1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
38 #include "coretypes.h"
43 #include "hard-reg-set.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
51 #include "dominance.h"
54 #include "basic-block.h"
67 #include "diagnostic-core.h"
69 #include "tree-pass.h"
73 /* Optimize jump y; x: ... y: jumpif... x?
74 Don't know if it is worth bothering with. */
75 /* Optimize two cases of conditional jump to conditional jump?
76 This can never delete any instruction or make anything dead,
77 or even change what is live at any point.
78 So perhaps let combiner do it. */
80 static void init_label_info (rtx_insn
*);
81 static void mark_all_labels (rtx_insn
*);
82 static void mark_jump_label_1 (rtx
, rtx_insn
*, bool, bool);
83 static void mark_jump_label_asm (rtx
, rtx_insn
*);
84 static void redirect_exp_1 (rtx
*, rtx
, rtx
, rtx
);
85 static int invert_exp_1 (rtx
, rtx
);
87 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
89 rebuild_jump_labels_1 (rtx_insn
*f
, bool count_forced
)
93 timevar_push (TV_REBUILD_JUMP
);
97 /* Keep track of labels used from static data; we don't track them
98 closely enough to delete them here, so make sure their reference
99 count doesn't drop to zero. */
102 for (insn
= forced_labels
; insn
; insn
= insn
->next ())
103 if (LABEL_P (insn
->insn ()))
104 LABEL_NUSES (insn
->insn ())++;
105 timevar_pop (TV_REBUILD_JUMP
);
108 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
109 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
110 instructions and jumping insns that have labels as operands
111 (e.g. cbranchsi4). */
113 rebuild_jump_labels (rtx_insn
*f
)
115 rebuild_jump_labels_1 (f
, true);
118 /* This function is like rebuild_jump_labels, but doesn't run over
119 forced_labels. It can be used on insn chains that aren't the
120 main function chain. */
122 rebuild_jump_labels_chain (rtx_insn
*chain
)
124 rebuild_jump_labels_1 (chain
, false);
127 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
128 non-fallthru insn. This is not generally true, as multiple barriers
129 may have crept in, or the BARRIER may be separated from the last
130 real insn by one or more NOTEs.
132 This simple pass moves barriers and removes duplicates so that the
136 cleanup_barriers (void)
139 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
141 if (BARRIER_P (insn
))
143 rtx_insn
*prev
= prev_nonnote_insn (insn
);
149 /* Make sure we do not split a call and its corresponding
150 CALL_ARG_LOCATION note. */
151 rtx_insn
*next
= NEXT_INSN (prev
);
154 && NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
158 if (BARRIER_P (prev
))
160 else if (prev
!= PREV_INSN (insn
))
162 basic_block bb
= BLOCK_FOR_INSN (prev
);
163 rtx_insn
*end
= PREV_INSN (insn
);
164 reorder_insns_nobb (insn
, insn
, prev
);
167 /* If the backend called in machine reorg compute_bb_for_insn
168 and didn't free_bb_for_insn again, preserve basic block
169 boundaries. Move the end of basic block to PREV since
170 it is followed by a barrier now, and clear BLOCK_FOR_INSN
171 on the following notes.
172 ??? Maybe the proper solution for the targets that have
173 cfg around after machine reorg is not to run cleanup_barriers
178 prev
= NEXT_INSN (prev
);
179 if (prev
!= insn
&& BLOCK_FOR_INSN (prev
) == bb
)
180 BLOCK_FOR_INSN (prev
) = NULL
;
192 const pass_data pass_data_cleanup_barriers
=
195 "barriers", /* name */
196 OPTGROUP_NONE
, /* optinfo_flags */
198 0, /* properties_required */
199 0, /* properties_provided */
200 0, /* properties_destroyed */
201 0, /* todo_flags_start */
202 0, /* todo_flags_finish */
205 class pass_cleanup_barriers
: public rtl_opt_pass
208 pass_cleanup_barriers (gcc::context
*ctxt
)
209 : rtl_opt_pass (pass_data_cleanup_barriers
, ctxt
)
212 /* opt_pass methods: */
213 virtual unsigned int execute (function
*) { return cleanup_barriers (); }
215 }; // class pass_cleanup_barriers
220 make_pass_cleanup_barriers (gcc::context
*ctxt
)
222 return new pass_cleanup_barriers (ctxt
);
226 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
227 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
228 notes whose labels don't occur in the insn any more. */
231 init_label_info (rtx_insn
*f
)
235 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
238 LABEL_NUSES (insn
) = (LABEL_PRESERVE_P (insn
) != 0);
240 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
241 sticky and not reset here; that way we won't lose association
242 with a label when e.g. the source for a target register
243 disappears out of reach for targets that may use jump-target
244 registers. Jump transformations are supposed to transform
245 any REG_LABEL_TARGET notes. The target label reference in a
246 branch may disappear from the branch (and from the
247 instruction before it) for other reasons, like register
254 for (note
= REG_NOTES (insn
); note
; note
= next
)
256 next
= XEXP (note
, 1);
257 if (REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
258 && ! reg_mentioned_p (XEXP (note
, 0), PATTERN (insn
)))
259 remove_note (insn
, note
);
265 /* A subroutine of mark_all_labels. Trivially propagate a simple label
266 load into a jump_insn that uses it. */
269 maybe_propagate_label_ref (rtx_insn
*jump_insn
, rtx_insn
*prev_nonjump_insn
)
271 rtx label_note
, pc
, pc_src
;
273 pc
= pc_set (jump_insn
);
274 pc_src
= pc
!= NULL
? SET_SRC (pc
) : NULL
;
275 label_note
= find_reg_note (prev_nonjump_insn
, REG_LABEL_OPERAND
, NULL
);
277 /* If the previous non-jump insn sets something to a label,
278 something that this jump insn uses, make that label the primary
279 target of this insn if we don't yet have any. That previous
280 insn must be a single_set and not refer to more than one label.
