type
: constant Entity_Id
:= Etype
(Discrim
);
8971 Corr_Type
: Entity_Id
;
8974 if Present
(Corr_Disc
) then
8975 if Is_Scalar_Type
(Disc_Type
) then
8977 Entity
(Discriminant_Type
(Parent
(Corr_Disc
)));
8979 Corr_Type
:= Etype
(Corr_Disc
);
8983 Subtypes_Statically_Compatible
(Disc_Type
, Corr_Type
)
8986 ("subtype must be compatible "
8987 & "with parent discriminant",
8993 Next_Discriminant
(Discrim
);
8996 -- Check whether the constraints of the full view statically
8997 -- match those imposed by the parent subtype [7.3(13)].
8999 if Present
(Stored_Constraint
(Derived_Type
)) then
9004 C1
:= First_Elmt
(Discs
);
9005 C2
:= First_Elmt
(Stored_Constraint
(Derived_Type
));
9006 while Present
(C1
) and then Present
(C2
) loop
9008 Fully_Conformant_Expressions
(Node
(C1
), Node
(C2
))
9011 ("not conformant with previous declaration",
9022 -- STEP 2b: No new discriminants, inherit discriminants if any
9025 if Private_Extension
then
9026 Set_Has_Unknown_Discriminants
9028 Has_Unknown_Discriminants
(Parent_Type
)
9029 or else Unknown_Discriminants_Present
(N
));
9031 -- The partial view of the parent may have unknown discriminants,
9032 -- but if the full view has discriminants and the parent type is
9033 -- in scope they must be inherited.
9035 elsif Has_Unknown_Discriminants
(Parent_Type
)
9037 (not Has_Discriminants
(Parent_Type
)
9038 or else not In_Open_Scopes
(Scope
(Parent_Type
)))
9040 Set_Has_Unknown_Discriminants
(Derived_Type
);
9043 if not Has_Unknown_Discriminants
(Derived_Type
)
9044 and then not Has_Unknown_Discriminants
(Parent_Base
)
9045 and then Has_Discriminants
(Parent_Type
)
9047 Inherit_Discrims
:= True;
9048 Set_Has_Discriminants
9049 (Derived_Type
, True);
9050 Set_Discriminant_Constraint
9051 (Derived_Type
, Discriminant_Constraint
(Parent_Base
));
9054 -- The following test is true for private types (remember
9055 -- transformation 5. is not applied to those) and in an error
9058 if Constraint_Present
then
9059 Discs
:= Build_Discriminant_Constraints
(Parent_Type
, Indic
);
9062 -- For now mark a new derived type as constrained only if it has no
9063 -- discriminants. At the end of Build_Derived_Record_Type we properly
9064 -- set this flag in the case of private extensions. See comments in
9065 -- point 9. just before body of Build_Derived_Record_Type.
9069 not (Inherit_Discrims
9070 or else Has_Unknown_Discriminants
(Derived_Type
)));
9073 -- STEP 3: initialize fields of derived type
9075 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged
);
9076 Set_Stored_Constraint
(Derived_Type
, No_Elist
);
9078 -- Ada 2005 (AI-251): Private type-declarations can implement interfaces
9079 -- but cannot be interfaces
9081 if not Private_Extension
9082 and then Ekind
(Derived_Type
) /= E_Private_Type
9083 and then Ekind
(Derived_Type
) /= E_Limited_Private_Type
9085 if Interface_Present
(Type_Def
) then
9086 Analyze_Interface_Declaration
(Derived_Type
, Type_Def
);
9089 Set_Interfaces
(Derived_Type
, No_Elist
);
9092 -- Fields inherited from the Parent_Type
9094 Set_Has_Specified_Layout
9095 (Derived_Type
, Has_Specified_Layout
(Parent_Type
));
9096 Set_Is_Limited_Composite
9097 (Derived_Type
, Is_Limited_Composite
(Parent_Type
));
9098 Set_Is_Private_Composite
9099 (Derived_Type
, Is_Private_Composite
(Parent_Type
));
9101 if Is_Tagged_Type
(Parent_Type
) then
9102 Set_No_Tagged_Streams_Pragma
9103 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9106 -- Fields inherited from the Parent_Base
9108 Set_Has_Controlled_Component
9109 (Derived_Type
, Has_Controlled_Component
(Parent_Base
));
9110 Set_Has_Non_Standard_Rep
9111 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
9112 Set_Has_Primitive_Operations
9113 (Derived_Type
, Has_Primitive_Operations
(Parent_Base
));
9115 -- Fields inherited from the Parent_Base in the non-private case
9117 if Ekind
(Derived_Type
) = E_Record_Type
then
9118 Set_Has_Complex_Representation
9119 (Derived_Type
, Has_Complex_Representation
(Parent_Base
));
9122 -- Fields inherited from the Parent_Base for record types
9124 if Is_Record_Type
(Derived_Type
) then
9126 Parent_Full
: Entity_Id
;
9129 -- Ekind (Parent_Base) is not necessarily E_Record_Type since
9130 -- Parent_Base can be a private type or private extension. Go
9131 -- to the full view here to get the E_Record_Type specific flags.
9133 if Present
(Full_View
(Parent_Base
)) then
9134 Parent_Full
:= Full_View
(Parent_Base
);
9136 Parent_Full
:= Parent_Base
;
9139 Set_OK_To_Reorder_Components
9140 (Derived_Type
, OK_To_Reorder_Components
(Parent_Full
));
9144 -- Set fields for private derived types
9146 if Is_Private_Type
(Derived_Type
) then
9147 Set_Depends_On_Private
(Derived_Type
, True);
9148 Set_Private_Dependents
(Derived_Type
, New_Elmt_List
);
9150 -- Inherit fields from non private record types. If this is the
9151 -- completion of a derivation from a private type, the parent itself
9152 -- is private, and the attributes come from its full view, which must
9156 if Is_Private_Type
(Parent_Base
)
9157 and then not Is_Record_Type
(Parent_Base
)
9159 Set_Component_Alignment
9160 (Derived_Type
, Component_Alignment
(Full_View
(Parent_Base
)));
9162 (Derived_Type
, C_Pass_By_Copy
(Full_View
(Parent_Base
)));
9164 Set_Component_Alignment
9165 (Derived_Type
, Component_Alignment
(Parent_Base
));
9167 (Derived_Type
, C_Pass_By_Copy
(Parent_Base
));
9171 -- Set fields for tagged types
9174 Set_Direct_Primitive_Operations
(Derived_Type
, New_Elmt_List
);
9176 -- All tagged types defined in Ada.Finalization are controlled
9178 if Chars
(Scope
(Derived_Type
)) = Name_Finalization
9179 and then Chars
(Scope
(Scope
(Derived_Type
))) = Name_Ada
9180 and then Scope
(Scope
(Scope
(Derived_Type
))) = Standard_Standard
9182 Set_Is_Controlled
(Derived_Type
);
9184 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Base
));
9187 -- Minor optimization: there is no need to generate the class-wide
9188 -- entity associated with an underlying record view.
9190 if not Is_Underlying_Record_View
(Derived_Type
) then
9191 Make_Class_Wide_Type
(Derived_Type
);
9194 Set_Is_Abstract_Type
(Derived_Type
, Abstract_Present
(Type_Def
));
9196 if Has_Discriminants
(Derived_Type
)
9197 and then Constraint_Present
9199 Set_Stored_Constraint
9200 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Base
, Discs
));
9203 if Ada_Version
>= Ada_2005
then
9205 Ifaces_List
: Elist_Id
;
9208 -- Checks rules 3.9.4 (13/2 and 14/2)
9210 if Comes_From_Source
(Derived_Type
)
9211 and then not Is_Private_Type
(Derived_Type
)
9212 and then Is_Interface
(Parent_Type
)
9213 and then not Is_Interface
(Derived_Type
)
9215 if Is_Task_Interface
(Parent_Type
) then
9217 ("(Ada 2005) task type required (RM 3.9.4 (13.2))",
9220 elsif Is_Protected_Interface
(Parent_Type
) then
9222 ("(Ada 2005) protected type required (RM 3.9.4 (14.2))",
9227 -- Check ARM rules 3.9.4 (15/2), 9.1 (9.d/2) and 9.4 (11.d/2)
9229 Check_Interfaces
(N
, Type_Def
);
9231 -- Ada 2005 (AI-251): Collect the list of progenitors that are
9232 -- not already in the parents.
9236 Ifaces_List
=> Ifaces_List
,
9237 Exclude_Parents
=> True);
9239 Set_Interfaces
(Derived_Type
, Ifaces_List
);
9241 -- If the derived type is the anonymous type created for
9242 -- a declaration whose parent has a constraint, propagate
9243 -- the interface list to the source type. This must be done
9244 -- prior to the completion of the analysis of the source type
9245 -- because the components in the extension may contain current
9246 -- instances whose legality depends on some ancestor.
9248 if Is_Itype
(Derived_Type
) then
9250 Def
: constant Node_Id
:=
9251 Associated_Node_For_Itype
(Derived_Type
);
9254 and then Nkind
(Def
) = N_Full_Type_Declaration
9257 (Defining_Identifier
(Def
), Ifaces_List
);
9262 -- A type extension is automatically Ghost when one of its
9263 -- progenitors is Ghost (SPARK RM 6.9(9)). This property is
9264 -- also inherited when the parent type is Ghost, but this is
9265 -- done in Build_Derived_Type as the mechanism also handles
9266 -- untagged derivations.
9268 if Implements_Ghost_Interface
(Derived_Type
) then
9269 Set_Is_Ghost_Entity
(Derived_Type
);
9275 Set_Is_Packed
(Derived_Type
, Is_Packed
(Parent_Base
));
9276 Set_Has_Non_Standard_Rep
9277 (Derived_Type
, Has_Non_Standard_Rep
(Parent_Base
));
9280 -- STEP 4: Inherit components from the parent base and constrain them.
9281 -- Apply the second transformation described in point 6. above.
9283 if (not Is_Empty_Elmt_List
(Discs
) or else Inherit_Discrims
)
9284 or else not Has_Discriminants
(Parent_Type
)
9285 or else not Is_Constrained
(Parent_Type
)
9289 Constrs
:= Discriminant_Constraint
(Parent_Type
);
9294 (N
, Parent_Base
, Derived_Type
, Is_Tagged
, Inherit_Discrims
, Constrs
);
9296 -- STEP 5a: Copy the parent record declaration for untagged types
9298 Set_Has_Implicit_Dereference
9299 (Derived_Type
, Has_Implicit_Dereference
(Parent_Type
));
9301 if not Is_Tagged
then
9303 -- Discriminant_Constraint (Derived_Type) has been properly
9304 -- constructed. Save it and temporarily set it to Empty because we
9305 -- do not want the call to New_Copy_Tree below to mess this list.
9307 if Has_Discriminants
(Derived_Type
) then
9308 Save_Discr_Constr
:= Discriminant_Constraint
(Derived_Type
);
9309 Set_Discriminant_Constraint
(Derived_Type
, No_Elist
);
9311 Save_Discr_Constr
:= No_Elist
;
9314 -- Save the Etype field of Derived_Type. It is correctly set now,
9315 -- but the call to New_Copy tree may remap it to point to itself,
9316 -- which is not what we want. Ditto for the Next_Entity field.
9318 Save_Etype
:= Etype
(Derived_Type
);
9319 Save_Next_Entity
:= Next_Entity
(Derived_Type
);
9321 -- Assoc_List maps all stored discriminants in the Parent_Base to
9322 -- stored discriminants in the Derived_Type. It is fundamental that
9323 -- no types or itypes with discriminants other than the stored
9324 -- discriminants appear in the entities declared inside
9325 -- Derived_Type, since the back end cannot deal with it.
9329 (Parent
(Parent_Base
), Map
=> Assoc_List
, New_Sloc
=> Loc
);
9331 -- Restore the fields saved prior to the New_Copy_Tree call
9332 -- and compute the stored constraint.
9334 Set_Etype
(Derived_Type
, Save_Etype
);
9335 Set_Next_Entity
(Derived_Type
, Save_Next_Entity
);
9337 if Has_Discriminants
(Derived_Type
) then
9338 Set_Discriminant_Constraint
9339 (Derived_Type
, Save_Discr_Constr
);
9340 Set_Stored_Constraint
9341 (Derived_Type
, Expand_To_Stored_Constraint
(Parent_Type
, Discs
));
9342 Replace_Components
(Derived_Type
, New_Decl
);
9345 -- Insert the new derived type declaration
9347 Rewrite
(N
, New_Decl
);
9349 -- STEP 5b: Complete the processing for record extensions in generics
9351 -- There is no completion for record extensions declared in the
9352 -- parameter part of a generic, so we need to complete processing for
9353 -- these generic record extensions here. The Record_Type_Definition call
9354 -- will change the Ekind of the components from E_Void to E_Component.
9356 elsif Private_Extension
and then Is_Generic_Type
(Derived_Type
) then
9357 Record_Type_Definition
(Empty
, Derived_Type
);
9359 -- STEP 5c: Process the record extension for non private tagged types
9361 elsif not Private_Extension
then
9362 Expand_Record_Extension
(Derived_Type
, Type_Def
);
9364 -- Note : previously in ASIS mode we set the Parent_Subtype of the
9365 -- derived type to propagate some semantic information. This led
9366 -- to other ASIS failures and has been removed.
9368 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
9369 -- implemented interfaces if we are in expansion mode
9372 and then Has_Interfaces
(Derived_Type
)
9374 Add_Interface_Tag_Components
(N
, Derived_Type
);
9377 -- Analyze the record extension
9379 Record_Type_Definition
9380 (Record_Extension_Part
(Type_Def
), Derived_Type
);
9385 -- Nothing else to do if there is an error in the derivation.
9386 -- An unusual case: the full view may be derived from a type in an
9387 -- instance, when the partial view was used illegally as an actual
9388 -- in that instance, leading to a circular definition.
9390 if Etype
(Derived_Type
) = Any_Type
9391 or else Etype
(Parent_Type
) = Derived_Type
9396 -- Set delayed freeze and then derive subprograms, we need to do
9397 -- this in this order so that derived subprograms inherit the
9398 -- derived freeze if necessary.
9400 Set_Has_Delayed_Freeze
(Derived_Type
);
9402 if Derive_Subps
then
9403 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9406 -- If we have a private extension which defines a constrained derived
9407 -- type mark as constrained here after we have derived subprograms. See
9408 -- comment on point 9. just above the body of Build_Derived_Record_Type.
9410 if Private_Extension
and then Inherit_Discrims
then
9411 if Constraint_Present
and then not Is_Empty_Elmt_List
(Discs
) then
9412 Set_Is_Constrained
(Derived_Type
, True);
9413 Set_Discriminant_Constraint
(Derived_Type
, Discs
);
9415 elsif Is_Constrained
(Parent_Type
) then
9417 (Derived_Type
, True);
9418 Set_Discriminant_Constraint
9419 (Derived_Type
, Discriminant_Constraint
(Parent_Type
));
9423 -- Update the class-wide type, which shares the now-completed entity
9424 -- list with its specific type. In case of underlying record views,
9425 -- we do not generate the corresponding class wide entity.
9428 and then not Is_Underlying_Record_View
(Derived_Type
)
9431 (Class_Wide_Type
(Derived_Type
), First_Entity
(Derived_Type
));
9433 (Class_Wide_Type
(Derived_Type
), Last_Entity
(Derived_Type
));
9436 Check_Function_Writable_Actuals
(N
);
9437 end Build_Derived_Record_Type
;
9439 ------------------------
9440 -- Build_Derived_Type --
9441 ------------------------
9443 procedure Build_Derived_Type
9445 Parent_Type
: Entity_Id
;
9446 Derived_Type
: Entity_Id
;
9447 Is_Completion
: Boolean;
9448 Derive_Subps
: Boolean := True)
9450 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
9453 -- Set common attributes
9455 Set_Scope
(Derived_Type
, Current_Scope
);
9457 Set_Etype
(Derived_Type
, Parent_Base
);
9458 Set_Ekind
(Derived_Type
, Ekind
(Parent_Base
));
9459 Propagate_Concurrent_Flags
(Derived_Type
, Parent_Base
);
9461 Set_Size_Info
(Derived_Type
, Parent_Type
);
9462 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
9463 Set_Is_Controlled
(Derived_Type
, Is_Controlled
(Parent_Type
));
9464 Set_Disable_Controlled
(Derived_Type
, Disable_Controlled
(Parent_Type
));
9466 Set_Is_Tagged_Type
(Derived_Type
, Is_Tagged_Type
(Parent_Type
));
9467 Set_Is_Volatile
(Derived_Type
, Is_Volatile
(Parent_Type
));
9469 if Is_Tagged_Type
(Derived_Type
) then
9470 Set_No_Tagged_Streams_Pragma
9471 (Derived_Type
, No_Tagged_Streams_Pragma
(Parent_Type
));
9474 -- If the parent has primitive routines, set the derived type link
9476 if Has_Primitive_Operations
(Parent_Type
) then
9477 Set_Derived_Type_Link
(Parent_Base
, Derived_Type
);
9480 -- If the parent type is a private subtype, the convention on the base
9481 -- type may be set in the private part, and not propagated to the
9482 -- subtype until later, so we obtain the convention from the base type.
9484 Set_Convention
(Derived_Type
, Convention
(Parent_Base
));
9486 -- Set SSO default for record or array type
9488 if (Is_Array_Type
(Derived_Type
) or else Is_Record_Type
(Derived_Type
))
9489 and then Is_Base_Type
(Derived_Type
)
9491 Set_Default_SSO
(Derived_Type
);
9494 -- A derived type inherits the Default_Initial_Condition pragma coming
9495 -- from any parent type within the derivation chain.
9497 if Has_DIC
(Parent_Type
) then
9498 Set_Has_Inherited_DIC
(Derived_Type
);
9501 -- A derived type inherits any class-wide invariants coming from a
9502 -- parent type or an interface. Note that the invariant procedure of
9503 -- the parent type should not be inherited because the derived type may
9504 -- define invariants of its own.
9506 if not Is_Interface
(Derived_Type
) then
9507 if Has_Inherited_Invariants
(Parent_Type
)
9508 or else Has_Inheritable_Invariants
(Parent_Type
)
9510 Set_Has_Inherited_Invariants
(Derived_Type
);
9512 elsif Is_Concurrent_Type
(Derived_Type
)
9513 or else Is_Tagged_Type
(Derived_Type
)
9518 Iface_Elmt
: Elmt_Id
;
9523 Ifaces_List
=> Ifaces
,
9524 Exclude_Parents
=> True);
9526 if Present
(Ifaces
) then
9527 Iface_Elmt
:= First_Elmt
(Ifaces
);
9528 while Present
(Iface_Elmt
) loop
9529 Iface
:= Node
(Iface_Elmt
);
9531 if Has_Inheritable_Invariants
(Iface
) then
9532 Set_Has_Inherited_Invariants
(Derived_Type
);
9536 Next_Elmt
(Iface_Elmt
);
9543 -- We similarly inherit predicates. Note that for scalar derived types
9544 -- the predicate is inherited from the first subtype, and not from its
9545 -- (anonymous) base type.
9547 if Has_Predicates
(Parent_Type
)
9548 or else Has_Predicates
(First_Subtype
(Parent_Type
))
9550 Set_Has_Predicates
(Derived_Type
);
9553 -- The derived type inherits the representation clauses of the parent
9555 Inherit_Rep_Item_Chain
(Derived_Type
, Parent_Type
);
9557 -- If the parent type has delayed rep aspects, then mark the derived
9558 -- type as possibly inheriting a delayed rep aspect.
9560 if Has_Delayed_Rep_Aspects
(Parent_Type
) then
9561 Set_May_Inherit_Delayed_Rep_Aspects
(Derived_Type
);
9564 -- A derived type becomes Ghost when its parent type is also Ghost
9565 -- (SPARK RM 6.9(9)). Note that the Ghost-related attributes are not
9566 -- directly inherited because the Ghost policy in effect may differ.
9568 if Is_Ghost_Entity
(Parent_Type
) then
9569 Set_Is_Ghost_Entity
(Derived_Type
);
9572 -- Type dependent processing
9574 case Ekind
(Parent_Type
) is
9575 when Numeric_Kind
=>
9576 Build_Derived_Numeric_Type
(N
, Parent_Type
, Derived_Type
);
9579 Build_Derived_Array_Type
(N
, Parent_Type
, Derived_Type
);
9581 when Class_Wide_Kind
9585 Build_Derived_Record_Type
9586 (N
, Parent_Type
, Derived_Type
, Derive_Subps
);
9589 when Enumeration_Kind
=>
9590 Build_Derived_Enumeration_Type
(N
, Parent_Type
, Derived_Type
);
9593 Build_Derived_Access_Type
(N
, Parent_Type
, Derived_Type
);
9595 when Incomplete_Or_Private_Kind
=>
9596 Build_Derived_Private_Type
9597 (N
, Parent_Type
, Derived_Type
, Is_Completion
, Derive_Subps
);
9599 -- For discriminated types, the derivation includes deriving
9600 -- primitive operations. For others it is done below.
9602 if Is_Tagged_Type
(Parent_Type
)
9603 or else Has_Discriminants
(Parent_Type
)
9604 or else (Present
(Full_View
(Parent_Type
))
9605 and then Has_Discriminants
(Full_View
(Parent_Type
)))
9610 when Concurrent_Kind
=>
9611 Build_Derived_Concurrent_Type
(N
, Parent_Type
, Derived_Type
);
9614 raise Program_Error
;
9617 -- Nothing more to do if some error occurred
9619 if Etype
(Derived_Type
) = Any_Type
then
9623 -- Set delayed freeze and then derive subprograms, we need to do this
9624 -- in this order so that derived subprograms inherit the derived freeze
9627 Set_Has_Delayed_Freeze
(Derived_Type
);
9629 if Derive_Subps
then
9630 Derive_Subprograms
(Parent_Type
, Derived_Type
);
9633 Set_Has_Primitive_Operations
9634 (Base_Type
(Derived_Type
), Has_Primitive_Operations
(Parent_Type
));
9635 end Build_Derived_Type
;
9637 -----------------------
9638 -- Build_Discriminal --
9639 -----------------------
9641 procedure Build_Discriminal
(Discrim
: Entity_Id
) is
9642 D_Minal
: Entity_Id
;
9643 CR_Disc
: Entity_Id
;
9646 -- A discriminal has the same name as the discriminant
9648 D_Minal
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9650 Set_Ekind
(D_Minal
, E_In_Parameter
);
9651 Set_Mechanism
(D_Minal
, Default_Mechanism
);
9652 Set_Etype
(D_Minal
, Etype
(Discrim
));
9653 Set_Scope
(D_Minal
, Current_Scope
);
9654 Set_Parent
(D_Minal
, Parent
(Discrim
));
9656 Set_Discriminal
(Discrim
, D_Minal
);
9657 Set_Discriminal_Link
(D_Minal
, Discrim
);
9659 -- For task types, build at once the discriminants of the corresponding
9660 -- record, which are needed if discriminants are used in entry defaults
9661 -- and in family bounds.
9663 if Is_Concurrent_Type
(Current_Scope
)
9665 Is_Limited_Type
(Current_Scope
)
9667 CR_Disc
:= Make_Defining_Identifier
(Sloc
(Discrim
), Chars
(Discrim
));
9669 Set_Ekind
(CR_Disc
, E_In_Parameter
);
9670 Set_Mechanism
(CR_Disc
, Default_Mechanism
);
9671 Set_Etype
(CR_Disc
, Etype
(Discrim
));
9672 Set_Scope
(CR_Disc
, Current_Scope
);
9673 Set_Discriminal_Link
(CR_Disc
, Discrim
);
9674 Set_CR_Discriminant
(Discrim
, CR_Disc
);
9676 end Build_Discriminal
;
9678 ------------------------------------
9679 -- Build_Discriminant_Constraints --
9680 ------------------------------------
9682 function Build_Discriminant_Constraints
9685 Derived_Def
: Boolean := False) return Elist_Id
9687 C
: constant Node_Id
:= Constraint
(Def
);
9688 Nb_Discr
: constant Nat
:= Number_Discriminants
(T
);
9690 Discr_Expr
: array (1 .. Nb_Discr
) of Node_Id
:= (others => Empty
);
9691 -- Saves the expression corresponding to a given discriminant in T
9693 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
;
9694 -- Return the Position number within array Discr_Expr of a discriminant
9695 -- D within the discriminant list of the discriminated type T.
9697 procedure Process_Discriminant_Expression
9700 -- If this is a discriminant constraint on a partial view, do not
9701 -- generate an overflow check on the discriminant expression. The check
9702 -- will be generated when constraining the full view. Otherwise the
9703 -- backend creates duplicate symbols for the temporaries corresponding
9704 -- to the expressions to be checked, causing spurious assembler errors.
9710 function Pos_Of_Discr
(T
: Entity_Id
; D
: Entity_Id
) return Nat
is
9714 Disc
:= First_Discriminant
(T
);
9715 for J
in Discr_Expr
'Range loop
9720 Next_Discriminant
(Disc
);
9723 -- Note: Since this function is called on discriminants that are
9724 -- known to belong to the discriminated type, falling through the
9725 -- loop with no match signals an internal compiler error.
9727 raise Program_Error
;
9730 -------------------------------------
9731 -- Process_Discriminant_Expression --
9732 -------------------------------------
9734 procedure Process_Discriminant_Expression
9738 BDT
: constant Entity_Id
:= Base_Type
(Etype
(D
));
9741 -- If this is a discriminant constraint on a partial view, do
9742 -- not generate an overflow on the discriminant expression. The
9743 -- check will be generated when constraining the full view.
9745 if Is_Private_Type
(T
)
9746 and then Present
(Full_View
(T
))
9748 Analyze_And_Resolve
(Expr
, BDT
, Suppress
=> Overflow_Check
);
9750 Analyze_And_Resolve
(Expr
, BDT
);
9752 end Process_Discriminant_Expression
;
9754 -- Declarations local to Build_Discriminant_Constraints
9758 Elist
: constant Elist_Id
:= New_Elmt_List
;
9766 Discrim_Present
: Boolean := False;
9768 -- Start of processing for Build_Discriminant_Constraints
9771 -- The following loop will process positional associations only.
9772 -- For a positional association, the (single) discriminant is
9773 -- implicitly specified by position, in textual order (RM 3.7.2).
9775 Discr
:= First_Discriminant
(T
);
9776 Constr
:= First
(Constraints
(C
));
9777 for D
in Discr_Expr
'Range loop
9778 exit when Nkind
(Constr
) = N_Discriminant_Association
;
9781 Error_Msg_N
("too few discriminants given in constraint", C
);
9782 return New_Elmt_List
;
9784 elsif Nkind
(Constr
) = N_Range
9785 or else (Nkind
(Constr
) = N_Attribute_Reference
9786 and then Attribute_Name
(Constr
) = Name_Range
)
9789 ("a range is not a valid discriminant constraint", Constr
);
9790 Discr_Expr
(D
) := Error
;
9793 Process_Discriminant_Expression
(Constr
, Discr
);
9794 Discr_Expr
(D
) := Constr
;
9797 Next_Discriminant
(Discr
);
9801 if No
(Discr
) and then Present
(Constr
) then
9802 Error_Msg_N
("too many discriminants given in constraint", Constr
);
9803 return New_Elmt_List
;
9806 -- Named associations can be given in any order, but if both positional
9807 -- and named associations are used in the same discriminant constraint,
9808 -- then positional associations must occur first, at their normal
9809 -- position. Hence once a named association is used, the rest of the
9810 -- discriminant constraint must use only named associations.
9812 while Present
(Constr
) loop
9814 -- Positional association forbidden after a named association
9816 if Nkind
(Constr
) /= N_Discriminant_Association
then
9817 Error_Msg_N
("positional association follows named one", Constr
);
9818 return New_Elmt_List
;
9820 -- Otherwise it is a named association
9823 -- E records the type of the discriminants in the named
9824 -- association. All the discriminants specified in the same name
9825 -- association must have the same type.
9829 -- Search the list of discriminants in T to see if the simple name
9830 -- given in the constraint matches any of them.
9832 Id
:= First
(Selector_Names
(Constr
));
9833 while Present
(Id
) loop
9836 -- If Original_Discriminant is present, we are processing a
9837 -- generic instantiation and this is an instance node. We need
9838 -- to find the name of the corresponding discriminant in the
9839 -- actual record type T and not the name of the discriminant in
9840 -- the generic formal. Example:
9843 -- type G (D : int) is private;
9845 -- subtype W is G (D => 1);
9847 -- type Rec (X : int) is record ... end record;
9848 -- package Q is new P (G => Rec);
9850 -- At the point of the instantiation, formal type G is Rec
9851 -- and therefore when reanalyzing "subtype W is G (D => 1);"
9852 -- which really looks like "subtype W is Rec (D => 1);" at
9853 -- the point of instantiation, we want to find the discriminant
9854 -- that corresponds to D in Rec, i.e. X.
9856 if Present
(Original_Discriminant
(Id
))
9857 and then In_Instance
9859 Discr
:= Find_Corresponding_Discriminant
(Id
, T
);
9863 Discr
:= First_Discriminant
(T
);
9864 while Present
(Discr
) loop
9865 if Chars
(Discr
) = Chars
(Id
) then
9870 Next_Discriminant
(Discr
);
9874 Error_Msg_N
("& does not match any discriminant", Id
);
9875 return New_Elmt_List
;
9877 -- If the parent type is a generic formal, preserve the
9878 -- name of the discriminant for subsequent instances.
9879 -- see comment at the beginning of this if statement.
9881 elsif Is_Generic_Type
(Root_Type
(T
)) then
9882 Set_Original_Discriminant
(Id
, Discr
);
9886 Position
:= Pos_Of_Discr
(T
, Discr
);
9888 if Present
(Discr_Expr
(Position
)) then
9889 Error_Msg_N
("duplicate constraint for discriminant&", Id
);
9892 -- Each discriminant specified in the same named association
9893 -- must be associated with a separate copy of the
9894 -- corresponding expression.
9896 if Present
(Next
(Id
)) then
9897 Expr
:= New_Copy_Tree
(Expression
(Constr
));
9898 Set_Parent
(Expr
, Parent
(Expression
(Constr
)));
9900 Expr
:= Expression
(Constr
);
9903 Discr_Expr
(Position
) := Expr
;
9904 Process_Discriminant_Expression
(Expr
, Discr
);
9907 -- A discriminant association with more than one discriminant
9908 -- name is only allowed if the named discriminants are all of
9909 -- the same type (RM 3.7.1(8)).
9912 E
:= Base_Type
(Etype
(Discr
));
9914 elsif Base_Type
(Etype
(Discr
)) /= E
then
9916 ("all discriminants in an association " &
9917 "must have the same type", Id
);
9927 -- A discriminant constraint must provide exactly one value for each
9928 -- discriminant of the type (RM 3.7.1(8)).
9930 for J
in Discr_Expr
'Range loop
9931 if No
(Discr_Expr
(J
)) then
9932 Error_Msg_N
("too few discriminants given in constraint", C
);
9933 return New_Elmt_List
;
9937 -- Determine if there are discriminant expressions in the constraint
9939 for J
in Discr_Expr
'Range loop
9940 if Denotes_Discriminant
9941 (Discr_Expr
(J
), Check_Concurrent
=> True)
9943 Discrim_Present
:= True;
9947 -- Build an element list consisting of the expressions given in the
9948 -- discriminant constraint and apply the appropriate checks. The list
9949 -- is constructed after resolving any named discriminant associations
9950 -- and therefore the expressions appear in the textual order of the
9953 Discr
:= First_Discriminant
(T
);
9954 for J
in Discr_Expr
'Range loop
9955 if Discr_Expr
(J
) /= Error
then
9956 Append_Elmt
(Discr_Expr
(J
), Elist
);
9958 -- If any of the discriminant constraints is given by a
9959 -- discriminant and we are in a derived type declaration we
9960 -- have a discriminant renaming. Establish link between new
9961 -- and old discriminant. The new discriminant has an implicit
9962 -- dereference if the old one does.
9964 if Denotes_Discriminant
(Discr_Expr
(J
)) then
9967 New_Discr
: constant Entity_Id
:= Entity
(Discr_Expr
(J
));
9970 Set_Corresponding_Discriminant
(New_Discr
, Discr
);
9971 Set_Has_Implicit_Dereference
(New_Discr
,
9972 Has_Implicit_Dereference
(Discr
));
9976 -- Force the evaluation of non-discriminant expressions.
9977 -- If we have found a discriminant in the constraint 3.4(26)
9978 -- and 3.8(18) demand that no range checks are performed are
9979 -- after evaluation. If the constraint is for a component
9980 -- definition that has a per-object constraint, expressions are
9981 -- evaluated but not checked either. In all other cases perform
9985 if Discrim_Present
then
9988 elsif Nkind
(Parent
(Parent
(Def
))) = N_Component_Declaration
9989 and then Has_Per_Object_Constraint
9990 (Defining_Identifier
(Parent
(Parent
(Def
))))
9994 elsif Is_Access_Type
(Etype
(Discr
)) then
9995 Apply_Constraint_Check
(Discr_Expr
(J
), Etype
(Discr
));
9998 Apply_Range_Check
(Discr_Expr
(J
), Etype
(Discr
));
10001 Force_Evaluation
(Discr_Expr
(J
));
10004 -- Check that the designated type of an access discriminant's
10005 -- expression is not a class-wide type unless the discriminant's
10006 -- designated type is also class-wide.
10008 if Ekind
(Etype
(Discr
)) = E_Anonymous_Access_Type
10009 and then not Is_Class_Wide_Type
10010 (Designated_Type
(Etype
(Discr
)))
10011 and then Etype
(Discr_Expr
(J
)) /= Any_Type
10012 and then Is_Class_Wide_Type
10013 (Designated_Type
(Etype
(Discr_Expr
(J
))))
10015 Wrong_Type
(Discr_Expr
(J
), Etype
(Discr
));
10017 elsif Is_Access_Type
(Etype
(Discr
))
10018 and then not Is_Access_Constant
(Etype
(Discr
))
10019 and then Is_Access_Type
(Etype
(Discr_Expr
(J
)))
10020 and then Is_Access_Constant
(Etype
(Discr_Expr
(J
)))
10023 ("constraint for discriminant& must be access to variable",
10028 Next_Discriminant
(Discr
);
10032 end Build_Discriminant_Constraints
;
10034 ---------------------------------
10035 -- Build_Discriminated_Subtype --
10036 ---------------------------------
10038 procedure Build_Discriminated_Subtype
10040 Def_Id
: Entity_Id
;
10042 Related_Nod
: Node_Id
;
10043 For_Access
: Boolean := False)
10045 Has_Discrs
: constant Boolean := Has_Discriminants
(T
);
10046 Constrained
: constant Boolean :=
10048 and then not Is_Empty_Elmt_List
(Elist
)
10049 and then not Is_Class_Wide_Type
(T
))
10050 or else Is_Constrained
(T
);
10053 if Ekind
(T
) = E_Record_Type
then
10055 Set_Ekind
(Def_Id
, E_Private_Subtype
);
10056 Set_Is_For_Access_Subtype
(Def_Id
, True);
10058 Set_Ekind
(Def_Id
, E_Record_Subtype
);
10061 -- Inherit preelaboration flag from base, for types for which it
10062 -- may have been set: records, private types, protected types.
10064 Set_Known_To_Have_Preelab_Init
10065 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10067 elsif Ekind
(T
) = E_Task_Type
then
10068 Set_Ekind
(Def_Id
, E_Task_Subtype
);
10070 elsif Ekind
(T
) = E_Protected_Type
then
10071 Set_Ekind
(Def_Id
, E_Protected_Subtype
);
10072 Set_Known_To_Have_Preelab_Init
10073 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10075 elsif Is_Private_Type
(T
) then
10076 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
10077 Set_Known_To_Have_Preelab_Init
10078 (Def_Id
, Known_To_Have_Preelab_Init
(T
));
10080 -- Private subtypes may have private dependents
10082 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
10084 elsif Is_Class_Wide_Type
(T
) then
10085 Set_Ekind
(Def_Id
, E_Class_Wide_Subtype
);
10088 -- Incomplete type. Attach subtype to list of dependents, to be
10089 -- completed with full view of parent type, unless is it the
10090 -- designated subtype of a record component within an init_proc.
10091 -- This last case arises for a component of an access type whose
10092 -- designated type is incomplete (e.g. a Taft Amendment type).
10093 -- The designated subtype is within an inner scope, and needs no
10094 -- elaboration, because only the access type is needed in the
10095 -- initialization procedure.
10097 Set_Ekind
(Def_Id
, Ekind
(T
));
10099 if For_Access
and then Within_Init_Proc
then
10102 Append_Elmt
(Def_Id
, Private_Dependents
(T
));
10106 Set_Etype
(Def_Id
, T
);
10107 Init_Size_Align
(Def_Id
);
10108 Set_Has_Discriminants
(Def_Id
, Has_Discrs
);
10109 Set_Is_Constrained
(Def_Id
, Constrained
);
10111 Set_First_Entity
(Def_Id
, First_Entity
(T
));
10112 Set_Last_Entity
(Def_Id
, Last_Entity
(T
));
10113 Set_Has_Implicit_Dereference
10114 (Def_Id
, Has_Implicit_Dereference
(T
));
10115 Set_Has_Pragma_Unreferenced_Objects
10116 (Def_Id
, Has_Pragma_Unreferenced_Objects
(T
));
10118 -- If the subtype is the completion of a private declaration, there may
10119 -- have been representation clauses for the partial view, and they must
10120 -- be preserved. Build_Derived_Type chains the inherited clauses with
10121 -- the ones appearing on the extension. If this comes from a subtype
10122 -- declaration, all clauses are inherited.
10124 if No
(First_Rep_Item
(Def_Id
)) then
10125 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
10128 if Is_Tagged_Type
(T
) then
10129 Set_Is_Tagged_Type
(Def_Id
);
10130 Set_No_Tagged_Streams_Pragma
(Def_Id
, No_Tagged_Streams_Pragma
(T
));
10131 Make_Class_Wide_Type
(Def_Id
);
10134 Set_Stored_Constraint
(Def_Id
, No_Elist
);
10137 Set_Discriminant_Constraint
(Def_Id
, Elist
);
10138 Set_Stored_Constraint_From_Discriminant_Constraint
(Def_Id
);
10141 if Is_Tagged_Type
(T
) then
10143 -- Ada 2005 (AI-251): In case of concurrent types we inherit the
10144 -- concurrent record type (which has the list of primitive
10147 if Ada_Version
>= Ada_2005
10148 and then Is_Concurrent_Type
(T
)
10150 Set_Corresponding_Record_Type
(Def_Id
,
10151 Corresponding_Record_Type
(T
));
10153 Set_Direct_Primitive_Operations
(Def_Id
,
10154 Direct_Primitive_Operations
(T
));
10157 Set_Is_Abstract_Type
(Def_Id
, Is_Abstract_Type
(T
));
10160 -- Subtypes introduced by component declarations do not need to be
10161 -- marked as delayed, and do not get freeze nodes, because the semantics
10162 -- verifies that the parents of the subtypes are frozen before the
10163 -- enclosing record is frozen.
10165 if not Is_Type
(Scope
(Def_Id
)) then
10166 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
10168 if Is_Private_Type
(T
)
10169 and then Present
(Full_View
(T
))
10171 Conditional_Delay
(Def_Id
, Full_View
(T
));
10173 Conditional_Delay
(Def_Id
, T
);
10177 if Is_Record_Type
(T
) then
10178 Set_Is_Limited_Record
(Def_Id
, Is_Limited_Record
(T
));
10181 and then not Is_Empty_Elmt_List
(Elist
)
10182 and then not For_Access
10184 Create_Constrained_Components
(Def_Id
, Related_Nod
, T
, Elist
);
10185 elsif not For_Access
then
10186 Set_Cloned_Subtype
(Def_Id
, T
);
10189 end Build_Discriminated_Subtype
;
10191 ---------------------------
10192 -- Build_Itype_Reference --
10193 ---------------------------
10195 procedure Build_Itype_Reference
10199 IR
: constant Node_Id
:= Make_Itype_Reference
(Sloc
(Nod
));
10202 -- Itype references are only created for use by the back-end
10204 if Inside_A_Generic
then
10207 Set_Itype
(IR
, Ityp
);
10208 Insert_After
(Nod
, IR
);
10210 end Build_Itype_Reference
;
10212 ------------------------
10213 -- Build_Scalar_Bound --
10214 ------------------------
10216 function Build_Scalar_Bound
10219 Der_T
: Entity_Id
) return Node_Id
10221 New_Bound
: Entity_Id
;
10224 -- Note: not clear why this is needed, how can the original bound
10225 -- be unanalyzed at this point? and if it is, what business do we
10226 -- have messing around with it? and why is the base type of the
10227 -- parent type the right type for the resolution. It probably is
10228 -- not. It is OK for the new bound we are creating, but not for
10229 -- the old one??? Still if it never happens, no problem.
10231 Analyze_And_Resolve
(Bound
, Base_Type
(Par_T
));
10233 if Nkind_In
(Bound
, N_Integer_Literal
, N_Real_Literal
) then
10234 New_Bound
:= New_Copy
(Bound
);
10235 Set_Etype
(New_Bound
, Der_T
);
10236 Set_Analyzed
(New_Bound
);
10238 elsif Is_Entity_Name
(Bound
) then
10239 New_Bound
:= OK_Convert_To
(Der_T
, New_Copy
(Bound
));
10241 -- The following is almost certainly wrong. What business do we have
10242 -- relocating a node (Bound) that is presumably still attached to
10243 -- the tree elsewhere???
10246 New_Bound
:= OK_Convert_To
(Der_T
, Relocate_Node
(Bound
));
10249 Set_Etype
(New_Bound
, Der_T
);
10251 end Build_Scalar_Bound
;
10253 --------------------------------
10254 -- Build_Underlying_Full_View --
10255 --------------------------------
10257 procedure Build_Underlying_Full_View
10262 Loc
: constant Source_Ptr
:= Sloc
(N
);
10263 Subt
: constant Entity_Id
:=
10264 Make_Defining_Identifier
10265 (Loc
, New_External_Name
(Chars
(Typ
), 'S'));
10272 procedure Set_Discriminant_Name
(Id
: Node_Id
);
10273 -- If the derived type has discriminants, they may rename discriminants
10274 -- of the parent. When building the full view of the parent, we need to
10275 -- recover the names of the original discriminants if the constraint is
10276 -- given by named associations.
10278 ---------------------------
10279 -- Set_Discriminant_Name --
10280 ---------------------------
10282 procedure Set_Discriminant_Name
(Id
: Node_Id
) is
10286 Set_Original_Discriminant
(Id
, Empty
);
10288 if Has_Discriminants
(Typ
) then
10289 Disc
:= First_Discriminant
(Typ
);
10290 while Present
(Disc
) loop
10291 if Chars
(Disc
) = Chars
(Id
)
10292 and then Present
(Corresponding_Discriminant
(Disc
))
10294 Set_Chars
(Id
, Chars
(Corresponding_Discriminant
(Disc
)));
10296 Next_Discriminant
(Disc
);
10299 end Set_Discriminant_Name
;
10301 -- Start of processing for Build_Underlying_Full_View
10304 if Nkind
(N
) = N_Full_Type_Declaration
then
10305 Constr
:= Constraint
(Subtype_Indication
(Type_Definition
(N
)));
10307 elsif Nkind
(N
) = N_Subtype_Declaration
then
10308 Constr
:= New_Copy_Tree
(Constraint
(Subtype_Indication
(N
)));
10310 elsif Nkind
(N
) = N_Component_Declaration
then
10313 (Constraint
(Subtype_Indication
(Component_Definition
(N
))));
10316 raise Program_Error
;
10319 C
:= First
(Constraints
(Constr
));
10320 while Present
(C
) loop
10321 if Nkind
(C
) = N_Discriminant_Association
then
10322 Id
:= First
(Selector_Names
(C
));
10323 while Present
(Id
) loop
10324 Set_Discriminant_Name
(Id
);
10333 Make_Subtype_Declaration
(Loc
,
10334 Defining_Identifier
=> Subt
,
10335 Subtype_Indication
=>
10336 Make_Subtype_Indication
(Loc
,
10337 Subtype_Mark
=> New_Occurrence_Of
(Par
, Loc
),
10338 Constraint
=> New_Copy_Tree
(Constr
)));
10340 -- If this is a component subtype for an outer itype, it is not
10341 -- a list member, so simply set the parent link for analysis: if
10342 -- the enclosing type does not need to be in a declarative list,
10343 -- neither do the components.
10345 if Is_List_Member
(N
)
10346 and then Nkind
(N
) /= N_Component_Declaration
10348 Insert_Before
(N
, Indic
);
10350 Set_Parent
(Indic
, Parent
(N
));
10354 Set_Underlying_Full_View
(Typ
, Full_View
(Subt
));
10355 Set_Is_Underlying_Full_View
(Full_View
(Subt
));
10356 end Build_Underlying_Full_View
;
10358 -------------------------------
10359 -- Check_Abstract_Overriding --
10360 -------------------------------
10362 procedure Check_Abstract_Overriding
(T
: Entity_Id
) is
10363 Alias_Subp
: Entity_Id
;
10365 Op_List
: Elist_Id
;
10367 Type_Def
: Node_Id
;
10369 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
);
10370 -- Ada 2012 (AI05-0030): Subprogram Subp overrides an interface routine
10371 -- which has pragma Implemented already set. Check whether Subp's entity
10372 -- kind conforms to the implementation kind of the overridden routine.
10374 procedure Check_Pragma_Implemented
10376 Iface_Subp
: Entity_Id
);
10377 -- Ada 2012 (AI05-0030): Subprogram Subp overrides interface routine
10378 -- Iface_Subp and both entities have pragma Implemented already set on
10379 -- them. Check whether the two implementation kinds are conforming.
10381 procedure Inherit_Pragma_Implemented
10383 Iface_Subp
: Entity_Id
);
10384 -- Ada 2012 (AI05-0030): Interface primitive Subp overrides interface
10385 -- subprogram Iface_Subp which has been marked by pragma Implemented.
10386 -- Propagate the implementation kind of Iface_Subp to Subp.
10388 ------------------------------
10389 -- Check_Pragma_Implemented --
10390 ------------------------------
10392 procedure Check_Pragma_Implemented
(Subp
: Entity_Id
) is
10393 Iface_Alias
: constant Entity_Id
:= Interface_Alias
(Subp
);
10394 Impl_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Alias
);
10395 Subp_Alias
: constant Entity_Id
:= Alias
(Subp
);
10396 Contr_Typ
: Entity_Id
;
10397 Impl_Subp
: Entity_Id
;
10400 -- Subp must have an alias since it is a hidden entity used to link
10401 -- an interface subprogram to its overriding counterpart.
10403 pragma Assert
(Present
(Subp_Alias
));
10405 -- Handle aliases to synchronized wrappers
10407 Impl_Subp
:= Subp_Alias
;
10409 if Is_Primitive_Wrapper
(Impl_Subp
) then
10410 Impl_Subp
:= Wrapped_Entity
(Impl_Subp
);
10413 -- Extract the type of the controlling formal
10415 Contr_Typ
:= Etype
(First_Formal
(Subp_Alias
));
10417 if Is_Concurrent_Record_Type
(Contr_Typ
) then
10418 Contr_Typ
:= Corresponding_Concurrent_Type
(Contr_Typ
);
10421 -- An interface subprogram whose implementation kind is By_Entry must
10422 -- be implemented by an entry.
10424 if Impl_Kind
= Name_By_Entry
10425 and then Ekind
(Impl_Subp
) /= E_Entry
10427 Error_Msg_Node_2
:= Iface_Alias
;
10429 ("type & must implement abstract subprogram & with an entry",
10430 Subp_Alias
, Contr_Typ
);
10432 elsif Impl_Kind
= Name_By_Protected_Procedure
then
10434 -- An interface subprogram whose implementation kind is By_
10435 -- Protected_Procedure cannot be implemented by a primitive
10436 -- procedure of a task type.
10438 if Ekind
(Contr_Typ
) /= E_Protected_Type
then
10439 Error_Msg_Node_2
:= Contr_Typ
;
10441 ("interface subprogram & cannot be implemented by a " &
10442 "primitive procedure of task type &", Subp_Alias
,
10445 -- An interface subprogram whose implementation kind is By_
10446 -- Protected_Procedure must be implemented by a procedure.
10448 elsif Ekind
(Impl_Subp
) /= E_Procedure
then
10449 Error_Msg_Node_2
:= Iface_Alias
;
10451 ("type & must implement abstract subprogram & with a " &
10452 "procedure", Subp_Alias
, Contr_Typ
);
10454 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10455 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10457 Error_Msg_Name_1
:= Impl_Kind
;
10459 ("overriding operation& must have synchronization%",
10463 -- If primitive has Optional synchronization, overriding operation
10464 -- must match if it has an explicit synchronization..
10466 elsif Present
(Get_Rep_Pragma
(Impl_Subp
, Name_Implemented
))
10467 and then Implementation_Kind
(Impl_Subp
) /= Impl_Kind
10469 Error_Msg_Name_1
:= Impl_Kind
;
10471 ("overriding operation& must have syncrhonization%",
10474 end Check_Pragma_Implemented
;
10476 ------------------------------
10477 -- Check_Pragma_Implemented --
10478 ------------------------------
10480 procedure Check_Pragma_Implemented
10482 Iface_Subp
: Entity_Id
)
10484 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10485 Subp_Kind
: constant Name_Id
:= Implementation_Kind
(Subp
);
10488 -- Ada 2012 (AI05-0030): The implementation kinds of an overridden
10489 -- and overriding subprogram are different. In general this is an
10490 -- error except when the implementation kind of the overridden
10491 -- subprograms is By_Any or Optional.
10493 if Iface_Kind
/= Subp_Kind
10494 and then Iface_Kind
/= Name_By_Any
10495 and then Iface_Kind
/= Name_Optional
10497 if Iface_Kind
= Name_By_Entry
then
10499 ("incompatible implementation kind, overridden subprogram " &
10500 "is marked By_Entry", Subp
);
10503 ("incompatible implementation kind, overridden subprogram " &
10504 "is marked By_Protected_Procedure", Subp
);
10507 end Check_Pragma_Implemented
;
10509 --------------------------------
10510 -- Inherit_Pragma_Implemented --
10511 --------------------------------
10513 procedure Inherit_Pragma_Implemented
10515 Iface_Subp
: Entity_Id
)
10517 Iface_Kind
: constant Name_Id
:= Implementation_Kind
(Iface_Subp
);
10518 Loc
: constant Source_Ptr
:= Sloc
(Subp
);
10519 Impl_Prag
: Node_Id
;
10522 -- Since the implementation kind is stored as a representation item
10523 -- rather than a flag, create a pragma node.
10527 Chars
=> Name_Implemented
,
10528 Pragma_Argument_Associations
=> New_List
(
10529 Make_Pragma_Argument_Association
(Loc
,
10530 Expression
=> New_Occurrence_Of
(Subp
, Loc
)),
10532 Make_Pragma_Argument_Association
(Loc
,
10533 Expression
=> Make_Identifier
(Loc
, Iface_Kind
))));
10535 -- The pragma doesn't need to be analyzed because it is internally
10536 -- built. It is safe to directly register it as a rep item since we
10537 -- are only interested in the characters of the implementation kind.
10539 Record_Rep_Item
(Subp
, Impl_Prag
);
10540 end Inherit_Pragma_Implemented
;
10542 -- Start of processing for Check_Abstract_Overriding
10545 Op_List
:= Primitive_Operations
(T
);
10547 -- Loop to check primitive operations
10549 Elmt
:= First_Elmt
(Op_List
);
10550 while Present
(Elmt
) loop
10551 Subp
:= Node
(Elmt
);
10552 Alias_Subp
:= Alias
(Subp
);
10554 -- Inherited subprograms are identified by the fact that they do not
10555 -- come from source, and the associated source location is the
10556 -- location of the first subtype of the derived type.
10558 -- Ada 2005 (AI-228): Apply the rules of RM-3.9.3(6/2) for
10559 -- subprograms that "require overriding".
10561 -- Special exception, do not complain about failure to override the
10562 -- stream routines _Input and _Output, as well as the primitive
10563 -- operations used in dispatching selects since we always provide
10564 -- automatic overridings for these subprograms.
10566 -- The partial view of T may have been a private extension, for
10567 -- which inherited functions dispatching on result are abstract.
10568 -- If the full view is a null extension, there is no need for
10569 -- overriding in Ada 2005, but wrappers need to be built for them
10570 -- (see exp_ch3, Build_Controlling_Function_Wrappers).
