1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
54 #include "hard-reg-set.h"
58 #include "insn-config.h"
59 #include "insn-attr.h"
61 #include "conditions.h"
66 #include "rtl-error.h"
67 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "dominance.h"
74 #include "basic-block.h"
76 #include "targhooks.h"
85 #include "tree-pass.h"
87 #include "plugin-api.h"
95 #include "tree-pretty-print.h" /* for dump_function_header */
97 #include "wide-int-print.h"
100 #ifdef XCOFF_DEBUGGING_INFO
101 #include "xcoffout.h" /* Needed for external data
102 declarations for e.g. AIX 4.x. */
105 #include "dwarf2out.h"
107 #ifdef DBX_DEBUGGING_INFO
111 #ifdef SDB_DEBUGGING_INFO
115 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
116 So define a null default for it to save conditionalization later. */
117 #ifndef CC_STATUS_INIT
118 #define CC_STATUS_INIT
121 /* Is the given character a logical line separator for the assembler? */
122 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
123 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
126 #ifndef JUMP_TABLES_IN_TEXT_SECTION
127 #define JUMP_TABLES_IN_TEXT_SECTION 0
130 /* Bitflags used by final_scan_insn. */
132 #define SEEN_EMITTED 2
134 /* Last insn processed by final_scan_insn. */
135 static rtx_insn
*debug_insn
;
136 rtx_insn
*current_output_insn
;
138 /* Line number of last NOTE. */
139 static int last_linenum
;
141 /* Last discriminator written to assembly. */
142 static int last_discriminator
;
144 /* Discriminator of current block. */
145 static int discriminator
;
147 /* Highest line number in current block. */
148 static int high_block_linenum
;
150 /* Likewise for function. */
151 static int high_function_linenum
;
153 /* Filename of last NOTE. */
154 static const char *last_filename
;
156 /* Override filename and line number. */
157 static const char *override_filename
;
158 static int override_linenum
;
160 /* Whether to force emission of a line note before the next insn. */
161 static bool force_source_line
= false;
163 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
165 /* Nonzero while outputting an `asm' with operands.
166 This means that inconsistencies are the user's fault, so don't die.
167 The precise value is the insn being output, to pass to error_for_asm. */
168 const rtx_insn
*this_is_asm_operands
;
170 /* Number of operands of this insn, for an `asm' with operands. */
171 static unsigned int insn_noperands
;
173 /* Compare optimization flag. */
175 static rtx last_ignored_compare
= 0;
177 /* Assign a unique number to each insn that is output.
178 This can be used to generate unique local labels. */
180 static int insn_counter
= 0;
182 /* This variable contains machine-dependent flags (defined in tm.h)
183 set and examined by output routines
184 that describe how to interpret the condition codes properly. */
188 /* During output of an insn, this contains a copy of cc_status
189 from before the insn. */
191 CC_STATUS cc_prev_status
;
193 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
195 static int block_depth
;
197 /* Nonzero if have enabled APP processing of our assembler output. */
201 /* If we are outputting an insn sequence, this contains the sequence rtx.
204 rtx_sequence
*final_sequence
;
206 #ifdef ASSEMBLER_DIALECT
208 /* Number of the assembler dialect to use, starting at 0. */
209 static int dialect_number
;
212 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
213 rtx current_insn_predicate
;
215 /* True if printing into -fdump-final-insns= dump. */
216 bool final_insns_dump_p
;
218 /* True if profile_function should be called, but hasn't been called yet. */
219 static bool need_profile_function
;
221 static int asm_insn_count (rtx
);
222 static void profile_function (FILE *);
223 static void profile_after_prologue (FILE *);
224 static bool notice_source_line (rtx_insn
*, bool *);
225 static rtx
walk_alter_subreg (rtx
*, bool *);
226 static void output_asm_name (void);
227 static void output_alternate_entry_point (FILE *, rtx_insn
*);
228 static tree
get_mem_expr_from_op (rtx
, int *);
229 static void output_asm_operand_names (rtx
*, int *, int);
230 #ifdef LEAF_REGISTERS
231 static void leaf_renumber_regs (rtx_insn
*);
234 static int alter_cond (rtx
);
236 #ifndef ADDR_VEC_ALIGN
237 static int final_addr_vec_align (rtx
);
239 static int align_fuzz (rtx
, rtx
, int, unsigned);
240 static void collect_fn_hard_reg_usage (void);
241 static tree
get_call_fndecl (rtx_insn
*);
243 /* Initialize data in final at the beginning of a compilation. */
246 init_final (const char *filename ATTRIBUTE_UNUSED
)
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number
= ASSEMBLER_DIALECT
;
256 /* Default target function prologue and epilogue assembler output.
258 If not overridden for epilogue code, then the function body itself
259 contains return instructions wherever needed. */
261 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
262 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
267 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
268 tree decl ATTRIBUTE_UNUSED
,
269 bool new_is_cold ATTRIBUTE_UNUSED
)
273 /* Default target hook that outputs nothing to a stream. */
275 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
279 /* Enable APP processing of subsequent output.
280 Used before the output from an `asm' statement. */
287 fputs (ASM_APP_ON
, asm_out_file
);
292 /* Disable APP processing of subsequent output.
293 Called from varasm.c before most kinds of output. */
300 fputs (ASM_APP_OFF
, asm_out_file
);
305 /* Return the number of slots filled in the current
306 delayed branch sequence (we don't count the insn needing the
307 delay slot). Zero if not in a delayed branch sequence. */
311 dbr_sequence_length (void)
313 if (final_sequence
!= 0)
314 return XVECLEN (final_sequence
, 0) - 1;
320 /* The next two pages contain routines used to compute the length of an insn
321 and to shorten branches. */
323 /* Arrays for insn lengths, and addresses. The latter is referenced by
324 `insn_current_length'. */
326 static int *insn_lengths
;
328 vec
<int> insn_addresses_
;
330 /* Max uid for which the above arrays are valid. */
331 static int insn_lengths_max_uid
;
333 /* Address of insn being processed. Used by `insn_current_length'. */
334 int insn_current_address
;
336 /* Address of insn being processed in previous iteration. */
337 int insn_last_address
;
339 /* known invariant alignment of insn being processed. */
340 int insn_current_align
;
342 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
343 gives the next following alignment insn that increases the known
344 alignment, or NULL_RTX if there is no such insn.
345 For any alignment obtained this way, we can again index uid_align with
346 its uid to obtain the next following align that in turn increases the
347 alignment, till we reach NULL_RTX; the sequence obtained this way
348 for each insn we'll call the alignment chain of this insn in the following
351 struct label_alignment
357 static rtx
*uid_align
;
358 static int *uid_shuid
;
359 static struct label_alignment
*label_align
;
361 /* Indicate that branch shortening hasn't yet been done. */
364 init_insn_lengths (void)
375 insn_lengths_max_uid
= 0;
377 if (HAVE_ATTR_length
)
378 INSN_ADDRESSES_FREE ();
386 /* Obtain the current length of an insn. If branch shortening has been done,
387 get its actual length. Otherwise, use FALLBACK_FN to calculate the
390 get_attr_length_1 (rtx_insn
*insn
, int (*fallback_fn
) (rtx_insn
*))
396 if (!HAVE_ATTR_length
)
399 if (insn_lengths_max_uid
> INSN_UID (insn
))
400 return insn_lengths
[INSN_UID (insn
)];
402 switch (GET_CODE (insn
))
412 length
= fallback_fn (insn
);
416 body
= PATTERN (insn
);
417 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
420 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
421 length
= asm_insn_count (body
) * fallback_fn (insn
);
422 else if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
423 for (i
= 0; i
< seq
->len (); i
++)
424 length
+= get_attr_length_1 (seq
->insn (i
), fallback_fn
);
426 length
= fallback_fn (insn
);
433 #ifdef ADJUST_INSN_LENGTH
434 ADJUST_INSN_LENGTH (insn
, length
);
439 /* Obtain the current length of an insn. If branch shortening has been done,
440 get its actual length. Otherwise, get its maximum length. */
442 get_attr_length (rtx_insn
*insn
)
444 return get_attr_length_1 (insn
, insn_default_length
);
447 /* Obtain the current length of an insn. If branch shortening has been done,
448 get its actual length. Otherwise, get its minimum length. */
450 get_attr_min_length (rtx_insn
*insn
)
452 return get_attr_length_1 (insn
, insn_min_length
);
455 /* Code to handle alignment inside shorten_branches. */
457 /* Here is an explanation how the algorithm in align_fuzz can give
460 Call a sequence of instructions beginning with alignment point X
461 and continuing until the next alignment point `block X'. When `X'
462 is used in an expression, it means the alignment value of the
465 Call the distance between the start of the first insn of block X, and
466 the end of the last insn of block X `IX', for the `inner size of X'.
467 This is clearly the sum of the instruction lengths.
469 Likewise with the next alignment-delimited block following X, which we
472 Call the distance between the start of the first insn of block X, and
473 the start of the first insn of block Y `OX', for the `outer size of X'.
475 The estimated padding is then OX - IX.
477 OX can be safely estimated as
482 OX = round_up(IX, X) + Y - X
484 Clearly est(IX) >= real(IX), because that only depends on the
485 instruction lengths, and those being overestimated is a given.
487 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
488 we needn't worry about that when thinking about OX.
490 When X >= Y, the alignment provided by Y adds no uncertainty factor
491 for branch ranges starting before X, so we can just round what we have.
492 But when X < Y, we don't know anything about the, so to speak,
493 `middle bits', so we have to assume the worst when aligning up from an
494 address mod X to one mod Y, which is Y - X. */
497 #define LABEL_ALIGN(LABEL) align_labels_log
501 #define LOOP_ALIGN(LABEL) align_loops_log
504 #ifndef LABEL_ALIGN_AFTER_BARRIER
505 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
509 #define JUMP_ALIGN(LABEL) align_jumps_log
513 default_label_align_after_barrier_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
519 default_loop_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
521 return align_loops_max_skip
;
525 default_label_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
527 return align_labels_max_skip
;
531 default_jump_align_max_skip (rtx_insn
*insn ATTRIBUTE_UNUSED
)
533 return align_jumps_max_skip
;
536 #ifndef ADDR_VEC_ALIGN
538 final_addr_vec_align (rtx addr_vec
)
540 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
542 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
543 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
544 return exact_log2 (align
);
548 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #ifndef INSN_LENGTH_ALIGNMENT
552 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557 static int min_labelno
, max_labelno
;
559 #define LABEL_TO_ALIGNMENT(LABEL) \
560 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562 #define LABEL_TO_MAX_SKIP(LABEL) \
563 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565 /* For the benefit of port specific code do this also as a function. */
568 label_to_alignment (rtx label
)
570 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
571 return LABEL_TO_ALIGNMENT (label
);
576 label_to_max_skip (rtx label
)
578 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
579 return LABEL_TO_MAX_SKIP (label
);
583 /* The differences in addresses
584 between a branch and its target might grow or shrink depending on
585 the alignment the start insn of the range (the branch for a forward
586 branch or the label for a backward branch) starts out on; if these
587 differences are used naively, they can even oscillate infinitely.
588 We therefore want to compute a 'worst case' address difference that
589 is independent of the alignment the start insn of the range end
590 up on, and that is at least as large as the actual difference.
591 The function align_fuzz calculates the amount we have to add to the
592 naively computed difference, by traversing the part of the alignment
593 chain of the start insn of the range that is in front of the end insn
594 of the range, and considering for each alignment the maximum amount
595 that it might contribute to a size increase.
597 For casesi tables, we also want to know worst case minimum amounts of
598 address difference, in case a machine description wants to introduce
599 some common offset that is added to all offsets in a table.
600 For this purpose, align_fuzz with a growth argument of 0 computes the
601 appropriate adjustment. */
603 /* Compute the maximum delta by which the difference of the addresses of
604 START and END might grow / shrink due to a different address for start
605 which changes the size of alignment insns between START and END.
606 KNOWN_ALIGN_LOG is the alignment known for START.
607 GROWTH should be ~0 if the objective is to compute potential code size
608 increase, and 0 if the objective is to compute potential shrink.
609 The return value is undefined for any other value of GROWTH. */
612 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
614 int uid
= INSN_UID (start
);
616 int known_align
= 1 << known_align_log
;
617 int end_shuid
= INSN_SHUID (end
);
620 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
622 int align_addr
, new_align
;
624 uid
= INSN_UID (align_label
);
625 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
626 if (uid_shuid
[uid
] > end_shuid
)
628 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
629 new_align
= 1 << known_align_log
;
630 if (new_align
< known_align
)
632 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
633 known_align
= new_align
;
638 /* Compute a worst-case reference address of a branch so that it
639 can be safely used in the presence of aligned labels. Since the
640 size of the branch itself is unknown, the size of the branch is
641 not included in the range. I.e. for a forward branch, the reference
642 address is the end address of the branch as known from the previous
643 branch shortening pass, minus a value to account for possible size
644 increase due to alignment. For a backward branch, it is the start
645 address of the branch as known from the current pass, plus a value
646 to account for possible size increase due to alignment.