281 The jump insn must not refer to other labels as jump targets
282 and must be a plain (set (pc) ...), maybe in a parallel, and
283 may refer to the item being set only directly or as one of the
284 arms in an IF_THEN_ELSE. */
286 if (label_note
!= NULL
&& pc_src
!= NULL
)
288 rtx label_set
= single_set (prev_nonjump_insn
);
289 rtx label_dest
= label_set
!= NULL
? SET_DEST (label_set
) : NULL
;
291 if (label_set
!= NULL
292 /* The source must be the direct LABEL_REF, not a
293 PLUS, UNSPEC, IF_THEN_ELSE etc. */
294 && GET_CODE (SET_SRC (label_set
)) == LABEL_REF
295 && (rtx_equal_p (label_dest
, pc_src
)
296 || (GET_CODE (pc_src
) == IF_THEN_ELSE
297 && (rtx_equal_p (label_dest
, XEXP (pc_src
, 1))
298 || rtx_equal_p (label_dest
, XEXP (pc_src
, 2))))))
300 /* The CODE_LABEL referred to in the note must be the
301 CODE_LABEL in the LABEL_REF of the "set". We can
302 conveniently use it for the marker function, which
303 requires a LABEL_REF wrapping. */
304 gcc_assert (XEXP (label_note
, 0) == LABEL_REF_LABEL (SET_SRC (label_set
)));
306 mark_jump_label_1 (label_set
, jump_insn
, false, true);
308 gcc_assert (JUMP_LABEL (jump_insn
) == XEXP (label_note
, 0));
313 /* Mark the label each jump jumps to.
314 Combine consecutive labels, and count uses of labels. */
317 mark_all_labels (rtx_insn
*f
)
321 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
324 FOR_EACH_BB_FN (bb
, cfun
)
326 /* In cfglayout mode, we don't bother with trivial next-insn
327 propagation of LABEL_REFs into JUMP_LABEL. This will be
328 handled by other optimizers using better algorithms. */
329 FOR_BB_INSNS (bb
, insn
)
331 gcc_assert (! insn
->deleted ());
332 if (NONDEBUG_INSN_P (insn
))
333 mark_jump_label (PATTERN (insn
), insn
, 0);
336 /* In cfglayout mode, there may be non-insns between the
337 basic blocks. If those non-insns represent tablejump data,
338 they contain label references that we must record. */
339 for (insn
= BB_HEADER (bb
); insn
; insn
= NEXT_INSN (insn
))
340 if (JUMP_TABLE_DATA_P (insn
))
341 mark_jump_label (PATTERN (insn
), insn
, 0);
342 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
343 if (JUMP_TABLE_DATA_P (insn
))
344 mark_jump_label (PATTERN (insn
), insn
, 0);
349 rtx_insn
*prev_nonjump_insn
= NULL
;
350 for (insn
= f
; insn
; insn
= NEXT_INSN (insn
))
352 if (insn
->deleted ())
354 else if (LABEL_P (insn
))
355 prev_nonjump_insn
= NULL
;
356 else if (JUMP_TABLE_DATA_P (insn
))
357 mark_jump_label (PATTERN (insn
), insn
, 0);
358 else if (NONDEBUG_INSN_P (insn
))
360 mark_jump_label (PATTERN (insn
), insn
, 0);
363 if (JUMP_LABEL (insn
) == NULL
&& prev_nonjump_insn
!= NULL
)
364 maybe_propagate_label_ref (insn
, prev_nonjump_insn
);
367 prev_nonjump_insn
= insn
;
373 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
374 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
375 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
376 know whether it's source is floating point or integer comparison. Machine
377 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
378 to help this function avoid overhead in these cases. */
380 reversed_comparison_code_parts (enum rtx_code code
, const_rtx arg0
,
381 const_rtx arg1
, const_rtx insn
)
385 /* If this is not actually a comparison, we can't reverse it. */
386 if (GET_RTX_CLASS (code
) != RTX_COMPARE
387 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
)
390 mode
= GET_MODE (arg0
);
391 if (mode
== VOIDmode
)
392 mode
= GET_MODE (arg1
);
394 /* First see if machine description supplies us way to reverse the
395 comparison. Give it priority over everything else to allow
396 machine description to do tricks. */
397 if (GET_MODE_CLASS (mode
) == MODE_CC
398 && REVERSIBLE_CC_MODE (mode
))
400 #ifdef REVERSE_CONDITION
401 return REVERSE_CONDITION (code
, mode
);
403 return reverse_condition (code
);
407 /* Try a few special cases based on the comparison code. */
416 /* It is always safe to reverse EQ and NE, even for the floating
417 point. Similarly the unsigned comparisons are never used for
418 floating point so we can reverse them in the default way. */
419 return reverse_condition (code
);
424 /* In case we already see unordered comparison, we can be sure to
425 be dealing with floating point so we don't need any more tests. */
426 return reverse_condition_maybe_unordered (code
);
431 /* We don't have safe way to reverse these yet. */
437 if (GET_MODE_CLASS (mode
) == MODE_CC
|| CC0_P (arg0
))
439 /* Try to search for the comparison to determine the real mode.