10572 if Is_Null_Extension
(T
)
10573 and then Has_Controlling_Result
(Subp
)
10574 and then Ada_Version
>= Ada_2005
10575 and then Present
(Alias_Subp
)
10576 and then not Comes_From_Source
(Subp
)
10577 and then not Is_Abstract_Subprogram
(Alias_Subp
)
10578 and then not Is_Access_Type
(Etype
(Subp
))
10582 -- Ada 2005 (AI-251): Internal entities of interfaces need no
10583 -- processing because this check is done with the aliased
10586 elsif Present
(Interface_Alias
(Subp
)) then
10589 elsif (Is_Abstract_Subprogram
(Subp
)
10590 or else Requires_Overriding
(Subp
)
10592 (Has_Controlling_Result
(Subp
)
10593 and then Present
(Alias_Subp
)
10594 and then not Comes_From_Source
(Subp
)
10595 and then Sloc
(Subp
) = Sloc
(First_Subtype
(T
))))
10596 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
10597 and then not Is_TSS
(Subp
, TSS_Stream_Output
)
10598 and then not Is_Abstract_Type
(T
)
10599 and then not Is_Predefined_Interface_Primitive
(Subp
)
10601 -- Ada 2005 (AI-251): Do not consider hidden entities associated
10602 -- with abstract interface types because the check will be done
10603 -- with the aliased entity (otherwise we generate a duplicated
10606 and then not Present
(Interface_Alias
(Subp
))
10608 if Present
(Alias_Subp
) then
10610 -- Only perform the check for a derived subprogram when the
10611 -- type has an explicit record extension. This avoids incorrect
10612 -- flagging of abstract subprograms for the case of a type
10613 -- without an extension that is derived from a formal type
10614 -- with a tagged actual (can occur within a private part).
10616 -- Ada 2005 (AI-391): In the case of an inherited function with
10617 -- a controlling result of the type, the rule does not apply if
10618 -- the type is a null extension (unless the parent function
10619 -- itself is abstract, in which case the function must still be
10620 -- be overridden). The expander will generate an overriding
10621 -- wrapper function calling the parent subprogram (see
10622 -- Exp_Ch3.Make_Controlling_Wrapper_Functions).
10624 Type_Def
:= Type_Definition
(Parent
(T
));
10626 if Nkind
(Type_Def
) = N_Derived_Type_Definition
10627 and then Present
(Record_Extension_Part
(Type_Def
))
10629 (Ada_Version
< Ada_2005
10630 or else not Is_Null_Extension
(T
)
10631 or else Ekind
(Subp
) = E_Procedure
10632 or else not Has_Controlling_Result
(Subp
)
10633 or else Is_Abstract_Subprogram
(Alias_Subp
)
10634 or else Requires_Overriding
(Subp
)
10635 or else Is_Access_Type
(Etype
(Subp
)))
10637 -- Avoid reporting error in case of abstract predefined
10638 -- primitive inherited from interface type because the
10639 -- body of internally generated predefined primitives
10640 -- of tagged types are generated later by Freeze_Type
10642 if Is_Interface
(Root_Type
(T
))
10643 and then Is_Abstract_Subprogram
(Subp
)
10644 and then Is_Predefined_Dispatching_Operation
(Subp
)
10645 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
10649 -- A null extension is not obliged to override an inherited
10650 -- procedure subject to pragma Extensions_Visible with value
10651 -- False and at least one controlling OUT parameter
10652 -- (SPARK RM 6.1.7(6)).
10654 elsif Is_Null_Extension
(T
)
10655 and then Is_EVF_Procedure
(Subp
)
10661 ("type must be declared abstract or & overridden",
10664 -- Traverse the whole chain of aliased subprograms to
10665 -- complete the error notification. This is especially
10666 -- useful for traceability of the chain of entities when
10667 -- the subprogram corresponds with an interface
10668 -- subprogram (which may be defined in another package).
10670 if Present
(Alias_Subp
) then
10676 while Present
(Alias
(E
)) loop
10678 -- Avoid reporting redundant errors on entities
10679 -- inherited from interfaces
10681 if Sloc
(E
) /= Sloc
(T
) then
10682 Error_Msg_Sloc
:= Sloc
(E
);
10684 ("\& has been inherited #", T
, Subp
);
10690 Error_Msg_Sloc
:= Sloc
(E
);
10692 -- AI05-0068: report if there is an overriding
10693 -- non-abstract subprogram that is invisible.
10696 and then not Is_Abstract_Subprogram
(E
)
10699 ("\& subprogram# is not visible",
10702 -- Clarify the case where a non-null extension must
10703 -- override inherited procedure subject to pragma
10704 -- Extensions_Visible with value False and at least
10705 -- one controlling OUT param.
10707 elsif Is_EVF_Procedure
(E
) then
10709 ("\& # is subject to Extensions_Visible False",
10714 ("\& has been inherited from subprogram #",
10721 -- Ada 2005 (AI-345): Protected or task type implementing
10722 -- abstract interfaces.
10724 elsif Is_Concurrent_Record_Type
(T
)
10725 and then Present
(Interfaces
(T
))
10727 -- There is no need to check here RM 9.4(11.9/3) since we
10728 -- are processing the corresponding record type and the
10729 -- mode of the overriding subprograms was verified by
10730 -- Check_Conformance when the corresponding concurrent
10731 -- type declaration was analyzed.
10734 ("interface subprogram & must be overridden", T
, Subp
);
10736 -- Examine primitive operations of synchronized type to find
10737 -- homonyms that have the wrong profile.
10743 Prim
:= First_Entity
(Corresponding_Concurrent_Type
(T
));
10744 while Present
(Prim
) loop
10745 if Chars
(Prim
) = Chars
(Subp
) then
10747 ("profile is not type conformant with prefixed "
10748 & "view profile of inherited operation&",
10752 Next_Entity
(Prim
);
10758 Error_Msg_Node_2
:= T
;
10760 ("abstract subprogram& not allowed for type&", Subp
);
10762 -- Also post unconditional warning on the type (unconditional
10763 -- so that if there are more than one of these cases, we get
10764 -- them all, and not just the first one).
10766 Error_Msg_Node_2
:= Subp
;
10767 Error_Msg_N
("nonabstract type& has abstract subprogram&!", T
);
10770 -- A subprogram subject to pragma Extensions_Visible with value
10771 -- "True" cannot override a subprogram subject to the same pragma
10772 -- with value "False" (SPARK RM 6.1.7(5)).
10774 elsif Extensions_Visible_Status
(Subp
) = Extensions_Visible_True
10775 and then Present
(Overridden_Operation
(Subp
))
10776 and then Extensions_Visible_Status
(Overridden_Operation
(Subp
)) =
10777 Extensions_Visible_False
10779 Error_Msg_Sloc
:= Sloc
(Overridden_Operation
(Subp
));
10781 ("subprogram & with Extensions_Visible True cannot override "
10782 & "subprogram # with Extensions_Visible False", Subp
);
10785 -- Ada 2012 (AI05-0030): Perform checks related to pragma Implemented
10787 -- Subp is an expander-generated procedure which maps an interface
10788 -- alias to a protected wrapper. The interface alias is flagged by
10789 -- pragma Implemented. Ensure that Subp is a procedure when the
10790 -- implementation kind is By_Protected_Procedure or an entry when
10793 if Ada_Version
>= Ada_2012
10794 and then Is_Hidden
(Subp
)
10795 and then Present
(Interface_Alias
(Subp
))
10796 and then Has_Rep_Pragma
(Interface_Alias
(Subp
), Name_Implemented
)
10798 Check_Pragma_Implemented
(Subp
);
10801 -- Subp is an interface primitive which overrides another interface
10802 -- primitive marked with pragma Implemented.
10804 if Ada_Version
>= Ada_2012
10805 and then Present
(Overridden_Operation
(Subp
))
10806 and then Has_Rep_Pragma
10807 (Overridden_Operation
(Subp
), Name_Implemented
)
10809 -- If the overriding routine is also marked by Implemented, check
10810 -- that the two implementation kinds are conforming.
10812 if Has_Rep_Pragma
(Subp
, Name_Implemented
) then
10813 Check_Pragma_Implemented
10815 Iface_Subp
=> Overridden_Operation
(Subp
));
10817 -- Otherwise the overriding routine inherits the implementation
10818 -- kind from the overridden subprogram.
10821 Inherit_Pragma_Implemented
10823 Iface_Subp
=> Overridden_Operation
(Subp
));
10827 -- If the operation is a wrapper for a synchronized primitive, it
10828 -- may be called indirectly through a dispatching select. We assume
10829 -- that it will be referenced elsewhere indirectly, and suppress
10830 -- warnings about an unused entity.
10832 if Is_Primitive_Wrapper
(Subp
)
10833 and then Present
(Wrapped_Entity
(Subp
))
10835 Set_Referenced
(Wrapped_Entity
(Subp
));
10840 end Check_Abstract_Overriding
;
10842 ------------------------------------------------
10843 -- Check_Access_Discriminant_Requires_Limited --
10844 ------------------------------------------------
10846 procedure Check_Access_Discriminant_Requires_Limited
10851 -- A discriminant_specification for an access discriminant shall appear
10852 -- only in the declaration for a task or protected type, or for a type
10853 -- with the reserved word 'limited' in its definition or in one of its
10854 -- ancestors (RM 3.7(10)).
10856 -- AI-0063: The proper condition is that type must be immutably limited,
10857 -- or else be a partial view.
10859 if Nkind
(Discriminant_Type
(D
)) = N_Access_Definition
then
10860 if Is_Limited_View
(Current_Scope
)
10862 (Nkind
(Parent
(Current_Scope
)) = N_Private_Type_Declaration
10863 and then Limited_Present
(Parent
(Current_Scope
)))
10869 ("access discriminants allowed only for limited types", Loc
);
10872 end Check_Access_Discriminant_Requires_Limited
;
10874 -----------------------------------
10875 -- Check_Aliased_Component_Types --
10876 -----------------------------------
10878 procedure Check_Aliased_Component_Types
(T
: Entity_Id
) is
10882 -- ??? Also need to check components of record extensions, but not
10883 -- components of protected types (which are always limited).
10885 -- Ada 2005: AI-363 relaxes this rule, to allow heap objects of such
10886 -- types to be unconstrained. This is safe because it is illegal to
10887 -- create access subtypes to such types with explicit discriminant
10890 if not Is_Limited_Type
(T
) then
10891 if Ekind
(T
) = E_Record_Type
then
10892 C
:= First_Component
(T
);
10893 while Present
(C
) loop
10895 and then Has_Discriminants
(Etype
(C
))
10896 and then not Is_Constrained
(Etype
(C
))
10897 and then not In_Instance_Body
10898 and then Ada_Version
< Ada_2005
10901 ("aliased component must be constrained (RM 3.6(11))",
10905 Next_Component
(C
);
10908 elsif Ekind
(T
) = E_Array_Type
then
10909 if Has_Aliased_Components
(T
)
10910 and then Has_Discriminants
(Component_Type
(T
))
10911 and then not Is_Constrained
(Component_Type
(T
))
10912 and then not In_Instance_Body
10913 and then Ada_Version
< Ada_2005
10916 ("aliased component type must be constrained (RM 3.6(11))",
10921 end Check_Aliased_Component_Types
;
10923 ---------------------------------------
10924 -- Check_Anonymous_Access_Components --
10925 ---------------------------------------
10927 procedure Check_Anonymous_Access_Components
10928 (Typ_Decl
: Node_Id
;
10931 Comp_List
: Node_Id
)
10933 Loc
: constant Source_Ptr
:= Sloc
(Typ_Decl
);
10934 Anon_Access
: Entity_Id
;
10937 Comp_Def
: Node_Id
;
10939 Type_Def
: Node_Id
;
10941 procedure Build_Incomplete_Type_Declaration
;
10942 -- If the record type contains components that include an access to the
10943 -- current record, then create an incomplete type declaration for the
10944 -- record, to be used as the designated type of the anonymous access.
10945 -- This is done only once, and only if there is no previous partial
10946 -- view of the type.
10948 function Designates_T
(Subt
: Node_Id
) return Boolean;
10949 -- Check whether a node designates the enclosing record type, or 'Class
10952 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean;
10953 -- Check whether an access definition includes a reference to
10954 -- the enclosing record type. The reference can be a subtype mark
10955 -- in the access definition itself, a 'Class attribute reference, or
10956 -- recursively a reference appearing in a parameter specification
10957 -- or result definition of an access_to_subprogram definition.
10959 --------------------------------------
10960 -- Build_Incomplete_Type_Declaration --
10961 --------------------------------------
10963 procedure Build_Incomplete_Type_Declaration
is
10968 -- Is_Tagged indicates whether the type is tagged. It is tagged if
10969 -- it's "is new ... with record" or else "is tagged record ...".
10971 Is_Tagged
: constant Boolean :=
10972 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Derived_Type_Definition
10974 Present
(Record_Extension_Part
(Type_Definition
(Typ_Decl
))))
10976 (Nkind
(Type_Definition
(Typ_Decl
)) = N_Record_Definition
10977 and then Tagged_Present
(Type_Definition
(Typ_Decl
)));
10980 -- If there is a previous partial view, no need to create a new one
10981 -- If the partial view, given by Prev, is incomplete, If Prev is
10982 -- a private declaration, full declaration is flagged accordingly.
10984 if Prev
/= Typ
then
10986 Make_Class_Wide_Type
(Prev
);
10987 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Prev
));
10988 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
10993 elsif Has_Private_Declaration
(Typ
) then
10995 -- If we refer to T'Class inside T, and T is the completion of a
10996 -- private type, then make sure the class-wide type exists.
10999 Make_Class_Wide_Type
(Typ
);
11004 -- If there was a previous anonymous access type, the incomplete
11005 -- type declaration will have been created already.
11007 elsif Present
(Current_Entity
(Typ
))
11008 and then Ekind
(Current_Entity
(Typ
)) = E_Incomplete_Type
11009 and then Full_View
(Current_Entity
(Typ
)) = Typ
11012 and then Comes_From_Source
(Current_Entity
(Typ
))
11013 and then not Is_Tagged_Type
(Current_Entity
(Typ
))
11015 Make_Class_Wide_Type
(Typ
);
11017 ("incomplete view of tagged type should be declared tagged??",
11018 Parent
(Current_Entity
(Typ
)));
11023 Inc_T
:= Make_Defining_Identifier
(Loc
, Chars
(Typ
));
11024 Decl
:= Make_Incomplete_Type_Declaration
(Loc
, Inc_T
);
11026 -- Type has already been inserted into the current scope. Remove
11027 -- it, and add incomplete declaration for type, so that subsequent
11028 -- anonymous access types can use it. The entity is unchained from
11029 -- the homonym list and from immediate visibility. After analysis,
11030 -- the entity in the incomplete declaration becomes immediately
11031 -- visible in the record declaration that follows.
11033 H
:= Current_Entity
(Typ
);
11036 Set_Name_Entity_Id
(Chars
(Typ
), Homonym
(Typ
));
11039 and then Homonym
(H
) /= Typ
11041 H
:= Homonym
(Typ
);
11044 Set_Homonym
(H
, Homonym
(Typ
));
11047 Insert_Before
(Typ_Decl
, Decl
);
11049 Set_Full_View
(Inc_T
, Typ
);
11053 -- Create a common class-wide type for both views, and set the
11054 -- Etype of the class-wide type to the full view.
11056 Make_Class_Wide_Type
(Inc_T
);
11057 Set_Class_Wide_Type
(Typ
, Class_Wide_Type
(Inc_T
));
11058 Set_Etype
(Class_Wide_Type
(Typ
), Typ
);
11061 end Build_Incomplete_Type_Declaration
;
11067 function Designates_T
(Subt
: Node_Id
) return Boolean is
11068 Type_Id
: constant Name_Id
:= Chars
(Typ
);
11070 function Names_T
(Nam
: Node_Id
) return Boolean;
11071 -- The record type has not been introduced in the current scope
11072 -- yet, so we must examine the name of the type itself, either
11073 -- an identifier T, or an expanded name of the form P.T, where
11074 -- P denotes the current scope.
11080 function Names_T
(Nam
: Node_Id
) return Boolean is
11082 if Nkind
(Nam
) = N_Identifier
then
11083 return Chars
(Nam
) = Type_Id
;
11085 elsif Nkind
(Nam
) = N_Selected_Component
then
11086 if Chars
(Selector_Name
(Nam
)) = Type_Id
then
11087 if Nkind
(Prefix
(Nam
)) = N_Identifier
then
11088 return Chars
(Prefix
(Nam
)) = Chars
(Current_Scope
);
11090 elsif Nkind
(Prefix
(Nam
)) = N_Selected_Component
then
11091 return Chars
(Selector_Name
(Prefix
(Nam
))) =
11092 Chars
(Current_Scope
);
11106 -- Start of processing for Designates_T
11109 if Nkind
(Subt
) = N_Identifier
then
11110 return Chars
(Subt
) = Type_Id
;
11112 -- Reference can be through an expanded name which has not been
11113 -- analyzed yet, and which designates enclosing scopes.
11115 elsif Nkind
(Subt
) = N_Selected_Component
then
11116 if Names_T
(Subt
) then
11119 -- Otherwise it must denote an entity that is already visible.
11120 -- The access definition may name a subtype of the enclosing
11121 -- type, if there is a previous incomplete declaration for it.
11124 Find_Selected_Component
(Subt
);
11126 Is_Entity_Name
(Subt
)
11127 and then Scope
(Entity
(Subt
)) = Current_Scope
11129 (Chars
(Base_Type
(Entity
(Subt
))) = Type_Id
11131 (Is_Class_Wide_Type
(Entity
(Subt
))
11133 Chars
(Etype
(Base_Type
(Entity
(Subt
)))) =
11137 -- A reference to the current type may appear as the prefix of
11138 -- a 'Class attribute.
11140 elsif Nkind
(Subt
) = N_Attribute_Reference
11141 and then Attribute_Name
(Subt
) = Name_Class
11143 return Names_T
(Prefix
(Subt
));
11154 function Mentions_T
(Acc_Def
: Node_Id
) return Boolean is
11155 Param_Spec
: Node_Id
;
11157 Acc_Subprg
: constant Node_Id
:=
11158 Access_To_Subprogram_Definition
(Acc_Def
);
11161 if No
(Acc_Subprg
) then
11162 return Designates_T
(Subtype_Mark
(Acc_Def
));
11165 -- Component is an access_to_subprogram: examine its formals,
11166 -- and result definition in the case of an access_to_function.
11168 Param_Spec
:= First
(Parameter_Specifications
(Acc_Subprg
));
11169 while Present
(Param_Spec
) loop
11170 if Nkind
(Parameter_Type
(Param_Spec
)) = N_Access_Definition
11171 and then Mentions_T
(Parameter_Type
(Param_Spec
))
11175 elsif Designates_T
(Parameter_Type
(Param_Spec
)) then
11182 if Nkind
(Acc_Subprg
) = N_Access_Function_Definition
then
11183 if Nkind
(Result_Definition
(Acc_Subprg
)) =
11184 N_Access_Definition
11186 return Mentions_T
(Result_Definition
(Acc_Subprg
));
11188 return Designates_T
(Result_Definition
(Acc_Subprg
));
11195 -- Start of processing for Check_Anonymous_Access_Components
11198 if No
(Comp_List
) then
11202 Comp
:= First
(Component_Items
(Comp_List
));
11203 while Present
(Comp
) loop
11204 if Nkind
(Comp
) = N_Component_Declaration
11206 (Access_Definition
(Component_Definition
(Comp
)))
11208 Mentions_T
(Access_Definition
(Component_Definition
(Comp
)))
11210 Comp_Def
:= Component_Definition
(Comp
);
11212 Access_To_Subprogram_Definition
(Access_Definition
(Comp_Def
));
11214 Build_Incomplete_Type_Declaration
;
11215 Anon_Access
:= Make_Temporary
(Loc
, 'S');
11217 -- Create a declaration for the anonymous access type: either
11218 -- an access_to_object or an access_to_subprogram.
11220 if Present
(Acc_Def
) then
11221 if Nkind
(Acc_Def
) = N_Access_Function_Definition
then
11223 Make_Access_Function_Definition
(Loc
,
11224 Parameter_Specifications
=>
11225 Parameter_Specifications
(Acc_Def
),
11226 Result_Definition
=> Result_Definition
(Acc_Def
));
11229 Make_Access_Procedure_Definition
(Loc
,
11230 Parameter_Specifications
=>
11231 Parameter_Specifications
(Acc_Def
));
11236 Make_Access_To_Object_Definition
(Loc
,
11237 Subtype_Indication
=>
11239 (Subtype_Mark
(Access_Definition
(Comp_Def
))));
11241 Set_Constant_Present
11242 (Type_Def
, Constant_Present
(Access_Definition
(Comp_Def
)));
11244 (Type_Def
, All_Present
(Access_Definition
(Comp_Def
)));
11247 Set_Null_Exclusion_Present
11249 Null_Exclusion_Present
(Access_Definition
(Comp_Def
)));
11252 Make_Full_Type_Declaration
(Loc
,
11253 Defining_Identifier
=> Anon_Access
,
11254 Type_Definition
=> Type_Def
);
11256 Insert_Before
(Typ_Decl
, Decl
);
11259 -- If an access to subprogram, create the extra formals
11261 if Present
(Acc_Def
) then
11262 Create_Extra_Formals
(Designated_Type
(Anon_Access
));
11264 -- If an access to object, preserve entity of designated type,
11265 -- for ASIS use, before rewriting the component definition.
11272 Desig
:= Entity
(Subtype_Indication
(Type_Def
));
11274 -- If the access definition is to the current record,
11275 -- the visible entity at this point is an incomplete
11276 -- type. Retrieve the full view to simplify ASIS queries
11278 if Ekind
(Desig
) = E_Incomplete_Type
then
11279 Desig
:= Full_View
(Desig
);
11283 (Subtype_Mark
(Access_Definition
(Comp_Def
)), Desig
);
11288 Make_Component_Definition
(Loc
,
11289 Subtype_Indication
=>
11290 New_Occurrence_Of
(Anon_Access
, Loc
)));
11292 if Ekind
(Designated_Type
(Anon_Access
)) = E_Subprogram_Type
then
11293 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Subprogram_Type
);
11295 Set_Ekind
(Anon_Access
, E_Anonymous_Access_Type
);
11298 Set_Is_Local_Anonymous_Access
(Anon_Access
);
11304 if Present
(Variant_Part
(Comp_List
)) then
11308 V
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
11309 while Present
(V
) loop
11310 Check_Anonymous_Access_Components
11311 (Typ_Decl
, Typ
, Prev
, Component_List
(V
));
11312 Next_Non_Pragma
(V
);
11316 end Check_Anonymous_Access_Components
;
11318 ----------------------
11319 -- Check_Completion --
11320 ----------------------
11322 procedure Check_Completion
(Body_Id
: Node_Id
:= Empty
) is
11325 procedure Post_Error
;
11326 -- Post error message for lack of completion for entity E
11332 procedure Post_Error
is
11333 procedure Missing_Body
;
11334 -- Output missing body message
11340 procedure Missing_Body
is
11342 -- Spec is in same unit, so we can post on spec
11344 if In_Same_Source_Unit
(Body_Id
, E
) then
11345 Error_Msg_N
("missing body for &", E
);
11347 -- Spec is in a separate unit, so we have to post on the body
11350 Error_Msg_NE
("missing body for & declared#!", Body_Id
, E
);
11354 -- Start of processing for Post_Error
11357 if not Comes_From_Source
(E
) then
11358 if Ekind_In
(E
, E_Task_Type
, E_Protected_Type
) then
11360 -- It may be an anonymous protected type created for a
11361 -- single variable. Post error on variable, if present.
11367 Var
:= First_Entity
(Current_Scope
);
11368 while Present
(Var
) loop
11369 exit when Etype
(Var
) = E
11370 and then Comes_From_Source
(Var
);
11375 if Present
(Var
) then
11382 -- If a generated entity has no completion, then either previous
11383 -- semantic errors have disabled the expansion phase, or else we had
11384 -- missing subunits, or else we are compiling without expansion,
11385 -- or else something is very wrong.
11387 if not Comes_From_Source
(E
) then
11389 (Serious_Errors_Detected
> 0
11390 or else Configurable_Run_Time_Violations
> 0
11391 or else Subunits_Missing
11392 or else not Expander_Active
);
11395 -- Here for source entity
11398 -- Here if no body to post the error message, so we post the error
11399 -- on the declaration that has no completion. This is not really
11400 -- the right place to post it, think about this later ???
11402 if No
(Body_Id
) then
11403 if Is_Type
(E
) then
11405 ("missing full declaration for }", Parent
(E
), E
);
11407 Error_Msg_NE
("missing body for &", Parent
(E
), E
);
11410 -- Package body has no completion for a declaration that appears
11411 -- in the corresponding spec. Post error on the body, with a
11412 -- reference to the non-completed declaration.
11415 Error_Msg_Sloc
:= Sloc
(E
);
11417 if Is_Type
(E
) then
11418 Error_Msg_NE
("missing full declaration for }!", Body_Id
, E
);
11420 elsif Is_Overloadable
(E
)
11421 and then Current_Entity_In_Scope
(E
) /= E
11423 -- It may be that the completion is mistyped and appears as
11424 -- a distinct overloading of the entity.
11427 Candidate
: constant Entity_Id
:=
11428 Current_Entity_In_Scope
(E
);
11429 Decl
: constant Node_Id
:=
11430 Unit_Declaration_Node
(Candidate
);
11433 if Is_Overloadable
(Candidate
)
11434 and then Ekind
(Candidate
) = Ekind
(E
)
11435 and then Nkind
(Decl
) = N_Subprogram_Body
11436 and then Acts_As_Spec
(Decl
)
11438 Check_Type_Conformant
(Candidate
, E
);
11454 Pack_Id
: constant Entity_Id
:= Current_Scope
;
11456 -- Start of processing for Check_Completion
11459 E
:= First_Entity
(Pack_Id
);
11460 while Present
(E
) loop
11461 if Is_Intrinsic_Subprogram
(E
) then
11464 -- The following situation requires special handling: a child unit
11465 -- that appears in the context clause of the body of its parent:
11467 -- procedure Parent.Child (...);
11469 -- with Parent.Child;
11470 -- package body Parent is
11472 -- Here Parent.Child appears as a local entity, but should not be
11473 -- flagged as requiring completion, because it is a compilation
11476 -- Ignore missing completion for a subprogram that does not come from
11477 -- source (including the _Call primitive operation of RAS types,
11478 -- which has to have the flag Comes_From_Source for other purposes):
11479 -- we assume that the expander will provide the missing completion.
11480 -- In case of previous errors, other expansion actions that provide
11481 -- bodies for null procedures with not be invoked, so inhibit message
11484 -- Note that E_Operator is not in the list that follows, because
11485 -- this kind is reserved for predefined operators, that are
11486 -- intrinsic and do not need completion.
11488 elsif Ekind_In
(E
, E_Function
,
11490 E_Generic_Function
,
11491 E_Generic_Procedure
)
11493 if Has_Completion
(E
) then
11496 elsif Is_Subprogram
(E
) and then Is_Abstract_Subprogram
(E
) then
11499 elsif Is_Subprogram
(E
)
11500 and then (not Comes_From_Source
(E
)
11501 or else Chars
(E
) = Name_uCall
)
11506 Nkind
(Parent
(Unit_Declaration_Node
(E
))) = N_Compilation_Unit
11510 elsif Nkind
(Parent
(E
)) = N_Procedure_Specification
11511 and then Null_Present
(Parent
(E
))
11512 and then Serious_Errors_Detected
> 0
11520 elsif Is_Entry
(E
) then
11521 if not Has_Completion
(E
) and then
11522 (Ekind
(Scope
(E
)) = E_Protected_Object
11523 or else Ekind
(Scope
(E
)) = E_Protected_Type
)
11528 elsif Is_Package_Or_Generic_Package
(E
) then
11529 if Unit_Requires_Body
(E
) then
11530 if not Has_Completion
(E
)
11531 and then Nkind
(Parent
(Unit_Declaration_Node
(E
))) /=
11537 elsif not Is_Child_Unit
(E
) then
11538 May_Need_Implicit_Body
(E
);
11541 -- A formal incomplete type (Ada 2012) does not require a completion;
11542 -- other incomplete type declarations do.
11544 elsif Ekind
(E
) = E_Incomplete_Type
11545 and then No
(Underlying_Type
(E
))
11546 and then not Is_Generic_Type
(E
)
11550 elsif Ekind_In
(E
, E_Task_Type
, E_Protected_Type
)
11551 and then not Has_Completion
(E
)
11555 -- A single task declared in the current scope is a constant, verify
11556 -- that the body of its anonymous type is in the same scope. If the
11557 -- task is defined elsewhere, this may be a renaming declaration for
11558 -- which no completion is needed.
11560 elsif Ekind
(E
) = E_Constant
11561 and then Ekind
(Etype
(E
)) = E_Task_Type
11562 and then not Has_Completion
(Etype
(E
))
11563 and then Scope
(Etype
(E
)) = Current_Scope
11567 elsif Ekind
(E
) = E_Protected_Object
11568 and then not Has_Completion
(Etype
(E
))
11572 elsif Ekind
(E
) = E_Record_Type
then
11573 if Is_Tagged_Type
(E
) then
11574 Check_Abstract_Overriding
(E
);
11575 Check_Conventions
(E
);
11578 Check_Aliased_Component_Types
(E
);
11580 elsif Ekind
(E
) = E_Array_Type
then
11581 Check_Aliased_Component_Types
(E
);
11587 end Check_Completion
;
11589 ------------------------------------
11590 -- Check_CPP_Type_Has_No_Defaults --
11591 ------------------------------------
11593 procedure Check_CPP_Type_Has_No_Defaults
(T
: Entity_Id
) is
11594 Tdef
: constant Node_Id
:= Type_Definition
(Declaration_Node
(T
));
11599 -- Obtain the component list
11601 if Nkind
(Tdef
) = N_Record_Definition
then
11602 Clist
:= Component_List
(Tdef
);
11603 else pragma Assert
(Nkind
(Tdef
) = N_Derived_Type_Definition
);
11604 Clist
:= Component_List
(Record_Extension_Part
(Tdef
));
11607 -- Check all components to ensure no default expressions
11609 if Present
(Clist
) then
11610 Comp
:= First
(Component_Items
(Clist
));
11611 while Present
(Comp
) loop
11612 if Present
(Expression
(Comp
)) then
11614 ("component of imported 'C'P'P type cannot have "
11615 & "default expression", Expression
(Comp
));
11621 end Check_CPP_Type_Has_No_Defaults
;
11623 ----------------------------
11624 -- Check_Delta_Expression --
11625 ----------------------------
11627 procedure Check_Delta_Expression
(E
: Node_Id
) is
11629 if not (Is_Real_Type
(Etype
(E
))) then
11630 Wrong_Type
(E
, Any_Real
);
11632 elsif not Is_OK_Static_Expression
(E
) then
11633 Flag_Non_Static_Expr
11634 ("non-static expression used for delta value!", E
);
11636 elsif not UR_Is_Positive
(Expr_Value_R
(E
)) then
11637 Error_Msg_N
("delta expression must be positive", E
);
11643 -- If any of above errors occurred, then replace the incorrect
11644 -- expression by the real 0.1, which should prevent further errors.
11647 Make_Real_Literal
(Sloc
(E
), Ureal_Tenth
));
11648 Analyze_And_Resolve
(E
, Standard_Float
);
11649 end Check_Delta_Expression
;
11651 -----------------------------
11652 -- Check_Digits_Expression --
11653 -----------------------------
11655 procedure Check_Digits_Expression
(E
: Node_Id
) is
11657 if not (Is_Integer_Type
(Etype
(E
))) then
11658 Wrong_Type
(E
, Any_Integer
);
11660 elsif not Is_OK_Static_Expression
(E
) then
11661 Flag_Non_Static_Expr
11662 ("non-static expression used for digits value!", E
);
11664 elsif Expr_Value
(E
) <= 0 then
11665 Error_Msg_N
("digits value must be greater than zero", E
);
11671 -- If any of above errors occurred, then replace the incorrect
11672 -- expression by the integer 1, which should prevent further errors.
11674 Rewrite
(E
, Make_Integer_Literal
(Sloc
(E
), 1));
11675 Analyze_And_Resolve
(E
, Standard_Integer
);
11677 end Check_Digits_Expression
;
11679 --------------------------
11680 -- Check_Initialization --
11681 --------------------------
11683 procedure Check_Initialization
(T
: Entity_Id
; Exp
: Node_Id
) is
11685 -- Special processing for limited types
11687 if Is_Limited_Type
(T
)
11688 and then not In_Instance
11689 and then not In_Inlined_Body
11691 if not OK_For_Limited_Init
(T
, Exp
) then
11693 -- In GNAT mode, this is just a warning, to allow it to be evilly
11694 -- turned off. Otherwise it is a real error.
11698 ("??cannot initialize entities of limited type!", Exp
);
11700 elsif Ada_Version
< Ada_2005
then
11702 -- The side effect removal machinery may generate illegal Ada
11703 -- code to avoid the usage of access types and 'reference in
11704 -- SPARK mode. Since this is legal code with respect to theorem
11705 -- proving, do not emit the error.
11708 and then Nkind
(Exp
) = N_Function_Call
11709 and then Nkind
(Parent
(Exp
)) = N_Object_Declaration
11710 and then not Comes_From_Source
11711 (Defining_Identifier
(Parent
(Exp
)))
11717 ("cannot initialize entities of limited type", Exp
);
11718 Explain_Limited_Type
(T
, Exp
);
11722 -- Specialize error message according to kind of illegal
11723 -- initial expression.
11725 if Nkind
(Exp
) = N_Type_Conversion
11726 and then Nkind
(Expression
(Exp
)) = N_Function_Call
11729 ("illegal context for call"
11730 & " to function with limited result", Exp
);
11734 ("initialization of limited object requires aggregate "
11735 & "or function call", Exp
);
11741 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag gets
11742 -- set unless we can be sure that no range check is required.
11744 if (GNATprove_Mode
or not Expander_Active
)
11745 and then Is_Scalar_Type
(T
)
11746 and then not Is_In_Range
(Exp
, T
, Assume_Valid
=> True)
11748 Set_Do_Range_Check
(Exp
);
11750 end Check_Initialization
;
11752 ----------------------
11753 -- Check_Interfaces --
11754 ----------------------
11756 procedure Check_Interfaces
(N
: Node_Id
; Def
: Node_Id
) is
11757 Parent_Type
: constant Entity_Id
:= Etype
(Defining_Identifier
(N
));
11760 Iface_Def
: Node_Id
;
11761 Iface_Typ
: Entity_Id
;
11762 Parent_Node
: Node_Id
;
11764 Is_Task
: Boolean := False;
11765 -- Set True if parent type or any progenitor is a task interface
11767 Is_Protected
: Boolean := False;
11768 -- Set True if parent type or any progenitor is a protected interface
11770 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
);
11771 -- Check that a progenitor is compatible with declaration. If an error
11772 -- message is output, it is posted on Error_Node.
11778 procedure Check_Ifaces
(Iface_Def
: Node_Id
; Error_Node
: Node_Id
) is
11779 Iface_Id
: constant Entity_Id
:=
11780 Defining_Identifier
(Parent
(Iface_Def
));
11781 Type_Def
: Node_Id
;
11784 if Nkind
(N
) = N_Private_Extension_Declaration
then
11787 Type_Def
:= Type_Definition
(N
);
11790 if Is_Task_Interface
(Iface_Id
) then
11793 elsif Is_Protected_Interface
(Iface_Id
) then
11794 Is_Protected
:= True;
11797 if Is_Synchronized_Interface
(Iface_Id
) then
11799 -- A consequence of 3.9.4 (6/2) and 7.3 (7.2/2) is that a private
11800 -- extension derived from a synchronized interface must explicitly
11801 -- be declared synchronized, because the full view will be a
11802 -- synchronized type.
11804 if Nkind
(N
) = N_Private_Extension_Declaration
then
11805 if not Synchronized_Present
(N
) then
11807 ("private extension of& must be explicitly synchronized",
11811 -- However, by 3.9.4(16/2), a full type that is a record extension
11812 -- is never allowed to derive from a synchronized interface (note
11813 -- that interfaces must be excluded from this check, because those
11814 -- are represented by derived type definitions in some cases).
11816 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11817 and then not Interface_Present
(Type_Definition
(N
))
11819 Error_Msg_N
("record extension cannot derive from synchronized "
11820 & "interface", Error_Node
);
11824 -- Check that the characteristics of the progenitor are compatible
11825 -- with the explicit qualifier in the declaration.
11826 -- The check only applies to qualifiers that come from source.
11827 -- Limited_Present also appears in the declaration of corresponding
11828 -- records, and the check does not apply to them.
11830 if Limited_Present
(Type_Def
)
11832 Is_Concurrent_Record_Type
(Defining_Identifier
(N
))
11834 if Is_Limited_Interface
(Parent_Type
)
11835 and then not Is_Limited_Interface
(Iface_Id
)
11838 ("progenitor & must be limited interface",
11839 Error_Node
, Iface_Id
);
11842 (Task_Present
(Iface_Def
)
11843 or else Protected_Present
(Iface_Def
)
11844 or else Synchronized_Present
(Iface_Def
))
11845 and then Nkind
(N
) /= N_Private_Extension_Declaration
11846 and then not Error_Posted
(N
)
11849 ("progenitor & must be limited interface",
11850 Error_Node
, Iface_Id
);
11853 -- Protected interfaces can only inherit from limited, synchronized
11854 -- or protected interfaces.
11856 elsif Nkind
(N
) = N_Full_Type_Declaration
11857 and then Protected_Present
(Type_Def
)
11859 if Limited_Present
(Iface_Def
)
11860 or else Synchronized_Present
(Iface_Def
)
11861 or else Protected_Present
(Iface_Def
)
11865 elsif Task_Present
(Iface_Def
) then
11866 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11867 & "from task interface", Error_Node
);
11870 Error_Msg_N
("(Ada 2005) protected interface cannot inherit "
11871 & "from non-limited interface", Error_Node
);
11874 -- Ada 2005 (AI-345): Synchronized interfaces can only inherit from
11875 -- limited and synchronized.
11877 elsif Synchronized_Present
(Type_Def
) then
11878 if Limited_Present
(Iface_Def
)
11879 or else Synchronized_Present
(Iface_Def
)
11883 elsif Protected_Present
(Iface_Def
)
11884 and then Nkind
(N
) /= N_Private_Extension_Declaration
11886 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11887 & "from protected interface", Error_Node
);
11889 elsif Task_Present
(Iface_Def
)
11890 and then Nkind
(N
) /= N_Private_Extension_Declaration
11892 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11893 & "from task interface", Error_Node
);
11895 elsif not Is_Limited_Interface
(Iface_Id
) then
11896 Error_Msg_N
("(Ada 2005) synchronized interface cannot inherit "
11897 & "from non-limited interface", Error_Node
);
11900 -- Ada 2005 (AI-345): Task interfaces can only inherit from limited,
11901 -- synchronized or task interfaces.
11903 elsif Nkind
(N
) = N_Full_Type_Declaration
11904 and then Task_Present
(Type_Def
)
11906 if Limited_Present
(Iface_Def
)
11907 or else Synchronized_Present
(Iface_Def
)
11908 or else Task_Present
(Iface_Def
)
11912 elsif Protected_Present
(Iface_Def
) then
11913 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11914 & "protected interface", Error_Node
);
11917 Error_Msg_N
("(Ada 2005) task interface cannot inherit from "
11918 & "non-limited interface", Error_Node
);
11923 -- Start of processing for Check_Interfaces
11926 if Is_Interface
(Parent_Type
) then
11927 if Is_Task_Interface
(Parent_Type
) then
11930 elsif Is_Protected_Interface
(Parent_Type
) then
11931 Is_Protected
:= True;
11935 if Nkind
(N
) = N_Private_Extension_Declaration
then
11937 -- Check that progenitors are compatible with declaration
11939 Iface
:= First
(Interface_List
(Def
));
11940 while Present
(Iface
) loop
11941 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11943 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11944 Iface_Def
:= Type_Definition
(Parent_Node
);
11946 if not Is_Interface
(Iface_Typ
) then
11947 Diagnose_Interface
(Iface
, Iface_Typ
);
11949 Check_Ifaces
(Iface_Def
, Iface
);
11955 if Is_Task
and Is_Protected
then
11957 ("type cannot derive from task and protected interface", N
);
11963 -- Full type declaration of derived type.
11964 -- Check compatibility with parent if it is interface type
11966 if Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
11967 and then Is_Interface
(Parent_Type
)
11969 Parent_Node
:= Parent
(Parent_Type
);
11971 -- More detailed checks for interface varieties
11974 (Iface_Def
=> Type_Definition
(Parent_Node
),
11975 Error_Node
=> Subtype_Indication
(Type_Definition
(N
)));
11978 Iface
:= First
(Interface_List
(Def
));
11979 while Present
(Iface
) loop
11980 Iface_Typ
:= Find_Type_Of_Subtype_Indic
(Iface
);
11982 Parent_Node
:= Parent
(Base_Type
(Iface_Typ
));
11983 Iface_Def
:= Type_Definition
(Parent_Node
);
11985 if not Is_Interface
(Iface_Typ
) then
11986 Diagnose_Interface
(Iface
, Iface_Typ
);
11989 -- "The declaration of a specific descendant of an interface
11990 -- type freezes the interface type" RM 13.14
11992 Freeze_Before
(N
, Iface_Typ
);
11993 Check_Ifaces
(Iface_Def
, Error_Node
=> Iface
);
11999 if Is_Task
and Is_Protected
then
12001 ("type cannot derive from task and protected interface", N
);
12003 end Check_Interfaces
;
12005 ------------------------------------
12006 -- Check_Or_Process_Discriminants --
12007 ------------------------------------
12009 -- If an incomplete or private type declaration was already given for the
12010 -- type, the discriminants may have already been processed if they were
12011 -- present on the incomplete declaration. In this case a full conformance
12012 -- check has been performed in Find_Type_Name, and we then recheck here
12013 -- some properties that can't be checked on the partial view alone.
12014 -- Otherwise we call Process_Discriminants.
12016 procedure Check_Or_Process_Discriminants
12019 Prev
: Entity_Id
:= Empty
)
12022 if Has_Discriminants
(T
) then
12024 -- Discriminants are already set on T if they were already present
12025 -- on the partial view. Make them visible to component declarations.
12029 -- Discriminant on T (full view) referencing expr on partial view
12031 Prev_D
: Entity_Id
;
12032 -- Entity of corresponding discriminant on partial view
12035 -- Discriminant specification for full view, expression is
12036 -- the syntactic copy on full view (which has been checked for
12037 -- conformance with partial view), only used here to post error
12041 D
:= First_Discriminant
(T
);
12042 New_D
:= First
(Discriminant_Specifications
(N
));
12043 while Present
(D
) loop
12044 Prev_D
:= Current_Entity
(D
);
12045 Set_Current_Entity
(D
);
12046 Set_Is_Immediately_Visible
(D
);
12047 Set_Homonym
(D
, Prev_D
);
12049 -- Handle the case where there is an untagged partial view and
12050 -- the full view is tagged: must disallow discriminants with
12051 -- defaults, unless compiling for Ada 2012, which allows a
12052 -- limited tagged type to have defaulted discriminants (see
12053 -- AI05-0214). However, suppress error here if it was already
12054 -- reported on the default expression of the partial view.
12056 if Is_Tagged_Type
(T
)
12057 and then Present
(Expression
(Parent
(D
)))
12058 and then (not Is_Limited_Type
(Current_Scope
)
12059 or else Ada_Version
< Ada_2012
)
12060 and then not Error_Posted
(Expression
(Parent
(D
)))
12062 if Ada_Version
>= Ada_2012
then
12064 ("discriminants of nonlimited tagged type cannot have "
12066 Expression
(New_D
));
12069 ("discriminants of tagged type cannot have defaults",
12070 Expression
(New_D
));
12074 -- Ada 2005 (AI-230): Access discriminant allowed in
12075 -- non-limited record types.
12077 if Ada_Version
< Ada_2005
then
12079 -- This restriction gets applied to the full type here. It
12080 -- has already been applied earlier to the partial view.
12082 Check_Access_Discriminant_Requires_Limited
(Parent
(D
), N
);
12085 Next_Discriminant
(D
);
12090 elsif Present
(Discriminant_Specifications
(N
)) then
12091 Process_Discriminants
(N
, Prev
);
12093 end Check_Or_Process_Discriminants
;
12095 ----------------------
12096 -- Check_Real_Bound --
12097 ----------------------
12099 procedure Check_Real_Bound
(Bound
: Node_Id
) is
12101 if not Is_Real_Type
(Etype
(Bound
)) then
12103 ("bound in real type definition must be of real type", Bound
);
12105 elsif not Is_OK_Static_Expression
(Bound
) then
12106 Flag_Non_Static_Expr
12107 ("non-static expression used for real type bound!", Bound
);
12114 (Bound
, Make_Real_Literal
(Sloc
(Bound
), Ureal_0
));
12116 Resolve
(Bound
, Standard_Float
);
12117 end Check_Real_Bound
;
12119 ------------------------------
12120 -- Complete_Private_Subtype --
12121 ------------------------------
12123 procedure Complete_Private_Subtype
12126 Full_Base
: Entity_Id
;
12127 Related_Nod
: Node_Id
)
12129 Save_Next_Entity
: Entity_Id
;
12130 Save_Homonym
: Entity_Id
;
12133 -- Set semantic attributes for (implicit) private subtype completion.
12134 -- If the full type has no discriminants, then it is a copy of the
12135 -- full view of the base. Otherwise, it is a subtype of the base with
12136 -- a possible discriminant constraint. Save and restore the original
12137 -- Next_Entity field of full to ensure that the calls to Copy_Node do
12138 -- not corrupt the entity chain.
12140 -- Note that the type of the full view is the same entity as the type
12141 -- of the partial view. In this fashion, the subtype has access to the
12142 -- correct view of the parent.
12144 Save_Next_Entity
:= Next_Entity
(Full
);
12145 Save_Homonym
:= Homonym
(Priv
);
12147 case Ekind
(Full_Base
) is
12148 when Class_Wide_Kind
12155 Copy_Node
(Priv
, Full
);
12157 Set_Has_Discriminants
12158 (Full
, Has_Discriminants
(Full_Base
));
12159 Set_Has_Unknown_Discriminants
12160 (Full
, Has_Unknown_Discriminants
(Full_Base
));
12161 Set_First_Entity
(Full
, First_Entity
(Full_Base
));
12162 Set_Last_Entity
(Full
, Last_Entity
(Full_Base
));
12164 -- If the underlying base type is constrained, we know that the
12165 -- full view of the subtype is constrained as well (the converse
12166 -- is not necessarily true).
12168 if Is_Constrained
(Full_Base
) then
12169 Set_Is_Constrained
(Full
);
12173 Copy_Node
(Full_Base
, Full
);
12175 Set_Chars
(Full
, Chars
(Priv
));
12176 Conditional_Delay
(Full
, Priv
);
12177 Set_Sloc
(Full
, Sloc
(Priv
));
12180 Set_Next_Entity
(Full
, Save_Next_Entity
);
12181 Set_Homonym
(Full
, Save_Homonym
);
12182 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
12184 -- Set common attributes for all subtypes: kind, convention, etc.
12186 Set_Ekind
(Full
, Subtype_Kind
(Ekind
(Full_Base
)));
12187 Set_Convention
(Full
, Convention
(Full_Base
));
12189 -- The Etype of the full view is inconsistent. Gigi needs to see the
12190 -- structural full view, which is what the current scheme gives: the
12191 -- Etype of the full view is the etype of the full base. However, if the
12192 -- full base is a derived type, the full view then looks like a subtype
12193 -- of the parent, not a subtype of the full base. If instead we write:
12195 -- Set_Etype (Full, Full_Base);
12197 -- then we get inconsistencies in the front-end (confusion between
12198 -- views). Several outstanding bugs are related to this ???
12200 Set_Is_First_Subtype
(Full
, False);
12201 Set_Scope
(Full
, Scope
(Priv
));
12202 Set_Size_Info
(Full
, Full_Base
);
12203 Set_RM_Size
(Full
, RM_Size
(Full_Base
));
12204 Set_Is_Itype
(Full
);
12206 -- A subtype of a private-type-without-discriminants, whose full-view
12207 -- has discriminants with default expressions, is not constrained.
12209 if not Has_Discriminants
(Priv
) then
12210 Set_Is_Constrained
(Full
, Is_Constrained
(Full_Base
));
12212 if Has_Discriminants
(Full_Base
) then
12213 Set_Discriminant_Constraint
12214 (Full
, Discriminant_Constraint
(Full_Base
));
12216 -- The partial view may have been indefinite, the full view
12219 Set_Has_Unknown_Discriminants
12220 (Full
, Has_Unknown_Discriminants
(Full_Base
));
12224 Set_First_Rep_Item
(Full
, First_Rep_Item
(Full_Base
));
12225 Set_Depends_On_Private
(Full
, Has_Private_Component
(Full
));
12227 -- Freeze the private subtype entity if its parent is delayed, and not
12228 -- already frozen. We skip this processing if the type is an anonymous
12229 -- subtype of a record component, or is the corresponding record of a
12230 -- protected type, since these are processed when the enclosing type
12231 -- is frozen. If the parent type is declared in a nested package then
12232 -- the freezing of the private and full views also happens later.
12234 if not Is_Type
(Scope
(Full
)) then
12236 and then In_Same_Source_Unit
(Full
, Full_Base
)
12237 and then Scope
(Full_Base
) /= Scope
(Full
)
12239 Set_Has_Delayed_Freeze
(Full
);
12240 Set_Has_Delayed_Freeze
(Priv
);
12243 Set_Has_Delayed_Freeze
(Full
,
12244 Has_Delayed_Freeze
(Full_Base
)
12245 and then not Is_Frozen
(Full_Base
));
12249 Set_Freeze_Node
(Full
, Empty
);
12250 Set_Is_Frozen
(Full
, False);
12251 Set_Full_View
(Priv
, Full
);
12253 if Has_Discriminants
(Full
) then
12254 Set_Stored_Constraint_From_Discriminant_Constraint
(Full
);
12255 Set_Stored_Constraint
(Priv
, Stored_Constraint
(Full
));
12257 if Has_Unknown_Discriminants
(Full
) then
12258 Set_Discriminant_Constraint
(Full
, No_Elist
);
12262 if Ekind
(Full_Base
) = E_Record_Type
12263 and then Has_Discriminants
(Full_Base
)
12264 and then Has_Discriminants
(Priv
) -- might not, if errors
12265 and then not Has_Unknown_Discriminants
(Priv
)
12266 and then not Is_Empty_Elmt_List
(Discriminant_Constraint
(Priv
))
12268 Create_Constrained_Components
12269 (Full
, Related_Nod
, Full_Base
, Discriminant_Constraint
(Priv
));
12271 -- If the full base is itself derived from private, build a congruent
12272 -- subtype of its underlying type, for use by the back end. For a
12273 -- constrained record component, the declaration cannot be placed on
12274 -- the component list, but it must nevertheless be built an analyzed, to
12275 -- supply enough information for Gigi to compute the size of component.
12277 elsif Ekind
(Full_Base
) in Private_Kind
12278 and then Is_Derived_Type
(Full_Base
)
12279 and then Has_Discriminants
(Full_Base
)
12280 and then (Ekind
(Current_Scope
) /= E_Record_Subtype
)
12282 if not Is_Itype
(Priv
)
12284 Nkind
(Subtype_Indication
(Parent
(Priv
))) = N_Subtype_Indication
12286 Build_Underlying_Full_View
12287 (Parent
(Priv
), Full
, Etype
(Full_Base
));
12289 elsif Nkind
(Related_Nod
) = N_Component_Declaration
then
12290 Build_Underlying_Full_View
(Related_Nod
, Full
, Etype
(Full_Base
));
12293 elsif Is_Record_Type
(Full_Base
) then
12295 -- Show Full is simply a renaming of Full_Base
12297 Set_Cloned_Subtype
(Full
, Full_Base
);
12300 -- It is unsafe to share the bounds of a scalar type, because the Itype
12301 -- is elaborated on demand, and if a bound is non-static then different
12302 -- orders of elaboration in different units will lead to different
12303 -- external symbols.
12305 if Is_Scalar_Type
(Full_Base
) then
12306 Set_Scalar_Range
(Full
,
12307 Make_Range
(Sloc
(Related_Nod
),
12309 Duplicate_Subexpr_No_Checks
(Type_Low_Bound
(Full_Base
)),
12311 Duplicate_Subexpr_No_Checks
(Type_High_Bound
(Full_Base
))));
12313 -- This completion inherits the bounds of the full parent, but if
12314 -- the parent is an unconstrained floating point type, so is the
12317 if Is_Floating_Point_Type
(Full_Base
) then
12318 Set_Includes_Infinities
12319 (Scalar_Range
(Full
), Has_Infinities
(Full_Base
));
12323 -- ??? It seems that a lot of fields are missing that should be copied
12324 -- from Full_Base to Full. Here are some that are introduced in a
12325 -- non-disruptive way but a cleanup is necessary.
12327 if Is_Tagged_Type
(Full_Base
) then
12328 Set_Is_Tagged_Type
(Full
);
12329 Set_Direct_Primitive_Operations
12330 (Full
, Direct_Primitive_Operations
(Full_Base
));
12331 Set_No_Tagged_Streams_Pragma
12332 (Full
, No_Tagged_Streams_Pragma
(Full_Base
));
12334 -- Inherit class_wide type of full_base in case the partial view was
12335 -- not tagged. Otherwise it has already been created when the private
12336 -- subtype was analyzed.
