1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and rtx iterators instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
379 #include "coretypes.h"
383 #include "insn-config.h"
385 #include "hard-reg-set.h"
387 #include "function.h"
389 #include "alloc-pool.h"
392 #include "dominance.h"
395 #include "basic-block.h"
399 #include "tree-pass.h"
403 static void *df_get_bb_info (struct dataflow
*, unsigned int);
404 static void df_set_bb_info (struct dataflow
*, unsigned int, void *);
405 static void df_clear_bb_info (struct dataflow
*, unsigned int);
407 static void df_set_clean_cfg (void);
410 /* The obstack on which regsets are allocated. */
411 struct bitmap_obstack reg_obstack
;
413 /* An obstack for bitmap not related to specific dataflow problems.
414 This obstack should e.g. be used for bitmaps with a short life time
415 such as temporary bitmaps. */
417 bitmap_obstack df_bitmap_obstack
;
420 /*----------------------------------------------------------------------------
421 Functions to create, destroy and manipulate an instance of df.
422 ----------------------------------------------------------------------------*/
426 /* Add PROBLEM (and any dependent problems) to the DF instance. */
429 df_add_problem (struct df_problem
*problem
)
431 struct dataflow
*dflow
;
434 /* First try to add the dependent problem. */
435 if (problem
->dependent_problem
)
436 df_add_problem (problem
->dependent_problem
);
438 /* Check to see if this problem has already been defined. If it
439 has, just return that instance, if not, add it to the end of the
441 dflow
= df
->problems_by_index
[problem
->id
];
445 /* Make a new one and add it to the end. */
446 dflow
= XCNEW (struct dataflow
);
447 dflow
->problem
= problem
;
448 dflow
->computed
= false;
449 dflow
->solutions_dirty
= true;
450 df
->problems_by_index
[dflow
->problem
->id
] = dflow
;
452 /* Keep the defined problems ordered by index. This solves the
453 problem that RI will use the information from UREC if UREC has
454 been defined, or from LIVE if LIVE is defined and otherwise LR.
455 However for this to work, the computation of RI must be pushed
456 after which ever of those problems is defined, but we do not
457 require any of those except for LR to have actually been
459 df
->num_problems_defined
++;
460 for (i
= df
->num_problems_defined
- 2; i
>= 0; i
--)
462 if (problem
->id
< df
->problems_in_order
[i
]->problem
->id
)
463 df
->problems_in_order
[i
+1] = df
->problems_in_order
[i
];
466 df
->problems_in_order
[i
+1] = dflow
;
470 df
->problems_in_order
[0] = dflow
;
474 /* Set the MASK flags in the DFLOW problem. The old flags are
475 returned. If a flag is not allowed to be changed this will fail if
476 checking is enabled. */
478 df_set_flags (int changeable_flags
)
480 int old_flags
= df
->changeable_flags
;
481 df
->changeable_flags
|= changeable_flags
;
486 /* Clear the MASK flags in the DFLOW problem. The old flags are
487 returned. If a flag is not allowed to be changed this will fail if
488 checking is enabled. */
490 df_clear_flags (int changeable_flags
)
492 int old_flags
= df
->changeable_flags
;
493 df
->changeable_flags
&= ~changeable_flags
;
498 /* Set the blocks that are to be considered for analysis. If this is