440 This code is expensive, but with sane machine description it
441 will be never used, since REVERSIBLE_CC_MODE will return true
446 /* These CONST_CAST's are okay because prev_nonnote_insn just
447 returns its argument and we assign it to a const_rtx
449 for (rtx_insn
*prev
= prev_nonnote_insn (CONST_CAST_RTX (insn
));
450 prev
!= 0 && !LABEL_P (prev
);
451 prev
= prev_nonnote_insn (prev
))
453 const_rtx set
= set_of (arg0
, prev
);
454 if (set
&& GET_CODE (set
) == SET
455 && rtx_equal_p (SET_DEST (set
), arg0
))
457 rtx src
= SET_SRC (set
);
459 if (GET_CODE (src
) == COMPARE
)
461 rtx comparison
= src
;
462 arg0
= XEXP (src
, 0);
463 mode
= GET_MODE (arg0
);
464 if (mode
== VOIDmode
)
465 mode
= GET_MODE (XEXP (comparison
, 1));
468 /* We can get past reg-reg moves. This may be useful for model
469 of i387 comparisons that first move flag registers around. */
476 /* If register is clobbered in some ununderstandable way,
483 /* Test for an integer condition, or a floating-point comparison
484 in which NaNs can be ignored. */
485 if (CONST_INT_P (arg0
)
486 || (GET_MODE (arg0
) != VOIDmode
487 && GET_MODE_CLASS (mode
) != MODE_CC
488 && !HONOR_NANS (mode
)))
489 return reverse_condition (code
);
494 /* A wrapper around the previous function to take COMPARISON as rtx
495 expression. This simplifies many callers. */
497 reversed_comparison_code (const_rtx comparison
, const_rtx insn
)
499 if (!COMPARISON_P (comparison
))
501 return reversed_comparison_code_parts (GET_CODE (comparison
),
502 XEXP (comparison
, 0),
503 XEXP (comparison
, 1), insn
);
506 /* Return comparison with reversed code of EXP.
507 Return NULL_RTX in case we fail to do the reversal. */
509 reversed_comparison (const_rtx exp
, machine_mode mode
)
511 enum rtx_code reversed_code
= reversed_comparison_code (exp
, NULL_RTX
);
512 if (reversed_code
== UNKNOWN
)
515 return simplify_gen_relational (reversed_code
, mode
, VOIDmode
,
516 XEXP (exp
, 0), XEXP (exp
, 1));
520 /* Given an rtx-code for a comparison, return the code for the negated
521 comparison. If no such code exists, return UNKNOWN.
523 WATCH OUT! reverse_condition is not safe to use on a jump that might
524 be acting on the results of an IEEE floating point comparison, because
525 of the special treatment of non-signaling nans in comparisons.
526 Use reversed_comparison_code instead. */
529 reverse_condition (enum rtx_code code
)
571 /* Similar, but we're allowed to generate unordered comparisons, which
572 makes it safe for IEEE floating-point. Of course, we have to recognize
573 that the target will support them too... */
576 reverse_condition_maybe_unordered (enum rtx_code code
)
614 /* Similar, but return the code when two operands of a comparison are swapped.
615 This IS safe for IEEE floating-point. */
618 swap_condition (enum rtx_code code
)
660 /* Given a comparison CODE, return the corresponding unsigned comparison.
661 If CODE is an equality comparison or already an unsigned comparison,
665 unsigned_condition (enum rtx_code code
)
691 /* Similarly, return the signed version of a comparison. */
694 signed_condition (enum rtx_code code
)
720 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
721 truth of CODE1 implies the truth of CODE2. */
724 comparison_dominates_p (enum rtx_code code1
, enum rtx_code code2
)
726 /* UNKNOWN comparison codes can happen as a result of trying to revert
728 They can't match anything, so we have to reject them here. */
729 if (code1
== UNKNOWN
|| code2
== UNKNOWN
)
738 if (code2
== UNLE
|| code2
== UNGE
)
743 if (code2
== LE
|| code2
== LEU
|| code2
== GE
|| code2
== GEU
749 if (code2
== UNLE
|| code2
== NE
)
754 if (code2
== LE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
759 if (code2
== UNGE
|| code2
== NE
)
764 if (code2
== GE
|| code2
== NE
|| code2
== ORDERED
|| code2
== LTGT
)
770 if (code2
== ORDERED
)
775 if (code2
== NE
|| code2
== ORDERED
)
780 if (code2
== LEU
|| code2
== NE
)
785 if (code2
== GEU
|| code2
== NE
)
790 if (code2
== NE
|| code2
== UNEQ
|| code2
== UNLE
|| code2
== UNLT
791 || code2
== UNGE
|| code2
== UNGT
)
802 /* Return 1 if INSN is an unconditional jump and nothing else. */
805 simplejump_p (const rtx_insn
*insn
)
807 return (JUMP_P (insn
)
808 && GET_CODE (PATTERN (insn
)) == SET
809 && GET_CODE (SET_DEST (PATTERN (insn
))) == PC
810 && GET_CODE (SET_SRC (PATTERN (insn
))) == LABEL_REF
);
813 /* Return nonzero if INSN is a (possibly) conditional jump