647 NB.: Therefore, the maximum offset allowed for backward branches needs
648 to exclude the branch size. */
651 insn_current_reference_address (rtx_insn
*branch
)
656 if (! INSN_ADDRESSES_SET_P ())
659 rtx_insn
*seq
= NEXT_INSN (PREV_INSN (branch
));
660 seq_uid
= INSN_UID (seq
);
661 if (!JUMP_P (branch
))
662 /* This can happen for example on the PA; the objective is to know the
663 offset to address something in front of the start of the function.
664 Thus, we can treat it like a backward branch.
665 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
666 any alignment we'd encounter, so we skip the call to align_fuzz. */
667 return insn_current_address
;
668 dest
= JUMP_LABEL (branch
);
670 /* BRANCH has no proper alignment chain set, so use SEQ.
671 BRANCH also has no INSN_SHUID. */
672 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
674 /* Forward branch. */
675 return (insn_last_address
+ insn_lengths
[seq_uid
]
676 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
680 /* Backward branch. */
681 return (insn_current_address
682 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
686 /* Compute branch alignments based on frequency information in the
690 compute_alignments (void)
692 int log
, max_skip
, max_log
;
695 int freq_threshold
= 0;
703 max_labelno
= max_label_num ();
704 min_labelno
= get_first_label_num ();
705 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
707 /* If not optimizing or optimizing for size, don't assign any alignments. */
708 if (! optimize
|| optimize_function_for_size_p (cfun
))
713 dump_reg_info (dump_file
);
714 dump_flow_info (dump_file
, TDF_DETAILS
);
715 flow_loops_dump (dump_file
, NULL
, 1);
717 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
718 FOR_EACH_BB_FN (bb
, cfun
)
719 if (bb
->frequency
> freq_max
)
720 freq_max
= bb
->frequency
;
721 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
724 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
725 FOR_EACH_BB_FN (bb
, cfun
)
727 rtx_insn
*label
= BB_HEAD (bb
);
728 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
733 || optimize_bb_for_size_p (bb
))
737 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
738 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
742 max_log
= LABEL_ALIGN (label
);
743 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
745 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
747 if (e
->flags
& EDGE_FALLTHRU
)
748 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
750 branch_frequency
+= EDGE_FREQUENCY (e
);
754 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
755 " %2i fall %4i branch %4i",
756 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
758 fallthru_frequency
, branch_frequency
);
759 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
760 fprintf (dump_file
, " inner_loop");
761 if (bb
->loop_father
->header
== bb
)
762 fprintf (dump_file
, " loop_header");
763 fprintf (dump_file
, "\n");
766 /* There are two purposes to align block with no fallthru incoming edge:
767 1) to avoid fetch stalls when branch destination is near cache boundary
768 2) to improve cache efficiency in case the previous block is not executed
769 (so it does not need to be in the cache).
771 We to catch first case, we align frequently executed blocks.
772 To catch the second, we align blocks that are executed more frequently
773 than the predecessor and the predecessor is likely to not be executed
774 when function is called. */
777 && (branch_frequency
> freq_threshold
778 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
779 && (bb
->prev_bb
->frequency
780 <= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->frequency
/ 2))))
782 log
= JUMP_ALIGN (label
);
784 fprintf (dump_file
, " jump alignment added.\n");
788 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
791 /* In case block is frequent and reached mostly by non-fallthru edge,
792 align it. It is most likely a first block of loop. */
794 && !(single_succ_p (bb
)
795 && single_succ (bb
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
796 && optimize_bb_for_speed_p (bb
)
797 && branch_frequency
+ fallthru_frequency
> freq_threshold
799 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
801 log
= LOOP_ALIGN (label
);
803 fprintf (dump_file
, " internal loop alignment added.\n");
807 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
810 LABEL_TO_ALIGNMENT (label
) = max_log
;
811 LABEL_TO_MAX_SKIP (label
) = max_skip
;
814 loop_optimizer_finalize ();
815 free_dominance_info (CDI_DOMINATORS
);
819 /* Grow the LABEL_ALIGN array after new labels are created. */
822 grow_label_align (void)
824 int old
= max_labelno
;
828 max_labelno
= max_label_num ();
830 n_labels
= max_labelno
- min_labelno
+ 1;
831 n_old_labels
= old
- min_labelno
+ 1;
833 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
835 /* Range of labels grows monotonically in the function. Failing here
836 means that the initialization of array got lost. */
837 gcc_assert (n_old_labels
<= n_labels
);
839 memset (label_align
+ n_old_labels
, 0,
840 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
843 /* Update the already computed alignment information. LABEL_PAIRS is a vector
844 made up of pairs of labels for which the alignment information of the first
845 element will be copied from that of the second element. */
848 update_alignments (vec
<rtx
> &label_pairs
)
851 rtx iter
, label
= NULL_RTX
;
853 if (max_labelno
!= max_label_num ())
856 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
859 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
860 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
868 const pass_data pass_data_compute_alignments
=
871 "alignments", /* name */
872 OPTGROUP_NONE
, /* optinfo_flags */
874 0, /* properties_required */
875 0, /* properties_provided */
876 0, /* properties_destroyed */
877 0, /* todo_flags_start */
878 0, /* todo_flags_finish */
881 class pass_compute_alignments
: public rtl_opt_pass
884 pass_compute_alignments (gcc::context
*ctxt
)
885 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
888 /* opt_pass methods: */
889 virtual unsigned int execute (function
*) { return compute_alignments (); }
891 }; // class pass_compute_alignments
896 make_pass_compute_alignments (gcc::context
*ctxt
)
898 return new pass_compute_alignments (ctxt
);
902 /* Make a pass over all insns and compute their actual lengths by shortening
903 any branches of variable length if possible. */
905 /* shorten_branches might be called multiple times: for example, the SH
906 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
907 In order to do this, it needs proper length information, which it obtains
908 by calling shorten_branches. This cannot be collapsed with
909 shorten_branches itself into a single pass unless we also want to integrate
910 reorg.c, since the branch splitting exposes new instructions with delay
914 shorten_branches (rtx_insn
*first
)
921 #define MAX_CODE_ALIGN 16
923 int something_changed
= 1;
924 char *varying_length
;
927 rtx align_tab
[MAX_CODE_ALIGN
];
929 /* Compute maximum UID and allocate label_align / uid_shuid. */
930 max_uid
= get_max_uid ();
932 /* Free uid_shuid before reallocating it. */
935 uid_shuid
= XNEWVEC (int, max_uid
);
937 if (max_labelno
!= max_label_num ())
940 /* Initialize label_align and set up uid_shuid to be strictly
941 monotonically rising with insn order. */
942 /* We use max_log here to keep track of the maximum alignment we want to
943 impose on the next CODE_LABEL (or the current one if we are processing
944 the CODE_LABEL itself). */
949 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
953 INSN_SHUID (insn
) = i
++;
960 bool next_is_jumptable
;
962 /* Merge in alignments computed by compute_alignments. */
963 log
= LABEL_TO_ALIGNMENT (insn
);
967 max_skip
= LABEL_TO_MAX_SKIP (insn
);
970 next
= next_nonnote_insn (insn
);
971 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
972 if (!next_is_jumptable
)
974 log
= LABEL_ALIGN (insn
);
978 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
981 /* ADDR_VECs only take room if read-only data goes into the text
983 if ((JUMP_TABLES_IN_TEXT_SECTION
984 || readonly_data_section
== text_section
)
985 && next_is_jumptable
)
987 log
= ADDR_VEC_ALIGN (next
);
991 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
994 LABEL_TO_ALIGNMENT (insn
) = max_log
;
995 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
999 else if (BARRIER_P (insn
))
1003 for (label
= insn
; label
&& ! INSN_P (label
);
1004 label
= NEXT_INSN (label
))
1005 if (LABEL_P (label
))
1007 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
1011 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1017 if (!HAVE_ATTR_length
)
1020 /* Allocate the rest of the arrays. */
1021 insn_lengths
= XNEWVEC (int, max_uid
);
1022 insn_lengths_max_uid
= max_uid
;
1023 /* Syntax errors can lead to labels being outside of the main insn stream.
1024 Initialize insn_addresses, so that we get reproducible results. */
1025 INSN_ADDRESSES_ALLOC (max_uid
);
1027 varying_length
= XCNEWVEC (char, max_uid
);
1029 /* Initialize uid_align. We scan instructions
1030 from end to start, and keep in align_tab[n] the last seen insn
1031 that does an alignment of at least n+1, i.e. the successor
1032 in the alignment chain for an insn that does / has a known
1034 uid_align
= XCNEWVEC (rtx
, max_uid
);
1036 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1037 align_tab
[i
] = NULL_RTX
;
1038 seq
= get_last_insn ();
1039 for (; seq
; seq
= PREV_INSN (seq
))
1041 int uid
= INSN_UID (seq
);
1043 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1044 uid_align
[uid
] = align_tab
[0];
1047 /* Found an alignment label. */
1048 uid_align
[uid
] = align_tab
[log
];
1049 for (i
= log
- 1; i
>= 0; i
--)
1054 /* When optimizing, we start assuming minimum length, and keep increasing
1055 lengths as we find the need for this, till nothing changes.
1056 When not optimizing, we start assuming maximum lengths, and
1057 do a single pass to update the lengths. */
1058 bool increasing
= optimize
!= 0;
1060 #ifdef CASE_VECTOR_SHORTEN_MODE
1063 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1066 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1067 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1070 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1072 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1073 int len
, i
, min
, max
, insn_shuid
;
1075 addr_diff_vec_flags flags
;
1077 if (! JUMP_TABLE_DATA_P (insn
)
1078 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1080 pat
= PATTERN (insn
);
1081 len
= XVECLEN (pat
, 1);
1082 gcc_assert (len
> 0);
1083 min_align
= MAX_CODE_ALIGN
;
1084 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1086 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1087 int shuid
= INSN_SHUID (lab
);
1098 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1099 min_align
= LABEL_TO_ALIGNMENT (lab
);
1101 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1102 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1103 insn_shuid
= INSN_SHUID (insn
);
1104 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1105 memset (&flags
, 0, sizeof (flags
));
1106 flags
.min_align
= min_align
;
1107 flags
.base_after_vec
= rel
> insn_shuid
;
1108 flags
.min_after_vec
= min
> insn_shuid
;
1109 flags
.max_after_vec
= max
> insn_shuid
;
1110 flags
.min_after_base
= min
> rel
;
1111 flags
.max_after_base
= max
> rel
;
1112 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1115 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1118 #endif /* CASE_VECTOR_SHORTEN_MODE */
1120 /* Compute initial lengths, addresses, and varying flags for each insn. */
1121 int (*length_fun
) (rtx_insn
*) = increasing
? insn_min_length
: insn_default_length
;
1123 for (insn_current_address
= 0, insn
= first
;
1125 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1127 uid
= INSN_UID (insn
);
1129 insn_lengths
[uid
] = 0;
1133 int log
= LABEL_TO_ALIGNMENT (insn
);
1136 int align
= 1 << log
;
1137 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1138 insn_lengths
[uid
] = new_address
- insn_current_address
;
1142 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1144 if (NOTE_P (insn
) || BARRIER_P (insn
)
1145 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1147 if (insn
->deleted ())
1150 body
= PATTERN (insn
);
1151 if (JUMP_TABLE_DATA_P (insn
))
1153 /* This only takes room if read-only data goes into the text
1155 if (JUMP_TABLES_IN_TEXT_SECTION
1156 || readonly_data_section
== text_section
)
1157 insn_lengths
[uid
] = (XVECLEN (body
,
1158 GET_CODE (body
) == ADDR_DIFF_VEC
)
1159 * GET_MODE_SIZE (GET_MODE (body
)));
1160 /* Alignment is handled by ADDR_VEC_ALIGN. */
1162 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1163 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1164 else if (rtx_sequence
*body_seq
= dyn_cast
<rtx_sequence
*> (body
))
1167 int const_delay_slots
;
1169 const_delay_slots
= const_num_delay_slots (body_seq
->insn (0));
1171 const_delay_slots
= 0;
1173 int (*inner_length_fun
) (rtx_insn
*)
1174 = const_delay_slots
? length_fun
: insn_default_length
;
1175 /* Inside a delay slot sequence, we do not do any branch shortening
1176 if the shortening could change the number of delay slots
1178 for (i
= 0; i
< body_seq
->len (); i
++)
1180 rtx_insn
*inner_insn
= body_seq
->insn (i
);
1181 int inner_uid
= INSN_UID (inner_insn
);
1184 if (GET_CODE (body
) == ASM_INPUT
1185 || asm_noperands (PATTERN (inner_insn
)) >= 0)
1186 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1187 * insn_default_length (inner_insn
));
1189 inner_length
= inner_length_fun (inner_insn
);
1191 insn_lengths
[inner_uid
] = inner_length
;
1192 if (const_delay_slots
)
1194 if ((varying_length
[inner_uid
]
1195 = insn_variable_length_p (inner_insn
)) != 0)
1196 varying_length
[uid
] = 1;
1197 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1198 + insn_lengths
[uid
]);
1201 varying_length
[inner_uid
] = 0;
1202 insn_lengths
[uid
] += inner_length
;
1205 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1207 insn_lengths
[uid
] = length_fun (insn
);
1208 varying_length
[uid
] = insn_variable_length_p (insn
);
1211 /* If needed, do any adjustment. */
1212 #ifdef ADJUST_INSN_LENGTH
1213 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1214 if (insn_lengths
[uid
] < 0)
1215 fatal_insn ("negative insn length", insn
);
1219 /* Now loop over all the insns finding varying length insns. For each,
1220 get the current insn length. If it has changed, reflect the change.
