Implement TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS hook.
[official-gcc.git] / gcc / tree-vect-data-refs.c
blob36d9ff1eb04dcf178cdd8556bd0d297de6ee00ca
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "input.h"
28 #include "alias.h"
29 #include "symtab.h"
30 #include "tree.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "target.h"
35 #include "predict.h"
36 #include "hard-reg-set.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "basic-block.h"
41 #include "gimple-pretty-print.h"
42 #include "tree-ssa-alias.h"
43 #include "internal-fn.h"
44 #include "tree-eh.h"
45 #include "gimple-expr.h"
46 #include "is-a.h"
47 #include "gimple.h"
48 #include "gimplify.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "gimple-ssa.h"
52 #include "tree-phinodes.h"
53 #include "ssa-iterators.h"
54 #include "stringpool.h"
55 #include "tree-ssanames.h"
56 #include "tree-ssa-loop-ivopts.h"
57 #include "tree-ssa-loop-manip.h"
58 #include "tree-ssa-loop.h"
59 #include "cfgloop.h"
60 #include "tree-chrec.h"
61 #include "tree-scalar-evolution.h"
62 #include "tree-vectorizer.h"
63 #include "diagnostic-core.h"
64 #include "plugin-api.h"
65 #include "ipa-ref.h"
66 #include "cgraph.h"
67 /* Need to include rtl.h, expr.h, etc. for optabs. */
68 #include "rtl.h"
69 #include "flags.h"
70 #include "insn-config.h"
71 #include "expmed.h"
72 #include "dojump.h"
73 #include "explow.h"
74 #include "calls.h"
75 #include "emit-rtl.h"
76 #include "varasm.h"
77 #include "stmt.h"
78 #include "expr.h"
79 #include "insn-codes.h"
80 #include "optabs.h"
81 #include "builtins.h"
83 /* Return true if load- or store-lanes optab OPTAB is implemented for
84 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
86 static bool
87 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
88 tree vectype, unsigned HOST_WIDE_INT count)
90 machine_mode mode, array_mode;
91 bool limit_p;
93 mode = TYPE_MODE (vectype);
94 limit_p = !targetm.array_mode_supported_p (mode, count);
95 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
96 MODE_INT, limit_p);
98 if (array_mode == BLKmode)
100 if (dump_enabled_p ())
101 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
102 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
103 GET_MODE_NAME (mode), count);
104 return false;
107 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
109 if (dump_enabled_p ())
110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
111 "cannot use %s<%s><%s>\n", name,
112 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
113 return false;
116 if (dump_enabled_p ())
117 dump_printf_loc (MSG_NOTE, vect_location,
118 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
119 GET_MODE_NAME (mode));
121 return true;
125 /* Return the smallest scalar part of STMT.
126 This is used to determine the vectype of the stmt. We generally set the
127 vectype according to the type of the result (lhs). For stmts whose
128 result-type is different than the type of the arguments (e.g., demotion,
129 promotion), vectype will be reset appropriately (later). Note that we have
130 to visit the smallest datatype in this function, because that determines the
131 VF. If the smallest datatype in the loop is present only as the rhs of a
132 promotion operation - we'd miss it.
133 Such a case, where a variable of this datatype does not appear in the lhs
134 anywhere in the loop, can only occur if it's an invariant: e.g.:
135 'int_x = (int) short_inv', which we'd expect to have been optimized away by
136 invariant motion. However, we cannot rely on invariant motion to always
137 take invariants out of the loop, and so in the case of promotion we also
138 have to check the rhs.
139 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
140 types. */
142 tree
143 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
144 HOST_WIDE_INT *rhs_size_unit)
146 tree scalar_type = gimple_expr_type (stmt);
147 HOST_WIDE_INT lhs, rhs;
149 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
151 if (is_gimple_assign (stmt)
152 && (gimple_assign_cast_p (stmt)
153 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
154 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
155 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
157 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
159 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
160 if (rhs < lhs)
161 scalar_type = rhs_type;
164 *lhs_size_unit = lhs;
165 *rhs_size_unit = rhs;
166 return scalar_type;
170 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
171 tested at run-time. Return TRUE if DDR was successfully inserted.
172 Return false if versioning is not supported. */
174 static bool
175 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
177 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
179 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
180 return false;
182 if (dump_enabled_p ())
184 dump_printf_loc (MSG_NOTE, vect_location,
185 "mark for run-time aliasing test between ");
186 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
187 dump_printf (MSG_NOTE, " and ");
188 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
189 dump_printf (MSG_NOTE, "\n");
192 if (optimize_loop_nest_for_size_p (loop))
194 if (dump_enabled_p ())
195 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
196 "versioning not supported when optimizing"
197 " for size.\n");
198 return false;
201 /* FORNOW: We don't support versioning with outer-loop vectorization. */
202 if (loop->inner)
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
206 "versioning not yet supported for outer-loops.\n");
207 return false;
210 /* FORNOW: We don't support creating runtime alias tests for non-constant
211 step. */
212 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
213 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
215 if (dump_enabled_p ())
216 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
217 "versioning not yet supported for non-constant "
218 "step\n");
219 return false;
222 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
223 return true;
227 /* Function vect_analyze_data_ref_dependence.
229 Return TRUE if there (might) exist a dependence between a memory-reference
230 DRA and a memory-reference DRB. When versioning for alias may check a
231 dependence at run-time, return FALSE. Adjust *MAX_VF according to
232 the data dependence. */
234 static bool
235 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
236 loop_vec_info loop_vinfo, int *max_vf)
238 unsigned int i;
239 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
240 struct data_reference *dra = DDR_A (ddr);
241 struct data_reference *drb = DDR_B (ddr);
242 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
243 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
244 lambda_vector dist_v;
245 unsigned int loop_depth;
247 /* In loop analysis all data references should be vectorizable. */
248 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
249 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
250 gcc_unreachable ();
252 /* Independent data accesses. */
253 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
254 return false;
256 if (dra == drb
257 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
258 return false;
260 /* Even if we have an anti-dependence then, as the vectorized loop covers at
261 least two scalar iterations, there is always also a true dependence.
262 As the vectorizer does not re-order loads and stores we can ignore
263 the anti-dependence if TBAA can disambiguate both DRs similar to the
264 case with known negative distance anti-dependences (positive
265 distance anti-dependences would violate TBAA constraints). */
266 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
267 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
268 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
269 get_alias_set (DR_REF (drb))))
270 return false;
272 /* Unknown data dependence. */
273 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
275 /* If user asserted safelen consecutive iterations can be
276 executed concurrently, assume independence. */
277 if (loop->safelen >= 2)
279 if (loop->safelen < *max_vf)
280 *max_vf = loop->safelen;
281 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
282 return false;
285 if (STMT_VINFO_GATHER_P (stmtinfo_a)
286 || STMT_VINFO_GATHER_P (stmtinfo_b))
288 if (dump_enabled_p ())
290 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
291 "versioning for alias not supported for: "
292 "can't determine dependence between ");
293 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
294 DR_REF (dra));
295 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
296 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
297 DR_REF (drb));
298 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
300 return true;
303 if (dump_enabled_p ())
305 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
306 "versioning for alias required: "
307 "can't determine dependence between ");
308 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
309 DR_REF (dra));
310 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
311 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
312 DR_REF (drb));
313 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
316 /* Add to list of ddrs that need to be tested at run-time. */
317 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
320 /* Known data dependence. */
321 if (DDR_NUM_DIST_VECTS (ddr) == 0)
323 /* If user asserted safelen consecutive iterations can be
324 executed concurrently, assume independence. */
325 if (loop->safelen >= 2)
327 if (loop->safelen < *max_vf)
328 *max_vf = loop->safelen;
329 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
330 return false;
333 if (STMT_VINFO_GATHER_P (stmtinfo_a)
334 || STMT_VINFO_GATHER_P (stmtinfo_b))
336 if (dump_enabled_p ())
338 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
339 "versioning for alias not supported for: "
340 "bad dist vector for ");
341 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
342 DR_REF (dra));
343 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
344 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
345 DR_REF (drb));
346 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
348 return true;
351 if (dump_enabled_p ())
353 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
354 "versioning for alias required: "
355 "bad dist vector for ");
356 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
357 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
358 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
359 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
361 /* Add to list of ddrs that need to be tested at run-time. */
362 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
365 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
366 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
368 int dist = dist_v[loop_depth];
370 if (dump_enabled_p ())
371 dump_printf_loc (MSG_NOTE, vect_location,
372 "dependence distance = %d.\n", dist);
374 if (dist == 0)
376 if (dump_enabled_p ())
378 dump_printf_loc (MSG_NOTE, vect_location,
379 "dependence distance == 0 between ");
380 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
381 dump_printf (MSG_NOTE, " and ");
382 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
383 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
386 /* When we perform grouped accesses and perform implicit CSE
387 by detecting equal accesses and doing disambiguation with
388 runtime alias tests like for
389 .. = a[i];
390 .. = a[i+1];
391 a[i] = ..;
392 a[i+1] = ..;
393 *p = ..;
394 .. = a[i];
395 .. = a[i+1];
396 where we will end up loading { a[i], a[i+1] } once, make
397 sure that inserting group loads before the first load and
398 stores after the last store will do the right thing.
399 Similar for groups like
400 a[i] = ...;
401 ... = a[i];
402 a[i+1] = ...;
403 where loads from the group interleave with the store. */
404 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
405 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
407 gimple earlier_stmt;
408 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
409 if (DR_IS_WRITE
410 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
412 if (dump_enabled_p ())
413 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
414 "READ_WRITE dependence in interleaving."
415 "\n");
416 return true;
420 continue;
423 if (dist > 0 && DDR_REVERSED_P (ddr))
425 /* If DDR_REVERSED_P the order of the data-refs in DDR was
426 reversed (to make distance vector positive), and the actual
427 distance is negative. */
428 if (dump_enabled_p ())
429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
430 "dependence distance negative.\n");
431 /* Record a negative dependence distance to later limit the
432 amount of stmt copying / unrolling we can perform.
433 Only need to handle read-after-write dependence. */
434 if (DR_IS_READ (drb)
435 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
436 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
437 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
438 continue;
441 if (abs (dist) >= 2
442 && abs (dist) < *max_vf)
444 /* The dependence distance requires reduction of the maximal
445 vectorization factor. */
446 *max_vf = abs (dist);
447 if (dump_enabled_p ())
448 dump_printf_loc (MSG_NOTE, vect_location,
449 "adjusting maximal vectorization factor to %i\n",
450 *max_vf);
453 if (abs (dist) >= *max_vf)
455 /* Dependence distance does not create dependence, as far as
456 vectorization is concerned, in this case. */
457 if (dump_enabled_p ())
458 dump_printf_loc (MSG_NOTE, vect_location,
459 "dependence distance >= VF.\n");
460 continue;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
466 "not vectorized, possible dependence "
467 "between data-refs ");
468 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
469 dump_printf (MSG_NOTE, " and ");
470 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
471 dump_printf (MSG_NOTE, "\n");
474 return true;
477 return false;
480 /* Function vect_analyze_data_ref_dependences.
482 Examine all the data references in the loop, and make sure there do not
483 exist any data dependences between them. Set *MAX_VF according to
484 the maximum vectorization factor the data dependences allow. */
486 bool
487 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
489 unsigned int i;
490 struct data_dependence_relation *ddr;
492 if (dump_enabled_p ())
493 dump_printf_loc (MSG_NOTE, vect_location,
494 "=== vect_analyze_data_ref_dependences ===\n");
496 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
497 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
498 &LOOP_VINFO_DDRS (loop_vinfo),
499 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
500 return false;
502 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
503 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
504 return false;
506 return true;
510 /* Function vect_slp_analyze_data_ref_dependence.
512 Return TRUE if there (might) exist a dependence between a memory-reference
513 DRA and a memory-reference DRB. When versioning for alias may check a
514 dependence at run-time, return FALSE. Adjust *MAX_VF according to
515 the data dependence. */
517 static bool
518 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
520 struct data_reference *dra = DDR_A (ddr);
521 struct data_reference *drb = DDR_B (ddr);
523 /* We need to check dependences of statements marked as unvectorizable
524 as well, they still can prohibit vectorization. */
526 /* Independent data accesses. */
527 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
528 return false;
530 if (dra == drb)
531 return false;
533 /* Read-read is OK. */
534 if (DR_IS_READ (dra) && DR_IS_READ (drb))
535 return false;
537 /* If dra and drb are part of the same interleaving chain consider
538 them independent. */
539 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
540 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
541 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
542 return false;
544 /* Unknown data dependence. */
545 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
547 if (dump_enabled_p ())
549 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
550 "can't determine dependence between ");
551 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
552 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
553 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
554 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
557 else if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "determined dependence between ");
561 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
562 dump_printf (MSG_NOTE, " and ");
563 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
564 dump_printf (MSG_NOTE, "\n");
567 /* We do not vectorize basic blocks with write-write dependencies. */
568 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
569 return true;
571 /* If we have a read-write dependence check that the load is before the store.
572 When we vectorize basic blocks, vector load can be only before
573 corresponding scalar load, and vector store can be only after its
574 corresponding scalar store. So the order of the acceses is preserved in
575 case the load is before the store. */
576 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
577 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
579 /* That only holds for load-store pairs taking part in vectorization. */
580 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
581 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
582 return false;
585 return true;
589 /* Function vect_analyze_data_ref_dependences.
591 Examine all the data references in the basic-block, and make sure there
592 do not exist any data dependences between them. Set *MAX_VF according to
593 the maximum vectorization factor the data dependences allow. */
595 bool
596 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
598 struct data_dependence_relation *ddr;
599 unsigned int i;
601 if (dump_enabled_p ())
602 dump_printf_loc (MSG_NOTE, vect_location,
603 "=== vect_slp_analyze_data_ref_dependences ===\n");
605 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
606 &BB_VINFO_DDRS (bb_vinfo),
607 vNULL, true))
608 return false;
610 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
611 if (vect_slp_analyze_data_ref_dependence (ddr))
612 return false;
614 return true;
618 /* Function vect_compute_data_ref_alignment
620 Compute the misalignment of the data reference DR.
622 Output:
623 1. If during the misalignment computation it is found that the data reference
624 cannot be vectorized then false is returned.
625 2. DR_MISALIGNMENT (DR) is defined.
627 FOR NOW: No analysis is actually performed. Misalignment is calculated
628 only for trivial cases. TODO. */
630 static bool
631 vect_compute_data_ref_alignment (struct data_reference *dr)
633 gimple stmt = DR_STMT (dr);
634 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
635 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
636 struct loop *loop = NULL;
637 tree ref = DR_REF (dr);
638 tree vectype;
639 tree base, base_addr;
640 bool base_aligned;
641 tree misalign = NULL_TREE;
642 tree aligned_to;
643 unsigned HOST_WIDE_INT alignment;
645 if (dump_enabled_p ())
646 dump_printf_loc (MSG_NOTE, vect_location,
647 "vect_compute_data_ref_alignment:\n");
649 if (loop_vinfo)
650 loop = LOOP_VINFO_LOOP (loop_vinfo);
652 /* Initialize misalignment to unknown. */
653 SET_DR_MISALIGNMENT (dr, -1);
655 /* Strided accesses perform only component accesses, misalignment information
656 is irrelevant for them. */
657 if (STMT_VINFO_STRIDED_P (stmt_info)
658 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
659 return true;
661 if (tree_fits_shwi_p (DR_STEP (dr)))
662 misalign = DR_INIT (dr);
663 aligned_to = DR_ALIGNED_TO (dr);
664 base_addr = DR_BASE_ADDRESS (dr);
665 vectype = STMT_VINFO_VECTYPE (stmt_info);
667 /* In case the dataref is in an inner-loop of the loop that is being
668 vectorized (LOOP), we use the base and misalignment information
669 relative to the outer-loop (LOOP). This is ok only if the misalignment
670 stays the same throughout the execution of the inner-loop, which is why
671 we have to check that the stride of the dataref in the inner-loop evenly
672 divides by the vector size. */
673 if (loop && nested_in_vect_loop_p (loop, stmt))
675 tree step = DR_STEP (dr);
677 if (tree_fits_shwi_p (step)
678 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
680 if (dump_enabled_p ())
681 dump_printf_loc (MSG_NOTE, vect_location,
682 "inner step divides the vector-size.\n");
683 misalign = STMT_VINFO_DR_INIT (stmt_info);
684 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
685 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
687 else
689 if (dump_enabled_p ())
690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
691 "inner step doesn't divide the vector-size.\n");
692 misalign = NULL_TREE;
696 /* Similarly, if we're doing basic-block vectorization, we can only use
697 base and misalignment information relative to an innermost loop if the
698 misalignment stays the same throughout the execution of the loop.
699 As above, this is the case if the stride of the dataref evenly divides
700 by the vector size. */
701 if (!loop)
703 tree step = DR_STEP (dr);
705 if (tree_fits_shwi_p (step)
706 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
708 if (dump_enabled_p ())
709 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
710 "SLP: step doesn't divide the vector-size.\n");
711 misalign = NULL_TREE;
715 alignment = TYPE_ALIGN_UNIT (vectype);
717 if ((compare_tree_int (aligned_to, alignment) < 0)
718 || !misalign)
720 if (dump_enabled_p ())
722 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
723 "Unknown alignment for access: ");
724 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
725 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
727 return true;
730 /* To look at alignment of the base we have to preserve an inner MEM_REF
731 as that carries alignment information of the actual access. */
732 base = ref;
733 while (handled_component_p (base))
734 base = TREE_OPERAND (base, 0);
735 if (TREE_CODE (base) == MEM_REF)
736 base = build2 (MEM_REF, TREE_TYPE (base), base_addr,
737 build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)), 0));
739 if (get_object_alignment (base) >= TYPE_ALIGN (vectype))
740 base_aligned = true;
741 else
742 base_aligned = false;
744 if (!base_aligned)
746 /* Strip an inner MEM_REF to a bare decl if possible. */
747 if (TREE_CODE (base) == MEM_REF
748 && integer_zerop (TREE_OPERAND (base, 1))
749 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
750 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
752 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
754 if (dump_enabled_p ())
756 dump_printf_loc (MSG_NOTE, vect_location,
757 "can't force alignment of ref: ");
758 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
759 dump_printf (MSG_NOTE, "\n");
761 return true;
764 /* Force the alignment of the decl.
765 NOTE: This is the only change to the code we make during
766 the analysis phase, before deciding to vectorize the loop. */
767 if (dump_enabled_p ())
769 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
770 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
771 dump_printf (MSG_NOTE, "\n");
774 ((dataref_aux *)dr->aux)->base_decl = base;
775 ((dataref_aux *)dr->aux)->base_misaligned = true;
778 /* If this is a backward running DR then first access in the larger
779 vectype actually is N-1 elements before the address in the DR.