816 Use of this function is deprecated, since we need to support combined
817 branch and compare insns. Use any_condjump_p instead whenever possible. */
820 condjump_p (const rtx_insn
*insn
)
822 const_rtx x
= PATTERN (insn
);
824 if (GET_CODE (x
) != SET
825 || GET_CODE (SET_DEST (x
)) != PC
)
829 if (GET_CODE (x
) == LABEL_REF
)
832 return (GET_CODE (x
) == IF_THEN_ELSE
833 && ((GET_CODE (XEXP (x
, 2)) == PC
834 && (GET_CODE (XEXP (x
, 1)) == LABEL_REF
835 || ANY_RETURN_P (XEXP (x
, 1))))
836 || (GET_CODE (XEXP (x
, 1)) == PC
837 && (GET_CODE (XEXP (x
, 2)) == LABEL_REF
838 || ANY_RETURN_P (XEXP (x
, 2))))));
841 /* Return nonzero if INSN is a (possibly) conditional jump inside a
844 Use this function is deprecated, since we need to support combined
845 branch and compare insns. Use any_condjump_p instead whenever possible. */
848 condjump_in_parallel_p (const rtx_insn
*insn
)
850 const_rtx x
= PATTERN (insn
);
852 if (GET_CODE (x
) != PARALLEL
)
855 x
= XVECEXP (x
, 0, 0);
857 if (GET_CODE (x
) != SET
)
859 if (GET_CODE (SET_DEST (x
)) != PC
)
861 if (GET_CODE (SET_SRC (x
)) == LABEL_REF
)
863 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
865 if (XEXP (SET_SRC (x
), 2) == pc_rtx
866 && (GET_CODE (XEXP (SET_SRC (x
), 1)) == LABEL_REF
867 || ANY_RETURN_P (XEXP (SET_SRC (x
), 1))))
869 if (XEXP (SET_SRC (x
), 1) == pc_rtx
870 && (GET_CODE (XEXP (SET_SRC (x
), 2)) == LABEL_REF
871 || ANY_RETURN_P (XEXP (SET_SRC (x
), 2))))
876 /* Return set of PC, otherwise NULL. */
879 pc_set (const rtx_insn
*insn
)
884 pat
= PATTERN (insn
);
886 /* The set is allowed to appear either as the insn pattern or
887 the first set in a PARALLEL. */
888 if (GET_CODE (pat
) == PARALLEL
)
889 pat
= XVECEXP (pat
, 0, 0);
890 if (GET_CODE (pat
) == SET
&& GET_CODE (SET_DEST (pat
)) == PC
)
896 /* Return true when insn is an unconditional direct jump,
897 possibly bundled inside a PARALLEL. */
900 any_uncondjump_p (const rtx_insn
*insn
)
902 const_rtx x
= pc_set (insn
);
905 if (GET_CODE (SET_SRC (x
)) != LABEL_REF
)
907 if (find_reg_note (insn
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
912 /* Return true when insn is a conditional jump. This function works for
913 instructions containing PC sets in PARALLELs. The instruction may have
914 various other effects so before removing the jump you must verify
917 Note that unlike condjump_p it returns false for unconditional jumps. */
920 any_condjump_p (const rtx_insn
*insn
)
922 const_rtx x
= pc_set (insn
);
927 if (GET_CODE (SET_SRC (x
)) != IF_THEN_ELSE
)
930 a
= GET_CODE (XEXP (SET_SRC (x
), 1));
931 b
= GET_CODE (XEXP (SET_SRC (x
), 2));
933 return ((b
== PC
&& (a
== LABEL_REF
|| a
== RETURN
|| a
== SIMPLE_RETURN
))
935 && (b
== LABEL_REF
|| b
== RETURN
|| b
== SIMPLE_RETURN
)));
938 /* Return the label of a conditional jump. */
941 condjump_label (const rtx_insn
*insn
)
943 rtx x
= pc_set (insn
);
948 if (GET_CODE (x
) == LABEL_REF
)
950 if (GET_CODE (x
) != IF_THEN_ELSE
)
952 if (XEXP (x
, 2) == pc_rtx
&& GET_CODE (XEXP (x
, 1)) == LABEL_REF
)
954 if (XEXP (x
, 1) == pc_rtx
&& GET_CODE (XEXP (x
, 2)) == LABEL_REF
)
959 /* Return TRUE if INSN is a return jump. */
962 returnjump_p (const rtx_insn
*insn
)
966 subrtx_iterator::array_type array
;
967 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
970 switch (GET_CODE (x
))
978 if (SET_IS_RETURN_P (x
))
990 /* Return true if INSN is a (possibly conditional) return insn. */
993 eh_returnjump_p (rtx_insn
*insn
)
997 subrtx_iterator::array_type array
;
998 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), NONCONST
)
999 if (GET_CODE (*iter
) == EH_RETURN
)
1005 /* Return true if INSN is a jump that only transfers control and
1009 onlyjump_p (const rtx_insn
*insn
)
1016 set
= single_set (insn
);
1019 if (GET_CODE (SET_DEST (set
)) != PC
)
1021 if (side_effects_p (SET_SRC (set
)))
1027 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
1028 NULL or a return. */
1030 jump_to_label_p (const rtx_insn
*insn
)
1032 return (JUMP_P (insn
)
1033 && JUMP_LABEL (insn
) != NULL
&& !ANY_RETURN_P (JUMP_LABEL (insn
)));
1036 /* Return nonzero if X is an RTX that only sets the condition codes
1037 and has no side effects. */
1040 only_sets_cc0_p (const_rtx x
)
1048 return sets_cc0_p (x
) == 1 && ! side_effects_p (x
);
1051 /* Return 1 if X is an RTX that does nothing but set the condition codes
1052 and CLOBBER or USE registers.