1221 When nothing changes for a full pass, we are done. */
1223 while (something_changed
)
1225 something_changed
= 0;
1226 insn_current_align
= MAX_CODE_ALIGN
- 1;
1227 for (insn_current_address
= 0, insn
= first
;
1229 insn
= NEXT_INSN (insn
))
1232 #ifdef ADJUST_INSN_LENGTH
1237 uid
= INSN_UID (insn
);
1241 int log
= LABEL_TO_ALIGNMENT (insn
);
1243 #ifdef CASE_VECTOR_SHORTEN_MODE
1244 /* If the mode of a following jump table was changed, we
1245 may need to update the alignment of this label. */
1247 bool next_is_jumptable
;
1249 next
= next_nonnote_insn (insn
);
1250 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1251 if ((JUMP_TABLES_IN_TEXT_SECTION
1252 || readonly_data_section
== text_section
)
1253 && next_is_jumptable
)
1255 int newlog
= ADDR_VEC_ALIGN (next
);
1259 LABEL_TO_ALIGNMENT (insn
) = log
;
1260 something_changed
= 1;
1265 if (log
> insn_current_align
)
1267 int align
= 1 << log
;
1268 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1269 insn_lengths
[uid
] = new_address
- insn_current_address
;
1270 insn_current_align
= log
;
1271 insn_current_address
= new_address
;
1274 insn_lengths
[uid
] = 0;
1275 INSN_ADDRESSES (uid
) = insn_current_address
;
1279 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1280 if (length_align
< insn_current_align
)
1281 insn_current_align
= length_align
;
1283 insn_last_address
= INSN_ADDRESSES (uid
);
1284 INSN_ADDRESSES (uid
) = insn_current_address
;
1286 #ifdef CASE_VECTOR_SHORTEN_MODE
1288 && JUMP_TABLE_DATA_P (insn
)
1289 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1291 rtx body
= PATTERN (insn
);
1292 int old_length
= insn_lengths
[uid
];
1294 safe_as_a
<rtx_insn
*> (XEXP (XEXP (body
, 0), 0));
1295 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1296 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1297 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1298 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1299 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1302 addr_diff_vec_flags flags
;
1303 machine_mode vec_mode
;
1305 /* Avoid automatic aggregate initialization. */
1306 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1308 /* Try to find a known alignment for rel_lab. */
1309 for (prev
= rel_lab
;
1311 && ! insn_lengths
[INSN_UID (prev
)]
1312 && ! (varying_length
[INSN_UID (prev
)] & 1);
1313 prev
= PREV_INSN (prev
))
1314 if (varying_length
[INSN_UID (prev
)] & 2)
1316 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1320 /* See the comment on addr_diff_vec_flags in rtl.h for the
1321 meaning of the flags values. base: REL_LAB vec: INSN */
1322 /* Anything after INSN has still addresses from the last
1323 pass; adjust these so that they reflect our current
1324 estimate for this pass. */
1325 if (flags
.base_after_vec
)
1326 rel_addr
+= insn_current_address
- insn_last_address
;
1327 if (flags
.min_after_vec
)
1328 min_addr
+= insn_current_address
- insn_last_address
;
1329 if (flags
.max_after_vec
)
1330 max_addr
+= insn_current_address
- insn_last_address
;
1331 /* We want to know the worst case, i.e. lowest possible value
1332 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1333 its offset is positive, and we have to be wary of code shrink;
1334 otherwise, it is negative, and we have to be vary of code
1336 if (flags
.min_after_base
)
1338 /* If INSN is between REL_LAB and MIN_LAB, the size
1339 changes we are about to make can change the alignment
1340 within the observed offset, therefore we have to break
1341 it up into two parts that are independent. */
1342 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1344 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1345 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1348 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1352 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1354 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1355 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1358 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1360 /* Likewise, determine the highest lowest possible value
1361 for the offset of MAX_LAB. */
1362 if (flags
.max_after_base
)
1364 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1366 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1367 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1370 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1374 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1376 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1377 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1380 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1382 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1383 max_addr
- rel_addr
, body
);
1385 || (GET_MODE_SIZE (vec_mode
)
1386 >= GET_MODE_SIZE (GET_MODE (body
))))
1387 PUT_MODE (body
, vec_mode
);
1388 if (JUMP_TABLES_IN_TEXT_SECTION
1389 || readonly_data_section
== text_section
)
1392 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1393 insn_current_address
+= insn_lengths
[uid
];
1394 if (insn_lengths
[uid
] != old_length
)
1395 something_changed
= 1;
1400 #endif /* CASE_VECTOR_SHORTEN_MODE */
1402 if (! (varying_length
[uid
]))
1404 if (NONJUMP_INSN_P (insn
)
1405 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1409 body
= PATTERN (insn
);
1410 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1412 rtx inner_insn
= XVECEXP (body
, 0, i
);
1413 int inner_uid
= INSN_UID (inner_insn
);
1415 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1417 insn_current_address
+= insn_lengths
[inner_uid
];
1421 insn_current_address
+= insn_lengths
[uid
];
1426 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1428 rtx_sequence
*seqn
= as_a
<rtx_sequence
*> (PATTERN (insn
));
1431 body
= PATTERN (insn
);
1433 for (i
= 0; i
< seqn
->len (); i
++)
1435 rtx_insn
*inner_insn
= seqn
->insn (i
);
1436 int inner_uid
= INSN_UID (inner_insn
);
1439 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1441 /* insn_current_length returns 0 for insns with a
1442 non-varying length. */
1443 if (! varying_length
[inner_uid
])
1444 inner_length
= insn_lengths
[inner_uid
];
1446 inner_length
= insn_current_length (inner_insn
);
1448 if (inner_length
!= insn_lengths
[inner_uid
])
1450 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1452 insn_lengths
[inner_uid
] = inner_length
;
1453 something_changed
= 1;
1456 inner_length
= insn_lengths
[inner_uid
];
1458 insn_current_address
+= inner_length
;
1459 new_length
+= inner_length
;
1464 new_length
= insn_current_length (insn
);
1465 insn_current_address
+= new_length
;
1468 #ifdef ADJUST_INSN_LENGTH
1469 /* If needed, do any adjustment. */
1470 tmp_length
= new_length
;
1471 ADJUST_INSN_LENGTH (insn
, new_length
);
1472 insn_current_address
+= (new_length
- tmp_length
);
1475 if (new_length
!= insn_lengths
[uid
]
1476 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1478 insn_lengths
[uid
] = new_length
;
1479 something_changed
= 1;
1482 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1484 /* For a non-optimizing compile, do only a single pass. */
1489 free (varying_length
);
1492 /* Given the body of an INSN known to be generated by an ASM statement, return
1493 the number of machine instructions likely to be generated for this insn.
1494 This is used to compute its length. */
1497 asm_insn_count (rtx body
)
1501 if (GET_CODE (body
) == ASM_INPUT
)
1502 templ
= XSTR (body
, 0);
1504 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1506 return asm_str_count (templ
);
1509 /* Return the number of machine instructions likely to be generated for the
1510 inline-asm template. */
1512 asm_str_count (const char *templ
)
1519 for (; *templ
; templ
++)
1520 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1527 /* ??? This is probably the wrong place for these. */
1528 /* Structure recording the mapping from source file and directory
1529 names at compile time to those to be embedded in debug
1531 typedef struct debug_prefix_map
1533 const char *old_prefix
;
1534 const char *new_prefix
;
1537 struct debug_prefix_map
*next
;
1540 /* Linked list of such structures. */
1541 static debug_prefix_map
*debug_prefix_maps
;
1544 /* Record a debug file prefix mapping. ARG is the argument to
1545 -fdebug-prefix-map and must be of the form OLD=NEW. */
1548 add_debug_prefix_map (const char *arg
)
1550 debug_prefix_map
*map
;
1553 p
= strchr (arg
, '=');
1556 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1559 map
= XNEW (debug_prefix_map
);
1560 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1561 map
->old_len
= p
- arg
;
1563 map
->new_prefix
= xstrdup (p
);
1564 map
->new_len
= strlen (p
);
1565 map
->next
= debug_prefix_maps
;
1566 debug_prefix_maps
= map
;
1569 /* Perform user-specified mapping of debug filename prefixes. Return
1570 the new name corresponding to FILENAME. */
1573 remap_debug_filename (const char *filename
)
1575 debug_prefix_map
*map
;
1580 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1581 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1585 name
= filename
+ map
->old_len
;
1586 name_len
= strlen (name
) + 1;
1587 s
= (char *) alloca (name_len
+ map
->new_len
);
1588 memcpy (s
, map
->new_prefix
, map
->new_len
);
1589 memcpy (s
+ map
->new_len
, name
, name_len
);
1590 return ggc_strdup (s
);
1593 /* Return true if DWARF2 debug info can be emitted for DECL. */
1596 dwarf2_debug_info_emitted_p (tree decl
)
1598 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1601 if (DECL_IGNORED_P (decl
))
1607 /* Return scope resulting from combination of S1 and S2. */
1609 choose_inner_scope (tree s1
, tree s2
)
1615 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1620 /* Emit lexical block notes needed to change scope from S1 to S2. */
1623 change_scope (rtx_insn
*orig_insn
, tree s1
, tree s2
)
1625 rtx_insn
*insn
= orig_insn
;
1626 tree com
= NULL_TREE
;
1627 tree ts1
= s1
, ts2
= s2
;
1632 gcc_assert (ts1
&& ts2
);
1633 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1634 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1635 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1636 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1639 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1640 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1649 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1650 NOTE_BLOCK (note
) = s
;
1651 s
= BLOCK_SUPERCONTEXT (s
);
1658 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1659 NOTE_BLOCK (insn
) = s
;
1660 s
= BLOCK_SUPERCONTEXT (s
);
1664 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1665 on the scope tree and the newly reordered instructions. */
1668 reemit_insn_block_notes (void)
1670 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1674 insn
= get_insns ();
1675 for (; insn
; insn
= NEXT_INSN (insn
))
1679 /* Prevent lexical blocks from straddling section boundaries. */
1680 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1682 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1683 s
= BLOCK_SUPERCONTEXT (s
))
1685 rtx_note
*note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1686 NOTE_BLOCK (note
) = s
;
1687 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1688 NOTE_BLOCK (note
) = s
;
1692 if (!active_insn_p (insn
))
1695 /* Avoid putting scope notes between jump table and its label. */
1696 if (JUMP_TABLE_DATA_P (insn
))
1699 this_block
= insn_scope (insn
);
1700 /* For sequences compute scope resulting from merging all scopes
1701 of instructions nested inside. */
1702 if (rtx_sequence
*body
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
1707 for (i
= 0; i
< body
->len (); i
++)
1708 this_block
= choose_inner_scope (this_block
,
1709 insn_scope (body
->insn (i
)));
1713 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1716 this_block
= DECL_INITIAL (cfun
->decl
);
1719 if (this_block
!= cur_block
)
1721 change_scope (insn
, cur_block
, this_block
);
1722 cur_block
= this_block
;
1726 /* change_scope emits before the insn, not after. */
1727 note
= emit_note (NOTE_INSN_DELETED
);
1728 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1734 static const char *some_local_dynamic_name
;
1736 /* Locate some local-dynamic symbol still in use by this function
1737 so that we can print its name in local-dynamic base patterns.
1738 Return null if there are no local-dynamic references. */
1741 get_some_local_dynamic_name ()
1743 subrtx_iterator::array_type array
;
1746 if (some_local_dynamic_name
)
1747 return some_local_dynamic_name
;
1749 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
1750 if (NONDEBUG_INSN_P (insn
))
1751 FOR_EACH_SUBRTX (iter
, array
, PATTERN (insn
), ALL
)
1753 const_rtx x
= *iter
;
1754 if (GET_CODE (x
) == SYMBOL_REF
)
1756 if (SYMBOL_REF_TLS_MODEL (x
) == TLS_MODEL_LOCAL_DYNAMIC
)
1757 return some_local_dynamic_name
= XSTR (x
, 0);
1758 if (CONSTANT_POOL_ADDRESS_P (x
))
1759 iter
.substitute (get_pool_constant (x
));
1766 /* Output assembler code for the start of a function,
1767 and initialize some of the variables in this file
1768 for the new function. The label for the function and associated
1769 assembler pseudo-ops have already been output in `assemble_start_function'.