780 Adjust misalign accordingly. */
781 if (tree_int_cst_sgn (DR_STEP (dr)) < 0)
783 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
784 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
785 otherwise we wouldn't be here. */
786 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
787 /* PLUS because DR_STEP was negative. */
788 misalign = size_binop (PLUS_EXPR, misalign, offset);
791 SET_DR_MISALIGNMENT (dr,
792 wi::mod_floor (misalign, alignment, SIGNED).to_uhwi ());
794 if (dump_enabled_p ())
796 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
797 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
798 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
799 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
802 return true;
806 /* Function vect_compute_data_refs_alignment
808 Compute the misalignment of data references in the loop.
809 Return FALSE if a data reference is found that cannot be vectorized. */
811 static bool
812 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
813 bb_vec_info bb_vinfo)
815 vec<data_reference_p> datarefs;
816 struct data_reference *dr;
817 unsigned int i;
819 if (loop_vinfo)
820 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
821 else
822 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
824 FOR_EACH_VEC_ELT (datarefs, i, dr)
825 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
826 && !vect_compute_data_ref_alignment (dr))
828 if (bb_vinfo)
830 /* Mark unsupported statement as unvectorizable. */
831 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
832 continue;
834 else
835 return false;
838 return true;
842 /* Function vect_update_misalignment_for_peel
844 DR - the data reference whose misalignment is to be adjusted.
845 DR_PEEL - the data reference whose misalignment is being made
846 zero in the vector loop by the peel.
847 NPEEL - the number of iterations in the peel loop if the misalignment
848 of DR_PEEL is known at compile time. */
850 static void
851 vect_update_misalignment_for_peel (struct data_reference *dr,
852 struct data_reference *dr_peel, int npeel)
854 unsigned int i;
855 vec<dr_p> same_align_drs;
856 struct data_reference *current_dr;
857 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
858 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
859 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
860 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
862 /* For interleaved data accesses the step in the loop must be multiplied by
863 the size of the interleaving group. */
864 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
865 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
866 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
867 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
869 /* It can be assumed that the data refs with the same alignment as dr_peel
870 are aligned in the vector loop. */
871 same_align_drs
872 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
873 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
875 if (current_dr != dr)
876 continue;
877 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
878 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
879 SET_DR_MISALIGNMENT (dr, 0);
880 return;
883 if (known_alignment_for_access_p (dr)
884 && known_alignment_for_access_p (dr_peel))
886 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
887 int misal = DR_MISALIGNMENT (dr);
888 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
889 misal += negative ? -npeel * dr_size : npeel * dr_size;
890 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
891 SET_DR_MISALIGNMENT (dr, misal);
892 return;
895 if (dump_enabled_p ())
896 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
897 SET_DR_MISALIGNMENT (dr, -1);
901 /* Function vect_verify_datarefs_alignment
903 Return TRUE if all data references in the loop can be
904 handled with respect to alignment. */
906 bool
907 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
909 vec<data_reference_p> datarefs;
910 struct data_reference *dr;
911 enum dr_alignment_support supportable_dr_alignment;
912 unsigned int i;
914 if (loop_vinfo)
915 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
916 else
917 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
919 FOR_EACH_VEC_ELT (datarefs, i, dr)
921 gimple stmt = DR_STMT (dr);
922 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
924 if (!STMT_VINFO_RELEVANT_P (stmt_info))
925 continue;
927 /* For interleaving, only the alignment of the first access matters.
928 Skip statements marked as not vectorizable. */
929 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
930 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
931 || !STMT_VINFO_VECTORIZABLE (stmt_info))
932 continue;
934 /* Strided accesses perform only component accesses, alignment is
935 irrelevant for them. */
936 if (STMT_VINFO_STRIDED_P (stmt_info)
937 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
938 continue;
940 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
941 if (!supportable_dr_alignment)
943 if (dump_enabled_p ())
945 if (DR_IS_READ (dr))
946 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
947 "not vectorized: unsupported unaligned load.");
948 else
949 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
950 "not vectorized: unsupported unaligned "
951 "store.");
953 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
954 DR_REF (dr));
955 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
957 return false;
959 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
960 dump_printf_loc (MSG_NOTE, vect_location,
961 "Vectorizing an unaligned access.\n");
963 return true;
966 /* Given an memory reference EXP return whether its alignment is less
967 than its size. */
969 static bool
970 not_size_aligned (tree exp)
972 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
973 return true;
975 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
976 > get_object_alignment (exp));
979 /* Function vector_alignment_reachable_p
981 Return true if vector alignment for DR is reachable by peeling
982 a few loop iterations. Return false otherwise. */
984 static bool
985 vector_alignment_reachable_p (struct data_reference *dr)
987 gimple stmt = DR_STMT (dr);
988 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
989 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
991 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
993 /* For interleaved access we peel only if number of iterations in
994 the prolog loop ({VF - misalignment}), is a multiple of the
995 number of the interleaved accesses. */
996 int elem_size, mis_in_elements;
997 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
999 /* FORNOW: handle only known alignment. */
1000 if (!known_alignment_for_access_p (dr))
1001 return false;
1003 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1004 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1006 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1007 return false;
1010 /* If misalignment is known at the compile time then allow peeling
1011 only if natural alignment is reachable through peeling. */
1012 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1014 HOST_WIDE_INT elmsize =
1015 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1016 if (dump_enabled_p ())
1018 dump_printf_loc (MSG_NOTE, vect_location,
1019 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1020 dump_printf (MSG_NOTE,
1021 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1023 if (DR_MISALIGNMENT (dr) % elmsize)
1025 if (dump_enabled_p ())
1026 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1027 "data size does not divide the misalignment.\n");
1028 return false;
1032 if (!known_alignment_for_access_p (dr))
1034 tree type = TREE_TYPE (DR_REF (dr));
1035 bool is_packed = not_size_aligned (DR_REF (dr));
1036 if (dump_enabled_p ())
1037 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1038 "Unknown misalignment, is_packed = %d\n",is_packed);
1039 if ((TYPE_USER_ALIGN (type) && !is_packed)
1040 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1041 return true;
1042 else
1043 return false;
1046 return true;
1050 /* Calculate the cost of the memory access represented by DR. */
1052 static void
1053 vect_get_data_access_cost (struct data_reference *dr,
1054 unsigned int *inside_cost,
1055 unsigned int *outside_cost,
1056 stmt_vector_for_cost *body_cost_vec)
1058 gimple stmt = DR_STMT (dr);
1059 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1060 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1061 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1062 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1063 int ncopies = vf / nunits;
1065 if (DR_IS_READ (dr))
1066 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1067 NULL, body_cost_vec, false);
1068 else
1069 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1071 if (dump_enabled_p ())
1072 dump_printf_loc (MSG_NOTE, vect_location,
1073 "vect_get_data_access_cost: inside_cost = %d, "
1074 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1078 /* Insert DR into peeling hash table with NPEEL as key. */
1080 static void
1081 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1082 int npeel)
1084 struct _vect_peel_info elem, *slot;
1085 _vect_peel_info **new_slot;
1086 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1088 elem.npeel = npeel;
1089 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
1090 if (slot)
1091 slot->count++;
1092 else
1094 slot = XNEW (struct _vect_peel_info);
1095 slot->npeel = npeel;
1096 slot->dr = dr;
1097 slot->count = 1;
1098 new_slot
1099 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
1100 *new_slot = slot;
1103 if (!supportable_dr_alignment
1104 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1105 slot->count += VECT_MAX_COST;
1109 /* Traverse peeling hash table to find peeling option that aligns maximum
1110 number of data accesses. */
1113 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1114 _vect_peel_extended_info *max)
1116 vect_peel_info elem = *slot;
1118 if (elem->count > max->peel_info.count
1119 || (elem->count == max->peel_info.count
1120 && max->peel_info.npeel > elem->npeel))
1122 max->peel_info.npeel = elem->npeel;
1123 max->peel_info.count = elem->count;
1124 max->peel_info.dr = elem->dr;
1127 return 1;
1131 /* Traverse peeling hash table and calculate cost for each peeling option.
1132 Find the one with the lowest cost. */
1135 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1136 _vect_peel_extended_info *min)
1138 vect_peel_info elem = *slot;
1139 int save_misalignment, dummy;
1140 unsigned int inside_cost = 0, outside_cost = 0, i;
1141 gimple stmt = DR_STMT (elem->dr);
1142 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1143 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1144 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1145 struct data_reference *dr;
1146 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1148 prologue_cost_vec.create (2);
1149 body_cost_vec.create (2);
1150 epilogue_cost_vec.create (2);
1152 FOR_EACH_VEC_ELT (datarefs, i, dr)
1154 stmt = DR_STMT (dr);
1155 stmt_info = vinfo_for_stmt (stmt);
1156 /* For interleaving, only the alignment of the first access
1157 matters. */
1158 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1159 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1160 continue;
1162 save_misalignment = DR_MISALIGNMENT (dr);
1163 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1164 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1165 &body_cost_vec);
1166 SET_DR_MISALIGNMENT (dr, save_misalignment);
1169 auto_vec<stmt_info_for_cost> scalar_cost_vec;
1170 vect_get_single_scalar_iteration_cost (loop_vinfo, &scalar_cost_vec);
1171 outside_cost += vect_get_known_peeling_cost
1172 (loop_vinfo, elem->npeel, &dummy,
1173 &scalar_cost_vec, &prologue_cost_vec, &epilogue_cost_vec);
1175 /* Prologue and epilogue costs are added to the target model later.
1176 These costs depend only on the scalar iteration cost, the
1177 number of peeling iterations finally chosen, and the number of
1178 misaligned statements. So discard the information found here. */
1179 prologue_cost_vec.release ();
1180 epilogue_cost_vec.release ();
1182 if (inside_cost < min->inside_cost
1183 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1185 min->inside_cost = inside_cost;
1186 min->outside_cost = outside_cost;
1187 min->body_cost_vec.release ();
1188 min->body_cost_vec = body_cost_vec;
1189 min->peel_info.dr = elem->dr;
1190 min->peel_info.npeel = elem->npeel;
1192 else
1193 body_cost_vec.release ();
1195 return 1;
1199 /* Choose best peeling option by traversing peeling hash table and either
1200 choosing an option with the lowest cost (if cost model is enabled) or the
1201 option that aligns as many accesses as possible. */
1203 static struct data_reference *
1204 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1205 unsigned int *npeel,
1206 stmt_vector_for_cost *body_cost_vec)
1208 struct _vect_peel_extended_info res;
1210 res.peel_info.dr = NULL;
1211 res.body_cost_vec = stmt_vector_for_cost ();
1213 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1215 res.inside_cost = INT_MAX;
1216 res.outside_cost = INT_MAX;
1217 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1218 ->traverse <_vect_peel_extended_info *,
1219 vect_peeling_hash_get_lowest_cost> (&res);
1221 else
1223 res.peel_info.count = 0;
1224 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1225 ->traverse <_vect_peel_extended_info *,
1226 vect_peeling_hash_get_most_frequent> (&res);
1229 *npeel = res.peel_info.npeel;
1230 *body_cost_vec = res.body_cost_vec;
1231 return res.peel_info.dr;
1235 /* Function vect_enhance_data_refs_alignment
1237 This pass will use loop versioning and loop peeling in order to enhance
1238 the alignment of data references in the loop.
1240 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1241 original loop is to be vectorized. Any other loops that are created by
1242 the transformations performed in this pass - are not supposed to be
1243 vectorized. This restriction will be relaxed.
1245 This pass will require a cost model to guide it whether to apply peeling
1246 or versioning or a combination of the two. For example, the scheme that
1247 intel uses when given a loop with several memory accesses, is as follows:
1248 choose one memory access ('p') which alignment you want to force by doing
1249 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1250 other accesses are not necessarily aligned, or (2) use loop versioning to
1251 generate one loop in which all accesses are aligned, and another loop in
1252 which only 'p' is necessarily aligned.
1254 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1255 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1256 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1258 Devising a cost model is the most critical aspect of this work. It will
1259 guide us on which access to peel for, whether to use loop versioning, how
1260 many versions to create, etc. The cost model will probably consist of
1261 generic considerations as well as target specific considerations (on
1262 powerpc for example, misaligned stores are more painful than misaligned
1263 loads).
1265 Here are the general steps involved in alignment enhancements:
1267 -- original loop, before alignment analysis:
1268 for (i=0; i<N; i++){
1269 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1270 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1273 -- After vect_compute_data_refs_alignment:
1274 for (i=0; i<N; i++){
1275 x = q[i]; # DR_MISALIGNMENT(q) = 3
1276 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1279 -- Possibility 1: we do loop versioning:
1280 if (p is aligned) {
1281 for (i=0; i<N; i++){ # loop 1A
1282 x = q[i]; # DR_MISALIGNMENT(q) = 3
1283 p[i] = y; # DR_MISALIGNMENT(p) = 0
1286 else {
1287 for (i=0; i<N; i++){ # loop 1B
1288 x = q[i]; # DR_MISALIGNMENT(q) = 3
1289 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1293 -- Possibility 2: we do loop peeling:
1294 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1295 x = q[i];
1296 p[i] = y;
1298 for (i = 3; i < N; i++){ # loop 2A
1299 x = q[i]; # DR_MISALIGNMENT(q) = 0
1300 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1303 -- Possibility 3: combination of loop peeling and versioning:
1304 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1305 x = q[i];
1306 p[i] = y;
1308 if (p is aligned) {
1309 for (i = 3; i<N; i++){ # loop 3A
1310 x = q[i]; # DR_MISALIGNMENT(q) = 0
1311 p[i] = y; # DR_MISALIGNMENT(p) = 0
1314 else {
1315 for (i = 3; i<N; i++){ # loop 3B
1316 x = q[i]; # DR_MISALIGNMENT(q) = 0
1317 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1321 These loops are later passed to loop_transform to be vectorized. The
1322 vectorizer will use the alignment information to guide the transformation
1323 (whether to generate regular loads/stores, or with special handling for
1324 misalignment). */
1326 bool
1327 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1329 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1330 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1331 enum dr_alignment_support supportable_dr_alignment;
1332 struct data_reference *dr0 = NULL, *first_store = NULL;
1333 struct data_reference *dr;
1334 unsigned int i, j;
1335 bool do_peeling = false;
1336 bool do_versioning = false;
1337 bool stat;
1338 gimple stmt;
1339 stmt_vec_info stmt_info;
1340 unsigned int npeel = 0;
1341 bool all_misalignments_unknown = true;
1342 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1343 unsigned possible_npeel_number = 1;
1344 tree vectype;
1345 unsigned int nelements, mis, same_align_drs_max = 0;
1346 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_NOTE, vect_location,
1350 "=== vect_enhance_data_refs_alignment ===\n");
1352 /* While cost model enhancements are expected in the future, the high level
1353 view of the code at this time is as follows:
1355 A) If there is a misaligned access then see if peeling to align
1356 this access can make all data references satisfy
1357 vect_supportable_dr_alignment. If so, update data structures
1358 as needed and return true.
1360 B) If peeling wasn't possible and there is a data reference with an
1361 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1362 then see if loop versioning checks can be used to make all data
1363 references satisfy vect_supportable_dr_alignment. If so, update
1364 data structures as needed and return true.
1366 C) If neither peeling nor versioning were successful then return false if
1367 any data reference does not satisfy vect_supportable_dr_alignment.
1369 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1371 Note, Possibility 3 above (which is peeling and versioning together) is not
1372 being done at this time. */
1374 /* (1) Peeling to force alignment. */
1376 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1377 Considerations:
1378 + How many accesses will become aligned due to the peeling
1379 - How many accesses will become unaligned due to the peeling,
1380 and the cost of misaligned accesses.
1381 - The cost of peeling (the extra runtime checks, the increase
1382 in code size). */
1384 FOR_EACH_VEC_ELT (datarefs, i, dr)
1386 stmt = DR_STMT (dr);
1387 stmt_info = vinfo_for_stmt (stmt);
1389 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1390 continue;
1392 /* For interleaving, only the alignment of the first access
1393 matters. */
1394 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1395 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1396 continue;
1398 /* For invariant accesses there is nothing to enhance. */
1399 if (integer_zerop (DR_STEP (dr)))
1400 continue;
1402 /* Strided accesses perform only component accesses, alignment is
1403 irrelevant for them. */
1404 if (STMT_VINFO_STRIDED_P (stmt_info)
1405 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1406 continue;
1408 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1409 do_peeling = vector_alignment_reachable_p (dr);
1410 if (do_peeling)
1412 if (known_alignment_for_access_p (dr))
1414 unsigned int npeel_tmp;
1415 bool negative = tree_int_cst_compare (DR_STEP (dr),
1416 size_zero_node) < 0;
1418 /* Save info about DR in the hash table. */
1419 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1420 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1421 = new hash_table<peel_info_hasher> (1);
1423 vectype = STMT_VINFO_VECTYPE (stmt_info);
1424 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1425 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1426 TREE_TYPE (DR_REF (dr))));
1427 npeel_tmp = (negative
1428 ? (mis - nelements) : (nelements - mis))
1429 & (nelements - 1);
1431 /* For multiple types, it is possible that the bigger type access
1432 will have more than one peeling option. E.g., a loop with two
1433 types: one of size (vector size / 4), and the other one of
1434 size (vector size / 8). Vectorization factor will 8. If both
1435 access are misaligned by 3, the first one needs one scalar
1436 iteration to be aligned, and the second one needs 5. But the
1437 the first one will be aligned also by peeling 5 scalar
1438 iterations, and in that case both accesses will be aligned.
1439 Hence, except for the immediate peeling amount, we also want
1440 to try to add full vector size, while we don't exceed
1441 vectorization factor.