1053 Return -1 if X does explicitly set the condition codes,
1054 but also does other things. */
1057 sets_cc0_p (const_rtx x
)
1065 if (GET_CODE (x
) == SET
&& SET_DEST (x
) == cc0_rtx
)
1067 if (GET_CODE (x
) == PARALLEL
)
1071 int other_things
= 0;
1072 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
1074 if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
1075 && SET_DEST (XVECEXP (x
, 0, i
)) == cc0_rtx
)
1077 else if (GET_CODE (XVECEXP (x
, 0, i
)) == SET
)
1080 return ! sets_cc0
? 0 : other_things
? -1 : 1;
1085 /* Find all CODE_LABELs referred to in X, and increment their use
1086 counts. If INSN is a JUMP_INSN and there is at least one
1087 CODE_LABEL referenced in INSN as a jump target, then store the last
1088 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1089 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1090 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1091 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1092 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1093 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1095 Note that two labels separated by a loop-beginning note
1096 must be kept distinct if we have not yet done loop-optimization,
1097 because the gap between them is where loop-optimize
1098 will want to move invariant code to. CROSS_JUMP tells us
1099 that loop-optimization is done with. */
1102 mark_jump_label (rtx x
, rtx_insn
*insn
, int in_mem
)
1104 rtx asmop
= extract_asm_operands (x
);
1106 mark_jump_label_asm (asmop
, insn
);
1108 mark_jump_label_1 (x
, insn
, in_mem
!= 0,
1109 (insn
!= NULL
&& x
== PATTERN (insn
) && JUMP_P (insn
)));
1112 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1113 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1114 jump-target; when the JUMP_LABEL field of INSN should be set or a
1115 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1119 mark_jump_label_1 (rtx x
, rtx_insn
*insn
, bool in_mem
, bool is_target
)
1121 RTX_CODE code
= GET_CODE (x
);
1138 gcc_assert (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == x
);
1139 JUMP_LABEL (insn
) = x
;
1149 rtx_sequence
*seq
= as_a
<rtx_sequence
*> (x
);
1150 for (i
= 0; i
< seq
->len (); i
++)
1151 mark_jump_label (PATTERN (seq
->insn (i
)),
1160 /* If this is a constant-pool reference, see if it is a label. */
1161 if (CONSTANT_POOL_ADDRESS_P (x
))
1162 mark_jump_label_1 (get_pool_constant (x
), insn
, in_mem
, is_target
);
1165 /* Handle operands in the condition of an if-then-else as for a
1170 mark_jump_label_1 (XEXP (x
, 0), insn
, in_mem
, false);
1171 mark_jump_label_1 (XEXP (x
, 1), insn
, in_mem
, true);
1172 mark_jump_label_1 (XEXP (x
, 2), insn
, in_mem
, true);
1177 rtx label
= LABEL_REF_LABEL (x
);
1179 /* Ignore remaining references to unreachable labels that
1180 have been deleted. */
1182 && NOTE_KIND (label
) == NOTE_INSN_DELETED_LABEL
)
1185 gcc_assert (LABEL_P (label
));
1187 /* Ignore references to labels of containing functions. */
1188 if (LABEL_REF_NONLOCAL_P (x
))
1191 LABEL_REF_LABEL (x
) = label
;
1192 if (! insn
|| ! insn
->deleted ())
1193 ++LABEL_NUSES (label
);
1198 /* Do not change a previous setting of JUMP_LABEL. If the
1199 JUMP_LABEL slot is occupied by a different label,
1200 create a note for this label. */
1201 && (JUMP_LABEL (insn
) == NULL
|| JUMP_LABEL (insn
) == label
))
1202 JUMP_LABEL (insn
) = label
;
1206 = is_target
? REG_LABEL_TARGET
: REG_LABEL_OPERAND
;
1208 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1209 for LABEL unless there already is one. All uses of
1210 a label, except for the primary target of a jump,
1211 must have such a note. */
1212 if (! find_reg_note (insn
, kind
, label
))
1213 add_reg_note (insn
, kind
, label
);
1219 /* Do walk the labels in a vector, but not the first operand of an
1220 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1223 if (! insn
->deleted ())
1225 int eltnum
= code
== ADDR_DIFF_VEC
? 1 : 0;
1227 for (i
= 0; i
< XVECLEN (x
, eltnum
); i
++)
1228 mark_jump_label_1 (XVECEXP (x
, eltnum
, i
), NULL
, in_mem
,
1237 fmt
= GET_RTX_FORMAT (code
);
1239 /* The primary target of a tablejump is the label of the ADDR_VEC,
1240 which is canonically mentioned *last* in the insn. To get it
1241 marked as JUMP_LABEL, we iterate over items in reverse order. */
1242 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1245 mark_jump_label_1 (XEXP (x
, i
), insn
, in_mem
, is_target
);
1246 else if (fmt
[i
] == 'E')
1250 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1251 mark_jump_label_1 (XVECEXP (x
, i
, j
), insn
, in_mem
,
1257 /* Worker function for mark_jump_label. Handle asm insns specially.
1258 In particular, output operands need not be considered so we can
1259 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1260 need to be considered targets. */
1263 mark_jump_label_asm (rtx asmop
, rtx_insn
*insn
)
1267 for (i
= ASM_OPERANDS_INPUT_LENGTH (asmop
) - 1; i
>= 0; --i
)
1268 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop
, i
), insn
, false, false);
1270 for (i
= ASM_OPERANDS_LABEL_LENGTH (asmop
) - 1; i
>= 0; --i
)
1271 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop
, i
), insn
, false, true);
1274 /* Delete insn INSN from the chain of insns and update label ref counts
1275 and delete insns now unreachable.
1277 Returns the first insn after INSN that was not deleted.
1279 Usage of this instruction is deprecated. Use delete_insn instead and
1280 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1283 delete_related_insns (rtx uncast_insn
)
1285 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
1286 int was_code_label
= (LABEL_P (insn
));
1288 rtx_insn
*next
= NEXT_INSN (insn
), *prev
= PREV_INSN (insn
);
1290 while (next
&& next
->deleted ())
1291 next
= NEXT_INSN (next
);
1293 /* This insn is already deleted => return first following nondeleted. */
1294 if (insn
->deleted ())
1299 /* If instruction is followed by a barrier,
1300 delete the barrier too. */
1302 if (next
!= 0 && BARRIER_P (next
))
1305 /* If this is a call, then we have to remove the var tracking note
1306 for the call arguments. */
1309 || (NONJUMP_INSN_P (insn
)
1310 && GET_CODE (PATTERN (insn
)) == SEQUENCE
1311 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))))
1315 for (p
= next
&& next
->deleted () ? NEXT_INSN (next
) : next
;
1318 if (NOTE_KIND (p
) == NOTE_INSN_CALL_ARG_LOCATION
)
1325 /* If deleting a jump, decrement the count of the label,
1326 and delete the label if it is now unused. */
1328 if (jump_to_label_p (insn
))
1330 rtx lab
= JUMP_LABEL (insn
);
1331 rtx_jump_table_data
*lab_next
;
1333 if (LABEL_NUSES (lab
) == 0)
1334 /* This can delete NEXT or PREV,
1335 either directly if NEXT is JUMP_LABEL (INSN),
1336 or indirectly through more levels of jumps. */
1337 delete_related_insns (lab
);
1338 else if (tablejump_p (insn
, NULL
, &lab_next
))
1340 /* If we're deleting the tablejump, delete the dispatch table.