1771 FIRST is the first insn of the rtl for the function being compiled.
1772 FILE is the file to write assembler code to.
1773 OPTIMIZE_P is nonzero if we should eliminate redundant
1774 test and compare insns. */
1777 final_start_function (rtx_insn
*first
, FILE *file
,
1778 int optimize_p ATTRIBUTE_UNUSED
)
1782 this_is_asm_operands
= 0;
1784 need_profile_function
= false;
1786 last_filename
= LOCATION_FILE (prologue_location
);
1787 last_linenum
= LOCATION_LINE (prologue_location
);
1788 last_discriminator
= discriminator
= 0;
1790 high_block_linenum
= high_function_linenum
= last_linenum
;
1792 if (flag_sanitize
& SANITIZE_ADDRESS
)
1793 asan_function_start ();
1795 if (!DECL_IGNORED_P (current_function_decl
))
1796 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1798 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1799 dwarf2out_begin_prologue (0, NULL
);
1801 #ifdef LEAF_REG_REMAP
1802 if (crtl
->uses_only_leaf_regs
)
1803 leaf_renumber_regs (first
);
1806 /* The Sun386i and perhaps other machines don't work right
1807 if the profiling code comes after the prologue. */
1808 if (targetm
.profile_before_prologue () && crtl
->profile
)
1810 if (targetm
.asm_out
.function_prologue
1811 == default_function_pro_epilogue
1812 #ifdef HAVE_prologue
1818 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1824 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1825 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1827 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1828 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1837 need_profile_function
= true;
1839 profile_function (file
);
1842 profile_function (file
);
1845 /* If debugging, assign block numbers to all of the blocks in this
1849 reemit_insn_block_notes ();
1850 number_blocks (current_function_decl
);
1851 /* We never actually put out begin/end notes for the top-level
1852 block in the function. But, conceptually, that block is
1854 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1857 if (warn_frame_larger_than
1858 && get_frame_size () > frame_larger_than_size
)
1860 /* Issue a warning */
1861 warning (OPT_Wframe_larger_than_
,
1862 "the frame size of %wd bytes is larger than %wd bytes",
1863 get_frame_size (), frame_larger_than_size
);
1866 /* First output the function prologue: code to set up the stack frame. */
1867 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1869 /* If the machine represents the prologue as RTL, the profiling code must
1870 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1871 #ifdef HAVE_prologue
1872 if (! HAVE_prologue
)
1874 profile_after_prologue (file
);
1878 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1880 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1881 profile_function (file
);
1885 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1887 #ifndef NO_PROFILE_COUNTERS
1888 # define NO_PROFILE_COUNTERS 0
1890 #ifdef ASM_OUTPUT_REG_PUSH
1891 rtx sval
= NULL
, chain
= NULL
;
1893 if (cfun
->returns_struct
)
1894 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1896 if (cfun
->static_chain_decl
)
1897 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1898 #endif /* ASM_OUTPUT_REG_PUSH */
1900 if (! NO_PROFILE_COUNTERS
)
1902 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1903 switch_to_section (data_section
);
1904 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1905 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1906 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1909 switch_to_section (current_function_section ());
1911 #ifdef ASM_OUTPUT_REG_PUSH
1912 if (sval
&& REG_P (sval
))
1913 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1914 if (chain
&& REG_P (chain
))
1915 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1918 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1920 #ifdef ASM_OUTPUT_REG_PUSH
1921 if (chain
&& REG_P (chain
))
1922 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1923 if (sval
&& REG_P (sval
))
1924 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1928 /* Output assembler code for the end of a function.
1929 For clarity, args are same as those of `final_start_function'
1930 even though not all of them are needed. */
1933 final_end_function (void)
1937 if (!DECL_IGNORED_P (current_function_decl
))
1938 debug_hooks
->end_function (high_function_linenum
);
1940 /* Finally, output the function epilogue:
1941 code to restore the stack frame and return to the caller. */
1942 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1944 /* And debug output. */
1945 if (!DECL_IGNORED_P (current_function_decl
))
1946 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1948 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1949 && dwarf2out_do_frame ())
1950 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1952 some_local_dynamic_name
= 0;
1956 /* Dumper helper for basic block information. FILE is the assembly
1957 output file, and INSN is the instruction being emitted. */
1960 dump_basic_block_info (FILE *file
, rtx_insn
*insn
, basic_block
*start_to_bb
,
1961 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1965 if (!flag_debug_asm
)
1968 if (INSN_UID (insn
) < bb_map_size
1969 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1974 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1976 fprintf (file
, " freq:%d", bb
->frequency
);
1978 fprintf (file
, " count:%" PRId64
,
1980 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1981 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1982 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1984 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1986 fprintf (file
, "\n");
1988 if (INSN_UID (insn
) < bb_map_size
1989 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1994 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1995 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1997 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1999 fprintf (file
, "\n");
2003 /* Output assembler code for some insns: all or part of a function.
2004 For description of args, see `final_start_function', above. */
2007 final (rtx_insn
*first
, FILE *file
, int optimize_p
)
2009 rtx_insn
*insn
, *next
;
2012 /* Used for -dA dump. */
2013 basic_block
*start_to_bb
= NULL
;
2014 basic_block
*end_to_bb
= NULL
;
2015 int bb_map_size
= 0;
2018 last_ignored_compare
= 0;
2021 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2023 /* If CC tracking across branches is enabled, record the insn which
2024 jumps to each branch only reached from one place. */
2025 if (optimize_p
&& JUMP_P (insn
))
2027 rtx lab
= JUMP_LABEL (insn
);
2028 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
2030 LABEL_REFS (lab
) = insn
;
2043 bb_map_size
= get_max_uid () + 1;
2044 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2045 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
2047 /* There is no cfg for a thunk. */
2048 if (!cfun
->is_thunk
)
2049 FOR_EACH_BB_REVERSE_FN (bb
, cfun
)
2051 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
2052 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2056 /* Output the insns. */
2057 for (insn
= first
; insn
;)
2059 if (HAVE_ATTR_length
)
2061 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2063 /* This can be triggered by bugs elsewhere in the compiler if
2064 new insns are created after init_insn_lengths is called. */
2065 gcc_assert (NOTE_P (insn
));
2066 insn_current_address
= -1;
2069 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2072 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2073 bb_map_size
, &bb_seqn
);
2074 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2083 /* Remove CFI notes, to avoid compare-debug failures. */
2084 for (insn
= first
; insn
; insn
= next
)
2086 next
= NEXT_INSN (insn
);
2088 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2089 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2095 get_insn_template (int code
, rtx insn
)
2097 switch (insn_data
[code
].output_format
)
2099 case INSN_OUTPUT_FORMAT_SINGLE
:
2100 return insn_data
[code
].output
.single
;
2101 case INSN_OUTPUT_FORMAT_MULTI
:
2102 return insn_data
[code
].output
.multi
[which_alternative
];
2103 case INSN_OUTPUT_FORMAT_FUNCTION
:
2105 return (*insn_data
[code
].output
.function
) (recog_data
.operand
,
2106 as_a
<rtx_insn
*> (insn
));
2113 /* Emit the appropriate declaration for an alternate-entry-point
2114 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2115 LABEL_KIND != LABEL_NORMAL.
2117 The case fall-through in this function is intentional. */
2119 output_alternate_entry_point (FILE *file
, rtx_insn
*insn
)
2121 const char *name
= LABEL_NAME (insn
);
2123 switch (LABEL_KIND (insn
))
2125 case LABEL_WEAK_ENTRY
:
2126 #ifdef ASM_WEAKEN_LABEL
2127 ASM_WEAKEN_LABEL (file
, name
);
2129 case LABEL_GLOBAL_ENTRY
:
2130 targetm
.asm_out
.globalize_label (file
, name
);
2131 case LABEL_STATIC_ENTRY
:
2132 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2133 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2135 ASM_OUTPUT_LABEL (file
, name
);
2144 /* Given a CALL_INSN, find and return the nested CALL. */
2146 call_from_call_insn (rtx_call_insn
*insn
)
2149 gcc_assert (CALL_P (insn
));
2152 while (GET_CODE (x
) != CALL
)
2154 switch (GET_CODE (x
))
2159 x
= COND_EXEC_CODE (x
);
2162 x
= XVECEXP (x
, 0, 0);
2172 /* The final scan for one insn, INSN.
2173 Args are same as in `final', except that INSN
2174 is the insn being scanned.
2175 Value returned is the next insn to be scanned.
2177 NOPEEPHOLES is the flag to disallow peephole processing (currently
2178 used for within delayed branch sequence output).
2180 SEEN is used to track the end of the prologue, for emitting
2181 debug information. We force the emission of a line note after
2182 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2185 final_scan_insn (rtx_insn
*insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2186 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2195 /* Ignore deleted insns. These can occur when we split insns (due to a
2196 template of "#") while not optimizing. */
2197 if (insn
->deleted ())
2198 return NEXT_INSN (insn
);
2200 switch (GET_CODE (insn
))
2203 switch (NOTE_KIND (insn
))
2205 case NOTE_INSN_DELETED
:
2206 case NOTE_INSN_UPDATE_SJLJ_CONTEXT
:
2209 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2210 in_cold_section_p
= !in_cold_section_p
;
2212 if (dwarf2out_do_frame ())
2213 dwarf2out_switch_text_section ();
2214 else if (!DECL_IGNORED_P (current_function_decl
))
2215 debug_hooks
->switch_text_section ();
2217 switch_to_section (current_function_section ());
2218 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2219 current_function_decl
,
2221 /* Emit a label for the split cold section. Form label name by
2222 suffixing "cold" to the original function's name. */
2223 if (in_cold_section_p
)
2226 = clone_function_name (current_function_decl
, "cold");
2227 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2228 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file
,
2230 (cold_function_name
),
2231 current_function_decl
);
2233 ASM_OUTPUT_LABEL (asm_out_file
,
2234 IDENTIFIER_POINTER (cold_function_name
));
2239 case NOTE_INSN_BASIC_BLOCK
:
2240 if (need_profile_function
)
2242 profile_function (asm_out_file
);
2243 need_profile_function
= false;
2246 if (targetm
.asm_out
.unwind_emit
)
2247 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2249 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2253 case NOTE_INSN_EH_REGION_BEG
:
2254 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2255 NOTE_EH_HANDLER (insn
));
2258 case NOTE_INSN_EH_REGION_END
:
2259 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2260 NOTE_EH_HANDLER (insn
));
2263 case NOTE_INSN_PROLOGUE_END
:
2264 targetm
.asm_out
.function_end_prologue (file
);
2265 profile_after_prologue (file
);
2267 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2269 *seen
|= SEEN_EMITTED
;
2270 force_source_line
= true;
2277 case NOTE_INSN_EPILOGUE_BEG
:
2278 if (!DECL_IGNORED_P (current_function_decl
))
2279 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2280 targetm
.asm_out
.function_begin_epilogue (file
);
2284 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2287 case NOTE_INSN_CFI_LABEL
:
2288 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2289 NOTE_LABEL_NUMBER (insn
));
2292 case NOTE_INSN_FUNCTION_BEG
:
2293 if (need_profile_function
)
2295 profile_function (asm_out_file
);
2296 need_profile_function
= false;
2300 if (!DECL_IGNORED_P (current_function_decl
))
2301 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2303 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2305 *seen
|= SEEN_EMITTED
;
2306 force_source_line
= true;
2313 case NOTE_INSN_BLOCK_BEG
:
2314 if (debug_info_level
== DINFO_LEVEL_NORMAL
2315 || debug_info_level
== DINFO_LEVEL_VERBOSE
2316 || write_symbols
== DWARF2_DEBUG
2317 || write_symbols
== VMS_AND_DWARF2_DEBUG
2318 || write_symbols
== VMS_DEBUG
)
2320 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2324 high_block_linenum
= last_linenum
;
2326 /* Output debugging info about the symbol-block beginning. */
2327 if (!DECL_IGNORED_P (current_function_decl
))
2328 debug_hooks
->begin_block (last_linenum
, n
);
2330 /* Mark this block as output. */
2331 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2333 if (write_symbols
== DBX_DEBUG
2334 || write_symbols
== SDB_DEBUG
)
2336 location_t
*locus_ptr
2337 = block_nonartificial_location (NOTE_BLOCK (insn
));
2339 if (locus_ptr
!= NULL
)
2341 override_filename
= LOCATION_FILE (*locus_ptr
);
2342 override_linenum
= LOCATION_LINE (*locus_ptr
);
2347 case NOTE_INSN_BLOCK_END
:
2348 if (debug_info_level
== DINFO_LEVEL_NORMAL
2349 || debug_info_level
== DINFO_LEVEL_VERBOSE
2350 || write_symbols
== DWARF2_DEBUG
2351 || write_symbols
== VMS_AND_DWARF2_DEBUG
2352 || write_symbols
== VMS_DEBUG
)
2354 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2358 /* End of a symbol-block. */
2360 gcc_assert (block_depth
>= 0);
2362 if (!DECL_IGNORED_P (current_function_decl
))
2363 debug_hooks
->end_block (high_block_linenum
, n
);
2365 if (write_symbols
== DBX_DEBUG
2366 || write_symbols
== SDB_DEBUG
)
2368 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2369 location_t
*locus_ptr
2370 = block_nonartificial_location (outer_block
);
2372 if (locus_ptr
!= NULL
)
2374 override_filename
= LOCATION_FILE (*locus_ptr
);
2375 override_linenum
= LOCATION_LINE (*locus_ptr
);
2379 override_filename
= NULL
;
2380 override_linenum
= 0;
2385 case NOTE_INSN_DELETED_LABEL
:
2386 /* Emit the label. We may have deleted the CODE_LABEL because
2387 the label could be proved to be unreachable, though still
2388 referenced (in the form of having its address taken. */
2389 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2392 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2393 /* Similarly, but need to use different namespace for it. */
2394 if (CODE_LABEL_NUMBER (insn
) != -1)
2395 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2398 case NOTE_INSN_VAR_LOCATION
:
2399 case NOTE_INSN_CALL_ARG_LOCATION
:
2400 if (!DECL_IGNORED_P (current_function_decl
))
2401 debug_hooks
->var_location (insn
);
2414 /* The target port might emit labels in the output function for
2415 some insn, e.g. sh.c output_branchy_insn. */
2416 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2418 int align
= LABEL_TO_ALIGNMENT (insn
);
2419 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2420 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2423 if (align
&& NEXT_INSN (insn
))
2425 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2426 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2428 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2429 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2431 ASM_OUTPUT_ALIGN (file
, align
);
2438 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2439 debug_hooks
->label (as_a
<rtx_code_label
*> (insn
));
2443 next
= next_nonnote_insn (insn
);
2444 /* If this label is followed by a jump-table, make sure we put
2445 the label in the read-only section. Also possibly write the
2446 label and jump table together. */
2447 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2449 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2450 /* In this case, the case vector is being moved by the
2451 target, so don't output the label at all. Leave that
2452 to the back end macros. */
2454 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2458 switch_to_section (targetm
.asm_out
.function_rodata_section
2459 (current_function_decl
));
2461 #ifdef ADDR_VEC_ALIGN
2462 log_align
= ADDR_VEC_ALIGN (next
);
2464 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2466 ASM_OUTPUT_ALIGN (file
, log_align
);
2469 switch_to_section (current_function_section ());
2471 #ifdef ASM_OUTPUT_CASE_LABEL
2472 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2475 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2480 if (LABEL_ALT_ENTRY_P (insn
))
2481 output_alternate_entry_point (file
, insn
);
2483 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2488 rtx body
= PATTERN (insn
);
2489 int insn_code_number
;
2493 /* Reset this early so it is correct for ASM statements. */
2494 current_insn_predicate
= NULL_RTX
;
2496 /* An INSN, JUMP_INSN or CALL_INSN.