499 not called or is called with null, the entire function in
503 df_set_blocks (bitmap blocks
)
508 bitmap_print (dump_file
, blocks
, "setting blocks to analyze ", "\n");
509 if (df
->blocks_to_analyze
)
511 /* This block is called to change the focus from one subset
515 bitmap_initialize (&diff
, &df_bitmap_obstack
);
516 bitmap_and_compl (&diff
, df
->blocks_to_analyze
, blocks
);
517 for (p
= 0; p
< df
->num_problems_defined
; p
++)
519 struct dataflow
*dflow
= df
->problems_in_order
[p
];
520 if (dflow
->optional_p
&& dflow
->problem
->reset_fun
)
521 dflow
->problem
->reset_fun (df
->blocks_to_analyze
);
522 else if (dflow
->problem
->free_blocks_on_set_blocks
)
525 unsigned int bb_index
;
527 EXECUTE_IF_SET_IN_BITMAP (&diff
, 0, bb_index
, bi
)
529 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
532 void *bb_info
= df_get_bb_info (dflow
, bb_index
);
533 dflow
->problem
->free_bb_fun (bb
, bb_info
);
534 df_clear_bb_info (dflow
, bb_index
);
540 bitmap_clear (&diff
);
544 /* This block of code is executed to change the focus from
545 the entire function to a subset. */
546 bitmap_head blocks_to_reset
;
547 bool initialized
= false;
549 for (p
= 0; p
< df
->num_problems_defined
; p
++)
551 struct dataflow
*dflow
= df
->problems_in_order
[p
];
552 if (dflow
->optional_p
&& dflow
->problem
->reset_fun
)
557 bitmap_initialize (&blocks_to_reset
, &df_bitmap_obstack
);
558 FOR_ALL_BB_FN (bb
, cfun
)
560 bitmap_set_bit (&blocks_to_reset
, bb
->index
);
563 dflow
->problem
->reset_fun (&blocks_to_reset
);
567 bitmap_clear (&blocks_to_reset
);
569 df
->blocks_to_analyze
= BITMAP_ALLOC (&df_bitmap_obstack
);
571 bitmap_copy (df
->blocks_to_analyze
, blocks
);
572 df
->analyze_subset
= true;
576 /* This block is executed to reset the focus to the entire
579 fprintf (dump_file
, "clearing blocks_to_analyze\n");
580 if (df
->blocks_to_analyze
)
582 BITMAP_FREE (df
->blocks_to_analyze
);
583 df
->blocks_to_analyze
= NULL
;
585 df
->analyze_subset
= false;
588 /* Setting the blocks causes the refs to be unorganized since only
589 the refs in the blocks are seen. */
590 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE
);
591 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE
);
592 df_mark_solutions_dirty ();
596 /* Delete a DFLOW problem (and any problems that depend on this
600 df_remove_problem (struct dataflow
*dflow
)
602 struct df_problem
*problem
;
608 problem
= dflow
->problem
;
609 gcc_assert (problem
->remove_problem_fun
);
611 /* Delete any problems that depended on this problem first. */
612 for (i
= 0; i
< df
->num_problems_defined
; i
++)
613 if (df
->problems_in_order
[i
]->problem
->dependent_problem
== problem
)
614 df_remove_problem (df
->problems_in_order
[i
]);
616 /* Now remove this problem. */
617 for (i
= 0; i
< df
->num_problems_defined
; i
++)
618 if (df
->problems_in_order
[i
] == dflow
)
621 for (j
= i
+ 1; j
< df
->num_problems_defined
; j
++)
622 df
->problems_in_order
[j
-1] = df
->problems_in_order
[j
];
623 df
->problems_in_order
[j
-1] = NULL
;
624 df
->num_problems_defined
--;
628 (problem
->remove_problem_fun
) ();
629 df
->problems_by_index
[problem
->id
] = NULL
;
633 /* Remove all of the problems that are not permanent. Scanning, LR
634 and (at -O2 or higher) LIVE are permanent, the rest are removable.