1341 We may not be able to kill the label immediately preceding
1342 just yet, as it might be referenced in code leading up to
1344 delete_related_insns (lab_next
);
1348 /* Likewise if we're deleting a dispatch table. */
1350 if (rtx_jump_table_data
*table
= dyn_cast
<rtx_jump_table_data
*> (insn
))
1352 rtvec labels
= table
->get_labels ();
1354 int len
= GET_NUM_ELEM (labels
);
1356 for (i
= 0; i
< len
; i
++)
1357 if (LABEL_NUSES (XEXP (RTVEC_ELT (labels
, i
), 0)) == 0)
1358 delete_related_insns (XEXP (RTVEC_ELT (labels
, i
), 0));
1359 while (next
&& next
->deleted ())
1360 next
= NEXT_INSN (next
);
1364 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1365 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1367 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
1368 if ((REG_NOTE_KIND (note
) == REG_LABEL_OPERAND
1369 || REG_NOTE_KIND (note
) == REG_LABEL_TARGET
)
1370 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1371 && LABEL_P (XEXP (note
, 0)))
1372 if (LABEL_NUSES (XEXP (note
, 0)) == 0)
1373 delete_related_insns (XEXP (note
, 0));
1375 while (prev
&& (prev
->deleted () || NOTE_P (prev
)))
1376 prev
= PREV_INSN (prev
);
1378 /* If INSN was a label and a dispatch table follows it,
1379 delete the dispatch table. The tablejump must have gone already.
1380 It isn't useful to fall through into a table. */
1383 && NEXT_INSN (insn
) != 0
1384 && JUMP_TABLE_DATA_P (NEXT_INSN (insn
)))
1385 next
= delete_related_insns (NEXT_INSN (insn
));
1387 /* If INSN was a label, delete insns following it if now unreachable. */
1389 if (was_code_label
&& prev
&& BARRIER_P (prev
))
1394 code
= GET_CODE (next
);
1396 next
= NEXT_INSN (next
);
1397 /* Keep going past other deleted labels to delete what follows. */
1398 else if (code
== CODE_LABEL
&& next
->deleted ())
1399 next
= NEXT_INSN (next
);
1400 /* Keep the (use (insn))s created by dbr_schedule, which needs
1401 them in order to track liveness relative to a previous
1403 else if (INSN_P (next
)
1404 && GET_CODE (PATTERN (next
)) == USE
1405 && INSN_P (XEXP (PATTERN (next
), 0)))
1406 next
= NEXT_INSN (next
);
1407 else if (code
== BARRIER
|| INSN_P (next
))
1408 /* Note: if this deletes a jump, it can cause more
1409 deletion of unreachable code, after a different label.
1410 As long as the value from this recursive call is correct,
1411 this invocation functions correctly. */
1412 next
= delete_related_insns (next
);
1418 /* I feel a little doubtful about this loop,
1419 but I see no clean and sure alternative way
1420 to find the first insn after INSN that is not now deleted.
1421 I hope this works. */
1422 while (next
&& next
->deleted ())
1423 next
= NEXT_INSN (next
);
1427 /* Delete a range of insns from FROM to TO, inclusive.
1428 This is for the sake of peephole optimization, so assume
1429 that whatever these insns do will still be done by a new
1430 peephole insn that will replace them. */
1433 delete_for_peephole (rtx_insn
*from
, rtx_insn
*to
)
1435 rtx_insn
*insn
= from
;
1439 rtx_insn
*next
= NEXT_INSN (insn
);
1440 rtx_insn
*prev
= PREV_INSN (insn
);
1444 insn
->set_deleted();
1446 /* Patch this insn out of the chain. */
1447 /* We don't do this all at once, because we
1448 must preserve all NOTEs. */
1450 SET_NEXT_INSN (prev
) = next
;
1453 SET_PREV_INSN (next
) = prev
;
1461 /* Note that if TO is an unconditional jump
1462 we *do not* delete the BARRIER that follows,
1463 since the peephole that replaces this sequence
1464 is also an unconditional jump in that case. */
1467 /* A helper function for redirect_exp_1; examines its input X and returns
1468 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1470 redirect_target (rtx x
)
1474 if (!ANY_RETURN_P (x
))
1475 return gen_rtx_LABEL_REF (Pmode
, x
);
1479 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1480 NLABEL as a return. Accrue modifications into the change group. */
1483 redirect_exp_1 (rtx
*loc
, rtx olabel
, rtx nlabel
, rtx insn
)
1486 RTX_CODE code
= GET_CODE (x
);
1490 if ((code
== LABEL_REF
&& LABEL_REF_LABEL (x
) == olabel
)
1493 x
= redirect_target (nlabel
);
1494 if (GET_CODE (x
) == LABEL_REF
&& loc
== &PATTERN (insn
))
1495 x
= gen_rtx_SET (pc_rtx
, x
);
1496 validate_change (insn
, loc
, x
, 1);
1500 if (code
== SET
&& SET_DEST (x
) == pc_rtx
1501 && ANY_RETURN_P (nlabel
)
1502 && GET_CODE (SET_SRC (x
)) == LABEL_REF
1503 && LABEL_REF_LABEL (SET_SRC (x
)) == olabel
)
1505 validate_change (insn
, loc
, nlabel
, 1);
1509 if (code
== IF_THEN_ELSE
)
1511 /* Skip the condition of an IF_THEN_ELSE. We only want to
1512 change jump destinations, not eventual label comparisons. */
1513 redirect_exp_1 (&XEXP (x
, 1), olabel
, nlabel
, insn
);
1514 redirect_exp_1 (&XEXP (x
, 2), olabel
, nlabel
, insn
);
1518 fmt
= GET_RTX_FORMAT (code
);
1519 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1522 redirect_exp_1 (&XEXP (x
, i
), olabel
, nlabel
, insn
);
1523 else if (fmt
[i
] == 'E')
1526 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1527 redirect_exp_1 (&XVECEXP (x
, i
, j
), olabel
, nlabel
, insn
);
1532 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1533 the modifications into the change group. Return false if we did
1534 not see how to do that. */
1537 redirect_jump_1 (rtx_insn
*jump
, rtx nlabel
)
1539 int ochanges
= num_validated_changes ();
1542 gcc_assert (nlabel
!= NULL_RTX
);
1543 asmop
= extract_asm_operands (PATTERN (jump
));
1548 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop
) == 1);
1549 loc
= &ASM_OPERANDS_LABEL (asmop
, 0);
1551 else if (GET_CODE (PATTERN (jump
)) == PARALLEL
)
1552 loc
= &XVECEXP (PATTERN (jump
), 0, 0);
1554 loc
= &PATTERN (jump
);
1556 redirect_exp_1 (loc
, JUMP_LABEL (jump
), nlabel
, jump
);
1557 return num_validated_changes () > ochanges
;
1560 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1561 jump target label is unused as a result, it and the code following
1564 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1565 in that case we are to turn the jump into a (possibly conditional)
1568 The return value will be 1 if the change was made, 0 if it wasn't
1569 (this can only occur when trying to produce return insns). */
1572 redirect_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1574 rtx olabel
= jump
->jump_label ();
1578 /* If there is no label, we are asked to redirect to the EXIT block.