12338 if No
(Class_Wide_Type
(Full
)) then
12339 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Full_Base
));
12342 -- If this is a subtype of a protected or task type, constrain its
12343 -- corresponding record, unless this is a subtype without constraints,
12344 -- i.e. a simple renaming as with an actual subtype in an instance.
12346 elsif Is_Concurrent_Type
(Full_Base
) then
12347 if Has_Discriminants
(Full
)
12348 and then Present
(Corresponding_Record_Type
(Full_Base
))
12350 not Is_Empty_Elmt_List
(Discriminant_Constraint
(Full
))
12352 Set_Corresponding_Record_Type
(Full
,
12353 Constrain_Corresponding_Record
12354 (Full
, Corresponding_Record_Type
(Full_Base
), Related_Nod
));
12357 Set_Corresponding_Record_Type
(Full
,
12358 Corresponding_Record_Type
(Full_Base
));
12362 -- Link rep item chain, and also setting of Has_Predicates from private
12363 -- subtype to full subtype, since we will need these on the full subtype
12364 -- to create the predicate function. Note that the full subtype may
12365 -- already have rep items, inherited from the full view of the base
12366 -- type, so we must be sure not to overwrite these entries.
12371 Next_Item
: Node_Id
;
12372 Priv_Item
: Node_Id
;
12375 Item
:= First_Rep_Item
(Full
);
12376 Priv_Item
:= First_Rep_Item
(Priv
);
12378 -- If no existing rep items on full type, we can just link directly
12379 -- to the list of items on the private type, if any exist.. Same if
12380 -- the rep items are only those inherited from the base
12383 or else Nkind
(Item
) /= N_Aspect_Specification
12384 or else Entity
(Item
) = Full_Base
)
12385 and then Present
(First_Rep_Item
(Priv
))
12387 Set_First_Rep_Item
(Full
, Priv_Item
);
12389 -- Otherwise, search to the end of items currently linked to the full
12390 -- subtype and append the private items to the end. However, if Priv
12391 -- and Full already have the same list of rep items, then the append
12392 -- is not done, as that would create a circularity.
12394 -- The partial view may have a predicate and the rep item lists of
12395 -- both views agree when inherited from the same ancestor. In that
12396 -- case, simply propagate the list from one view to the other.
12397 -- A more complex analysis needed here ???
12399 elsif Present
(Priv_Item
)
12400 and then Item
= Next_Rep_Item
(Priv_Item
)
12402 Set_First_Rep_Item
(Full
, Priv_Item
);
12404 elsif Item
/= Priv_Item
then
12407 Next_Item
:= Next_Rep_Item
(Item
);
12408 exit when No
(Next_Item
);
12411 -- If the private view has aspect specifications, the full view
12412 -- inherits them. Since these aspects may already have been
12413 -- attached to the full view during derivation, do not append
12414 -- them if already present.
12416 if Item
= First_Rep_Item
(Priv
) then
12422 -- And link the private type items at the end of the chain
12425 Set_Next_Rep_Item
(Item
, First_Rep_Item
(Priv
));
12430 -- Make sure Has_Predicates is set on full type if it is set on the
12431 -- private type. Note that it may already be set on the full type and
12432 -- if so, we don't want to unset it. Similarly, propagate information
12433 -- about delayed aspects, because the corresponding pragmas must be
12434 -- analyzed when one of the views is frozen. This last step is needed
12435 -- in particular when the full type is a scalar type for which an
12436 -- anonymous base type is constructed.
12438 -- The predicate functions are generated either at the freeze point
12439 -- of the type or at the end of the visible part, and we must avoid
12440 -- generating them twice.
12442 if Has_Predicates
(Priv
) then
12443 Set_Has_Predicates
(Full
);
12445 if Present
(Predicate_Function
(Priv
))
12446 and then No
(Predicate_Function
(Full
))
12448 Set_Predicate_Function
(Full
, Predicate_Function
(Priv
));
12452 if Has_Delayed_Aspects
(Priv
) then
12453 Set_Has_Delayed_Aspects
(Full
);
12455 end Complete_Private_Subtype
;
12457 ----------------------------
12458 -- Constant_Redeclaration --
12459 ----------------------------
12461 procedure Constant_Redeclaration
12466 Prev
: constant Entity_Id
:= Current_Entity_In_Scope
(Id
);
12467 Obj_Def
: constant Node_Id
:= Object_Definition
(N
);
12470 procedure Check_Possible_Deferred_Completion
12471 (Prev_Id
: Entity_Id
;
12472 Prev_Obj_Def
: Node_Id
;
12473 Curr_Obj_Def
: Node_Id
);
12474 -- Determine whether the two object definitions describe the partial
12475 -- and the full view of a constrained deferred constant. Generate
12476 -- a subtype for the full view and verify that it statically matches
12477 -- the subtype of the partial view.
12479 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
);
12480 -- If deferred constant is an access type initialized with an allocator,
12481 -- check whether there is an illegal recursion in the definition,
12482 -- through a default value of some record subcomponent. This is normally
12483 -- detected when generating init procs, but requires this additional
12484 -- mechanism when expansion is disabled.
12486 ----------------------------------------
12487 -- Check_Possible_Deferred_Completion --
12488 ----------------------------------------
12490 procedure Check_Possible_Deferred_Completion
12491 (Prev_Id
: Entity_Id
;
12492 Prev_Obj_Def
: Node_Id
;
12493 Curr_Obj_Def
: Node_Id
)
12496 if Nkind
(Prev_Obj_Def
) = N_Subtype_Indication
12497 and then Present
(Constraint
(Prev_Obj_Def
))
12498 and then Nkind
(Curr_Obj_Def
) = N_Subtype_Indication
12499 and then Present
(Constraint
(Curr_Obj_Def
))
12502 Loc
: constant Source_Ptr
:= Sloc
(N
);
12503 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
12504 Decl
: constant Node_Id
:=
12505 Make_Subtype_Declaration
(Loc
,
12506 Defining_Identifier
=> Def_Id
,
12507 Subtype_Indication
=>
12508 Relocate_Node
(Curr_Obj_Def
));
12511 Insert_Before_And_Analyze
(N
, Decl
);
12512 Set_Etype
(Id
, Def_Id
);
12514 if not Subtypes_Statically_Match
(Etype
(Prev_Id
), Def_Id
) then
12515 Error_Msg_Sloc
:= Sloc
(Prev_Id
);
12516 Error_Msg_N
("subtype does not statically match deferred "
12517 & "declaration #", N
);
12521 end Check_Possible_Deferred_Completion
;
12523 ---------------------------------
12524 -- Check_Recursive_Declaration --
12525 ---------------------------------
12527 procedure Check_Recursive_Declaration
(Typ
: Entity_Id
) is
12531 if Is_Record_Type
(Typ
) then
12532 Comp
:= First_Component
(Typ
);
12533 while Present
(Comp
) loop
12534 if Comes_From_Source
(Comp
) then
12535 if Present
(Expression
(Parent
(Comp
)))
12536 and then Is_Entity_Name
(Expression
(Parent
(Comp
)))
12537 and then Entity
(Expression
(Parent
(Comp
))) = Prev
12539 Error_Msg_Sloc
:= Sloc
(Parent
(Comp
));
12541 ("illegal circularity with declaration for & #",
12545 elsif Is_Record_Type
(Etype
(Comp
)) then
12546 Check_Recursive_Declaration
(Etype
(Comp
));
12550 Next_Component
(Comp
);
12553 end Check_Recursive_Declaration
;
12555 -- Start of processing for Constant_Redeclaration
12558 if Nkind
(Parent
(Prev
)) = N_Object_Declaration
then
12559 if Nkind
(Object_Definition
12560 (Parent
(Prev
))) = N_Subtype_Indication
12562 -- Find type of new declaration. The constraints of the two
12563 -- views must match statically, but there is no point in
12564 -- creating an itype for the full view.
12566 if Nkind
(Obj_Def
) = N_Subtype_Indication
then
12567 Find_Type
(Subtype_Mark
(Obj_Def
));
12568 New_T
:= Entity
(Subtype_Mark
(Obj_Def
));
12571 Find_Type
(Obj_Def
);
12572 New_T
:= Entity
(Obj_Def
);
12578 -- The full view may impose a constraint, even if the partial
12579 -- view does not, so construct the subtype.
12581 New_T
:= Find_Type_Of_Object
(Obj_Def
, N
);
12586 -- Current declaration is illegal, diagnosed below in Enter_Name
12592 -- If previous full declaration or a renaming declaration exists, or if
12593 -- a homograph is present, let Enter_Name handle it, either with an
12594 -- error or with the removal of an overridden implicit subprogram.
12595 -- The previous one is a full declaration if it has an expression
12596 -- (which in the case of an aggregate is indicated by the Init flag).
12598 if Ekind
(Prev
) /= E_Constant
12599 or else Nkind
(Parent
(Prev
)) = N_Object_Renaming_Declaration
12600 or else Present
(Expression
(Parent
(Prev
)))
12601 or else Has_Init_Expression
(Parent
(Prev
))
12602 or else Present
(Full_View
(Prev
))
12606 -- Verify that types of both declarations match, or else that both types
12607 -- are anonymous access types whose designated subtypes statically match
12608 -- (as allowed in Ada 2005 by AI-385).
12610 elsif Base_Type
(Etype
(Prev
)) /= Base_Type
(New_T
)
12612 (Ekind
(Etype
(Prev
)) /= E_Anonymous_Access_Type
12613 or else Ekind
(Etype
(New_T
)) /= E_Anonymous_Access_Type
12614 or else Is_Access_Constant
(Etype
(New_T
)) /=
12615 Is_Access_Constant
(Etype
(Prev
))
12616 or else Can_Never_Be_Null
(Etype
(New_T
)) /=
12617 Can_Never_Be_Null
(Etype
(Prev
))
12618 or else Null_Exclusion_Present
(Parent
(Prev
)) /=
12619 Null_Exclusion_Present
(Parent
(Id
))
12620 or else not Subtypes_Statically_Match
12621 (Designated_Type
(Etype
(Prev
)),
12622 Designated_Type
(Etype
(New_T
))))
12624 Error_Msg_Sloc
:= Sloc
(Prev
);
12625 Error_Msg_N
("type does not match declaration#", N
);
12626 Set_Full_View
(Prev
, Id
);
12627 Set_Etype
(Id
, Any_Type
);
12629 -- A deferred constant whose type is an anonymous array is always
12630 -- illegal (unless imported). A detailed error message might be
12631 -- helpful for Ada beginners.
12633 if Nkind
(Object_Definition
(Parent
(Prev
)))
12634 = N_Constrained_Array_Definition
12635 and then Nkind
(Object_Definition
(N
))
12636 = N_Constrained_Array_Definition
12638 Error_Msg_N
("\each anonymous array is a distinct type", N
);
12639 Error_Msg_N
("a deferred constant must have a named type",
12640 Object_Definition
(Parent
(Prev
)));
12644 Null_Exclusion_Present
(Parent
(Prev
))
12645 and then not Null_Exclusion_Present
(N
)
12647 Error_Msg_Sloc
:= Sloc
(Prev
);
12648 Error_Msg_N
("null-exclusion does not match declaration#", N
);
12649 Set_Full_View
(Prev
, Id
);
12650 Set_Etype
(Id
, Any_Type
);
12652 -- If so, process the full constant declaration
12655 -- RM 7.4 (6): If the subtype defined by the subtype_indication in
12656 -- the deferred declaration is constrained, then the subtype defined
12657 -- by the subtype_indication in the full declaration shall match it
12660 Check_Possible_Deferred_Completion
12662 Prev_Obj_Def
=> Object_Definition
(Parent
(Prev
)),
12663 Curr_Obj_Def
=> Obj_Def
);
12665 Set_Full_View
(Prev
, Id
);
12666 Set_Is_Public
(Id
, Is_Public
(Prev
));
12667 Set_Is_Internal
(Id
);
12668 Append_Entity
(Id
, Current_Scope
);
12670 -- Check ALIASED present if present before (RM 7.4(7))
12672 if Is_Aliased
(Prev
)
12673 and then not Aliased_Present
(N
)
12675 Error_Msg_Sloc
:= Sloc
(Prev
);
12676 Error_Msg_N
("ALIASED required (see declaration #)", N
);
12679 -- Check that placement is in private part and that the incomplete
12680 -- declaration appeared in the visible part.
12682 if Ekind
(Current_Scope
) = E_Package
12683 and then not In_Private_Part
(Current_Scope
)
12685 Error_Msg_Sloc
:= Sloc
(Prev
);
12687 ("full constant for declaration # must be in private part", N
);
12689 elsif Ekind
(Current_Scope
) = E_Package
12691 List_Containing
(Parent
(Prev
)) /=
12692 Visible_Declarations
(Package_Specification
(Current_Scope
))
12695 ("deferred constant must be declared in visible part",
12699 if Is_Access_Type
(T
)
12700 and then Nkind
(Expression
(N
)) = N_Allocator
12702 Check_Recursive_Declaration
(Designated_Type
(T
));
12705 -- A deferred constant is a visible entity. If type has invariants,
12706 -- verify that the initial value satisfies them.
12708 if Has_Invariants
(T
) and then Present
(Invariant_Procedure
(T
)) then
12710 Make_Invariant_Call
(New_Occurrence_Of
(Prev
, Sloc
(N
))));
12713 end Constant_Redeclaration
;
12715 ----------------------
12716 -- Constrain_Access --
12717 ----------------------
12719 procedure Constrain_Access
12720 (Def_Id
: in out Entity_Id
;
12722 Related_Nod
: Node_Id
)
12724 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
12725 Desig_Type
: constant Entity_Id
:= Designated_Type
(T
);
12726 Desig_Subtype
: Entity_Id
:= Create_Itype
(E_Void
, Related_Nod
);
12727 Constraint_OK
: Boolean := True;
12730 if Is_Array_Type
(Desig_Type
) then
12731 Constrain_Array
(Desig_Subtype
, S
, Related_Nod
, Def_Id
, 'P');
12733 elsif (Is_Record_Type
(Desig_Type
)
12734 or else Is_Incomplete_Or_Private_Type
(Desig_Type
))
12735 and then not Is_Constrained
(Desig_Type
)
12737 -- ??? The following code is a temporary bypass to ignore a
12738 -- discriminant constraint on access type if it is constraining
12739 -- the current record. Avoid creating the implicit subtype of the
12740 -- record we are currently compiling since right now, we cannot
12741 -- handle these. For now, just return the access type itself.
12743 if Desig_Type
= Current_Scope
12744 and then No
(Def_Id
)
12746 Set_Ekind
(Desig_Subtype
, E_Record_Subtype
);
12747 Def_Id
:= Entity
(Subtype_Mark
(S
));
12749 -- This call added to ensure that the constraint is analyzed
12750 -- (needed for a B test). Note that we still return early from
12751 -- this procedure to avoid recursive processing. ???
12753 Constrain_Discriminated_Type
12754 (Desig_Subtype
, S
, Related_Nod
, For_Access
=> True);
12758 -- Enforce rule that the constraint is illegal if there is an
12759 -- unconstrained view of the designated type. This means that the
12760 -- partial view (either a private type declaration or a derivation
12761 -- from a private type) has no discriminants. (Defect Report
12762 -- 8652/0008, Technical Corrigendum 1, checked by ACATS B371001).
12764 -- Rule updated for Ada 2005: The private type is said to have
12765 -- a constrained partial view, given that objects of the type
12766 -- can be declared. Furthermore, the rule applies to all access
12767 -- types, unlike the rule concerning default discriminants (see
12770 if (Ekind
(T
) = E_General_Access_Type
or else Ada_Version
>= Ada_2005
)
12771 and then Has_Private_Declaration
(Desig_Type
)
12772 and then In_Open_Scopes
(Scope
(Desig_Type
))
12773 and then Has_Discriminants
(Desig_Type
)
12776 Pack
: constant Node_Id
:=
12777 Unit_Declaration_Node
(Scope
(Desig_Type
));
12782 if Nkind
(Pack
) = N_Package_Declaration
then
12783 Decls
:= Visible_Declarations
(Specification
(Pack
));
12784 Decl
:= First
(Decls
);
12785 while Present
(Decl
) loop
12786 if (Nkind
(Decl
) = N_Private_Type_Declaration
12787 and then Chars
(Defining_Identifier
(Decl
)) =
12788 Chars
(Desig_Type
))
12791 (Nkind
(Decl
) = N_Full_Type_Declaration
12793 Chars
(Defining_Identifier
(Decl
)) =
12795 and then Is_Derived_Type
(Desig_Type
)
12797 Has_Private_Declaration
(Etype
(Desig_Type
)))
12799 if No
(Discriminant_Specifications
(Decl
)) then
12801 ("cannot constrain access type if designated "
12802 & "type has constrained partial view", S
);
12814 Constrain_Discriminated_Type
(Desig_Subtype
, S
, Related_Nod
,
12815 For_Access
=> True);
12817 elsif Is_Concurrent_Type
(Desig_Type
)
12818 and then not Is_Constrained
(Desig_Type
)
12820 Constrain_Concurrent
(Desig_Subtype
, S
, Related_Nod
, Desig_Type
, ' ');
12823 Error_Msg_N
("invalid constraint on access type", S
);
12825 -- We simply ignore an invalid constraint
12827 Desig_Subtype
:= Desig_Type
;
12828 Constraint_OK
:= False;
12831 if No
(Def_Id
) then
12832 Def_Id
:= Create_Itype
(E_Access_Subtype
, Related_Nod
);
12834 Set_Ekind
(Def_Id
, E_Access_Subtype
);
12837 if Constraint_OK
then
12838 Set_Etype
(Def_Id
, Base_Type
(T
));
12840 if Is_Private_Type
(Desig_Type
) then
12841 Prepare_Private_Subtype_Completion
(Desig_Subtype
, Related_Nod
);
12844 Set_Etype
(Def_Id
, Any_Type
);
12847 Set_Size_Info
(Def_Id
, T
);
12848 Set_Is_Constrained
(Def_Id
, Constraint_OK
);
12849 Set_Directly_Designated_Type
(Def_Id
, Desig_Subtype
);
12850 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12851 Set_Is_Access_Constant
(Def_Id
, Is_Access_Constant
(T
));
12853 Conditional_Delay
(Def_Id
, T
);
12855 -- AI-363 : Subtypes of general access types whose designated types have
12856 -- default discriminants are disallowed. In instances, the rule has to
12857 -- be checked against the actual, of which T is the subtype. In a
12858 -- generic body, the rule is checked assuming that the actual type has
12859 -- defaulted discriminants.
12861 if Ada_Version
>= Ada_2005
or else Warn_On_Ada_2005_Compatibility
then
12862 if Ekind
(Base_Type
(T
)) = E_General_Access_Type
12863 and then Has_Defaulted_Discriminants
(Desig_Type
)
12865 if Ada_Version
< Ada_2005
then
12867 ("access subtype of general access type would not " &
12868 "be allowed in Ada 2005?y?", S
);
12871 ("access subtype of general access type not allowed", S
);
12874 Error_Msg_N
("\discriminants have defaults", S
);
12876 elsif Is_Access_Type
(T
)
12877 and then Is_Generic_Type
(Desig_Type
)
12878 and then Has_Discriminants
(Desig_Type
)
12879 and then In_Package_Body
(Current_Scope
)
12881 if Ada_Version
< Ada_2005
then
12883 ("access subtype would not be allowed in generic body "
12884 & "in Ada 2005?y?", S
);
12887 ("access subtype not allowed in generic body", S
);
12891 ("\designated type is a discriminated formal", S
);
12894 end Constrain_Access
;
12896 ---------------------
12897 -- Constrain_Array --
12898 ---------------------
12900 procedure Constrain_Array
12901 (Def_Id
: in out Entity_Id
;
12903 Related_Nod
: Node_Id
;
12904 Related_Id
: Entity_Id
;
12905 Suffix
: Character)
12907 C
: constant Node_Id
:= Constraint
(SI
);
12908 Number_Of_Constraints
: Nat
:= 0;
12911 Constraint_OK
: Boolean := True;
12914 T
:= Entity
(Subtype_Mark
(SI
));
12916 if Is_Access_Type
(T
) then
12917 T
:= Designated_Type
(T
);
12920 -- If an index constraint follows a subtype mark in a subtype indication
12921 -- then the type or subtype denoted by the subtype mark must not already
12922 -- impose an index constraint. The subtype mark must denote either an
12923 -- unconstrained array type or an access type whose designated type
12924 -- is such an array type... (RM 3.6.1)
12926 if Is_Constrained
(T
) then
12927 Error_Msg_N
("array type is already constrained", Subtype_Mark
(SI
));
12928 Constraint_OK
:= False;
12931 S
:= First
(Constraints
(C
));
12932 while Present
(S
) loop
12933 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
12937 -- In either case, the index constraint must provide a discrete
12938 -- range for each index of the array type and the type of each
12939 -- discrete range must be the same as that of the corresponding
12940 -- index. (RM 3.6.1)
12942 if Number_Of_Constraints
/= Number_Dimensions
(T
) then
12943 Error_Msg_NE
("incorrect number of index constraints for }", C
, T
);
12944 Constraint_OK
:= False;
12947 S
:= First
(Constraints
(C
));
12948 Index
:= First_Index
(T
);
12951 -- Apply constraints to each index type
12953 for J
in 1 .. Number_Of_Constraints
loop
12954 Constrain_Index
(Index
, S
, Related_Nod
, Related_Id
, Suffix
, J
);
12962 if No
(Def_Id
) then
12964 Create_Itype
(E_Array_Subtype
, Related_Nod
, Related_Id
, Suffix
);
12965 Set_Parent
(Def_Id
, Related_Nod
);
12968 Set_Ekind
(Def_Id
, E_Array_Subtype
);
12971 Set_Size_Info
(Def_Id
, (T
));
12972 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
12973 Set_Etype
(Def_Id
, Base_Type
(T
));
12975 if Constraint_OK
then
12976 Set_First_Index
(Def_Id
, First
(Constraints
(C
)));
12978 Set_First_Index
(Def_Id
, First_Index
(T
));
12981 Set_Is_Constrained
(Def_Id
, True);
12982 Set_Is_Aliased
(Def_Id
, Is_Aliased
(T
));
12983 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
12985 Set_Is_Private_Composite
(Def_Id
, Is_Private_Composite
(T
));
12986 Set_Is_Limited_Composite
(Def_Id
, Is_Limited_Composite
(T
));
12988 -- A subtype does not inherit the Packed_Array_Impl_Type of is parent.
12989 -- We need to initialize the attribute because if Def_Id is previously
12990 -- analyzed through a limited_with clause, it will have the attributes
12991 -- of an incomplete type, one of which is an Elist that overlaps the
12992 -- Packed_Array_Impl_Type field.
12994 Set_Packed_Array_Impl_Type
(Def_Id
, Empty
);
12996 -- Build a freeze node if parent still needs one. Also make sure that
12997 -- the Depends_On_Private status is set because the subtype will need
12998 -- reprocessing at the time the base type does, and also we must set a
12999 -- conditional delay.
13001 Set_Depends_On_Private
(Def_Id
, Depends_On_Private
(T
));
13002 Conditional_Delay
(Def_Id
, T
);
13003 end Constrain_Array
;
13005 ------------------------------
13006 -- Constrain_Component_Type --
13007 ------------------------------
13009 function Constrain_Component_Type
13011 Constrained_Typ
: Entity_Id
;
13012 Related_Node
: Node_Id
;
13014 Constraints
: Elist_Id
) return Entity_Id
13016 Loc
: constant Source_Ptr
:= Sloc
(Constrained_Typ
);
13017 Compon_Type
: constant Entity_Id
:= Etype
(Comp
);
13019 function Build_Constrained_Array_Type
13020 (Old_Type
: Entity_Id
) return Entity_Id
;
13021 -- If Old_Type is an array type, one of whose indexes is constrained
13022 -- by a discriminant, build an Itype whose constraint replaces the
13023 -- discriminant with its value in the constraint.
13025 function Build_Constrained_Discriminated_Type
13026 (Old_Type
: Entity_Id
) return Entity_Id
;
13027 -- Ditto for record components
13029 function Build_Constrained_Access_Type
13030 (Old_Type
: Entity_Id
) return Entity_Id
;
13031 -- Ditto for access types. Makes use of previous two functions, to
13032 -- constrain designated type.
13034 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
;
13035 -- T is an array or discriminated type, C is a list of constraints
13036 -- that apply to T. This routine builds the constrained subtype.
13038 function Is_Discriminant
(Expr
: Node_Id
) return Boolean;
13039 -- Returns True if Expr is a discriminant
13041 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
;
13042 -- Find the value of discriminant Discrim in Constraint
13044 -----------------------------------
13045 -- Build_Constrained_Access_Type --
13046 -----------------------------------
13048 function Build_Constrained_Access_Type
13049 (Old_Type
: Entity_Id
) return Entity_Id
13051 Desig_Type
: constant Entity_Id
:= Designated_Type
(Old_Type
);
13053 Desig_Subtype
: Entity_Id
;
13057 -- if the original access type was not embedded in the enclosing
13058 -- type definition, there is no need to produce a new access
13059 -- subtype. In fact every access type with an explicit constraint
13060 -- generates an itype whose scope is the enclosing record.
13062 if not Is_Type
(Scope
(Old_Type
)) then
13065 elsif Is_Array_Type
(Desig_Type
) then
13066 Desig_Subtype
:= Build_Constrained_Array_Type
(Desig_Type
);
13068 elsif Has_Discriminants
(Desig_Type
) then
13070 -- This may be an access type to an enclosing record type for
13071 -- which we are constructing the constrained components. Return
13072 -- the enclosing record subtype. This is not always correct,
13073 -- but avoids infinite recursion. ???
13075 Desig_Subtype
:= Any_Type
;
13077 for J
in reverse 0 .. Scope_Stack
.Last
loop
13078 Scop
:= Scope_Stack
.Table
(J
).Entity
;
13081 and then Base_Type
(Scop
) = Base_Type
(Desig_Type
)
13083 Desig_Subtype
:= Scop
;
13086 exit when not Is_Type
(Scop
);
13089 if Desig_Subtype
= Any_Type
then
13091 Build_Constrained_Discriminated_Type
(Desig_Type
);
13098 if Desig_Subtype
/= Desig_Type
then
13100 -- The Related_Node better be here or else we won't be able
13101 -- to attach new itypes to a node in the tree.
13103 pragma Assert
(Present
(Related_Node
));
13105 Itype
:= Create_Itype
(E_Access_Subtype
, Related_Node
);
13107 Set_Etype
(Itype
, Base_Type
(Old_Type
));
13108 Set_Size_Info
(Itype
, (Old_Type
));
13109 Set_Directly_Designated_Type
(Itype
, Desig_Subtype
);
13110 Set_Depends_On_Private
(Itype
, Has_Private_Component
13112 Set_Is_Access_Constant
(Itype
, Is_Access_Constant
13115 -- The new itype needs freezing when it depends on a not frozen
13116 -- type and the enclosing subtype needs freezing.
13118 if Has_Delayed_Freeze
(Constrained_Typ
)
13119 and then not Is_Frozen
(Constrained_Typ
)
13121 Conditional_Delay
(Itype
, Base_Type
(Old_Type
));
13129 end Build_Constrained_Access_Type
;
13131 ----------------------------------
13132 -- Build_Constrained_Array_Type --
13133 ----------------------------------
13135 function Build_Constrained_Array_Type
13136 (Old_Type
: Entity_Id
) return Entity_Id
13140 Old_Index
: Node_Id
;
13141 Range_Node
: Node_Id
;
13142 Constr_List
: List_Id
;
13144 Need_To_Create_Itype
: Boolean := False;
13147 Old_Index
:= First_Index
(Old_Type
);
13148 while Present
(Old_Index
) loop
13149 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
13151 if Is_Discriminant
(Lo_Expr
)
13153 Is_Discriminant
(Hi_Expr
)
13155 Need_To_Create_Itype
:= True;
13158 Next_Index
(Old_Index
);
13161 if Need_To_Create_Itype
then
13162 Constr_List
:= New_List
;
13164 Old_Index
:= First_Index
(Old_Type
);
13165 while Present
(Old_Index
) loop
13166 Get_Index_Bounds
(Old_Index
, Lo_Expr
, Hi_Expr
);
13168 if Is_Discriminant
(Lo_Expr
) then
13169 Lo_Expr
:= Get_Discr_Value
(Lo_Expr
);
13172 if Is_Discriminant
(Hi_Expr
) then
13173 Hi_Expr
:= Get_Discr_Value
(Hi_Expr
);
13178 (Loc
, New_Copy_Tree
(Lo_Expr
), New_Copy_Tree
(Hi_Expr
));
13180 Append
(Range_Node
, To
=> Constr_List
);
13182 Next_Index
(Old_Index
);
13185 return Build_Subtype
(Old_Type
, Constr_List
);
13190 end Build_Constrained_Array_Type
;
13192 ------------------------------------------
13193 -- Build_Constrained_Discriminated_Type --
13194 ------------------------------------------
13196 function Build_Constrained_Discriminated_Type
13197 (Old_Type
: Entity_Id
) return Entity_Id
13200 Constr_List
: List_Id
;
13201 Old_Constraint
: Elmt_Id
;
13203 Need_To_Create_Itype
: Boolean := False;
13206 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
13207 while Present
(Old_Constraint
) loop
13208 Expr
:= Node
(Old_Constraint
);
13210 if Is_Discriminant
(Expr
) then
13211 Need_To_Create_Itype
:= True;
13214 Next_Elmt
(Old_Constraint
);
13217 if Need_To_Create_Itype
then
13218 Constr_List
:= New_List
;
13220 Old_Constraint
:= First_Elmt
(Discriminant_Constraint
(Old_Type
));
13221 while Present
(Old_Constraint
) loop
13222 Expr
:= Node
(Old_Constraint
);
13224 if Is_Discriminant
(Expr
) then
13225 Expr
:= Get_Discr_Value
(Expr
);
13228 Append
(New_Copy_Tree
(Expr
), To
=> Constr_List
);
13230 Next_Elmt
(Old_Constraint
);
13233 return Build_Subtype
(Old_Type
, Constr_List
);
13238 end Build_Constrained_Discriminated_Type
;
13240 -------------------
13241 -- Build_Subtype --
13242 -------------------
13244 function Build_Subtype
(T
: Entity_Id
; C
: List_Id
) return Entity_Id
is
13246 Subtyp_Decl
: Node_Id
;
13247 Def_Id
: Entity_Id
;
13248 Btyp
: Entity_Id
:= Base_Type
(T
);
13251 -- The Related_Node better be here or else we won't be able to
13252 -- attach new itypes to a node in the tree.
13254 pragma Assert
(Present
(Related_Node
));
13256 -- If the view of the component's type is incomplete or private
13257 -- with unknown discriminants, then the constraint must be applied
13258 -- to the full type.
13260 if Has_Unknown_Discriminants
(Btyp
)
13261 and then Present
(Underlying_Type
(Btyp
))
13263 Btyp
:= Underlying_Type
(Btyp
);
13267 Make_Subtype_Indication
(Loc
,
13268 Subtype_Mark
=> New_Occurrence_Of
(Btyp
, Loc
),
13269 Constraint
=> Make_Index_Or_Discriminant_Constraint
(Loc
, C
));
13271 Def_Id
:= Create_Itype
(Ekind
(T
), Related_Node
);
13274 Make_Subtype_Declaration
(Loc
,
13275 Defining_Identifier
=> Def_Id
,
13276 Subtype_Indication
=> Indic
);
13278 Set_Parent
(Subtyp_Decl
, Parent
(Related_Node
));
13280 -- Itypes must be analyzed with checks off (see package Itypes)
13282 Analyze
(Subtyp_Decl
, Suppress
=> All_Checks
);
13287 ---------------------
13288 -- Get_Discr_Value --
13289 ---------------------
13291 function Get_Discr_Value
(Discrim
: Entity_Id
) return Node_Id
is
13296 -- The discriminant may be declared for the type, in which case we
13297 -- find it by iterating over the list of discriminants. If the
13298 -- discriminant is inherited from a parent type, it appears as the
13299 -- corresponding discriminant of the current type. This will be the
13300 -- case when constraining an inherited component whose constraint is
13301 -- given by a discriminant of the parent.
13303 D
:= First_Discriminant
(Typ
);
13304 E
:= First_Elmt
(Constraints
);
13306 while Present
(D
) loop
13307 if D
= Entity
(Discrim
)
13308 or else D
= CR_Discriminant
(Entity
(Discrim
))
13309 or else Corresponding_Discriminant
(D
) = Entity
(Discrim
)
13314 Next_Discriminant
(D
);
13318 -- The Corresponding_Discriminant mechanism is incomplete, because
13319 -- the correspondence between new and old discriminants is not one
13320 -- to one: one new discriminant can constrain several old ones. In
13321 -- that case, scan sequentially the stored_constraint, the list of
13322 -- discriminants of the parents, and the constraints.
13324 -- Previous code checked for the present of the Stored_Constraint
13325 -- list for the derived type, but did not use it at all. Should it
13326 -- be present when the component is a discriminated task type?
13328 if Is_Derived_Type
(Typ
)
13329 and then Scope
(Entity
(Discrim
)) = Etype
(Typ
)
13331 D
:= First_Discriminant
(Etype
(Typ
));
13332 E
:= First_Elmt
(Constraints
);
13333 while Present
(D
) loop
13334 if D
= Entity
(Discrim
) then
13338 Next_Discriminant
(D
);
13343 -- Something is wrong if we did not find the value
13345 raise Program_Error
;
13346 end Get_Discr_Value
;
13348 ---------------------
13349 -- Is_Discriminant --
13350 ---------------------
13352 function Is_Discriminant
(Expr
: Node_Id
) return Boolean is
13353 Discrim_Scope
: Entity_Id
;
13356 if Denotes_Discriminant
(Expr
) then
13357 Discrim_Scope
:= Scope
(Entity
(Expr
));
13359 -- Either we have a reference to one of Typ's discriminants,
13361 pragma Assert
(Discrim_Scope
= Typ
13363 -- or to the discriminants of the parent type, in the case
13364 -- of a derivation of a tagged type with variants.
13366 or else Discrim_Scope
= Etype
(Typ
)
13367 or else Full_View
(Discrim_Scope
) = Etype
(Typ
)
13369 -- or same as above for the case where the discriminants
13370 -- were declared in Typ's private view.
13372 or else (Is_Private_Type
(Discrim_Scope
)
13373 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
13375 -- or else we are deriving from the full view and the
13376 -- discriminant is declared in the private entity.
13378 or else (Is_Private_Type
(Typ
)
13379 and then Chars
(Discrim_Scope
) = Chars
(Typ
))
13381 -- Or we are constrained the corresponding record of a
13382 -- synchronized type that completes a private declaration.
13384 or else (Is_Concurrent_Record_Type
(Typ
)
13386 Corresponding_Concurrent_Type
(Typ
) = Discrim_Scope
)
13388 -- or we have a class-wide type, in which case make sure the
13389 -- discriminant found belongs to the root type.
13391 or else (Is_Class_Wide_Type
(Typ
)
13392 and then Etype
(Typ
) = Discrim_Scope
));
13397 -- In all other cases we have something wrong
13400 end Is_Discriminant
;
13402 -- Start of processing for Constrain_Component_Type
13405 if Nkind
(Parent
(Comp
)) = N_Component_Declaration
13406 and then Comes_From_Source
(Parent
(Comp
))
13407 and then Comes_From_Source
13408 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
13411 (Subtype_Indication
(Component_Definition
(Parent
(Comp
))))
13413 return Compon_Type
;
13415 elsif Is_Array_Type
(Compon_Type
) then
13416 return Build_Constrained_Array_Type
(Compon_Type
);
13418 elsif Has_Discriminants
(Compon_Type
) then
13419 return Build_Constrained_Discriminated_Type
(Compon_Type
);
13421 elsif Is_Access_Type
(Compon_Type
) then
13422 return Build_Constrained_Access_Type
(Compon_Type
);
13425 return Compon_Type
;
13427 end Constrain_Component_Type
;
13429 --------------------------
13430 -- Constrain_Concurrent --
13431 --------------------------
13433 -- For concurrent types, the associated record value type carries the same
13434 -- discriminants, so when we constrain a concurrent type, we must constrain
13435 -- the corresponding record type as well.
13437 procedure Constrain_Concurrent
13438 (Def_Id
: in out Entity_Id
;
13440 Related_Nod
: Node_Id
;
13441 Related_Id
: Entity_Id
;
13442 Suffix
: Character)
13444 -- Retrieve Base_Type to ensure getting to the concurrent type in the
13445 -- case of a private subtype (needed when only doing semantic analysis).
13447 T_Ent
: Entity_Id
:= Base_Type
(Entity
(Subtype_Mark
(SI
)));
13451 if Is_Access_Type
(T_Ent
) then
13452 T_Ent
:= Designated_Type
(T_Ent
);
13455 T_Val
:= Corresponding_Record_Type
(T_Ent
);
13457 if Present
(T_Val
) then
13459 if No
(Def_Id
) then
13460 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13462 -- Elaborate itype now, as it may be used in a subsequent
13463 -- synchronized operation in another scope.
13465 if Nkind
(Related_Nod
) = N_Full_Type_Declaration
then
13466 Build_Itype_Reference
(Def_Id
, Related_Nod
);
13470 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13472 Set_Depends_On_Private
(Def_Id
, Has_Private_Component
(Def_Id
));
13473 Set_Corresponding_Record_Type
(Def_Id
,
13474 Constrain_Corresponding_Record
(Def_Id
, T_Val
, Related_Nod
));
13477 -- If there is no associated record, expansion is disabled and this
13478 -- is a generic context. Create a subtype in any case, so that
13479 -- semantic analysis can proceed.
13481 if No
(Def_Id
) then
13482 Def_Id
:= Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
13485 Constrain_Discriminated_Type
(Def_Id
, SI
, Related_Nod
);
13487 end Constrain_Concurrent
;
13489 ------------------------------------
13490 -- Constrain_Corresponding_Record --
13491 ------------------------------------
13493 function Constrain_Corresponding_Record
13494 (Prot_Subt
: Entity_Id
;
13495 Corr_Rec
: Entity_Id
;
13496 Related_Nod
: Node_Id
) return Entity_Id
13498 T_Sub
: constant Entity_Id
:=
13499 Create_Itype
(E_Record_Subtype
, Related_Nod
, Corr_Rec
, 'C');
13502 Set_Etype
(T_Sub
, Corr_Rec
);
13503 Set_Has_Discriminants
(T_Sub
, Has_Discriminants
(Prot_Subt
));
13504 Set_Is_Constrained
(T_Sub
, True);
13505 Set_First_Entity
(T_Sub
, First_Entity
(Corr_Rec
));
13506 Set_Last_Entity
(T_Sub
, Last_Entity
(Corr_Rec
));
13508 if Has_Discriminants
(Prot_Subt
) then -- False only if errors.
13509 Set_Discriminant_Constraint
13510 (T_Sub
, Discriminant_Constraint
(Prot_Subt
));
13511 Set_Stored_Constraint_From_Discriminant_Constraint
(T_Sub
);
13512 Create_Constrained_Components
13513 (T_Sub
, Related_Nod
, Corr_Rec
, Discriminant_Constraint
(T_Sub
));
13516 Set_Depends_On_Private
(T_Sub
, Has_Private_Component
(T_Sub
));
13518 if Ekind
(Scope
(Prot_Subt
)) /= E_Record_Type
then
13519 Conditional_Delay
(T_Sub
, Corr_Rec
);
13522 -- This is a component subtype: it will be frozen in the context of
13523 -- the enclosing record's init_proc, so that discriminant references
13524 -- are resolved to discriminals. (Note: we used to skip freezing
13525 -- altogether in that case, which caused errors downstream for
13526 -- components of a bit packed array type).
13528 Set_Has_Delayed_Freeze
(T_Sub
);
13532 end Constrain_Corresponding_Record
;
13534 -----------------------
13535 -- Constrain_Decimal --
13536 -----------------------
13538 procedure Constrain_Decimal
(Def_Id
: Node_Id
; S
: Node_Id
) is
13539 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13540 C
: constant Node_Id
:= Constraint
(S
);
13541 Loc
: constant Source_Ptr
:= Sloc
(C
);
13542 Range_Expr
: Node_Id
;
13543 Digits_Expr
: Node_Id
;
13548 Set_Ekind
(Def_Id
, E_Decimal_Fixed_Point_Subtype
);
13550 if Nkind
(C
) = N_Range_Constraint
then
13551 Range_Expr
:= Range_Expression
(C
);
13552 Digits_Val
:= Digits_Value
(T
);
13555 pragma Assert
(Nkind
(C
) = N_Digits_Constraint
);
13557 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13559 Digits_Expr
:= Digits_Expression
(C
);
13560 Analyze_And_Resolve
(Digits_Expr
, Any_Integer
);
13562 Check_Digits_Expression
(Digits_Expr
);
13563 Digits_Val
:= Expr_Value
(Digits_Expr
);
13565 if Digits_Val
> Digits_Value
(T
) then
13567 ("digits expression is incompatible with subtype", C
);
13568 Digits_Val
:= Digits_Value
(T
);
13571 if Present
(Range_Constraint
(C
)) then
13572 Range_Expr
:= Range_Expression
(Range_Constraint
(C
));
13574 Range_Expr
:= Empty
;
13578 Set_Etype
(Def_Id
, Base_Type
(T
));
13579 Set_Size_Info
(Def_Id
, (T
));
13580 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13581 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
13582 Set_Scale_Value
(Def_Id
, Scale_Value
(T
));
13583 Set_Small_Value
(Def_Id
, Small_Value
(T
));
13584 Set_Machine_Radix_10
(Def_Id
, Machine_Radix_10
(T
));
13585 Set_Digits_Value
(Def_Id
, Digits_Val
);
13587 -- Manufacture range from given digits value if no range present
13589 if No
(Range_Expr
) then
13590 Bound_Val
:= (Ureal_10
** Digits_Val
- Ureal_1
) * Small_Value
(T
);
13594 Convert_To
(T
, Make_Real_Literal
(Loc
, (-Bound_Val
))),
13596 Convert_To
(T
, Make_Real_Literal
(Loc
, Bound_Val
)));
13599 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expr
, T
);
13600 Set_Discrete_RM_Size
(Def_Id
);
13602 -- Unconditionally delay the freeze, since we cannot set size
13603 -- information in all cases correctly until the freeze point.
13605 Set_Has_Delayed_Freeze
(Def_Id
);
13606 end Constrain_Decimal
;
13608 ----------------------------------
13609 -- Constrain_Discriminated_Type --
13610 ----------------------------------
13612 procedure Constrain_Discriminated_Type
13613 (Def_Id
: Entity_Id
;
13615 Related_Nod
: Node_Id
;
13616 For_Access
: Boolean := False)
13618 E
: Entity_Id
:= Entity
(Subtype_Mark
(S
));
13621 procedure Fixup_Bad_Constraint
;
13622 -- Called after finding a bad constraint, and after having posted an
13623 -- appropriate error message. The goal is to leave type Def_Id in as
13624 -- reasonable state as possible.
13626 --------------------------
13627 -- Fixup_Bad_Constraint --
13628 --------------------------
13630 procedure Fixup_Bad_Constraint
is
13632 -- Set a reasonable Ekind for the entity. For an incomplete type,
13633 -- we can't do much, but for other types, we can set the proper
13634 -- corresponding subtype kind.
13636 if Ekind
(T
) = E_Incomplete_Type
then
13637 Set_Ekind
(Def_Id
, Ekind
(T
));
13639 Set_Ekind
(Def_Id
, Subtype_Kind
(Ekind
(T
)));
13642 -- Set Etype to the known type, to reduce chances of cascaded errors
13644 Set_Etype
(Def_Id
, E
);
13645 Set_Error_Posted
(Def_Id
);
13646 end Fixup_Bad_Constraint
;
13651 Constr
: Elist_Id
:= New_Elmt_List
;
13653 -- Start of processing for Constrain_Discriminated_Type
13656 C
:= Constraint
(S
);
13658 -- A discriminant constraint is only allowed in a subtype indication,
13659 -- after a subtype mark. This subtype mark must denote either a type
13660 -- with discriminants, or an access type whose designated type is a
13661 -- type with discriminants. A discriminant constraint specifies the
13662 -- values of these discriminants (RM 3.7.2(5)).
13664 T
:= Base_Type
(Entity
(Subtype_Mark
(S
)));
13666 if Is_Access_Type
(T
) then
13667 T
:= Designated_Type
(T
);
13670 -- In an instance it may be necessary to retrieve the full view of a
13671 -- type with unknown discriminants, or a full view with defaulted
13672 -- discriminants. In other contexts the constraint is illegal.
13675 and then Is_Private_Type
(T
)
13676 and then Present
(Full_View
(T
))
13678 (Has_Unknown_Discriminants
(T
)
13680 (not Has_Discriminants
(T
)
13681 and then Has_Discriminants
(Full_View
(T
))
13682 and then Present
(Discriminant_Default_Value
13683 (First_Discriminant
(Full_View
(T
))))))
13685 T
:= Full_View
(T
);
13686 E
:= Full_View
(E
);
13689 -- Ada 2005 (AI-412): Constrained incomplete subtypes are illegal. Avoid
13690 -- generating an error for access-to-incomplete subtypes.
13692 if Ada_Version
>= Ada_2005
13693 and then Ekind
(T
) = E_Incomplete_Type
13694 and then Nkind
(Parent
(S
)) = N_Subtype_Declaration
13695 and then not Is_Itype
(Def_Id
)
13697 -- A little sanity check: emit an error message if the type has
13698 -- discriminants to begin with. Type T may be a regular incomplete
13699 -- type or imported via a limited with clause.
13701 if Has_Discriminants
(T
)
13702 or else (From_Limited_With
(T
)
13703 and then Present
(Non_Limited_View
(T
))
13704 and then Nkind
(Parent
(Non_Limited_View
(T
))) =
13705 N_Full_Type_Declaration
13706 and then Present
(Discriminant_Specifications
13707 (Parent
(Non_Limited_View
(T
)))))
13710 ("(Ada 2005) incomplete subtype may not be constrained", C
);
13712 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13715 Fixup_Bad_Constraint
;
13718 -- Check that the type has visible discriminants. The type may be
13719 -- a private type with unknown discriminants whose full view has
13720 -- discriminants which are invisible.
13722 elsif not Has_Discriminants
(T
)
13724 (Has_Unknown_Discriminants
(T
)
13725 and then Is_Private_Type
(T
))
13727 Error_Msg_N
("invalid constraint: type has no discriminant", C
);
13728 Fixup_Bad_Constraint
;
13731 elsif Is_Constrained
(E
)
13732 or else (Ekind
(E
) = E_Class_Wide_Subtype
13733 and then Present
(Discriminant_Constraint
(E
)))
13735 Error_Msg_N
("type is already constrained", Subtype_Mark
(S
));
13736 Fixup_Bad_Constraint
;
13740 -- T may be an unconstrained subtype (e.g. a generic actual). Constraint
13741 -- applies to the base type.
13743 T
:= Base_Type
(T
);
13745 Constr
:= Build_Discriminant_Constraints
(T
, S
);
13747 -- If the list returned was empty we had an error in building the
13748 -- discriminant constraint. We have also already signalled an error
13749 -- in the incomplete type case
13751 if Is_Empty_Elmt_List
(Constr
) then
13752 Fixup_Bad_Constraint
;
13756 Build_Discriminated_Subtype
(T
, Def_Id
, Constr
, Related_Nod
, For_Access
);
13757 end Constrain_Discriminated_Type
;
13759 ---------------------------
13760 -- Constrain_Enumeration --
13761 ---------------------------
13763 procedure Constrain_Enumeration
(Def_Id
: Node_Id
; S
: Node_Id
) is
13764 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13765 C
: constant Node_Id
:= Constraint
(S
);
13768 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13770 Set_First_Literal
(Def_Id
, First_Literal
(Base_Type
(T
)));
13772 Set_Etype
(Def_Id
, Base_Type
(T
));
13773 Set_Size_Info
(Def_Id
, (T
));
13774 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13775 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13777 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13779 Set_Discrete_RM_Size
(Def_Id
);
13780 end Constrain_Enumeration
;
13782 ----------------------
13783 -- Constrain_Float --
13784 ----------------------
13786 procedure Constrain_Float
(Def_Id
: Node_Id
; S
: Node_Id
) is
13787 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13793 Set_Ekind
(Def_Id
, E_Floating_Point_Subtype
);
13795 Set_Etype
(Def_Id
, Base_Type
(T
));
13796 Set_Size_Info
(Def_Id
, (T
));
13797 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13799 -- Process the constraint
13801 C
:= Constraint
(S
);
13803 -- Digits constraint present
13805 if Nkind
(C
) = N_Digits_Constraint
then
13807 Check_SPARK_05_Restriction
("digits constraint is not allowed", S
);
13808 Check_Restriction
(No_Obsolescent_Features
, C
);
13810 if Warn_On_Obsolescent_Feature
then
13812 ("subtype digits constraint is an " &
13813 "obsolescent feature (RM J.3(8))?j?", C
);
13816 D
:= Digits_Expression
(C
);
13817 Analyze_And_Resolve
(D
, Any_Integer
);
13818 Check_Digits_Expression
(D
);
13819 Set_Digits_Value
(Def_Id
, Expr_Value
(D
));
13821 -- Check that digits value is in range. Obviously we can do this
13822 -- at compile time, but it is strictly a runtime check, and of
13823 -- course there is an ACVC test that checks this.
13825 if Digits_Value
(Def_Id
) > Digits_Value
(T
) then
13826 Error_Msg_Uint_1
:= Digits_Value
(T
);
13827 Error_Msg_N
("??digits value is too large, maximum is ^", D
);
13829 Make_Raise_Constraint_Error
(Sloc
(D
),
13830 Reason
=> CE_Range_Check_Failed
);
13831 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
13834 C
:= Range_Constraint
(C
);
13836 -- No digits constraint present
13839 Set_Digits_Value
(Def_Id
, Digits_Value
(T
));
13842 -- Range constraint present
13844 if Nkind
(C
) = N_Range_Constraint
then
13845 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
13847 -- No range constraint present
13850 pragma Assert
(No
(C
));
13851 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
13854 Set_Is_Constrained
(Def_Id
);
13855 end Constrain_Float
;
13857 ---------------------
13858 -- Constrain_Index --
13859 ---------------------
13861 procedure Constrain_Index
13864 Related_Nod
: Node_Id
;
13865 Related_Id
: Entity_Id
;
13866 Suffix
: Character;
13867 Suffix_Index
: Nat
)
13869 Def_Id
: Entity_Id
;
13870 R
: Node_Id
:= Empty
;
13871 T
: constant Entity_Id
:= Etype
(Index
);
13875 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
, Suffix_Index
);
13876 Set_Etype
(Def_Id
, Base_Type
(T
));
13878 if Nkind
(S
) = N_Range
13880 (Nkind
(S
) = N_Attribute_Reference
13881 and then Attribute_Name
(S
) = Name_Range
)
13883 -- A Range attribute will be transformed into N_Range by Resolve
13889 Process_Range_Expr_In_Decl
(R
, T
);
13891 if not Error_Posted
(S
)
13893 (Nkind
(S
) /= N_Range
13894 or else not Covers
(T
, (Etype
(Low_Bound
(S
))))
13895 or else not Covers
(T
, (Etype
(High_Bound
(S
)))))
13897 if Base_Type
(T
) /= Any_Type
13898 and then Etype
(Low_Bound
(S
)) /= Any_Type
13899 and then Etype
(High_Bound
(S
)) /= Any_Type
13901 Error_Msg_N
("range expected", S
);
13905 elsif Nkind
(S
) = N_Subtype_Indication
then
13907 -- The parser has verified that this is a discrete indication
13909 Resolve_Discrete_Subtype_Indication
(S
, T
);
13910 Bad_Predicated_Subtype_Use
13911 ("subtype& has predicate, not allowed in index constraint",
13912 S
, Entity
(Subtype_Mark
(S
)));
13914 R
:= Range_Expression
(Constraint
(S
));
13916 -- Capture values of bounds and generate temporaries for them if
13917 -- needed, since checks may cause duplication of the expressions
13918 -- which must not be reevaluated.
13920 -- The forced evaluation removes side effects from expressions, which
13921 -- should occur also in GNATprove mode. Otherwise, we end up with
13922 -- unexpected insertions of actions at places where this is not
13923 -- supposed to occur, e.g. on default parameters of a call.