635 Also clear all of the changeable_flags. */
638 df_finish_pass (bool verify ATTRIBUTE_UNUSED
)
642 #ifdef ENABLE_DF_CHECKING
649 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE
);
650 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE
);
652 #ifdef ENABLE_DF_CHECKING
653 saved_flags
= df
->changeable_flags
;
656 /* We iterate over problems by index as each problem removed will
657 lead to problems_in_order to be reordered. */
658 for (i
= 0; i
< DF_LAST_PROBLEM_PLUS1
; i
++)
660 struct dataflow
*dflow
= df
->problems_by_index
[i
];
662 if (dflow
&& dflow
->optional_p
)
663 df_remove_problem (dflow
);
666 /* Clear all of the flags. */
667 df
->changeable_flags
= 0;
668 df_process_deferred_rescans ();
670 /* Set the focus back to the whole function. */
671 if (df
->blocks_to_analyze
)
673 BITMAP_FREE (df
->blocks_to_analyze
);
674 df
->blocks_to_analyze
= NULL
;
675 df_mark_solutions_dirty ();
676 df
->analyze_subset
= false;
679 #ifdef ENABLE_DF_CHECKING
680 /* Verification will fail in DF_NO_INSN_RESCAN. */
681 if (!(saved_flags
& DF_NO_INSN_RESCAN
))
683 df_lr_verify_transfer_functions ();
685 df_live_verify_transfer_functions ();
693 #ifdef ENABLE_CHECKING
695 df
->changeable_flags
|= DF_VERIFY_SCHEDULED
;
700 /* Set up the dataflow instance for the entire back end. */
703 rest_of_handle_df_initialize (void)
706 df
= XCNEW (struct df_d
);
707 df
->changeable_flags
= 0;
709 bitmap_obstack_initialize (&df_bitmap_obstack
);
711 /* Set this to a conservative value. Stack_ptr_mod will compute it
713 crtl
->sp_is_unchanging
= 0;
715 df_scan_add_problem ();
716 df_scan_alloc (NULL
);
718 /* These three problems are permanent. */
719 df_lr_add_problem ();
721 df_live_add_problem ();
723 df
->postorder
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
724 df
->postorder_inverted
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
725 df
->n_blocks
= post_order_compute (df
->postorder
, true, true);
726 df
->n_blocks_inverted
= inverted_post_order_compute (df
->postorder_inverted
);
727 gcc_assert (df
->n_blocks
== df
->n_blocks_inverted
);
729 df
->hard_regs_live_count
= XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER
);
732 /* After reload, some ports add certain bits to regs_ever_live so
733 this cannot be reset. */
734 df_compute_regs_ever_live (true);
736 df_compute_regs_ever_live (false);
743 const pass_data pass_data_df_initialize_opt
=
747 OPTGROUP_NONE
, /* optinfo_flags */
748 TV_DF_SCAN
, /* tv_id */
749 0, /* properties_required */
750 0, /* properties_provided */
751 0, /* properties_destroyed */
752 0, /* todo_flags_start */
753 0, /* todo_flags_finish */
756 class pass_df_initialize_opt
: public rtl_opt_pass
759 pass_df_initialize_opt (gcc::context
*ctxt
)
760 : rtl_opt_pass (pass_data_df_initialize_opt
, ctxt
)
763 /* opt_pass methods: */
764 virtual bool gate (function
*) { return optimize
> 0; }
765 virtual unsigned int execute (function
*)
767 return rest_of_handle_df_initialize ();
770 }; // class pass_df_initialize_opt
775 make_pass_df_initialize_opt (gcc::context
*ctxt
)
777 return new pass_df_initialize_opt (ctxt
);
783 const pass_data pass_data_df_initialize_no_opt
=
786 "no-opt dfinit", /* name */
787 OPTGROUP_NONE
, /* optinfo_flags */
788 TV_DF_SCAN
, /* tv_id */
789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 0, /* todo_flags_finish */
796 class pass_df_initialize_no_opt
: public rtl_opt_pass
799 pass_df_initialize_no_opt (gcc::context
*ctxt
)
800 : rtl_opt_pass (pass_data_df_initialize_no_opt
, ctxt
)
803 /* opt_pass methods: */
804 virtual bool gate (function
*) { return optimize
== 0; }
805 virtual unsigned int execute (function
*)
807 return rest_of_handle_df_initialize ();
810 }; // class pass_df_initialize_no_opt
815 make_pass_df_initialize_no_opt (gcc::context
*ctxt
)
817 return new pass_df_initialize_no_opt (ctxt
);
821 /* Free all the dataflow info and the DF structure. This should be
822 called from the df_finish macro which also NULLs the parm. */
825 rest_of_handle_df_finish (void)
831 for (i
= 0; i
< df
->num_problems_defined
; i
++)
833 struct dataflow
*dflow
= df
->problems_in_order
[i
];
834 dflow
->problem
->free_fun ();
837 free (df
->postorder
);
838 free (df
->postorder_inverted
);
839 free (df
->hard_regs_live_count
);
843 bitmap_obstack_release (&df_bitmap_obstack
);
850 const pass_data pass_data_df_finish
=
853 "dfinish", /* name */
854 OPTGROUP_NONE
, /* optinfo_flags */
856 0, /* properties_required */
857 0, /* properties_provided */
858 0, /* properties_destroyed */
859 0, /* todo_flags_start */
860 0, /* todo_flags_finish */
863 class pass_df_finish
: public rtl_opt_pass
866 pass_df_finish (gcc::context
*ctxt
)
867 : rtl_opt_pass (pass_data_df_finish
, ctxt
)
870 /* opt_pass methods: */
871 virtual unsigned int execute (function
*)
873 return rest_of_handle_df_finish ();
876 }; // class pass_df_finish
881 make_pass_df_finish (gcc::context
*ctxt
)
883 return new pass_df_finish (ctxt
);
890 /*----------------------------------------------------------------------------