1579 When before the epilogue is emitted, return/simple_return cannot be
1580 created so we return 0 immediately. After the epilogue is emitted,
1581 we always expect a label, either a non-null label, or a
1582 return/simple_return RTX. */
1584 if (!epilogue_completed
)
1589 if (nlabel
== olabel
)
1592 if (! redirect_jump_1 (jump
, nlabel
) || ! apply_change_group ())
1595 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 0);
1599 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1601 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1602 count has dropped to zero. */
1604 redirect_jump_2 (rtx_jump_insn
*jump
, rtx olabel
, rtx nlabel
, int delete_unused
,
1609 gcc_assert (JUMP_LABEL (jump
) == olabel
);
1611 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1612 moving FUNCTION_END note. Just sanity check that no user still worry
1614 gcc_assert (delete_unused
>= 0);
1615 JUMP_LABEL (jump
) = nlabel
;
1616 if (!ANY_RETURN_P (nlabel
))
1617 ++LABEL_NUSES (nlabel
);
1619 /* Update labels in any REG_EQUAL note. */
1620 if ((note
= find_reg_note (jump
, REG_EQUAL
, NULL_RTX
)) != NULL_RTX
)
1622 if (ANY_RETURN_P (nlabel
)
1623 || (invert
&& !invert_exp_1 (XEXP (note
, 0), jump
)))
1624 remove_note (jump
, note
);
1627 redirect_exp_1 (&XEXP (note
, 0), olabel
, nlabel
, jump
);
1628 confirm_change_group ();
1632 /* Handle the case where we had a conditional crossing jump to a return
1633 label and are now changing it into a direct conditional return.
1634 The jump is no longer crossing in that case. */
1635 if (ANY_RETURN_P (nlabel
))
1636 CROSSING_JUMP_P (jump
) = 0;
1638 if (!ANY_RETURN_P (olabel
)
1639 && --LABEL_NUSES (olabel
) == 0 && delete_unused
> 0
1640 /* Undefined labels will remain outside the insn stream. */
1641 && INSN_UID (olabel
))
1642 delete_related_insns (olabel
);
1644 invert_br_probabilities (jump
);
1647 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1648 modifications into the change group. Return nonzero for success. */
1650 invert_exp_1 (rtx x
, rtx insn
)
1652 RTX_CODE code
= GET_CODE (x
);
1654 if (code
== IF_THEN_ELSE
)
1656 rtx comp
= XEXP (x
, 0);
1658 enum rtx_code reversed_code
;
1660 /* We can do this in two ways: The preferable way, which can only
1661 be done if this is not an integer comparison, is to reverse
1662 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1663 of the IF_THEN_ELSE. If we can't do either, fail. */
1665 reversed_code
= reversed_comparison_code (comp
, insn
);
1667 if (reversed_code
!= UNKNOWN
)
1669 validate_change (insn
, &XEXP (x
, 0),
1670 gen_rtx_fmt_ee (reversed_code
,
1671 GET_MODE (comp
), XEXP (comp
, 0),
1678 validate_change (insn
, &XEXP (x
, 1), XEXP (x
, 2), 1);
1679 validate_change (insn
, &XEXP (x
, 2), tem
, 1);
1686 /* Invert the condition of the jump JUMP, and make it jump to label
1687 NLABEL instead of where it jumps now. Accrue changes into the
1688 change group. Return false if we didn't see how to perform the
1689 inversion and redirection. */
1692 invert_jump_1 (rtx_jump_insn
*jump
, rtx nlabel
)
1694 rtx x
= pc_set (jump
);
1698 ochanges
= num_validated_changes ();
1701 ok
= invert_exp_1 (SET_SRC (x
), jump
);
1704 if (num_validated_changes () == ochanges
)
1707 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1708 in Pmode, so checking this is not merely an optimization. */
1709 return nlabel
== JUMP_LABEL (jump
) || redirect_jump_1 (jump
, nlabel
);
1712 /* Invert the condition of the jump JUMP, and make it jump to label
1713 NLABEL instead of where it jumps now. Return true if successful. */
1716 invert_jump (rtx_jump_insn
*jump
, rtx nlabel
, int delete_unused
)
1718 rtx olabel
= JUMP_LABEL (jump
);
1720 if (invert_jump_1 (jump
, nlabel
) && apply_change_group ())
1722 redirect_jump_2 (jump
, olabel
, nlabel
, delete_unused
, 1);
1730 /* Like rtx_equal_p except that it considers two REGs as equal
1731 if they renumber to the same value and considers two commutative
1732 operations to be the same if the order of the operands has been
1736 rtx_renumbered_equal_p (const_rtx x
, const_rtx y
)
1739 const enum rtx_code code
= GET_CODE (x
);
1745 if ((code
== REG
|| (code
== SUBREG
&& REG_P (SUBREG_REG (x
))))
1746 && (REG_P (y
) || (GET_CODE (y
) == SUBREG
1747 && REG_P (SUBREG_REG (y
)))))
1749 int reg_x
= -1, reg_y
= -1;
1750 int byte_x
= 0, byte_y
= 0;
1751 struct subreg_info info
;
1753 if (GET_MODE (x
) != GET_MODE (y
))