13925 if Expander_Active
or GNATprove_Mode
then
13927 (Low_Bound
(R
), Related_Id
=> Def_Id
, Is_Low_Bound
=> True);
13929 (High_Bound
(R
), Related_Id
=> Def_Id
, Is_High_Bound
=> True);
13932 elsif Nkind
(S
) = N_Discriminant_Association
then
13934 -- Syntactically valid in subtype indication
13936 Error_Msg_N
("invalid index constraint", S
);
13937 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13940 -- Subtype_Mark case, no anonymous subtypes to construct
13945 if Is_Entity_Name
(S
) then
13946 if not Is_Type
(Entity
(S
)) then
13947 Error_Msg_N
("expect subtype mark for index constraint", S
);
13949 elsif Base_Type
(Entity
(S
)) /= Base_Type
(T
) then
13950 Wrong_Type
(S
, Base_Type
(T
));
13952 -- Check error of subtype with predicate in index constraint
13955 Bad_Predicated_Subtype_Use
13956 ("subtype& has predicate, not allowed in index constraint",
13963 Error_Msg_N
("invalid index constraint", S
);
13964 Rewrite
(S
, New_Occurrence_Of
(T
, Sloc
(S
)));
13969 -- Complete construction of the Itype
13971 if Is_Modular_Integer_Type
(T
) then
13972 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
13974 elsif Is_Integer_Type
(T
) then
13975 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
13978 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
13979 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
13980 Set_First_Literal
(Def_Id
, First_Literal
(T
));
13983 Set_Size_Info
(Def_Id
, (T
));
13984 Set_RM_Size
(Def_Id
, RM_Size
(T
));
13985 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
13987 Set_Scalar_Range
(Def_Id
, R
);
13989 Set_Etype
(S
, Def_Id
);
13990 Set_Discrete_RM_Size
(Def_Id
);
13991 end Constrain_Index
;
13993 -----------------------
13994 -- Constrain_Integer --
13995 -----------------------
13997 procedure Constrain_Integer
(Def_Id
: Node_Id
; S
: Node_Id
) is
13998 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
13999 C
: constant Node_Id
:= Constraint
(S
);
14002 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
14004 if Is_Modular_Integer_Type
(T
) then
14005 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
14007 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
14010 Set_Etype
(Def_Id
, Base_Type
(T
));
14011 Set_Size_Info
(Def_Id
, (T
));
14012 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14013 Set_Discrete_RM_Size
(Def_Id
);
14014 end Constrain_Integer
;
14016 ------------------------------
14017 -- Constrain_Ordinary_Fixed --
14018 ------------------------------
14020 procedure Constrain_Ordinary_Fixed
(Def_Id
: Node_Id
; S
: Node_Id
) is
14021 T
: constant Entity_Id
:= Entity
(Subtype_Mark
(S
));
14027 Set_Ekind
(Def_Id
, E_Ordinary_Fixed_Point_Subtype
);
14028 Set_Etype
(Def_Id
, Base_Type
(T
));
14029 Set_Size_Info
(Def_Id
, (T
));
14030 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
14031 Set_Small_Value
(Def_Id
, Small_Value
(T
));
14033 -- Process the constraint
14035 C
:= Constraint
(S
);
14037 -- Delta constraint present
14039 if Nkind
(C
) = N_Delta_Constraint
then
14041 Check_SPARK_05_Restriction
("delta constraint is not allowed", S
);
14042 Check_Restriction
(No_Obsolescent_Features
, C
);
14044 if Warn_On_Obsolescent_Feature
then
14046 ("subtype delta constraint is an " &
14047 "obsolescent feature (RM J.3(7))?j?");
14050 D
:= Delta_Expression
(C
);
14051 Analyze_And_Resolve
(D
, Any_Real
);
14052 Check_Delta_Expression
(D
);
14053 Set_Delta_Value
(Def_Id
, Expr_Value_R
(D
));
14055 -- Check that delta value is in range. Obviously we can do this
14056 -- at compile time, but it is strictly a runtime check, and of
14057 -- course there is an ACVC test that checks this.
14059 if Delta_Value
(Def_Id
) < Delta_Value
(T
) then
14060 Error_Msg_N
("??delta value is too small", D
);
14062 Make_Raise_Constraint_Error
(Sloc
(D
),
14063 Reason
=> CE_Range_Check_Failed
);
14064 Insert_Action
(Declaration_Node
(Def_Id
), Rais
);
14067 C
:= Range_Constraint
(C
);
14069 -- No delta constraint present
14072 Set_Delta_Value
(Def_Id
, Delta_Value
(T
));
14075 -- Range constraint present
14077 if Nkind
(C
) = N_Range_Constraint
then
14078 Set_Scalar_Range_For_Subtype
(Def_Id
, Range_Expression
(C
), T
);
14080 -- No range constraint present
14083 pragma Assert
(No
(C
));
14084 Set_Scalar_Range
(Def_Id
, Scalar_Range
(T
));
14087 Set_Discrete_RM_Size
(Def_Id
);
14089 -- Unconditionally delay the freeze, since we cannot set size
14090 -- information in all cases correctly until the freeze point.
14092 Set_Has_Delayed_Freeze
(Def_Id
);
14093 end Constrain_Ordinary_Fixed
;
14095 -----------------------
14096 -- Contain_Interface --
14097 -----------------------
14099 function Contain_Interface
14100 (Iface
: Entity_Id
;
14101 Ifaces
: Elist_Id
) return Boolean
14103 Iface_Elmt
: Elmt_Id
;
14106 if Present
(Ifaces
) then
14107 Iface_Elmt
:= First_Elmt
(Ifaces
);
14108 while Present
(Iface_Elmt
) loop
14109 if Node
(Iface_Elmt
) = Iface
then
14113 Next_Elmt
(Iface_Elmt
);
14118 end Contain_Interface
;
14120 ---------------------------
14121 -- Convert_Scalar_Bounds --
14122 ---------------------------
14124 procedure Convert_Scalar_Bounds
14126 Parent_Type
: Entity_Id
;
14127 Derived_Type
: Entity_Id
;
14130 Implicit_Base
: constant Entity_Id
:= Base_Type
(Derived_Type
);
14137 -- Defend against previous errors
14139 if No
(Scalar_Range
(Derived_Type
)) then
14140 Check_Error_Detected
;
14144 Lo
:= Build_Scalar_Bound
14145 (Type_Low_Bound
(Derived_Type
),
14146 Parent_Type
, Implicit_Base
);
14148 Hi
:= Build_Scalar_Bound
14149 (Type_High_Bound
(Derived_Type
),
14150 Parent_Type
, Implicit_Base
);
14157 Set_Includes_Infinities
(Rng
, Has_Infinities
(Derived_Type
));
14159 Set_Parent
(Rng
, N
);
14160 Set_Scalar_Range
(Derived_Type
, Rng
);
14162 -- Analyze the bounds
14164 Analyze_And_Resolve
(Lo
, Implicit_Base
);
14165 Analyze_And_Resolve
(Hi
, Implicit_Base
);
14167 -- Analyze the range itself, except that we do not analyze it if
14168 -- the bounds are real literals, and we have a fixed-point type.
14169 -- The reason for this is that we delay setting the bounds in this
14170 -- case till we know the final Small and Size values (see circuit
14171 -- in Freeze.Freeze_Fixed_Point_Type for further details).
14173 if Is_Fixed_Point_Type
(Parent_Type
)
14174 and then Nkind
(Lo
) = N_Real_Literal
14175 and then Nkind
(Hi
) = N_Real_Literal
14179 -- Here we do the analysis of the range
14181 -- Note: we do this manually, since if we do a normal Analyze and
14182 -- Resolve call, there are problems with the conversions used for
14183 -- the derived type range.
14186 Set_Etype
(Rng
, Implicit_Base
);
14187 Set_Analyzed
(Rng
, True);
14189 end Convert_Scalar_Bounds
;
14191 -------------------
14192 -- Copy_And_Swap --
14193 -------------------
14195 procedure Copy_And_Swap
(Priv
, Full
: Entity_Id
) is
14197 -- Initialize new full declaration entity by copying the pertinent
14198 -- fields of the corresponding private declaration entity.
14200 -- We temporarily set Ekind to a value appropriate for a type to
14201 -- avoid assert failures in Einfo from checking for setting type
14202 -- attributes on something that is not a type. Ekind (Priv) is an
14203 -- appropriate choice, since it allowed the attributes to be set
14204 -- in the first place. This Ekind value will be modified later.
14206 Set_Ekind
(Full
, Ekind
(Priv
));
14208 -- Also set Etype temporarily to Any_Type, again, in the absence
14209 -- of errors, it will be properly reset, and if there are errors,
14210 -- then we want a value of Any_Type to remain.
14212 Set_Etype
(Full
, Any_Type
);
14214 -- Now start copying attributes
14216 Set_Has_Discriminants
(Full
, Has_Discriminants
(Priv
));
14218 if Has_Discriminants
(Full
) then
14219 Set_Discriminant_Constraint
(Full
, Discriminant_Constraint
(Priv
));
14220 Set_Stored_Constraint
(Full
, Stored_Constraint
(Priv
));
14223 Set_First_Rep_Item
(Full
, First_Rep_Item
(Priv
));
14224 Set_Homonym
(Full
, Homonym
(Priv
));
14225 Set_Is_Immediately_Visible
(Full
, Is_Immediately_Visible
(Priv
));
14226 Set_Is_Public
(Full
, Is_Public
(Priv
));
14227 Set_Is_Pure
(Full
, Is_Pure
(Priv
));
14228 Set_Is_Tagged_Type
(Full
, Is_Tagged_Type
(Priv
));
14229 Set_Has_Pragma_Unmodified
(Full
, Has_Pragma_Unmodified
(Priv
));
14230 Set_Has_Pragma_Unreferenced
(Full
, Has_Pragma_Unreferenced
(Priv
));
14231 Set_Has_Pragma_Unreferenced_Objects
14232 (Full
, Has_Pragma_Unreferenced_Objects
14235 Conditional_Delay
(Full
, Priv
);
14237 if Is_Tagged_Type
(Full
) then
14238 Set_Direct_Primitive_Operations
14239 (Full
, Direct_Primitive_Operations
(Priv
));
14240 Set_No_Tagged_Streams_Pragma
14241 (Full
, No_Tagged_Streams_Pragma
(Priv
));
14243 if Is_Base_Type
(Priv
) then
14244 Set_Class_Wide_Type
(Full
, Class_Wide_Type
(Priv
));
14248 Set_Is_Volatile
(Full
, Is_Volatile
(Priv
));
14249 Set_Treat_As_Volatile
(Full
, Treat_As_Volatile
(Priv
));
14250 Set_Scope
(Full
, Scope
(Priv
));
14251 Set_Next_Entity
(Full
, Next_Entity
(Priv
));
14252 Set_First_Entity
(Full
, First_Entity
(Priv
));
14253 Set_Last_Entity
(Full
, Last_Entity
(Priv
));
14255 -- If access types have been recorded for later handling, keep them in
14256 -- the full view so that they get handled when the full view freeze
14257 -- node is expanded.
14259 if Present
(Freeze_Node
(Priv
))
14260 and then Present
(Access_Types_To_Process
(Freeze_Node
(Priv
)))
14262 Ensure_Freeze_Node
(Full
);
14263 Set_Access_Types_To_Process
14264 (Freeze_Node
(Full
),
14265 Access_Types_To_Process
(Freeze_Node
(Priv
)));
14268 -- Swap the two entities. Now Private is the full type entity and Full
14269 -- is the private one. They will be swapped back at the end of the
14270 -- private part. This swapping ensures that the entity that is visible
14271 -- in the private part is the full declaration.
14273 Exchange_Entities
(Priv
, Full
);
14274 Append_Entity
(Full
, Scope
(Full
));
14277 -------------------------------------
14278 -- Copy_Array_Base_Type_Attributes --
14279 -------------------------------------
14281 procedure Copy_Array_Base_Type_Attributes
(T1
, T2
: Entity_Id
) is
14283 Set_Component_Alignment
(T1
, Component_Alignment
(T2
));
14284 Set_Component_Type
(T1
, Component_Type
(T2
));
14285 Set_Component_Size
(T1
, Component_Size
(T2
));
14286 Set_Has_Controlled_Component
(T1
, Has_Controlled_Component
(T2
));
14287 Set_Has_Non_Standard_Rep
(T1
, Has_Non_Standard_Rep
(T2
));
14288 Propagate_Concurrent_Flags
(T1
, T2
);
14289 Set_Is_Packed
(T1
, Is_Packed
(T2
));
14290 Set_Has_Aliased_Components
(T1
, Has_Aliased_Components
(T2
));
14291 Set_Has_Atomic_Components
(T1
, Has_Atomic_Components
(T2
));
14292 Set_Has_Volatile_Components
(T1
, Has_Volatile_Components
(T2
));
14293 end Copy_Array_Base_Type_Attributes
;
14295 -----------------------------------
14296 -- Copy_Array_Subtype_Attributes --
14297 -----------------------------------
14299 procedure Copy_Array_Subtype_Attributes
(T1
, T2
: Entity_Id
) is
14301 Set_Size_Info
(T1
, T2
);
14303 Set_First_Index
(T1
, First_Index
(T2
));
14304 Set_Is_Aliased
(T1
, Is_Aliased
(T2
));
14305 Set_Is_Volatile
(T1
, Is_Volatile
(T2
));
14306 Set_Treat_As_Volatile
(T1
, Treat_As_Volatile
(T2
));
14307 Set_Is_Constrained
(T1
, Is_Constrained
(T2
));
14308 Set_Depends_On_Private
(T1
, Has_Private_Component
(T2
));
14309 Inherit_Rep_Item_Chain
(T1
, T2
);
14310 Set_Convention
(T1
, Convention
(T2
));
14311 Set_Is_Limited_Composite
(T1
, Is_Limited_Composite
(T2
));
14312 Set_Is_Private_Composite
(T1
, Is_Private_Composite
(T2
));
14313 Set_Packed_Array_Impl_Type
(T1
, Packed_Array_Impl_Type
(T2
));
14314 end Copy_Array_Subtype_Attributes
;
14316 -----------------------------------
14317 -- Create_Constrained_Components --
14318 -----------------------------------
14320 procedure Create_Constrained_Components
14322 Decl_Node
: Node_Id
;
14324 Constraints
: Elist_Id
)
14326 Loc
: constant Source_Ptr
:= Sloc
(Subt
);
14327 Comp_List
: constant Elist_Id
:= New_Elmt_List
;
14328 Parent_Type
: constant Entity_Id
:= Etype
(Typ
);
14329 Assoc_List
: constant List_Id
:= New_List
;
14330 Discr_Val
: Elmt_Id
;
14334 Is_Static
: Boolean := True;
14336 procedure Collect_Fixed_Components
(Typ
: Entity_Id
);
14337 -- Collect parent type components that do not appear in a variant part
14339 procedure Create_All_Components
;
14340 -- Iterate over Comp_List to create the components of the subtype
14342 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
;
14343 -- Creates a new component from Old_Compon, copying all the fields from
14344 -- it, including its Etype, inserts the new component in the Subt entity
14345 -- chain and returns the new component.
14347 function Is_Variant_Record
(T
: Entity_Id
) return Boolean;
14348 -- If true, and discriminants are static, collect only components from
14349 -- variants selected by discriminant values.
14351 ------------------------------
14352 -- Collect_Fixed_Components --
14353 ------------------------------
14355 procedure Collect_Fixed_Components
(Typ
: Entity_Id
) is
14357 -- Build association list for discriminants, and find components of the
14358 -- variant part selected by the values of the discriminants.
14360 Old_C
:= First_Discriminant
(Typ
);
14361 Discr_Val
:= First_Elmt
(Constraints
);
14362 while Present
(Old_C
) loop
14363 Append_To
(Assoc_List
,
14364 Make_Component_Association
(Loc
,
14365 Choices
=> New_List
(New_Occurrence_Of
(Old_C
, Loc
)),
14366 Expression
=> New_Copy
(Node
(Discr_Val
))));
14368 Next_Elmt
(Discr_Val
);
14369 Next_Discriminant
(Old_C
);
14372 -- The tag and the possible parent component are unconditionally in
14375 if Is_Tagged_Type
(Typ
) or else Has_Controlled_Component
(Typ
) then
14376 Old_C
:= First_Component
(Typ
);
14377 while Present
(Old_C
) loop
14378 if Nam_In
(Chars
(Old_C
), Name_uTag
, Name_uParent
) then
14379 Append_Elmt
(Old_C
, Comp_List
);
14382 Next_Component
(Old_C
);
14385 end Collect_Fixed_Components
;
14387 ---------------------------
14388 -- Create_All_Components --
14389 ---------------------------
14391 procedure Create_All_Components
is
14395 Comp
:= First_Elmt
(Comp_List
);
14396 while Present
(Comp
) loop
14397 Old_C
:= Node
(Comp
);
14398 New_C
:= Create_Component
(Old_C
);
14402 Constrain_Component_Type
14403 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14404 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14408 end Create_All_Components
;
14410 ----------------------
14411 -- Create_Component --
14412 ----------------------
14414 function Create_Component
(Old_Compon
: Entity_Id
) return Entity_Id
is
14415 New_Compon
: constant Entity_Id
:= New_Copy
(Old_Compon
);
14418 if Ekind
(Old_Compon
) = E_Discriminant
14419 and then Is_Completely_Hidden
(Old_Compon
)
14421 -- This is a shadow discriminant created for a discriminant of
14422 -- the parent type, which needs to be present in the subtype.
14423 -- Give the shadow discriminant an internal name that cannot
14424 -- conflict with that of visible components.
14426 Set_Chars
(New_Compon
, New_Internal_Name
('C'));
14429 -- Set the parent so we have a proper link for freezing etc. This is
14430 -- not a real parent pointer, since of course our parent does not own
14431 -- up to us and reference us, we are an illegitimate child of the
14432 -- original parent.
14434 Set_Parent
(New_Compon
, Parent
(Old_Compon
));
14436 -- If the old component's Esize was already determined and is a
14437 -- static value, then the new component simply inherits it. Otherwise
14438 -- the old component's size may require run-time determination, but
14439 -- the new component's size still might be statically determinable
14440 -- (if, for example it has a static constraint). In that case we want
14441 -- Layout_Type to recompute the component's size, so we reset its
14442 -- size and positional fields.
14444 if Frontend_Layout_On_Target
14445 and then not Known_Static_Esize
(Old_Compon
)
14447 Set_Esize
(New_Compon
, Uint_0
);
14448 Init_Normalized_First_Bit
(New_Compon
);
14449 Init_Normalized_Position
(New_Compon
);
14450 Init_Normalized_Position_Max
(New_Compon
);
14453 -- We do not want this node marked as Comes_From_Source, since
14454 -- otherwise it would get first class status and a separate cross-
14455 -- reference line would be generated. Illegitimate children do not
14456 -- rate such recognition.
14458 Set_Comes_From_Source
(New_Compon
, False);
14460 -- But it is a real entity, and a birth certificate must be properly
14461 -- registered by entering it into the entity list.
14463 Enter_Name
(New_Compon
);
14466 end Create_Component
;
14468 -----------------------
14469 -- Is_Variant_Record --
14470 -----------------------
14472 function Is_Variant_Record
(T
: Entity_Id
) return Boolean is
14474 return Nkind
(Parent
(T
)) = N_Full_Type_Declaration
14475 and then Nkind
(Type_Definition
(Parent
(T
))) = N_Record_Definition
14476 and then Present
(Component_List
(Type_Definition
(Parent
(T
))))
14479 (Variant_Part
(Component_List
(Type_Definition
(Parent
(T
)))));
14480 end Is_Variant_Record
;
14482 -- Start of processing for Create_Constrained_Components
14485 pragma Assert
(Subt
/= Base_Type
(Subt
));
14486 pragma Assert
(Typ
= Base_Type
(Typ
));
14488 Set_First_Entity
(Subt
, Empty
);
14489 Set_Last_Entity
(Subt
, Empty
);
14491 -- Check whether constraint is fully static, in which case we can
14492 -- optimize the list of components.
14494 Discr_Val
:= First_Elmt
(Constraints
);
14495 while Present
(Discr_Val
) loop
14496 if not Is_OK_Static_Expression
(Node
(Discr_Val
)) then
14497 Is_Static
:= False;
14501 Next_Elmt
(Discr_Val
);
14504 Set_Has_Static_Discriminants
(Subt
, Is_Static
);
14508 -- Inherit the discriminants of the parent type
14510 Add_Discriminants
: declare
14516 Old_C
:= First_Discriminant
(Typ
);
14518 while Present
(Old_C
) loop
14519 Num_Disc
:= Num_Disc
+ 1;
14520 New_C
:= Create_Component
(Old_C
);
14521 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14522 Next_Discriminant
(Old_C
);
14525 -- For an untagged derived subtype, the number of discriminants may
14526 -- be smaller than the number of inherited discriminants, because
14527 -- several of them may be renamed by a single new discriminant or
14528 -- constrained. In this case, add the hidden discriminants back into
14529 -- the subtype, because they need to be present if the optimizer of
14530 -- the GCC 4.x back-end decides to break apart assignments between
14531 -- objects using the parent view into member-wise assignments.
14535 if Is_Derived_Type
(Typ
)
14536 and then not Is_Tagged_Type
(Typ
)
14538 Old_C
:= First_Stored_Discriminant
(Typ
);
14540 while Present
(Old_C
) loop
14541 Num_Gird
:= Num_Gird
+ 1;
14542 Next_Stored_Discriminant
(Old_C
);
14546 if Num_Gird
> Num_Disc
then
14548 -- Find out multiple uses of new discriminants, and add hidden
14549 -- components for the extra renamed discriminants. We recognize
14550 -- multiple uses through the Corresponding_Discriminant of a
14551 -- new discriminant: if it constrains several old discriminants,
14552 -- this field points to the last one in the parent type. The
14553 -- stored discriminants of the derived type have the same name
14554 -- as those of the parent.
14558 New_Discr
: Entity_Id
;
14559 Old_Discr
: Entity_Id
;
14562 Constr
:= First_Elmt
(Stored_Constraint
(Typ
));
14563 Old_Discr
:= First_Stored_Discriminant
(Typ
);
14564 while Present
(Constr
) loop
14565 if Is_Entity_Name
(Node
(Constr
))
14566 and then Ekind
(Entity
(Node
(Constr
))) = E_Discriminant
14568 New_Discr
:= Entity
(Node
(Constr
));
14570 if Chars
(Corresponding_Discriminant
(New_Discr
)) /=
14573 -- The new discriminant has been used to rename a
14574 -- subsequent old discriminant. Introduce a shadow
14575 -- component for the current old discriminant.
14577 New_C
:= Create_Component
(Old_Discr
);
14578 Set_Original_Record_Component
(New_C
, Old_Discr
);
14582 -- The constraint has eliminated the old discriminant.
14583 -- Introduce a shadow component.
14585 New_C
:= Create_Component
(Old_Discr
);
14586 Set_Original_Record_Component
(New_C
, Old_Discr
);
14589 Next_Elmt
(Constr
);
14590 Next_Stored_Discriminant
(Old_Discr
);
14594 end Add_Discriminants
;
14597 and then Is_Variant_Record
(Typ
)
14599 Collect_Fixed_Components
(Typ
);
14601 Gather_Components
(
14603 Component_List
(Type_Definition
(Parent
(Typ
))),
14604 Governed_By
=> Assoc_List
,
14606 Report_Errors
=> Errors
);
14607 pragma Assert
(not Errors
14608 or else Serious_Errors_Detected
> 0);
14610 Create_All_Components
;
14612 -- If the subtype declaration is created for a tagged type derivation
14613 -- with constraints, we retrieve the record definition of the parent
14614 -- type to select the components of the proper variant.
14617 and then Is_Tagged_Type
(Typ
)
14618 and then Nkind
(Parent
(Typ
)) = N_Full_Type_Declaration
14620 Nkind
(Type_Definition
(Parent
(Typ
))) = N_Derived_Type_Definition
14621 and then Is_Variant_Record
(Parent_Type
)
14623 Collect_Fixed_Components
(Typ
);
14627 Component_List
(Type_Definition
(Parent
(Parent_Type
))),
14628 Governed_By
=> Assoc_List
,
14630 Report_Errors
=> Errors
);
14632 -- Note: previously there was a check at this point that no errors
14633 -- were detected. As a consequence of AI05-220 there may be an error
14634 -- if an inherited discriminant that controls a variant has a non-
14635 -- static constraint.
14637 -- If the tagged derivation has a type extension, collect all the
14638 -- new components therein.
14640 if Present
(Record_Extension_Part
(Type_Definition
(Parent
(Typ
))))
14642 Old_C
:= First_Component
(Typ
);
14643 while Present
(Old_C
) loop
14644 if Original_Record_Component
(Old_C
) = Old_C
14645 and then Chars
(Old_C
) /= Name_uTag
14646 and then Chars
(Old_C
) /= Name_uParent
14648 Append_Elmt
(Old_C
, Comp_List
);
14651 Next_Component
(Old_C
);
14655 Create_All_Components
;
14658 -- If discriminants are not static, or if this is a multi-level type
14659 -- extension, we have to include all components of the parent type.
14661 Old_C
:= First_Component
(Typ
);
14662 while Present
(Old_C
) loop
14663 New_C
:= Create_Component
(Old_C
);
14667 Constrain_Component_Type
14668 (Old_C
, Subt
, Decl_Node
, Typ
, Constraints
));
14669 Set_Is_Public
(New_C
, Is_Public
(Subt
));
14671 Next_Component
(Old_C
);
14676 end Create_Constrained_Components
;
14678 ------------------------------------------
14679 -- Decimal_Fixed_Point_Type_Declaration --
14680 ------------------------------------------
14682 procedure Decimal_Fixed_Point_Type_Declaration
14686 Loc
: constant Source_Ptr
:= Sloc
(Def
);
14687 Digs_Expr
: constant Node_Id
:= Digits_Expression
(Def
);
14688 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
14689 Implicit_Base
: Entity_Id
;
14696 Check_SPARK_05_Restriction
14697 ("decimal fixed point type is not allowed", Def
);
14698 Check_Restriction
(No_Fixed_Point
, Def
);
14700 -- Create implicit base type
14703 Create_Itype
(E_Decimal_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
14704 Set_Etype
(Implicit_Base
, Implicit_Base
);
14706 -- Analyze and process delta expression
14708 Analyze_And_Resolve
(Delta_Expr
, Universal_Real
);
14710 Check_Delta_Expression
(Delta_Expr
);
14711 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
14713 -- Check delta is power of 10, and determine scale value from it
14719 Scale_Val
:= Uint_0
;
14722 if Val
< Ureal_1
then
14723 while Val
< Ureal_1
loop
14724 Val
:= Val
* Ureal_10
;
14725 Scale_Val
:= Scale_Val
+ 1;
14728 if Scale_Val
> 18 then
14729 Error_Msg_N
("scale exceeds maximum value of 18", Def
);
14730 Scale_Val
:= UI_From_Int
(+18);
14734 while Val
> Ureal_1
loop
14735 Val
:= Val
/ Ureal_10
;
14736 Scale_Val
:= Scale_Val
- 1;
14739 if Scale_Val
< -18 then
14740 Error_Msg_N
("scale is less than minimum value of -18", Def
);
14741 Scale_Val
:= UI_From_Int
(-18);
14745 if Val
/= Ureal_1
then
14746 Error_Msg_N
("delta expression must be a power of 10", Def
);
14747 Delta_Val
:= Ureal_10
** (-Scale_Val
);
14751 -- Set delta, scale and small (small = delta for decimal type)
14753 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
14754 Set_Scale_Value
(Implicit_Base
, Scale_Val
);
14755 Set_Small_Value
(Implicit_Base
, Delta_Val
);
14757 -- Analyze and process digits expression
14759 Analyze_And_Resolve
(Digs_Expr
, Any_Integer
);
14760 Check_Digits_Expression
(Digs_Expr
);
14761 Digs_Val
:= Expr_Value
(Digs_Expr
);
14763 if Digs_Val
> 18 then
14764 Digs_Val
:= UI_From_Int
(+18);
14765 Error_Msg_N
("digits value out of range, maximum is 18", Digs_Expr
);
14768 Set_Digits_Value
(Implicit_Base
, Digs_Val
);
14769 Bound_Val
:= UR_From_Uint
(10 ** Digs_Val
- 1) * Delta_Val
;
14771 -- Set range of base type from digits value for now. This will be
14772 -- expanded to represent the true underlying base range by Freeze.
14774 Set_Fixed_Range
(Implicit_Base
, Loc
, -Bound_Val
, Bound_Val
);
14776 -- Note: We leave size as zero for now, size will be set at freeze
14777 -- time. We have to do this for ordinary fixed-point, because the size
14778 -- depends on the specified small, and we might as well do the same for
14779 -- decimal fixed-point.
14781 pragma Assert
(Esize
(Implicit_Base
) = Uint_0
);
14783 -- If there are bounds given in the declaration use them as the
14784 -- bounds of the first named subtype.
14786 if Present
(Real_Range_Specification
(Def
)) then
14788 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
14789 Low
: constant Node_Id
:= Low_Bound
(RRS
);
14790 High
: constant Node_Id
:= High_Bound
(RRS
);
14795 Analyze_And_Resolve
(Low
, Any_Real
);
14796 Analyze_And_Resolve
(High
, Any_Real
);
14797 Check_Real_Bound
(Low
);
14798 Check_Real_Bound
(High
);
14799 Low_Val
:= Expr_Value_R
(Low
);
14800 High_Val
:= Expr_Value_R
(High
);
14802 if Low_Val
< (-Bound_Val
) then
14804 ("range low bound too small for digits value", Low
);
14805 Low_Val
:= -Bound_Val
;
14808 if High_Val
> Bound_Val
then
14810 ("range high bound too large for digits value", High
);
14811 High_Val
:= Bound_Val
;
14814 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
14817 -- If no explicit range, use range that corresponds to given
14818 -- digits value. This will end up as the final range for the
14822 Set_Fixed_Range
(T
, Loc
, -Bound_Val
, Bound_Val
);
14825 -- Complete entity for first subtype. The inheritance of the rep item
14826 -- chain ensures that SPARK-related pragmas are not clobbered when the
14827 -- decimal fixed point type acts as a full view of a private type.
14829 Set_Ekind
(T
, E_Decimal_Fixed_Point_Subtype
);
14830 Set_Etype
(T
, Implicit_Base
);
14831 Set_Size_Info
(T
, Implicit_Base
);
14832 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
14833 Set_Digits_Value
(T
, Digs_Val
);
14834 Set_Delta_Value
(T
, Delta_Val
);
14835 Set_Small_Value
(T
, Delta_Val
);
14836 Set_Scale_Value
(T
, Scale_Val
);
14837 Set_Is_Constrained
(T
);
14838 end Decimal_Fixed_Point_Type_Declaration
;
14840 -----------------------------------
14841 -- Derive_Progenitor_Subprograms --
14842 -----------------------------------
14844 procedure Derive_Progenitor_Subprograms
14845 (Parent_Type
: Entity_Id
;
14846 Tagged_Type
: Entity_Id
)
14851 Iface_Elmt
: Elmt_Id
;
14852 Iface_Subp
: Entity_Id
;
14853 New_Subp
: Entity_Id
:= Empty
;
14854 Prim_Elmt
: Elmt_Id
;
14859 pragma Assert
(Ada_Version
>= Ada_2005
14860 and then Is_Record_Type
(Tagged_Type
)
14861 and then Is_Tagged_Type
(Tagged_Type
)
14862 and then Has_Interfaces
(Tagged_Type
));
14864 -- Step 1: Transfer to the full-view primitives associated with the
14865 -- partial-view that cover interface primitives. Conceptually this
14866 -- work should be done later by Process_Full_View; done here to
14867 -- simplify its implementation at later stages. It can be safely
14868 -- done here because interfaces must be visible in the partial and
14869 -- private view (RM 7.3(7.3/2)).
14871 -- Small optimization: This work is only required if the parent may
14872 -- have entities whose Alias attribute reference an interface primitive.
14873 -- Such a situation may occur if the parent is an abstract type and the
14874 -- primitive has not been yet overridden or if the parent is a generic
14875 -- formal type covering interfaces.
14877 -- If the tagged type is not abstract, it cannot have abstract
14878 -- primitives (the only entities in the list of primitives of
14879 -- non-abstract tagged types that can reference abstract primitives
14880 -- through its Alias attribute are the internal entities that have
14881 -- attribute Interface_Alias, and these entities are generated later
14882 -- by Add_Internal_Interface_Entities).
14884 if In_Private_Part
(Current_Scope
)
14885 and then (Is_Abstract_Type
(Parent_Type
)
14887 Is_Generic_Type
(Parent_Type
))
14889 Elmt
:= First_Elmt
(Primitive_Operations
(Tagged_Type
));
14890 while Present
(Elmt
) loop
14891 Subp
:= Node
(Elmt
);
14893 -- At this stage it is not possible to have entities in the list
14894 -- of primitives that have attribute Interface_Alias.
14896 pragma Assert
(No
(Interface_Alias
(Subp
)));
14898 Typ
:= Find_Dispatching_Type
(Ultimate_Alias
(Subp
));
14900 if Is_Interface
(Typ
) then
14901 E
:= Find_Primitive_Covering_Interface
14902 (Tagged_Type
=> Tagged_Type
,
14903 Iface_Prim
=> Subp
);
14906 and then Find_Dispatching_Type
(Ultimate_Alias
(E
)) /= Typ
14908 Replace_Elmt
(Elmt
, E
);
14909 Remove_Homonym
(Subp
);
14917 -- Step 2: Add primitives of progenitors that are not implemented by
14918 -- parents of Tagged_Type.
14920 if Present
(Interfaces
(Base_Type
(Tagged_Type
))) then
14921 Iface_Elmt
:= First_Elmt
(Interfaces
(Base_Type
(Tagged_Type
)));
14922 while Present
(Iface_Elmt
) loop
14923 Iface
:= Node
(Iface_Elmt
);
14925 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Iface
));
14926 while Present
(Prim_Elmt
) loop
14927 Iface_Subp
:= Node
(Prim_Elmt
);
14929 -- Exclude derivation of predefined primitives except those
14930 -- that come from source, or are inherited from one that comes
14931 -- from source. Required to catch declarations of equality
14932 -- operators of interfaces. For example:
14934 -- type Iface is interface;
14935 -- function "=" (Left, Right : Iface) return Boolean;
14937 if not Is_Predefined_Dispatching_Operation
(Iface_Subp
)
14938 or else Comes_From_Source
(Ultimate_Alias
(Iface_Subp
))
14940 E
:= Find_Primitive_Covering_Interface
14941 (Tagged_Type
=> Tagged_Type
,
14942 Iface_Prim
=> Iface_Subp
);
14944 -- If not found we derive a new primitive leaving its alias
14945 -- attribute referencing the interface primitive.
14949 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14951 -- Ada 2012 (AI05-0197): If the covering primitive's name
14952 -- differs from the name of the interface primitive then it
14953 -- is a private primitive inherited from a parent type. In
14954 -- such case, given that Tagged_Type covers the interface,
14955 -- the inherited private primitive becomes visible. For such
14956 -- purpose we add a new entity that renames the inherited
14957 -- private primitive.
14959 elsif Chars
(E
) /= Chars
(Iface_Subp
) then
14960 pragma Assert
(Has_Suffix
(E
, 'P'));
14962 (New_Subp
, Iface_Subp
, Tagged_Type
, Iface
);
14963 Set_Alias
(New_Subp
, E
);
14964 Set_Is_Abstract_Subprogram
(New_Subp
,
14965 Is_Abstract_Subprogram
(E
));
14967 -- Propagate to the full view interface entities associated
14968 -- with the partial view.
14970 elsif In_Private_Part
(Current_Scope
)
14971 and then Present
(Alias
(E
))
14972 and then Alias
(E
) = Iface_Subp
14974 List_Containing
(Parent
(E
)) /=
14975 Private_Declarations
14977 (Unit_Declaration_Node
(Current_Scope
)))
14979 Append_Elmt
(E
, Primitive_Operations
(Tagged_Type
));
14983 Next_Elmt
(Prim_Elmt
);
14986 Next_Elmt
(Iface_Elmt
);
14989 end Derive_Progenitor_Subprograms
;
14991 -----------------------
14992 -- Derive_Subprogram --
14993 -----------------------
14995 procedure Derive_Subprogram
14996 (New_Subp
: out Entity_Id
;
14997 Parent_Subp
: Entity_Id
;
14998 Derived_Type
: Entity_Id
;
14999 Parent_Type
: Entity_Id
;
15000 Actual_Subp
: Entity_Id
:= Empty
)
15002 Formal
: Entity_Id
;
15003 -- Formal parameter of parent primitive operation
15005 Formal_Of_Actual
: Entity_Id
;
15006 -- Formal parameter of actual operation, when the derivation is to
15007 -- create a renaming for a primitive operation of an actual in an
15010 New_Formal
: Entity_Id
;
15011 -- Formal of inherited operation
15013 Visible_Subp
: Entity_Id
:= Parent_Subp
;
15015 function Is_Private_Overriding
return Boolean;
15016 -- If Subp is a private overriding of a visible operation, the inherited
15017 -- operation derives from the overridden op (even though its body is the
15018 -- overriding one) and the inherited operation is visible now. See
15019 -- sem_disp to see the full details of the handling of the overridden
15020 -- subprogram, which is removed from the list of primitive operations of
15021 -- the type. The overridden subprogram is saved locally in Visible_Subp,
15022 -- and used to diagnose abstract operations that need overriding in the
15025 procedure Replace_Type
(Id
, New_Id
: Entity_Id
);
15026 -- When the type is an anonymous access type, create a new access type
15027 -- designating the derived type.
15029 procedure Set_Derived_Name
;
15030 -- This procedure sets the appropriate Chars name for New_Subp. This
15031 -- is normally just a copy of the parent name. An exception arises for
15032 -- type support subprograms, where the name is changed to reflect the
15033 -- name of the derived type, e.g. if type foo is derived from type bar,
15034 -- then a procedure barDA is derived with a name fooDA.
15036 ---------------------------
15037 -- Is_Private_Overriding --
15038 ---------------------------
15040 function Is_Private_Overriding
return Boolean is
15044 -- If the parent is not a dispatching operation there is no
15045 -- need to investigate overridings
15047 if not Is_Dispatching_Operation
(Parent_Subp
) then
15051 -- The visible operation that is overridden is a homonym of the
15052 -- parent subprogram. We scan the homonym chain to find the one
15053 -- whose alias is the subprogram we are deriving.
15055 Prev
:= Current_Entity
(Parent_Subp
);
15056 while Present
(Prev
) loop
15057 if Ekind
(Prev
) = Ekind
(Parent_Subp
)
15058 and then Alias
(Prev
) = Parent_Subp
15059 and then Scope
(Parent_Subp
) = Scope
(Prev
)
15060 and then not Is_Hidden
(Prev
)
15062 Visible_Subp
:= Prev
;
15066 Prev
:= Homonym
(Prev
);
15070 end Is_Private_Overriding
;
15076 procedure Replace_Type
(Id
, New_Id
: Entity_Id
) is
15077 Id_Type
: constant Entity_Id
:= Etype
(Id
);
15078 Acc_Type
: Entity_Id
;
15079 Par
: constant Node_Id
:= Parent
(Derived_Type
);
15082 -- When the type is an anonymous access type, create a new access
15083 -- type designating the derived type. This itype must be elaborated
15084 -- at the point of the derivation, not on subsequent calls that may
15085 -- be out of the proper scope for Gigi, so we insert a reference to
15086 -- it after the derivation.
15088 if Ekind
(Id_Type
) = E_Anonymous_Access_Type
then
15090 Desig_Typ
: Entity_Id
:= Designated_Type
(Id_Type
);
15093 if Ekind
(Desig_Typ
) = E_Record_Type_With_Private
15094 and then Present
(Full_View
(Desig_Typ
))
15095 and then not Is_Private_Type
(Parent_Type
)
15097 Desig_Typ
:= Full_View
(Desig_Typ
);
15100 if Base_Type
(Desig_Typ
) = Base_Type
(Parent_Type
)
15102 -- Ada 2005 (AI-251): Handle also derivations of abstract
15103 -- interface primitives.
15105 or else (Is_Interface
(Desig_Typ
)
15106 and then not Is_Class_Wide_Type
(Desig_Typ
))
15108 Acc_Type
:= New_Copy
(Id_Type
);
15109 Set_Etype
(Acc_Type
, Acc_Type
);
15110 Set_Scope
(Acc_Type
, New_Subp
);
15112 -- Set size of anonymous access type. If we have an access
15113 -- to an unconstrained array, this is a fat pointer, so it
15114 -- is sizes at twice addtress size.
15116 if Is_Array_Type
(Desig_Typ
)
15117 and then not Is_Constrained
(Desig_Typ
)
15119 Init_Size
(Acc_Type
, 2 * System_Address_Size
);
15121 -- Other cases use a thin pointer
15124 Init_Size
(Acc_Type
, System_Address_Size
);
15127 -- Set remaining characterstics of anonymous access type
15129 Init_Alignment
(Acc_Type
);
15130 Set_Directly_Designated_Type
(Acc_Type
, Derived_Type
);
15132 Set_Etype
(New_Id
, Acc_Type
);
15133 Set_Scope
(New_Id
, New_Subp
);
15135 -- Create a reference to it
15137 Build_Itype_Reference
(Acc_Type
, Parent
(Derived_Type
));
15140 Set_Etype
(New_Id
, Id_Type
);
15144 -- In Ada2012, a formal may have an incomplete type but the type
15145 -- derivation that inherits the primitive follows the full view.
15147 elsif Base_Type
(Id_Type
) = Base_Type
(Parent_Type
)
15149 (Ekind
(Id_Type
) = E_Record_Type_With_Private
15150 and then Present
(Full_View
(Id_Type
))
15152 Base_Type
(Full_View
(Id_Type
)) = Base_Type
(Parent_Type
))
15154 (Ada_Version
>= Ada_2012
15155 and then Ekind
(Id_Type
) = E_Incomplete_Type
15156 and then Full_View
(Id_Type
) = Parent_Type
)
15158 -- Constraint checks on formals are generated during expansion,
15159 -- based on the signature of the original subprogram. The bounds
15160 -- of the derived type are not relevant, and thus we can use
15161 -- the base type for the formals. However, the return type may be
15162 -- used in a context that requires that the proper static bounds
15163 -- be used (a case statement, for example) and for those cases
15164 -- we must use the derived type (first subtype), not its base.
15166 -- If the derived_type_definition has no constraints, we know that
15167 -- the derived type has the same constraints as the first subtype
15168 -- of the parent, and we can also use it rather than its base,
15169 -- which can lead to more efficient code.
15171 if Etype
(Id
) = Parent_Type
then
15172 if Is_Scalar_Type
(Parent_Type
)
15174 Subtypes_Statically_Compatible
(Parent_Type
, Derived_Type
)
15176 Set_Etype
(New_Id
, Derived_Type
);
15178 elsif Nkind
(Par
) = N_Full_Type_Declaration
15180 Nkind
(Type_Definition
(Par
)) = N_Derived_Type_Definition
15183 (Subtype_Indication
(Type_Definition
(Par
)))
15185 Set_Etype
(New_Id
, Derived_Type
);
15188 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
15192 Set_Etype
(New_Id
, Base_Type
(Derived_Type
));
15196 Set_Etype
(New_Id
, Etype
(Id
));
15200 ----------------------
15201 -- Set_Derived_Name --
15202 ----------------------
15204 procedure Set_Derived_Name
is
15205 Nm
: constant TSS_Name_Type
:= Get_TSS_Name
(Parent_Subp
);
15207 if Nm
= TSS_Null
then
15208 Set_Chars
(New_Subp
, Chars
(Parent_Subp
));
15210 Set_Chars
(New_Subp
, Make_TSS_Name
(Base_Type
(Derived_Type
), Nm
));
15212 end Set_Derived_Name
;
15214 -- Start of processing for Derive_Subprogram
15217 New_Subp
:= New_Entity
(Nkind
(Parent_Subp
), Sloc
(Derived_Type
));
15218 Set_Ekind
(New_Subp
, Ekind
(Parent_Subp
));
15220 -- Check whether the inherited subprogram is a private operation that
15221 -- should be inherited but not yet made visible. Such subprograms can
15222 -- become visible at a later point (e.g., the private part of a public
15223 -- child unit) via Declare_Inherited_Private_Subprograms. If the
15224 -- following predicate is true, then this is not such a private
15225 -- operation and the subprogram simply inherits the name of the parent
15226 -- subprogram. Note the special check for the names of controlled
15227 -- operations, which are currently exempted from being inherited with
15228 -- a hidden name because they must be findable for generation of
15229 -- implicit run-time calls.
15231 if not Is_Hidden
(Parent_Subp
)
15232 or else Is_Internal
(Parent_Subp
)
15233 or else Is_Private_Overriding
15234 or else Is_Internal_Name
(Chars
(Parent_Subp
))
15235 or else (Is_Controlled
(Parent_Type
)
15236 and then Nam_In
(Chars
(Parent_Subp
), Name_Adjust
,
15242 -- An inherited dispatching equality will be overridden by an internally
15243 -- generated one, or by an explicit one, so preserve its name and thus
15244 -- its entry in the dispatch table. Otherwise, if Parent_Subp is a
15245 -- private operation it may become invisible if the full view has
15246 -- progenitors, and the dispatch table will be malformed.
15247 -- We check that the type is limited to handle the anomalous declaration
15248 -- of Limited_Controlled, which is derived from a non-limited type, and
15249 -- which is handled specially elsewhere as well.
15251 elsif Chars
(Parent_Subp
) = Name_Op_Eq
15252 and then Is_Dispatching_Operation
(Parent_Subp
)
15253 and then Etype
(Parent_Subp
) = Standard_Boolean
15254 and then not Is_Limited_Type
(Etype
(First_Formal
(Parent_Subp
)))
15256 Etype
(First_Formal
(Parent_Subp
)) =
15257 Etype
(Next_Formal
(First_Formal
(Parent_Subp
)))
15261 -- If parent is hidden, this can be a regular derivation if the
15262 -- parent is immediately visible in a non-instantiating context,
15263 -- or if we are in the private part of an instance. This test
15264 -- should still be refined ???
15266 -- The test for In_Instance_Not_Visible avoids inheriting the derived
15267 -- operation as a non-visible operation in cases where the parent
15268 -- subprogram might not be visible now, but was visible within the
15269 -- original generic, so it would be wrong to make the inherited
15270 -- subprogram non-visible now. (Not clear if this test is fully
15271 -- correct; are there any cases where we should declare the inherited
15272 -- operation as not visible to avoid it being overridden, e.g., when
15273 -- the parent type is a generic actual with private primitives ???)
15275 -- (they should be treated the same as other private inherited
15276 -- subprograms, but it's not clear how to do this cleanly). ???
15278 elsif (In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
15279 and then Is_Immediately_Visible
(Parent_Subp
)
15280 and then not In_Instance
)
15281 or else In_Instance_Not_Visible
15285 -- Ada 2005 (AI-251): Regular derivation if the parent subprogram
15286 -- overrides an interface primitive because interface primitives
15287 -- must be visible in the partial view of the parent (RM 7.3 (7.3/2))
15289 elsif Ada_Version
>= Ada_2005
15290 and then Is_Dispatching_Operation
(Parent_Subp
)
15291 and then Present
(Covered_Interface_Op
(Parent_Subp
))
15295 -- Otherwise, the type is inheriting a private operation, so enter it
15296 -- with a special name so it can't be overridden.
15299 Set_Chars
(New_Subp
, New_External_Name
(Chars
(Parent_Subp
), 'P'));
15302 Set_Parent
(New_Subp
, Parent
(Derived_Type
));
15304 if Present
(Actual_Subp
) then
15305 Replace_Type
(Actual_Subp
, New_Subp
);
15307 Replace_Type
(Parent_Subp
, New_Subp
);
15310 Conditional_Delay
(New_Subp
, Parent_Subp
);
15312 -- If we are creating a renaming for a primitive operation of an
15313 -- actual of a generic derived type, we must examine the signature
15314 -- of the actual primitive, not that of the generic formal, which for
15315 -- example may be an interface. However the name and initial value
15316 -- of the inherited operation are those of the formal primitive.
15318 Formal
:= First_Formal
(Parent_Subp
);
15320 if Present
(Actual_Subp
) then
15321 Formal_Of_Actual
:= First_Formal
(Actual_Subp
);
15323 Formal_Of_Actual
:= Empty
;
15326 while Present
(Formal
) loop
15327 New_Formal
:= New_Copy
(Formal
);
15329 -- Normally we do not go copying parents, but in the case of
15330 -- formals, we need to link up to the declaration (which is the
15331 -- parameter specification), and it is fine to link up to the
15332 -- original formal's parameter specification in this case.
15334 Set_Parent
(New_Formal
, Parent
(Formal
));
15335 Append_Entity
(New_Formal
, New_Subp
);
15337 if Present
(Formal_Of_Actual
) then
15338 Replace_Type
(Formal_Of_Actual
, New_Formal
);
15339 Next_Formal
(Formal_Of_Actual
);
15341 Replace_Type
(Formal
, New_Formal
);
15344 Next_Formal
(Formal
);
15347 -- If this derivation corresponds to a tagged generic actual, then
15348 -- primitive operations rename those of the actual. Otherwise the
15349 -- primitive operations rename those of the parent type, If the parent
15350 -- renames an intrinsic operator, so does the new subprogram. We except
15351 -- concatenation, which is always properly typed, and does not get
15352 -- expanded as other intrinsic operations.
15354 if No
(Actual_Subp
) then
15355 if Is_Intrinsic_Subprogram
(Parent_Subp
) then
15356 Set_Is_Intrinsic_Subprogram
(New_Subp
);
15358 if Present
(Alias
(Parent_Subp
))
15359 and then Chars
(Parent_Subp
) /= Name_Op_Concat
15361 Set_Alias
(New_Subp
, Alias
(Parent_Subp
));
15363 Set_Alias
(New_Subp
, Parent_Subp
);
15367 Set_Alias
(New_Subp
, Parent_Subp
);
15371 Set_Alias
(New_Subp
, Actual_Subp
);
15374 -- Derived subprograms of a tagged type must inherit the convention
15375 -- of the parent subprogram (a requirement of AI-117). Derived
15376 -- subprograms of untagged types simply get convention Ada by default.
15378 -- If the derived type is a tagged generic formal type with unknown
15379 -- discriminants, its convention is intrinsic (RM 6.3.1 (8)).
15381 -- However, if the type is derived from a generic formal, the further
15382 -- inherited subprogram has the convention of the non-generic ancestor.
15383 -- Otherwise there would be no way to override the operation.
15384 -- (This is subject to forthcoming ARG discussions).
15386 if Is_Tagged_Type
(Derived_Type
) then
15387 if Is_Generic_Type
(Derived_Type
)
15388 and then Has_Unknown_Discriminants
(Derived_Type
)
15390 Set_Convention
(New_Subp
, Convention_Intrinsic
);
15393 if Is_Generic_Type
(Parent_Type
)
15394 and then Has_Unknown_Discriminants
(Parent_Type
)
15396 Set_Convention
(New_Subp
, Convention
(Alias
(Parent_Subp
)));
15398 Set_Convention
(New_Subp
, Convention
(Parent_Subp
));
15403 -- Predefined controlled operations retain their name even if the parent
15404 -- is hidden (see above), but they are not primitive operations if the
15405 -- ancestor is not visible, for example if the parent is a private
15406 -- extension completed with a controlled extension. Note that a full
15407 -- type that is controlled can break privacy: the flag Is_Controlled is
15408 -- set on both views of the type.
15410 if Is_Controlled
(Parent_Type
)
15411 and then Nam_In
(Chars
(Parent_Subp
), Name_Initialize
,
15414 and then Is_Hidden
(Parent_Subp
)
15415 and then not Is_Visibly_Controlled
(Parent_Type
)
15417 Set_Is_Hidden
(New_Subp
);
15420 Set_Is_Imported
(New_Subp
, Is_Imported
(Parent_Subp
));
15421 Set_Is_Exported
(New_Subp
, Is_Exported
(Parent_Subp
));
15423 if Ekind
(Parent_Subp
) = E_Procedure
then
15424 Set_Is_Valued_Procedure
15425 (New_Subp
, Is_Valued_Procedure
(Parent_Subp
));
15427 Set_Has_Controlling_Result
15428 (New_Subp
, Has_Controlling_Result
(Parent_Subp
));
15431 -- No_Return must be inherited properly. If this is overridden in the
15432 -- case of a dispatching operation, then a check is made in Sem_Disp
15433 -- that the overriding operation is also No_Return (no such check is
15434 -- required for the case of non-dispatching operation.
15436 Set_No_Return
(New_Subp
, No_Return
(Parent_Subp
));
15438 -- A derived function with a controlling result is abstract. If the
15439 -- Derived_Type is a nonabstract formal generic derived type, then
15440 -- inherited operations are not abstract: the required check is done at
15441 -- instantiation time. If the derivation is for a generic actual, the
15442 -- function is not abstract unless the actual is.
15444 if Is_Generic_Type
(Derived_Type
)
15445 and then not Is_Abstract_Type
(Derived_Type
)
15449 -- Ada 2005 (AI-228): Calculate the "require overriding" and "abstract"
15450 -- properties of the subprogram, as defined in RM-3.9.3(4/2-6/2).
15452 -- A subprogram subject to pragma Extensions_Visible with value False
15453 -- requires overriding if the subprogram has at least one controlling
15454 -- OUT parameter (SPARK RM 6.1.7(6)).