891 The general data flow analysis engine.
892 ----------------------------------------------------------------------------*/
894 /* Return time BB when it was visited for last time. */
895 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
897 /* Helper function for df_worklist_dataflow.
898 Propagate the dataflow forward.
899 Given a BB_INDEX, do the dataflow propagation
900 and set bits on for successors in PENDING
901 if the out set of the dataflow has changed.
903 AGE specify time when BB was visited last time.
904 AGE of 0 means we are visiting for first time and need to
905 compute transfer function to initialize datastructures.
906 Otherwise we re-do transfer function only if something change
907 while computing confluence functions.
908 We need to compute confluence only of basic block that are younger
909 then last visit of the BB.
911 Return true if BB info has changed. This is always the case
912 in the first visit. */
915 df_worklist_propagate_forward (struct dataflow
*dataflow
,
917 unsigned *bbindex_to_postorder
,
924 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
927 /* Calculate <conf_op> of incoming edges. */
928 if (EDGE_COUNT (bb
->preds
) > 0)
929 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
931 if (age
<= BB_LAST_CHANGE_AGE (e
->src
)
932 && bitmap_bit_p (considered
, e
->src
->index
))
933 changed
|= dataflow
->problem
->con_fun_n (e
);
935 else if (dataflow
->problem
->con_fun_0
)
936 dataflow
->problem
->con_fun_0 (bb
);
939 && dataflow
->problem
->trans_fun (bb_index
))
941 /* The out set of this block has changed.
942 Propagate to the outgoing blocks. */
943 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
945 unsigned ob_index
= e
->dest
->index
;
947 if (bitmap_bit_p (considered
, ob_index
))
948 bitmap_set_bit (pending
, bbindex_to_postorder
[ob_index
]);
956 /* Helper function for df_worklist_dataflow.
957 Propagate the dataflow backward. */
960 df_worklist_propagate_backward (struct dataflow
*dataflow
,
962 unsigned *bbindex_to_postorder
,
969 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
972 /* Calculate <conf_op> of incoming edges. */
973 if (EDGE_COUNT (bb
->succs
) > 0)
974 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
976 if (age
<= BB_LAST_CHANGE_AGE (e
->dest
)
977 && bitmap_bit_p (considered
, e
->dest
->index
))
978 changed
|= dataflow
->problem
->con_fun_n (e
);
980 else if (dataflow
->problem
->con_fun_0
)
981 dataflow
->problem
->con_fun_0 (bb
);
984 && dataflow
->problem
->trans_fun (bb_index
))
986 /* The out set of this block has changed.
987 Propagate to the outgoing blocks. */
988 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
990 unsigned ob_index
= e
->src
->index
;
992 if (bitmap_bit_p (considered
, ob_index
))
993 bitmap_set_bit (pending
, bbindex_to_postorder
[ob_index
]);
1000 /* Main dataflow solver loop.
1002 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
1004 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
1005 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder position.