2497 First check for special kinds that recog doesn't recognize. */
2499 if (GET_CODE (body
) == USE
/* These are just declarations. */
2500 || GET_CODE (body
) == CLOBBER
)
2505 /* If there is a REG_CC_SETTER note on this insn, it means that
2506 the setting of the condition code was done in the delay slot
2507 of the insn that branched here. So recover the cc status
2508 from the insn that set it. */
2510 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2513 rtx_insn
*other
= as_a
<rtx_insn
*> (XEXP (note
, 0));
2514 NOTICE_UPDATE_CC (PATTERN (other
), other
);
2515 cc_prev_status
= cc_status
;
2520 /* Detect insns that are really jump-tables
2521 and output them as such. */
2523 if (JUMP_TABLE_DATA_P (insn
))
2525 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2529 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2530 switch_to_section (targetm
.asm_out
.function_rodata_section
2531 (current_function_decl
));
2533 switch_to_section (current_function_section ());
2537 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2538 if (GET_CODE (body
) == ADDR_VEC
)
2540 #ifdef ASM_OUTPUT_ADDR_VEC
2541 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2548 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2549 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2555 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2556 for (idx
= 0; idx
< vlen
; idx
++)
2558 if (GET_CODE (body
) == ADDR_VEC
)
2560 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2561 ASM_OUTPUT_ADDR_VEC_ELT
2562 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2569 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2570 ASM_OUTPUT_ADDR_DIFF_ELT
2573 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2574 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2580 #ifdef ASM_OUTPUT_CASE_END
2581 ASM_OUTPUT_CASE_END (file
,
2582 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2587 switch_to_section (current_function_section ());
2591 /* Output this line note if it is the first or the last line
2593 if (!DECL_IGNORED_P (current_function_decl
)
2594 && notice_source_line (insn
, &is_stmt
))
2595 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2596 last_discriminator
, is_stmt
);
2598 if (GET_CODE (body
) == ASM_INPUT
)
2600 const char *string
= XSTR (body
, 0);
2602 /* There's no telling what that did to the condition codes. */
2607 expanded_location loc
;
2610 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2611 if (*loc
.file
&& loc
.line
)
2612 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2613 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2614 fprintf (asm_out_file
, "\t%s\n", string
);
2615 #if HAVE_AS_LINE_ZERO
2616 if (*loc
.file
&& loc
.line
)
2617 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2623 /* Detect `asm' construct with operands. */
2624 if (asm_noperands (body
) >= 0)
2626 unsigned int noperands
= asm_noperands (body
);
2627 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2630 expanded_location expanded
;
2632 /* There's no telling what that did to the condition codes. */
2635 /* Get out the operand values. */
2636 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2637 /* Inhibit dying on what would otherwise be compiler bugs. */
2638 insn_noperands
= noperands
;
2639 this_is_asm_operands
= insn
;
2640 expanded
= expand_location (loc
);
2642 #ifdef FINAL_PRESCAN_INSN
2643 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2646 /* Output the insn using them. */
2650 if (expanded
.file
&& expanded
.line
)
2651 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2652 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2653 output_asm_insn (string
, ops
);
2654 #if HAVE_AS_LINE_ZERO
2655 if (expanded
.file
&& expanded
.line
)
2656 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2660 if (targetm
.asm_out
.final_postscan_insn
)
2661 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2664 this_is_asm_operands
= 0;
2670 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (body
))
2672 /* A delayed-branch sequence */
2675 final_sequence
= seq
;
2677 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2678 force the restoration of a comparison that was previously
2679 thought unnecessary. If that happens, cancel this sequence
2680 and cause that insn to be restored. */
2682 next
= final_scan_insn (seq
->insn (0), file
, 0, 1, seen
);
2683 if (next
!= seq
->insn (1))
2689 for (i
= 1; i
< seq
->len (); i
++)
2691 rtx_insn
*insn
= seq
->insn (i
);
2692 rtx_insn
*next
= NEXT_INSN (insn
);
2693 /* We loop in case any instruction in a delay slot gets
2696 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2697 while (insn
!= next
);
2699 #ifdef DBR_OUTPUT_SEQEND
2700 DBR_OUTPUT_SEQEND (file
);
2704 /* If the insn requiring the delay slot was a CALL_INSN, the
2705 insns in the delay slot are actually executed before the
2706 called function. Hence we don't preserve any CC-setting
2707 actions in these insns and the CC must be marked as being
2708 clobbered by the function. */
2709 if (CALL_P (seq
->insn (0)))
2716 /* We have a real machine instruction as rtl. */
2718 body
= PATTERN (insn
);
2721 set
= single_set (insn
);
2723 /* Check for redundant test and compare instructions
2724 (when the condition codes are already set up as desired).
2725 This is done only when optimizing; if not optimizing,
2726 it should be possible for the user to alter a variable
2727 with the debugger in between statements
2728 and the next statement should reexamine the variable
2729 to compute the condition codes. */
2734 && GET_CODE (SET_DEST (set
)) == CC0
2735 && insn
!= last_ignored_compare
)
2738 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2739 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2741 src1
= SET_SRC (set
);
2743 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2745 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2746 XEXP (SET_SRC (set
), 0)
2747 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2748 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2749 XEXP (SET_SRC (set
), 1)
2750 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2751 if (XEXP (SET_SRC (set
), 1)
2752 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2753 src2
= XEXP (SET_SRC (set
), 0);
2755 if ((cc_status
.value1
!= 0
2756 && rtx_equal_p (src1
, cc_status
.value1
))
2757 || (cc_status
.value2
!= 0
2758 && rtx_equal_p (src1
, cc_status
.value2
))
2759 || (src2
!= 0 && cc_status
.value1
!= 0
2760 && rtx_equal_p (src2
, cc_status
.value1
))
2761 || (src2
!= 0 && cc_status
.value2
!= 0
2762 && rtx_equal_p (src2
, cc_status
.value2
)))
2764 /* Don't delete insn if it has an addressing side-effect. */
2765 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2766 /* or if anything in it is volatile. */
2767 && ! volatile_refs_p (PATTERN (insn
)))
2769 /* We don't really delete the insn; just ignore it. */
2770 last_ignored_compare
= insn
;
2777 /* If this is a conditional branch, maybe modify it
2778 if the cc's are in a nonstandard state
2779 so that it accomplishes the same thing that it would
2780 do straightforwardly if the cc's were set up normally. */
2782 if (cc_status
.flags
!= 0
2784 && GET_CODE (body
) == SET
2785 && SET_DEST (body
) == pc_rtx
2786 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2787 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2788 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2790 /* This function may alter the contents of its argument
2791 and clear some of the cc_status.flags bits.
2792 It may also return 1 meaning condition now always true
2793 or -1 meaning condition now always false
2794 or 2 meaning condition nontrivial but altered. */
2795 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2796 /* If condition now has fixed value, replace the IF_THEN_ELSE
2797 with its then-operand or its else-operand. */
2799 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2801 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2803 /* The jump is now either unconditional or a no-op.
2804 If it has become a no-op, don't try to output it.
2805 (It would not be recognized.) */
2806 if (SET_SRC (body
) == pc_rtx
)
2811 else if (ANY_RETURN_P (SET_SRC (body
)))
2812 /* Replace (set (pc) (return)) with (return). */
2813 PATTERN (insn
) = body
= SET_SRC (body
);
2815 /* Rerecognize the instruction if it has changed. */
2817 INSN_CODE (insn
) = -1;
2820 /* If this is a conditional trap, maybe modify it if the cc's
2821 are in a nonstandard state so that it accomplishes the same
2822 thing that it would do straightforwardly if the cc's were
2824 if (cc_status
.flags
!= 0
2825 && NONJUMP_INSN_P (insn
)
2826 && GET_CODE (body
) == TRAP_IF
2827 && COMPARISON_P (TRAP_CONDITION (body
))
2828 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2830 /* This function may alter the contents of its argument
2831 and clear some of the cc_status.flags bits.
2832 It may also return 1 meaning condition now always true
2833 or -1 meaning condition now always false
2834 or 2 meaning condition nontrivial but altered. */
2835 int result
= alter_cond (TRAP_CONDITION (body
));
2837 /* If TRAP_CONDITION has become always false, delete the
2845 /* If TRAP_CONDITION has become always true, replace
2846 TRAP_CONDITION with const_true_rtx. */
2848 TRAP_CONDITION (body
) = const_true_rtx
;
2850 /* Rerecognize the instruction if it has changed. */
2852 INSN_CODE (insn
) = -1;
2855 /* Make same adjustments to instructions that examine the
2856 condition codes without jumping and instructions that
2857 handle conditional moves (if this machine has either one). */
2859 if (cc_status
.flags
!= 0
2862 rtx cond_rtx
, then_rtx
, else_rtx
;
2865 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2867 cond_rtx
= XEXP (SET_SRC (set
), 0);
2868 then_rtx
= XEXP (SET_SRC (set
), 1);
2869 else_rtx
= XEXP (SET_SRC (set
), 2);
2873 cond_rtx
= SET_SRC (set
);
2874 then_rtx
= const_true_rtx
;
2875 else_rtx
= const0_rtx
;
2878 if (COMPARISON_P (cond_rtx
)
2879 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2882 result
= alter_cond (cond_rtx
);
2884 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2885 else if (result
== -1)
2886 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2887 else if (result
== 2)
2888 INSN_CODE (insn
) = -1;
2889 if (SET_DEST (set
) == SET_SRC (set
))
2896 /* Do machine-specific peephole optimizations if desired. */
2898 if (HAVE_peephole
&& optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2900 rtx_insn
*next
= peephole (insn
);
2901 /* When peepholing, if there were notes within the peephole,
2902 emit them before the peephole. */
2903 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2905 rtx_insn
*note
, *prev
= PREV_INSN (insn
);
2907 for (note
= NEXT_INSN (insn
); note
!= next
;
2908 note
= NEXT_INSN (note
))
2909 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2911 /* Put the notes in the proper position for a later
2912 rescan. For example, the SH target can do this
2913 when generating a far jump in a delayed branch
2915 note
= NEXT_INSN (insn
);
2916 SET_PREV_INSN (note
) = prev
;
2917 SET_NEXT_INSN (prev
) = note
;
2918 SET_NEXT_INSN (PREV_INSN (next
)) = insn
;
2919 SET_PREV_INSN (insn
) = PREV_INSN (next
);
2920 SET_NEXT_INSN (insn
) = next
;
2921 SET_PREV_INSN (next
) = insn
;
2924 /* PEEPHOLE might have changed this. */
2925 body
= PATTERN (insn
);
2928 /* Try to recognize the instruction.
2929 If successful, verify that the operands satisfy the
2930 constraints for the instruction. Crash if they don't,
2931 since `reload' should have changed them so that they do. */
2933 insn_code_number
= recog_memoized (insn
);
2934 cleanup_subreg_operands (insn
);
2936 /* Dump the insn in the assembly for debugging (-dAP).