1442 We do this automtically for cost model, since we calculate cost
1443 for every peeling option. */
1444 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1445 possible_npeel_number = vf /nelements;
1447 /* Handle the aligned case. We may decide to align some other
1448 access, making DR unaligned. */
1449 if (DR_MISALIGNMENT (dr) == 0)
1451 npeel_tmp = 0;
1452 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1453 possible_npeel_number++;
1456 for (j = 0; j < possible_npeel_number; j++)
1458 gcc_assert (npeel_tmp <= vf);
1459 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1460 npeel_tmp += nelements;
1463 all_misalignments_unknown = false;
1464 /* Data-ref that was chosen for the case that all the
1465 misalignments are unknown is not relevant anymore, since we
1466 have a data-ref with known alignment. */
1467 dr0 = NULL;
1469 else
1471 /* If we don't know any misalignment values, we prefer
1472 peeling for data-ref that has the maximum number of data-refs
1473 with the same alignment, unless the target prefers to align
1474 stores over load. */
1475 if (all_misalignments_unknown)
1477 unsigned same_align_drs
1478 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1479 if (!dr0
1480 || same_align_drs_max < same_align_drs)
1482 same_align_drs_max = same_align_drs;
1483 dr0 = dr;
1485 /* For data-refs with the same number of related
1486 accesses prefer the one where the misalign
1487 computation will be invariant in the outermost loop. */
1488 else if (same_align_drs_max == same_align_drs)
1490 struct loop *ivloop0, *ivloop;
1491 ivloop0 = outermost_invariant_loop_for_expr
1492 (loop, DR_BASE_ADDRESS (dr0));
1493 ivloop = outermost_invariant_loop_for_expr
1494 (loop, DR_BASE_ADDRESS (dr));
1495 if ((ivloop && !ivloop0)
1496 || (ivloop && ivloop0
1497 && flow_loop_nested_p (ivloop, ivloop0)))
1498 dr0 = dr;
1501 if (!first_store && DR_IS_WRITE (dr))
1502 first_store = dr;
1505 /* If there are both known and unknown misaligned accesses in the
1506 loop, we choose peeling amount according to the known
1507 accesses. */
1508 if (!supportable_dr_alignment)
1510 dr0 = dr;
1511 if (!first_store && DR_IS_WRITE (dr))
1512 first_store = dr;
1516 else
1518 if (!aligned_access_p (dr))
1520 if (dump_enabled_p ())
1521 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1522 "vector alignment may not be reachable\n");
1523 break;
1528 /* Check if we can possibly peel the loop. */
1529 if (!vect_can_advance_ivs_p (loop_vinfo)
1530 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1531 do_peeling = false;
1533 if (do_peeling
1534 && all_misalignments_unknown
1535 && vect_supportable_dr_alignment (dr0, false))
1537 /* Check if the target requires to prefer stores over loads, i.e., if
1538 misaligned stores are more expensive than misaligned loads (taking
1539 drs with same alignment into account). */
1540 if (first_store && DR_IS_READ (dr0))
1542 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1543 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1544 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1545 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1546 stmt_vector_for_cost dummy;
1547 dummy.create (2);
1549 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1550 &dummy);
1551 vect_get_data_access_cost (first_store, &store_inside_cost,
1552 &store_outside_cost, &dummy);
1554 dummy.release ();
1556 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1557 aligning the load DR0). */
1558 load_inside_penalty = store_inside_cost;
1559 load_outside_penalty = store_outside_cost;
1560 for (i = 0;
1561 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1562 DR_STMT (first_store))).iterate (i, &dr);
1563 i++)
1564 if (DR_IS_READ (dr))
1566 load_inside_penalty += load_inside_cost;
1567 load_outside_penalty += load_outside_cost;
1569 else
1571 load_inside_penalty += store_inside_cost;
1572 load_outside_penalty += store_outside_cost;
1575 /* Calculate the penalty for leaving DR0 unaligned (by
1576 aligning the FIRST_STORE). */
1577 store_inside_penalty = load_inside_cost;
1578 store_outside_penalty = load_outside_cost;
1579 for (i = 0;
1580 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1581 DR_STMT (dr0))).iterate (i, &dr);
1582 i++)
1583 if (DR_IS_READ (dr))
1585 store_inside_penalty += load_inside_cost;
1586 store_outside_penalty += load_outside_cost;
1588 else
1590 store_inside_penalty += store_inside_cost;
1591 store_outside_penalty += store_outside_cost;
1594 if (load_inside_penalty > store_inside_penalty
1595 || (load_inside_penalty == store_inside_penalty
1596 && load_outside_penalty > store_outside_penalty))
1597 dr0 = first_store;
1600 /* In case there are only loads with different unknown misalignments, use
1601 peeling only if it may help to align other accesses in the loop or
1602 if it may help improving load bandwith when we'd end up using
1603 unaligned loads. */
1604 tree dr0_vt = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr0)));
1605 if (!first_store
1606 && !STMT_VINFO_SAME_ALIGN_REFS (
1607 vinfo_for_stmt (DR_STMT (dr0))).length ()
1608 && (vect_supportable_dr_alignment (dr0, false)
1609 != dr_unaligned_supported
1610 || (builtin_vectorization_cost (vector_load, dr0_vt, 0)
1611 == builtin_vectorization_cost (unaligned_load, dr0_vt, -1))))
1612 do_peeling = false;
1615 if (do_peeling && !dr0)
1617 /* Peeling is possible, but there is no data access that is not supported
1618 unless aligned. So we try to choose the best possible peeling. */
1620 /* We should get here only if there are drs with known misalignment. */
1621 gcc_assert (!all_misalignments_unknown);
1623 /* Choose the best peeling from the hash table. */
1624 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1625 &body_cost_vec);
1626 if (!dr0 || !npeel)
1627 do_peeling = false;
1630 if (do_peeling)
1632 stmt = DR_STMT (dr0);
1633 stmt_info = vinfo_for_stmt (stmt);
1634 vectype = STMT_VINFO_VECTYPE (stmt_info);
1635 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1637 if (known_alignment_for_access_p (dr0))
1639 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1640 size_zero_node) < 0;
1641 if (!npeel)
1643 /* Since it's known at compile time, compute the number of
1644 iterations in the peeled loop (the peeling factor) for use in
1645 updating DR_MISALIGNMENT values. The peeling factor is the
1646 vectorization factor minus the misalignment as an element
1647 count. */
1648 mis = DR_MISALIGNMENT (dr0);
1649 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1650 npeel = ((negative ? mis - nelements : nelements - mis)
1651 & (nelements - 1));
1654 /* For interleaved data access every iteration accesses all the
1655 members of the group, therefore we divide the number of iterations
1656 by the group size. */
1657 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1658 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1659 npeel /= GROUP_SIZE (stmt_info);
1661 if (dump_enabled_p ())
1662 dump_printf_loc (MSG_NOTE, vect_location,
1663 "Try peeling by %d\n", npeel);
1666 /* Ensure that all data refs can be vectorized after the peel. */
1667 FOR_EACH_VEC_ELT (datarefs, i, dr)
1669 int save_misalignment;
1671 if (dr == dr0)
1672 continue;
1674 stmt = DR_STMT (dr);
1675 stmt_info = vinfo_for_stmt (stmt);
1676 /* For interleaving, only the alignment of the first access
1677 matters. */
1678 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1679 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1680 continue;
1682 /* Strided accesses perform only component accesses, alignment is
1683 irrelevant for them. */
1684 if (STMT_VINFO_STRIDED_P (stmt_info)
1685 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1686 continue;
1688 save_misalignment = DR_MISALIGNMENT (dr);
1689 vect_update_misalignment_for_peel (dr, dr0, npeel);
1690 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1691 SET_DR_MISALIGNMENT (dr, save_misalignment);
1693 if (!supportable_dr_alignment)
1695 do_peeling = false;
1696 break;
1700 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1702 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1703 if (!stat)
1704 do_peeling = false;
1705 else
1707 body_cost_vec.release ();
1708 return stat;
1712 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
1713 if (do_peeling)
1715 unsigned max_allowed_peel
1716 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1717 if (max_allowed_peel != (unsigned)-1)
1719 unsigned max_peel = npeel;
1720 if (max_peel == 0)
1722 gimple dr_stmt = DR_STMT (dr0);
1723 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1724 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1725 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1727 if (max_peel > max_allowed_peel)
1729 do_peeling = false;
1730 if (dump_enabled_p ())
1731 dump_printf_loc (MSG_NOTE, vect_location,
1732 "Disable peeling, max peels reached: %d\n", max_peel);
1737 /* Cost model #2 - if peeling may result in a remaining loop not
1738 iterating enough to be vectorized then do not peel. */
1739 if (do_peeling
1740 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1742 unsigned max_peel
1743 = npeel == 0 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1 : npeel;
1744 if (LOOP_VINFO_INT_NITERS (loop_vinfo)
1745 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + max_peel)
1746 do_peeling = false;
1749 if (do_peeling)
1751 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1752 If the misalignment of DR_i is identical to that of dr0 then set
1753 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1754 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1755 by the peeling factor times the element size of DR_i (MOD the
1756 vectorization factor times the size). Otherwise, the
1757 misalignment of DR_i must be set to unknown. */
1758 FOR_EACH_VEC_ELT (datarefs, i, dr)
1759 if (dr != dr0)
1760 vect_update_misalignment_for_peel (dr, dr0, npeel);
1762 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1763 if (npeel)
1764 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1765 else
1766 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1767 = DR_MISALIGNMENT (dr0);
1768 SET_DR_MISALIGNMENT (dr0, 0);
1769 if (dump_enabled_p ())
1771 dump_printf_loc (MSG_NOTE, vect_location,
1772 "Alignment of access forced using peeling.\n");
1773 dump_printf_loc (MSG_NOTE, vect_location,
1774 "Peeling for alignment will be applied.\n");
1776 /* The inside-loop cost will be accounted for in vectorizable_load
1777 and vectorizable_store correctly with adjusted alignments.
1778 Drop the body_cst_vec on the floor here. */
1779 body_cost_vec.release ();
1781 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1782 gcc_assert (stat);
1783 return stat;
1787 body_cost_vec.release ();
1789 /* (2) Versioning to force alignment. */
1791 /* Try versioning if:
1792 1) optimize loop for speed
1793 2) there is at least one unsupported misaligned data ref with an unknown
1794 misalignment, and
1795 3) all misaligned data refs with a known misalignment are supported, and
1796 4) the number of runtime alignment checks is within reason. */
1798 do_versioning =
1799 optimize_loop_nest_for_speed_p (loop)
1800 && (!loop->inner); /* FORNOW */
1802 if (do_versioning)
1804 FOR_EACH_VEC_ELT (datarefs, i, dr)
1806 stmt = DR_STMT (dr);
1807 stmt_info = vinfo_for_stmt (stmt);
1809 /* For interleaving, only the alignment of the first access
1810 matters. */
1811 if (aligned_access_p (dr)
1812 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1813 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1814 continue;
1816 if (STMT_VINFO_STRIDED_P (stmt_info))
1818 /* Strided loads perform only component accesses, alignment is
1819 irrelevant for them. */
1820 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1821 continue;
1822 do_versioning = false;
1823 break;
1826 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1828 if (!supportable_dr_alignment)
1830 gimple stmt;
1831 int mask;
1832 tree vectype;
1834 if (known_alignment_for_access_p (dr)
1835 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1836 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1838 do_versioning = false;
1839 break;
1842 stmt = DR_STMT (dr);
1843 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1844 gcc_assert (vectype);
1846 /* The rightmost bits of an aligned address must be zeros.
1847 Construct the mask needed for this test. For example,
1848 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1849 mask must be 15 = 0xf. */
1850 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1852 /* FORNOW: use the same mask to test all potentially unaligned
1853 references in the loop. The vectorizer currently supports
1854 a single vector size, see the reference to
1855 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1856 vectorization factor is computed. */
1857 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1858 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1859 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1860 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1861 DR_STMT (dr));
1865 /* Versioning requires at least one misaligned data reference. */
1866 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1867 do_versioning = false;
1868 else if (!do_versioning)
1869 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1872 if (do_versioning)
1874 vec<gimple> may_misalign_stmts
1875 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1876 gimple stmt;
1878 /* It can now be assumed that the data references in the statements
1879 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1880 of the loop being vectorized. */
1881 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1883 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1884 dr = STMT_VINFO_DATA_REF (stmt_info);
1885 SET_DR_MISALIGNMENT (dr, 0);
1886 if (dump_enabled_p ())
1887 dump_printf_loc (MSG_NOTE, vect_location,
1888 "Alignment of access forced using versioning.\n");
1891 if (dump_enabled_p ())
1892 dump_printf_loc (MSG_NOTE, vect_location,
1893 "Versioning for alignment will be applied.\n");
1895 /* Peeling and versioning can't be done together at this time. */
1896 gcc_assert (! (do_peeling && do_versioning));
1898 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1899 gcc_assert (stat);
1900 return stat;
1903 /* This point is reached if neither peeling nor versioning is being done. */
1904 gcc_assert (! (do_peeling || do_versioning));
1906 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1907 return stat;
1911 /* Function vect_find_same_alignment_drs.
1913 Update group and alignment relations according to the chosen
1914 vectorization factor. */
1916 static void
1917 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1918 loop_vec_info loop_vinfo)
1920 unsigned int i;
1921 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1922 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1923 struct data_reference *dra = DDR_A (ddr);
1924 struct data_reference *drb = DDR_B (ddr);
1925 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1926 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1927 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1928 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1929 lambda_vector dist_v;
1930 unsigned int loop_depth;
1932 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1933 return;
1935 if (dra == drb)
1936 return;
1938 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1939 return;
1941 /* Loop-based vectorization and known data dependence. */
1942 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1943 return;
1945 /* Data-dependence analysis reports a distance vector of zero
1946 for data-references that overlap only in the first iteration
1947 but have different sign step (see PR45764).
1948 So as a sanity check require equal DR_STEP. */
1949 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1950 return;
1952 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1953 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1955 int dist = dist_v[loop_depth];
1957 if (dump_enabled_p ())
1958 dump_printf_loc (MSG_NOTE, vect_location,
1959 "dependence distance = %d.\n", dist);
1961 /* Same loop iteration. */
1962 if (dist == 0
1963 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1965 /* Two references with distance zero have the same alignment. */
1966 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1967 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1968 if (dump_enabled_p ())
1970 dump_printf_loc (MSG_NOTE, vect_location,
1971 "accesses have the same alignment.\n");
1972 dump_printf (MSG_NOTE,
1973 "dependence distance modulo vf == 0 between ");
1974 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1975 dump_printf (MSG_NOTE, " and ");
1976 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1977 dump_printf (MSG_NOTE, "\n");
1984 /* Function vect_analyze_data_refs_alignment
1986 Analyze the alignment of the data-references in the loop.
1987 Return FALSE if a data reference is found that cannot be vectorized. */
1989 bool
1990 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
1991 bb_vec_info bb_vinfo)
1993 if (dump_enabled_p ())
1994 dump_printf_loc (MSG_NOTE, vect_location,
1995 "=== vect_analyze_data_refs_alignment ===\n");
1997 /* Mark groups of data references with same alignment using
1998 data dependence information. */
1999 if (loop_vinfo)
2001 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2002 struct data_dependence_relation *ddr;
2003 unsigned int i;
2005 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2006 vect_find_same_alignment_drs (ddr, loop_vinfo);
2009 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2011 if (dump_enabled_p ())
2012 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2013 "not vectorized: can't calculate alignment "
2014 "for data ref.\n");
2015 return false;
2018 return true;
2022 /* Analyze groups of accesses: check that DR belongs to a group of
2023 accesses of legal size, step, etc. Detect gaps, single element
2024 interleaving, and other special cases. Set grouped access info.
2025 Collect groups of strided stores for further use in SLP analysis. */
2027 static bool
2028 vect_analyze_group_access (struct data_reference *dr)
2030 tree step = DR_STEP (dr);
2031 tree scalar_type = TREE_TYPE (DR_REF (dr));
2032 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2033 gimple stmt = DR_STMT (dr);
2034 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2035 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2036 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2037 HOST_WIDE_INT dr_step = -1;
2038 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2039 bool slp_impossible = false;
2040 struct loop *loop = NULL;
2042 if (loop_vinfo)
2043 loop = LOOP_VINFO_LOOP (loop_vinfo);
2045 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2046 size of the interleaving group (including gaps). */
2047 if (tree_fits_shwi_p (step))
2049 dr_step = tree_to_shwi (step);
2050 groupsize = absu_hwi (dr_step) / type_size;
2052 else
2053 groupsize = 0;
2055 /* Not consecutive access is possible only if it is a part of interleaving. */
2056 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2058 /* Check if it this DR is a part of interleaving, and is a single
2059 element of the group that is accessed in the loop. */
2061 /* Gaps are supported only for loads. STEP must be a multiple of the type
2062 size. The size of the group must be a power of 2. */
2063 if (DR_IS_READ (dr)
2064 && (dr_step % type_size) == 0
2065 && groupsize > 0
2066 && exact_log2 (groupsize) != -1)
2068 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2069 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2070 if (dump_enabled_p ())
2072 dump_printf_loc (MSG_NOTE, vect_location,
2073 "Detected single element interleaving ");
2074 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2075 dump_printf (MSG_NOTE, " step ");
2076 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2077 dump_printf (MSG_NOTE, "\n");
2080 if (loop_vinfo)
2082 if (dump_enabled_p ())
2083 dump_printf_loc (MSG_NOTE, vect_location,
2084 "Data access with gaps requires scalar "
2085 "epilogue loop\n");
2086 if (loop->inner)
2088 if (dump_enabled_p ())
2089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2090 "Peeling for outer loop is not"
2091 " supported\n");
2092 return false;
2095 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2098 return true;
2101 if (dump_enabled_p ())
2103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2104 "not consecutive access ");
2105 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2106 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2109 if (bb_vinfo)
2111 /* Mark the statement as unvectorizable. */
2112 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2113 return true;
2116 return false;
2119 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2121 /* First stmt in the interleaving chain. Check the chain. */
2122 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2123 struct data_reference *data_ref = dr;
2124 unsigned int count = 1;
2125 tree prev_init = DR_INIT (data_ref);
2126 gimple prev = stmt;
2127 HOST_WIDE_INT diff, gaps = 0;
2129 while (next)
2131 /* Skip same data-refs. In case that two or more stmts share
2132 data-ref (supported only for loads), we vectorize only the first
2133 stmt, and the rest get their vectorized loads from the first
2134 one. */
2135 if (!tree_int_cst_compare (DR_INIT (data_ref),
2136 DR_INIT (STMT_VINFO_DATA_REF (
2137 vinfo_for_stmt (next)))))
2139 if (DR_IS_WRITE (data_ref))
2141 if (dump_enabled_p ())
2142 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2143 "Two store stmts share the same dr.\n");
2144 return false;
2147 /* For load use the same data-ref load. */
2148 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2150 prev = next;
2151 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2152 continue;
2155 prev = next;
2156 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2158 /* All group members have the same STEP by construction. */
2159 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2161 /* Check that the distance between two accesses is equal to the type
2162 size. Otherwise, we have gaps. */
2163 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2164 - TREE_INT_CST_LOW (prev_init)) / type_size;
2165 if (diff != 1)
2167 /* FORNOW: SLP of accesses with gaps is not supported. */
2168 slp_impossible = true;
2169 if (DR_IS_WRITE (data_ref))
2171 if (dump_enabled_p ())
2172 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2173 "interleaved store with gaps\n");
2174 return false;
2177 gaps += diff - 1;
2180 last_accessed_element += diff;
2182 /* Store the gap from the previous member of the group. If there is no
2183 gap in the access, GROUP_GAP is always 1. */
2184 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2186 prev_init = DR_INIT (data_ref);
2187 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2188 /* Count the number of data-refs in the chain. */
2189 count++;
2192 if (groupsize == 0)
2193 groupsize = count + gaps;
2195 /* Check that the size of the interleaving is equal to count for stores,
2196 i.e., that there are no gaps. */
2197 if (groupsize != count
2198 && !DR_IS_READ (dr))
2200 if (dump_enabled_p ())
2201 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2202 "interleaved store with gaps\n");
2203 return false;
2206 /* If there is a gap after the last load in the group it is the
2207 difference between the groupsize and the last accessed
2208 element.
2209 When there is no gap, this difference should be 0. */
2210 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element;
2212 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2213 if (dump_enabled_p ())
2215 dump_printf_loc (MSG_NOTE, vect_location,
2216 "Detected interleaving of size %d starting with ",
2217 (int)groupsize);
2218 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
2219 if (GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
2220 dump_printf_loc (MSG_NOTE, vect_location,
2221 "There is a gap of %d elements after the group\n",
2222 (int)GROUP_GAP (vinfo_for_stmt (stmt)));
2225 /* SLP: create an SLP data structure for every interleaving group of
2226 stores for further analysis in vect_analyse_slp. */
2227 if (DR_IS_WRITE (dr) && !slp_impossible)
2229 if (loop_vinfo)
2230 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2231 if (bb_vinfo)
2232 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2235 /* There is a gap in the end of the group. */
2236 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2238 if (dump_enabled_p ())
2239 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2240 "Data access with gaps requires scalar "
2241 "epilogue loop\n");
2242 if (loop->inner)
2244 if (dump_enabled_p ())
2245 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2246 "Peeling for outer loop is not supported\n");
2247 return false;
2250 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2254 return true;
2258 /* Analyze the access pattern of the data-reference DR.