15456 elsif Ada_Version
>= Ada_2005
15457 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
15458 or else (Is_Tagged_Type
(Derived_Type
)
15459 and then Etype
(New_Subp
) = Derived_Type
15460 and then not Is_Null_Extension
(Derived_Type
))
15461 or else (Is_Tagged_Type
(Derived_Type
)
15462 and then Ekind
(Etype
(New_Subp
)) =
15463 E_Anonymous_Access_Type
15464 and then Designated_Type
(Etype
(New_Subp
)) =
15466 and then not Is_Null_Extension
(Derived_Type
))
15467 or else (Comes_From_Source
(Alias
(New_Subp
))
15468 and then Is_EVF_Procedure
(Alias
(New_Subp
))))
15469 and then No
(Actual_Subp
)
15471 if not Is_Tagged_Type
(Derived_Type
)
15472 or else Is_Abstract_Type
(Derived_Type
)
15473 or else Is_Abstract_Subprogram
(Alias
(New_Subp
))
15475 Set_Is_Abstract_Subprogram
(New_Subp
);
15477 Set_Requires_Overriding
(New_Subp
);
15480 elsif Ada_Version
< Ada_2005
15481 and then (Is_Abstract_Subprogram
(Alias
(New_Subp
))
15482 or else (Is_Tagged_Type
(Derived_Type
)
15483 and then Etype
(New_Subp
) = Derived_Type
15484 and then No
(Actual_Subp
)))
15486 Set_Is_Abstract_Subprogram
(New_Subp
);
15488 -- AI05-0097 : an inherited operation that dispatches on result is
15489 -- abstract if the derived type is abstract, even if the parent type
15490 -- is concrete and the derived type is a null extension.
15492 elsif Has_Controlling_Result
(Alias
(New_Subp
))
15493 and then Is_Abstract_Type
(Etype
(New_Subp
))
15495 Set_Is_Abstract_Subprogram
(New_Subp
);
15497 -- Finally, if the parent type is abstract we must verify that all
15498 -- inherited operations are either non-abstract or overridden, or that
15499 -- the derived type itself is abstract (this check is performed at the
15500 -- end of a package declaration, in Check_Abstract_Overriding). A
15501 -- private overriding in the parent type will not be visible in the
15502 -- derivation if we are not in an inner package or in a child unit of
15503 -- the parent type, in which case the abstractness of the inherited
15504 -- operation is carried to the new subprogram.
15506 elsif Is_Abstract_Type
(Parent_Type
)
15507 and then not In_Open_Scopes
(Scope
(Parent_Type
))
15508 and then Is_Private_Overriding
15509 and then Is_Abstract_Subprogram
(Visible_Subp
)
15511 if No
(Actual_Subp
) then
15512 Set_Alias
(New_Subp
, Visible_Subp
);
15513 Set_Is_Abstract_Subprogram
(New_Subp
, True);
15516 -- If this is a derivation for an instance of a formal derived
15517 -- type, abstractness comes from the primitive operation of the
15518 -- actual, not from the operation inherited from the ancestor.
15520 Set_Is_Abstract_Subprogram
15521 (New_Subp
, Is_Abstract_Subprogram
(Actual_Subp
));
15525 New_Overloaded_Entity
(New_Subp
, Derived_Type
);
15527 -- Ada RM 6.1.1 (15): If a subprogram inherits nonconforming class-wide
15528 -- preconditions and the derived type is abstract, the derived operation
15529 -- is abstract as well if parent subprogram is not abstract or null.
15531 if Is_Abstract_Type
(Derived_Type
)
15532 and then Has_Non_Trivial_Precondition
(Parent_Subp
)
15533 and then Present
(Interfaces
(Derived_Type
))
15536 -- Add useful attributes of subprogram before the freeze point,
15537 -- in case freezing is delayed or there are previous errors.
15539 Set_Is_Dispatching_Operation
(New_Subp
);
15542 Iface_Prim
: constant Entity_Id
:= Covered_Interface_Op
(New_Subp
);
15545 if Present
(Iface_Prim
)
15546 and then Has_Non_Trivial_Precondition
(Iface_Prim
)
15548 Set_Is_Abstract_Subprogram
(New_Subp
);
15553 -- Check for case of a derived subprogram for the instantiation of a
15554 -- formal derived tagged type, if so mark the subprogram as dispatching
15555 -- and inherit the dispatching attributes of the actual subprogram. The
15556 -- derived subprogram is effectively renaming of the actual subprogram,
15557 -- so it needs to have the same attributes as the actual.
15559 if Present
(Actual_Subp
)
15560 and then Is_Dispatching_Operation
(Actual_Subp
)
15562 Set_Is_Dispatching_Operation
(New_Subp
);
15564 if Present
(DTC_Entity
(Actual_Subp
)) then
15565 Set_DTC_Entity
(New_Subp
, DTC_Entity
(Actual_Subp
));
15566 Set_DT_Position_Value
(New_Subp
, DT_Position
(Actual_Subp
));
15570 -- Indicate that a derived subprogram does not require a body and that
15571 -- it does not require processing of default expressions.
15573 Set_Has_Completion
(New_Subp
);
15574 Set_Default_Expressions_Processed
(New_Subp
);
15576 if Ekind
(New_Subp
) = E_Function
then
15577 Set_Mechanism
(New_Subp
, Mechanism
(Parent_Subp
));
15579 end Derive_Subprogram
;
15581 ------------------------
15582 -- Derive_Subprograms --
15583 ------------------------
15585 procedure Derive_Subprograms
15586 (Parent_Type
: Entity_Id
;
15587 Derived_Type
: Entity_Id
;
15588 Generic_Actual
: Entity_Id
:= Empty
)
15590 Op_List
: constant Elist_Id
:=
15591 Collect_Primitive_Operations
(Parent_Type
);
15593 function Check_Derived_Type
return Boolean;
15594 -- Check that all the entities derived from Parent_Type are found in
15595 -- the list of primitives of Derived_Type exactly in the same order.
15597 procedure Derive_Interface_Subprogram
15598 (New_Subp
: out Entity_Id
;
15600 Actual_Subp
: Entity_Id
);
15601 -- Derive New_Subp from the ultimate alias of the parent subprogram Subp
15602 -- (which is an interface primitive). If Generic_Actual is present then
15603 -- Actual_Subp is the actual subprogram corresponding with the generic
15604 -- subprogram Subp.
15606 ------------------------
15607 -- Check_Derived_Type --
15608 ------------------------
15610 function Check_Derived_Type
return Boolean is
15614 New_Subp
: Entity_Id
;
15619 -- Traverse list of entities in the current scope searching for
15620 -- an incomplete type whose full-view is derived type.
15622 E
:= First_Entity
(Scope
(Derived_Type
));
15623 while Present
(E
) and then E
/= Derived_Type
loop
15624 if Ekind
(E
) = E_Incomplete_Type
15625 and then Present
(Full_View
(E
))
15626 and then Full_View
(E
) = Derived_Type
15628 -- Disable this test if Derived_Type completes an incomplete
15629 -- type because in such case more primitives can be added
15630 -- later to the list of primitives of Derived_Type by routine
15631 -- Process_Incomplete_Dependents
15636 E
:= Next_Entity
(E
);
15639 List
:= Collect_Primitive_Operations
(Derived_Type
);
15640 Elmt
:= First_Elmt
(List
);
15642 Op_Elmt
:= First_Elmt
(Op_List
);
15643 while Present
(Op_Elmt
) loop
15644 Subp
:= Node
(Op_Elmt
);
15645 New_Subp
:= Node
(Elmt
);
15647 -- At this early stage Derived_Type has no entities with attribute
15648 -- Interface_Alias. In addition, such primitives are always
15649 -- located at the end of the list of primitives of Parent_Type.
15650 -- Therefore, if found we can safely stop processing pending
15653 exit when Present
(Interface_Alias
(Subp
));
15655 -- Handle hidden entities
15657 if not Is_Predefined_Dispatching_Operation
(Subp
)
15658 and then Is_Hidden
(Subp
)
15660 if Present
(New_Subp
)
15661 and then Primitive_Names_Match
(Subp
, New_Subp
)
15667 if not Present
(New_Subp
)
15668 or else Ekind
(Subp
) /= Ekind
(New_Subp
)
15669 or else not Primitive_Names_Match
(Subp
, New_Subp
)
15677 Next_Elmt
(Op_Elmt
);
15681 end Check_Derived_Type
;
15683 ---------------------------------
15684 -- Derive_Interface_Subprogram --
15685 ---------------------------------
15687 procedure Derive_Interface_Subprogram
15688 (New_Subp
: out Entity_Id
;
15690 Actual_Subp
: Entity_Id
)
15692 Iface_Subp
: constant Entity_Id
:= Ultimate_Alias
(Subp
);
15693 Iface_Type
: constant Entity_Id
:= Find_Dispatching_Type
(Iface_Subp
);
15696 pragma Assert
(Is_Interface
(Iface_Type
));
15699 (New_Subp
=> New_Subp
,
15700 Parent_Subp
=> Iface_Subp
,
15701 Derived_Type
=> Derived_Type
,
15702 Parent_Type
=> Iface_Type
,
15703 Actual_Subp
=> Actual_Subp
);
15705 -- Given that this new interface entity corresponds with a primitive
15706 -- of the parent that was not overridden we must leave it associated
15707 -- with its parent primitive to ensure that it will share the same
15708 -- dispatch table slot when overridden. We must set the Alias to Subp
15709 -- (instead of Iface_Subp), and we must fix Is_Abstract_Subprogram
15710 -- (in case we inherited Subp from Iface_Type via a nonabstract
15711 -- generic formal type).
15713 if No
(Actual_Subp
) then
15714 Set_Alias
(New_Subp
, Subp
);
15717 T
: Entity_Id
:= Find_Dispatching_Type
(Subp
);
15719 while Etype
(T
) /= T
loop
15720 if Is_Generic_Type
(T
) and then not Is_Abstract_Type
(T
) then
15721 Set_Is_Abstract_Subprogram
(New_Subp
, False);
15729 -- For instantiations this is not needed since the previous call to
15730 -- Derive_Subprogram leaves the entity well decorated.
15733 pragma Assert
(Alias
(New_Subp
) = Actual_Subp
);
15736 end Derive_Interface_Subprogram
;
15740 Alias_Subp
: Entity_Id
;
15741 Act_List
: Elist_Id
;
15742 Act_Elmt
: Elmt_Id
;
15743 Act_Subp
: Entity_Id
:= Empty
;
15745 Need_Search
: Boolean := False;
15746 New_Subp
: Entity_Id
:= Empty
;
15747 Parent_Base
: Entity_Id
;
15750 -- Start of processing for Derive_Subprograms
15753 if Ekind
(Parent_Type
) = E_Record_Type_With_Private
15754 and then Has_Discriminants
(Parent_Type
)
15755 and then Present
(Full_View
(Parent_Type
))
15757 Parent_Base
:= Full_View
(Parent_Type
);
15759 Parent_Base
:= Parent_Type
;
15762 if Present
(Generic_Actual
) then
15763 Act_List
:= Collect_Primitive_Operations
(Generic_Actual
);
15764 Act_Elmt
:= First_Elmt
(Act_List
);
15766 Act_List
:= No_Elist
;
15767 Act_Elmt
:= No_Elmt
;
15770 -- Derive primitives inherited from the parent. Note that if the generic
15771 -- actual is present, this is not really a type derivation, it is a
15772 -- completion within an instance.
15774 -- Case 1: Derived_Type does not implement interfaces
15776 if not Is_Tagged_Type
(Derived_Type
)
15777 or else (not Has_Interfaces
(Derived_Type
)
15778 and then not (Present
(Generic_Actual
)
15779 and then Has_Interfaces
(Generic_Actual
)))
15781 Elmt
:= First_Elmt
(Op_List
);
15782 while Present
(Elmt
) loop
15783 Subp
:= Node
(Elmt
);
15785 -- Literals are derived earlier in the process of building the
15786 -- derived type, and are skipped here.
15788 if Ekind
(Subp
) = E_Enumeration_Literal
then
15791 -- The actual is a direct descendant and the common primitive
15792 -- operations appear in the same order.
15794 -- If the generic parent type is present, the derived type is an
15795 -- instance of a formal derived type, and within the instance its
15796 -- operations are those of the actual. We derive from the formal
15797 -- type but make the inherited operations aliases of the
15798 -- corresponding operations of the actual.
15801 pragma Assert
(No
(Node
(Act_Elmt
))
15802 or else (Primitive_Names_Match
(Subp
, Node
(Act_Elmt
))
15805 (Subp
, Node
(Act_Elmt
),
15806 Skip_Controlling_Formals
=> True)));
15809 (New_Subp
, Subp
, Derived_Type
, Parent_Base
, Node
(Act_Elmt
));
15811 if Present
(Act_Elmt
) then
15812 Next_Elmt
(Act_Elmt
);
15819 -- Case 2: Derived_Type implements interfaces
15822 -- If the parent type has no predefined primitives we remove
15823 -- predefined primitives from the list of primitives of generic
15824 -- actual to simplify the complexity of this algorithm.
15826 if Present
(Generic_Actual
) then
15828 Has_Predefined_Primitives
: Boolean := False;
15831 -- Check if the parent type has predefined primitives
15833 Elmt
:= First_Elmt
(Op_List
);
15834 while Present
(Elmt
) loop
15835 Subp
:= Node
(Elmt
);
15837 if Is_Predefined_Dispatching_Operation
(Subp
)
15838 and then not Comes_From_Source
(Ultimate_Alias
(Subp
))
15840 Has_Predefined_Primitives
:= True;
15847 -- Remove predefined primitives of Generic_Actual. We must use
15848 -- an auxiliary list because in case of tagged types the value
15849 -- returned by Collect_Primitive_Operations is the value stored
15850 -- in its Primitive_Operations attribute (and we don't want to
15851 -- modify its current contents).
15853 if not Has_Predefined_Primitives
then
15855 Aux_List
: constant Elist_Id
:= New_Elmt_List
;
15858 Elmt
:= First_Elmt
(Act_List
);
15859 while Present
(Elmt
) loop
15860 Subp
:= Node
(Elmt
);
15862 if not Is_Predefined_Dispatching_Operation
(Subp
)
15863 or else Comes_From_Source
(Subp
)
15865 Append_Elmt
(Subp
, Aux_List
);
15871 Act_List
:= Aux_List
;
15875 Act_Elmt
:= First_Elmt
(Act_List
);
15876 Act_Subp
:= Node
(Act_Elmt
);
15880 -- Stage 1: If the generic actual is not present we derive the
15881 -- primitives inherited from the parent type. If the generic parent
15882 -- type is present, the derived type is an instance of a formal
15883 -- derived type, and within the instance its operations are those of
15884 -- the actual. We derive from the formal type but make the inherited
15885 -- operations aliases of the corresponding operations of the actual.
15887 Elmt
:= First_Elmt
(Op_List
);
15888 while Present
(Elmt
) loop
15889 Subp
:= Node
(Elmt
);
15890 Alias_Subp
:= Ultimate_Alias
(Subp
);
15892 -- Do not derive internal entities of the parent that link
15893 -- interface primitives with their covering primitive. These
15894 -- entities will be added to this type when frozen.
15896 if Present
(Interface_Alias
(Subp
)) then
15900 -- If the generic actual is present find the corresponding
15901 -- operation in the generic actual. If the parent type is a
15902 -- direct ancestor of the derived type then, even if it is an
15903 -- interface, the operations are inherited from the primary
15904 -- dispatch table and are in the proper order. If we detect here
15905 -- that primitives are not in the same order we traverse the list
15906 -- of primitive operations of the actual to find the one that
15907 -- implements the interface primitive.
15911 (Present
(Generic_Actual
)
15912 and then Present
(Act_Subp
)
15914 (Primitive_Names_Match
(Subp
, Act_Subp
)
15916 Type_Conformant
(Subp
, Act_Subp
,
15917 Skip_Controlling_Formals
=> True)))
15919 pragma Assert
(not Is_Ancestor
(Parent_Base
, Generic_Actual
,
15920 Use_Full_View
=> True));
15922 -- Remember that we need searching for all pending primitives
15924 Need_Search
:= True;
15926 -- Handle entities associated with interface primitives
15928 if Present
(Alias_Subp
)
15929 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
15930 and then not Is_Predefined_Dispatching_Operation
(Subp
)
15932 -- Search for the primitive in the homonym chain
15935 Find_Primitive_Covering_Interface
15936 (Tagged_Type
=> Generic_Actual
,
15937 Iface_Prim
=> Alias_Subp
);
15939 -- Previous search may not locate primitives covering
15940 -- interfaces defined in generics units or instantiations.
15941 -- (it fails if the covering primitive has formals whose
15942 -- type is also defined in generics or instantiations).
15943 -- In such case we search in the list of primitives of the
15944 -- generic actual for the internal entity that links the
15945 -- interface primitive and the covering primitive.
15948 and then Is_Generic_Type
(Parent_Type
)
15950 -- This code has been designed to handle only generic
15951 -- formals that implement interfaces that are defined
15952 -- in a generic unit or instantiation. If this code is
15953 -- needed for other cases we must review it because
15954 -- (given that it relies on Original_Location to locate
15955 -- the primitive of Generic_Actual that covers the
15956 -- interface) it could leave linked through attribute
15957 -- Alias entities of unrelated instantiations).
15961 (Scope
(Find_Dispatching_Type
(Alias_Subp
)))
15963 Instantiation_Depth
15964 (Sloc
(Find_Dispatching_Type
(Alias_Subp
))) > 0);
15967 Iface_Prim_Loc
: constant Source_Ptr
:=
15968 Original_Location
(Sloc
(Alias_Subp
));
15975 First_Elmt
(Primitive_Operations
(Generic_Actual
));
15977 Search
: while Present
(Elmt
) loop
15978 Prim
:= Node
(Elmt
);
15980 if Present
(Interface_Alias
(Prim
))
15981 and then Original_Location
15982 (Sloc
(Interface_Alias
(Prim
))) =
15985 Act_Subp
:= Alias
(Prim
);
15994 pragma Assert
(Present
(Act_Subp
)
15995 or else Is_Abstract_Type
(Generic_Actual
)
15996 or else Serious_Errors_Detected
> 0);
15998 -- Handle predefined primitives plus the rest of user-defined
16002 Act_Elmt
:= First_Elmt
(Act_List
);
16003 while Present
(Act_Elmt
) loop
16004 Act_Subp
:= Node
(Act_Elmt
);
16006 exit when Primitive_Names_Match
(Subp
, Act_Subp
)
16007 and then Type_Conformant
16009 Skip_Controlling_Formals
=> True)
16010 and then No
(Interface_Alias
(Act_Subp
));
16012 Next_Elmt
(Act_Elmt
);
16015 if No
(Act_Elmt
) then
16021 -- Case 1: If the parent is a limited interface then it has the
16022 -- predefined primitives of synchronized interfaces. However, the
16023 -- actual type may be a non-limited type and hence it does not
16024 -- have such primitives.
16026 if Present
(Generic_Actual
)
16027 and then not Present
(Act_Subp
)
16028 and then Is_Limited_Interface
(Parent_Base
)
16029 and then Is_Predefined_Interface_Primitive
(Subp
)
16033 -- Case 2: Inherit entities associated with interfaces that were
16034 -- not covered by the parent type. We exclude here null interface
16035 -- primitives because they do not need special management.
16037 -- We also exclude interface operations that are renamings. If the
16038 -- subprogram is an explicit renaming of an interface primitive,
16039 -- it is a regular primitive operation, and the presence of its
16040 -- alias is not relevant: it has to be derived like any other
16043 elsif Present
(Alias
(Subp
))
16044 and then Nkind
(Unit_Declaration_Node
(Subp
)) /=
16045 N_Subprogram_Renaming_Declaration
16046 and then Is_Interface
(Find_Dispatching_Type
(Alias_Subp
))
16048 (Nkind
(Parent
(Alias_Subp
)) = N_Procedure_Specification
16049 and then Null_Present
(Parent
(Alias_Subp
)))
16051 -- If this is an abstract private type then we transfer the
16052 -- derivation of the interface primitive from the partial view
16053 -- to the full view. This is safe because all the interfaces
16054 -- must be visible in the partial view. Done to avoid adding
16055 -- a new interface derivation to the private part of the
16056 -- enclosing package; otherwise this new derivation would be
16057 -- decorated as hidden when the analysis of the enclosing
16058 -- package completes.
16060 if Is_Abstract_Type
(Derived_Type
)
16061 and then In_Private_Part
(Current_Scope
)
16062 and then Has_Private_Declaration
(Derived_Type
)
16065 Partial_View
: Entity_Id
;
16070 Partial_View
:= First_Entity
(Current_Scope
);
16072 exit when No
(Partial_View
)
16073 or else (Has_Private_Declaration
(Partial_View
)
16075 Full_View
(Partial_View
) = Derived_Type
);
16077 Next_Entity
(Partial_View
);
16080 -- If the partial view was not found then the source code
16081 -- has errors and the derivation is not needed.
16083 if Present
(Partial_View
) then
16085 First_Elmt
(Primitive_Operations
(Partial_View
));
16086 while Present
(Elmt
) loop
16087 Ent
:= Node
(Elmt
);
16089 if Present
(Alias
(Ent
))
16090 and then Ultimate_Alias
(Ent
) = Alias
(Subp
)
16093 (Ent
, Primitive_Operations
(Derived_Type
));
16100 -- If the interface primitive was not found in the
16101 -- partial view then this interface primitive was
16102 -- overridden. We add a derivation to activate in
16103 -- Derive_Progenitor_Subprograms the machinery to
16107 Derive_Interface_Subprogram
16108 (New_Subp
=> New_Subp
,
16110 Actual_Subp
=> Act_Subp
);
16115 Derive_Interface_Subprogram
16116 (New_Subp
=> New_Subp
,
16118 Actual_Subp
=> Act_Subp
);
16121 -- Case 3: Common derivation
16125 (New_Subp
=> New_Subp
,
16126 Parent_Subp
=> Subp
,
16127 Derived_Type
=> Derived_Type
,
16128 Parent_Type
=> Parent_Base
,
16129 Actual_Subp
=> Act_Subp
);
16132 -- No need to update Act_Elm if we must search for the
16133 -- corresponding operation in the generic actual
16136 and then Present
(Act_Elmt
)
16138 Next_Elmt
(Act_Elmt
);
16139 Act_Subp
:= Node
(Act_Elmt
);
16146 -- Inherit additional operations from progenitors. If the derived
16147 -- type is a generic actual, there are not new primitive operations
16148 -- for the type because it has those of the actual, and therefore
16149 -- nothing needs to be done. The renamings generated above are not
16150 -- primitive operations, and their purpose is simply to make the
16151 -- proper operations visible within an instantiation.
16153 if No
(Generic_Actual
) then
16154 Derive_Progenitor_Subprograms
(Parent_Base
, Derived_Type
);
16158 -- Final check: Direct descendants must have their primitives in the
16159 -- same order. We exclude from this test untagged types and instances
16160 -- of formal derived types. We skip this test if we have already
16161 -- reported serious errors in the sources.
16163 pragma Assert
(not Is_Tagged_Type
(Derived_Type
)
16164 or else Present
(Generic_Actual
)
16165 or else Serious_Errors_Detected
> 0
16166 or else Check_Derived_Type
);
16167 end Derive_Subprograms
;
16169 --------------------------------
16170 -- Derived_Standard_Character --
16171 --------------------------------
16173 procedure Derived_Standard_Character
16175 Parent_Type
: Entity_Id
;
16176 Derived_Type
: Entity_Id
)
16178 Loc
: constant Source_Ptr
:= Sloc
(N
);
16179 Def
: constant Node_Id
:= Type_Definition
(N
);
16180 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
16181 Parent_Base
: constant Entity_Id
:= Base_Type
(Parent_Type
);
16182 Implicit_Base
: constant Entity_Id
:=
16184 (E_Enumeration_Type
, N
, Derived_Type
, 'B');
16190 Discard_Node
(Process_Subtype
(Indic
, N
));
16192 Set_Etype
(Implicit_Base
, Parent_Base
);
16193 Set_Size_Info
(Implicit_Base
, Root_Type
(Parent_Type
));
16194 Set_RM_Size
(Implicit_Base
, RM_Size
(Root_Type
(Parent_Type
)));
16196 Set_Is_Character_Type
(Implicit_Base
, True);
16197 Set_Has_Delayed_Freeze
(Implicit_Base
);
16199 -- The bounds of the implicit base are the bounds of the parent base.
16200 -- Note that their type is the parent base.
16202 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Base
));
16203 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Base
));
16205 Set_Scalar_Range
(Implicit_Base
,
16208 High_Bound
=> Hi
));
16210 Conditional_Delay
(Derived_Type
, Parent_Type
);
16212 Set_Ekind
(Derived_Type
, E_Enumeration_Subtype
);
16213 Set_Etype
(Derived_Type
, Implicit_Base
);
16214 Set_Size_Info
(Derived_Type
, Parent_Type
);
16216 if Unknown_RM_Size
(Derived_Type
) then
16217 Set_RM_Size
(Derived_Type
, RM_Size
(Parent_Type
));
16220 Set_Is_Character_Type
(Derived_Type
, True);
16222 if Nkind
(Indic
) /= N_Subtype_Indication
then
16224 -- If no explicit constraint, the bounds are those
16225 -- of the parent type.
16227 Lo
:= New_Copy_Tree
(Type_Low_Bound
(Parent_Type
));
16228 Hi
:= New_Copy_Tree
(Type_High_Bound
(Parent_Type
));
16229 Set_Scalar_Range
(Derived_Type
, Make_Range
(Loc
, Lo
, Hi
));
16232 Convert_Scalar_Bounds
(N
, Parent_Type
, Derived_Type
, Loc
);
16234 -- Because the implicit base is used in the conversion of the bounds, we
16235 -- have to freeze it now. This is similar to what is done for numeric
16236 -- types, and it equally suspicious, but otherwise a non-static bound
16237 -- will have a reference to an unfrozen type, which is rejected by Gigi
16238 -- (???). This requires specific care for definition of stream
16239 -- attributes. For details, see comments at the end of
16240 -- Build_Derived_Numeric_Type.
16242 Freeze_Before
(N
, Implicit_Base
);
16243 end Derived_Standard_Character
;
16245 ------------------------------
16246 -- Derived_Type_Declaration --
16247 ------------------------------
16249 procedure Derived_Type_Declaration
16252 Is_Completion
: Boolean)
16254 Parent_Type
: Entity_Id
;
16256 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean;
16257 -- Check whether the parent type is a generic formal, or derives
16258 -- directly or indirectly from one.
16260 ------------------------
16261 -- Comes_From_Generic --
16262 ------------------------
16264 function Comes_From_Generic
(Typ
: Entity_Id
) return Boolean is
16266 if Is_Generic_Type
(Typ
) then
16269 elsif Is_Generic_Type
(Root_Type
(Parent_Type
)) then
16272 elsif Is_Private_Type
(Typ
)
16273 and then Present
(Full_View
(Typ
))
16274 and then Is_Generic_Type
(Root_Type
(Full_View
(Typ
)))
16278 elsif Is_Generic_Actual_Type
(Typ
) then
16284 end Comes_From_Generic
;
16288 Def
: constant Node_Id
:= Type_Definition
(N
);
16289 Iface_Def
: Node_Id
;
16290 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
16291 Extension
: constant Node_Id
:= Record_Extension_Part
(Def
);
16292 Parent_Node
: Node_Id
;
16295 -- Start of processing for Derived_Type_Declaration
16298 Parent_Type
:= Find_Type_Of_Subtype_Indic
(Indic
);
16300 -- Ada 2005 (AI-251): In case of interface derivation check that the
16301 -- parent is also an interface.
16303 if Interface_Present
(Def
) then
16304 Check_SPARK_05_Restriction
("interface is not allowed", Def
);
16306 if not Is_Interface
(Parent_Type
) then
16307 Diagnose_Interface
(Indic
, Parent_Type
);
16310 Parent_Node
:= Parent
(Base_Type
(Parent_Type
));
16311 Iface_Def
:= Type_Definition
(Parent_Node
);
16313 -- Ada 2005 (AI-251): Limited interfaces can only inherit from
16314 -- other limited interfaces.
16316 if Limited_Present
(Def
) then
16317 if Limited_Present
(Iface_Def
) then
16320 elsif Protected_Present
(Iface_Def
) then
16322 ("descendant of & must be declared as a protected "
16323 & "interface", N
, Parent_Type
);
16325 elsif Synchronized_Present
(Iface_Def
) then
16327 ("descendant of & must be declared as a synchronized "
16328 & "interface", N
, Parent_Type
);
16330 elsif Task_Present
(Iface_Def
) then
16332 ("descendant of & must be declared as a task interface",
16337 ("(Ada 2005) limited interface cannot inherit from "
16338 & "non-limited interface", Indic
);
16341 -- Ada 2005 (AI-345): Non-limited interfaces can only inherit
16342 -- from non-limited or limited interfaces.
16344 elsif not Protected_Present
(Def
)
16345 and then not Synchronized_Present
(Def
)
16346 and then not Task_Present
(Def
)
16348 if Limited_Present
(Iface_Def
) then
16351 elsif Protected_Present
(Iface_Def
) then
16353 ("descendant of & must be declared as a protected "
16354 & "interface", N
, Parent_Type
);
16356 elsif Synchronized_Present
(Iface_Def
) then
16358 ("descendant of & must be declared as a synchronized "
16359 & "interface", N
, Parent_Type
);
16361 elsif Task_Present
(Iface_Def
) then
16363 ("descendant of & must be declared as a task interface",
16372 if Is_Tagged_Type
(Parent_Type
)
16373 and then Is_Concurrent_Type
(Parent_Type
)
16374 and then not Is_Interface
(Parent_Type
)
16377 ("parent type of a record extension cannot be a synchronized "
16378 & "tagged type (RM 3.9.1 (3/1))", N
);
16379 Set_Etype
(T
, Any_Type
);
16383 -- Ada 2005 (AI-251): Decorate all the names in the list of ancestor
16386 if Is_Tagged_Type
(Parent_Type
)
16387 and then Is_Non_Empty_List
(Interface_List
(Def
))
16394 Intf
:= First
(Interface_List
(Def
));
16395 while Present
(Intf
) loop
16396 T
:= Find_Type_Of_Subtype_Indic
(Intf
);
16398 if not Is_Interface
(T
) then
16399 Diagnose_Interface
(Intf
, T
);
16401 -- Check the rules of 3.9.4(12/2) and 7.5(2/2) that disallow
16402 -- a limited type from having a nonlimited progenitor.
16404 elsif (Limited_Present
(Def
)
16405 or else (not Is_Interface
(Parent_Type
)
16406 and then Is_Limited_Type
(Parent_Type
)))
16407 and then not Is_Limited_Interface
(T
)
16410 ("progenitor interface& of limited type must be limited",
16419 if Parent_Type
= Any_Type
16420 or else Etype
(Parent_Type
) = Any_Type
16421 or else (Is_Class_Wide_Type
(Parent_Type
)
16422 and then Etype
(Parent_Type
) = T
)
16424 -- If Parent_Type is undefined or illegal, make new type into a
16425 -- subtype of Any_Type, and set a few attributes to prevent cascaded
16426 -- errors. If this is a self-definition, emit error now.
16428 if T
= Parent_Type
or else T
= Etype
(Parent_Type
) then
16429 Error_Msg_N
("type cannot be used in its own definition", Indic
);
16432 Set_Ekind
(T
, Ekind
(Parent_Type
));
16433 Set_Etype
(T
, Any_Type
);
16434 Set_Scalar_Range
(T
, Scalar_Range
(Any_Type
));
16436 if Is_Tagged_Type
(T
)
16437 and then Is_Record_Type
(T
)
16439 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
16445 -- Ada 2005 (AI-251): The case in which the parent of the full-view is
16446 -- an interface is special because the list of interfaces in the full
16447 -- view can be given in any order. For example:
16449 -- type A is interface;
16450 -- type B is interface and A;
16451 -- type D is new B with private;
16453 -- type D is new A and B with null record; -- 1 --
16455 -- In this case we perform the following transformation of -1-:
16457 -- type D is new B and A with null record;
16459 -- If the parent of the full-view covers the parent of the partial-view
16460 -- we have two possible cases:
16462 -- 1) They have the same parent
16463 -- 2) The parent of the full-view implements some further interfaces
16465 -- In both cases we do not need to perform the transformation. In the
16466 -- first case the source program is correct and the transformation is
16467 -- not needed; in the second case the source program does not fulfill
16468 -- the no-hidden interfaces rule (AI-396) and the error will be reported
16471 -- This transformation not only simplifies the rest of the analysis of
16472 -- this type declaration but also simplifies the correct generation of
16473 -- the object layout to the expander.
16475 if In_Private_Part
(Current_Scope
)
16476 and then Is_Interface
(Parent_Type
)
16480 Partial_View
: Entity_Id
;
16481 Partial_View_Parent
: Entity_Id
;
16482 New_Iface
: Node_Id
;
16485 -- Look for the associated private type declaration
16487 Partial_View
:= First_Entity
(Current_Scope
);
16489 exit when No
(Partial_View
)
16490 or else (Has_Private_Declaration
(Partial_View
)
16491 and then Full_View
(Partial_View
) = T
);
16493 Next_Entity
(Partial_View
);
16496 -- If the partial view was not found then the source code has
16497 -- errors and the transformation is not needed.
16499 if Present
(Partial_View
) then
16500 Partial_View_Parent
:= Etype
(Partial_View
);
16502 -- If the parent of the full-view covers the parent of the
16503 -- partial-view we have nothing else to do.
16505 if Interface_Present_In_Ancestor
16506 (Parent_Type
, Partial_View_Parent
)
16510 -- Traverse the list of interfaces of the full-view to look
16511 -- for the parent of the partial-view and perform the tree
16515 Iface
:= First
(Interface_List
(Def
));
16516 while Present
(Iface
) loop
16517 if Etype
(Iface
) = Etype
(Partial_View
) then
16518 Rewrite
(Subtype_Indication
(Def
),
16519 New_Copy
(Subtype_Indication
16520 (Parent
(Partial_View
))));
16523 Make_Identifier
(Sloc
(N
), Chars
(Parent_Type
));
16524 Append
(New_Iface
, Interface_List
(Def
));
16526 -- Analyze the transformed code
16528 Derived_Type_Declaration
(T
, N
, Is_Completion
);
16539 -- Only composite types other than array types are allowed to have
16542 if Present
(Discriminant_Specifications
(N
)) then
16543 if (Is_Elementary_Type
(Parent_Type
)
16545 Is_Array_Type
(Parent_Type
))
16546 and then not Error_Posted
(N
)
16549 ("elementary or array type cannot have discriminants",
16550 Defining_Identifier
(First
(Discriminant_Specifications
(N
))));
16551 Set_Has_Discriminants
(T
, False);
16553 -- The type is allowed to have discriminants
16556 Check_SPARK_05_Restriction
("discriminant type is not allowed", N
);
16560 -- In Ada 83, a derived type defined in a package specification cannot
16561 -- be used for further derivation until the end of its visible part.
16562 -- Note that derivation in the private part of the package is allowed.
16564 if Ada_Version
= Ada_83
16565 and then Is_Derived_Type
(Parent_Type
)
16566 and then In_Visible_Part
(Scope
(Parent_Type
))
16568 if Ada_Version
= Ada_83
and then Comes_From_Source
(Indic
) then
16570 ("(Ada 83): premature use of type for derivation", Indic
);
16574 -- Check for early use of incomplete or private type
16576 if Ekind_In
(Parent_Type
, E_Void
, E_Incomplete_Type
) then
16577 Error_Msg_N
("premature derivation of incomplete type", Indic
);
16580 elsif (Is_Incomplete_Or_Private_Type
(Parent_Type
)
16581 and then not Comes_From_Generic
(Parent_Type
))
16582 or else Has_Private_Component
(Parent_Type
)
16584 -- The ancestor type of a formal type can be incomplete, in which
16585 -- case only the operations of the partial view are available in the
16586 -- generic. Subsequent checks may be required when the full view is
16587 -- analyzed to verify that a derivation from a tagged type has an
16590 if Nkind
(Original_Node
(N
)) = N_Formal_Type_Declaration
then
16593 elsif No
(Underlying_Type
(Parent_Type
))
16594 or else Has_Private_Component
(Parent_Type
)
16597 ("premature derivation of derived or private type", Indic
);
16599 -- Flag the type itself as being in error, this prevents some
16600 -- nasty problems with subsequent uses of the malformed type.
16602 Set_Error_Posted
(T
);
16604 -- Check that within the immediate scope of an untagged partial
16605 -- view it's illegal to derive from the partial view if the
16606 -- full view is tagged. (7.3(7))
16608 -- We verify that the Parent_Type is a partial view by checking
16609 -- that it is not a Full_Type_Declaration (i.e. a private type or
16610 -- private extension declaration), to distinguish a partial view
16611 -- from a derivation from a private type which also appears as
16612 -- E_Private_Type. If the parent base type is not declared in an
16613 -- enclosing scope there is no need to check.
16615 elsif Present
(Full_View
(Parent_Type
))
16616 and then Nkind
(Parent
(Parent_Type
)) /= N_Full_Type_Declaration
16617 and then not Is_Tagged_Type
(Parent_Type
)
16618 and then Is_Tagged_Type
(Full_View
(Parent_Type
))
16619 and then In_Open_Scopes
(Scope
(Base_Type
(Parent_Type
)))
16622 ("premature derivation from type with tagged full view",
16627 -- Check that form of derivation is appropriate
16629 Taggd
:= Is_Tagged_Type
(Parent_Type
);
16631 -- Set the parent type to the class-wide type's specific type in this
16632 -- case to prevent cascading errors
16634 if Present
(Extension
) and then Is_Class_Wide_Type
(Parent_Type
) then
16635 Error_Msg_N
("parent type must not be a class-wide type", Indic
);
16636 Set_Etype
(T
, Etype
(Parent_Type
));
16640 if Present
(Extension
) and then not Taggd
then
16642 ("type derived from untagged type cannot have extension", Indic
);
16644 elsif No
(Extension
) and then Taggd
then
16646 -- If this declaration is within a private part (or body) of a
16647 -- generic instantiation then the derivation is allowed (the parent
16648 -- type can only appear tagged in this case if it's a generic actual
16649 -- type, since it would otherwise have been rejected in the analysis
16650 -- of the generic template).
16652 if not Is_Generic_Actual_Type
(Parent_Type
)
16653 or else In_Visible_Part
(Scope
(Parent_Type
))
16655 if Is_Class_Wide_Type
(Parent_Type
) then
16657 ("parent type must not be a class-wide type", Indic
);
16659 -- Use specific type to prevent cascaded errors.
16661 Parent_Type
:= Etype
(Parent_Type
);
16665 ("type derived from tagged type must have extension", Indic
);
16670 -- AI-443: Synchronized formal derived types require a private
16671 -- extension. There is no point in checking the ancestor type or
16672 -- the progenitors since the construct is wrong to begin with.
16674 if Ada_Version
>= Ada_2005
16675 and then Is_Generic_Type
(T
)
16676 and then Present
(Original_Node
(N
))
16679 Decl
: constant Node_Id
:= Original_Node
(N
);
16682 if Nkind
(Decl
) = N_Formal_Type_Declaration
16683 and then Nkind
(Formal_Type_Definition
(Decl
)) =
16684 N_Formal_Derived_Type_Definition
16685 and then Synchronized_Present
(Formal_Type_Definition
(Decl
))
16686 and then No
(Extension
)
16688 -- Avoid emitting a duplicate error message
16690 and then not Error_Posted
(Indic
)
16693 ("synchronized derived type must have extension", N
);
16698 if Null_Exclusion_Present
(Def
)
16699 and then not Is_Access_Type
(Parent_Type
)
16701 Error_Msg_N
("null exclusion can only apply to an access type", N
);
16704 -- Avoid deriving parent primitives of underlying record views
16706 Build_Derived_Type
(N
, Parent_Type
, T
, Is_Completion
,
16707 Derive_Subps
=> not Is_Underlying_Record_View
(T
));
16709 -- AI-419: The parent type of an explicitly limited derived type must
16710 -- be a limited type or a limited interface.
16712 if Limited_Present
(Def
) then
16713 Set_Is_Limited_Record
(T
);
16715 if Is_Interface
(T
) then
16716 Set_Is_Limited_Interface
(T
);
16719 if not Is_Limited_Type
(Parent_Type
)
16721 (not Is_Interface
(Parent_Type
)
16722 or else not Is_Limited_Interface
(Parent_Type
))
16724 -- AI05-0096: a derivation in the private part of an instance is
16725 -- legal if the generic formal is untagged limited, and the actual
16728 if Is_Generic_Actual_Type
(Parent_Type
)
16729 and then In_Private_Part
(Current_Scope
)
16732 (Generic_Parent_Type
(Parent
(Parent_Type
)))
16738 ("parent type& of limited type must be limited",
16744 -- In SPARK, there are no derived type definitions other than type
16745 -- extensions of tagged record types.
16747 if No
(Extension
) then
16748 Check_SPARK_05_Restriction
16749 ("derived type is not allowed", Original_Node
(N
));
16751 end Derived_Type_Declaration
;
16753 ------------------------
16754 -- Diagnose_Interface --
16755 ------------------------
16757 procedure Diagnose_Interface
(N
: Node_Id
; E
: Entity_Id
) is
16759 if not Is_Interface
(E
) and then E
/= Any_Type
then
16760 Error_Msg_NE
("(Ada 2005) & must be an interface", N
, E
);
16762 end Diagnose_Interface
;
16764 ----------------------------------
16765 -- Enumeration_Type_Declaration --
16766 ----------------------------------
16768 procedure Enumeration_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
16775 -- Create identifier node representing lower bound
16777 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16778 L
:= First
(Literals
(Def
));
16779 Set_Chars
(B_Node
, Chars
(L
));
16780 Set_Entity
(B_Node
, L
);
16781 Set_Etype
(B_Node
, T
);
16782 Set_Is_Static_Expression
(B_Node
, True);
16784 R_Node
:= New_Node
(N_Range
, Sloc
(Def
));
16785 Set_Low_Bound
(R_Node
, B_Node
);
16787 Set_Ekind
(T
, E_Enumeration_Type
);
16788 Set_First_Literal
(T
, L
);
16790 Set_Is_Constrained
(T
);
16794 -- Loop through literals of enumeration type setting pos and rep values
16795 -- except that if the Ekind is already set, then it means the literal
16796 -- was already constructed (case of a derived type declaration and we
16797 -- should not disturb the Pos and Rep values.
16799 while Present
(L
) loop
16800 if Ekind
(L
) /= E_Enumeration_Literal
then
16801 Set_Ekind
(L
, E_Enumeration_Literal
);
16802 Set_Enumeration_Pos
(L
, Ev
);
16803 Set_Enumeration_Rep
(L
, Ev
);
16804 Set_Is_Known_Valid
(L
, True);
16808 New_Overloaded_Entity
(L
);
16809 Generate_Definition
(L
);
16810 Set_Convention
(L
, Convention_Intrinsic
);
16812 -- Case of character literal
16814 if Nkind
(L
) = N_Defining_Character_Literal
then
16815 Set_Is_Character_Type
(T
, True);
16817 -- Check violation of No_Wide_Characters
16819 if Restriction_Check_Required
(No_Wide_Characters
) then
16820 Get_Name_String
(Chars
(L
));
16822 if Name_Len
>= 3 and then Name_Buffer
(1 .. 2) = "QW" then
16823 Check_Restriction
(No_Wide_Characters
, L
);
16832 -- Now create a node representing upper bound
16834 B_Node
:= New_Node
(N_Identifier
, Sloc
(Def
));
16835 Set_Chars
(B_Node
, Chars
(Last
(Literals
(Def
))));
16836 Set_Entity
(B_Node
, Last
(Literals
(Def
)));
16837 Set_Etype
(B_Node
, T
);
16838 Set_Is_Static_Expression
(B_Node
, True);
16840 Set_High_Bound
(R_Node
, B_Node
);
16842 -- Initialize various fields of the type. Some of this information
16843 -- may be overwritten later through rep.clauses.
16845 Set_Scalar_Range
(T
, R_Node
);
16846 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
16847 Set_Enum_Esize
(T
);
16848 Set_Enum_Pos_To_Rep
(T
, Empty
);
16850 -- Set Discard_Names if configuration pragma set, or if there is
16851 -- a parameterless pragma in the current declarative region
16853 if Global_Discard_Names
or else Discard_Names
(Scope
(T
)) then
16854 Set_Discard_Names
(T
);
16857 -- Process end label if there is one
16859 if Present
(Def
) then
16860 Process_End_Label
(Def
, 'e', T
);
16862 end Enumeration_Type_Declaration
;
16864 ---------------------------------
16865 -- Expand_To_Stored_Constraint --
16866 ---------------------------------
16868 function Expand_To_Stored_Constraint
16870 Constraint
: Elist_Id
) return Elist_Id
16872 Explicitly_Discriminated_Type
: Entity_Id
;
16873 Expansion
: Elist_Id
;
16874 Discriminant
: Entity_Id
;
16876 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
;
16877 -- Find the nearest type that actually specifies discriminants
16879 ---------------------------------
16880 -- Type_With_Explicit_Discrims --
16881 ---------------------------------
16883 function Type_With_Explicit_Discrims
(Id
: Entity_Id
) return Entity_Id
is
16884 Typ
: constant E
:= Base_Type
(Id
);
16887 if Ekind
(Typ
) in Incomplete_Or_Private_Kind
then
16888 if Present
(Full_View
(Typ
)) then
16889 return Type_With_Explicit_Discrims
(Full_View
(Typ
));
16893 if Has_Discriminants
(Typ
) then
16898 if Etype
(Typ
) = Typ
then
16900 elsif Has_Discriminants
(Typ
) then
16903 return Type_With_Explicit_Discrims
(Etype
(Typ
));
16906 end Type_With_Explicit_Discrims
;
16908 -- Start of processing for Expand_To_Stored_Constraint
16911 if No
(Constraint
) or else Is_Empty_Elmt_List
(Constraint
) then
16915 Explicitly_Discriminated_Type
:= Type_With_Explicit_Discrims
(Typ
);
16917 if No
(Explicitly_Discriminated_Type
) then
16921 Expansion
:= New_Elmt_List
;
16924 First_Stored_Discriminant
(Explicitly_Discriminated_Type
);
16925 while Present
(Discriminant
) loop
16927 (Get_Discriminant_Value
16928 (Discriminant
, Explicitly_Discriminated_Type
, Constraint
),
16930 Next_Stored_Discriminant
(Discriminant
);
16934 end Expand_To_Stored_Constraint
;
16936 ---------------------------
16937 -- Find_Hidden_Interface --
16938 ---------------------------
16940 function Find_Hidden_Interface
16942 Dest
: Elist_Id
) return Entity_Id
16945 Iface_Elmt
: Elmt_Id
;
16948 if Present
(Src
) and then Present
(Dest
) then
16949 Iface_Elmt
:= First_Elmt
(Src
);
16950 while Present
(Iface_Elmt
) loop
16951 Iface
:= Node
(Iface_Elmt
);
16953 if Is_Interface
(Iface
)
16954 and then not Contain_Interface
(Iface
, Dest
)
16959 Next_Elmt
(Iface_Elmt
);
16964 end Find_Hidden_Interface
;
16966 --------------------
16967 -- Find_Type_Name --
16968 --------------------
16970 function Find_Type_Name
(N
: Node_Id
) return Entity_Id
is
16971 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
16972 New_Id
: Entity_Id
;
16974 Prev_Par
: Node_Id
;
16976 procedure Check_Duplicate_Aspects
;
16977 -- Check that aspects specified in a completion have not been specified
16978 -- already in the partial view.
16980 procedure Tag_Mismatch
;
16981 -- Diagnose a tagged partial view whose full view is untagged. We post
16982 -- the message on the full view, with a reference to the previous
16983 -- partial view. The partial view can be private or incomplete, and
16984 -- these are handled in a different manner, so we determine the position
16985 -- of the error message from the respective slocs of both.
16987 -----------------------------
16988 -- Check_Duplicate_Aspects --
16989 -----------------------------
16991 procedure Check_Duplicate_Aspects
is
16992 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
;
16993 -- Return the corresponding aspect of the partial view which matches
16994 -- the aspect id of Asp. Return Empty is no such aspect exists.
16996 -----------------------------
16997 -- Get_Partial_View_Aspect --
16998 -----------------------------
17000 function Get_Partial_View_Aspect
(Asp
: Node_Id
) return Node_Id
is
17001 Asp_Id
: constant Aspect_Id
:= Get_Aspect_Id
(Asp
);
17002 Prev_Asps
: constant List_Id
:= Aspect_Specifications
(Prev_Par
);
17003 Prev_Asp
: Node_Id
;
17006 if Present
(Prev_Asps
) then
17007 Prev_Asp
:= First
(Prev_Asps
);
17008 while Present
(Prev_Asp
) loop
17009 if Get_Aspect_Id
(Prev_Asp
) = Asp_Id
then
17018 end Get_Partial_View_Aspect
;
17022 Full_Asps
: constant List_Id
:= Aspect_Specifications
(N
);
17023 Full_Asp
: Node_Id
;
17024 Part_Asp
: Node_Id
;
17026 -- Start of processing for Check_Duplicate_Aspects
17029 if Present
(Full_Asps
) then
17030 Full_Asp
:= First
(Full_Asps
);
17031 while Present
(Full_Asp
) loop
17032 Part_Asp
:= Get_Partial_View_Aspect
(Full_Asp
);
17034 -- An aspect and its class-wide counterpart are two distinct
17035 -- aspects and may apply to both views of an entity.
17037 if Present
(Part_Asp
)
17038 and then Class_Present
(Part_Asp
) = Class_Present
(Full_Asp
)
17041 ("aspect already specified in private declaration",
17048 if Has_Discriminants
(Prev
)
17049 and then not Has_Unknown_Discriminants
(Prev
)
17050 and then Get_Aspect_Id
(Full_Asp
) =
17051 Aspect_Implicit_Dereference
17054 ("cannot specify aspect if partial view has known "
17055 & "discriminants", Full_Asp
);
17061 end Check_Duplicate_Aspects
;
17067 procedure Tag_Mismatch
is
17069 if Sloc
(Prev
) < Sloc
(Id
) then
17070 if Ada_Version
>= Ada_2012
17071 and then Nkind
(N
) = N_Private_Type_Declaration
17074 ("declaration of private } must be a tagged type ", Id
, Prev
);
17077 ("full declaration of } must be a tagged type ", Id
, Prev
);
17081 if Ada_Version
>= Ada_2012
17082 and then Nkind
(N
) = N_Private_Type_Declaration
17085 ("declaration of private } must be a tagged type ", Prev
, Id
);
17088 ("full declaration of } must be a tagged type ", Prev
, Id
);
17093 -- Start of processing for Find_Type_Name
17096 -- Find incomplete declaration, if one was given
17098 Prev
:= Current_Entity_In_Scope
(Id
);
17100 -- New type declaration
17106 -- Previous declaration exists
17109 Prev_Par
:= Parent
(Prev
);
17111 -- Error if not incomplete/private case except if previous
17112 -- declaration is implicit, etc. Enter_Name will emit error if
17115 if not Is_Incomplete_Or_Private_Type
(Prev
) then
17119 -- Check invalid completion of private or incomplete type
17121 elsif not Nkind_In
(N
, N_Full_Type_Declaration
,
17122 N_Task_Type_Declaration
,
17123 N_Protected_Type_Declaration
)
17125 (Ada_Version
< Ada_2012
17126 or else not Is_Incomplete_Type
(Prev
)
17127 or else not Nkind_In
(N
, N_Private_Type_Declaration
,
17128 N_Private_Extension_Declaration
))
17130 -- Completion must be a full type declarations (RM 7.3(4))
17132 Error_Msg_Sloc
:= Sloc
(Prev
);
17133 Error_Msg_NE
("invalid completion of }", Id
, Prev
);
17135 -- Set scope of Id to avoid cascaded errors. Entity is never
17136 -- examined again, except when saving globals in generics.
17138 Set_Scope
(Id
, Current_Scope
);
17141 -- If this is a repeated incomplete declaration, no further
17142 -- checks are possible.
17144 if Nkind
(N
) = N_Incomplete_Type_Declaration
then
17148 -- Case of full declaration of incomplete type
17150 elsif Ekind
(Prev
) = E_Incomplete_Type
17151 and then (Ada_Version
< Ada_2012
17152 or else No
(Full_View
(Prev
))
17153 or else not Is_Private_Type
(Full_View
(Prev
)))
17155 -- Indicate that the incomplete declaration has a matching full
17156 -- declaration. The defining occurrence of the incomplete
17157 -- declaration remains the visible one, and the procedure
17158 -- Get_Full_View dereferences it whenever the type is used.
17160 if Present
(Full_View
(Prev
)) then
17161 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
17164 Set_Full_View
(Prev
, Id
);
17165 Append_Entity
(Id
, Current_Scope
);
17166 Set_Is_Public
(Id
, Is_Public
(Prev
));
17167 Set_Is_Internal
(Id
);
17170 -- If the incomplete view is tagged, a class_wide type has been
17171 -- created already. Use it for the private type as well, in order
17172 -- to prevent multiple incompatible class-wide types that may be
17173 -- created for self-referential anonymous access components.