1006 PENDING will be freed.
1008 The worklists are bitmaps indexed by postorder positions.
1010 The function implements standard algorithm for dataflow solving with two
1011 worklists (we are processing WORKLIST and storing new BBs to visit in
1014 As an optimization we maintain ages when BB was changed (stored in bb->aux)
1015 and when it was last visited (stored in last_visit_age). This avoids need
1016 to re-do confluence function for edges to basic blocks whose source
1017 did not change since destination was visited last time. */
1020 df_worklist_dataflow_doublequeue (struct dataflow
*dataflow
,
1023 int *blocks_in_postorder
,
1024 unsigned *bbindex_to_postorder
,
1027 enum df_flow_dir dir
= dataflow
->problem
->dir
;
1029 bitmap worklist
= BITMAP_ALLOC (&df_bitmap_obstack
);
1032 vec
<int> last_visit_age
= vNULL
;
1037 last_visit_age
.safe_grow_cleared (n_blocks
);
1039 /* Double-queueing. Worklist is for the current iteration,
1040 and pending is for the next. */
1041 while (!bitmap_empty_p (pending
))
1046 /* Swap pending and worklist. */
1047 bitmap temp
= worklist
;
1051 EXECUTE_IF_SET_IN_BITMAP (worklist
, 0, index
, bi
)
1056 bitmap_clear_bit (pending
, index
);
1057 bb_index
= blocks_in_postorder
[index
];
1058 bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
1059 prev_age
= last_visit_age
[index
];
1060 if (dir
== DF_FORWARD
)
1061 changed
= df_worklist_propagate_forward (dataflow
, bb_index
,
1062 bbindex_to_postorder
,
1063 pending
, considered
,
1066 changed
= df_worklist_propagate_backward (dataflow
, bb_index
,
1067 bbindex_to_postorder
,
1068 pending
, considered
,
1070 last_visit_age
[index
] = ++age
;
1072 bb
->aux
= (void *)(ptrdiff_t)age
;
1074 bitmap_clear (worklist
);
1076 for (i
= 0; i
< n_blocks
; i
++)
1077 BASIC_BLOCK_FOR_FN (cfun
, blocks_in_postorder
[i
])->aux
= NULL
;
1079 BITMAP_FREE (worklist
);
1080 BITMAP_FREE (pending
);
1081 last_visit_age
.release ();
1083 /* Dump statistics. */
1085 fprintf (dump_file
, "df_worklist_dataflow_doublequeue:"
1086 "n_basic_blocks %d n_edges %d"
1087 " count %d (%5.2g)\n",
1088 n_basic_blocks_for_fn (cfun
), n_edges_for_fn (cfun
),
1089 dcount
, dcount
/ (float)n_basic_blocks_for_fn (cfun
));
1092 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1093 with "n"-th bit representing the n-th block in the reverse-postorder order.
1094 The solver is a double-queue algorithm similar to the "double stack" solver
1095 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1096 The only significant difference is that the worklist in this implementation
1097 is always sorted in RPO of the CFG visiting direction. */
1100 df_worklist_dataflow (struct dataflow
*dataflow
,
1101 bitmap blocks_to_consider
,
1102 int *blocks_in_postorder
,
1105 bitmap pending
= BITMAP_ALLOC (&df_bitmap_obstack
);
1106 sbitmap considered
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1108 unsigned int *bbindex_to_postorder
;
1111 enum df_flow_dir dir
= dataflow
->problem
->dir
;
1113 gcc_assert (dir
!= DF_NONE
);
1115 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1116 bbindex_to_postorder
= XNEWVEC (unsigned int,
1117 last_basic_block_for_fn (cfun
));
1119 /* Initialize the array to an out-of-bound value. */
1120 for (i
= 0; i
< last_basic_block_for_fn (cfun
); i
++)
1121 bbindex_to_postorder
[i
] = last_basic_block_for_fn (cfun
);
1123 /* Initialize the considered map. */
1124 bitmap_clear (considered
);
1125 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider
, 0, index
, bi
)
1127 bitmap_set_bit (considered
, index
);
1130 /* Initialize the mapping of block index to postorder. */
1131 for (i
= 0; i
< n_blocks
; i
++)
1133 bbindex_to_postorder
[blocks_in_postorder
[i
]] = i
;
1134 /* Add all blocks to the worklist. */
1135 bitmap_set_bit (pending
, i
);
1138 /* Initialize the problem. */
1139 if (dataflow
->problem
->init_fun
)
1140 dataflow
->problem
->init_fun (blocks_to_consider
);
1143 df_worklist_dataflow_doublequeue (dataflow
, pending
, considered
,
1144 blocks_in_postorder
,
1145 bbindex_to_postorder
,
1147 sbitmap_free (considered
);
1148 free (bbindex_to_postorder
);
1152 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1153 the order of the remaining entries. Returns the length of the resulting
1157 df_prune_to_subcfg (int list
[], unsigned len
, bitmap blocks
)
1161 for (act
= 0, last
= 0; act
< len
; act
++)
1162 if (bitmap_bit_p (blocks
, list
[act
]))
1163 list
[last
++] = list
[act
];
1169 /* Execute dataflow analysis on a single dataflow problem.