2259 In case of non-consecutive accesses call vect_analyze_group_access() to
2260 analyze groups of accesses. */
2262 static bool
2263 vect_analyze_data_ref_access (struct data_reference *dr)
2265 tree step = DR_STEP (dr);
2266 tree scalar_type = TREE_TYPE (DR_REF (dr));
2267 gimple stmt = DR_STMT (dr);
2268 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2269 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2270 struct loop *loop = NULL;
2272 if (loop_vinfo)
2273 loop = LOOP_VINFO_LOOP (loop_vinfo);
2275 if (loop_vinfo && !step)
2277 if (dump_enabled_p ())
2278 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2279 "bad data-ref access in loop\n");
2280 return false;
2283 /* Allow loads with zero step in inner-loop vectorization. */
2284 if (loop_vinfo && integer_zerop (step))
2286 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2287 if (!nested_in_vect_loop_p (loop, stmt))
2288 return DR_IS_READ (dr);
2289 /* Allow references with zero step for outer loops marked
2290 with pragma omp simd only - it guarantees absence of
2291 loop-carried dependencies between inner loop iterations. */
2292 if (!loop->force_vectorize)
2294 if (dump_enabled_p ())
2295 dump_printf_loc (MSG_NOTE, vect_location,
2296 "zero step in inner loop of nest\n");
2297 return false;
2301 if (loop && nested_in_vect_loop_p (loop, stmt))
2303 /* Interleaved accesses are not yet supported within outer-loop
2304 vectorization for references in the inner-loop. */
2305 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2307 /* For the rest of the analysis we use the outer-loop step. */
2308 step = STMT_VINFO_DR_STEP (stmt_info);
2309 if (integer_zerop (step))
2311 if (dump_enabled_p ())
2312 dump_printf_loc (MSG_NOTE, vect_location,
2313 "zero step in outer loop.\n");
2314 if (DR_IS_READ (dr))
2315 return true;
2316 else
2317 return false;
2321 /* Consecutive? */
2322 if (TREE_CODE (step) == INTEGER_CST)
2324 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2325 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2326 || (dr_step < 0
2327 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2329 /* Mark that it is not interleaving. */
2330 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2331 return true;
2335 if (loop && nested_in_vect_loop_p (loop, stmt))
2337 if (dump_enabled_p ())
2338 dump_printf_loc (MSG_NOTE, vect_location,
2339 "grouped access in outer loop.\n");
2340 return false;
2344 /* Assume this is a DR handled by non-constant strided load case. */
2345 if (TREE_CODE (step) != INTEGER_CST)
2346 return (STMT_VINFO_STRIDED_P (stmt_info)
2347 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2348 || vect_analyze_group_access (dr)));
2350 /* Not consecutive access - check if it's a part of interleaving group. */
2351 return vect_analyze_group_access (dr);
2356 /* A helper function used in the comparator function to sort data
2357 references. T1 and T2 are two data references to be compared.
2358 The function returns -1, 0, or 1. */
2360 static int
2361 compare_tree (tree t1, tree t2)
2363 int i, cmp;
2364 enum tree_code code;
2365 char tclass;
2367 if (t1 == t2)
2368 return 0;
2369 if (t1 == NULL)
2370 return -1;
2371 if (t2 == NULL)
2372 return 1;
2375 if (TREE_CODE (t1) != TREE_CODE (t2))
2376 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2378 code = TREE_CODE (t1);
2379 switch (code)
2381 /* For const values, we can just use hash values for comparisons. */
2382 case INTEGER_CST:
2383 case REAL_CST:
2384 case FIXED_CST:
2385 case STRING_CST:
2386 case COMPLEX_CST:
2387 case VECTOR_CST:
2389 hashval_t h1 = iterative_hash_expr (t1, 0);
2390 hashval_t h2 = iterative_hash_expr (t2, 0);
2391 if (h1 != h2)
2392 return h1 < h2 ? -1 : 1;
2393 break;
2396 case SSA_NAME:
2397 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2398 if (cmp != 0)
2399 return cmp;
2401 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2402 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2403 break;
2405 default:
2406 tclass = TREE_CODE_CLASS (code);
2408 /* For var-decl, we could compare their UIDs. */
2409 if (tclass == tcc_declaration)
2411 if (DECL_UID (t1) != DECL_UID (t2))
2412 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2413 break;
2416 /* For expressions with operands, compare their operands recursively. */
2417 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2419 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2420 if (cmp != 0)
2421 return cmp;
2425 return 0;
2429 /* Compare two data-references DRA and DRB to group them into chunks
2430 suitable for grouping. */
2432 static int
2433 dr_group_sort_cmp (const void *dra_, const void *drb_)
2435 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2436 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2437 int cmp;
2439 /* Stabilize sort. */
2440 if (dra == drb)
2441 return 0;
2443 /* Ordering of DRs according to base. */
2444 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2446 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2447 if (cmp != 0)
2448 return cmp;
2451 /* And according to DR_OFFSET. */
2452 if (!dr_equal_offsets_p (dra, drb))
2454 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2455 if (cmp != 0)
2456 return cmp;
2459 /* Put reads before writes. */
2460 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2461 return DR_IS_READ (dra) ? -1 : 1;
2463 /* Then sort after access size. */
2464 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2465 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2467 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2468 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2469 if (cmp != 0)
2470 return cmp;
2473 /* And after step. */
2474 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2476 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2477 if (cmp != 0)
2478 return cmp;
2481 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2482 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2483 if (cmp == 0)
2484 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2485 return cmp;
2488 /* Function vect_analyze_data_ref_accesses.
2490 Analyze the access pattern of all the data references in the loop.
2492 FORNOW: the only access pattern that is considered vectorizable is a
2493 simple step 1 (consecutive) access.
2495 FORNOW: handle only arrays and pointer accesses. */
2497 bool
2498 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2500 unsigned int i;
2501 vec<data_reference_p> datarefs;
2502 struct data_reference *dr;
2504 if (dump_enabled_p ())
2505 dump_printf_loc (MSG_NOTE, vect_location,
2506 "=== vect_analyze_data_ref_accesses ===\n");
2508 if (loop_vinfo)
2509 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2510 else
2511 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2513 if (datarefs.is_empty ())
2514 return true;
2516 /* Sort the array of datarefs to make building the interleaving chains
2517 linear. Don't modify the original vector's order, it is needed for
2518 determining what dependencies are reversed. */
2519 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2520 datarefs_copy.qsort (dr_group_sort_cmp);
2522 /* Build the interleaving chains. */
2523 for (i = 0; i < datarefs_copy.length () - 1;)
2525 data_reference_p dra = datarefs_copy[i];
2526 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2527 stmt_vec_info lastinfo = NULL;
2528 for (i = i + 1; i < datarefs_copy.length (); ++i)
2530 data_reference_p drb = datarefs_copy[i];
2531 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2533 /* ??? Imperfect sorting (non-compatible types, non-modulo
2534 accesses, same accesses) can lead to a group to be artificially
2535 split here as we don't just skip over those. If it really
2536 matters we can push those to a worklist and re-iterate
2537 over them. The we can just skip ahead to the next DR here. */
2539 /* Check that the data-refs have same first location (except init)
2540 and they are both either store or load (not load and store,
2541 not masked loads or stores). */
2542 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2543 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2544 DR_BASE_ADDRESS (drb), 0)
2545 || !dr_equal_offsets_p (dra, drb)
2546 || !gimple_assign_single_p (DR_STMT (dra))
2547 || !gimple_assign_single_p (DR_STMT (drb)))
2548 break;
2550 /* Check that the data-refs have the same constant size. */
2551 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2552 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2553 if (!tree_fits_uhwi_p (sza)
2554 || !tree_fits_uhwi_p (szb)
2555 || !tree_int_cst_equal (sza, szb))
2556 break;
2558 /* Check that the data-refs have the same step. */
2559 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2560 break;
2562 /* Do not place the same access in the interleaving chain twice. */
2563 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2564 break;
2566 /* Check the types are compatible.
2567 ??? We don't distinguish this during sorting. */
2568 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2569 TREE_TYPE (DR_REF (drb))))
2570 break;
2572 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2573 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2574 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2575 gcc_assert (init_a < init_b);
2577 /* If init_b == init_a + the size of the type * k, we have an
2578 interleaving, and DRA is accessed before DRB. */
2579 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2580 if ((init_b - init_a) % type_size_a != 0)
2581 break;
2583 /* If we have a store, the accesses are adjacent. This splits
2584 groups into chunks we support (we don't support vectorization
2585 of stores with gaps). */
2586 if (!DR_IS_READ (dra)
2587 && (init_b - (HOST_WIDE_INT) TREE_INT_CST_LOW
2588 (DR_INIT (datarefs_copy[i-1]))
2589 != type_size_a))
2590 break;
2592 /* If the step (if not zero or non-constant) is greater than the
2593 difference between data-refs' inits this splits groups into
2594 suitable sizes. */
2595 if (tree_fits_shwi_p (DR_STEP (dra)))
2597 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2598 if (step != 0 && step <= (init_b - init_a))
2599 break;
2602 if (dump_enabled_p ())
2604 dump_printf_loc (MSG_NOTE, vect_location,
2605 "Detected interleaving ");
2606 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2607 dump_printf (MSG_NOTE, " and ");
2608 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2609 dump_printf (MSG_NOTE, "\n");
2612 /* Link the found element into the group list. */
2613 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2615 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2616 lastinfo = stmtinfo_a;
2618 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2619 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2620 lastinfo = stmtinfo_b;
2624 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2625 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2626 && !vect_analyze_data_ref_access (dr))
2628 if (dump_enabled_p ())
2629 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2630 "not vectorized: complicated access pattern.\n");
2632 if (bb_vinfo)
2634 /* Mark the statement as not vectorizable. */
2635 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2636 continue;
2638 else
2640 datarefs_copy.release ();
2641 return false;
2645 datarefs_copy.release ();
2646 return true;
2650 /* Operator == between two dr_with_seg_len objects.
2652 This equality operator is used to make sure two data refs
2653 are the same one so that we will consider to combine the
2654 aliasing checks of those two pairs of data dependent data
2655 refs. */
2657 static bool
2658 operator == (const dr_with_seg_len& d1,
2659 const dr_with_seg_len& d2)
2661 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2662 DR_BASE_ADDRESS (d2.dr), 0)
2663 && compare_tree (d1.offset, d2.offset) == 0
2664 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2667 /* Function comp_dr_with_seg_len_pair.
2669 Comparison function for sorting objects of dr_with_seg_len_pair_t
2670 so that we can combine aliasing checks in one scan. */
2672 static int
2673 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2675 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2676 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2678 const dr_with_seg_len &p11 = p1->first,
2679 &p12 = p1->second,
2680 &p21 = p2->first,
2681 &p22 = p2->second;
2683 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2684 if a and c have the same basic address snd step, and b and d have the same
2685 address and step. Therefore, if any a&c or b&d don't have the same address
2686 and step, we don't care the order of those two pairs after sorting. */
2687 int comp_res;
2689 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2690 DR_BASE_ADDRESS (p21.dr))) != 0)
2691 return comp_res;
2692 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2693 DR_BASE_ADDRESS (p22.dr))) != 0)
2694 return comp_res;
2695 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2696 return comp_res;
2697 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2698 return comp_res;
2699 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2700 return comp_res;
2701 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2702 return comp_res;
2704 return 0;
2707 /* Function vect_vfa_segment_size.
2709 Create an expression that computes the size of segment
2710 that will be accessed for a data reference. The functions takes into
2711 account that realignment loads may access one more vector.
2713 Input:
2714 DR: The data reference.
2715 LENGTH_FACTOR: segment length to consider.
2717 Return an expression whose value is the size of segment which will be
2718 accessed by DR. */
2720 static tree
2721 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2723 tree segment_length;
2725 if (integer_zerop (DR_STEP (dr)))
2726 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2727 else
2728 segment_length = size_binop (MULT_EXPR,
2729 fold_convert (sizetype, DR_STEP (dr)),
2730 fold_convert (sizetype, length_factor));
2732 if (vect_supportable_dr_alignment (dr, false)
2733 == dr_explicit_realign_optimized)
2735 tree vector_size = TYPE_SIZE_UNIT
2736 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2738 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2740 return segment_length;
2743 /* Function vect_prune_runtime_alias_test_list.
2745 Prune a list of ddrs to be tested at run-time by versioning for alias.
2746 Merge several alias checks into one if possible.
2747 Return FALSE if resulting list of ddrs is longer then allowed by
2748 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2750 bool
2751 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2753 vec<ddr_p> may_alias_ddrs =
2754 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2755 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2756 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2757 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2758 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2760 ddr_p ddr;
2761 unsigned int i;
2762 tree length_factor;
2764 if (dump_enabled_p ())
2765 dump_printf_loc (MSG_NOTE, vect_location,
2766 "=== vect_prune_runtime_alias_test_list ===\n");
2768 if (may_alias_ddrs.is_empty ())
2769 return true;
2771 /* Basically, for each pair of dependent data refs store_ptr_0
2772 and load_ptr_0, we create an expression:
2774 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2775 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2777 for aliasing checks. However, in some cases we can decrease
2778 the number of checks by combining two checks into one. For
2779 example, suppose we have another pair of data refs store_ptr_0
2780 and load_ptr_1, and if the following condition is satisfied:
2782 load_ptr_0 < load_ptr_1 &&
2783 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2785 (this condition means, in each iteration of vectorized loop,
2786 the accessed memory of store_ptr_0 cannot be between the memory
2787 of load_ptr_0 and load_ptr_1.)
2789 we then can use only the following expression to finish the
2790 alising checks between store_ptr_0 & load_ptr_0 and
2791 store_ptr_0 & load_ptr_1:
2793 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2794 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2796 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2797 same basic address. */
2799 comp_alias_ddrs.create (may_alias_ddrs.length ());
2801 /* First, we collect all data ref pairs for aliasing checks. */
2802 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2804 struct data_reference *dr_a, *dr_b;
2805 gimple dr_group_first_a, dr_group_first_b;
2806 tree segment_length_a, segment_length_b;
2807 gimple stmt_a, stmt_b;
2809 dr_a = DDR_A (ddr);
2810 stmt_a = DR_STMT (DDR_A (ddr));
2811 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2812 if (dr_group_first_a)
2814 stmt_a = dr_group_first_a;
2815 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2818 dr_b = DDR_B (ddr);
2819 stmt_b = DR_STMT (DDR_B (ddr));
2820 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2821 if (dr_group_first_b)
2823 stmt_b = dr_group_first_b;
2824 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2827 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2828 length_factor = scalar_loop_iters;
2829 else
2830 length_factor = size_int (vect_factor);
2831 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2832 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2834 dr_with_seg_len_pair_t dr_with_seg_len_pair
2835 (dr_with_seg_len (dr_a, segment_length_a),
2836 dr_with_seg_len (dr_b, segment_length_b));
2838 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2839 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2841 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2844 /* Second, we sort the collected data ref pairs so that we can scan
2845 them once to combine all possible aliasing checks. */
2846 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2848 /* Third, we scan the sorted dr pairs and check if we can combine
2849 alias checks of two neighbouring dr pairs. */
2850 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2852 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2853 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2854 *dr_b1 = &comp_alias_ddrs[i-1].second,
2855 *dr_a2 = &comp_alias_ddrs[i].first,
2856 *dr_b2 = &comp_alias_ddrs[i].second;
2858 /* Remove duplicate data ref pairs. */
2859 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2861 if (dump_enabled_p ())
2863 dump_printf_loc (MSG_NOTE, vect_location,
2864 "found equal ranges ");
2865 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2866 DR_REF (dr_a1->dr));
2867 dump_printf (MSG_NOTE, ", ");
2868 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2869 DR_REF (dr_b1->dr));
2870 dump_printf (MSG_NOTE, " and ");
2871 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2872 DR_REF (dr_a2->dr));
2873 dump_printf (MSG_NOTE, ", ");
2874 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2875 DR_REF (dr_b2->dr));
2876 dump_printf (MSG_NOTE, "\n");
2879 comp_alias_ddrs.ordered_remove (i--);
2880 continue;
2883 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2885 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2886 and DR_A1 and DR_A2 are two consecutive memrefs. */
2887 if (*dr_a1 == *dr_a2)
2889 std::swap (dr_a1, dr_b1);
2890 std::swap (dr_a2, dr_b2);
2893 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2894 DR_BASE_ADDRESS (dr_a2->dr),
2896 || !tree_fits_shwi_p (dr_a1->offset)
2897 || !tree_fits_shwi_p (dr_a2->offset))
2898 continue;
2900 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2901 - tree_to_shwi (dr_a1->offset));
2904 /* Now we check if the following condition is satisfied:
2906 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2908 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2909 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2910 have to make a best estimation. We can get the minimum value
2911 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2912 then either of the following two conditions can guarantee the
2913 one above:
2915 1: DIFF <= MIN_SEG_LEN_B
2916 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2920 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2921 ? tree_to_shwi (dr_b1->seg_len)
2922 : vect_factor);
2924 if (diff <= min_seg_len_b
2925 || (tree_fits_shwi_p (dr_a1->seg_len)
2926 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
2928 if (dump_enabled_p ())
2930 dump_printf_loc (MSG_NOTE, vect_location,
2931 "merging ranges for ");
2932 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2933 DR_REF (dr_a1->dr));
2934 dump_printf (MSG_NOTE, ", ");
2935 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2936 DR_REF (dr_b1->dr));
2937 dump_printf (MSG_NOTE, " and ");
2938 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2939 DR_REF (dr_a2->dr));
2940 dump_printf (MSG_NOTE, ", ");
2941 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2942 DR_REF (dr_b2->dr));
2943 dump_printf (MSG_NOTE, "\n");
2946 dr_a1->seg_len = size_binop (PLUS_EXPR,
2947 dr_a2->seg_len, size_int (diff));
2948 comp_alias_ddrs.ordered_remove (i--);
2953 dump_printf_loc (MSG_NOTE, vect_location,
2954 "improved number of alias checks from %d to %d\n",
2955 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2956 if ((int) comp_alias_ddrs.length () >
2957 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2958 return false;
2960 return true;
2963 /* Check whether a non-affine read in stmt is suitable for gather load
2964 and if so, return a builtin decl for that operation. */
2966 tree
2967 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2968 tree *offp, int *scalep)
2970 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2971 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2972 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2973 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2974 tree offtype = NULL_TREE;
2975 tree decl, base, off;
2976 machine_mode pmode;
2977 int punsignedp, pvolatilep;
2979 base = DR_REF (dr);
2980 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2981 see if we can use the def stmt of the address. */
2982 if (is_gimple_call (stmt)
2983 && gimple_call_internal_p (stmt)
2984 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2985 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2986 && TREE_CODE (base) == MEM_REF
2987 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
2988 && integer_zerop (TREE_OPERAND (base, 1))
2989 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
2991 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
2992 if (is_gimple_assign (def_stmt)
2993 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
2994 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
2997 /* The gather builtins need address of the form
2998 loop_invariant + vector * {1, 2, 4, 8}
3000 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3001 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3002 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3003 multiplications and additions in it. To get a vector, we need
3004 a single SSA_NAME that will be defined in the loop and will
3005 contain everything that is not loop invariant and that can be
3006 vectorized. The following code attempts to find such a preexistng
3007 SSA_NAME OFF and put the loop invariants into a tree BASE
3008 that can be gimplified before the loop. */
3009 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
3010 &pmode, &punsignedp, &pvolatilep, false);
3011 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3013 if (TREE_CODE (base) == MEM_REF)
3015 if (!integer_zerop (TREE_OPERAND (base, 1)))
3017 if (off == NULL_TREE)
3019 offset_int moff = mem_ref_offset (base);
3020 off = wide_int_to_tree (sizetype, moff);
3022 else
3023 off = size_binop (PLUS_EXPR, off,
3024 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3026 base = TREE_OPERAND (base, 0);
3028 else
3029 base = build_fold_addr_expr (base);
3031 if (off == NULL_TREE)
3032 off = size_zero_node;
3034 /* If base is not loop invariant, either off is 0, then we start with just
3035 the constant offset in the loop invariant BASE and continue with base
3036 as OFF, otherwise give up.