17175 if Is_Tagged_Type
(Prev
)
17176 and then Present
(Class_Wide_Type
(Prev
))
17178 Set_Ekind
(Id
, Ekind
(Prev
)); -- will be reset later
17179 Set_Class_Wide_Type
(Id
, Class_Wide_Type
(Prev
));
17181 -- Type of the class-wide type is the current Id. Previously
17182 -- this was not done for private declarations because of order-
17183 -- of-elaboration issues in the back end, but gigi now handles
17186 Set_Etype
(Class_Wide_Type
(Id
), Id
);
17189 -- Case of full declaration of private type
17192 -- If the private type was a completion of an incomplete type then
17193 -- update Prev to reference the private type
17195 if Ada_Version
>= Ada_2012
17196 and then Ekind
(Prev
) = E_Incomplete_Type
17197 and then Present
(Full_View
(Prev
))
17198 and then Is_Private_Type
(Full_View
(Prev
))
17200 Prev
:= Full_View
(Prev
);
17201 Prev_Par
:= Parent
(Prev
);
17204 if Nkind
(N
) = N_Full_Type_Declaration
17206 (Type_Definition
(N
), N_Record_Definition
,
17207 N_Derived_Type_Definition
)
17208 and then Interface_Present
(Type_Definition
(N
))
17211 ("completion of private type cannot be an interface", N
);
17214 if Nkind
(Parent
(Prev
)) /= N_Private_Extension_Declaration
then
17215 if Etype
(Prev
) /= Prev
then
17217 -- Prev is a private subtype or a derived type, and needs
17220 Error_Msg_NE
("invalid redeclaration of }", Id
, Prev
);
17223 elsif Ekind
(Prev
) = E_Private_Type
17224 and then Nkind_In
(N
, N_Task_Type_Declaration
,
17225 N_Protected_Type_Declaration
)
17228 ("completion of nonlimited type cannot be limited", N
);
17230 elsif Ekind
(Prev
) = E_Record_Type_With_Private
17231 and then Nkind_In
(N
, N_Task_Type_Declaration
,
17232 N_Protected_Type_Declaration
)
17234 if not Is_Limited_Record
(Prev
) then
17236 ("completion of nonlimited type cannot be limited", N
);
17238 elsif No
(Interface_List
(N
)) then
17240 ("completion of tagged private type must be tagged",
17245 -- Ada 2005 (AI-251): Private extension declaration of a task
17246 -- type or a protected type. This case arises when covering
17247 -- interface types.
17249 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
17250 N_Protected_Type_Declaration
)
17254 elsif Nkind
(N
) /= N_Full_Type_Declaration
17255 or else Nkind
(Type_Definition
(N
)) /= N_Derived_Type_Definition
17258 ("full view of private extension must be an extension", N
);
17260 elsif not (Abstract_Present
(Parent
(Prev
)))
17261 and then Abstract_Present
(Type_Definition
(N
))
17264 ("full view of non-abstract extension cannot be abstract", N
);
17267 if not In_Private_Part
(Current_Scope
) then
17269 ("declaration of full view must appear in private part", N
);
17272 if Ada_Version
>= Ada_2012
then
17273 Check_Duplicate_Aspects
;
17276 Copy_And_Swap
(Prev
, Id
);
17277 Set_Has_Private_Declaration
(Prev
);
17278 Set_Has_Private_Declaration
(Id
);
17280 -- AI12-0133: Indicate whether we have a partial view with
17281 -- unknown discriminants, in which case initialization of objects
17282 -- of the type do not receive an invariant check.
17284 Set_Partial_View_Has_Unknown_Discr
17285 (Prev
, Has_Unknown_Discriminants
(Id
));
17287 -- Preserve aspect and iterator flags that may have been set on
17288 -- the partial view.
17290 Set_Has_Delayed_Aspects
(Prev
, Has_Delayed_Aspects
(Id
));
17291 Set_Has_Implicit_Dereference
(Prev
, Has_Implicit_Dereference
(Id
));
17293 -- If no error, propagate freeze_node from private to full view.
17294 -- It may have been generated for an early operational item.
17296 if Present
(Freeze_Node
(Id
))
17297 and then Serious_Errors_Detected
= 0
17298 and then No
(Full_View
(Id
))
17300 Set_Freeze_Node
(Prev
, Freeze_Node
(Id
));
17301 Set_Freeze_Node
(Id
, Empty
);
17302 Set_First_Rep_Item
(Prev
, First_Rep_Item
(Id
));
17305 Set_Full_View
(Id
, Prev
);
17309 -- Verify that full declaration conforms to partial one
17311 if Is_Incomplete_Or_Private_Type
(Prev
)
17312 and then Present
(Discriminant_Specifications
(Prev_Par
))
17314 if Present
(Discriminant_Specifications
(N
)) then
17315 if Ekind
(Prev
) = E_Incomplete_Type
then
17316 Check_Discriminant_Conformance
(N
, Prev
, Prev
);
17318 Check_Discriminant_Conformance
(N
, Prev
, Id
);
17323 ("missing discriminants in full type declaration", N
);
17325 -- To avoid cascaded errors on subsequent use, share the
17326 -- discriminants of the partial view.
17328 Set_Discriminant_Specifications
(N
,
17329 Discriminant_Specifications
(Prev_Par
));
17333 -- A prior untagged partial view can have an associated class-wide
17334 -- type due to use of the class attribute, and in this case the full
17335 -- type must also be tagged. This Ada 95 usage is deprecated in favor
17336 -- of incomplete tagged declarations, but we check for it.
17339 and then (Is_Tagged_Type
(Prev
)
17340 or else Present
(Class_Wide_Type
(Prev
)))
17342 -- Ada 2012 (AI05-0162): A private type may be the completion of
17343 -- an incomplete type.
17345 if Ada_Version
>= Ada_2012
17346 and then Is_Incomplete_Type
(Prev
)
17347 and then Nkind_In
(N
, N_Private_Type_Declaration
,
17348 N_Private_Extension_Declaration
)
17350 -- No need to check private extensions since they are tagged
17352 if Nkind
(N
) = N_Private_Type_Declaration
17353 and then not Tagged_Present
(N
)
17358 -- The full declaration is either a tagged type (including
17359 -- a synchronized type that implements interfaces) or a
17360 -- type extension, otherwise this is an error.
17362 elsif Nkind_In
(N
, N_Task_Type_Declaration
,
17363 N_Protected_Type_Declaration
)
17365 if No
(Interface_List
(N
)) and then not Error_Posted
(N
) then
17369 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
17371 -- Indicate that the previous declaration (tagged incomplete
17372 -- or private declaration) requires the same on the full one.
17374 if not Tagged_Present
(Type_Definition
(N
)) then
17376 Set_Is_Tagged_Type
(Id
);
17379 elsif Nkind
(Type_Definition
(N
)) = N_Derived_Type_Definition
then
17380 if No
(Record_Extension_Part
(Type_Definition
(N
))) then
17382 ("full declaration of } must be a record extension",
17385 -- Set some attributes to produce a usable full view
17387 Set_Is_Tagged_Type
(Id
);
17396 and then Nkind
(Parent
(Prev
)) = N_Incomplete_Type_Declaration
17397 and then Present
(Premature_Use
(Parent
(Prev
)))
17399 Error_Msg_Sloc
:= Sloc
(N
);
17401 ("\full declaration #", Premature_Use
(Parent
(Prev
)));
17406 end Find_Type_Name
;
17408 -------------------------
17409 -- Find_Type_Of_Object --
17410 -------------------------
17412 function Find_Type_Of_Object
17413 (Obj_Def
: Node_Id
;
17414 Related_Nod
: Node_Id
) return Entity_Id
17416 Def_Kind
: constant Node_Kind
:= Nkind
(Obj_Def
);
17417 P
: Node_Id
:= Parent
(Obj_Def
);
17422 -- If the parent is a component_definition node we climb to the
17423 -- component_declaration node
17425 if Nkind
(P
) = N_Component_Definition
then
17429 -- Case of an anonymous array subtype
17431 if Nkind_In
(Def_Kind
, N_Constrained_Array_Definition
,
17432 N_Unconstrained_Array_Definition
)
17435 Array_Type_Declaration
(T
, Obj_Def
);
17437 -- Create an explicit subtype whenever possible
17439 elsif Nkind
(P
) /= N_Component_Declaration
17440 and then Def_Kind
= N_Subtype_Indication
17442 -- Base name of subtype on object name, which will be unique in
17443 -- the current scope.
17445 -- If this is a duplicate declaration, return base type, to avoid
17446 -- generating duplicate anonymous types.
17448 if Error_Posted
(P
) then
17449 Analyze
(Subtype_Mark
(Obj_Def
));
17450 return Entity
(Subtype_Mark
(Obj_Def
));
17455 (Chars
(Defining_Identifier
(Related_Nod
)), 'S', 0, 'T');
17457 T
:= Make_Defining_Identifier
(Sloc
(P
), Nam
);
17459 Insert_Action
(Obj_Def
,
17460 Make_Subtype_Declaration
(Sloc
(P
),
17461 Defining_Identifier
=> T
,
17462 Subtype_Indication
=> Relocate_Node
(Obj_Def
)));
17464 -- This subtype may need freezing, and this will not be done
17465 -- automatically if the object declaration is not in declarative
17466 -- part. Since this is an object declaration, the type cannot always
17467 -- be frozen here. Deferred constants do not freeze their type
17468 -- (which often enough will be private).
17470 if Nkind
(P
) = N_Object_Declaration
17471 and then Constant_Present
(P
)
17472 and then No
(Expression
(P
))
17476 -- Here we freeze the base type of object type to catch premature use
17477 -- of discriminated private type without a full view.
17480 Insert_Actions
(Obj_Def
, Freeze_Entity
(Base_Type
(T
), P
));
17483 -- Ada 2005 AI-406: the object definition in an object declaration
17484 -- can be an access definition.
17486 elsif Def_Kind
= N_Access_Definition
then
17487 T
:= Access_Definition
(Related_Nod
, Obj_Def
);
17489 Set_Is_Local_Anonymous_Access
17491 V
=> (Ada_Version
< Ada_2012
)
17492 or else (Nkind
(P
) /= N_Object_Declaration
)
17493 or else Is_Library_Level_Entity
(Defining_Identifier
(P
)));
17495 -- Otherwise, the object definition is just a subtype_mark
17498 T
:= Process_Subtype
(Obj_Def
, Related_Nod
);
17500 -- If expansion is disabled an object definition that is an aggregate
17501 -- will not get expanded and may lead to scoping problems in the back
17502 -- end, if the object is referenced in an inner scope. In that case
17503 -- create an itype reference for the object definition now. This
17504 -- may be redundant in some cases, but harmless.
17507 and then Nkind
(Related_Nod
) = N_Object_Declaration
17510 Build_Itype_Reference
(T
, Related_Nod
);
17515 end Find_Type_Of_Object
;
17517 --------------------------------
17518 -- Find_Type_Of_Subtype_Indic --
17519 --------------------------------
17521 function Find_Type_Of_Subtype_Indic
(S
: Node_Id
) return Entity_Id
is
17525 -- Case of subtype mark with a constraint
17527 if Nkind
(S
) = N_Subtype_Indication
then
17528 Find_Type
(Subtype_Mark
(S
));
17529 Typ
:= Entity
(Subtype_Mark
(S
));
17532 Is_Valid_Constraint_Kind
(Ekind
(Typ
), Nkind
(Constraint
(S
)))
17535 ("incorrect constraint for this kind of type", Constraint
(S
));
17536 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
17539 -- Otherwise we have a subtype mark without a constraint
17541 elsif Error_Posted
(S
) then
17542 Rewrite
(S
, New_Occurrence_Of
(Any_Id
, Sloc
(S
)));
17550 -- Check No_Wide_Characters restriction
17552 Check_Wide_Character_Restriction
(Typ
, S
);
17555 end Find_Type_Of_Subtype_Indic
;
17557 -------------------------------------
17558 -- Floating_Point_Type_Declaration --
17559 -------------------------------------
17561 procedure Floating_Point_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
17562 Digs
: constant Node_Id
:= Digits_Expression
(Def
);
17563 Max_Digs_Val
: constant Uint
:= Digits_Value
(Standard_Long_Long_Float
);
17565 Base_Typ
: Entity_Id
;
17566 Implicit_Base
: Entity_Id
;
17569 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
17570 -- Find if given digits value, and possibly a specified range, allows
17571 -- derivation from specified type
17573 function Find_Base_Type
return Entity_Id
;
17574 -- Find a predefined base type that Def can derive from, or generate
17575 -- an error and substitute Long_Long_Float if none exists.
17577 ---------------------
17578 -- Can_Derive_From --
17579 ---------------------
17581 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
17582 Spec
: constant Entity_Id
:= Real_Range_Specification
(Def
);
17585 -- Check specified "digits" constraint
17587 if Digs_Val
> Digits_Value
(E
) then
17591 -- Check for matching range, if specified
17593 if Present
(Spec
) then
17594 if Expr_Value_R
(Type_Low_Bound
(E
)) >
17595 Expr_Value_R
(Low_Bound
(Spec
))
17600 if Expr_Value_R
(Type_High_Bound
(E
)) <
17601 Expr_Value_R
(High_Bound
(Spec
))
17608 end Can_Derive_From
;
17610 --------------------
17611 -- Find_Base_Type --
17612 --------------------
17614 function Find_Base_Type
return Entity_Id
is
17615 Choice
: Elmt_Id
:= First_Elmt
(Predefined_Float_Types
);
17618 -- Iterate over the predefined types in order, returning the first
17619 -- one that Def can derive from.
17621 while Present
(Choice
) loop
17622 if Can_Derive_From
(Node
(Choice
)) then
17623 return Node
(Choice
);
17626 Next_Elmt
(Choice
);
17629 -- If we can't derive from any existing type, use Long_Long_Float
17630 -- and give appropriate message explaining the problem.
17632 if Digs_Val
> Max_Digs_Val
then
17633 -- It might be the case that there is a type with the requested
17634 -- range, just not the combination of digits and range.
17637 ("no predefined type has requested range and precision",
17638 Real_Range_Specification
(Def
));
17642 ("range too large for any predefined type",
17643 Real_Range_Specification
(Def
));
17646 return Standard_Long_Long_Float
;
17647 end Find_Base_Type
;
17649 -- Start of processing for Floating_Point_Type_Declaration
17652 Check_Restriction
(No_Floating_Point
, Def
);
17654 -- Create an implicit base type
17657 Create_Itype
(E_Floating_Point_Type
, Parent
(Def
), T
, 'B');
17659 -- Analyze and verify digits value
17661 Analyze_And_Resolve
(Digs
, Any_Integer
);
17662 Check_Digits_Expression
(Digs
);
17663 Digs_Val
:= Expr_Value
(Digs
);
17665 -- Process possible range spec and find correct type to derive from
17667 Process_Real_Range_Specification
(Def
);
17669 -- Check that requested number of digits is not too high.
17671 if Digs_Val
> Max_Digs_Val
then
17673 -- The check for Max_Base_Digits may be somewhat expensive, as it
17674 -- requires reading System, so only do it when necessary.
17677 Max_Base_Digits
: constant Uint
:=
17680 (Parent
(RTE
(RE_Max_Base_Digits
))));
17683 if Digs_Val
> Max_Base_Digits
then
17684 Error_Msg_Uint_1
:= Max_Base_Digits
;
17685 Error_Msg_N
("digits value out of range, maximum is ^", Digs
);
17687 elsif No
(Real_Range_Specification
(Def
)) then
17688 Error_Msg_Uint_1
:= Max_Digs_Val
;
17689 Error_Msg_N
("types with more than ^ digits need range spec "
17690 & "(RM 3.5.7(6))", Digs
);
17695 -- Find a suitable type to derive from or complain and use a substitute
17697 Base_Typ
:= Find_Base_Type
;
17699 -- If there are bounds given in the declaration use them as the bounds
17700 -- of the type, otherwise use the bounds of the predefined base type
17701 -- that was chosen based on the Digits value.
17703 if Present
(Real_Range_Specification
(Def
)) then
17704 Set_Scalar_Range
(T
, Real_Range_Specification
(Def
));
17705 Set_Is_Constrained
(T
);
17707 -- The bounds of this range must be converted to machine numbers
17708 -- in accordance with RM 4.9(38).
17710 Bound
:= Type_Low_Bound
(T
);
17712 if Nkind
(Bound
) = N_Real_Literal
then
17714 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17715 Set_Is_Machine_Number
(Bound
);
17718 Bound
:= Type_High_Bound
(T
);
17720 if Nkind
(Bound
) = N_Real_Literal
then
17722 (Bound
, Machine
(Base_Typ
, Realval
(Bound
), Round
, Bound
));
17723 Set_Is_Machine_Number
(Bound
);
17727 Set_Scalar_Range
(T
, Scalar_Range
(Base_Typ
));
17730 -- Complete definition of implicit base and declared first subtype. The
17731 -- inheritance of the rep item chain ensures that SPARK-related pragmas
17732 -- are not clobbered when the floating point type acts as a full view of
17735 Set_Etype
(Implicit_Base
, Base_Typ
);
17736 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
17737 Set_Size_Info
(Implicit_Base
, Base_Typ
);
17738 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
17739 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
17740 Set_Digits_Value
(Implicit_Base
, Digits_Value
(Base_Typ
));
17741 Set_Float_Rep
(Implicit_Base
, Float_Rep
(Base_Typ
));
17743 Set_Ekind
(T
, E_Floating_Point_Subtype
);
17744 Set_Etype
(T
, Implicit_Base
);
17745 Set_Size_Info
(T
, Implicit_Base
);
17746 Set_RM_Size
(T
, RM_Size
(Implicit_Base
));
17747 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
17748 Set_Digits_Value
(T
, Digs_Val
);
17749 end Floating_Point_Type_Declaration
;
17751 ----------------------------
17752 -- Get_Discriminant_Value --
17753 ----------------------------
17755 -- This is the situation:
17757 -- There is a non-derived type
17759 -- type T0 (Dx, Dy, Dz...)
17761 -- There are zero or more levels of derivation, with each derivation
17762 -- either purely inheriting the discriminants, or defining its own.
17764 -- type Ti is new Ti-1
17766 -- type Ti (Dw) is new Ti-1(Dw, 1, X+Y)
17768 -- subtype Ti is ...
17770 -- The subtype issue is avoided by the use of Original_Record_Component,
17771 -- and the fact that derived subtypes also derive the constraints.
17773 -- This chain leads back from
17775 -- Typ_For_Constraint
17777 -- Typ_For_Constraint has discriminants, and the value for each
17778 -- discriminant is given by its corresponding Elmt of Constraints.
17780 -- Discriminant is some discriminant in this hierarchy
17782 -- We need to return its value
17784 -- We do this by recursively searching each level, and looking for
17785 -- Discriminant. Once we get to the bottom, we start backing up
17786 -- returning the value for it which may in turn be a discriminant
17787 -- further up, so on the backup we continue the substitution.
17789 function Get_Discriminant_Value
17790 (Discriminant
: Entity_Id
;
17791 Typ_For_Constraint
: Entity_Id
;
17792 Constraint
: Elist_Id
) return Node_Id
17794 function Root_Corresponding_Discriminant
17795 (Discr
: Entity_Id
) return Entity_Id
;
17796 -- Given a discriminant, traverse the chain of inherited discriminants
17797 -- and return the topmost discriminant.
17799 function Search_Derivation_Levels
17801 Discrim_Values
: Elist_Id
;
17802 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
;
17803 -- This is the routine that performs the recursive search of levels
17804 -- as described above.
17806 -------------------------------------
17807 -- Root_Corresponding_Discriminant --
17808 -------------------------------------
17810 function Root_Corresponding_Discriminant
17811 (Discr
: Entity_Id
) return Entity_Id
17817 while Present
(Corresponding_Discriminant
(D
)) loop
17818 D
:= Corresponding_Discriminant
(D
);
17822 end Root_Corresponding_Discriminant
;
17824 ------------------------------
17825 -- Search_Derivation_Levels --
17826 ------------------------------
17828 function Search_Derivation_Levels
17830 Discrim_Values
: Elist_Id
;
17831 Stored_Discrim_Values
: Boolean) return Node_Or_Entity_Id
17835 Result
: Node_Or_Entity_Id
;
17836 Result_Entity
: Node_Id
;
17839 -- If inappropriate type, return Error, this happens only in
17840 -- cascaded error situations, and we want to avoid a blow up.
17842 if not Is_Composite_Type
(Ti
) or else Is_Array_Type
(Ti
) then
17846 -- Look deeper if possible. Use Stored_Constraints only for
17847 -- untagged types. For tagged types use the given constraint.
17848 -- This asymmetry needs explanation???
17850 if not Stored_Discrim_Values
17851 and then Present
(Stored_Constraint
(Ti
))
17852 and then not Is_Tagged_Type
(Ti
)
17855 Search_Derivation_Levels
(Ti
, Stored_Constraint
(Ti
), True);
17858 Td
: constant Entity_Id
:= Etype
(Ti
);
17862 Result
:= Discriminant
;
17865 if Present
(Stored_Constraint
(Ti
)) then
17867 Search_Derivation_Levels
17868 (Td
, Stored_Constraint
(Ti
), True);
17871 Search_Derivation_Levels
17872 (Td
, Discrim_Values
, Stored_Discrim_Values
);
17878 -- Extra underlying places to search, if not found above. For
17879 -- concurrent types, the relevant discriminant appears in the
17880 -- corresponding record. For a type derived from a private type
17881 -- without discriminant, the full view inherits the discriminants
17882 -- of the full view of the parent.
17884 if Result
= Discriminant
then
17885 if Is_Concurrent_Type
(Ti
)
17886 and then Present
(Corresponding_Record_Type
(Ti
))
17889 Search_Derivation_Levels
(
17890 Corresponding_Record_Type
(Ti
),
17892 Stored_Discrim_Values
);
17894 elsif Is_Private_Type
(Ti
)
17895 and then not Has_Discriminants
(Ti
)
17896 and then Present
(Full_View
(Ti
))
17897 and then Etype
(Full_View
(Ti
)) /= Ti
17900 Search_Derivation_Levels
(
17903 Stored_Discrim_Values
);
17907 -- If Result is not a (reference to a) discriminant, return it,
17908 -- otherwise set Result_Entity to the discriminant.
17910 if Nkind
(Result
) = N_Defining_Identifier
then
17911 pragma Assert
(Result
= Discriminant
);
17912 Result_Entity
:= Result
;
17915 if not Denotes_Discriminant
(Result
) then
17919 Result_Entity
:= Entity
(Result
);
17922 -- See if this level of derivation actually has discriminants because
17923 -- tagged derivations can add them, hence the lower levels need not
17926 if not Has_Discriminants
(Ti
) then
17930 -- Scan Ti's discriminants for Result_Entity, and return its
17931 -- corresponding value, if any.
17933 Result_Entity
:= Original_Record_Component
(Result_Entity
);
17935 Assoc
:= First_Elmt
(Discrim_Values
);
17937 if Stored_Discrim_Values
then
17938 Disc
:= First_Stored_Discriminant
(Ti
);
17940 Disc
:= First_Discriminant
(Ti
);
17943 while Present
(Disc
) loop
17945 -- If no further associations return the discriminant, value will
17946 -- be found on the second pass.
17952 if Original_Record_Component
(Disc
) = Result_Entity
then
17953 return Node
(Assoc
);
17958 if Stored_Discrim_Values
then
17959 Next_Stored_Discriminant
(Disc
);
17961 Next_Discriminant
(Disc
);
17965 -- Could not find it
17968 end Search_Derivation_Levels
;
17972 Result
: Node_Or_Entity_Id
;
17974 -- Start of processing for Get_Discriminant_Value
17977 -- ??? This routine is a gigantic mess and will be deleted. For the
17978 -- time being just test for the trivial case before calling recurse.
17980 -- We are now celebrating the 20th anniversary of this comment!
17982 if Base_Type
(Scope
(Discriminant
)) = Base_Type
(Typ_For_Constraint
) then
17988 D
:= First_Discriminant
(Typ_For_Constraint
);
17989 E
:= First_Elmt
(Constraint
);
17990 while Present
(D
) loop
17991 if Chars
(D
) = Chars
(Discriminant
) then
17995 Next_Discriminant
(D
);
18001 Result
:= Search_Derivation_Levels
18002 (Typ_For_Constraint
, Constraint
, False);
18004 -- ??? hack to disappear when this routine is gone
18006 if Nkind
(Result
) = N_Defining_Identifier
then
18012 D
:= First_Discriminant
(Typ_For_Constraint
);
18013 E
:= First_Elmt
(Constraint
);
18014 while Present
(D
) loop
18015 if Root_Corresponding_Discriminant
(D
) = Discriminant
then
18019 Next_Discriminant
(D
);
18025 pragma Assert
(Nkind
(Result
) /= N_Defining_Identifier
);
18027 end Get_Discriminant_Value
;
18029 --------------------------
18030 -- Has_Range_Constraint --
18031 --------------------------
18033 function Has_Range_Constraint
(N
: Node_Id
) return Boolean is
18034 C
: constant Node_Id
:= Constraint
(N
);
18037 if Nkind
(C
) = N_Range_Constraint
then
18040 elsif Nkind
(C
) = N_Digits_Constraint
then
18042 Is_Decimal_Fixed_Point_Type
(Entity
(Subtype_Mark
(N
)))
18043 or else Present
(Range_Constraint
(C
));
18045 elsif Nkind
(C
) = N_Delta_Constraint
then
18046 return Present
(Range_Constraint
(C
));
18051 end Has_Range_Constraint
;
18053 ------------------------
18054 -- Inherit_Components --
18055 ------------------------
18057 function Inherit_Components
18059 Parent_Base
: Entity_Id
;
18060 Derived_Base
: Entity_Id
;
18061 Is_Tagged
: Boolean;
18062 Inherit_Discr
: Boolean;
18063 Discs
: Elist_Id
) return Elist_Id
18065 Assoc_List
: constant Elist_Id
:= New_Elmt_List
;
18067 procedure Inherit_Component
18068 (Old_C
: Entity_Id
;
18069 Plain_Discrim
: Boolean := False;
18070 Stored_Discrim
: Boolean := False);
18071 -- Inherits component Old_C from Parent_Base to the Derived_Base. If
18072 -- Plain_Discrim is True, Old_C is a discriminant. If Stored_Discrim is
18073 -- True, Old_C is a stored discriminant. If they are both false then
18074 -- Old_C is a regular component.
18076 -----------------------
18077 -- Inherit_Component --
18078 -----------------------
18080 procedure Inherit_Component
18081 (Old_C
: Entity_Id
;
18082 Plain_Discrim
: Boolean := False;
18083 Stored_Discrim
: Boolean := False)
18085 procedure Set_Anonymous_Type
(Id
: Entity_Id
);
18086 -- Id denotes the entity of an access discriminant or anonymous
18087 -- access component. Set the type of Id to either the same type of
18088 -- Old_C or create a new one depending on whether the parent and
18089 -- the child types are in the same scope.
18091 ------------------------
18092 -- Set_Anonymous_Type --
18093 ------------------------
18095 procedure Set_Anonymous_Type
(Id
: Entity_Id
) is
18096 Old_Typ
: constant Entity_Id
:= Etype
(Old_C
);
18099 if Scope
(Parent_Base
) = Scope
(Derived_Base
) then
18100 Set_Etype
(Id
, Old_Typ
);
18102 -- The parent and the derived type are in two different scopes.
18103 -- Reuse the type of the original discriminant / component by
18104 -- copying it in order to preserve all attributes.
18108 Typ
: constant Entity_Id
:= New_Copy
(Old_Typ
);
18111 Set_Etype
(Id
, Typ
);
18113 -- Since we do not generate component declarations for
18114 -- inherited components, associate the itype with the
18117 Set_Associated_Node_For_Itype
(Typ
, Parent
(Derived_Base
));
18118 Set_Scope
(Typ
, Derived_Base
);
18121 end Set_Anonymous_Type
;
18123 -- Local variables and constants
18125 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
18127 Corr_Discrim
: Entity_Id
;
18128 Discrim
: Entity_Id
;
18130 -- Start of processing for Inherit_Component
18133 pragma Assert
(not Is_Tagged
or not Stored_Discrim
);
18135 Set_Parent
(New_C
, Parent
(Old_C
));
18137 -- Regular discriminants and components must be inserted in the scope
18138 -- of the Derived_Base. Do it here.
18140 if not Stored_Discrim
then
18141 Enter_Name
(New_C
);
18144 -- For tagged types the Original_Record_Component must point to
18145 -- whatever this field was pointing to in the parent type. This has
18146 -- already been achieved by the call to New_Copy above.
18148 if not Is_Tagged
then
18149 Set_Original_Record_Component
(New_C
, New_C
);
18150 Set_Corresponding_Record_Component
(New_C
, Old_C
);
18153 -- Set the proper type of an access discriminant
18155 if Ekind
(New_C
) = E_Discriminant
18156 and then Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
18158 Set_Anonymous_Type
(New_C
);
18161 -- If we have inherited a component then see if its Etype contains
18162 -- references to Parent_Base discriminants. In this case, replace
18163 -- these references with the constraints given in Discs. We do not
18164 -- do this for the partial view of private types because this is
18165 -- not needed (only the components of the full view will be used
18166 -- for code generation) and cause problem. We also avoid this
18167 -- transformation in some error situations.
18169 if Ekind
(New_C
) = E_Component
then
18171 -- Set the proper type of an anonymous access component
18173 if Ekind
(Etype
(New_C
)) = E_Anonymous_Access_Type
then
18174 Set_Anonymous_Type
(New_C
);
18176 elsif (Is_Private_Type
(Derived_Base
)
18177 and then not Is_Generic_Type
(Derived_Base
))
18178 or else (Is_Empty_Elmt_List
(Discs
)
18179 and then not Expander_Active
)
18181 Set_Etype
(New_C
, Etype
(Old_C
));
18184 -- The current component introduces a circularity of the
18187 -- limited with Pack_2;
18188 -- package Pack_1 is
18189 -- type T_1 is tagged record
18190 -- Comp : access Pack_2.T_2;
18196 -- package Pack_2 is
18197 -- type T_2 is new Pack_1.T_1 with ...;
18202 Constrain_Component_Type
18203 (Old_C
, Derived_Base
, N
, Parent_Base
, Discs
));
18207 -- In derived tagged types it is illegal to reference a non
18208 -- discriminant component in the parent type. To catch this, mark
18209 -- these components with an Ekind of E_Void. This will be reset in
18210 -- Record_Type_Definition after processing the record extension of
18211 -- the derived type.
18213 -- If the declaration is a private extension, there is no further
18214 -- record extension to process, and the components retain their
18215 -- current kind, because they are visible at this point.
18217 if Is_Tagged
and then Ekind
(New_C
) = E_Component
18218 and then Nkind
(N
) /= N_Private_Extension_Declaration
18220 Set_Ekind
(New_C
, E_Void
);
18223 if Plain_Discrim
then
18224 Set_Corresponding_Discriminant
(New_C
, Old_C
);
18225 Build_Discriminal
(New_C
);
18227 -- If we are explicitly inheriting a stored discriminant it will be
18228 -- completely hidden.
18230 elsif Stored_Discrim
then
18231 Set_Corresponding_Discriminant
(New_C
, Empty
);
18232 Set_Discriminal
(New_C
, Empty
);
18233 Set_Is_Completely_Hidden
(New_C
);
18235 -- Set the Original_Record_Component of each discriminant in the
18236 -- derived base to point to the corresponding stored that we just
18239 Discrim
:= First_Discriminant
(Derived_Base
);
18240 while Present
(Discrim
) loop
18241 Corr_Discrim
:= Corresponding_Discriminant
(Discrim
);
18243 -- Corr_Discrim could be missing in an error situation
18245 if Present
(Corr_Discrim
)
18246 and then Original_Record_Component
(Corr_Discrim
) = Old_C
18248 Set_Original_Record_Component
(Discrim
, New_C
);
18249 Set_Corresponding_Record_Component
(Discrim
, Empty
);
18252 Next_Discriminant
(Discrim
);
18255 Append_Entity
(New_C
, Derived_Base
);
18258 if not Is_Tagged
then
18259 Append_Elmt
(Old_C
, Assoc_List
);
18260 Append_Elmt
(New_C
, Assoc_List
);
18262 end Inherit_Component
;
18264 -- Variables local to Inherit_Component
18266 Loc
: constant Source_Ptr
:= Sloc
(N
);
18268 Parent_Discrim
: Entity_Id
;
18269 Stored_Discrim
: Entity_Id
;
18271 Component
: Entity_Id
;
18273 -- Start of processing for Inherit_Components
18276 if not Is_Tagged
then
18277 Append_Elmt
(Parent_Base
, Assoc_List
);
18278 Append_Elmt
(Derived_Base
, Assoc_List
);
18281 -- Inherit parent discriminants if needed
18283 if Inherit_Discr
then
18284 Parent_Discrim
:= First_Discriminant
(Parent_Base
);
18285 while Present
(Parent_Discrim
) loop
18286 Inherit_Component
(Parent_Discrim
, Plain_Discrim
=> True);
18287 Next_Discriminant
(Parent_Discrim
);
18291 -- Create explicit stored discrims for untagged types when necessary
18293 if not Has_Unknown_Discriminants
(Derived_Base
)
18294 and then Has_Discriminants
(Parent_Base
)
18295 and then not Is_Tagged
18298 or else First_Discriminant
(Parent_Base
) /=
18299 First_Stored_Discriminant
(Parent_Base
))
18301 Stored_Discrim
:= First_Stored_Discriminant
(Parent_Base
);
18302 while Present
(Stored_Discrim
) loop
18303 Inherit_Component
(Stored_Discrim
, Stored_Discrim
=> True);
18304 Next_Stored_Discriminant
(Stored_Discrim
);
18308 -- See if we can apply the second transformation for derived types, as
18309 -- explained in point 6. in the comments above Build_Derived_Record_Type
18310 -- This is achieved by appending Derived_Base discriminants into Discs,
18311 -- which has the side effect of returning a non empty Discs list to the
18312 -- caller of Inherit_Components, which is what we want. This must be
18313 -- done for private derived types if there are explicit stored
18314 -- discriminants, to ensure that we can retrieve the values of the
18315 -- constraints provided in the ancestors.
18318 and then Is_Empty_Elmt_List
(Discs
)
18319 and then Present
(First_Discriminant
(Derived_Base
))
18321 (not Is_Private_Type
(Derived_Base
)
18322 or else Is_Completely_Hidden
18323 (First_Stored_Discriminant
(Derived_Base
))
18324 or else Is_Generic_Type
(Derived_Base
))
18326 D
:= First_Discriminant
(Derived_Base
);
18327 while Present
(D
) loop
18328 Append_Elmt
(New_Occurrence_Of
(D
, Loc
), Discs
);
18329 Next_Discriminant
(D
);
18333 -- Finally, inherit non-discriminant components unless they are not
18334 -- visible because defined or inherited from the full view of the
18335 -- parent. Don't inherit the _parent field of the parent type.
18337 Component
:= First_Entity
(Parent_Base
);
18338 while Present
(Component
) loop
18340 -- Ada 2005 (AI-251): Do not inherit components associated with
18341 -- secondary tags of the parent.
18343 if Ekind
(Component
) = E_Component
18344 and then Present
(Related_Type
(Component
))
18348 elsif Ekind
(Component
) /= E_Component
18349 or else Chars
(Component
) = Name_uParent
18353 -- If the derived type is within the parent type's declarative
18354 -- region, then the components can still be inherited even though
18355 -- they aren't visible at this point. This can occur for cases
18356 -- such as within public child units where the components must
18357 -- become visible upon entering the child unit's private part.
18359 elsif not Is_Visible_Component
(Component
)
18360 and then not In_Open_Scopes
(Scope
(Parent_Base
))
18364 elsif Ekind_In
(Derived_Base
, E_Private_Type
,
18365 E_Limited_Private_Type
)
18370 Inherit_Component
(Component
);
18373 Next_Entity
(Component
);
18376 -- For tagged derived types, inherited discriminants cannot be used in
18377 -- component declarations of the record extension part. To achieve this
18378 -- we mark the inherited discriminants as not visible.
18380 if Is_Tagged
and then Inherit_Discr
then
18381 D
:= First_Discriminant
(Derived_Base
);
18382 while Present
(D
) loop
18383 Set_Is_Immediately_Visible
(D
, False);
18384 Next_Discriminant
(D
);
18389 end Inherit_Components
;
18391 -----------------------------
18392 -- Inherit_Predicate_Flags --
18393 -----------------------------
18395 procedure Inherit_Predicate_Flags
(Subt
, Par
: Entity_Id
) is
18397 Set_Has_Predicates
(Subt
, Has_Predicates
(Par
));
18398 Set_Has_Static_Predicate_Aspect
18399 (Subt
, Has_Static_Predicate_Aspect
(Par
));
18400 Set_Has_Dynamic_Predicate_Aspect
18401 (Subt
, Has_Dynamic_Predicate_Aspect
(Par
));
18402 end Inherit_Predicate_Flags
;
18404 ----------------------
18405 -- Is_EVF_Procedure --
18406 ----------------------
18408 function Is_EVF_Procedure
(Subp
: Entity_Id
) return Boolean is
18409 Formal
: Entity_Id
;
18412 -- Examine the formals of an Extensions_Visible False procedure looking
18413 -- for a controlling OUT parameter.
18415 if Ekind
(Subp
) = E_Procedure
18416 and then Extensions_Visible_Status
(Subp
) = Extensions_Visible_False
18418 Formal
:= First_Formal
(Subp
);
18419 while Present
(Formal
) loop
18420 if Ekind
(Formal
) = E_Out_Parameter
18421 and then Is_Controlling_Formal
(Formal
)
18426 Next_Formal
(Formal
);
18431 end Is_EVF_Procedure
;
18433 -----------------------
18434 -- Is_Null_Extension --
18435 -----------------------
18437 function Is_Null_Extension
(T
: Entity_Id
) return Boolean is
18438 Type_Decl
: constant Node_Id
:= Parent
(Base_Type
(T
));
18439 Comp_List
: Node_Id
;
18443 if Nkind
(Type_Decl
) /= N_Full_Type_Declaration
18444 or else not Is_Tagged_Type
(T
)
18445 or else Nkind
(Type_Definition
(Type_Decl
)) /=
18446 N_Derived_Type_Definition
18447 or else No
(Record_Extension_Part
(Type_Definition
(Type_Decl
)))
18453 Component_List
(Record_Extension_Part
(Type_Definition
(Type_Decl
)));
18455 if Present
(Discriminant_Specifications
(Type_Decl
)) then
18458 elsif Present
(Comp_List
)
18459 and then Is_Non_Empty_List
(Component_Items
(Comp_List
))
18461 Comp
:= First
(Component_Items
(Comp_List
));
18463 -- Only user-defined components are relevant. The component list
18464 -- may also contain a parent component and internal components
18465 -- corresponding to secondary tags, but these do not determine
18466 -- whether this is a null extension.
18468 while Present
(Comp
) loop
18469 if Comes_From_Source
(Comp
) then
18481 end Is_Null_Extension
;
18483 ------------------------------
18484 -- Is_Valid_Constraint_Kind --
18485 ------------------------------
18487 function Is_Valid_Constraint_Kind
18488 (T_Kind
: Type_Kind
;
18489 Constraint_Kind
: Node_Kind
) return Boolean
18493 when Enumeration_Kind
18496 return Constraint_Kind
= N_Range_Constraint
;
18498 when Decimal_Fixed_Point_Kind
=>
18499 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
18500 N_Range_Constraint
);
18502 when Ordinary_Fixed_Point_Kind
=>
18503 return Nkind_In
(Constraint_Kind
, N_Delta_Constraint
,
18504 N_Range_Constraint
);
18507 return Nkind_In
(Constraint_Kind
, N_Digits_Constraint
,
18508 N_Range_Constraint
);
18515 | E_Incomplete_Type
18519 return Constraint_Kind
= N_Index_Or_Discriminant_Constraint
;
18522 return True; -- Error will be detected later
18524 end Is_Valid_Constraint_Kind
;
18526 --------------------------
18527 -- Is_Visible_Component --
18528 --------------------------
18530 function Is_Visible_Component
18532 N
: Node_Id
:= Empty
) return Boolean
18534 Original_Comp
: Entity_Id
:= Empty
;
18535 Original_Type
: Entity_Id
;
18536 Type_Scope
: Entity_Id
;
18538 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean;
18539 -- Check whether parent type of inherited component is declared locally,
18540 -- possibly within a nested package or instance. The current scope is
18541 -- the derived record itself.
18543 -------------------
18544 -- Is_Local_Type --
18545 -------------------
18547 function Is_Local_Type
(Typ
: Entity_Id
) return Boolean is
18551 Scop
:= Scope
(Typ
);
18552 while Present
(Scop
)
18553 and then Scop
/= Standard_Standard
18555 if Scop
= Scope
(Current_Scope
) then
18559 Scop
:= Scope
(Scop
);
18565 -- Start of processing for Is_Visible_Component
18568 if Ekind_In
(C
, E_Component
, E_Discriminant
) then
18569 Original_Comp
:= Original_Record_Component
(C
);
18572 if No
(Original_Comp
) then
18574 -- Premature usage, or previous error
18579 Original_Type
:= Scope
(Original_Comp
);
18580 Type_Scope
:= Scope
(Base_Type
(Scope
(C
)));
18583 -- This test only concerns tagged types
18585 if not Is_Tagged_Type
(Original_Type
) then
18588 -- If it is _Parent or _Tag, there is no visibility issue
18590 elsif not Comes_From_Source
(Original_Comp
) then
18593 -- Discriminants are visible unless the (private) type has unknown
18594 -- discriminants. If the discriminant reference is inserted for a
18595 -- discriminant check on a full view it is also visible.
18597 elsif Ekind
(Original_Comp
) = E_Discriminant
18599 (not Has_Unknown_Discriminants
(Original_Type
)
18600 or else (Present
(N
)
18601 and then Nkind
(N
) = N_Selected_Component
18602 and then Nkind
(Prefix
(N
)) = N_Type_Conversion
18603 and then not Comes_From_Source
(Prefix
(N
))))
18607 -- In the body of an instantiation, check the visibility of a component
18608 -- in case it has a homograph that is a primitive operation of a private
18609 -- type which was not visible in the generic unit.
18611 -- Should Is_Prefixed_Call be propagated from template to instance???
18613 elsif In_Instance_Body
then
18614 if not Is_Tagged_Type
(Original_Type
)
18615 or else not Is_Private_Type
(Original_Type
)
18621 Subp_Elmt
: Elmt_Id
;
18624 Subp_Elmt
:= First_Elmt
(Primitive_Operations
(Original_Type
));
18625 while Present
(Subp_Elmt
) loop
18627 -- The component is hidden by a primitive operation
18629 if Chars
(Node
(Subp_Elmt
)) = Chars
(C
) then
18633 Next_Elmt
(Subp_Elmt
);
18640 -- If the component has been declared in an ancestor which is currently
18641 -- a private type, then it is not visible. The same applies if the
18642 -- component's containing type is not in an open scope and the original
18643 -- component's enclosing type is a visible full view of a private type
18644 -- (which can occur in cases where an attempt is being made to reference
18645 -- a component in a sibling package that is inherited from a visible
18646 -- component of a type in an ancestor package; the component in the
18647 -- sibling package should not be visible even though the component it
18648 -- inherited from is visible). This does not apply however in the case
18649 -- where the scope of the type is a private child unit, or when the
18650 -- parent comes from a local package in which the ancestor is currently
18651 -- visible. The latter suppression of visibility is needed for cases
18652 -- that are tested in B730006.
18654 elsif Is_Private_Type
(Original_Type
)
18656 (not Is_Private_Descendant
(Type_Scope
)
18657 and then not In_Open_Scopes
(Type_Scope
)
18658 and then Has_Private_Declaration
(Original_Type
))
18660 -- If the type derives from an entity in a formal package, there
18661 -- are no additional visible components.
18663 if Nkind
(Original_Node
(Unit_Declaration_Node
(Type_Scope
))) =
18664 N_Formal_Package_Declaration
18668 -- if we are not in the private part of the current package, there
18669 -- are no additional visible components.
18671 elsif Ekind
(Scope
(Current_Scope
)) = E_Package
18672 and then not In_Private_Part
(Scope
(Current_Scope
))
18677 Is_Child_Unit
(Cunit_Entity
(Current_Sem_Unit
))
18678 and then In_Open_Scopes
(Scope
(Original_Type
))
18679 and then Is_Local_Type
(Type_Scope
);
18682 -- There is another weird way in which a component may be invisible when
18683 -- the private and the full view are not derived from the same ancestor.
18684 -- Here is an example :
18686 -- type A1 is tagged record F1 : integer; end record;
18687 -- type A2 is new A1 with record F2 : integer; end record;
18688 -- type T is new A1 with private;
18690 -- type T is new A2 with null record;
18692 -- In this case, the full view of T inherits F1 and F2 but the private
18693 -- view inherits only F1
18697 Ancestor
: Entity_Id
:= Scope
(C
);
18701 if Ancestor
= Original_Type
then
18704 -- The ancestor may have a partial view of the original type,
18705 -- but if the full view is in scope, as in a child body, the
18706 -- component is visible.
18708 elsif In_Private_Part
(Scope
(Original_Type
))
18709 and then Full_View
(Ancestor
) = Original_Type
18713 elsif Ancestor
= Etype
(Ancestor
) then
18715 -- No further ancestors to examine
18720 Ancestor
:= Etype
(Ancestor
);
18724 end Is_Visible_Component
;
18726 --------------------------
18727 -- Make_Class_Wide_Type --
18728 --------------------------
18730 procedure Make_Class_Wide_Type
(T
: Entity_Id
) is
18731 CW_Type
: Entity_Id
;
18733 Next_E
: Entity_Id
;
18736 if Present
(Class_Wide_Type
(T
)) then
18738 -- The class-wide type is a partially decorated entity created for a
18739 -- unanalyzed tagged type referenced through a limited with clause.
18740 -- When the tagged type is analyzed, its class-wide type needs to be
18741 -- redecorated. Note that we reuse the entity created by Decorate_
18742 -- Tagged_Type in order to preserve all links.
18744 if Materialize_Entity
(Class_Wide_Type
(T
)) then
18745 CW_Type
:= Class_Wide_Type
(T
);
18746 Set_Materialize_Entity
(CW_Type
, False);
18748 -- The class wide type can have been defined by the partial view, in
18749 -- which case everything is already done.
18755 -- Default case, we need to create a new class-wide type
18759 New_External_Entity
(E_Void
, Scope
(T
), Sloc
(T
), T
, 'C', 0, 'T');
18762 -- Inherit root type characteristics
18764 CW_Name
:= Chars
(CW_Type
);
18765 Next_E
:= Next_Entity
(CW_Type
);
18766 Copy_Node
(T
, CW_Type
);
18767 Set_Comes_From_Source
(CW_Type
, False);
18768 Set_Chars
(CW_Type
, CW_Name
);
18769 Set_Parent
(CW_Type
, Parent
(T
));
18770 Set_Next_Entity
(CW_Type
, Next_E
);
18772 -- Ensure we have a new freeze node for the class-wide type. The partial
18773 -- view may have freeze action of its own, requiring a proper freeze
18774 -- node, and the same freeze node cannot be shared between the two
18777 Set_Has_Delayed_Freeze
(CW_Type
);
18778 Set_Freeze_Node
(CW_Type
, Empty
);
18780 -- Customize the class-wide type: It has no prim. op., it cannot be
18781 -- abstract, its Etype points back to the specific root type, and it
18782 -- cannot have any invariants.
18784 Set_Ekind
(CW_Type
, E_Class_Wide_Type
);
18785 Set_Is_Tagged_Type
(CW_Type
, True);
18786 Set_Direct_Primitive_Operations
(CW_Type
, New_Elmt_List
);
18787 Set_Is_Abstract_Type
(CW_Type
, False);
18788 Set_Is_Constrained
(CW_Type
, False);
18789 Set_Is_First_Subtype
(CW_Type
, Is_First_Subtype
(T
));
18790 Set_Default_SSO
(CW_Type
);
18791 Set_Has_Inheritable_Invariants
(CW_Type
, False);
18792 Set_Has_Inherited_Invariants
(CW_Type
, False);
18793 Set_Has_Own_Invariants
(CW_Type
, False);
18795 if Ekind
(T
) = E_Class_Wide_Subtype
then
18796 Set_Etype
(CW_Type
, Etype
(Base_Type
(T
)));
18798 Set_Etype
(CW_Type
, T
);
18801 Set_No_Tagged_Streams_Pragma
(CW_Type
, No_Tagged_Streams
);
18803 -- If this is the class_wide type of a constrained subtype, it does
18804 -- not have discriminants.
18806 Set_Has_Discriminants
(CW_Type
,
18807 Has_Discriminants
(T
) and then not Is_Constrained
(T
));
18809 Set_Has_Unknown_Discriminants
(CW_Type
, True);
18810 Set_Class_Wide_Type
(T
, CW_Type
);
18811 Set_Equivalent_Type
(CW_Type
, Empty
);
18813 -- The class-wide type of a class-wide type is itself (RM 3.9(14))
18815 Set_Class_Wide_Type
(CW_Type
, CW_Type
);
18816 end Make_Class_Wide_Type
;
18822 procedure Make_Index
18824 Related_Nod
: Node_Id
;
18825 Related_Id
: Entity_Id
:= Empty
;
18826 Suffix_Index
: Nat
:= 1;
18827 In_Iter_Schm
: Boolean := False)
18831 Def_Id
: Entity_Id
:= Empty
;
18832 Found
: Boolean := False;
18835 -- For a discrete range used in a constrained array definition and
18836 -- defined by a range, an implicit conversion to the predefined type
18837 -- INTEGER is assumed if each bound is either a numeric literal, a named
18838 -- number, or an attribute, and the type of both bounds (prior to the
18839 -- implicit conversion) is the type universal_integer. Otherwise, both
18840 -- bounds must be of the same discrete type, other than universal
18841 -- integer; this type must be determinable independently of the
18842 -- context, but using the fact that the type must be discrete and that
18843 -- both bounds must have the same type.
18845 -- Character literals also have a universal type in the absence of
18846 -- of additional context, and are resolved to Standard_Character.
18848 if Nkind
(N
) = N_Range
then
18850 -- The index is given by a range constraint. The bounds are known
18851 -- to be of a consistent type.
18853 if not Is_Overloaded
(N
) then
18856 -- For universal bounds, choose the specific predefined type
18858 if T
= Universal_Integer
then
18859 T
:= Standard_Integer
;
18861 elsif T
= Any_Character
then
18862 Ambiguous_Character
(Low_Bound
(N
));
18864 T
:= Standard_Character
;
18867 -- The node may be overloaded because some user-defined operators
18868 -- are available, but if a universal interpretation exists it is
18869 -- also the selected one.
18871 elsif Universal_Interpretation
(N
) = Universal_Integer
then
18872 T
:= Standard_Integer
;
18878 Ind
: Interp_Index
;
18882 Get_First_Interp
(N
, Ind
, It
);
18883 while Present
(It
.Typ
) loop
18884 if Is_Discrete_Type
(It
.Typ
) then
18887 and then not Covers
(It
.Typ
, T
)
18888 and then not Covers
(T
, It
.Typ
)
18890 Error_Msg_N
("ambiguous bounds in discrete range", N
);
18898 Get_Next_Interp
(Ind
, It
);
18901 if T
= Any_Type
then
18902 Error_Msg_N
("discrete type required for range", N
);
18903 Set_Etype
(N
, Any_Type
);
18906 elsif T
= Universal_Integer
then
18907 T
:= Standard_Integer
;
18912 if not Is_Discrete_Type
(T
) then
18913 Error_Msg_N
("discrete type required for range", N
);
18914 Set_Etype
(N
, Any_Type
);
18918 if Nkind
(Low_Bound
(N
)) = N_Attribute_Reference
18919 and then Attribute_Name
(Low_Bound
(N
)) = Name_First
18920 and then Is_Entity_Name
(Prefix
(Low_Bound
(N
)))
18921 and then Is_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18922 and then Is_Discrete_Type
(Entity
(Prefix
(Low_Bound
(N
))))
18924 -- The type of the index will be the type of the prefix, as long
18925 -- as the upper bound is 'Last of the same type.
18927 Def_Id
:= Entity
(Prefix
(Low_Bound
(N
)));
18929 if Nkind
(High_Bound
(N
)) /= N_Attribute_Reference
18930 or else Attribute_Name
(High_Bound
(N
)) /= Name_Last
18931 or else not Is_Entity_Name
(Prefix
(High_Bound
(N
)))
18932 or else Entity
(Prefix
(High_Bound
(N
))) /= Def_Id
18939 Process_Range_Expr_In_Decl
(R
, T
, In_Iter_Schm
=> In_Iter_Schm
);
18941 elsif Nkind
(N
) = N_Subtype_Indication
then
18943 -- The index is given by a subtype with a range constraint
18945 T
:= Base_Type
(Entity
(Subtype_Mark
(N
)));
18947 if not Is_Discrete_Type
(T
) then
18948 Error_Msg_N
("discrete type required for range", N
);
18949 Set_Etype
(N
, Any_Type
);
18953 R
:= Range_Expression
(Constraint
(N
));
18956 Process_Range_Expr_In_Decl
18957 (R
, Entity
(Subtype_Mark
(N
)), In_Iter_Schm
=> In_Iter_Schm
);
18959 elsif Nkind
(N
) = N_Attribute_Reference
then
18961 -- Catch beginner's error (use of attribute other than 'Range)
18963 if Attribute_Name
(N
) /= Name_Range
then
18964 Error_Msg_N
("expect attribute ''Range", N
);
18965 Set_Etype
(N
, Any_Type
);
18969 -- If the node denotes the range of a type mark, that is also the
18970 -- resulting type, and we do not need to create an Itype for it.