2937 If the final dump is requested as slim RTL, dump slim
2938 RTL to the assembly file also. */
2939 if (flag_dump_rtl_in_asm
)
2941 print_rtx_head
= ASM_COMMENT_START
;
2942 if (! (dump_flags
& TDF_SLIM
))
2943 print_rtl_single (asm_out_file
, insn
);
2945 dump_insn_slim (asm_out_file
, insn
);
2946 print_rtx_head
= "";
2949 if (! constrain_operands_cached (insn
, 1))
2950 fatal_insn_not_found (insn
);
2952 /* Some target machines need to prescan each insn before
2955 #ifdef FINAL_PRESCAN_INSN
2956 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2959 if (targetm
.have_conditional_execution ()
2960 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2961 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2964 cc_prev_status
= cc_status
;
2966 /* Update `cc_status' for this instruction.
2967 The instruction's output routine may change it further.
2968 If the output routine for a jump insn needs to depend
2969 on the cc status, it should look at cc_prev_status. */
2971 NOTICE_UPDATE_CC (body
, insn
);
2974 current_output_insn
= debug_insn
= insn
;
2976 /* Find the proper template for this insn. */
2977 templ
= get_insn_template (insn_code_number
, insn
);
2979 /* If the C code returns 0, it means that it is a jump insn
2980 which follows a deleted test insn, and that test insn
2981 needs to be reinserted. */
2986 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2988 /* We have already processed the notes between the setter and
2989 the user. Make sure we don't process them again, this is
2990 particularly important if one of the notes is a block
2991 scope note or an EH note. */
2993 prev
!= last_ignored_compare
;
2994 prev
= PREV_INSN (prev
))
2997 delete_insn (prev
); /* Use delete_note. */
3003 /* If the template is the string "#", it means that this insn must
3005 if (templ
[0] == '#' && templ
[1] == '\0')
3007 rtx_insn
*new_rtx
= try_split (body
, insn
, 0);
3009 /* If we didn't split the insn, go away. */
3010 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
3011 fatal_insn ("could not split insn", insn
);
3013 /* If we have a length attribute, this instruction should have
3014 been split in shorten_branches, to ensure that we would have
3015 valid length info for the splitees. */
3016 gcc_assert (!HAVE_ATTR_length
);
3021 /* ??? This will put the directives in the wrong place if
3022 get_insn_template outputs assembly directly. However calling it
3023 before get_insn_template breaks if the insns is split. */
3024 if (targetm
.asm_out
.unwind_emit_before_insn
3025 && targetm
.asm_out
.unwind_emit
)
3026 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3028 if (rtx_call_insn
*call_insn
= dyn_cast
<rtx_call_insn
*> (insn
))
3030 rtx x
= call_from_call_insn (call_insn
);
3032 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
3036 t
= SYMBOL_REF_DECL (x
);
3038 assemble_external (t
);
3040 if (!DECL_IGNORED_P (current_function_decl
))
3041 debug_hooks
->var_location (insn
);
3044 /* Output assembler code from the template. */
3045 output_asm_insn (templ
, recog_data
.operand
);
3047 /* Some target machines need to postscan each insn after
3049 if (targetm
.asm_out
.final_postscan_insn
)
3050 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
3051 recog_data
.n_operands
);
3053 if (!targetm
.asm_out
.unwind_emit_before_insn
3054 && targetm
.asm_out
.unwind_emit
)
3055 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
3057 current_output_insn
= debug_insn
= 0;
3060 return NEXT_INSN (insn
);
3063 /* Return whether a source line note needs to be emitted before INSN.
3064 Sets IS_STMT to TRUE if the line should be marked as a possible
3065 breakpoint location. */
3068 notice_source_line (rtx_insn
*insn
, bool *is_stmt
)
3070 const char *filename
;
3073 if (override_filename
)
3075 filename
= override_filename
;
3076 linenum
= override_linenum
;
3078 else if (INSN_HAS_LOCATION (insn
))
3080 expanded_location xloc
= insn_location (insn
);
3081 filename
= xloc
.file
;
3082 linenum
= xloc
.line
;
3090 if (filename
== NULL
)
3093 if (force_source_line
3094 || filename
!= last_filename
3095 || last_linenum
!= linenum
)
3097 force_source_line
= false;
3098 last_filename
= filename
;
3099 last_linenum
= linenum
;
3100 last_discriminator
= discriminator
;
3102 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3103 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3107 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3109 /* If the discriminator changed, but the line number did not,
3110 output the line table entry with is_stmt false so the
3111 debugger does not treat this as a breakpoint location. */
3112 last_discriminator
= discriminator
;
3120 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3121 directly to the desired hard register. */
3124 cleanup_subreg_operands (rtx_insn
*insn
)
3127 bool changed
= false;
3128 extract_insn_cached (insn
);
3129 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3131 /* The following test cannot use recog_data.operand when testing
3132 for a SUBREG: the underlying object might have been changed
3133 already if we are inside a match_operator expression that
3134 matches the else clause. Instead we test the underlying
3135 expression directly. */
3136 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3138 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3141 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3142 || GET_CODE (recog_data
.operand
[i
]) == MULT
3143 || MEM_P (recog_data
.operand
[i
]))
3144 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3147 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3149 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3151 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3154 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3155 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3156 || MEM_P (*recog_data
.dup_loc
[i
]))
3157 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3160 df_insn_rescan (insn
);
3163 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3164 the thing it is a subreg of. Do it anyway if FINAL_P. */
3167 alter_subreg (rtx
*xp
, bool final_p
)
3170 rtx y
= SUBREG_REG (x
);
3172 /* simplify_subreg does not remove subreg from volatile references.
3173 We are required to. */
3176 int offset
= SUBREG_BYTE (x
);
3178 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3179 contains 0 instead of the proper offset. See simplify_subreg. */
3181 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3183 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3184 - GET_MODE_SIZE (GET_MODE (x
));
3185 if (WORDS_BIG_ENDIAN
)
3186 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3187 if (BYTES_BIG_ENDIAN
)
3188 offset
+= difference
% UNITS_PER_WORD
;
3192 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3194 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3196 else if (REG_P (y
) && HARD_REGISTER_P (y
))
3198 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3203 else if (final_p
&& REG_P (y
))
3205 /* Simplify_subreg can't handle some REG cases, but we have to. */
3207 HOST_WIDE_INT offset
;
3209 regno
= subreg_regno (x
);
3210 if (subreg_lowpart_p (x
))
3211 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3213 offset
= SUBREG_BYTE (x
);
3214 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3221 /* Do alter_subreg on all the SUBREGs contained in X. */
3224 walk_alter_subreg (rtx
*xp
, bool *changed
)
3227 switch (GET_CODE (x
))
3232 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3233 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3238 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3243 return alter_subreg (xp
, true);
3254 /* Given BODY, the body of a jump instruction, alter the jump condition
3255 as required by the bits that are set in cc_status.flags.
3256 Not all of the bits there can be handled at this level in all cases.
3258 The value is normally 0.
3259 1 means that the condition has become always true.
3260 -1 means that the condition has become always false.
3261 2 means that COND has been altered. */
3264 alter_cond (rtx cond
)
3268 if (cc_status
.flags
& CC_REVERSED
)
3271 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3274 if (cc_status
.flags
& CC_INVERTED
)
3277 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3280 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3281 switch (GET_CODE (cond
))
3286 /* Jump becomes unconditional. */
3292 /* Jump becomes no-op. */
3296 PUT_CODE (cond
, EQ
);
3301 PUT_CODE (cond
, NE
);
3309 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3310 switch (GET_CODE (cond
))
3314 /* Jump becomes unconditional. */
3319 /* Jump becomes no-op. */
3324 PUT_CODE (cond
, EQ
);
3330 PUT_CODE (cond
, NE
);
3338 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3339 switch (GET_CODE (cond
))
3342 /* Jump becomes unconditional. */
3346 PUT_CODE (cond
, EQ
);
3351 PUT_CODE (cond
, NE
);
3356 /* Jump becomes no-op. */
3363 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3364 switch (GET_CODE (cond
))
3370 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3375 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3380 if (cc_status
.flags
& CC_NOT_SIGNED
)
3381 /* The flags are valid if signed condition operators are converted
3383 switch (GET_CODE (cond
))
3386 PUT_CODE (cond
, LEU
);
3391 PUT_CODE (cond
, LTU
);
3396 PUT_CODE (cond
, GTU
);
3401 PUT_CODE (cond
, GEU
);
3413 /* Report inconsistency between the assembler template and the operands.
3414 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3417 output_operand_lossage (const char *cmsgid
, ...)
3421 const char *pfx_str
;
3424 va_start (ap
, cmsgid
);
3426 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3427 fmt_string
= xasprintf ("%s%s", pfx_str
, _(cmsgid
));
3428 new_message
= xvasprintf (fmt_string
, ap
);
3430 if (this_is_asm_operands
)
3431 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3433 internal_error ("%s", new_message
);
3440 /* Output of assembler code from a template, and its subroutines. */
3442 /* Annotate the assembly with a comment describing the pattern and
3443 alternative used. */
3446 output_asm_name (void)
3450 int num
= INSN_CODE (debug_insn
);
3451 fprintf (asm_out_file
, "\t%s %d\t%s",
3452 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3453 insn_data
[num
].name
);
3454 if (insn_data
[num
].n_alternatives
> 1)
3455 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3457 if (HAVE_ATTR_length
)
3458 fprintf (asm_out_file
, "\t[length = %d]",
3459 get_attr_length (debug_insn
));
3461 /* Clear this so only the first assembler insn
3462 of any rtl insn will get the special comment for -dp. */
3467 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3468 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3469 corresponds to the address of the object and 0 if to the object. */
3472 get_mem_expr_from_op (rtx op
, int *paddressp
)
3480 return REG_EXPR (op
);
3481 else if (!MEM_P (op
))
3484 if (MEM_EXPR (op
) != 0)
3485 return MEM_EXPR (op
);
3487 /* Otherwise we have an address, so indicate it and look at the address. */
3491 /* First check if we have a decl for the address, then look at the right side
3492 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3493 But don't allow the address to itself be indirect. */
3494 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3496 else if (GET_CODE (op
) == PLUS
3497 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3501 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3504 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3505 return inner_addressp
? 0 : expr
;
3508 /* Output operand names for assembler instructions. OPERANDS is the
3509 operand vector, OPORDER is the order to write the operands, and NOPS
3510 is the number of operands to write. */
3513 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3518 for (i
= 0; i
< nops
; i
++)
3521 rtx op
= operands
[oporder
[i
]];
3522 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3524 fprintf (asm_out_file
, "%c%s",
3525 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3529 fprintf (asm_out_file
, "%s",
3530 addressp
? "*" : "");
3531 print_mem_expr (asm_out_file
, expr
);
3534 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3535 && ORIGINAL_REGNO (op
) != REGNO (op
))
3536 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3540 #ifdef ASSEMBLER_DIALECT
3541 /* Helper function to parse assembler dialects in the asm string.
3542 This is called from output_asm_insn and asm_fprintf. */
3544 do_assembler_dialects (const char *p
, int *dialect
)
3555 output_operand_lossage ("nested assembly dialect alternatives");
3559 /* If we want the first dialect, do nothing. Otherwise, skip
3560 DIALECT_NUMBER of strings ending with '|'. */
3561 for (i
= 0; i
< dialect_number
; i
++)
3563 while (*p
&& *p
!= '}')
3571 /* Skip over any character after a percent sign. */
3583 output_operand_lossage ("unterminated assembly dialect alternative");
3590 /* Skip to close brace. */
3595 output_operand_lossage ("unterminated assembly dialect alternative");
3599 /* Skip over any character after a percent sign. */
3600 if (*p
== '%' && p
[1])
3614 putc (c
, asm_out_file
);
3619 putc (c
, asm_out_file
);
3630 /* Output text from TEMPLATE to the assembler output file,
3631 obeying %-directions to substitute operands taken from
3632 the vector OPERANDS.
3634 %N (for N a digit) means print operand N in usual manner.
3635 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3636 and print the label name with no punctuation.
3637 %cN means require operand N to be a constant
3638 and print the constant expression with no punctuation.
3639 %aN means expect operand N to be a memory address
3640 (not a memory reference!) and print a reference
3642 %nN means expect operand N to be a constant
3643 and print a constant expression for minus the value
3644 of the operand, with no other punctuation. */
3647 output_asm_insn (const char *templ
, rtx
*operands
)
3651 #ifdef ASSEMBLER_DIALECT
3654 int oporder
[MAX_RECOG_OPERANDS
];
3655 char opoutput
[MAX_RECOG_OPERANDS
];
3658 /* An insn may return a null string template
3659 in a case where no assembler code is needed. */
3663 memset (opoutput
, 0, sizeof opoutput
);
3665 putc ('\t', asm_out_file
);
3667 #ifdef ASM_OUTPUT_OPCODE
3668 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3675 if (flag_verbose_asm
)
3676 output_asm_operand_names (operands
, oporder
, ops
);
3677 if (flag_print_asm_name
)
3681 memset (opoutput
, 0, sizeof opoutput
);
3683 putc (c
, asm_out_file
);
3684 #ifdef ASM_OUTPUT_OPCODE
3685 while ((c
= *p
) == '\t')
3687 putc (c
, asm_out_file
);
3690 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3694 #ifdef ASSEMBLER_DIALECT
3698 p
= do_assembler_dialects (p
, &dialect
);
3703 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3704 if ASSEMBLER_DIALECT defined and these characters have a special
3705 meaning as dialect delimiters.*/
3707 #ifdef ASSEMBLER_DIALECT
3708 || *p
== '{' || *p
== '}' || *p
== '|'
3712 putc (*p
, asm_out_file
);
3715 /* %= outputs a number which is unique to each insn in the entire
3716 compilation. This is useful for making local labels that are
3717 referred to more than once in a given insn. */
3721 fprintf (asm_out_file
, "%d", insn_counter
);
3723 /* % followed by a letter and some digits
3724 outputs an operand in a special way depending on the letter.