3037 We could handle that case by gimplifying the addition of base + off
3038 into some SSA_NAME and use that as off, but for now punt. */
3039 if (!expr_invariant_in_loop_p (loop, base))
3041 if (!integer_zerop (off))
3042 return NULL_TREE;
3043 off = base;
3044 base = size_int (pbitpos / BITS_PER_UNIT);
3046 /* Otherwise put base + constant offset into the loop invariant BASE
3047 and continue with OFF. */
3048 else
3050 base = fold_convert (sizetype, base);
3051 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3054 /* OFF at this point may be either a SSA_NAME or some tree expression
3055 from get_inner_reference. Try to peel off loop invariants from it
3056 into BASE as long as possible. */
3057 STRIP_NOPS (off);
3058 while (offtype == NULL_TREE)
3060 enum tree_code code;
3061 tree op0, op1, add = NULL_TREE;
3063 if (TREE_CODE (off) == SSA_NAME)
3065 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3067 if (expr_invariant_in_loop_p (loop, off))
3068 return NULL_TREE;
3070 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3071 break;
3073 op0 = gimple_assign_rhs1 (def_stmt);
3074 code = gimple_assign_rhs_code (def_stmt);
3075 op1 = gimple_assign_rhs2 (def_stmt);
3077 else
3079 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3080 return NULL_TREE;
3081 code = TREE_CODE (off);
3082 extract_ops_from_tree (off, &code, &op0, &op1);
3084 switch (code)
3086 case POINTER_PLUS_EXPR:
3087 case PLUS_EXPR:
3088 if (expr_invariant_in_loop_p (loop, op0))
3090 add = op0;
3091 off = op1;
3092 do_add:
3093 add = fold_convert (sizetype, add);
3094 if (scale != 1)
3095 add = size_binop (MULT_EXPR, add, size_int (scale));
3096 base = size_binop (PLUS_EXPR, base, add);
3097 continue;
3099 if (expr_invariant_in_loop_p (loop, op1))
3101 add = op1;
3102 off = op0;
3103 goto do_add;
3105 break;
3106 case MINUS_EXPR:
3107 if (expr_invariant_in_loop_p (loop, op1))
3109 add = fold_convert (sizetype, op1);
3110 add = size_binop (MINUS_EXPR, size_zero_node, add);
3111 off = op0;
3112 goto do_add;
3114 break;
3115 case MULT_EXPR:
3116 if (scale == 1 && tree_fits_shwi_p (op1))
3118 scale = tree_to_shwi (op1);
3119 off = op0;
3120 continue;
3122 break;
3123 case SSA_NAME:
3124 off = op0;
3125 continue;
3126 CASE_CONVERT:
3127 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3128 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3129 break;
3130 if (TYPE_PRECISION (TREE_TYPE (op0))
3131 == TYPE_PRECISION (TREE_TYPE (off)))
3133 off = op0;
3134 continue;
3136 if (TYPE_PRECISION (TREE_TYPE (op0))
3137 < TYPE_PRECISION (TREE_TYPE (off)))
3139 off = op0;
3140 offtype = TREE_TYPE (off);
3141 STRIP_NOPS (off);
3142 continue;
3144 break;
3145 default:
3146 break;
3148 break;
3151 /* If at the end OFF still isn't a SSA_NAME or isn't
3152 defined in the loop, punt. */
3153 if (TREE_CODE (off) != SSA_NAME
3154 || expr_invariant_in_loop_p (loop, off))
3155 return NULL_TREE;
3157 if (offtype == NULL_TREE)
3158 offtype = TREE_TYPE (off);
3160 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3161 offtype, scale);
3162 if (decl == NULL_TREE)
3163 return NULL_TREE;
3165 if (basep)
3166 *basep = base;
3167 if (offp)
3168 *offp = off;
3169 if (scalep)
3170 *scalep = scale;
3171 return decl;
3174 /* Function vect_analyze_data_refs.
3176 Find all the data references in the loop or basic block.
3178 The general structure of the analysis of data refs in the vectorizer is as
3179 follows:
3180 1- vect_analyze_data_refs(loop/bb): call
3181 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3182 in the loop/bb and their dependences.
3183 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3184 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3185 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3189 bool
3190 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3191 bb_vec_info bb_vinfo,
3192 int *min_vf, unsigned *n_stmts)
3194 struct loop *loop = NULL;
3195 basic_block bb = NULL;
3196 unsigned int i;
3197 vec<data_reference_p> datarefs;
3198 struct data_reference *dr;
3199 tree scalar_type;
3201 if (dump_enabled_p ())
3202 dump_printf_loc (MSG_NOTE, vect_location,
3203 "=== vect_analyze_data_refs ===\n");
3205 if (loop_vinfo)
3207 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3209 loop = LOOP_VINFO_LOOP (loop_vinfo);
3210 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3211 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3213 if (dump_enabled_p ())
3214 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3215 "not vectorized: loop contains function calls"
3216 " or data references that cannot be analyzed\n");
3217 return false;
3220 for (i = 0; i < loop->num_nodes; i++)
3222 gimple_stmt_iterator gsi;
3224 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3226 gimple stmt = gsi_stmt (gsi);
3227 if (is_gimple_debug (stmt))
3228 continue;
3229 ++*n_stmts;
3230 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3232 if (is_gimple_call (stmt) && loop->safelen)
3234 tree fndecl = gimple_call_fndecl (stmt), op;
3235 if (fndecl != NULL_TREE)
3237 struct cgraph_node *node = cgraph_node::get (fndecl);
3238 if (node != NULL && node->simd_clones != NULL)
3240 unsigned int j, n = gimple_call_num_args (stmt);
3241 for (j = 0; j < n; j++)
3243 op = gimple_call_arg (stmt, j);
3244 if (DECL_P (op)
3245 || (REFERENCE_CLASS_P (op)
3246 && get_base_address (op)))
3247 break;
3249 op = gimple_call_lhs (stmt);
3250 /* Ignore #pragma omp declare simd functions
3251 if they don't have data references in the
3252 call stmt itself. */
3253 if (j == n
3254 && !(op
3255 && (DECL_P (op)
3256 || (REFERENCE_CLASS_P (op)
3257 && get_base_address (op)))))
3258 continue;
3262 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3263 if (dump_enabled_p ())
3264 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3265 "not vectorized: loop contains function "
3266 "calls or data references that cannot "
3267 "be analyzed\n");
3268 return false;
3273 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3275 else
3277 gimple_stmt_iterator gsi;
3279 bb = BB_VINFO_BB (bb_vinfo);
3280 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3282 gimple stmt = gsi_stmt (gsi);
3283 if (is_gimple_debug (stmt))
3284 continue;
3285 ++*n_stmts;
3286 if (!find_data_references_in_stmt (NULL, stmt,
3287 &BB_VINFO_DATAREFS (bb_vinfo)))
3289 /* Mark the rest of the basic-block as unvectorizable. */
3290 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3292 stmt = gsi_stmt (gsi);
3293 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3295 break;
3299 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3302 /* Go through the data-refs, check that the analysis succeeded. Update
3303 pointer from stmt_vec_info struct to DR and vectype. */
3305 FOR_EACH_VEC_ELT (datarefs, i, dr)
3307 gimple stmt;
3308 stmt_vec_info stmt_info;
3309 tree base, offset, init;
3310 bool gather = false;
3311 bool simd_lane_access = false;
3312 int vf;
3314 again:
3315 if (!dr || !DR_REF (dr))
3317 if (dump_enabled_p ())
3318 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3319 "not vectorized: unhandled data-ref\n");
3320 return false;
3323 stmt = DR_STMT (dr);
3324 stmt_info = vinfo_for_stmt (stmt);
3326 /* Discard clobbers from the dataref vector. We will remove
3327 clobber stmts during vectorization. */
3328 if (gimple_clobber_p (stmt))
3330 free_data_ref (dr);
3331 if (i == datarefs.length () - 1)
3333 datarefs.pop ();
3334 break;
3336 datarefs.ordered_remove (i);
3337 dr = datarefs[i];
3338 goto again;
3341 /* Check that analysis of the data-ref succeeded. */
3342 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3343 || !DR_STEP (dr))
3345 bool maybe_gather
3346 = DR_IS_READ (dr)
3347 && !TREE_THIS_VOLATILE (DR_REF (dr))
3348 && targetm.vectorize.builtin_gather != NULL;
3349 bool maybe_simd_lane_access
3350 = loop_vinfo && loop->simduid;
3352 /* If target supports vector gather loads, or if this might be
3353 a SIMD lane access, see if they can't be used. */
3354 if (loop_vinfo
3355 && (maybe_gather || maybe_simd_lane_access)
3356 && !nested_in_vect_loop_p (loop, stmt))
3358 struct data_reference *newdr
3359 = create_data_ref (NULL, loop_containing_stmt (stmt),
3360 DR_REF (dr), stmt, true);
3361 gcc_assert (newdr != NULL && DR_REF (newdr));
3362 if (DR_BASE_ADDRESS (newdr)
3363 && DR_OFFSET (newdr)
3364 && DR_INIT (newdr)
3365 && DR_STEP (newdr)
3366 && integer_zerop (DR_STEP (newdr)))
3368 if (maybe_simd_lane_access)
3370 tree off = DR_OFFSET (newdr);
3371 STRIP_NOPS (off);
3372 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3373 && TREE_CODE (off) == MULT_EXPR
3374 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3376 tree step = TREE_OPERAND (off, 1);
3377 off = TREE_OPERAND (off, 0);
3378 STRIP_NOPS (off);
3379 if (CONVERT_EXPR_P (off)
3380 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3381 0)))
3382 < TYPE_PRECISION (TREE_TYPE (off)))
3383 off = TREE_OPERAND (off, 0);
3384 if (TREE_CODE (off) == SSA_NAME)
3386 gimple def = SSA_NAME_DEF_STMT (off);
3387 tree reft = TREE_TYPE (DR_REF (newdr));
3388 if (is_gimple_call (def)
3389 && gimple_call_internal_p (def)
3390 && (gimple_call_internal_fn (def)
3391 == IFN_GOMP_SIMD_LANE))
3393 tree arg = gimple_call_arg (def, 0);
3394 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3395 arg = SSA_NAME_VAR (arg);
3396 if (arg == loop->simduid
3397 /* For now. */
3398 && tree_int_cst_equal
3399 (TYPE_SIZE_UNIT (reft),
3400 step))
3402 DR_OFFSET (newdr) = ssize_int (0);
3403 DR_STEP (newdr) = step;
3404 DR_ALIGNED_TO (newdr)
3405 = size_int (BIGGEST_ALIGNMENT);
3406 dr = newdr;
3407 simd_lane_access = true;
3413 if (!simd_lane_access && maybe_gather)
3415 dr = newdr;
3416 gather = true;
3419 if (!gather && !simd_lane_access)
3420 free_data_ref (newdr);
3423 if (!gather && !simd_lane_access)
3425 if (dump_enabled_p ())
3427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3428 "not vectorized: data ref analysis "
3429 "failed ");
3430 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3431 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3434 if (bb_vinfo)
3435 break;
3437 return false;
3441 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3443 if (dump_enabled_p ())
3444 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3445 "not vectorized: base addr of dr is a "
3446 "constant\n");
3448 if (bb_vinfo)
3449 break;
3451 if (gather || simd_lane_access)
3452 free_data_ref (dr);
3453 return false;
3456 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3458 if (dump_enabled_p ())
3460 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3461 "not vectorized: volatile type ");
3462 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3463 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3466 if (bb_vinfo)
3467 break;
3469 return false;
3472 if (stmt_can_throw_internal (stmt))
3474 if (dump_enabled_p ())
3476 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3477 "not vectorized: statement can throw an "
3478 "exception ");
3479 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3480 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3483 if (bb_vinfo)
3484 break;
3486 if (gather || simd_lane_access)
3487 free_data_ref (dr);
3488 return false;
3491 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3492 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3494 if (dump_enabled_p ())
3496 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3497 "not vectorized: statement is bitfield "
3498 "access ");
3499 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3500 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3503 if (bb_vinfo)
3504 break;
3506 if (gather || simd_lane_access)
3507 free_data_ref (dr);
3508 return false;
3511 base = unshare_expr (DR_BASE_ADDRESS (dr));
3512 offset = unshare_expr (DR_OFFSET (dr));
3513 init = unshare_expr (DR_INIT (dr));
3515 if (is_gimple_call (stmt)
3516 && (!gimple_call_internal_p (stmt)
3517 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3518 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3520 if (dump_enabled_p ())
3522 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3523 "not vectorized: dr in a call ");
3524 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3525 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3528 if (bb_vinfo)
3529 break;
3531 if (gather || simd_lane_access)
3532 free_data_ref (dr);
3533 return false;
3536 /* Update DR field in stmt_vec_info struct. */
3538 /* If the dataref is in an inner-loop of the loop that is considered for
3539 for vectorization, we also want to analyze the access relative to
3540 the outer-loop (DR contains information only relative to the
3541 inner-most enclosing loop). We do that by building a reference to the
3542 first location accessed by the inner-loop, and analyze it relative to
3543 the outer-loop. */
3544 if (loop && nested_in_vect_loop_p (loop, stmt))
3546 tree outer_step, outer_base, outer_init;
3547 HOST_WIDE_INT pbitsize, pbitpos;
3548 tree poffset;
3549 machine_mode pmode;
3550 int punsignedp, pvolatilep;
3551 affine_iv base_iv, offset_iv;
3552 tree dinit;
3554 /* Build a reference to the first location accessed by the
3555 inner-loop: *(BASE+INIT). (The first location is actually
3556 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3557 tree inner_base = build_fold_indirect_ref
3558 (fold_build_pointer_plus (base, init));
3560 if (dump_enabled_p ())
3562 dump_printf_loc (MSG_NOTE, vect_location,
3563 "analyze in outer-loop: ");
3564 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3565 dump_printf (MSG_NOTE, "\n");
3568 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3569 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3570 gcc_assert (outer_base != NULL_TREE);
3572 if (pbitpos % BITS_PER_UNIT != 0)
3574 if (dump_enabled_p ())
3575 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3576 "failed: bit offset alignment.\n");
3577 return false;
3580 outer_base = build_fold_addr_expr (outer_base);
3581 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3582 &base_iv, false))
3584 if (dump_enabled_p ())
3585 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3586 "failed: evolution of base is not affine.\n");
3587 return false;
3590 if (offset)
3592 if (poffset)
3593 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3594 poffset);
3595 else
3596 poffset = offset;
3599 if (!poffset)
3601 offset_iv.base = ssize_int (0);
3602 offset_iv.step = ssize_int (0);
3604 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3605 &offset_iv, false))
3607 if (dump_enabled_p ())
3608 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3609 "evolution of offset is not affine.\n");
3610 return false;
3613 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3614 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3615 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3616 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3617 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3619 outer_step = size_binop (PLUS_EXPR,
3620 fold_convert (ssizetype, base_iv.step),
3621 fold_convert (ssizetype, offset_iv.step));
3623 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3624 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3625 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3626 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3627 STMT_VINFO_DR_OFFSET (stmt_info) =
3628 fold_convert (ssizetype, offset_iv.base);
3629 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3630 size_int (highest_pow2_factor (offset_iv.base));
3632 if (dump_enabled_p ())
3634 dump_printf_loc (MSG_NOTE, vect_location,
3635 "\touter base_address: ");
3636 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3637 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3638 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3639 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3640 STMT_VINFO_DR_OFFSET (stmt_info));
3641 dump_printf (MSG_NOTE,
3642 "\n\touter constant offset from base address: ");
3643 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3644 STMT_VINFO_DR_INIT (stmt_info));
3645 dump_printf (MSG_NOTE, "\n\touter step: ");
3646 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3647 STMT_VINFO_DR_STEP (stmt_info));
3648 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3649 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3650 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3651 dump_printf (MSG_NOTE, "\n");
3655 if (STMT_VINFO_DATA_REF (stmt_info))
3657 if (dump_enabled_p ())
3659 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3660 "not vectorized: more than one data ref "
3661 "in stmt: ");
3662 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3663 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3666 if (bb_vinfo)
3667 break;
3669 if (gather || simd_lane_access)
3670 free_data_ref (dr);
3671 return false;
3674 STMT_VINFO_DATA_REF (stmt_info) = dr;
3675 if (simd_lane_access)
3677 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3678 free_data_ref (datarefs[i]);
3679 datarefs[i] = dr;
3682 /* Set vectype for STMT. */
3683 scalar_type = TREE_TYPE (DR_REF (dr));
3684 STMT_VINFO_VECTYPE (stmt_info)
3685 = get_vectype_for_scalar_type (scalar_type);
3686 if (!STMT_VINFO_VECTYPE (stmt_info))
3688 if (dump_enabled_p ())
3690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3691 "not vectorized: no vectype for stmt: ");
3692 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3693 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3694 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3695 scalar_type);
3696 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3699 if (bb_vinfo)
3700 break;
3702 if (gather || simd_lane_access)
3704 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3705 if (gather)
3706 free_data_ref (dr);
3708 return false;
3710 else
3712 if (dump_enabled_p ())
3714 dump_printf_loc (MSG_NOTE, vect_location,
3715 "got vectype for stmt: ");
3716 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3717 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3718 STMT_VINFO_VECTYPE (stmt_info));
3719 dump_printf (MSG_NOTE, "\n");
3723 /* Adjust the minimal vectorization factor according to the
3724 vector type. */
3725 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3726 if (vf > *min_vf)
3727 *min_vf = vf;
3729 if (gather)
3731 tree off;
3733 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3734 if (gather
3735 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3736 gather = false;
3737 if (!gather)
3739 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3740 free_data_ref (dr);
3741 if (dump_enabled_p ())
3743 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3744 "not vectorized: not suitable for gather "
3745 "load ");
3746 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3747 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3749 return false;
3752 datarefs[i] = dr;
3753 STMT_VINFO_GATHER_P (stmt_info) = true;
3755 else if (loop_vinfo
3756 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3758 if (nested_in_vect_loop_p (loop, stmt))
3760 if (dump_enabled_p ())
3762 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3763 "not vectorized: not suitable for strided "
3764 "load ");
3765 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3766 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3768 return false;
3770 STMT_VINFO_STRIDED_P (stmt_info) = true;
3774 /* If we stopped analysis at the first dataref we could not analyze
3775 when trying to vectorize a basic-block mark the rest of the datarefs
3776 as not vectorizable and truncate the vector of datarefs. That
3777 avoids spending useless time in analyzing their dependence. */
3778 if (i != datarefs.length ())
3780 gcc_assert (bb_vinfo != NULL);
3781 for (unsigned j = i; j < datarefs.length (); ++j)
3783 data_reference_p dr = datarefs[j];
3784 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3785 free_data_ref (dr);
3787 datarefs.truncate (i);
3790 return true;
3794 /* Function vect_get_new_vect_var.