18972 if Is_Entity_Name
(Prefix
(N
))
18973 and then Comes_From_Source
(N
)
18974 and then Is_Type
(Entity
(Prefix
(N
)))
18975 and then Is_Discrete_Type
(Entity
(Prefix
(N
)))
18977 Def_Id
:= Entity
(Prefix
(N
));
18980 Analyze_And_Resolve
(N
);
18984 -- If none of the above, must be a subtype. We convert this to a
18985 -- range attribute reference because in the case of declared first
18986 -- named subtypes, the types in the range reference can be different
18987 -- from the type of the entity. A range attribute normalizes the
18988 -- reference and obtains the correct types for the bounds.
18990 -- This transformation is in the nature of an expansion, is only
18991 -- done if expansion is active. In particular, it is not done on
18992 -- formal generic types, because we need to retain the name of the
18993 -- original index for instantiation purposes.
18996 if not Is_Entity_Name
(N
) or else not Is_Type
(Entity
(N
)) then
18997 Error_Msg_N
("invalid subtype mark in discrete range ", N
);
18998 Set_Etype
(N
, Any_Integer
);
19002 -- The type mark may be that of an incomplete type. It is only
19003 -- now that we can get the full view, previous analysis does
19004 -- not look specifically for a type mark.
19006 Set_Entity
(N
, Get_Full_View
(Entity
(N
)));
19007 Set_Etype
(N
, Entity
(N
));
19008 Def_Id
:= Entity
(N
);
19010 if not Is_Discrete_Type
(Def_Id
) then
19011 Error_Msg_N
("discrete type required for index", N
);
19012 Set_Etype
(N
, Any_Type
);
19017 if Expander_Active
then
19019 Make_Attribute_Reference
(Sloc
(N
),
19020 Attribute_Name
=> Name_Range
,
19021 Prefix
=> Relocate_Node
(N
)));
19023 -- The original was a subtype mark that does not freeze. This
19024 -- means that the rewritten version must not freeze either.
19026 Set_Must_Not_Freeze
(N
);
19027 Set_Must_Not_Freeze
(Prefix
(N
));
19028 Analyze_And_Resolve
(N
);
19032 -- If expander is inactive, type is legal, nothing else to construct
19039 if not Is_Discrete_Type
(T
) then
19040 Error_Msg_N
("discrete type required for range", N
);
19041 Set_Etype
(N
, Any_Type
);
19044 elsif T
= Any_Type
then
19045 Set_Etype
(N
, Any_Type
);
19049 -- We will now create the appropriate Itype to describe the range, but
19050 -- first a check. If we originally had a subtype, then we just label
19051 -- the range with this subtype. Not only is there no need to construct
19052 -- a new subtype, but it is wrong to do so for two reasons:
19054 -- 1. A legality concern, if we have a subtype, it must not freeze,
19055 -- and the Itype would cause freezing incorrectly
19057 -- 2. An efficiency concern, if we created an Itype, it would not be
19058 -- recognized as the same type for the purposes of eliminating
19059 -- checks in some circumstances.
19061 -- We signal this case by setting the subtype entity in Def_Id
19063 if No
(Def_Id
) then
19065 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, 'D', Suffix_Index
);
19066 Set_Etype
(Def_Id
, Base_Type
(T
));
19068 if Is_Signed_Integer_Type
(T
) then
19069 Set_Ekind
(Def_Id
, E_Signed_Integer_Subtype
);
19071 elsif Is_Modular_Integer_Type
(T
) then
19072 Set_Ekind
(Def_Id
, E_Modular_Integer_Subtype
);
19075 Set_Ekind
(Def_Id
, E_Enumeration_Subtype
);
19076 Set_Is_Character_Type
(Def_Id
, Is_Character_Type
(T
));
19077 Set_First_Literal
(Def_Id
, First_Literal
(T
));
19080 Set_Size_Info
(Def_Id
, (T
));
19081 Set_RM_Size
(Def_Id
, RM_Size
(T
));
19082 Set_First_Rep_Item
(Def_Id
, First_Rep_Item
(T
));
19084 Set_Scalar_Range
(Def_Id
, R
);
19085 Conditional_Delay
(Def_Id
, T
);
19087 if Nkind
(N
) = N_Subtype_Indication
then
19088 Inherit_Predicate_Flags
(Def_Id
, Entity
(Subtype_Mark
(N
)));
19091 -- In the subtype indication case, if the immediate parent of the
19092 -- new subtype is non-static, then the subtype we create is non-
19093 -- static, even if its bounds are static.
19095 if Nkind
(N
) = N_Subtype_Indication
19096 and then not Is_OK_Static_Subtype
(Entity
(Subtype_Mark
(N
)))
19098 Set_Is_Non_Static_Subtype
(Def_Id
);
19102 -- Final step is to label the index with this constructed type
19104 Set_Etype
(N
, Def_Id
);
19107 ------------------------------
19108 -- Modular_Type_Declaration --
19109 ------------------------------
19111 procedure Modular_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
19112 Mod_Expr
: constant Node_Id
:= Expression
(Def
);
19115 procedure Set_Modular_Size
(Bits
: Int
);
19116 -- Sets RM_Size to Bits, and Esize to normal word size above this
19118 ----------------------
19119 -- Set_Modular_Size --
19120 ----------------------
19122 procedure Set_Modular_Size
(Bits
: Int
) is
19124 Set_RM_Size
(T
, UI_From_Int
(Bits
));
19129 elsif Bits
<= 16 then
19130 Init_Esize
(T
, 16);
19132 elsif Bits
<= 32 then
19133 Init_Esize
(T
, 32);
19136 Init_Esize
(T
, System_Max_Binary_Modulus_Power
);
19139 if not Non_Binary_Modulus
(T
) and then Esize
(T
) = RM_Size
(T
) then
19140 Set_Is_Known_Valid
(T
);
19142 end Set_Modular_Size
;
19144 -- Start of processing for Modular_Type_Declaration
19147 -- If the mod expression is (exactly) 2 * literal, where literal is
19148 -- 64 or less,then almost certainly the * was meant to be **. Warn.
19150 if Warn_On_Suspicious_Modulus_Value
19151 and then Nkind
(Mod_Expr
) = N_Op_Multiply
19152 and then Nkind
(Left_Opnd
(Mod_Expr
)) = N_Integer_Literal
19153 and then Intval
(Left_Opnd
(Mod_Expr
)) = Uint_2
19154 and then Nkind
(Right_Opnd
(Mod_Expr
)) = N_Integer_Literal
19155 and then Intval
(Right_Opnd
(Mod_Expr
)) <= Uint_64
19158 ("suspicious MOD value, was '*'* intended'??M?", Mod_Expr
);
19161 -- Proceed with analysis of mod expression
19163 Analyze_And_Resolve
(Mod_Expr
, Any_Integer
);
19165 Set_Ekind
(T
, E_Modular_Integer_Type
);
19166 Init_Alignment
(T
);
19167 Set_Is_Constrained
(T
);
19169 if not Is_OK_Static_Expression
(Mod_Expr
) then
19170 Flag_Non_Static_Expr
19171 ("non-static expression used for modular type bound!", Mod_Expr
);
19172 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
19174 M_Val
:= Expr_Value
(Mod_Expr
);
19178 Error_Msg_N
("modulus value must be positive", Mod_Expr
);
19179 M_Val
:= 2 ** System_Max_Binary_Modulus_Power
;
19182 if M_Val
> 2 ** Standard_Long_Integer_Size
then
19183 Check_Restriction
(No_Long_Long_Integers
, Mod_Expr
);
19186 Set_Modulus
(T
, M_Val
);
19188 -- Create bounds for the modular type based on the modulus given in
19189 -- the type declaration and then analyze and resolve those bounds.
19191 Set_Scalar_Range
(T
,
19192 Make_Range
(Sloc
(Mod_Expr
),
19193 Low_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), 0),
19194 High_Bound
=> Make_Integer_Literal
(Sloc
(Mod_Expr
), M_Val
- 1)));
19196 -- Properly analyze the literals for the range. We do this manually
19197 -- because we can't go calling Resolve, since we are resolving these
19198 -- bounds with the type, and this type is certainly not complete yet.
19200 Set_Etype
(Low_Bound
(Scalar_Range
(T
)), T
);
19201 Set_Etype
(High_Bound
(Scalar_Range
(T
)), T
);
19202 Set_Is_Static_Expression
(Low_Bound
(Scalar_Range
(T
)));
19203 Set_Is_Static_Expression
(High_Bound
(Scalar_Range
(T
)));
19205 -- Loop through powers of two to find number of bits required
19207 for Bits
in Int
range 0 .. System_Max_Binary_Modulus_Power
loop
19211 if M_Val
= 2 ** Bits
then
19212 Set_Modular_Size
(Bits
);
19217 elsif M_Val
< 2 ** Bits
then
19218 Check_SPARK_05_Restriction
("modulus should be a power of 2", T
);
19219 Set_Non_Binary_Modulus
(T
);
19221 if Bits
> System_Max_Nonbinary_Modulus_Power
then
19222 Error_Msg_Uint_1
:=
19223 UI_From_Int
(System_Max_Nonbinary_Modulus_Power
);
19225 ("nonbinary modulus exceeds limit (2 '*'*^ - 1)", Mod_Expr
);
19226 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
19230 -- In the nonbinary case, set size as per RM 13.3(55)
19232 Set_Modular_Size
(Bits
);
19239 -- If we fall through, then the size exceed System.Max_Binary_Modulus
19240 -- so we just signal an error and set the maximum size.
19242 Error_Msg_Uint_1
:= UI_From_Int
(System_Max_Binary_Modulus_Power
);
19243 Error_Msg_F
("modulus exceeds limit (2 '*'*^)", Mod_Expr
);
19245 Set_Modular_Size
(System_Max_Binary_Modulus_Power
);
19246 Init_Alignment
(T
);
19248 end Modular_Type_Declaration
;
19250 --------------------------
19251 -- New_Concatenation_Op --
19252 --------------------------
19254 procedure New_Concatenation_Op
(Typ
: Entity_Id
) is
19255 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
19258 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
;
19259 -- Create abbreviated declaration for the formal of a predefined
19260 -- Operator 'Op' of type 'Typ'
19262 --------------------
19263 -- Make_Op_Formal --
19264 --------------------
19266 function Make_Op_Formal
(Typ
, Op
: Entity_Id
) return Entity_Id
is
19267 Formal
: Entity_Id
;
19269 Formal
:= New_Internal_Entity
(E_In_Parameter
, Op
, Loc
, 'P');
19270 Set_Etype
(Formal
, Typ
);
19271 Set_Mechanism
(Formal
, Default_Mechanism
);
19273 end Make_Op_Formal
;
19275 -- Start of processing for New_Concatenation_Op
19278 Op
:= Make_Defining_Operator_Symbol
(Loc
, Name_Op_Concat
);
19280 Set_Ekind
(Op
, E_Operator
);
19281 Set_Scope
(Op
, Current_Scope
);
19282 Set_Etype
(Op
, Typ
);
19283 Set_Homonym
(Op
, Get_Name_Entity_Id
(Name_Op_Concat
));
19284 Set_Is_Immediately_Visible
(Op
);
19285 Set_Is_Intrinsic_Subprogram
(Op
);
19286 Set_Has_Completion
(Op
);
19287 Append_Entity
(Op
, Current_Scope
);
19289 Set_Name_Entity_Id
(Name_Op_Concat
, Op
);
19291 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
19292 Append_Entity
(Make_Op_Formal
(Typ
, Op
), Op
);
19293 end New_Concatenation_Op
;
19295 -------------------------
19296 -- OK_For_Limited_Init --
19297 -------------------------
19299 -- ???Check all calls of this, and compare the conditions under which it's
19302 function OK_For_Limited_Init
19304 Exp
: Node_Id
) return Boolean
19307 return Is_CPP_Constructor_Call
(Exp
)
19308 or else (Ada_Version
>= Ada_2005
19309 and then not Debug_Flag_Dot_L
19310 and then OK_For_Limited_Init_In_05
(Typ
, Exp
));
19311 end OK_For_Limited_Init
;
19313 -------------------------------
19314 -- OK_For_Limited_Init_In_05 --
19315 -------------------------------
19317 function OK_For_Limited_Init_In_05
19319 Exp
: Node_Id
) return Boolean
19322 -- An object of a limited interface type can be initialized with any
19323 -- expression of a nonlimited descendant type. However this does not
19324 -- apply if this is a view conversion of some other expression. This
19325 -- is checked below.
19327 if Is_Class_Wide_Type
(Typ
)
19328 and then Is_Limited_Interface
(Typ
)
19329 and then not Is_Limited_Type
(Etype
(Exp
))
19330 and then Nkind
(Exp
) /= N_Type_Conversion
19335 -- Ada 2005 (AI-287, AI-318): Relax the strictness of the front end in
19336 -- case of limited aggregates (including extension aggregates), and
19337 -- function calls. The function call may have been given in prefixed
19338 -- notation, in which case the original node is an indexed component.
19339 -- If the function is parameterless, the original node was an explicit
19340 -- dereference. The function may also be parameterless, in which case
19341 -- the source node is just an identifier.
19343 -- A branch of a conditional expression may have been removed if the
19344 -- condition is statically known. This happens during expansion, and
19345 -- thus will not happen if previous errors were encountered. The check
19346 -- will have been performed on the chosen branch, which replaces the
19347 -- original conditional expression.
19353 case Nkind
(Original_Node
(Exp
)) is
19355 | N_Extension_Aggregate
19361 when N_Identifier
=>
19362 return Present
(Entity
(Original_Node
(Exp
)))
19363 and then Ekind
(Entity
(Original_Node
(Exp
))) = E_Function
;
19365 when N_Qualified_Expression
=>
19367 OK_For_Limited_Init_In_05
19368 (Typ
, Expression
(Original_Node
(Exp
)));
19370 -- Ada 2005 (AI-251): If a class-wide interface object is initialized
19371 -- with a function call, the expander has rewritten the call into an
19372 -- N_Type_Conversion node to force displacement of the pointer to
19373 -- reference the component containing the secondary dispatch table.
19374 -- Otherwise a type conversion is not a legal context.
19375 -- A return statement for a build-in-place function returning a
19376 -- synchronized type also introduces an unchecked conversion.
19378 when N_Type_Conversion
19379 | N_Unchecked_Type_Conversion
19381 return not Comes_From_Source
(Exp
)
19383 OK_For_Limited_Init_In_05
19384 (Typ
, Expression
(Original_Node
(Exp
)));
19386 when N_Explicit_Dereference
19387 | N_Indexed_Component
19388 | N_Selected_Component
19390 return Nkind
(Exp
) = N_Function_Call
;
19392 -- A use of 'Input is a function call, hence allowed. Normally the
19393 -- attribute will be changed to a call, but the attribute by itself
19394 -- can occur with -gnatc.
19396 when N_Attribute_Reference
=>
19397 return Attribute_Name
(Original_Node
(Exp
)) = Name_Input
;
19399 -- "return raise ..." is OK
19401 when N_Raise_Expression
=>
19404 -- For a case expression, all dependent expressions must be legal
19406 when N_Case_Expression
=>
19411 Alt
:= First
(Alternatives
(Original_Node
(Exp
)));
19412 while Present
(Alt
) loop
19413 if not OK_For_Limited_Init_In_05
(Typ
, Expression
(Alt
)) then
19423 -- For an if expression, all dependent expressions must be legal
19425 when N_If_Expression
=>
19427 Then_Expr
: constant Node_Id
:=
19428 Next
(First
(Expressions
(Original_Node
(Exp
))));
19429 Else_Expr
: constant Node_Id
:= Next
(Then_Expr
);
19431 return OK_For_Limited_Init_In_05
(Typ
, Then_Expr
)
19433 OK_For_Limited_Init_In_05
(Typ
, Else_Expr
);
19439 end OK_For_Limited_Init_In_05
;
19441 -------------------------------------------
19442 -- Ordinary_Fixed_Point_Type_Declaration --
19443 -------------------------------------------
19445 procedure Ordinary_Fixed_Point_Type_Declaration
19449 Loc
: constant Source_Ptr
:= Sloc
(Def
);
19450 Delta_Expr
: constant Node_Id
:= Delta_Expression
(Def
);
19451 RRS
: constant Node_Id
:= Real_Range_Specification
(Def
);
19452 Implicit_Base
: Entity_Id
;
19459 Check_Restriction
(No_Fixed_Point
, Def
);
19461 -- Create implicit base type
19464 Create_Itype
(E_Ordinary_Fixed_Point_Type
, Parent
(Def
), T
, 'B');
19465 Set_Etype
(Implicit_Base
, Implicit_Base
);
19467 -- Analyze and process delta expression
19469 Analyze_And_Resolve
(Delta_Expr
, Any_Real
);
19471 Check_Delta_Expression
(Delta_Expr
);
19472 Delta_Val
:= Expr_Value_R
(Delta_Expr
);
19474 Set_Delta_Value
(Implicit_Base
, Delta_Val
);
19476 -- Compute default small from given delta, which is the largest power
19477 -- of two that does not exceed the given delta value.
19487 if Delta_Val
< Ureal_1
then
19488 while Delta_Val
< Tmp
loop
19489 Tmp
:= Tmp
/ Ureal_2
;
19490 Scale
:= Scale
+ 1;
19495 Tmp
:= Tmp
* Ureal_2
;
19496 exit when Tmp
> Delta_Val
;
19497 Scale
:= Scale
- 1;
19501 Small_Val
:= UR_From_Components
(Uint_1
, UI_From_Int
(Scale
), 2);
19504 Set_Small_Value
(Implicit_Base
, Small_Val
);
19506 -- If no range was given, set a dummy range
19508 if RRS
<= Empty_Or_Error
then
19509 Low_Val
:= -Small_Val
;
19510 High_Val
:= Small_Val
;
19512 -- Otherwise analyze and process given range
19516 Low
: constant Node_Id
:= Low_Bound
(RRS
);
19517 High
: constant Node_Id
:= High_Bound
(RRS
);
19520 Analyze_And_Resolve
(Low
, Any_Real
);
19521 Analyze_And_Resolve
(High
, Any_Real
);
19522 Check_Real_Bound
(Low
);
19523 Check_Real_Bound
(High
);
19525 -- Obtain and set the range
19527 Low_Val
:= Expr_Value_R
(Low
);
19528 High_Val
:= Expr_Value_R
(High
);
19530 if Low_Val
> High_Val
then
19531 Error_Msg_NE
("??fixed point type& has null range", Def
, T
);
19536 -- The range for both the implicit base and the declared first subtype
19537 -- cannot be set yet, so we use the special routine Set_Fixed_Range to
19538 -- set a temporary range in place. Note that the bounds of the base
19539 -- type will be widened to be symmetrical and to fill the available
19540 -- bits when the type is frozen.
19542 -- We could do this with all discrete types, and probably should, but
19543 -- we absolutely have to do it for fixed-point, since the end-points
19544 -- of the range and the size are determined by the small value, which
19545 -- could be reset before the freeze point.
19547 Set_Fixed_Range
(Implicit_Base
, Loc
, Low_Val
, High_Val
);
19548 Set_Fixed_Range
(T
, Loc
, Low_Val
, High_Val
);
19550 -- Complete definition of first subtype. The inheritance of the rep item
19551 -- chain ensures that SPARK-related pragmas are not clobbered when the
19552 -- ordinary fixed point type acts as a full view of a private type.
19554 Set_Ekind
(T
, E_Ordinary_Fixed_Point_Subtype
);
19555 Set_Etype
(T
, Implicit_Base
);
19556 Init_Size_Align
(T
);
19557 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
19558 Set_Small_Value
(T
, Small_Val
);
19559 Set_Delta_Value
(T
, Delta_Val
);
19560 Set_Is_Constrained
(T
);
19561 end Ordinary_Fixed_Point_Type_Declaration
;
19563 ----------------------------------
19564 -- Preanalyze_Assert_Expression --
19565 ----------------------------------
19567 procedure Preanalyze_Assert_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19569 In_Assertion_Expr
:= In_Assertion_Expr
+ 1;
19570 Preanalyze_Spec_Expression
(N
, T
);
19571 In_Assertion_Expr
:= In_Assertion_Expr
- 1;
19572 end Preanalyze_Assert_Expression
;
19574 -----------------------------------
19575 -- Preanalyze_Default_Expression --
19576 -----------------------------------
19578 procedure Preanalyze_Default_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19579 Save_In_Default_Expr
: constant Boolean := In_Default_Expr
;
19581 In_Default_Expr
:= True;
19582 Preanalyze_Spec_Expression
(N
, T
);
19583 In_Default_Expr
:= Save_In_Default_Expr
;
19584 end Preanalyze_Default_Expression
;
19586 --------------------------------
19587 -- Preanalyze_Spec_Expression --
19588 --------------------------------
19590 procedure Preanalyze_Spec_Expression
(N
: Node_Id
; T
: Entity_Id
) is
19591 Save_In_Spec_Expression
: constant Boolean := In_Spec_Expression
;
19593 In_Spec_Expression
:= True;
19594 Preanalyze_And_Resolve
(N
, T
);
19595 In_Spec_Expression
:= Save_In_Spec_Expression
;
19596 end Preanalyze_Spec_Expression
;
19598 ----------------------------------------
19599 -- Prepare_Private_Subtype_Completion --
19600 ----------------------------------------
19602 procedure Prepare_Private_Subtype_Completion
19604 Related_Nod
: Node_Id
)
19606 Id_B
: constant Entity_Id
:= Base_Type
(Id
);
19607 Full_B
: Entity_Id
:= Full_View
(Id_B
);
19611 if Present
(Full_B
) then
19613 -- Get to the underlying full view if necessary
19615 if Is_Private_Type
(Full_B
)
19616 and then Present
(Underlying_Full_View
(Full_B
))
19618 Full_B
:= Underlying_Full_View
(Full_B
);
19621 -- The Base_Type is already completed, we can complete the subtype
19622 -- now. We have to create a new entity with the same name, Thus we
19623 -- can't use Create_Itype.
19625 Full
:= Make_Defining_Identifier
(Sloc
(Id
), Chars
(Id
));
19626 Set_Is_Itype
(Full
);
19627 Set_Associated_Node_For_Itype
(Full
, Related_Nod
);
19628 Complete_Private_Subtype
(Id
, Full
, Full_B
, Related_Nod
);
19631 -- The parent subtype may be private, but the base might not, in some
19632 -- nested instances. In that case, the subtype does not need to be
19633 -- exchanged. It would still be nice to make private subtypes and their
19634 -- bases consistent at all times ???
19636 if Is_Private_Type
(Id_B
) then
19637 Append_Elmt
(Id
, Private_Dependents
(Id_B
));
19639 end Prepare_Private_Subtype_Completion
;
19641 ---------------------------
19642 -- Process_Discriminants --
19643 ---------------------------
19645 procedure Process_Discriminants
19647 Prev
: Entity_Id
:= Empty
)
19649 Elist
: constant Elist_Id
:= New_Elmt_List
;
19652 Discr_Number
: Uint
;
19653 Discr_Type
: Entity_Id
;
19654 Default_Present
: Boolean := False;
19655 Default_Not_Present
: Boolean := False;
19658 -- A composite type other than an array type can have discriminants.
19659 -- On entry, the current scope is the composite type.
19661 -- The discriminants are initially entered into the scope of the type
19662 -- via Enter_Name with the default Ekind of E_Void to prevent premature
19663 -- use, as explained at the end of this procedure.
19665 Discr
:= First
(Discriminant_Specifications
(N
));
19666 while Present
(Discr
) loop
19667 Enter_Name
(Defining_Identifier
(Discr
));
19669 -- For navigation purposes we add a reference to the discriminant
19670 -- in the entity for the type. If the current declaration is a
19671 -- completion, place references on the partial view. Otherwise the
19672 -- type is the current scope.
19674 if Present
(Prev
) then
19676 -- The references go on the partial view, if present. If the
19677 -- partial view has discriminants, the references have been
19678 -- generated already.
19680 if not Has_Discriminants
(Prev
) then
19681 Generate_Reference
(Prev
, Defining_Identifier
(Discr
), 'd');
19685 (Current_Scope
, Defining_Identifier
(Discr
), 'd');
19688 if Nkind
(Discriminant_Type
(Discr
)) = N_Access_Definition
then
19689 Discr_Type
:= Access_Definition
(Discr
, Discriminant_Type
(Discr
));
19691 -- Ada 2005 (AI-254)
19693 if Present
(Access_To_Subprogram_Definition
19694 (Discriminant_Type
(Discr
)))
19695 and then Protected_Present
(Access_To_Subprogram_Definition
19696 (Discriminant_Type
(Discr
)))
19699 Replace_Anonymous_Access_To_Protected_Subprogram
(Discr
);
19703 Find_Type
(Discriminant_Type
(Discr
));
19704 Discr_Type
:= Etype
(Discriminant_Type
(Discr
));
19706 if Error_Posted
(Discriminant_Type
(Discr
)) then
19707 Discr_Type
:= Any_Type
;
19711 -- Handling of discriminants that are access types
19713 if Is_Access_Type
(Discr_Type
) then
19715 -- Ada 2005 (AI-230): Access discriminant allowed in non-
19716 -- limited record types
19718 if Ada_Version
< Ada_2005
then
19719 Check_Access_Discriminant_Requires_Limited
19720 (Discr
, Discriminant_Type
(Discr
));
19723 if Ada_Version
= Ada_83
and then Comes_From_Source
(Discr
) then
19725 ("(Ada 83) access discriminant not allowed", Discr
);
19728 -- If not access type, must be a discrete type
19730 elsif not Is_Discrete_Type
(Discr_Type
) then
19732 ("discriminants must have a discrete or access type",
19733 Discriminant_Type
(Discr
));
19736 Set_Etype
(Defining_Identifier
(Discr
), Discr_Type
);
19738 -- If a discriminant specification includes the assignment compound
19739 -- delimiter followed by an expression, the expression is the default
19740 -- expression of the discriminant; the default expression must be of
19741 -- the type of the discriminant. (RM 3.7.1) Since this expression is
19742 -- a default expression, we do the special preanalysis, since this
19743 -- expression does not freeze (see section "Handling of Default and
19744 -- Per-Object Expressions" in spec of package Sem).
19746 if Present
(Expression
(Discr
)) then
19747 Preanalyze_Spec_Expression
(Expression
(Discr
), Discr_Type
);
19751 if Nkind
(N
) = N_Formal_Type_Declaration
then
19753 ("discriminant defaults not allowed for formal type",
19754 Expression
(Discr
));
19756 -- Flag an error for a tagged type with defaulted discriminants,
19757 -- excluding limited tagged types when compiling for Ada 2012
19758 -- (see AI05-0214).
19760 elsif Is_Tagged_Type
(Current_Scope
)
19761 and then (not Is_Limited_Type
(Current_Scope
)
19762 or else Ada_Version
< Ada_2012
)
19763 and then Comes_From_Source
(N
)
19765 -- Note: see similar test in Check_Or_Process_Discriminants, to
19766 -- handle the (illegal) case of the completion of an untagged
19767 -- view with discriminants with defaults by a tagged full view.
19768 -- We skip the check if Discr does not come from source, to
19769 -- account for the case of an untagged derived type providing
19770 -- defaults for a renamed discriminant from a private untagged
19771 -- ancestor with a tagged full view (ACATS B460006).
19773 if Ada_Version
>= Ada_2012
then
19775 ("discriminants of nonlimited tagged type cannot have"
19777 Expression
(Discr
));
19780 ("discriminants of tagged type cannot have defaults",
19781 Expression
(Discr
));
19785 Default_Present
:= True;
19786 Append_Elmt
(Expression
(Discr
), Elist
);
19788 -- Tag the defining identifiers for the discriminants with
19789 -- their corresponding default expressions from the tree.
19791 Set_Discriminant_Default_Value
19792 (Defining_Identifier
(Discr
), Expression
(Discr
));
19795 -- In gnatc or gnatprove mode, make sure set Do_Range_Check flag
19796 -- gets set unless we can be sure that no range check is required.
19798 if (GNATprove_Mode
or not Expander_Active
)
19801 (Expression
(Discr
), Discr_Type
, Assume_Valid
=> True)
19803 Set_Do_Range_Check
(Expression
(Discr
));
19806 -- No default discriminant value given
19809 Default_Not_Present
:= True;
19812 -- Ada 2005 (AI-231): Create an Itype that is a duplicate of
19813 -- Discr_Type but with the null-exclusion attribute
19815 if Ada_Version
>= Ada_2005
then
19817 -- Ada 2005 (AI-231): Static checks
19819 if Can_Never_Be_Null
(Discr_Type
) then
19820 Null_Exclusion_Static_Checks
(Discr
);
19822 elsif Is_Access_Type
(Discr_Type
)
19823 and then Null_Exclusion_Present
(Discr
)
19825 -- No need to check itypes because in their case this check
19826 -- was done at their point of creation
19828 and then not Is_Itype
(Discr_Type
)
19830 if Can_Never_Be_Null
(Discr_Type
) then
19832 ("`NOT NULL` not allowed (& already excludes null)",
19837 Set_Etype
(Defining_Identifier
(Discr
),
19838 Create_Null_Excluding_Itype
19840 Related_Nod
=> Discr
));
19842 -- Check for improper null exclusion if the type is otherwise
19843 -- legal for a discriminant.
19845 elsif Null_Exclusion_Present
(Discr
)
19846 and then Is_Discrete_Type
(Discr_Type
)
19849 ("null exclusion can only apply to an access type", Discr
);
19852 -- Ada 2005 (AI-402): access discriminants of nonlimited types
19853 -- can't have defaults. Synchronized types, or types that are
19854 -- explicitly limited are fine, but special tests apply to derived
19855 -- types in generics: in a generic body we have to assume the
19856 -- worst, and therefore defaults are not allowed if the parent is
19857 -- a generic formal private type (see ACATS B370001).
19859 if Is_Access_Type
(Discr_Type
) and then Default_Present
then
19860 if Ekind
(Discr_Type
) /= E_Anonymous_Access_Type
19861 or else Is_Limited_Record
(Current_Scope
)
19862 or else Is_Concurrent_Type
(Current_Scope
)
19863 or else Is_Concurrent_Record_Type
(Current_Scope
)
19864 or else Ekind
(Current_Scope
) = E_Limited_Private_Type
19866 if not Is_Derived_Type
(Current_Scope
)
19867 or else not Is_Generic_Type
(Etype
(Current_Scope
))
19868 or else not In_Package_Body
(Scope
(Etype
(Current_Scope
)))
19869 or else Limited_Present
19870 (Type_Definition
(Parent
(Current_Scope
)))
19876 ("access discriminants of nonlimited types cannot "
19877 & "have defaults", Expression
(Discr
));
19880 elsif Present
(Expression
(Discr
)) then
19882 ("(Ada 2005) access discriminants of nonlimited types "
19883 & "cannot have defaults", Expression
(Discr
));
19888 -- A discriminant cannot be effectively volatile (SPARK RM 7.1.3(6)).
19889 -- This check is relevant only when SPARK_Mode is on as it is not a
19890 -- standard Ada legality rule.
19893 and then Is_Effectively_Volatile
(Defining_Identifier
(Discr
))
19895 Error_Msg_N
("discriminant cannot be volatile", Discr
);
19901 -- An element list consisting of the default expressions of the
19902 -- discriminants is constructed in the above loop and used to set
19903 -- the Discriminant_Constraint attribute for the type. If an object
19904 -- is declared of this (record or task) type without any explicit
19905 -- discriminant constraint given, this element list will form the
19906 -- actual parameters for the corresponding initialization procedure
19909 Set_Discriminant_Constraint
(Current_Scope
, Elist
);
19910 Set_Stored_Constraint
(Current_Scope
, No_Elist
);
19912 -- Default expressions must be provided either for all or for none
19913 -- of the discriminants of a discriminant part. (RM 3.7.1)
19915 if Default_Present
and then Default_Not_Present
then
19917 ("incomplete specification of defaults for discriminants", N
);
19920 -- The use of the name of a discriminant is not allowed in default
19921 -- expressions of a discriminant part if the specification of the
19922 -- discriminant is itself given in the discriminant part. (RM 3.7.1)
19924 -- To detect this, the discriminant names are entered initially with an
19925 -- Ekind of E_Void (which is the default Ekind given by Enter_Name). Any
19926 -- attempt to use a void entity (for example in an expression that is
19927 -- type-checked) produces the error message: premature usage. Now after
19928 -- completing the semantic analysis of the discriminant part, we can set
19929 -- the Ekind of all the discriminants appropriately.
19931 Discr
:= First
(Discriminant_Specifications
(N
));
19932 Discr_Number
:= Uint_1
;
19933 while Present
(Discr
) loop
19934 Id
:= Defining_Identifier
(Discr
);
19935 Set_Ekind
(Id
, E_Discriminant
);
19936 Init_Component_Location
(Id
);
19938 Set_Discriminant_Number
(Id
, Discr_Number
);
19940 -- Make sure this is always set, even in illegal programs
19942 Set_Corresponding_Discriminant
(Id
, Empty
);
19944 -- Initialize the Original_Record_Component to the entity itself.
19945 -- Inherit_Components will propagate the right value to
19946 -- discriminants in derived record types.
19948 Set_Original_Record_Component
(Id
, Id
);
19950 -- Create the discriminal for the discriminant
19952 Build_Discriminal
(Id
);
19955 Discr_Number
:= Discr_Number
+ 1;
19958 Set_Has_Discriminants
(Current_Scope
);
19959 end Process_Discriminants
;
19961 -----------------------
19962 -- Process_Full_View --
19963 -----------------------
19965 -- WARNING: This routine manages Ghost regions. Return statements must be
19966 -- replaced by gotos which jump to the end of the routine and restore the
19969 procedure Process_Full_View
(N
: Node_Id
; Full_T
, Priv_T
: Entity_Id
) is
19970 procedure Collect_Implemented_Interfaces
19972 Ifaces
: Elist_Id
);
19973 -- Ada 2005: Gather all the interfaces that Typ directly or
19974 -- inherently implements. Duplicate entries are not added to
19975 -- the list Ifaces.
19977 ------------------------------------
19978 -- Collect_Implemented_Interfaces --
19979 ------------------------------------
19981 procedure Collect_Implemented_Interfaces
19986 Iface_Elmt
: Elmt_Id
;
19989 -- Abstract interfaces are only associated with tagged record types
19991 if not Is_Tagged_Type
(Typ
) or else not Is_Record_Type
(Typ
) then
19995 -- Recursively climb to the ancestors
19997 if Etype
(Typ
) /= Typ
19999 -- Protect the frontend against wrong cyclic declarations like:
20001 -- type B is new A with private;
20002 -- type C is new A with private;
20004 -- type B is new C with null record;
20005 -- type C is new B with null record;
20007 and then Etype
(Typ
) /= Priv_T
20008 and then Etype
(Typ
) /= Full_T
20010 -- Keep separate the management of private type declarations
20012 if Ekind
(Typ
) = E_Record_Type_With_Private
then
20014 -- Handle the following illegal usage:
20015 -- type Private_Type is tagged private;
20017 -- type Private_Type is new Type_Implementing_Iface;
20019 if Present
(Full_View
(Typ
))
20020 and then Etype
(Typ
) /= Full_View
(Typ
)
20022 if Is_Interface
(Etype
(Typ
)) then
20023 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
20026 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
20029 -- Non-private types
20032 if Is_Interface
(Etype
(Typ
)) then
20033 Append_Unique_Elmt
(Etype
(Typ
), Ifaces
);
20036 Collect_Implemented_Interfaces
(Etype
(Typ
), Ifaces
);
20040 -- Handle entities in the list of abstract interfaces
20042 if Present
(Interfaces
(Typ
)) then
20043 Iface_Elmt
:= First_Elmt
(Interfaces
(Typ
));
20044 while Present
(Iface_Elmt
) loop
20045 Iface
:= Node
(Iface_Elmt
);
20047 pragma Assert
(Is_Interface
(Iface
));
20049 if not Contain_Interface
(Iface
, Ifaces
) then
20050 Append_Elmt
(Iface
, Ifaces
);
20051 Collect_Implemented_Interfaces
(Iface
, Ifaces
);
20054 Next_Elmt
(Iface_Elmt
);
20057 end Collect_Implemented_Interfaces
;
20061 Saved_GM
: constant Ghost_Mode_Type
:= Ghost_Mode
;
20063 Full_Indic
: Node_Id
;
20064 Full_Parent
: Entity_Id
;
20065 Priv_Parent
: Entity_Id
;
20067 -- Start of processing for Process_Full_View
20070 Mark_And_Set_Ghost_Completion
(N
, Priv_T
);
20072 -- First some sanity checks that must be done after semantic
20073 -- decoration of the full view and thus cannot be placed with other
20074 -- similar checks in Find_Type_Name
20076 if not Is_Limited_Type
(Priv_T
)
20077 and then (Is_Limited_Type
(Full_T
)
20078 or else Is_Limited_Composite
(Full_T
))
20080 if In_Instance
then
20084 ("completion of nonlimited type cannot be limited", Full_T
);
20085 Explain_Limited_Type
(Full_T
, Full_T
);
20088 elsif Is_Abstract_Type
(Full_T
)
20089 and then not Is_Abstract_Type
(Priv_T
)
20092 ("completion of nonabstract type cannot be abstract", Full_T
);
20094 elsif Is_Tagged_Type
(Priv_T
)
20095 and then Is_Limited_Type
(Priv_T
)
20096 and then not Is_Limited_Type
(Full_T
)
20098 -- If pragma CPP_Class was applied to the private declaration
20099 -- propagate the limitedness to the full-view
20101 if Is_CPP_Class
(Priv_T
) then
20102 Set_Is_Limited_Record
(Full_T
);
20104 -- GNAT allow its own definition of Limited_Controlled to disobey
20105 -- this rule in order in ease the implementation. This test is safe
20106 -- because Root_Controlled is defined in a child of System that
20107 -- normal programs are not supposed to use.
20109 elsif Is_RTE
(Etype
(Full_T
), RE_Root_Controlled
) then
20110 Set_Is_Limited_Composite
(Full_T
);
20113 ("completion of limited tagged type must be limited", Full_T
);
20116 elsif Is_Generic_Type
(Priv_T
) then
20117 Error_Msg_N
("generic type cannot have a completion", Full_T
);
20120 -- Check that ancestor interfaces of private and full views are
20121 -- consistent. We omit this check for synchronized types because
20122 -- they are performed on the corresponding record type when frozen.
20124 if Ada_Version
>= Ada_2005
20125 and then Is_Tagged_Type
(Priv_T
)
20126 and then Is_Tagged_Type
(Full_T
)
20127 and then not Is_Concurrent_Type
(Full_T
)
20131 Priv_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
20132 Full_T_Ifaces
: constant Elist_Id
:= New_Elmt_List
;
20135 Collect_Implemented_Interfaces
(Priv_T
, Priv_T_Ifaces
);
20136 Collect_Implemented_Interfaces
(Full_T
, Full_T_Ifaces
);
20138 -- Ada 2005 (AI-251): The partial view shall be a descendant of
20139 -- an interface type if and only if the full type is descendant
20140 -- of the interface type (AARM 7.3 (7.3/2)).
20142 Iface
:= Find_Hidden_Interface
(Priv_T_Ifaces
, Full_T_Ifaces
);
20144 if Present
(Iface
) then
20146 ("interface in partial view& not implemented by full type "
20147 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
20150 Iface
:= Find_Hidden_Interface
(Full_T_Ifaces
, Priv_T_Ifaces
);
20152 if Present
(Iface
) then
20154 ("interface & not implemented by partial view "
20155 & "(RM-2005 7.3 (7.3/2))", Full_T
, Iface
);
20160 if Is_Tagged_Type
(Priv_T
)
20161 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20162 and then Is_Derived_Type
(Full_T
)
20164 Priv_Parent
:= Etype
(Priv_T
);
20166 -- The full view of a private extension may have been transformed
20167 -- into an unconstrained derived type declaration and a subtype
20168 -- declaration (see build_derived_record_type for details).
20170 if Nkind
(N
) = N_Subtype_Declaration
then
20171 Full_Indic
:= Subtype_Indication
(N
);
20172 Full_Parent
:= Etype
(Base_Type
(Full_T
));
20174 Full_Indic
:= Subtype_Indication
(Type_Definition
(N
));
20175 Full_Parent
:= Etype
(Full_T
);
20178 -- Check that the parent type of the full type is a descendant of
20179 -- the ancestor subtype given in the private extension. If either
20180 -- entity has an Etype equal to Any_Type then we had some previous
20181 -- error situation [7.3(8)].
20183 if Priv_Parent
= Any_Type
or else Full_Parent
= Any_Type
then
20186 -- Ada 2005 (AI-251): Interfaces in the full type can be given in
20187 -- any order. Therefore we don't have to check that its parent must
20188 -- be a descendant of the parent of the private type declaration.
20190 elsif Is_Interface
(Priv_Parent
)
20191 and then Is_Interface
(Full_Parent
)
20195 -- Ada 2005 (AI-251): If the parent of the private type declaration
20196 -- is an interface there is no need to check that it is an ancestor
20197 -- of the associated full type declaration. The required tests for
20198 -- this case are performed by Build_Derived_Record_Type.
20200 elsif not Is_Interface
(Base_Type
(Priv_Parent
))
20201 and then not Is_Ancestor
(Base_Type
(Priv_Parent
), Full_Parent
)
20204 ("parent of full type must descend from parent of private "
20205 & "extension", Full_Indic
);
20207 -- First check a formal restriction, and then proceed with checking
20208 -- Ada rules. Since the formal restriction is not a serious error, we
20209 -- don't prevent further error detection for this check, hence the
20213 -- In formal mode, when completing a private extension the type
20214 -- named in the private part must be exactly the same as that
20215 -- named in the visible part.
20217 if Priv_Parent
/= Full_Parent
then
20218 Error_Msg_Name_1
:= Chars
(Priv_Parent
);
20219 Check_SPARK_05_Restriction
("% expected", Full_Indic
);
20222 -- Check the rules of 7.3(10): if the private extension inherits
20223 -- known discriminants, then the full type must also inherit those
20224 -- discriminants from the same (ancestor) type, and the parent
20225 -- subtype of the full type must be constrained if and only if
20226 -- the ancestor subtype of the private extension is constrained.
20228 if No
(Discriminant_Specifications
(Parent
(Priv_T
)))
20229 and then not Has_Unknown_Discriminants
(Priv_T
)
20230 and then Has_Discriminants
(Base_Type
(Priv_Parent
))
20233 Priv_Indic
: constant Node_Id
:=
20234 Subtype_Indication
(Parent
(Priv_T
));
20236 Priv_Constr
: constant Boolean :=
20237 Is_Constrained
(Priv_Parent
)
20239 Nkind
(Priv_Indic
) = N_Subtype_Indication
20241 Is_Constrained
(Entity
(Priv_Indic
));
20243 Full_Constr
: constant Boolean :=
20244 Is_Constrained
(Full_Parent
)
20246 Nkind
(Full_Indic
) = N_Subtype_Indication
20248 Is_Constrained
(Entity
(Full_Indic
));
20250 Priv_Discr
: Entity_Id
;
20251 Full_Discr
: Entity_Id
;
20254 Priv_Discr
:= First_Discriminant
(Priv_Parent
);
20255 Full_Discr
:= First_Discriminant
(Full_Parent
);
20256 while Present
(Priv_Discr
) and then Present
(Full_Discr
) loop
20257 if Original_Record_Component
(Priv_Discr
) =
20258 Original_Record_Component
(Full_Discr
)
20260 Corresponding_Discriminant
(Priv_Discr
) =
20261 Corresponding_Discriminant
(Full_Discr
)
20268 Next_Discriminant
(Priv_Discr
);
20269 Next_Discriminant
(Full_Discr
);
20272 if Present
(Priv_Discr
) or else Present
(Full_Discr
) then
20274 ("full view must inherit discriminants of the parent "
20275 & "type used in the private extension", Full_Indic
);
20277 elsif Priv_Constr
and then not Full_Constr
then
20279 ("parent subtype of full type must be constrained",
20282 elsif Full_Constr
and then not Priv_Constr
then
20284 ("parent subtype of full type must be unconstrained",
20289 -- Check the rules of 7.3(12): if a partial view has neither
20290 -- known or unknown discriminants, then the full type
20291 -- declaration shall define a definite subtype.
20293 elsif not Has_Unknown_Discriminants
(Priv_T
)
20294 and then not Has_Discriminants
(Priv_T
)
20295 and then not Is_Constrained
(Full_T
)
20298 ("full view must define a constrained type if partial view "
20299 & "has no discriminants", Full_T
);
20302 -- ??????? Do we implement the following properly ?????
20303 -- If the ancestor subtype of a private extension has constrained
20304 -- discriminants, then the parent subtype of the full view shall
20305 -- impose a statically matching constraint on those discriminants
20310 -- For untagged types, verify that a type without discriminants is
20311 -- not completed with an unconstrained type. A separate error message
20312 -- is produced if the full type has defaulted discriminants.
20314 if Is_Definite_Subtype
(Priv_T
)
20315 and then not Is_Definite_Subtype
(Full_T
)
20317 Error_Msg_Sloc
:= Sloc
(Parent
(Priv_T
));
20319 ("full view of& not compatible with declaration#",
20322 if not Is_Tagged_Type
(Full_T
) then
20324 ("\one is constrained, the other unconstrained", Full_T
);
20329 -- AI-419: verify that the use of "limited" is consistent
20332 Orig_Decl
: constant Node_Id
:= Original_Node
(N
);
20335 if Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20336 and then Nkind
(Orig_Decl
) = N_Full_Type_Declaration
20338 (Type_Definition
(Orig_Decl
)) = N_Derived_Type_Definition
20340 if not Limited_Present
(Parent
(Priv_T
))
20341 and then not Synchronized_Present
(Parent
(Priv_T
))
20342 and then Limited_Present
(Type_Definition
(Orig_Decl
))
20345 ("full view of non-limited extension cannot be limited", N
);
20347 -- Conversely, if the partial view carries the limited keyword,
20348 -- the full view must as well, even if it may be redundant.
20350 elsif Limited_Present
(Parent
(Priv_T
))
20351 and then not Limited_Present
(Type_Definition
(Orig_Decl
))
20354 ("full view of limited extension must be explicitly limited",
20360 -- Ada 2005 (AI-443): A synchronized private extension must be
20361 -- completed by a task or protected type.
20363 if Ada_Version
>= Ada_2005
20364 and then Nkind
(Parent
(Priv_T
)) = N_Private_Extension_Declaration
20365 and then Synchronized_Present
(Parent
(Priv_T
))
20366 and then not Is_Concurrent_Type
(Full_T
)
20368 Error_Msg_N
("full view of synchronized extension must " &
20369 "be synchronized type", N
);
20372 -- Ada 2005 AI-363: if the full view has discriminants with
20373 -- defaults, it is illegal to declare constrained access subtypes
20374 -- whose designated type is the current type. This allows objects
20375 -- of the type that are declared in the heap to be unconstrained.
20377 if not Has_Unknown_Discriminants
(Priv_T
)
20378 and then not Has_Discriminants
(Priv_T
)
20379 and then Has_Discriminants
(Full_T
)
20381 Present
(Discriminant_Default_Value
(First_Discriminant
(Full_T
)))
20383 Set_Has_Constrained_Partial_View
(Full_T
);
20384 Set_Has_Constrained_Partial_View
(Priv_T
);
20387 -- Create a full declaration for all its subtypes recorded in
20388 -- Private_Dependents and swap them similarly to the base type. These
20389 -- are subtypes that have been define before the full declaration of
20390 -- the private type. We also swap the entry in Private_Dependents list
20391 -- so we can properly restore the private view on exit from the scope.
20394 Priv_Elmt
: Elmt_Id
;
20395 Priv_Scop
: Entity_Id
;
20400 Priv_Elmt
:= First_Elmt
(Private_Dependents
(Priv_T
));
20401 while Present
(Priv_Elmt
) loop
20402 Priv
:= Node
(Priv_Elmt
);
20403 Priv_Scop
:= Scope
(Priv
);
20405 if Ekind_In
(Priv
, E_Private_Subtype
,
20406 E_Limited_Private_Subtype
,
20407 E_Record_Subtype_With_Private
)
20409 Full
:= Make_Defining_Identifier
(Sloc
(Priv
), Chars
(Priv
));
20410 Set_Is_Itype
(Full
);
20411 Set_Parent
(Full
, Parent
(Priv
));
20412 Set_Associated_Node_For_Itype
(Full
, N
);
20414 -- Now we need to complete the private subtype, but since the
20415 -- base type has already been swapped, we must also swap the
20416 -- subtypes (and thus, reverse the arguments in the call to
20417 -- Complete_Private_Subtype). Also note that we may need to
20418 -- re-establish the scope of the private subtype.
20420 Copy_And_Swap
(Priv
, Full
);
20422 if not In_Open_Scopes
(Priv_Scop
) then
20423 Push_Scope
(Priv_Scop
);
20426 -- Reset Priv_Scop to Empty to indicate no scope was pushed
20428 Priv_Scop
:= Empty
;
20431 Complete_Private_Subtype
(Full
, Priv
, Full_T
, N
);
20433 if Present
(Priv_Scop
) then
20437 Replace_Elmt
(Priv_Elmt
, Full
);
20440 Next_Elmt
(Priv_Elmt
);
20444 -- If the private view was tagged, copy the new primitive operations
20445 -- from the private view to the full view.
20447 if Is_Tagged_Type
(Full_T
) then
20449 Disp_Typ
: Entity_Id
;
20450 Full_List
: Elist_Id
;
20452 Prim_Elmt
: Elmt_Id
;
20453 Priv_List
: Elist_Id
;
20457 L
: Elist_Id
) return Boolean;
20458 -- Determine whether list L contains element E
20466 L
: Elist_Id
) return Boolean
20468 List_Elmt
: Elmt_Id
;
20471 List_Elmt
:= First_Elmt
(L
);
20472 while Present
(List_Elmt
) loop
20473 if Node
(List_Elmt
) = E
then
20477 Next_Elmt
(List_Elmt
);
20483 -- Start of processing
20486 if Is_Tagged_Type
(Priv_T
) then
20487 Priv_List
:= Primitive_Operations
(Priv_T
);
20488 Prim_Elmt
:= First_Elmt
(Priv_List
);
20490 -- In the case of a concurrent type completing a private tagged
20491 -- type, primitives may have been declared in between the two
20492 -- views. These subprograms need to be wrapped the same way
20493 -- entries and protected procedures are handled because they
20494 -- cannot be directly shared by the two views.
20496 if Is_Concurrent_Type
(Full_T
) then
20498 Conc_Typ
: constant Entity_Id
:=
20499 Corresponding_Record_Type
(Full_T
);
20500 Curr_Nod
: Node_Id
:= Parent
(Conc_Typ
);
20501 Wrap_Spec
: Node_Id
;
20504 while Present
(Prim_Elmt
) loop
20505 Prim
:= Node
(Prim_Elmt
);
20507 if Comes_From_Source
(Prim
)
20508 and then not Is_Abstract_Subprogram
(Prim
)
20511 Make_Subprogram_Declaration
(Sloc
(Prim
),
20515 Obj_Typ
=> Conc_Typ
,
20517 Parameter_Specifications
20520 Insert_After
(Curr_Nod
, Wrap_Spec
);
20521 Curr_Nod
:= Wrap_Spec
;
20523 Analyze
(Wrap_Spec
);
20525 -- Remove the wrapper from visibility to avoid
20526 -- spurious conflict with the wrapped entity.
20528 Set_Is_Immediately_Visible
20529 (Defining_Entity
(Specification
(Wrap_Spec
)),
20533 Next_Elmt
(Prim_Elmt
);
20539 -- For non-concurrent types, transfer explicit primitives, but
20540 -- omit those inherited from the parent of the private view
20541 -- since they will be re-inherited later on.