1171 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1172 examined or will be computed. For calls from DF_ANALYZE, this is
1173 the set of blocks that has been passed to DF_SET_BLOCKS.
1177 df_analyze_problem (struct dataflow
*dflow
,
1178 bitmap blocks_to_consider
,
1179 int *postorder
, int n_blocks
)
1181 timevar_push (dflow
->problem
->tv_id
);
1183 /* (Re)Allocate the datastructures necessary to solve the problem. */
1184 if (dflow
->problem
->alloc_fun
)
1185 dflow
->problem
->alloc_fun (blocks_to_consider
);
1187 #ifdef ENABLE_DF_CHECKING
1188 if (dflow
->problem
->verify_start_fun
)
1189 dflow
->problem
->verify_start_fun ();
1192 /* Set up the problem and compute the local information. */
1193 if (dflow
->problem
->local_compute_fun
)
1194 dflow
->problem
->local_compute_fun (blocks_to_consider
);
1196 /* Solve the equations. */
1197 if (dflow
->problem
->dataflow_fun
)
1198 dflow
->problem
->dataflow_fun (dflow
, blocks_to_consider
,
1199 postorder
, n_blocks
);
1201 /* Massage the solution. */
1202 if (dflow
->problem
->finalize_fun
)
1203 dflow
->problem
->finalize_fun (blocks_to_consider
);
1205 #ifdef ENABLE_DF_CHECKING
1206 if (dflow
->problem
->verify_end_fun
)
1207 dflow
->problem
->verify_end_fun ();
1210 timevar_pop (dflow
->problem
->tv_id
);
1212 dflow
->computed
= true;
1216 /* Analyze dataflow info. */
1223 /* These should be the same. */
1224 gcc_assert (df
->n_blocks
== df
->n_blocks_inverted
);
1226 /* We need to do this before the df_verify_all because this is
1227 not kept incrementally up to date. */
1228 df_compute_regs_ever_live (false);
1229 df_process_deferred_rescans ();
1232 fprintf (dump_file
, "df_analyze called\n");
1234 #ifndef ENABLE_DF_CHECKING
1235 if (df
->changeable_flags
& DF_VERIFY_SCHEDULED
)
1239 /* Skip over the DF_SCAN problem. */
1240 for (i
= 1; i
< df
->num_problems_defined
; i
++)
1242 struct dataflow
*dflow
= df
->problems_in_order
[i
];
1243 if (dflow
->solutions_dirty
)
1245 if (dflow
->problem
->dir
== DF_FORWARD
)
1246 df_analyze_problem (dflow
,
1247 df
->blocks_to_analyze
,
1248 df
->postorder_inverted
,
1249 df
->n_blocks_inverted
);
1251 df_analyze_problem (dflow
,
1252 df
->blocks_to_analyze
,
1258 if (!df
->analyze_subset
)
1260 BITMAP_FREE (df
->blocks_to_analyze
);
1261 df
->blocks_to_analyze
= NULL
;
1265 df_set_clean_cfg ();
1269 /* Analyze dataflow info. */
1274 bitmap current_all_blocks
= BITMAP_ALLOC (&df_bitmap_obstack
);
1277 free (df
->postorder
);
1278 free (df
->postorder_inverted
);
1279 df
->postorder
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1280 df
->postorder_inverted
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1281 df
->n_blocks
= post_order_compute (df
->postorder
, true, true);
1282 df
->n_blocks_inverted
= inverted_post_order_compute (df
->postorder_inverted
);
1284 for (i
= 0; i
< df
->n_blocks
; i
++)
1285 bitmap_set_bit (current_all_blocks
, df
->postorder
[i
]);
1287 #ifdef ENABLE_CHECKING
1288 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1290 for (i
= 0; i
< df
->n_blocks_inverted
; i
++)
1291 gcc_assert (bitmap_bit_p (current_all_blocks
, df
->postorder_inverted
[i
]));
1294 /* Make sure that we have pruned any unreachable blocks from these
1296 if (df
->analyze_subset
)
1298 bitmap_and_into (df
->blocks_to_analyze
, current_all_blocks
);
1299 df
->n_blocks
= df_prune_to_subcfg (df
->postorder
,
1300 df
->n_blocks
, df
->blocks_to_analyze
);
1301 df
->n_blocks_inverted
= df_prune_to_subcfg (df
->postorder_inverted
,
1302 df
->n_blocks_inverted
,
1303 df
->blocks_to_analyze
);
1304 BITMAP_FREE (current_all_blocks
);
1308 df
->blocks_to_analyze
= current_all_blocks
;
1309 current_all_blocks
= NULL
;
1315 /* Compute the reverse top sort order of the sub-CFG specified by LOOP.