3796 Returns a name for a new variable. The current naming scheme appends the
3797 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3798 the name of vectorizer generated variables, and appends that to NAME if
3799 provided. */
3801 tree
3802 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3804 const char *prefix;
3805 tree new_vect_var;
3807 switch (var_kind)
3809 case vect_simple_var:
3810 prefix = "vect";
3811 break;
3812 case vect_scalar_var:
3813 prefix = "stmp";
3814 break;
3815 case vect_pointer_var:
3816 prefix = "vectp";
3817 break;
3818 default:
3819 gcc_unreachable ();
3822 if (name)
3824 char* tmp = concat (prefix, "_", name, NULL);
3825 new_vect_var = create_tmp_reg (type, tmp);
3826 free (tmp);
3828 else
3829 new_vect_var = create_tmp_reg (type, prefix);
3831 return new_vect_var;
3834 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
3836 static void
3837 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr,
3838 stmt_vec_info stmt_info)
3840 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
3841 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3842 int misalign = DR_MISALIGNMENT (dr);
3843 if (misalign == -1)
3844 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
3845 else
3846 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name), align, misalign);
3849 /* Function vect_create_addr_base_for_vector_ref.
3851 Create an expression that computes the address of the first memory location
3852 that will be accessed for a data reference.
3854 Input:
3855 STMT: The statement containing the data reference.
3856 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3857 OFFSET: Optional. If supplied, it is be added to the initial address.
3858 LOOP: Specify relative to which loop-nest should the address be computed.
3859 For example, when the dataref is in an inner-loop nested in an
3860 outer-loop that is now being vectorized, LOOP can be either the
3861 outer-loop, or the inner-loop. The first memory location accessed
3862 by the following dataref ('in' points to short):
3864 for (i=0; i<N; i++)
3865 for (j=0; j<M; j++)
3866 s += in[i+j]
3868 is as follows:
3869 if LOOP=i_loop: &in (relative to i_loop)
3870 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3871 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3872 initial address. Unlike OFFSET, which is number of elements to
3873 be added, BYTE_OFFSET is measured in bytes.
3875 Output:
3876 1. Return an SSA_NAME whose value is the address of the memory location of
3877 the first vector of the data reference.
3878 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3879 these statement(s) which define the returned SSA_NAME.
3881 FORNOW: We are only handling array accesses with step 1. */
3883 tree
3884 vect_create_addr_base_for_vector_ref (gimple stmt,
3885 gimple_seq *new_stmt_list,
3886 tree offset,
3887 struct loop *loop,
3888 tree byte_offset)
3890 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3891 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3892 tree data_ref_base;
3893 const char *base_name;
3894 tree addr_base;
3895 tree dest;
3896 gimple_seq seq = NULL;
3897 tree base_offset;
3898 tree init;
3899 tree vect_ptr_type;
3900 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3901 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3903 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3905 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3907 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3909 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3910 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3911 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3913 else
3915 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3916 base_offset = unshare_expr (DR_OFFSET (dr));
3917 init = unshare_expr (DR_INIT (dr));
3920 if (loop_vinfo)
3921 base_name = get_name (data_ref_base);
3922 else
3924 base_offset = ssize_int (0);
3925 init = ssize_int (0);
3926 base_name = get_name (DR_REF (dr));
3929 /* Create base_offset */
3930 base_offset = size_binop (PLUS_EXPR,
3931 fold_convert (sizetype, base_offset),
3932 fold_convert (sizetype, init));
3934 if (offset)
3936 offset = fold_build2 (MULT_EXPR, sizetype,
3937 fold_convert (sizetype, offset), step);
3938 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3939 base_offset, offset);
3941 if (byte_offset)
3943 byte_offset = fold_convert (sizetype, byte_offset);
3944 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3945 base_offset, byte_offset);
3948 /* base + base_offset */
3949 if (loop_vinfo)
3950 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3951 else
3953 addr_base = build1 (ADDR_EXPR,
3954 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3955 unshare_expr (DR_REF (dr)));
3958 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3959 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3960 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
3961 gimple_seq_add_seq (new_stmt_list, seq);
3963 if (DR_PTR_INFO (dr)
3964 && TREE_CODE (addr_base) == SSA_NAME
3965 && !SSA_NAME_PTR_INFO (addr_base))
3967 vect_duplicate_ssa_name_ptr_info (addr_base, dr, stmt_info);
3968 if (offset || byte_offset)
3969 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3972 if (dump_enabled_p ())
3974 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3975 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3976 dump_printf (MSG_NOTE, "\n");
3979 return addr_base;
3983 /* Function vect_create_data_ref_ptr.
3985 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3986 location accessed in the loop by STMT, along with the def-use update
3987 chain to appropriately advance the pointer through the loop iterations.
3988 Also set aliasing information for the pointer. This pointer is used by
3989 the callers to this function to create a memory reference expression for
3990 vector load/store access.
3992 Input:
3993 1. STMT: a stmt that references memory. Expected to be of the form
3994 GIMPLE_ASSIGN <name, data-ref> or
3995 GIMPLE_ASSIGN <data-ref, name>.
3996 2. AGGR_TYPE: the type of the reference, which should be either a vector
3997 or an array.
3998 3. AT_LOOP: the loop where the vector memref is to be created.
3999 4. OFFSET (optional): an offset to be added to the initial address accessed
4000 by the data-ref in STMT.
4001 5. BSI: location where the new stmts are to be placed if there is no loop
4002 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4003 pointing to the initial address.
4004 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4005 to the initial address accessed by the data-ref in STMT. This is
4006 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4007 in bytes.
4009 Output:
4010 1. Declare a new ptr to vector_type, and have it point to the base of the
4011 data reference (initial addressed accessed by the data reference).
4012 For example, for vector of type V8HI, the following code is generated:
4014 v8hi *ap;
4015 ap = (v8hi *)initial_address;
4017 if OFFSET is not supplied:
4018 initial_address = &a[init];
4019 if OFFSET is supplied:
4020 initial_address = &a[init + OFFSET];
4021 if BYTE_OFFSET is supplied:
4022 initial_address = &a[init] + BYTE_OFFSET;
4024 Return the initial_address in INITIAL_ADDRESS.
4026 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4027 update the pointer in each iteration of the loop.
4029 Return the increment stmt that updates the pointer in PTR_INCR.
4031 3. Set INV_P to true if the access pattern of the data reference in the
4032 vectorized loop is invariant. Set it to false otherwise.
4034 4. Return the pointer. */
4036 tree
4037 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4038 tree offset, tree *initial_address,
4039 gimple_stmt_iterator *gsi, gimple *ptr_incr,
4040 bool only_init, bool *inv_p, tree byte_offset)
4042 const char *base_name;
4043 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4044 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4045 struct loop *loop = NULL;
4046 bool nested_in_vect_loop = false;
4047 struct loop *containing_loop = NULL;
4048 tree aggr_ptr_type;
4049 tree aggr_ptr;
4050 tree new_temp;
4051 gimple_seq new_stmt_list = NULL;
4052 edge pe = NULL;
4053 basic_block new_bb;
4054 tree aggr_ptr_init;
4055 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4056 tree aptr;
4057 gimple_stmt_iterator incr_gsi;
4058 bool insert_after;
4059 tree indx_before_incr, indx_after_incr;
4060 gimple incr;
4061 tree step;
4062 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4064 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4065 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4067 if (loop_vinfo)
4069 loop = LOOP_VINFO_LOOP (loop_vinfo);
4070 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4071 containing_loop = (gimple_bb (stmt))->loop_father;
4072 pe = loop_preheader_edge (loop);
4074 else
4076 gcc_assert (bb_vinfo);
4077 only_init = true;
4078 *ptr_incr = NULL;
4081 /* Check the step (evolution) of the load in LOOP, and record
4082 whether it's invariant. */
4083 if (nested_in_vect_loop)
4084 step = STMT_VINFO_DR_STEP (stmt_info);
4085 else
4086 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4088 if (integer_zerop (step))
4089 *inv_p = true;
4090 else
4091 *inv_p = false;
4093 /* Create an expression for the first address accessed by this load
4094 in LOOP. */
4095 base_name = get_name (DR_BASE_ADDRESS (dr));
4097 if (dump_enabled_p ())
4099 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4100 dump_printf_loc (MSG_NOTE, vect_location,
4101 "create %s-pointer variable to type: ",
4102 get_tree_code_name (TREE_CODE (aggr_type)));
4103 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4104 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4105 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4106 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4107 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4108 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4109 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4110 else
4111 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4112 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4113 dump_printf (MSG_NOTE, "\n");
4116 /* (1) Create the new aggregate-pointer variable.
4117 Vector and array types inherit the alias set of their component
4118 type by default so we need to use a ref-all pointer if the data
4119 reference does not conflict with the created aggregated data
4120 reference because it is not addressable. */
4121 bool need_ref_all = false;
4122 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4123 get_alias_set (DR_REF (dr))))
4124 need_ref_all = true;
4125 /* Likewise for any of the data references in the stmt group. */
4126 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4128 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4131 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4132 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4133 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4134 get_alias_set (DR_REF (sdr))))
4136 need_ref_all = true;
4137 break;
4139 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4141 while (orig_stmt);
4143 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4144 need_ref_all);
4145 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4148 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4149 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4150 def-use update cycles for the pointer: one relative to the outer-loop
4151 (LOOP), which is what steps (3) and (4) below do. The other is relative
4152 to the inner-loop (which is the inner-most loop containing the dataref),
4153 and this is done be step (5) below.
4155 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4156 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4157 redundant. Steps (3),(4) create the following:
4159 vp0 = &base_addr;
4160 LOOP: vp1 = phi(vp0,vp2)
4163 vp2 = vp1 + step
4164 goto LOOP
4166 If there is an inner-loop nested in loop, then step (5) will also be
4167 applied, and an additional update in the inner-loop will be created:
4169 vp0 = &base_addr;
4170 LOOP: vp1 = phi(vp0,vp2)
4172 inner: vp3 = phi(vp1,vp4)
4173 vp4 = vp3 + inner_step
4174 if () goto inner
4176 vp2 = vp1 + step
4177 if () goto LOOP */
4179 /* (2) Calculate the initial address of the aggregate-pointer, and set
4180 the aggregate-pointer to point to it before the loop. */
4182 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4184 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4185 offset, loop, byte_offset);
4186 if (new_stmt_list)
4188 if (pe)
4190 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4191 gcc_assert (!new_bb);
4193 else
4194 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4197 *initial_address = new_temp;
4198 aggr_ptr_init = new_temp;
4200 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4201 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4202 inner-loop nested in LOOP (during outer-loop vectorization). */
4204 /* No update in loop is required. */
4205 if (only_init && (!loop_vinfo || at_loop == loop))
4206 aptr = aggr_ptr_init;
4207 else
4209 /* The step of the aggregate pointer is the type size. */
4210 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4211 /* One exception to the above is when the scalar step of the load in
4212 LOOP is zero. In this case the step here is also zero. */
4213 if (*inv_p)
4214 iv_step = size_zero_node;
4215 else if (tree_int_cst_sgn (step) == -1)
4216 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4218 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4220 create_iv (aggr_ptr_init,
4221 fold_convert (aggr_ptr_type, iv_step),
4222 aggr_ptr, loop, &incr_gsi, insert_after,
4223 &indx_before_incr, &indx_after_incr);
4224 incr = gsi_stmt (incr_gsi);
4225 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4227 /* Copy the points-to information if it exists. */
4228 if (DR_PTR_INFO (dr))
4230 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4231 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4233 if (ptr_incr)
4234 *ptr_incr = incr;
4236 aptr = indx_before_incr;
4239 if (!nested_in_vect_loop || only_init)
4240 return aptr;
4243 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4244 nested in LOOP, if exists. */
4246 gcc_assert (nested_in_vect_loop);
4247 if (!only_init)
4249 standard_iv_increment_position (containing_loop, &incr_gsi,
4250 &insert_after);
4251 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4252 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4253 &indx_after_incr);
4254 incr = gsi_stmt (incr_gsi);
4255 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4257 /* Copy the points-to information if it exists. */
4258 if (DR_PTR_INFO (dr))
4260 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4261 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4263 if (ptr_incr)
4264 *ptr_incr = incr;
4266 return indx_before_incr;
4268 else
4269 gcc_unreachable ();
4273 /* Function bump_vector_ptr
4275 Increment a pointer (to a vector type) by vector-size. If requested,
4276 i.e. if PTR-INCR is given, then also connect the new increment stmt
4277 to the existing def-use update-chain of the pointer, by modifying
4278 the PTR_INCR as illustrated below:
4280 The pointer def-use update-chain before this function:
4281 DATAREF_PTR = phi (p_0, p_2)
4282 ....
4283 PTR_INCR: p_2 = DATAREF_PTR + step
4285 The pointer def-use update-chain after this function:
4286 DATAREF_PTR = phi (p_0, p_2)
4287 ....
4288 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4289 ....
4290 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4292 Input:
4293 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4294 in the loop.
4295 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4296 the loop. The increment amount across iterations is expected
4297 to be vector_size.
4298 BSI - location where the new update stmt is to be placed.
4299 STMT - the original scalar memory-access stmt that is being vectorized.
4300 BUMP - optional. The offset by which to bump the pointer. If not given,
4301 the offset is assumed to be vector_size.
4303 Output: Return NEW_DATAREF_PTR as illustrated above.
4307 tree
4308 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4309 gimple stmt, tree bump)
4311 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4312 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4313 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4314 tree update = TYPE_SIZE_UNIT (vectype);
4315 gassign *incr_stmt;
4316 ssa_op_iter iter;
4317 use_operand_p use_p;
4318 tree new_dataref_ptr;
4320 if (bump)
4321 update = bump;
4323 if (TREE_CODE (dataref_ptr) == SSA_NAME)
4324 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4325 else
4326 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
4327 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4328 dataref_ptr, update);
4329 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4331 /* Copy the points-to information if it exists. */
4332 if (DR_PTR_INFO (dr))
4334 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4335 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4338 if (!ptr_incr)
4339 return new_dataref_ptr;
4341 /* Update the vector-pointer's cross-iteration increment. */
4342 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4344 tree use = USE_FROM_PTR (use_p);
4346 if (use == dataref_ptr)
4347 SET_USE (use_p, new_dataref_ptr);
4348 else
4349 gcc_assert (tree_int_cst_compare (use, update) == 0);
4352 return new_dataref_ptr;
4356 /* Function vect_create_destination_var.
4358 Create a new temporary of type VECTYPE. */
4360 tree
4361 vect_create_destination_var (tree scalar_dest, tree vectype)
4363 tree vec_dest;
4364 const char *name;
4365 char *new_name;
4366 tree type;
4367 enum vect_var_kind kind;
4369 kind = vectype ? vect_simple_var : vect_scalar_var;
4370 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4372 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4374 name = get_name (scalar_dest);
4375 if (name)
4376 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4377 else
4378 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
4379 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4380 free (new_name);
4382 return vec_dest;
4385 /* Function vect_grouped_store_supported.
4387 Returns TRUE if interleave high and interleave low permutations
4388 are supported, and FALSE otherwise. */
4390 bool
4391 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4393 machine_mode mode = TYPE_MODE (vectype);
4395 /* vect_permute_store_chain requires the group size to be equal to 3 or
4396 be a power of two. */
4397 if (count != 3 && exact_log2 (count) == -1)
4399 if (dump_enabled_p ())
4400 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4401 "the size of the group of accesses"
4402 " is not a power of 2 or not eqaul to 3\n");
4403 return false;
4406 /* Check that the permutation is supported. */
4407 if (VECTOR_MODE_P (mode))
4409 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4410 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4412 if (count == 3)
4414 unsigned int j0 = 0, j1 = 0, j2 = 0;
4415 unsigned int i, j;
4417 for (j = 0; j < 3; j++)
4419 int nelt0 = ((3 - j) * nelt) % 3;
4420 int nelt1 = ((3 - j) * nelt + 1) % 3;
4421 int nelt2 = ((3 - j) * nelt + 2) % 3;
4422 for (i = 0; i < nelt; i++)
4424 if (3 * i + nelt0 < nelt)
4425 sel[3 * i + nelt0] = j0++;
4426 if (3 * i + nelt1 < nelt)
4427 sel[3 * i + nelt1] = nelt + j1++;
4428 if (3 * i + nelt2 < nelt)
4429 sel[3 * i + nelt2] = 0;
4431 if (!can_vec_perm_p (mode, false, sel))
4433 if (dump_enabled_p ())
4434 dump_printf (MSG_MISSED_OPTIMIZATION,
4435 "permutaion op not supported by target.\n");
4436 return false;
4439 for (i = 0; i < nelt; i++)
4441 if (3 * i + nelt0 < nelt)
4442 sel[3 * i + nelt0] = 3 * i + nelt0;
4443 if (3 * i + nelt1 < nelt)
4444 sel[3 * i + nelt1] = 3 * i + nelt1;
4445 if (3 * i + nelt2 < nelt)
4446 sel[3 * i + nelt2] = nelt + j2++;
4448 if (!can_vec_perm_p (mode, false, sel))
4450 if (dump_enabled_p ())
4451 dump_printf (MSG_MISSED_OPTIMIZATION,
4452 "permutaion op not supported by target.\n");
4453 return false;
4456 return true;
4458 else
4460 /* If length is not equal to 3 then only power of 2 is supported. */
4461 gcc_assert (exact_log2 (count) != -1);
4463 for (i = 0; i < nelt / 2; i++)
4465 sel[i * 2] = i;
4466 sel[i * 2 + 1] = i + nelt;
4468 if (can_vec_perm_p (mode, false, sel))
4470 for (i = 0; i < nelt; i++)
4471 sel[i] += nelt / 2;
4472 if (can_vec_perm_p (mode, false, sel))
4473 return true;
4478 if (dump_enabled_p ())
4479 dump_printf (MSG_MISSED_OPTIMIZATION,
4480 "permutaion op not supported by target.\n");
4481 return false;
4485 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4486 type VECTYPE. */
4488 bool
4489 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4491 return vect_lanes_optab_supported_p ("vec_store_lanes",
4492 vec_store_lanes_optab,
4493 vectype, count);
4497 /* Function vect_permute_store_chain.