3725 Letters `acln' are implemented directly.
3726 Other letters are passed to `output_operand' so that
3727 the TARGET_PRINT_OPERAND hook can define them. */
3728 else if (ISALPHA (*p
))
3731 unsigned long opnum
;
3734 opnum
= strtoul (p
, &endptr
, 10);
3737 output_operand_lossage ("operand number missing "
3739 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3740 output_operand_lossage ("operand number out of range");
3741 else if (letter
== 'l')
3742 output_asm_label (operands
[opnum
]);
3743 else if (letter
== 'a')
3744 output_address (operands
[opnum
]);
3745 else if (letter
== 'c')
3747 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3748 output_addr_const (asm_out_file
, operands
[opnum
]);
3750 output_operand (operands
[opnum
], 'c');
3752 else if (letter
== 'n')
3754 if (CONST_INT_P (operands
[opnum
]))
3755 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3756 - INTVAL (operands
[opnum
]));
3759 putc ('-', asm_out_file
);
3760 output_addr_const (asm_out_file
, operands
[opnum
]);
3764 output_operand (operands
[opnum
], letter
);
3766 if (!opoutput
[opnum
])
3767 oporder
[ops
++] = opnum
;
3768 opoutput
[opnum
] = 1;
3773 /* % followed by a digit outputs an operand the default way. */
3774 else if (ISDIGIT (*p
))
3776 unsigned long opnum
;
3779 opnum
= strtoul (p
, &endptr
, 10);
3780 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3781 output_operand_lossage ("operand number out of range");
3783 output_operand (operands
[opnum
], 0);
3785 if (!opoutput
[opnum
])
3786 oporder
[ops
++] = opnum
;
3787 opoutput
[opnum
] = 1;
3792 /* % followed by punctuation: output something for that
3793 punctuation character alone, with no operand. The
3794 TARGET_PRINT_OPERAND hook decides what is actually done. */
3795 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3796 output_operand (NULL_RTX
, *p
++);
3798 output_operand_lossage ("invalid %%-code");
3802 putc (c
, asm_out_file
);
3805 /* Write out the variable names for operands, if we know them. */
3806 if (flag_verbose_asm
)
3807 output_asm_operand_names (operands
, oporder
, ops
);
3808 if (flag_print_asm_name
)
3811 putc ('\n', asm_out_file
);
3814 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3817 output_asm_label (rtx x
)
3821 if (GET_CODE (x
) == LABEL_REF
)
3822 x
= LABEL_REF_LABEL (x
);
3825 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3826 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3828 output_operand_lossage ("'%%l' operand isn't a label");
3830 assemble_name (asm_out_file
, buf
);
3833 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3836 mark_symbol_refs_as_used (rtx x
)
3838 subrtx_iterator::array_type array
;
3839 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
3841 const_rtx x
= *iter
;
3842 if (GET_CODE (x
) == SYMBOL_REF
)
3843 if (tree t
= SYMBOL_REF_DECL (x
))
3844 assemble_external (t
);
3848 /* Print operand X using machine-dependent assembler syntax.
3849 CODE is a non-digit that preceded the operand-number in the % spec,
3850 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3851 between the % and the digits.
3852 When CODE is a non-letter, X is 0.
3854 The meanings of the letters are machine-dependent and controlled
3855 by TARGET_PRINT_OPERAND. */
3858 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3860 if (x
&& GET_CODE (x
) == SUBREG
)
3861 x
= alter_subreg (&x
, true);
3863 /* X must not be a pseudo reg. */
3864 if (!targetm
.no_register_allocation
)
3865 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3867 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3872 mark_symbol_refs_as_used (x
);
3875 /* Print a memory reference operand for address X using
3876 machine-dependent assembler syntax. */
3879 output_address (rtx x
)
3881 bool changed
= false;
3882 walk_alter_subreg (&x
, &changed
);
3883 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3886 /* Print an integer constant expression in assembler syntax.
3887 Addition and subtraction are the only arithmetic
3888 that may appear in these expressions. */
3891 output_addr_const (FILE *file
, rtx x
)
3896 switch (GET_CODE (x
))
3903 if (SYMBOL_REF_DECL (x
))
3904 assemble_external (SYMBOL_REF_DECL (x
));
3905 #ifdef ASM_OUTPUT_SYMBOL_REF
3906 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3908 assemble_name (file
, XSTR (x
, 0));
3913 x
= LABEL_REF_LABEL (x
);
3916 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3917 #ifdef ASM_OUTPUT_LABEL_REF
3918 ASM_OUTPUT_LABEL_REF (file
, buf
);
3920 assemble_name (file
, buf
);
3925 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3929 /* This used to output parentheses around the expression,
3930 but that does not work on the 386 (either ATT or BSD assembler). */
3931 output_addr_const (file
, XEXP (x
, 0));
3934 case CONST_WIDE_INT
:
3935 /* We do not know the mode here so we have to use a round about
3936 way to build a wide-int to get it printed properly. */
3938 wide_int w
= wide_int::from_array (&CONST_WIDE_INT_ELT (x
, 0),
3939 CONST_WIDE_INT_NUNITS (x
),
3940 CONST_WIDE_INT_NUNITS (x
)
3941 * HOST_BITS_PER_WIDE_INT
,
3943 print_decs (w
, file
);
3948 if (CONST_DOUBLE_AS_INT_P (x
))
3950 /* We can use %d if the number is one word and positive. */
3951 if (CONST_DOUBLE_HIGH (x
))
3952 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3953 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3954 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3955 else if (CONST_DOUBLE_LOW (x
) < 0)
3956 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3957 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3959 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3962 /* We can't handle floating point constants;
3963 PRINT_OPERAND must handle them. */
3964 output_operand_lossage ("floating constant misused");
3968 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3972 /* Some assemblers need integer constants to appear last (eg masm). */
3973 if (CONST_INT_P (XEXP (x
, 0)))
3975 output_addr_const (file
, XEXP (x
, 1));
3976 if (INTVAL (XEXP (x
, 0)) >= 0)
3977 fprintf (file
, "+");
3978 output_addr_const (file
, XEXP (x
, 0));
3982 output_addr_const (file
, XEXP (x
, 0));
3983 if (!CONST_INT_P (XEXP (x
, 1))
3984 || INTVAL (XEXP (x
, 1)) >= 0)
3985 fprintf (file
, "+");
3986 output_addr_const (file
, XEXP (x
, 1));
3991 /* Avoid outputting things like x-x or x+5-x,
3992 since some assemblers can't handle that. */
3993 x
= simplify_subtraction (x
);
3994 if (GET_CODE (x
) != MINUS
)
3997 output_addr_const (file
, XEXP (x
, 0));
3998 fprintf (file
, "-");
3999 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
4000 || GET_CODE (XEXP (x
, 1)) == PC
4001 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
4002 output_addr_const (file
, XEXP (x
, 1));
4005 fputs (targetm
.asm_out
.open_paren
, file
);
4006 output_addr_const (file
, XEXP (x
, 1));
4007 fputs (targetm
.asm_out
.close_paren
, file
);
4015 output_addr_const (file
, XEXP (x
, 0));
4019 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
4022 output_operand_lossage ("invalid expression as operand");
4026 /* Output a quoted string. */
4029 output_quoted_string (FILE *asm_file
, const char *string
)
4031 #ifdef OUTPUT_QUOTED_STRING
4032 OUTPUT_QUOTED_STRING (asm_file
, string
);
4036 putc ('\"', asm_file
);
4037 while ((c
= *string
++) != 0)
4041 if (c
== '\"' || c
== '\\')
4042 putc ('\\', asm_file
);
4046 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
4048 putc ('\"', asm_file
);
4052 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4055 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
4057 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
4062 char *p
= buf
+ sizeof (buf
);
4064 *--p
= "0123456789abcdef"[value
% 16];
4065 while ((value
/= 16) != 0);
4068 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4072 /* Internal function that prints an unsigned long in decimal in reverse.
4073 The output string IS NOT null-terminated. */
4076 sprint_ul_rev (char *s
, unsigned long value
)
4081 s
[i
] = "0123456789"[value
% 10];
4084 /* alternate version, without modulo */
4085 /* oldval = value; */
4087 /* s[i] = "0123456789" [oldval - 10*value]; */
4094 /* Write an unsigned long as decimal to a file, fast. */
4097 fprint_ul (FILE *f
, unsigned long value
)
4099 /* python says: len(str(2**64)) == 20 */
4103 i
= sprint_ul_rev (s
, value
);
4105 /* It's probably too small to bother with string reversal and fputs. */
4114 /* Write an unsigned long as decimal to a string, fast.
4115 s must be wide enough to not overflow, at least 21 chars.
4116 Returns the length of the string (without terminating '\0'). */
4119 sprint_ul (char *s
, unsigned long value
)
4121 int len
= sprint_ul_rev (s
, value
);
4124 std::reverse (s
, s
+ len
);
4128 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4129 %R prints the value of REGISTER_PREFIX.
4130 %L prints the value of LOCAL_LABEL_PREFIX.
4131 %U prints the value of USER_LABEL_PREFIX.
4132 %I prints the value of IMMEDIATE_PREFIX.
4133 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4134 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4136 We handle alternate assembler dialects here, just like output_asm_insn. */
4139 asm_fprintf (FILE *file
, const char *p
, ...)
4143 #ifdef ASSEMBLER_DIALECT
4148 va_start (argptr
, p
);
4155 #ifdef ASSEMBLER_DIALECT
4159 p
= do_assembler_dialects (p
, &dialect
);
4166 while (strchr ("-+ #0", c
))
4171 while (ISDIGIT (c
) || c
== '.')
4182 case 'd': case 'i': case 'u':
4183 case 'x': case 'X': case 'o':
4187 fprintf (file
, buf
, va_arg (argptr
, int));
4191 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4192 'o' cases, but we do not check for those cases. It
4193 means that the value is a HOST_WIDE_INT, which may be
4194 either `long' or `long long'. */
4195 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4196 q
+= strlen (HOST_WIDE_INT_PRINT
);
4199 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4204 #ifdef HAVE_LONG_LONG
4210 fprintf (file
, buf
, va_arg (argptr
, long long));
4217 fprintf (file
, buf
, va_arg (argptr
, long));
4225 fprintf (file
, buf
, va_arg (argptr
, char *));
4229 #ifdef ASM_OUTPUT_OPCODE
4230 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4235 #ifdef REGISTER_PREFIX
4236 fprintf (file
, "%s", REGISTER_PREFIX
);
4241 #ifdef IMMEDIATE_PREFIX
4242 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4247 #ifdef LOCAL_LABEL_PREFIX
4248 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4253 fputs (user_label_prefix
, file
);
4256 #ifdef ASM_FPRINTF_EXTENSIONS
4257 /* Uppercase letters are reserved for general use by asm_fprintf
4258 and so are not available to target specific code. In order to
4259 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4260 they are defined here. As they get turned into real extensions
4261 to asm_fprintf they should be removed from this list. */
4262 case 'A': case 'B': case 'C': case 'D': case 'E':
4263 case 'F': case 'G': case 'H': case 'J': case 'K':
4264 case 'M': case 'N': case 'P': case 'Q': case 'S':
4265 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4268 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4281 /* Return nonzero if this function has no function calls. */
4284 leaf_function_p (void)
4288 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4289 functions even if they call mcount. */
4290 if (crtl
->profile
&& !targetm
.keep_leaf_when_profiled ())
4293 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4296 && ! SIBLING_CALL_P (insn
))
4298 if (NONJUMP_INSN_P (insn
)
4299 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4300 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4301 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4308 /* Return 1 if branch is a forward branch.
4309 Uses insn_shuid array, so it works only in the final pass. May be used by
4310 output templates to customary add branch prediction hints.
4313 final_forward_branch_p (rtx_insn
*insn
)
4315 int insn_id
, label_id
;
4317 gcc_assert (uid_shuid
);
4318 insn_id
= INSN_SHUID (insn
);
4319 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4320 /* We've hit some insns that does not have id information available. */
4321 gcc_assert (insn_id
&& label_id
);
4322 return insn_id
< label_id
;
4325 /* On some machines, a function with no call insns
4326 can run faster if it doesn't create its own register window.
4327 When output, the leaf function should use only the "output"
4328 registers. Ordinarily, the function would be compiled to use
4329 the "input" registers to find its arguments; it is a candidate
4330 for leaf treatment if it uses only the "input" registers.