1756 /* If we haven't done any renumbering, don't
1757 make any assumptions. */
1758 if (reg_renumber
== 0)
1759 return rtx_equal_p (x
, y
);
1763 reg_x
= REGNO (SUBREG_REG (x
));
1764 byte_x
= SUBREG_BYTE (x
);
1766 if (reg_renumber
[reg_x
] >= 0)
1768 subreg_get_info (reg_renumber
[reg_x
],
1769 GET_MODE (SUBREG_REG (x
)), byte_x
,
1770 GET_MODE (x
), &info
);
1771 if (!info
.representable_p
)
1773 reg_x
= info
.offset
;
1780 if (reg_renumber
[reg_x
] >= 0)
1781 reg_x
= reg_renumber
[reg_x
];
1784 if (GET_CODE (y
) == SUBREG
)
1786 reg_y
= REGNO (SUBREG_REG (y
));
1787 byte_y
= SUBREG_BYTE (y
);
1789 if (reg_renumber
[reg_y
] >= 0)
1791 subreg_get_info (reg_renumber
[reg_y
],
1792 GET_MODE (SUBREG_REG (y
)), byte_y
,
1793 GET_MODE (y
), &info
);
1794 if (!info
.representable_p
)
1796 reg_y
= info
.offset
;
1803 if (reg_renumber
[reg_y
] >= 0)
1804 reg_y
= reg_renumber
[reg_y
];
1807 return reg_x
>= 0 && reg_x
== reg_y
&& byte_x
== byte_y
;
1810 /* Now we have disposed of all the cases
1811 in which different rtx codes can match. */
1812 if (code
!= GET_CODE (y
))
1825 /* We can't assume nonlocal labels have their following insns yet. */
1826 if (LABEL_REF_NONLOCAL_P (x
) || LABEL_REF_NONLOCAL_P (y
))
1827 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1829 /* Two label-refs are equivalent if they point at labels
1830 in the same position in the instruction stream. */
1831 return (next_real_insn (LABEL_REF_LABEL (x
))
1832 == next_real_insn (LABEL_REF_LABEL (y
)));
1835 return XSTR (x
, 0) == XSTR (y
, 0);
1838 /* If we didn't match EQ equality above, they aren't the same. */
1845 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1847 if (GET_MODE (x
) != GET_MODE (y
))
1850 /* MEMs referring to different address space are not equivalent. */
1851 if (code
== MEM
&& MEM_ADDR_SPACE (x
) != MEM_ADDR_SPACE (y
))
1854 /* For commutative operations, the RTX match if the operand match in any
1855 order. Also handle the simple binary and unary cases without a loop. */
1856 if (targetm
.commutative_p (x
, UNKNOWN
))
1857 return ((rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1858 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)))
1859 || (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 1))
1860 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 0))));
1861 else if (NON_COMMUTATIVE_P (x
))
1862 return (rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0))
1863 && rtx_renumbered_equal_p (XEXP (x
, 1), XEXP (y
, 1)));
1864 else if (UNARY_P (x
))
1865 return rtx_renumbered_equal_p (XEXP (x
, 0), XEXP (y
, 0));
1867 /* Compare the elements. If any pair of corresponding elements
1868 fail to match, return 0 for the whole things. */
1870 fmt
= GET_RTX_FORMAT (code
);
1871 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1877 if (XWINT (x
, i
) != XWINT (y
, i
))
1882 if (XINT (x
, i
) != XINT (y
, i
))
1884 if (((code
== ASM_OPERANDS
&& i
== 6)
1885 || (code
== ASM_INPUT
&& i
== 1)))
1892 if (XTREE (x
, i
) != XTREE (y
, i
))
1897 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1902 if (! rtx_renumbered_equal_p (XEXP (x
, i
), XEXP (y
, i
)))
1907 if (XEXP (x
, i
) != XEXP (y
, i
))
1914 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1916 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1917 if (!rtx_renumbered_equal_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
)))
1928 /* If X is a hard register or equivalent to one or a subregister of one,
1929 return the hard register number. If X is a pseudo register that was not
1930 assigned a hard register, return the pseudo register number. Otherwise,
1931 return -1. Any rtx is valid for X. */
1934 true_regnum (const_rtx x
)
1938 if (REGNO (x
) >= FIRST_PSEUDO_REGISTER
1939 && (lra_in_progress
|| reg_renumber
[REGNO (x
)] >= 0))
1940 return reg_renumber
[REGNO (x
)];
1943 if (GET_CODE (x
) == SUBREG
)
1945 int base
= true_regnum (SUBREG_REG (x
));
1947 && base
< FIRST_PSEUDO_REGISTER
)
1949 struct subreg_info info
;
1951 subreg_get_info (lra_in_progress
1952 ? (unsigned) base
: REGNO (SUBREG_REG (x
)),
1953 GET_MODE (SUBREG_REG (x
)),
1954 SUBREG_BYTE (x
), GET_MODE (x
), &info
);
1956 if (info
.representable_p
)
1957 return base
+ info
.offset
;
1963 /* Return regno of the register REG and handle subregs too. */
1965 reg_or_subregno (const_rtx reg
)
1967 if (GET_CODE (reg
) == SUBREG
)
1968 reg
= SUBREG_REG (reg
);
1969 gcc_assert (REG_P (reg
));