4499 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4500 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4501 the data correctly for the stores. Return the final references for stores
4502 in RESULT_CHAIN.
4504 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4505 The input is 4 vectors each containing 8 elements. We assign a number to
4506 each element, the input sequence is:
4508 1st vec: 0 1 2 3 4 5 6 7
4509 2nd vec: 8 9 10 11 12 13 14 15
4510 3rd vec: 16 17 18 19 20 21 22 23
4511 4th vec: 24 25 26 27 28 29 30 31
4513 The output sequence should be:
4515 1st vec: 0 8 16 24 1 9 17 25
4516 2nd vec: 2 10 18 26 3 11 19 27
4517 3rd vec: 4 12 20 28 5 13 21 30
4518 4th vec: 6 14 22 30 7 15 23 31
4520 i.e., we interleave the contents of the four vectors in their order.
4522 We use interleave_high/low instructions to create such output. The input of
4523 each interleave_high/low operation is two vectors:
4524 1st vec 2nd vec
4525 0 1 2 3 4 5 6 7
4526 the even elements of the result vector are obtained left-to-right from the
4527 high/low elements of the first vector. The odd elements of the result are
4528 obtained left-to-right from the high/low elements of the second vector.
4529 The output of interleave_high will be: 0 4 1 5
4530 and of interleave_low: 2 6 3 7
4533 The permutation is done in log LENGTH stages. In each stage interleave_high
4534 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4535 where the first argument is taken from the first half of DR_CHAIN and the
4536 second argument from it's second half.
4537 In our example,
4539 I1: interleave_high (1st vec, 3rd vec)
4540 I2: interleave_low (1st vec, 3rd vec)
4541 I3: interleave_high (2nd vec, 4th vec)
4542 I4: interleave_low (2nd vec, 4th vec)
4544 The output for the first stage is:
4546 I1: 0 16 1 17 2 18 3 19
4547 I2: 4 20 5 21 6 22 7 23
4548 I3: 8 24 9 25 10 26 11 27
4549 I4: 12 28 13 29 14 30 15 31
4551 The output of the second stage, i.e. the final result is:
4553 I1: 0 8 16 24 1 9 17 25
4554 I2: 2 10 18 26 3 11 19 27
4555 I3: 4 12 20 28 5 13 21 30
4556 I4: 6 14 22 30 7 15 23 31. */
4558 void
4559 vect_permute_store_chain (vec<tree> dr_chain,
4560 unsigned int length,
4561 gimple stmt,
4562 gimple_stmt_iterator *gsi,
4563 vec<tree> *result_chain)
4565 tree vect1, vect2, high, low;
4566 gimple perm_stmt;
4567 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4568 tree perm_mask_low, perm_mask_high;
4569 tree data_ref;
4570 tree perm3_mask_low, perm3_mask_high;
4571 unsigned int i, n, log_length = exact_log2 (length);
4572 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4573 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4575 result_chain->quick_grow (length);
4576 memcpy (result_chain->address (), dr_chain.address (),
4577 length * sizeof (tree));
4579 if (length == 3)
4581 unsigned int j0 = 0, j1 = 0, j2 = 0;
4583 for (j = 0; j < 3; j++)
4585 int nelt0 = ((3 - j) * nelt) % 3;
4586 int nelt1 = ((3 - j) * nelt + 1) % 3;
4587 int nelt2 = ((3 - j) * nelt + 2) % 3;
4589 for (i = 0; i < nelt; i++)
4591 if (3 * i + nelt0 < nelt)
4592 sel[3 * i + nelt0] = j0++;
4593 if (3 * i + nelt1 < nelt)
4594 sel[3 * i + nelt1] = nelt + j1++;
4595 if (3 * i + nelt2 < nelt)
4596 sel[3 * i + nelt2] = 0;
4598 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4600 for (i = 0; i < nelt; i++)
4602 if (3 * i + nelt0 < nelt)
4603 sel[3 * i + nelt0] = 3 * i + nelt0;
4604 if (3 * i + nelt1 < nelt)
4605 sel[3 * i + nelt1] = 3 * i + nelt1;
4606 if (3 * i + nelt2 < nelt)
4607 sel[3 * i + nelt2] = nelt + j2++;
4609 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4611 vect1 = dr_chain[0];
4612 vect2 = dr_chain[1];
4614 /* Create interleaving stmt:
4615 low = VEC_PERM_EXPR <vect1, vect2,
4616 {j, nelt, *, j + 1, nelt + j + 1, *,
4617 j + 2, nelt + j + 2, *, ...}> */
4618 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4619 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4620 vect2, perm3_mask_low);
4621 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4623 vect1 = data_ref;
4624 vect2 = dr_chain[2];
4625 /* Create interleaving stmt:
4626 low = VEC_PERM_EXPR <vect1, vect2,
4627 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4628 6, 7, nelt + j + 2, ...}> */
4629 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4630 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4631 vect2, perm3_mask_high);
4632 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4633 (*result_chain)[j] = data_ref;
4636 else
4638 /* If length is not equal to 3 then only power of 2 is supported. */
4639 gcc_assert (exact_log2 (length) != -1);
4641 for (i = 0, n = nelt / 2; i < n; i++)
4643 sel[i * 2] = i;
4644 sel[i * 2 + 1] = i + nelt;
4646 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4648 for (i = 0; i < nelt; i++)
4649 sel[i] += nelt / 2;
4650 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4652 for (i = 0, n = log_length; i < n; i++)
4654 for (j = 0; j < length/2; j++)
4656 vect1 = dr_chain[j];
4657 vect2 = dr_chain[j+length/2];
4659 /* Create interleaving stmt:
4660 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4661 ...}> */
4662 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4663 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
4664 vect2, perm_mask_high);
4665 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4666 (*result_chain)[2*j] = high;
4668 /* Create interleaving stmt:
4669 low = VEC_PERM_EXPR <vect1, vect2,
4670 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4671 ...}> */
4672 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4673 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
4674 vect2, perm_mask_low);
4675 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4676 (*result_chain)[2*j+1] = low;
4678 memcpy (dr_chain.address (), result_chain->address (),
4679 length * sizeof (tree));
4684 /* Function vect_setup_realignment
4686 This function is called when vectorizing an unaligned load using
4687 the dr_explicit_realign[_optimized] scheme.
4688 This function generates the following code at the loop prolog:
4690 p = initial_addr;
4691 x msq_init = *(floor(p)); # prolog load
4692 realignment_token = call target_builtin;
4693 loop:
4694 x msq = phi (msq_init, ---)
4696 The stmts marked with x are generated only for the case of
4697 dr_explicit_realign_optimized.
4699 The code above sets up a new (vector) pointer, pointing to the first
4700 location accessed by STMT, and a "floor-aligned" load using that pointer.
4701 It also generates code to compute the "realignment-token" (if the relevant
4702 target hook was defined), and creates a phi-node at the loop-header bb
4703 whose arguments are the result of the prolog-load (created by this
4704 function) and the result of a load that takes place in the loop (to be
4705 created by the caller to this function).
4707 For the case of dr_explicit_realign_optimized:
4708 The caller to this function uses the phi-result (msq) to create the
4709 realignment code inside the loop, and sets up the missing phi argument,
4710 as follows:
4711 loop:
4712 msq = phi (msq_init, lsq)
4713 lsq = *(floor(p')); # load in loop
4714 result = realign_load (msq, lsq, realignment_token);
4716 For the case of dr_explicit_realign:
4717 loop:
4718 msq = *(floor(p)); # load in loop
4719 p' = p + (VS-1);
4720 lsq = *(floor(p')); # load in loop
4721 result = realign_load (msq, lsq, realignment_token);
4723 Input:
4724 STMT - (scalar) load stmt to be vectorized. This load accesses
4725 a memory location that may be unaligned.
4726 BSI - place where new code is to be inserted.
4727 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4728 is used.
4730 Output:
4731 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4732 target hook, if defined.
4733 Return value - the result of the loop-header phi node. */
4735 tree
4736 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4737 tree *realignment_token,
4738 enum dr_alignment_support alignment_support_scheme,
4739 tree init_addr,
4740 struct loop **at_loop)
4742 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4743 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4744 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4745 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4746 struct loop *loop = NULL;
4747 edge pe = NULL;
4748 tree scalar_dest = gimple_assign_lhs (stmt);
4749 tree vec_dest;
4750 gimple inc;
4751 tree ptr;
4752 tree data_ref;
4753 basic_block new_bb;
4754 tree msq_init = NULL_TREE;
4755 tree new_temp;
4756 gphi *phi_stmt;
4757 tree msq = NULL_TREE;
4758 gimple_seq stmts = NULL;
4759 bool inv_p;
4760 bool compute_in_loop = false;
4761 bool nested_in_vect_loop = false;
4762 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4763 struct loop *loop_for_initial_load = NULL;
4765 if (loop_vinfo)
4767 loop = LOOP_VINFO_LOOP (loop_vinfo);
4768 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4771 gcc_assert (alignment_support_scheme == dr_explicit_realign
4772 || alignment_support_scheme == dr_explicit_realign_optimized);
4774 /* We need to generate three things:
4775 1. the misalignment computation
4776 2. the extra vector load (for the optimized realignment scheme).
4777 3. the phi node for the two vectors from which the realignment is
4778 done (for the optimized realignment scheme). */
4780 /* 1. Determine where to generate the misalignment computation.
4782 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4783 calculation will be generated by this function, outside the loop (in the
4784 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4785 caller, inside the loop.
4787 Background: If the misalignment remains fixed throughout the iterations of
4788 the loop, then both realignment schemes are applicable, and also the
4789 misalignment computation can be done outside LOOP. This is because we are
4790 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4791 are a multiple of VS (the Vector Size), and therefore the misalignment in
4792 different vectorized LOOP iterations is always the same.
4793 The problem arises only if the memory access is in an inner-loop nested
4794 inside LOOP, which is now being vectorized using outer-loop vectorization.
4795 This is the only case when the misalignment of the memory access may not
4796 remain fixed throughout the iterations of the inner-loop (as explained in
4797 detail in vect_supportable_dr_alignment). In this case, not only is the
4798 optimized realignment scheme not applicable, but also the misalignment
4799 computation (and generation of the realignment token that is passed to
4800 REALIGN_LOAD) have to be done inside the loop.
4802 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4803 or not, which in turn determines if the misalignment is computed inside
4804 the inner-loop, or outside LOOP. */
4806 if (init_addr != NULL_TREE || !loop_vinfo)
4808 compute_in_loop = true;
4809 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4813 /* 2. Determine where to generate the extra vector load.
4815 For the optimized realignment scheme, instead of generating two vector
4816 loads in each iteration, we generate a single extra vector load in the
4817 preheader of the loop, and in each iteration reuse the result of the
4818 vector load from the previous iteration. In case the memory access is in
4819 an inner-loop nested inside LOOP, which is now being vectorized using
4820 outer-loop vectorization, we need to determine whether this initial vector
4821 load should be generated at the preheader of the inner-loop, or can be
4822 generated at the preheader of LOOP. If the memory access has no evolution
4823 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4824 to be generated inside LOOP (in the preheader of the inner-loop). */
4826 if (nested_in_vect_loop)
4828 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4829 bool invariant_in_outerloop =
4830 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4831 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4833 else
4834 loop_for_initial_load = loop;
4835 if (at_loop)
4836 *at_loop = loop_for_initial_load;
4838 if (loop_for_initial_load)
4839 pe = loop_preheader_edge (loop_for_initial_load);
4841 /* 3. For the case of the optimized realignment, create the first vector
4842 load at the loop preheader. */
4844 if (alignment_support_scheme == dr_explicit_realign_optimized)
4846 /* Create msq_init = *(floor(p1)) in the loop preheader */
4847 gassign *new_stmt;
4849 gcc_assert (!compute_in_loop);
4850 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4851 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4852 NULL_TREE, &init_addr, NULL, &inc,
4853 true, &inv_p);
4854 new_temp = copy_ssa_name (ptr);
4855 new_stmt = gimple_build_assign
4856 (new_temp, BIT_AND_EXPR, ptr,
4857 build_int_cst (TREE_TYPE (ptr),
4858 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4859 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4860 gcc_assert (!new_bb);
4861 data_ref
4862 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4863 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4864 new_stmt = gimple_build_assign (vec_dest, data_ref);
4865 new_temp = make_ssa_name (vec_dest, new_stmt);
4866 gimple_assign_set_lhs (new_stmt, new_temp);
4867 if (pe)
4869 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4870 gcc_assert (!new_bb);
4872 else
4873 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4875 msq_init = gimple_assign_lhs (new_stmt);
4878 /* 4. Create realignment token using a target builtin, if available.
4879 It is done either inside the containing loop, or before LOOP (as
4880 determined above). */
4882 if (targetm.vectorize.builtin_mask_for_load)
4884 gcall *new_stmt;
4885 tree builtin_decl;
4887 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4888 if (!init_addr)
4890 /* Generate the INIT_ADDR computation outside LOOP. */
4891 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4892 NULL_TREE, loop);
4893 if (loop)
4895 pe = loop_preheader_edge (loop);
4896 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4897 gcc_assert (!new_bb);
4899 else
4900 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4903 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4904 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4905 vec_dest =
4906 vect_create_destination_var (scalar_dest,
4907 gimple_call_return_type (new_stmt));
4908 new_temp = make_ssa_name (vec_dest, new_stmt);
4909 gimple_call_set_lhs (new_stmt, new_temp);
4911 if (compute_in_loop)
4912 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4913 else
4915 /* Generate the misalignment computation outside LOOP. */
4916 pe = loop_preheader_edge (loop);
4917 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4918 gcc_assert (!new_bb);
4921 *realignment_token = gimple_call_lhs (new_stmt);
4923 /* The result of the CALL_EXPR to this builtin is determined from
4924 the value of the parameter and no global variables are touched
4925 which makes the builtin a "const" function. Requiring the
4926 builtin to have the "const" attribute makes it unnecessary
4927 to call mark_call_clobbered. */
4928 gcc_assert (TREE_READONLY (builtin_decl));
4931 if (alignment_support_scheme == dr_explicit_realign)
4932 return msq;
4934 gcc_assert (!compute_in_loop);
4935 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4938 /* 5. Create msq = phi <msq_init, lsq> in loop */
4940 pe = loop_preheader_edge (containing_loop);
4941 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4942 msq = make_ssa_name (vec_dest);
4943 phi_stmt = create_phi_node (msq, containing_loop->header);
4944 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4946 return msq;
4950 /* Function vect_grouped_load_supported.
4952 Returns TRUE if even and odd permutations are supported,
4953 and FALSE otherwise. */
4955 bool
4956 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4958 machine_mode mode = TYPE_MODE (vectype);
4960 /* vect_permute_load_chain requires the group size to be equal to 3 or
4961 be a power of two. */
4962 if (count != 3 && exact_log2 (count) == -1)
4964 if (dump_enabled_p ())
4965 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4966 "the size of the group of accesses"
4967 " is not a power of 2 or not equal to 3\n");
4968 return false;
4971 /* Check that the permutation is supported. */
4972 if (VECTOR_MODE_P (mode))
4974 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
4975 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4977 if (count == 3)
4979 unsigned int k;
4980 for (k = 0; k < 3; k++)
4982 for (i = 0; i < nelt; i++)
4983 if (3 * i + k < 2 * nelt)
4984 sel[i] = 3 * i + k;
4985 else
4986 sel[i] = 0;
4987 if (!can_vec_perm_p (mode, false, sel))
4989 if (dump_enabled_p ())
4990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4991 "shuffle of 3 loads is not supported by"
4992 " target\n");
4993 return false;
4995 for (i = 0, j = 0; i < nelt; i++)
4996 if (3 * i + k < 2 * nelt)
4997 sel[i] = i;
4998 else
4999 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5000 if (!can_vec_perm_p (mode, false, sel))
5002 if (dump_enabled_p ())
5003 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5004 "shuffle of 3 loads is not supported by"
5005 " target\n");
5006 return false;
5009 return true;
5011 else
5013 /* If length is not equal to 3 then only power of 2 is supported. */
5014 gcc_assert (exact_log2 (count) != -1);
5015 for (i = 0; i < nelt; i++)
5016 sel[i] = i * 2;
5017 if (can_vec_perm_p (mode, false, sel))
5019 for (i = 0; i < nelt; i++)
5020 sel[i] = i * 2 + 1;
5021 if (can_vec_perm_p (mode, false, sel))
5022 return true;
5027 if (dump_enabled_p ())
5028 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5029 "extract even/odd not supported by target\n");
5030 return false;
5033 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5034 type VECTYPE. */
5036 bool
5037 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5039 return vect_lanes_optab_supported_p ("vec_load_lanes",
5040 vec_load_lanes_optab,
5041 vectype, count);
5044 /* Function vect_permute_load_chain.
5046 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5047 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5048 the input data correctly. Return the final references for loads in
5049 RESULT_CHAIN.
5051 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5052 The input is 4 vectors each containing 8 elements. We assign a number to each
5053 element, the input sequence is:
5055 1st vec: 0 1 2 3 4 5 6 7
5056 2nd vec: 8 9 10 11 12 13 14 15
5057 3rd vec: 16 17 18 19 20 21 22 23
5058 4th vec: 24 25 26 27 28 29 30 31
5060 The output sequence should be:
5062 1st vec: 0 4 8 12 16 20 24 28
5063 2nd vec: 1 5 9 13 17 21 25 29
5064 3rd vec: 2 6 10 14 18 22 26 30
5065 4th vec: 3 7 11 15 19 23 27 31
5067 i.e., the first output vector should contain the first elements of each
5068 interleaving group, etc.