4331 Leaf function treatment means renumbering so the function
4332 uses the "output" registers instead. */
4334 #ifdef LEAF_REGISTERS
4336 /* Return 1 if this function uses only the registers that can be
4337 safely renumbered. */
4340 only_leaf_regs_used (void)
4343 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4345 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4346 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4347 && ! permitted_reg_in_leaf_functions
[i
])
4350 if (crtl
->uses_pic_offset_table
4351 && pic_offset_table_rtx
!= 0
4352 && REG_P (pic_offset_table_rtx
)
4353 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4359 /* Scan all instructions and renumber all registers into those
4360 available in leaf functions. */
4363 leaf_renumber_regs (rtx_insn
*first
)
4367 /* Renumber only the actual patterns.
4368 The reg-notes can contain frame pointer refs,
4369 and renumbering them could crash, and should not be needed. */
4370 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4372 leaf_renumber_regs_insn (PATTERN (insn
));
4375 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4376 available in leaf functions. */
4379 leaf_renumber_regs_insn (rtx in_rtx
)
4382 const char *format_ptr
;
4387 /* Renumber all input-registers into output-registers.
4388 renumbered_regs would be 1 for an output-register;
4395 /* Don't renumber the same reg twice. */
4399 newreg
= REGNO (in_rtx
);
4400 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4401 to reach here as part of a REG_NOTE. */
4402 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4407 newreg
= LEAF_REG_REMAP (newreg
);
4408 gcc_assert (newreg
>= 0);
4409 df_set_regs_ever_live (REGNO (in_rtx
), false);
4410 df_set_regs_ever_live (newreg
, true);
4411 SET_REGNO (in_rtx
, newreg
);
4416 if (INSN_P (in_rtx
))
4418 /* Inside a SEQUENCE, we find insns.
4419 Renumber just the patterns of these insns,
4420 just as we do for the top-level insns. */
4421 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4425 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4427 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4428 switch (*format_ptr
++)
4431 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4435 if (NULL
!= XVEC (in_rtx
, i
))
4437 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4438 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4457 /* Turn the RTL into assembly. */
4459 rest_of_handle_final (void)
4461 const char *fnname
= get_fnname_from_decl (current_function_decl
);
4463 assemble_start_function (current_function_decl
, fnname
);
4464 final_start_function (get_insns (), asm_out_file
, optimize
);
4465 final (get_insns (), asm_out_file
, optimize
);
4467 collect_fn_hard_reg_usage ();
4468 final_end_function ();
4470 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4471 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4472 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4473 output_function_exception_table (fnname
);
4475 assemble_end_function (current_function_decl
, fnname
);
4477 user_defined_section_attribute
= false;
4479 /* Free up reg info memory. */
4483 fflush (asm_out_file
);
4485 /* Write DBX symbols if requested. */
4487 /* Note that for those inline functions where we don't initially
4488 know for certain that we will be generating an out-of-line copy,
4489 the first invocation of this routine (rest_of_compilation) will
4490 skip over this code by doing a `goto exit_rest_of_compilation;'.
4491 Later on, wrapup_global_declarations will (indirectly) call
4492 rest_of_compilation again for those inline functions that need
4493 to have out-of-line copies generated. During that call, we
4494 *will* be routed past here. */
4496 timevar_push (TV_SYMOUT
);
4497 if (!DECL_IGNORED_P (current_function_decl
))
4498 debug_hooks
->function_decl (current_function_decl
);
4499 timevar_pop (TV_SYMOUT
);
4501 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4502 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4504 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4505 && targetm
.have_ctors_dtors
)
4506 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4507 decl_init_priority_lookup
4508 (current_function_decl
));
4509 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4510 && targetm
.have_ctors_dtors
)
4511 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4512 decl_fini_priority_lookup
4513 (current_function_decl
));
4519 const pass_data pass_data_final
=
4521 RTL_PASS
, /* type */
4523 OPTGROUP_NONE
, /* optinfo_flags */
4524 TV_FINAL
, /* tv_id */
4525 0, /* properties_required */
4526 0, /* properties_provided */
4527 0, /* properties_destroyed */
4528 0, /* todo_flags_start */
4529 0, /* todo_flags_finish */
4532 class pass_final
: public rtl_opt_pass
4535 pass_final (gcc::context
*ctxt
)
4536 : rtl_opt_pass (pass_data_final
, ctxt
)
4539 /* opt_pass methods: */
4540 virtual unsigned int execute (function
*) { return rest_of_handle_final (); }
4542 }; // class pass_final
4547 make_pass_final (gcc::context
*ctxt
)
4549 return new pass_final (ctxt
);
4554 rest_of_handle_shorten_branches (void)
4556 /* Shorten branches. */
4557 shorten_branches (get_insns ());
4563 const pass_data pass_data_shorten_branches
=
4565 RTL_PASS
, /* type */
4566 "shorten", /* name */
4567 OPTGROUP_NONE
, /* optinfo_flags */
4568 TV_SHORTEN_BRANCH
, /* tv_id */
4569 0, /* properties_required */
4570 0, /* properties_provided */
4571 0, /* properties_destroyed */
4572 0, /* todo_flags_start */
4573 0, /* todo_flags_finish */
4576 class pass_shorten_branches
: public rtl_opt_pass
4579 pass_shorten_branches (gcc::context
*ctxt
)
4580 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4583 /* opt_pass methods: */
4584 virtual unsigned int execute (function
*)
4586 return rest_of_handle_shorten_branches ();
4589 }; // class pass_shorten_branches
4594 make_pass_shorten_branches (gcc::context
*ctxt
)
4596 return new pass_shorten_branches (ctxt
);
4601 rest_of_clean_state (void)
4603 rtx_insn
*insn
, *next
;
4604 FILE *final_output
= NULL
;
4605 int save_unnumbered
= flag_dump_unnumbered
;
4606 int save_noaddr
= flag_dump_noaddr
;
4608 if (flag_dump_final_insns
)
4610 final_output
= fopen (flag_dump_final_insns
, "a");
4613 error ("could not open final insn dump file %qs: %m",
4614 flag_dump_final_insns
);
4615 flag_dump_final_insns
= NULL
;
4619 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4620 if (flag_compare_debug_opt
|| flag_compare_debug
)
4621 dump_flags
|= TDF_NOUID
;
4622 dump_function_header (final_output
, current_function_decl
,
4624 final_insns_dump_p
= true;
4626 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4628 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4632 set_block_for_insn (insn
, NULL
);
4633 INSN_UID (insn
) = 0;
4638 /* It is very important to decompose the RTL instruction chain here:
4639 debug information keeps pointing into CODE_LABEL insns inside the function
4640 body. If these remain pointing to the other insns, we end up preserving
4641 whole RTL chain and attached detailed debug info in memory. */
4642 for (insn
= get_insns (); insn
; insn
= next
)
4644 next
= NEXT_INSN (insn
);
4645 SET_NEXT_INSN (insn
) = NULL
;
4646 SET_PREV_INSN (insn
) = NULL
;
4649 && (!NOTE_P (insn
) ||
4650 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4651 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4652 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4653 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4654 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4655 print_rtl_single (final_output
, insn
);
4660 flag_dump_noaddr
= save_noaddr
;
4661 flag_dump_unnumbered
= save_unnumbered
;
4662 final_insns_dump_p
= false;
4664 if (fclose (final_output
))
4666 error ("could not close final insn dump file %qs: %m",
4667 flag_dump_final_insns
);
4668 flag_dump_final_insns
= NULL
;
4672 /* In case the function was not output,
4673 don't leave any temporary anonymous types
4674 queued up for sdb output. */
4675 #ifdef SDB_DEBUGGING_INFO
4676 if (write_symbols
== SDB_DEBUG
)
4677 sdbout_types (NULL_TREE
);
4680 flag_rerun_cse_after_global_opts
= 0;
4681 reload_completed
= 0;
4682 epilogue_completed
= 0;
4684 regstack_completed
= 0;
4687 /* Clear out the insn_length contents now that they are no
4689 init_insn_lengths ();
4691 /* Show no temporary slots allocated. */
4694 free_bb_for_insn ();
4698 /* We can reduce stack alignment on call site only when we are sure that
4699 the function body just produced will be actually used in the final
4701 if (decl_binds_to_current_def_p (current_function_decl
))
4703 unsigned int pref
= crtl
->preferred_stack_boundary
;
4704 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4705 pref
= crtl
->stack_alignment_needed
;
4706 cgraph_node::rtl_info (current_function_decl
)
4707 ->preferred_incoming_stack_boundary
= pref
;
4710 /* Make sure volatile mem refs aren't considered valid operands for
4711 arithmetic insns. We must call this here if this is a nested inline
4712 function, since the above code leaves us in the init_recog state,
4713 and the function context push/pop code does not save/restore volatile_ok.
4715 ??? Maybe it isn't necessary for expand_start_function to call this
4716 anymore if we do it here? */
4718 init_recog_no_volatile ();
4720 /* We're done with this function. Free up memory if we can. */
4721 free_after_parsing (cfun
);
4722 free_after_compilation (cfun
);
4728 const pass_data pass_data_clean_state
=
4730 RTL_PASS
, /* type */
4731 "*clean_state", /* name */
4732 OPTGROUP_NONE
, /* optinfo_flags */
4733 TV_FINAL
, /* tv_id */
4734 0, /* properties_required */
4735 0, /* properties_provided */
4736 PROP_rtl
, /* properties_destroyed */
4737 0, /* todo_flags_start */
4738 0, /* todo_flags_finish */
4741 class pass_clean_state
: public rtl_opt_pass
4744 pass_clean_state (gcc::context
*ctxt
)
4745 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4748 /* opt_pass methods: */
4749 virtual unsigned int execute (function
*)
4751 return rest_of_clean_state ();
4754 }; // class pass_clean_state
4759 make_pass_clean_state (gcc::context
*ctxt
)
4761 return new pass_clean_state (ctxt
);
4764 /* Return true if INSN is a call to the the current function. */
4767 self_recursive_call_p (rtx_insn
*insn
)
4769 tree fndecl
= get_call_fndecl (insn
);
4770 return (fndecl
== current_function_decl
4771 && decl_binds_to_current_def_p (fndecl
));
4774 /* Collect hard register usage for the current function. */
4777 collect_fn_hard_reg_usage (void)
4783 struct cgraph_rtl_info
*node
;
4784 HARD_REG_SET function_used_regs
;
4786 /* ??? To be removed when all the ports have been fixed. */
4787 if (!targetm
.call_fusage_contains_non_callee_clobbers
)
4790 CLEAR_HARD_REG_SET (function_used_regs
);
4792 for (insn
= get_insns (); insn
!= NULL_RTX
; insn
= next_insn (insn
))
4794 HARD_REG_SET insn_used_regs
;
4796 if (!NONDEBUG_INSN_P (insn
))
4800 && !self_recursive_call_p (insn
))
4802 if (!get_call_reg_set_usage (insn
, &insn_used_regs
,
4806 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4809 find_all_hard_reg_sets (insn
, &insn_used_regs
, false);
4810 IOR_HARD_REG_SET (function_used_regs
, insn_used_regs
);
4813 /* Be conservative - mark fixed and global registers as used. */
4814 IOR_HARD_REG_SET (function_used_regs
, fixed_reg_set
);
4817 /* Handle STACK_REGS conservatively, since the df-framework does not
4818 provide accurate information for them. */
4820 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
4821 SET_HARD_REG_BIT (function_used_regs
, i
);
4824 /* The information we have gathered is only interesting if it exposes a
4825 register from the call_used_regs that is not used in this function. */
4826 if (hard_reg_set_subset_p (call_used_reg_set
, function_used_regs
))
4829 node
= cgraph_node::rtl_info (current_function_decl
);
4830 gcc_assert (node
!= NULL
);
4832 COPY_HARD_REG_SET (node
->function_used_regs
, function_used_regs
);
4833 node
->function_used_regs_valid
= 1;
4836 /* Get the declaration of the function called by INSN. */
4839 get_call_fndecl (rtx_insn
*insn
)
4843 note
= find_reg_note (insn
, REG_CALL_DECL
, NULL_RTX
);
4844 if (note
== NULL_RTX
)
4847 datum
= XEXP (note
, 0);
4848 if (datum
!= NULL_RTX
)
4849 return SYMBOL_REF_DECL (datum
);
4854 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4855 call targets that can be overwritten. */
4857 static struct cgraph_rtl_info
*
4858 get_call_cgraph_rtl_info (rtx_insn
*insn
)
4862 if (insn
== NULL_RTX
)
4865 fndecl
= get_call_fndecl (insn
);
4866 if (fndecl
== NULL_TREE
4867 || !decl_binds_to_current_def_p (fndecl
))
4870 return cgraph_node::rtl_info (fndecl
);
4873 /* Find hard registers used by function call instruction INSN, and return them
4874 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4877 get_call_reg_set_usage (rtx_insn
*insn
, HARD_REG_SET
*reg_set
,
4878 HARD_REG_SET default_set
)
4882 struct cgraph_rtl_info
*node
= get_call_cgraph_rtl_info (insn
);
4884 && node
->function_used_regs_valid
)
4886 COPY_HARD_REG_SET (*reg_set
, node
->function_used_regs
);
4887 AND_HARD_REG_SET (*reg_set
, default_set
);
4892 COPY_HARD_REG_SET (*reg_set
, default_set
);