20544 Full_List
:= Primitive_Operations
(Full_T
);
20546 while Present
(Prim_Elmt
) loop
20547 Prim
:= Node
(Prim_Elmt
);
20549 if Comes_From_Source
(Prim
)
20550 and then not Contains
(Prim
, Full_List
)
20552 Append_Elmt
(Prim
, Full_List
);
20555 Next_Elmt
(Prim_Elmt
);
20559 -- Untagged private view
20562 Full_List
:= Primitive_Operations
(Full_T
);
20564 -- In this case the partial view is untagged, so here we locate
20565 -- all of the earlier primitives that need to be treated as
20566 -- dispatching (those that appear between the two views). Note
20567 -- that these additional operations must all be new operations
20568 -- (any earlier operations that override inherited operations
20569 -- of the full view will already have been inserted in the
20570 -- primitives list, marked by Check_Operation_From_Private_View
20571 -- as dispatching. Note that implicit "/=" operators are
20572 -- excluded from being added to the primitives list since they
20573 -- shouldn't be treated as dispatching (tagged "/=" is handled
20576 Prim
:= Next_Entity
(Full_T
);
20577 while Present
(Prim
) and then Prim
/= Priv_T
loop
20578 if Ekind_In
(Prim
, E_Procedure
, E_Function
) then
20579 Disp_Typ
:= Find_Dispatching_Type
(Prim
);
20581 if Disp_Typ
= Full_T
20582 and then (Chars
(Prim
) /= Name_Op_Ne
20583 or else Comes_From_Source
(Prim
))
20585 Check_Controlling_Formals
(Full_T
, Prim
);
20587 if not Is_Dispatching_Operation
(Prim
) then
20588 Append_Elmt
(Prim
, Full_List
);
20589 Set_Is_Dispatching_Operation
(Prim
, True);
20590 Set_DT_Position_Value
(Prim
, No_Uint
);
20593 elsif Is_Dispatching_Operation
(Prim
)
20594 and then Disp_Typ
/= Full_T
20597 -- Verify that it is not otherwise controlled by a
20598 -- formal or a return value of type T.
20600 Check_Controlling_Formals
(Disp_Typ
, Prim
);
20604 Next_Entity
(Prim
);
20608 -- For the tagged case, the two views can share the same primitive
20609 -- operations list and the same class-wide type. Update attributes
20610 -- of the class-wide type which depend on the full declaration.
20612 if Is_Tagged_Type
(Priv_T
) then
20613 Set_Direct_Primitive_Operations
(Priv_T
, Full_List
);
20614 Set_Class_Wide_Type
20615 (Base_Type
(Full_T
), Class_Wide_Type
(Priv_T
));
20617 Propagate_Concurrent_Flags
(Class_Wide_Type
(Priv_T
), Full_T
);
20622 -- Ada 2005 AI 161: Check preelaborable initialization consistency
20624 if Known_To_Have_Preelab_Init
(Priv_T
) then
20626 -- Case where there is a pragma Preelaborable_Initialization. We
20627 -- always allow this in predefined units, which is cheating a bit,
20628 -- but it means we don't have to struggle to meet the requirements in
20629 -- the RM for having Preelaborable Initialization. Otherwise we
20630 -- require that the type meets the RM rules. But we can't check that
20631 -- yet, because of the rule about overriding Initialize, so we simply
20632 -- set a flag that will be checked at freeze time.
20634 if not In_Predefined_Unit
(Full_T
) then
20635 Set_Must_Have_Preelab_Init
(Full_T
);
20639 -- If pragma CPP_Class was applied to the private type declaration,
20640 -- propagate it now to the full type declaration.
20642 if Is_CPP_Class
(Priv_T
) then
20643 Set_Is_CPP_Class
(Full_T
);
20644 Set_Convention
(Full_T
, Convention_CPP
);
20646 -- Check that components of imported CPP types do not have default
20649 Check_CPP_Type_Has_No_Defaults
(Full_T
);
20652 -- If the private view has user specified stream attributes, then so has
20655 -- Why the test, how could these flags be already set in Full_T ???
20657 if Has_Specified_Stream_Read
(Priv_T
) then
20658 Set_Has_Specified_Stream_Read
(Full_T
);
20661 if Has_Specified_Stream_Write
(Priv_T
) then
20662 Set_Has_Specified_Stream_Write
(Full_T
);
20665 if Has_Specified_Stream_Input
(Priv_T
) then
20666 Set_Has_Specified_Stream_Input
(Full_T
);
20669 if Has_Specified_Stream_Output
(Priv_T
) then
20670 Set_Has_Specified_Stream_Output
(Full_T
);
20673 -- Propagate Default_Initial_Condition-related attributes from the
20674 -- partial view to the full view and its base type.
20676 Propagate_DIC_Attributes
(Full_T
, From_Typ
=> Priv_T
);
20677 Propagate_DIC_Attributes
(Base_Type
(Full_T
), From_Typ
=> Priv_T
);
20679 -- Propagate invariant-related attributes from the partial view to the
20680 -- full view and its base type.
20682 Propagate_Invariant_Attributes
(Full_T
, From_Typ
=> Priv_T
);
20683 Propagate_Invariant_Attributes
(Base_Type
(Full_T
), From_Typ
=> Priv_T
);
20685 -- AI12-0041: Detect an attempt to inherit a class-wide type invariant
20686 -- in the full view without advertising the inheritance in the partial
20687 -- view. This can only occur when the partial view has no parent type
20688 -- and the full view has an interface as a parent. Any other scenarios
20689 -- are illegal because implemented interfaces must match between the
20692 if Is_Tagged_Type
(Priv_T
) and then Is_Tagged_Type
(Full_T
) then
20694 Full_Par
: constant Entity_Id
:= Etype
(Full_T
);
20695 Priv_Par
: constant Entity_Id
:= Etype
(Priv_T
);
20698 if not Is_Interface
(Priv_Par
)
20699 and then Is_Interface
(Full_Par
)
20700 and then Has_Inheritable_Invariants
(Full_Par
)
20703 ("hidden inheritance of class-wide type invariants not "
20709 -- Propagate predicates to full type, and predicate function if already
20710 -- defined. It is not clear that this can actually happen? the partial
20711 -- view cannot be frozen yet, and the predicate function has not been
20712 -- built. Still it is a cheap check and seems safer to make it.
20714 if Has_Predicates
(Priv_T
) then
20715 Set_Has_Predicates
(Full_T
);
20717 if Present
(Predicate_Function
(Priv_T
)) then
20718 Set_Predicate_Function
(Full_T
, Predicate_Function
(Priv_T
));
20723 Restore_Ghost_Mode
(Saved_GM
);
20724 end Process_Full_View
;
20726 -----------------------------------
20727 -- Process_Incomplete_Dependents --
20728 -----------------------------------
20730 procedure Process_Incomplete_Dependents
20732 Full_T
: Entity_Id
;
20735 Inc_Elmt
: Elmt_Id
;
20736 Priv_Dep
: Entity_Id
;
20737 New_Subt
: Entity_Id
;
20739 Disc_Constraint
: Elist_Id
;
20742 if No
(Private_Dependents
(Inc_T
)) then
20746 -- Itypes that may be generated by the completion of an incomplete
20747 -- subtype are not used by the back-end and not attached to the tree.
20748 -- They are created only for constraint-checking purposes.
20750 Inc_Elmt
:= First_Elmt
(Private_Dependents
(Inc_T
));
20751 while Present
(Inc_Elmt
) loop
20752 Priv_Dep
:= Node
(Inc_Elmt
);
20754 if Ekind
(Priv_Dep
) = E_Subprogram_Type
then
20756 -- An Access_To_Subprogram type may have a return type or a
20757 -- parameter type that is incomplete. Replace with the full view.
20759 if Etype
(Priv_Dep
) = Inc_T
then
20760 Set_Etype
(Priv_Dep
, Full_T
);
20764 Formal
: Entity_Id
;
20767 Formal
:= First_Formal
(Priv_Dep
);
20768 while Present
(Formal
) loop
20769 if Etype
(Formal
) = Inc_T
then
20770 Set_Etype
(Formal
, Full_T
);
20773 Next_Formal
(Formal
);
20777 elsif Is_Overloadable
(Priv_Dep
) then
20779 -- If a subprogram in the incomplete dependents list is primitive
20780 -- for a tagged full type then mark it as a dispatching operation,
20781 -- check whether it overrides an inherited subprogram, and check
20782 -- restrictions on its controlling formals. Note that a protected
20783 -- operation is never dispatching: only its wrapper operation
20784 -- (which has convention Ada) is.
20786 if Is_Tagged_Type
(Full_T
)
20787 and then Is_Primitive
(Priv_Dep
)
20788 and then Convention
(Priv_Dep
) /= Convention_Protected
20790 Check_Operation_From_Incomplete_Type
(Priv_Dep
, Inc_T
);
20791 Set_Is_Dispatching_Operation
(Priv_Dep
);
20792 Check_Controlling_Formals
(Full_T
, Priv_Dep
);
20795 elsif Ekind
(Priv_Dep
) = E_Subprogram_Body
then
20797 -- Can happen during processing of a body before the completion
20798 -- of a TA type. Ignore, because spec is also on dependent list.
20802 -- Ada 2005 (AI-412): Transform a regular incomplete subtype into a
20803 -- corresponding subtype of the full view.
20805 elsif Ekind
(Priv_Dep
) = E_Incomplete_Subtype
then
20806 Set_Subtype_Indication
20807 (Parent
(Priv_Dep
), New_Occurrence_Of
(Full_T
, Sloc
(Priv_Dep
)));
20808 Set_Etype
(Priv_Dep
, Full_T
);
20809 Set_Ekind
(Priv_Dep
, Subtype_Kind
(Ekind
(Full_T
)));
20810 Set_Analyzed
(Parent
(Priv_Dep
), False);
20812 -- Reanalyze the declaration, suppressing the call to
20813 -- Enter_Name to avoid duplicate names.
20815 Analyze_Subtype_Declaration
20816 (N
=> Parent
(Priv_Dep
),
20819 -- Dependent is a subtype
20822 -- We build a new subtype indication using the full view of the
20823 -- incomplete parent. The discriminant constraints have been
20824 -- elaborated already at the point of the subtype declaration.
20826 New_Subt
:= Create_Itype
(E_Void
, N
);
20828 if Has_Discriminants
(Full_T
) then
20829 Disc_Constraint
:= Discriminant_Constraint
(Priv_Dep
);
20831 Disc_Constraint
:= No_Elist
;
20834 Build_Discriminated_Subtype
(Full_T
, New_Subt
, Disc_Constraint
, N
);
20835 Set_Full_View
(Priv_Dep
, New_Subt
);
20838 Next_Elmt
(Inc_Elmt
);
20840 end Process_Incomplete_Dependents
;
20842 --------------------------------
20843 -- Process_Range_Expr_In_Decl --
20844 --------------------------------
20846 procedure Process_Range_Expr_In_Decl
20849 Subtyp
: Entity_Id
:= Empty
;
20850 Check_List
: List_Id
:= Empty_List
;
20851 R_Check_Off
: Boolean := False;
20852 In_Iter_Schm
: Boolean := False)
20855 R_Checks
: Check_Result
;
20856 Insert_Node
: Node_Id
;
20857 Def_Id
: Entity_Id
;
20860 Analyze_And_Resolve
(R
, Base_Type
(T
));
20862 if Nkind
(R
) = N_Range
then
20864 -- In SPARK, all ranges should be static, with the exception of the
20865 -- discrete type definition of a loop parameter specification.
20867 if not In_Iter_Schm
20868 and then not Is_OK_Static_Range
(R
)
20870 Check_SPARK_05_Restriction
("range should be static", R
);
20873 Lo
:= Low_Bound
(R
);
20874 Hi
:= High_Bound
(R
);
20876 -- Validity checks on the range of a quantified expression are
20877 -- delayed until the construct is transformed into a loop.
20879 if Nkind
(Parent
(R
)) = N_Loop_Parameter_Specification
20880 and then Nkind
(Parent
(Parent
(R
))) = N_Quantified_Expression
20884 -- We need to ensure validity of the bounds here, because if we
20885 -- go ahead and do the expansion, then the expanded code will get
20886 -- analyzed with range checks suppressed and we miss the check.
20888 -- WARNING: The capture of the range bounds with xxx_FIRST/_LAST and
20889 -- the temporaries generated by routine Remove_Side_Effects by means
20890 -- of validity checks must use the same names. When a range appears
20891 -- in the parent of a generic, the range is processed with checks
20892 -- disabled as part of the generic context and with checks enabled
20893 -- for code generation purposes. This leads to link issues as the
20894 -- generic contains references to xxx_FIRST/_LAST, but the inlined
20895 -- template sees the temporaries generated by Remove_Side_Effects.
20898 Validity_Check_Range
(R
, Subtyp
);
20901 -- If there were errors in the declaration, try and patch up some
20902 -- common mistakes in the bounds. The cases handled are literals
20903 -- which are Integer where the expected type is Real and vice versa.
20904 -- These corrections allow the compilation process to proceed further
20905 -- along since some basic assumptions of the format of the bounds
20908 if Etype
(R
) = Any_Type
then
20909 if Nkind
(Lo
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20911 Make_Real_Literal
(Sloc
(Lo
), UR_From_Uint
(Intval
(Lo
))));
20913 elsif Nkind
(Hi
) = N_Integer_Literal
and then Is_Real_Type
(T
) then
20915 Make_Real_Literal
(Sloc
(Hi
), UR_From_Uint
(Intval
(Hi
))));
20917 elsif Nkind
(Lo
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20919 Make_Integer_Literal
(Sloc
(Lo
), UR_To_Uint
(Realval
(Lo
))));
20921 elsif Nkind
(Hi
) = N_Real_Literal
and then Is_Integer_Type
(T
) then
20923 Make_Integer_Literal
(Sloc
(Hi
), UR_To_Uint
(Realval
(Hi
))));
20930 -- If the bounds of the range have been mistakenly given as string
20931 -- literals (perhaps in place of character literals), then an error
20932 -- has already been reported, but we rewrite the string literal as a
20933 -- bound of the range's type to avoid blowups in later processing
20934 -- that looks at static values.
20936 if Nkind
(Lo
) = N_String_Literal
then
20938 Make_Attribute_Reference
(Sloc
(Lo
),
20939 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Lo
)),
20940 Attribute_Name
=> Name_First
));
20941 Analyze_And_Resolve
(Lo
);
20944 if Nkind
(Hi
) = N_String_Literal
then
20946 Make_Attribute_Reference
(Sloc
(Hi
),
20947 Prefix
=> New_Occurrence_Of
(T
, Sloc
(Hi
)),
20948 Attribute_Name
=> Name_First
));
20949 Analyze_And_Resolve
(Hi
);
20952 -- If bounds aren't scalar at this point then exit, avoiding
20953 -- problems with further processing of the range in this procedure.
20955 if not Is_Scalar_Type
(Etype
(Lo
)) then
20959 -- Resolve (actually Sem_Eval) has checked that the bounds are in
20960 -- then range of the base type. Here we check whether the bounds
20961 -- are in the range of the subtype itself. Note that if the bounds
20962 -- represent the null range the Constraint_Error exception should
20965 -- ??? The following code should be cleaned up as follows
20967 -- 1. The Is_Null_Range (Lo, Hi) test should disappear since it
20968 -- is done in the call to Range_Check (R, T); below
20970 -- 2. The use of R_Check_Off should be investigated and possibly
20971 -- removed, this would clean up things a bit.
20973 if Is_Null_Range
(Lo
, Hi
) then
20977 -- Capture values of bounds and generate temporaries for them
20978 -- if needed, before applying checks, since checks may cause
20979 -- duplication of the expression without forcing evaluation.
20981 -- The forced evaluation removes side effects from expressions,
20982 -- which should occur also in GNATprove mode. Otherwise, we end up
20983 -- with unexpected insertions of actions at places where this is
20984 -- not supposed to occur, e.g. on default parameters of a call.
20986 if Expander_Active
or GNATprove_Mode
then
20988 -- Call Force_Evaluation to create declarations as needed to
20989 -- deal with side effects, and also create typ_FIRST/LAST
20990 -- entities for bounds if we have a subtype name.
20992 -- Note: we do this transformation even if expansion is not
20993 -- active if we are in GNATprove_Mode since the transformation
20994 -- is in general required to ensure that the resulting tree has
20995 -- proper Ada semantics.
20998 (Lo
, Related_Id
=> Subtyp
, Is_Low_Bound
=> True);
21000 (Hi
, Related_Id
=> Subtyp
, Is_High_Bound
=> True);
21003 -- We use a flag here instead of suppressing checks on the type
21004 -- because the type we check against isn't necessarily the place
21005 -- where we put the check.
21007 if not R_Check_Off
then
21008 R_Checks
:= Get_Range_Checks
(R
, T
);
21010 -- Look up tree to find an appropriate insertion point. We
21011 -- can't just use insert_actions because later processing
21012 -- depends on the insertion node. Prior to Ada 2012 the
21013 -- insertion point could only be a declaration or a loop, but
21014 -- quantified expressions can appear within any context in an
21015 -- expression, and the insertion point can be any statement,
21016 -- pragma, or declaration.
21018 Insert_Node
:= Parent
(R
);
21019 while Present
(Insert_Node
) loop
21021 Nkind
(Insert_Node
) in N_Declaration
21024 (Insert_Node
, N_Component_Declaration
,
21025 N_Loop_Parameter_Specification
,
21026 N_Function_Specification
,
21027 N_Procedure_Specification
);
21029 exit when Nkind
(Insert_Node
) in N_Later_Decl_Item
21030 or else Nkind
(Insert_Node
) in
21031 N_Statement_Other_Than_Procedure_Call
21032 or else Nkind_In
(Insert_Node
, N_Procedure_Call_Statement
,
21035 Insert_Node
:= Parent
(Insert_Node
);
21038 -- Why would Type_Decl not be present??? Without this test,
21039 -- short regression tests fail.
21041 if Present
(Insert_Node
) then
21043 -- Case of loop statement. Verify that the range is part
21044 -- of the subtype indication of the iteration scheme.
21046 if Nkind
(Insert_Node
) = N_Loop_Statement
then
21051 Indic
:= Parent
(R
);
21052 while Present
(Indic
)
21053 and then Nkind
(Indic
) /= N_Subtype_Indication
21055 Indic
:= Parent
(Indic
);
21058 if Present
(Indic
) then
21059 Def_Id
:= Etype
(Subtype_Mark
(Indic
));
21061 Insert_Range_Checks
21065 Sloc
(Insert_Node
),
21067 Do_Before
=> True);
21071 -- Insertion before a declaration. If the declaration
21072 -- includes discriminants, the list of applicable checks
21073 -- is given by the caller.
21075 elsif Nkind
(Insert_Node
) in N_Declaration
then
21076 Def_Id
:= Defining_Identifier
(Insert_Node
);
21078 if (Ekind
(Def_Id
) = E_Record_Type
21079 and then Depends_On_Discriminant
(R
))
21081 (Ekind
(Def_Id
) = E_Protected_Type
21082 and then Has_Discriminants
(Def_Id
))
21084 Append_Range_Checks
21086 Check_List
, Def_Id
, Sloc
(Insert_Node
), R
);
21089 Insert_Range_Checks
21091 Insert_Node
, Def_Id
, Sloc
(Insert_Node
), R
);
21095 -- Insertion before a statement. Range appears in the
21096 -- context of a quantified expression. Insertion will
21097 -- take place when expression is expanded.
21106 -- Case of other than an explicit N_Range node
21108 -- The forced evaluation removes side effects from expressions, which
21109 -- should occur also in GNATprove mode. Otherwise, we end up with
21110 -- unexpected insertions of actions at places where this is not
21111 -- supposed to occur, e.g. on default parameters of a call.
21113 elsif Expander_Active
or GNATprove_Mode
then
21114 Get_Index_Bounds
(R
, Lo
, Hi
);
21115 Force_Evaluation
(Lo
);
21116 Force_Evaluation
(Hi
);
21118 end Process_Range_Expr_In_Decl
;
21120 --------------------------------------
21121 -- Process_Real_Range_Specification --
21122 --------------------------------------
21124 procedure Process_Real_Range_Specification
(Def
: Node_Id
) is
21125 Spec
: constant Node_Id
:= Real_Range_Specification
(Def
);
21128 Err
: Boolean := False;
21130 procedure Analyze_Bound
(N
: Node_Id
);
21131 -- Analyze and check one bound
21133 -------------------
21134 -- Analyze_Bound --
21135 -------------------
21137 procedure Analyze_Bound
(N
: Node_Id
) is
21139 Analyze_And_Resolve
(N
, Any_Real
);
21141 if not Is_OK_Static_Expression
(N
) then
21142 Flag_Non_Static_Expr
21143 ("bound in real type definition is not static!", N
);
21148 -- Start of processing for Process_Real_Range_Specification
21151 if Present
(Spec
) then
21152 Lo
:= Low_Bound
(Spec
);
21153 Hi
:= High_Bound
(Spec
);
21154 Analyze_Bound
(Lo
);
21155 Analyze_Bound
(Hi
);
21157 -- If error, clear away junk range specification
21160 Set_Real_Range_Specification
(Def
, Empty
);
21163 end Process_Real_Range_Specification
;
21165 ---------------------
21166 -- Process_Subtype --
21167 ---------------------
21169 function Process_Subtype
21171 Related_Nod
: Node_Id
;
21172 Related_Id
: Entity_Id
:= Empty
;
21173 Suffix
: Character := ' ') return Entity_Id
21176 Def_Id
: Entity_Id
;
21177 Error_Node
: Node_Id
;
21178 Full_View_Id
: Entity_Id
;
21179 Subtype_Mark_Id
: Entity_Id
;
21181 May_Have_Null_Exclusion
: Boolean;
21183 procedure Check_Incomplete
(T
: Node_Id
);
21184 -- Called to verify that an incomplete type is not used prematurely
21186 ----------------------
21187 -- Check_Incomplete --
21188 ----------------------
21190 procedure Check_Incomplete
(T
: Node_Id
) is
21192 -- Ada 2005 (AI-412): Incomplete subtypes are legal
21194 if Ekind
(Root_Type
(Entity
(T
))) = E_Incomplete_Type
21196 not (Ada_Version
>= Ada_2005
21198 (Nkind
(Parent
(T
)) = N_Subtype_Declaration
21199 or else (Nkind
(Parent
(T
)) = N_Subtype_Indication
21200 and then Nkind
(Parent
(Parent
(T
))) =
21201 N_Subtype_Declaration
)))
21203 Error_Msg_N
("invalid use of type before its full declaration", T
);
21205 end Check_Incomplete
;
21207 -- Start of processing for Process_Subtype
21210 -- Case of no constraints present
21212 if Nkind
(S
) /= N_Subtype_Indication
then
21214 Check_Incomplete
(S
);
21217 -- Ada 2005 (AI-231): Static check
21219 if Ada_Version
>= Ada_2005
21220 and then Present
(P
)
21221 and then Null_Exclusion_Present
(P
)
21222 and then Nkind
(P
) /= N_Access_To_Object_Definition
21223 and then not Is_Access_Type
(Entity
(S
))
21225 Error_Msg_N
("`NOT NULL` only allowed for an access type", S
);
21228 -- The following is ugly, can't we have a range or even a flag???
21230 May_Have_Null_Exclusion
:=
21231 Nkind_In
(P
, N_Access_Definition
,
21232 N_Access_Function_Definition
,
21233 N_Access_Procedure_Definition
,
21234 N_Access_To_Object_Definition
,
21236 N_Component_Definition
)
21238 Nkind_In
(P
, N_Derived_Type_Definition
,
21239 N_Discriminant_Specification
,
21240 N_Formal_Object_Declaration
,
21241 N_Object_Declaration
,
21242 N_Object_Renaming_Declaration
,
21243 N_Parameter_Specification
,
21244 N_Subtype_Declaration
);
21246 -- Create an Itype that is a duplicate of Entity (S) but with the
21247 -- null-exclusion attribute.
21249 if May_Have_Null_Exclusion
21250 and then Is_Access_Type
(Entity
(S
))
21251 and then Null_Exclusion_Present
(P
)
21253 -- No need to check the case of an access to object definition.
21254 -- It is correct to define double not-null pointers.
21257 -- type Not_Null_Int_Ptr is not null access Integer;
21258 -- type Acc is not null access Not_Null_Int_Ptr;
21260 and then Nkind
(P
) /= N_Access_To_Object_Definition
21262 if Can_Never_Be_Null
(Entity
(S
)) then
21263 case Nkind
(Related_Nod
) is
21264 when N_Full_Type_Declaration
=>
21265 if Nkind
(Type_Definition
(Related_Nod
))
21266 in N_Array_Type_Definition
21270 (Component_Definition
21271 (Type_Definition
(Related_Nod
)));
21274 Subtype_Indication
(Type_Definition
(Related_Nod
));
21277 when N_Subtype_Declaration
=>
21278 Error_Node
:= Subtype_Indication
(Related_Nod
);
21280 when N_Object_Declaration
=>
21281 Error_Node
:= Object_Definition
(Related_Nod
);
21283 when N_Component_Declaration
=>
21285 Subtype_Indication
(Component_Definition
(Related_Nod
));
21287 when N_Allocator
=>
21288 Error_Node
:= Expression
(Related_Nod
);
21291 pragma Assert
(False);
21292 Error_Node
:= Related_Nod
;
21296 ("`NOT NULL` not allowed (& already excludes null)",
21302 Create_Null_Excluding_Itype
21304 Related_Nod
=> P
));
21305 Set_Entity
(S
, Etype
(S
));
21310 -- Case of constraint present, so that we have an N_Subtype_Indication
21311 -- node (this node is created only if constraints are present).
21314 Find_Type
(Subtype_Mark
(S
));
21316 if Nkind
(Parent
(S
)) /= N_Access_To_Object_Definition
21318 (Nkind
(Parent
(S
)) = N_Subtype_Declaration
21319 and then Is_Itype
(Defining_Identifier
(Parent
(S
))))
21321 Check_Incomplete
(Subtype_Mark
(S
));
21325 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
21327 -- Explicit subtype declaration case
21329 if Nkind
(P
) = N_Subtype_Declaration
then
21330 Def_Id
:= Defining_Identifier
(P
);
21332 -- Explicit derived type definition case
21334 elsif Nkind
(P
) = N_Derived_Type_Definition
then
21335 Def_Id
:= Defining_Identifier
(Parent
(P
));
21337 -- Implicit case, the Def_Id must be created as an implicit type.
21338 -- The one exception arises in the case of concurrent types, array
21339 -- and access types, where other subsidiary implicit types may be
21340 -- created and must appear before the main implicit type. In these
21341 -- cases we leave Def_Id set to Empty as a signal that Create_Itype
21342 -- has not yet been called to create Def_Id.
21345 if Is_Array_Type
(Subtype_Mark_Id
)
21346 or else Is_Concurrent_Type
(Subtype_Mark_Id
)
21347 or else Is_Access_Type
(Subtype_Mark_Id
)
21351 -- For the other cases, we create a new unattached Itype,
21352 -- and set the indication to ensure it gets attached later.
21356 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
21360 -- If the kind of constraint is invalid for this kind of type,
21361 -- then give an error, and then pretend no constraint was given.
21363 if not Is_Valid_Constraint_Kind
21364 (Ekind
(Subtype_Mark_Id
), Nkind
(Constraint
(S
)))
21367 ("incorrect constraint for this kind of type", Constraint
(S
));
21369 Rewrite
(S
, New_Copy_Tree
(Subtype_Mark
(S
)));
21371 -- Set Ekind of orphan itype, to prevent cascaded errors
21373 if Present
(Def_Id
) then
21374 Set_Ekind
(Def_Id
, Ekind
(Any_Type
));
21377 -- Make recursive call, having got rid of the bogus constraint
21379 return Process_Subtype
(S
, Related_Nod
, Related_Id
, Suffix
);
21382 -- Remaining processing depends on type. Select on Base_Type kind to
21383 -- ensure getting to the concrete type kind in the case of a private
21384 -- subtype (needed when only doing semantic analysis).
21386 case Ekind
(Base_Type
(Subtype_Mark_Id
)) is
21387 when Access_Kind
=>
21389 -- If this is a constraint on a class-wide type, discard it.
21390 -- There is currently no way to express a partial discriminant
21391 -- constraint on a type with unknown discriminants. This is
21392 -- a pathology that the ACATS wisely decides not to test.
21394 if Is_Class_Wide_Type
(Designated_Type
(Subtype_Mark_Id
)) then
21395 if Comes_From_Source
(S
) then
21397 ("constraint on class-wide type ignored??",
21401 if Nkind
(P
) = N_Subtype_Declaration
then
21402 Set_Subtype_Indication
(P
,
21403 New_Occurrence_Of
(Subtype_Mark_Id
, Sloc
(S
)));
21406 return Subtype_Mark_Id
;
21409 Constrain_Access
(Def_Id
, S
, Related_Nod
);
21412 and then Is_Itype
(Designated_Type
(Def_Id
))
21413 and then Nkind
(Related_Nod
) = N_Subtype_Declaration
21414 and then not Is_Incomplete_Type
(Designated_Type
(Def_Id
))
21416 Build_Itype_Reference
21417 (Designated_Type
(Def_Id
), Related_Nod
);
21421 Constrain_Array
(Def_Id
, S
, Related_Nod
, Related_Id
, Suffix
);
21423 when Decimal_Fixed_Point_Kind
=>
21424 Constrain_Decimal
(Def_Id
, S
);
21426 when Enumeration_Kind
=>
21427 Constrain_Enumeration
(Def_Id
, S
);
21428 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
21430 when Ordinary_Fixed_Point_Kind
=>
21431 Constrain_Ordinary_Fixed
(Def_Id
, S
);
21434 Constrain_Float
(Def_Id
, S
);
21436 when Integer_Kind
=>
21437 Constrain_Integer
(Def_Id
, S
);
21438 Inherit_Predicate_Flags
(Def_Id
, Subtype_Mark_Id
);
21440 when Class_Wide_Kind
21441 | E_Incomplete_Type
21445 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
21447 if Ekind
(Def_Id
) = E_Incomplete_Type
then
21448 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
21451 when Private_Kind
=>
21452 Constrain_Discriminated_Type
(Def_Id
, S
, Related_Nod
);
21454 -- The base type may be private but Def_Id may be a full view
21457 if Is_Private_Type
(Def_Id
) then
21458 Set_Private_Dependents
(Def_Id
, New_Elmt_List
);
21461 -- In case of an invalid constraint prevent further processing
21462 -- since the type constructed is missing expected fields.
21464 if Etype
(Def_Id
) = Any_Type
then
21468 -- If the full view is that of a task with discriminants,
21469 -- we must constrain both the concurrent type and its
21470 -- corresponding record type. Otherwise we will just propagate
21471 -- the constraint to the full view, if available.
21473 if Present
(Full_View
(Subtype_Mark_Id
))
21474 and then Has_Discriminants
(Subtype_Mark_Id
)
21475 and then Is_Concurrent_Type
(Full_View
(Subtype_Mark_Id
))
21478 Create_Itype
(E_Void
, Related_Nod
, Related_Id
, Suffix
);
21480 Set_Entity
(Subtype_Mark
(S
), Full_View
(Subtype_Mark_Id
));
21481 Constrain_Concurrent
(Full_View_Id
, S
,
21482 Related_Nod
, Related_Id
, Suffix
);
21483 Set_Entity
(Subtype_Mark
(S
), Subtype_Mark_Id
);
21484 Set_Full_View
(Def_Id
, Full_View_Id
);
21486 -- Introduce an explicit reference to the private subtype,
21487 -- to prevent scope anomalies in gigi if first use appears
21488 -- in a nested context, e.g. a later function body.
21489 -- Should this be generated in other contexts than a full
21490 -- type declaration?
21492 if Is_Itype
(Def_Id
)
21494 Nkind
(Parent
(P
)) = N_Full_Type_Declaration
21496 Build_Itype_Reference
(Def_Id
, Parent
(P
));
21500 Prepare_Private_Subtype_Completion
(Def_Id
, Related_Nod
);
21503 when Concurrent_Kind
=>
21504 Constrain_Concurrent
(Def_Id
, S
,
21505 Related_Nod
, Related_Id
, Suffix
);
21508 Error_Msg_N
("invalid subtype mark in subtype indication", S
);
21511 -- Size and Convention are always inherited from the base type
21513 Set_Size_Info
(Def_Id
, (Subtype_Mark_Id
));
21514 Set_Convention
(Def_Id
, Convention
(Subtype_Mark_Id
));
21518 end Process_Subtype
;
21520 -----------------------------
21521 -- Record_Type_Declaration --
21522 -----------------------------
21524 procedure Record_Type_Declaration
21529 Def
: constant Node_Id
:= Type_Definition
(N
);
21530 Is_Tagged
: Boolean;
21531 Tag_Comp
: Entity_Id
;
21534 -- These flags must be initialized before calling Process_Discriminants
21535 -- because this routine makes use of them.
21537 Set_Ekind
(T
, E_Record_Type
);
21539 Init_Size_Align
(T
);
21540 Set_Interfaces
(T
, No_Elist
);
21541 Set_Stored_Constraint
(T
, No_Elist
);
21542 Set_Default_SSO
(T
);
21546 if Ada_Version
< Ada_2005
or else not Interface_Present
(Def
) then
21547 if Limited_Present
(Def
) then
21548 Check_SPARK_05_Restriction
("limited is not allowed", N
);
21551 if Abstract_Present
(Def
) then
21552 Check_SPARK_05_Restriction
("abstract is not allowed", N
);
21555 -- The flag Is_Tagged_Type might have already been set by
21556 -- Find_Type_Name if it detected an error for declaration T. This
21557 -- arises in the case of private tagged types where the full view
21558 -- omits the word tagged.
21561 Tagged_Present
(Def
)
21562 or else (Serious_Errors_Detected
> 0 and then Is_Tagged_Type
(T
));
21564 Set_Is_Limited_Record
(T
, Limited_Present
(Def
));
21567 Set_Is_Tagged_Type
(T
, True);
21568 Set_No_Tagged_Streams_Pragma
(T
, No_Tagged_Streams
);
21571 -- Type is abstract if full declaration carries keyword, or if
21572 -- previous partial view did.
21574 Set_Is_Abstract_Type
(T
, Is_Abstract_Type
(T
)
21575 or else Abstract_Present
(Def
));
21578 Check_SPARK_05_Restriction
("interface is not allowed", N
);
21581 Analyze_Interface_Declaration
(T
, Def
);
21583 if Present
(Discriminant_Specifications
(N
)) then
21585 ("interface types cannot have discriminants",
21586 Defining_Identifier
21587 (First
(Discriminant_Specifications
(N
))));
21591 -- First pass: if there are self-referential access components,
21592 -- create the required anonymous access type declarations, and if
21593 -- need be an incomplete type declaration for T itself.
21595 Check_Anonymous_Access_Components
(N
, T
, Prev
, Component_List
(Def
));
21597 if Ada_Version
>= Ada_2005
21598 and then Present
(Interface_List
(Def
))
21600 Check_Interfaces
(N
, Def
);
21603 Ifaces_List
: Elist_Id
;
21606 -- Ada 2005 (AI-251): Collect the list of progenitors that are not
21607 -- already in the parents.
21611 Ifaces_List
=> Ifaces_List
,
21612 Exclude_Parents
=> True);
21614 Set_Interfaces
(T
, Ifaces_List
);
21618 -- Records constitute a scope for the component declarations within.
21619 -- The scope is created prior to the processing of these declarations.
21620 -- Discriminants are processed first, so that they are visible when
21621 -- processing the other components. The Ekind of the record type itself
21622 -- is set to E_Record_Type (subtypes appear as E_Record_Subtype).
21624 -- Enter record scope
21628 -- If an incomplete or private type declaration was already given for
21629 -- the type, then this scope already exists, and the discriminants have
21630 -- been declared within. We must verify that the full declaration
21631 -- matches the incomplete one.
21633 Check_Or_Process_Discriminants
(N
, T
, Prev
);
21635 Set_Is_Constrained
(T
, not Has_Discriminants
(T
));
21636 Set_Has_Delayed_Freeze
(T
, True);
21638 -- For tagged types add a manually analyzed component corresponding
21639 -- to the component _tag, the corresponding piece of tree will be
21640 -- expanded as part of the freezing actions if it is not a CPP_Class.
21644 -- Do not add the tag unless we are in expansion mode
21646 if Expander_Active
then
21647 Tag_Comp
:= Make_Defining_Identifier
(Sloc
(Def
), Name_uTag
);
21648 Enter_Name
(Tag_Comp
);
21650 Set_Ekind
(Tag_Comp
, E_Component
);
21651 Set_Is_Tag
(Tag_Comp
);
21652 Set_Is_Aliased
(Tag_Comp
);
21653 Set_Etype
(Tag_Comp
, RTE
(RE_Tag
));
21654 Set_DT_Entry_Count
(Tag_Comp
, No_Uint
);
21655 Set_Original_Record_Component
(Tag_Comp
, Tag_Comp
);
21656 Init_Component_Location
(Tag_Comp
);
21658 -- Ada 2005 (AI-251): Addition of the Tag corresponding to all the
21659 -- implemented interfaces.
21661 if Has_Interfaces
(T
) then
21662 Add_Interface_Tag_Components
(N
, T
);
21666 Make_Class_Wide_Type
(T
);
21667 Set_Direct_Primitive_Operations
(T
, New_Elmt_List
);
21670 -- We must suppress range checks when processing record components in
21671 -- the presence of discriminants, since we don't want spurious checks to
21672 -- be generated during their analysis, but Suppress_Range_Checks flags
21673 -- must be reset the after processing the record definition.
21675 -- Note: this is the only use of Kill_Range_Checks, and is a bit odd,
21676 -- couldn't we just use the normal range check suppression method here.
21677 -- That would seem cleaner ???
21679 if Has_Discriminants
(T
) and then not Range_Checks_Suppressed
(T
) then
21680 Set_Kill_Range_Checks
(T
, True);
21681 Record_Type_Definition
(Def
, Prev
);
21682 Set_Kill_Range_Checks
(T
, False);
21684 Record_Type_Definition
(Def
, Prev
);
21687 -- Exit from record scope
21691 -- Ada 2005 (AI-251 and AI-345): Derive the interface subprograms of all
21692 -- the implemented interfaces and associate them an aliased entity.
21695 and then not Is_Empty_List
(Interface_List
(Def
))
21697 Derive_Progenitor_Subprograms
(T
, T
);
21700 Check_Function_Writable_Actuals
(N
);
21701 end Record_Type_Declaration
;
21703 ----------------------------
21704 -- Record_Type_Definition --
21705 ----------------------------
21707 procedure Record_Type_Definition
(Def
: Node_Id
; Prev_T
: Entity_Id
) is
21708 Component
: Entity_Id
;
21709 Ctrl_Components
: Boolean := False;
21710 Final_Storage_Only
: Boolean;
21714 if Ekind
(Prev_T
) = E_Incomplete_Type
then
21715 T
:= Full_View
(Prev_T
);
21720 -- In SPARK, tagged types and type extensions may only be declared in
21721 -- the specification of library unit packages.
21723 if Present
(Def
) and then Is_Tagged_Type
(T
) then
21729 if Nkind
(Parent
(Def
)) = N_Full_Type_Declaration
then
21730 Typ
:= Parent
(Def
);
21733 (Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
);
21734 Typ
:= Parent
(Parent
(Def
));
21737 Ctxt
:= Parent
(Typ
);
21739 if Nkind
(Ctxt
) = N_Package_Body
21740 and then Nkind
(Parent
(Ctxt
)) = N_Compilation_Unit
21742 Check_SPARK_05_Restriction
21743 ("type should be defined in package specification", Typ
);
21745 elsif Nkind
(Ctxt
) /= N_Package_Specification
21746 or else Nkind
(Parent
(Parent
(Ctxt
))) /= N_Compilation_Unit
21748 Check_SPARK_05_Restriction
21749 ("type should be defined in library unit package", Typ
);
21754 Final_Storage_Only
:= not Is_Controlled_Active
(T
);
21756 -- Ada 2005: Check whether an explicit Limited is present in a derived
21757 -- type declaration.
21759 if Nkind
(Parent
(Def
)) = N_Derived_Type_Definition
21760 and then Limited_Present
(Parent
(Def
))
21762 Set_Is_Limited_Record
(T
);
21765 -- If the component list of a record type is defined by the reserved
21766 -- word null and there is no discriminant part, then the record type has
21767 -- no components and all records of the type are null records (RM 3.7)
21768 -- This procedure is also called to process the extension part of a
21769 -- record extension, in which case the current scope may have inherited
21773 or else No
(Component_List
(Def
))
21774 or else Null_Present
(Component_List
(Def
))
21776 if not Is_Tagged_Type
(T
) then
21777 Check_SPARK_05_Restriction
("untagged record cannot be null", Def
);
21781 Analyze_Declarations
(Component_Items
(Component_List
(Def
)));
21783 if Present
(Variant_Part
(Component_List
(Def
))) then
21784 Check_SPARK_05_Restriction
("variant part is not allowed", Def
);
21785 Analyze
(Variant_Part
(Component_List
(Def
)));
21789 -- After completing the semantic analysis of the record definition,
21790 -- record components, both new and inherited, are accessible. Set their
21791 -- kind accordingly. Exclude malformed itypes from illegal declarations,
21792 -- whose Ekind may be void.
21794 Component
:= First_Entity
(Current_Scope
);
21795 while Present
(Component
) loop
21796 if Ekind
(Component
) = E_Void
21797 and then not Is_Itype
(Component
)
21799 Set_Ekind
(Component
, E_Component
);
21800 Init_Component_Location
(Component
);
21803 Propagate_Concurrent_Flags
(T
, Etype
(Component
));
21805 if Ekind
(Component
) /= E_Component
then
21808 -- Do not set Has_Controlled_Component on a class-wide equivalent
21809 -- type. See Make_CW_Equivalent_Type.
21811 elsif not Is_Class_Wide_Equivalent_Type
(T
)
21812 and then (Has_Controlled_Component
(Etype
(Component
))
21813 or else (Chars
(Component
) /= Name_uParent
21814 and then Is_Controlled_Active
21815 (Etype
(Component
))))
21817 Set_Has_Controlled_Component
(T
, True);
21818 Final_Storage_Only
:=
21820 and then Finalize_Storage_Only
(Etype
(Component
));
21821 Ctrl_Components
:= True;
21824 Next_Entity
(Component
);
21827 -- A Type is Finalize_Storage_Only only if all its controlled components
21830 if Ctrl_Components
then
21831 Set_Finalize_Storage_Only
(T
, Final_Storage_Only
);
21834 -- Place reference to end record on the proper entity, which may
21835 -- be a partial view.
21837 if Present
(Def
) then
21838 Process_End_Label
(Def
, 'e', Prev_T
);
21840 end Record_Type_Definition
;
21842 ------------------------
21843 -- Replace_Components --
21844 ------------------------
21846 procedure Replace_Components
(Typ
: Entity_Id
; Decl
: Node_Id
) is
21847 function Process
(N
: Node_Id
) return Traverse_Result
;
21853 function Process
(N
: Node_Id
) return Traverse_Result
is
21857 if Nkind
(N
) = N_Discriminant_Specification
then
21858 Comp
:= First_Discriminant
(Typ
);
21859 while Present
(Comp
) loop
21860 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21861 Set_Defining_Identifier
(N
, Comp
);
21865 Next_Discriminant
(Comp
);
21868 elsif Nkind
(N
) = N_Component_Declaration
then
21869 Comp
:= First_Component
(Typ
);
21870 while Present
(Comp
) loop
21871 if Chars
(Comp
) = Chars
(Defining_Identifier
(N
)) then
21872 Set_Defining_Identifier
(N
, Comp
);
21876 Next_Component
(Comp
);
21883 procedure Replace
is new Traverse_Proc
(Process
);
21885 -- Start of processing for Replace_Components
21889 end Replace_Components
;
21891 -------------------------------
21892 -- Set_Completion_Referenced --
21893 -------------------------------
21895 procedure Set_Completion_Referenced
(E
: Entity_Id
) is
21897 -- If in main unit, mark entity that is a completion as referenced,
21898 -- warnings go on the partial view when needed.
21900 if In_Extended_Main_Source_Unit
(E
) then
21901 Set_Referenced
(E
);
21903 end Set_Completion_Referenced
;
21905 ---------------------
21906 -- Set_Default_SSO --
21907 ---------------------
21909 procedure Set_Default_SSO
(T
: Entity_Id
) is
21911 case Opt
.Default_SSO
is
21915 Set_SSO_Set_Low_By_Default
(T
, True);
21917 Set_SSO_Set_High_By_Default
(T
, True);
21919 raise Program_Error
;
21921 end Set_Default_SSO
;
21923 ---------------------
21924 -- Set_Fixed_Range --
21925 ---------------------
21927 -- The range for fixed-point types is complicated by the fact that we
21928 -- do not know the exact end points at the time of the declaration. This
21929 -- is true for three reasons:
21931 -- A size clause may affect the fudging of the end-points.
21932 -- A small clause may affect the values of the end-points.
21933 -- We try to include the end-points if it does not affect the size.
21935 -- This means that the actual end-points must be established at the
21936 -- point when the type is frozen. Meanwhile, we first narrow the range
21937 -- as permitted (so that it will fit if necessary in a small specified
21938 -- size), and then build a range subtree with these narrowed bounds.
21939 -- Set_Fixed_Range constructs the range from real literal values, and
21940 -- sets the range as the Scalar_Range of the given fixed-point type entity.
21942 -- The parent of this range is set to point to the entity so that it is
21943 -- properly hooked into the tree (unlike normal Scalar_Range entries for
21944 -- other scalar types, which are just pointers to the range in the
21945 -- original tree, this would otherwise be an orphan).
21947 -- The tree is left unanalyzed. When the type is frozen, the processing
21948 -- in Freeze.Freeze_Fixed_Point_Type notices that the range is not
21949 -- analyzed, and uses this as an indication that it should complete
21950 -- work on the range (it will know the final small and size values).
21952 procedure Set_Fixed_Range
21958 S
: constant Node_Id
:=
21960 Low_Bound
=> Make_Real_Literal
(Loc
, Lo
),
21961 High_Bound
=> Make_Real_Literal
(Loc
, Hi
));
21963 Set_Scalar_Range
(E
, S
);
21966 -- Before the freeze point, the bounds of a fixed point are universal
21967 -- and carry the corresponding type.
21969 Set_Etype
(Low_Bound
(S
), Universal_Real
);
21970 Set_Etype
(High_Bound
(S
), Universal_Real
);
21971 end Set_Fixed_Range
;
21973 ----------------------------------
21974 -- Set_Scalar_Range_For_Subtype --
21975 ----------------------------------
21977 procedure Set_Scalar_Range_For_Subtype
21978 (Def_Id
: Entity_Id
;
21982 Kind
: constant Entity_Kind
:= Ekind
(Def_Id
);
21985 -- Defend against previous error
21987 if Nkind
(R
) = N_Error
then
21991 Set_Scalar_Range
(Def_Id
, R
);
21993 -- We need to link the range into the tree before resolving it so
21994 -- that types that are referenced, including importantly the subtype
21995 -- itself, are properly frozen (Freeze_Expression requires that the
21996 -- expression be properly linked into the tree). Of course if it is
21997 -- already linked in, then we do not disturb the current link.
21999 if No
(Parent
(R
)) then
22000 Set_Parent
(R
, Def_Id
);
22003 -- Reset the kind of the subtype during analysis of the range, to
22004 -- catch possible premature use in the bounds themselves.
22006 Set_Ekind
(Def_Id
, E_Void
);
22007 Process_Range_Expr_In_Decl
(R
, Subt
, Subtyp
=> Def_Id
);
22008 Set_Ekind
(Def_Id
, Kind
);
22009 end Set_Scalar_Range_For_Subtype
;
22011 --------------------------------------------------------
22012 -- Set_Stored_Constraint_From_Discriminant_Constraint --
22013 --------------------------------------------------------
22015 procedure Set_Stored_Constraint_From_Discriminant_Constraint
22019 -- Make sure set if encountered during Expand_To_Stored_Constraint
22021 Set_Stored_Constraint
(E
, No_Elist
);
22023 -- Give it the right value
22025 if Is_Constrained
(E
) and then Has_Discriminants
(E
) then
22026 Set_Stored_Constraint
(E
,
22027 Expand_To_Stored_Constraint
(E
, Discriminant_Constraint
(E
)));
22029 end Set_Stored_Constraint_From_Discriminant_Constraint
;
22031 -------------------------------------
22032 -- Signed_Integer_Type_Declaration --
22033 -------------------------------------
22035 procedure Signed_Integer_Type_Declaration
(T
: Entity_Id
; Def
: Node_Id
) is
22036 Implicit_Base
: Entity_Id
;
22037 Base_Typ
: Entity_Id
;
22040 Errs
: Boolean := False;
22044 function Can_Derive_From
(E
: Entity_Id
) return Boolean;
22045 -- Determine whether given bounds allow derivation from specified type
22047 procedure Check_Bound
(Expr
: Node_Id
);
22048 -- Check bound to make sure it is integral and static. If not, post
22049 -- appropriate error message and set Errs flag
22051 ---------------------
22052 -- Can_Derive_From --
22053 ---------------------
22055 -- Note we check both bounds against both end values, to deal with
22056 -- strange types like ones with a range of 0 .. -12341234.
22058 function Can_Derive_From
(E
: Entity_Id
) return Boolean is
22059 Lo
: constant Uint
:= Expr_Value
(Type_Low_Bound
(E
));
22060 Hi
: constant Uint
:= Expr_Value
(Type_High_Bound
(E
));
22062 return Lo
<= Lo_Val
and then Lo_Val
<= Hi
22064 Lo
<= Hi_Val
and then Hi_Val
<= Hi
;
22065 end Can_Derive_From
;
22071 procedure Check_Bound
(Expr
: Node_Id
) is
22073 -- If a range constraint is used as an integer type definition, each
22074 -- bound of the range must be defined by a static expression of some
22075 -- integer type, but the two bounds need not have the same integer
22076 -- type (Negative bounds are allowed.) (RM 3.5.4)
22078 if not Is_Integer_Type
(Etype
(Expr
)) then
22080 ("integer type definition bounds must be of integer type", Expr
);
22083 elsif not Is_OK_Static_Expression
(Expr
) then
22084 Flag_Non_Static_Expr
22085 ("non-static expression used for integer type bound!", Expr
);
22088 -- The bounds are folded into literals, and we set their type to be
22089 -- universal, to avoid typing difficulties: we cannot set the type
22090 -- of the literal to the new type, because this would be a forward
22091 -- reference for the back end, and if the original type is user-
22092 -- defined this can lead to spurious semantic errors (e.g. 2928-003).
22095 if Is_Entity_Name
(Expr
) then
22096 Fold_Uint
(Expr
, Expr_Value
(Expr
), True);
22099 Set_Etype
(Expr
, Universal_Integer
);
22103 -- Start of processing for Signed_Integer_Type_Declaration
22106 -- Create an anonymous base type
22109 Create_Itype
(E_Signed_Integer_Type
, Parent
(Def
), T
, 'B');
22111 -- Analyze and check the bounds, they can be of any integer type
22113 Lo
:= Low_Bound
(Def
);
22114 Hi
:= High_Bound
(Def
);
22116 -- Arbitrarily use Integer as the type if either bound had an error
22118 if Hi
= Error
or else Lo
= Error
then
22119 Base_Typ
:= Any_Integer
;
22120 Set_Error_Posted
(T
, True);
22122 -- Here both bounds are OK expressions
22125 Analyze_And_Resolve
(Lo
, Any_Integer
);
22126 Analyze_And_Resolve
(Hi
, Any_Integer
);
22132 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
22133 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
22136 -- Find type to derive from
22138 Lo_Val
:= Expr_Value
(Lo
);
22139 Hi_Val
:= Expr_Value
(Hi
);
22141 if Can_Derive_From
(Standard_Short_Short_Integer
) then
22142 Base_Typ
:= Base_Type
(Standard_Short_Short_Integer
);
22144 elsif Can_Derive_From
(Standard_Short_Integer
) then
22145 Base_Typ
:= Base_Type
(Standard_Short_Integer
);
22147 elsif Can_Derive_From
(Standard_Integer
) then
22148 Base_Typ
:= Base_Type
(Standard_Integer
);
22150 elsif Can_Derive_From
(Standard_Long_Integer
) then
22151 Base_Typ
:= Base_Type
(Standard_Long_Integer
);
22153 elsif Can_Derive_From
(Standard_Long_Long_Integer
) then
22154 Check_Restriction
(No_Long_Long_Integers
, Def
);
22155 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
22158 Base_Typ
:= Base_Type
(Standard_Long_Long_Integer
);
22159 Error_Msg_N
("integer type definition bounds out of range", Def
);
22160 Hi
:= Type_High_Bound
(Standard_Long_Long_Integer
);
22161 Lo
:= Type_Low_Bound
(Standard_Long_Long_Integer
);
22165 -- Complete both implicit base and declared first subtype entities. The
22166 -- inheritance of the rep item chain ensures that SPARK-related pragmas
22167 -- are not clobbered when the signed integer type acts as a full view of
22170 Set_Etype
(Implicit_Base
, Base_Typ
);
22171 Set_Size_Info
(Implicit_Base
, Base_Typ
);
22172 Set_RM_Size
(Implicit_Base
, RM_Size
(Base_Typ
));
22173 Set_First_Rep_Item
(Implicit_Base
, First_Rep_Item
(Base_Typ
));
22174 Set_Scalar_Range
(Implicit_Base
, Scalar_Range
(Base_Typ
));
22176 Set_Ekind
(T
, E_Signed_Integer_Subtype
);
22177 Set_Etype
(T
, Implicit_Base
);
22178 Set_Size_Info
(T
, Implicit_Base
);
22179 Inherit_Rep_Item_Chain
(T
, Implicit_Base
);
22180 Set_Scalar_Range
(T
, Def
);
22181 Set_RM_Size
(T
, UI_From_Int
(Minimum_Size
(T
)));
22182 Set_Is_Constrained
(T
);
22183 end Signed_Integer_Type_Declaration
;