5070 We use extract_even/odd instructions to create such output. The input of
5071 each extract_even/odd operation is two vectors
5072 1st vec 2nd vec
5073 0 1 2 3 4 5 6 7
5075 and the output is the vector of extracted even/odd elements. The output of
5076 extract_even will be: 0 2 4 6
5077 and of extract_odd: 1 3 5 7
5080 The permutation is done in log LENGTH stages. In each stage extract_even
5081 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5082 their order. In our example,
5084 E1: extract_even (1st vec, 2nd vec)
5085 E2: extract_odd (1st vec, 2nd vec)
5086 E3: extract_even (3rd vec, 4th vec)
5087 E4: extract_odd (3rd vec, 4th vec)
5089 The output for the first stage will be:
5091 E1: 0 2 4 6 8 10 12 14
5092 E2: 1 3 5 7 9 11 13 15
5093 E3: 16 18 20 22 24 26 28 30
5094 E4: 17 19 21 23 25 27 29 31
5096 In order to proceed and create the correct sequence for the next stage (or
5097 for the correct output, if the second stage is the last one, as in our
5098 example), we first put the output of extract_even operation and then the
5099 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5100 The input for the second stage is:
5102 1st vec (E1): 0 2 4 6 8 10 12 14
5103 2nd vec (E3): 16 18 20 22 24 26 28 30
5104 3rd vec (E2): 1 3 5 7 9 11 13 15
5105 4th vec (E4): 17 19 21 23 25 27 29 31
5107 The output of the second stage:
5109 E1: 0 4 8 12 16 20 24 28
5110 E2: 2 6 10 14 18 22 26 30
5111 E3: 1 5 9 13 17 21 25 29
5112 E4: 3 7 11 15 19 23 27 31
5114 And RESULT_CHAIN after reordering:
5116 1st vec (E1): 0 4 8 12 16 20 24 28
5117 2nd vec (E3): 1 5 9 13 17 21 25 29
5118 3rd vec (E2): 2 6 10 14 18 22 26 30
5119 4th vec (E4): 3 7 11 15 19 23 27 31. */
5121 static void
5122 vect_permute_load_chain (vec<tree> dr_chain,
5123 unsigned int length,
5124 gimple stmt,
5125 gimple_stmt_iterator *gsi,
5126 vec<tree> *result_chain)
5128 tree data_ref, first_vect, second_vect;
5129 tree perm_mask_even, perm_mask_odd;
5130 tree perm3_mask_low, perm3_mask_high;
5131 gimple perm_stmt;
5132 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5133 unsigned int i, j, log_length = exact_log2 (length);
5134 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5135 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5137 result_chain->quick_grow (length);
5138 memcpy (result_chain->address (), dr_chain.address (),
5139 length * sizeof (tree));
5141 if (length == 3)
5143 unsigned int k;
5145 for (k = 0; k < 3; k++)
5147 for (i = 0; i < nelt; i++)
5148 if (3 * i + k < 2 * nelt)
5149 sel[i] = 3 * i + k;
5150 else
5151 sel[i] = 0;
5152 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5154 for (i = 0, j = 0; i < nelt; i++)
5155 if (3 * i + k < 2 * nelt)
5156 sel[i] = i;
5157 else
5158 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5160 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5162 first_vect = dr_chain[0];
5163 second_vect = dr_chain[1];
5165 /* Create interleaving stmt (low part of):
5166 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5167 ...}> */
5168 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5169 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5170 second_vect, perm3_mask_low);
5171 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5173 /* Create interleaving stmt (high part of):
5174 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5175 ...}> */
5176 first_vect = data_ref;
5177 second_vect = dr_chain[2];
5178 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5179 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5180 second_vect, perm3_mask_high);
5181 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5182 (*result_chain)[k] = data_ref;
5185 else
5187 /* If length is not equal to 3 then only power of 2 is supported. */
5188 gcc_assert (exact_log2 (length) != -1);
5190 for (i = 0; i < nelt; ++i)
5191 sel[i] = i * 2;
5192 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5194 for (i = 0; i < nelt; ++i)
5195 sel[i] = i * 2 + 1;
5196 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5198 for (i = 0; i < log_length; i++)
5200 for (j = 0; j < length; j += 2)
5202 first_vect = dr_chain[j];
5203 second_vect = dr_chain[j+1];
5205 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5206 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5207 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5208 first_vect, second_vect,
5209 perm_mask_even);
5210 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5211 (*result_chain)[j/2] = data_ref;
5213 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5214 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5215 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5216 first_vect, second_vect,
5217 perm_mask_odd);
5218 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5219 (*result_chain)[j/2+length/2] = data_ref;
5221 memcpy (dr_chain.address (), result_chain->address (),
5222 length * sizeof (tree));
5227 /* Function vect_shift_permute_load_chain.
5229 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5230 sequence of stmts to reorder the input data accordingly.
5231 Return the final references for loads in RESULT_CHAIN.
5232 Return true if successed, false otherwise.
5234 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5235 The input is 3 vectors each containing 8 elements. We assign a
5236 number to each element, the input sequence is:
5238 1st vec: 0 1 2 3 4 5 6 7
5239 2nd vec: 8 9 10 11 12 13 14 15
5240 3rd vec: 16 17 18 19 20 21 22 23
5242 The output sequence should be:
5244 1st vec: 0 3 6 9 12 15 18 21
5245 2nd vec: 1 4 7 10 13 16 19 22
5246 3rd vec: 2 5 8 11 14 17 20 23
5248 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5250 First we shuffle all 3 vectors to get correct elements order:
5252 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5253 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5254 3rd vec: (16 19 22) (17 20 23) (18 21)
5256 Next we unite and shift vector 3 times:
5258 1st step:
5259 shift right by 6 the concatenation of:
5260 "1st vec" and "2nd vec"
5261 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5262 "2nd vec" and "3rd vec"
5263 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5264 "3rd vec" and "1st vec"
5265 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5266 | New vectors |
5268 So that now new vectors are:
5270 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5271 2nd vec: (10 13) (16 19 22) (17 20 23)
5272 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5274 2nd step:
5275 shift right by 5 the concatenation of:
5276 "1st vec" and "3rd vec"
5277 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5278 "2nd vec" and "1st vec"
5279 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5280 "3rd vec" and "2nd vec"
5281 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5282 | New vectors |
5284 So that now new vectors are:
5286 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5287 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5288 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5290 3rd step:
5291 shift right by 5 the concatenation of:
5292 "1st vec" and "1st vec"
5293 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5294 shift right by 3 the concatenation of:
5295 "2nd vec" and "2nd vec"
5296 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5297 | New vectors |
5299 So that now all vectors are READY:
5300 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5301 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5302 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5304 This algorithm is faster than one in vect_permute_load_chain if:
5305 1. "shift of a concatination" is faster than general permutation.
5306 This is usually so.
5307 2. The TARGET machine can't execute vector instructions in parallel.
5308 This is because each step of the algorithm depends on previous.
5309 The algorithm in vect_permute_load_chain is much more parallel.
5311 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5314 static bool
5315 vect_shift_permute_load_chain (vec<tree> dr_chain,
5316 unsigned int length,
5317 gimple stmt,
5318 gimple_stmt_iterator *gsi,
5319 vec<tree> *result_chain)
5321 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5322 tree perm2_mask1, perm2_mask2, perm3_mask;
5323 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5324 gimple perm_stmt;
5326 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5327 unsigned int i;
5328 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5329 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5330 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5331 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5333 result_chain->quick_grow (length);
5334 memcpy (result_chain->address (), dr_chain.address (),
5335 length * sizeof (tree));
5337 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5339 unsigned int j, log_length = exact_log2 (length);
5340 for (i = 0; i < nelt / 2; ++i)
5341 sel[i] = i * 2;
5342 for (i = 0; i < nelt / 2; ++i)
5343 sel[nelt / 2 + i] = i * 2 + 1;
5344 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5346 if (dump_enabled_p ())
5347 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5348 "shuffle of 2 fields structure is not \
5349 supported by target\n");
5350 return false;
5352 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5354 for (i = 0; i < nelt / 2; ++i)
5355 sel[i] = i * 2 + 1;
5356 for (i = 0; i < nelt / 2; ++i)
5357 sel[nelt / 2 + i] = i * 2;
5358 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5360 if (dump_enabled_p ())
5361 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5362 "shuffle of 2 fields structure is not \
5363 supported by target\n");
5364 return false;
5366 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5368 /* Generating permutation constant to shift all elements.
5369 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5370 for (i = 0; i < nelt; i++)
5371 sel[i] = nelt / 2 + i;
5372 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5374 if (dump_enabled_p ())
5375 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5376 "shift permutation is not supported by target\n");
5377 return false;
5379 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5381 /* Generating permutation constant to select vector from 2.
5382 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5383 for (i = 0; i < nelt / 2; i++)
5384 sel[i] = i;
5385 for (i = nelt / 2; i < nelt; i++)
5386 sel[i] = nelt + i;
5387 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5389 if (dump_enabled_p ())
5390 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5391 "select is not supported by target\n");
5392 return false;
5394 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5396 for (i = 0; i < log_length; i++)
5398 for (j = 0; j < length; j += 2)
5400 first_vect = dr_chain[j];
5401 second_vect = dr_chain[j + 1];
5403 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5404 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5405 first_vect, first_vect,
5406 perm2_mask1);
5407 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5408 vect[0] = data_ref;
5410 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5411 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5412 second_vect, second_vect,
5413 perm2_mask2);
5414 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5415 vect[1] = data_ref;
5417 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5418 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5419 vect[0], vect[1], shift1_mask);
5420 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5421 (*result_chain)[j/2 + length/2] = data_ref;
5423 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5424 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5425 vect[0], vect[1], select_mask);
5426 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5427 (*result_chain)[j/2] = data_ref;
5429 memcpy (dr_chain.address (), result_chain->address (),
5430 length * sizeof (tree));
5432 return true;
5434 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5436 unsigned int k = 0, l = 0;
5438 /* Generating permutation constant to get all elements in rigth order.
5439 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5440 for (i = 0; i < nelt; i++)
5442 if (3 * k + (l % 3) >= nelt)
5444 k = 0;
5445 l += (3 - (nelt % 3));
5447 sel[i] = 3 * k + (l % 3);
5448 k++;
5450 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5452 if (dump_enabled_p ())
5453 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5454 "shuffle of 3 fields structure is not \
5455 supported by target\n");
5456 return false;
5458 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5460 /* Generating permutation constant to shift all elements.
5461 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5462 for (i = 0; i < nelt; i++)
5463 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5464 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5466 if (dump_enabled_p ())
5467 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5468 "shift permutation is not supported by target\n");
5469 return false;
5471 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5473 /* Generating permutation constant to shift all elements.
5474 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5475 for (i = 0; i < nelt; i++)
5476 sel[i] = 2 * (nelt / 3) + 1 + i;
5477 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5479 if (dump_enabled_p ())
5480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5481 "shift permutation is not supported by target\n");
5482 return false;
5484 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5486 /* Generating permutation constant to shift all elements.
5487 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5488 for (i = 0; i < nelt; i++)
5489 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5490 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5492 if (dump_enabled_p ())
5493 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5494 "shift permutation is not supported by target\n");
5495 return false;
5497 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5499 /* Generating permutation constant to shift all elements.
5500 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5501 for (i = 0; i < nelt; i++)
5502 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5503 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5505 if (dump_enabled_p ())
5506 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5507 "shift permutation is not supported by target\n");
5508 return false;
5510 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5512 for (k = 0; k < 3; k++)
5514 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5515 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5516 dr_chain[k], dr_chain[k],
5517 perm3_mask);
5518 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5519 vect[k] = data_ref;
5522 for (k = 0; k < 3; k++)
5524 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5525 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5526 vect[k % 3], vect[(k + 1) % 3],
5527 shift1_mask);
5528 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5529 vect_shift[k] = data_ref;
5532 for (k = 0; k < 3; k++)
5534 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5535 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5536 vect_shift[(4 - k) % 3],
5537 vect_shift[(3 - k) % 3],
5538 shift2_mask);
5539 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5540 vect[k] = data_ref;
5543 (*result_chain)[3 - (nelt % 3)] = vect[2];
5545 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5546 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
5547 vect[0], shift3_mask);
5548 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5549 (*result_chain)[nelt % 3] = data_ref;
5551 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5552 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
5553 vect[1], shift4_mask);
5554 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5555 (*result_chain)[0] = data_ref;
5556 return true;
5558 return false;
5561 /* Function vect_transform_grouped_load.
5563 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5564 to perform their permutation and ascribe the result vectorized statements to
5565 the scalar statements.
5568 void
5569 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
5570 gimple_stmt_iterator *gsi)
5572 machine_mode mode;
5573 vec<tree> result_chain = vNULL;
5575 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5576 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5577 vectors, that are ready for vector computation. */
5578 result_chain.create (size);
5580 /* If reassociation width for vector type is 2 or greater target machine can
5581 execute 2 or more vector instructions in parallel. Otherwise try to
5582 get chain for loads group using vect_shift_permute_load_chain. */
5583 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5584 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5585 || exact_log2 (size) != -1
5586 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5587 gsi, &result_chain))
5588 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5589 vect_record_grouped_load_vectors (stmt, result_chain);
5590 result_chain.release ();
5593 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5594 generated as part of the vectorization of STMT. Assign the statement
5595 for each vector to the associated scalar statement. */
5597 void
5598 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5600 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5601 gimple next_stmt, new_stmt;
5602 unsigned int i, gap_count;
5603 tree tmp_data_ref;
5605 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5606 Since we scan the chain starting from it's first node, their order
5607 corresponds the order of data-refs in RESULT_CHAIN. */
5608 next_stmt = first_stmt;
5609 gap_count = 1;
5610 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5612 if (!next_stmt)
5613 break;
5615 /* Skip the gaps. Loads created for the gaps will be removed by dead
5616 code elimination pass later. No need to check for the first stmt in
5617 the group, since it always exists.
5618 GROUP_GAP is the number of steps in elements from the previous
5619 access (if there is no gap GROUP_GAP is 1). We skip loads that
5620 correspond to the gaps. */
5621 if (next_stmt != first_stmt
5622 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5624 gap_count++;
5625 continue;
5628 while (next_stmt)
5630 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5631 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5632 copies, and we put the new vector statement in the first available
5633 RELATED_STMT. */
5634 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5635 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5636 else
5638 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5640 gimple prev_stmt =
5641 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5642 gimple rel_stmt =
5643 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5644 while (rel_stmt)
5646 prev_stmt = rel_stmt;
5647 rel_stmt =
5648 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5651 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5652 new_stmt;
5656 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5657 gap_count = 1;
5658 /* If NEXT_STMT accesses the same DR as the previous statement,
5659 put the same TMP_DATA_REF as its vectorized statement; otherwise
5660 get the next data-ref from RESULT_CHAIN. */
5661 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5662 break;
5667 /* Function vect_force_dr_alignment_p.
5669 Returns whether the alignment of a DECL can be forced to be aligned
5670 on ALIGNMENT bit boundary. */
5672 bool
5673 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5675 if (TREE_CODE (decl) != VAR_DECL)
5676 return false;
5678 if (decl_in_symtab_p (decl)
5679 && !symtab_node::get (decl)->can_increase_alignment_p ())
5680 return false;
5682 if (TREE_STATIC (decl))
5683 return (alignment <= MAX_OFILE_ALIGNMENT);
5684 else
5685 return (alignment <= MAX_STACK_ALIGNMENT);
5689 /* Return whether the data reference DR is supported with respect to its
5690 alignment.
5691 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5692 it is aligned, i.e., check if it is possible to vectorize it with different
5693 alignment. */
5695 enum dr_alignment_support
5696 vect_supportable_dr_alignment (struct data_reference *dr,
5697 bool check_aligned_accesses)
5699 gimple stmt = DR_STMT (dr);
5700 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5701 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5702 machine_mode mode = TYPE_MODE (vectype);
5703 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5704 struct loop *vect_loop = NULL;
5705 bool nested_in_vect_loop = false;
5707 if (aligned_access_p (dr) && !check_aligned_accesses)
5708 return dr_aligned;
5710 /* For now assume all conditional loads/stores support unaligned
5711 access without any special code. */
5712 if (is_gimple_call (stmt)
5713 && gimple_call_internal_p (stmt)
5714 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5715 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5716 return dr_unaligned_supported;
5718 if (loop_vinfo)
5720 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5721 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5724 /* Possibly unaligned access. */
5726 /* We can choose between using the implicit realignment scheme (generating
5727 a misaligned_move stmt) and the explicit realignment scheme (generating
5728 aligned loads with a REALIGN_LOAD). There are two variants to the
5729 explicit realignment scheme: optimized, and unoptimized.
5730 We can optimize the realignment only if the step between consecutive
5731 vector loads is equal to the vector size. Since the vector memory
5732 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5733 is guaranteed that the misalignment amount remains the same throughout the
5734 execution of the vectorized loop. Therefore, we can create the
5735 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5736 at the loop preheader.
5738 However, in the case of outer-loop vectorization, when vectorizing a
5739 memory access in the inner-loop nested within the LOOP that is now being
5740 vectorized, while it is guaranteed that the misalignment of the
5741 vectorized memory access will remain the same in different outer-loop
5742 iterations, it is *not* guaranteed that is will remain the same throughout
5743 the execution of the inner-loop. This is because the inner-loop advances
5744 with the original scalar step (and not in steps of VS). If the inner-loop
5745 step happens to be a multiple of VS, then the misalignment remains fixed
5746 and we can use the optimized realignment scheme. For example:
5748 for (i=0; i<N; i++)
5749 for (j=0; j<M; j++)
5750 s += a[i+j];
5752 When vectorizing the i-loop in the above example, the step between
5753 consecutive vector loads is 1, and so the misalignment does not remain
5754 fixed across the execution of the inner-loop, and the realignment cannot
5755 be optimized (as illustrated in the following pseudo vectorized loop):
5757 for (i=0; i<N; i+=4)
5758 for (j=0; j<M; j++){
5759 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5760 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5761 // (assuming that we start from an aligned address).
5764 We therefore have to use the unoptimized realignment scheme:
5766 for (i=0; i<N; i+=4)
5767 for (j=k; j<M; j+=4)
5768 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5769 // that the misalignment of the initial address is
5770 // 0).
5772 The loop can then be vectorized as follows:
5774 for (k=0; k<4; k++){
5775 rt = get_realignment_token (&vp[k]);
5776 for (i=0; i<N; i+=4){
5777 v1 = vp[i+k];
5778 for (j=k; j<M; j+=4){
5779 v2 = vp[i+j+VS-1];
5780 va = REALIGN_LOAD <v1,v2,rt>;
5781 vs += va;
5782 v1 = v2;
5785 } */
5787 if (DR_IS_READ (dr))
5789 bool is_packed = false;
5790 tree type = (TREE_TYPE (DR_REF (dr)));
5792 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5793 && (!targetm.vectorize.builtin_mask_for_load
5794 || targetm.vectorize.builtin_mask_for_load ()))
5796 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5797 if ((nested_in_vect_loop
5798 && (TREE_INT_CST_LOW (DR_STEP (dr))
5799 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5800 || !loop_vinfo)
5801 return dr_explicit_realign;
5802 else
5803 return dr_explicit_realign_optimized;
5805 if (!known_alignment_for_access_p (dr))
5806 is_packed = not_size_aligned (DR_REF (dr));
5808 if ((TYPE_USER_ALIGN (type) && !is_packed)
5809 || targetm.vectorize.
5810 support_vector_misalignment (mode, type,
5811 DR_MISALIGNMENT (dr), is_packed))
5812 /* Can't software pipeline the loads, but can at least do them. */
5813 return dr_unaligned_supported;
5815 else
5817 bool is_packed = false;
5818 tree type = (TREE_TYPE (DR_REF (dr)));
5820 if (!known_alignment_for_access_p (dr))
5821 is_packed = not_size_aligned (DR_REF (dr));
5823 if ((TYPE_USER_ALIGN (type) && !is_packed)
5824 || targetm.vectorize.
5825 support_vector_misalignment (mode, type,
5826 DR_MISALIGNMENT (dr), is_packed))
5827 return dr_unaligned_supported;
5830 /* Unsupported. */
5831 return dr_unaligned_unsupported;