1316 Returns the number of blocks which is always loop->num_nodes. */
1319 loop_post_order_compute (int *post_order
, struct loop
*loop
)
1321 edge_iterator
*stack
;
1323 int post_order_num
= 0;
1326 /* Allocate stack for back-tracking up CFG. */
1327 stack
= XNEWVEC (edge_iterator
, loop
->num_nodes
+ 1);
1330 /* Allocate bitmap to track nodes that have been visited. */
1331 visited
= BITMAP_ALLOC (NULL
);
1333 /* Push the first edge on to the stack. */
1334 stack
[sp
++] = ei_start (loop_preheader_edge (loop
)->src
->succs
);
1342 /* Look at the edge on the top of the stack. */
1344 src
= ei_edge (ei
)->src
;
1345 dest
= ei_edge (ei
)->dest
;
1347 /* Check if the edge destination has been visited yet and mark it
1349 if (flow_bb_inside_loop_p (loop
, dest
)
1350 && bitmap_set_bit (visited
, dest
->index
))
1352 if (EDGE_COUNT (dest
->succs
) > 0)
1353 /* Since the DEST node has been visited for the first
1354 time, check its successors. */
1355 stack
[sp
++] = ei_start (dest
->succs
);
1357 post_order
[post_order_num
++] = dest
->index
;
1361 if (ei_one_before_end_p (ei
)
1362 && src
!= loop_preheader_edge (loop
)->src
)
1363 post_order
[post_order_num
++] = src
->index
;
1365 if (!ei_one_before_end_p (ei
))
1366 ei_next (&stack
[sp
- 1]);
1373 BITMAP_FREE (visited
);
1375 return post_order_num
;
1378 /* Compute the reverse top sort order of the inverted sub-CFG specified
1379 by LOOP. Returns the number of blocks which is always loop->num_nodes. */
1382 loop_inverted_post_order_compute (int *post_order
, struct loop
*loop
)
1385 edge_iterator
*stack
;
1387 int post_order_num
= 0;
1390 /* Allocate stack for back-tracking up CFG. */
1391 stack
= XNEWVEC (edge_iterator
, loop
->num_nodes
+ 1);
1394 /* Allocate bitmap to track nodes that have been visited. */
1395 visited
= BITMAP_ALLOC (NULL
);
1397 /* Put all latches into the initial work list. In theory we'd want
1398 to start from loop exits but then we'd have the special case of
1399 endless loops. It doesn't really matter for DF iteration order and
1400 handling latches last is probably even better. */
1401 stack
[sp
++] = ei_start (loop
->header
->preds
);
1402 bitmap_set_bit (visited
, loop
->header
->index
);
1404 /* The inverted traversal loop. */
1410 /* Look at the edge on the top of the stack. */
1412 bb
= ei_edge (ei
)->dest
;
1413 pred
= ei_edge (ei
)->src
;
1415 /* Check if the predecessor has been visited yet and mark it
1417 if (flow_bb_inside_loop_p (loop
, pred
)
1418 && bitmap_set_bit (visited
, pred
->index
))
1420 if (EDGE_COUNT (pred
->preds
) > 0)
1421 /* Since the predecessor node has been visited for the first
1422 time, check its predecessors. */
1423 stack
[sp
++] = ei_start (pred
->preds
);
1425 post_order
[post_order_num
++] = pred
->index
;
1429 if (flow_bb_inside_loop_p (loop
, bb
)
1430 && ei_one_before_end_p (ei
))
1431 post_order
[post_order_num
++] = bb
->index
;
1433 if (!ei_one_before_end_p (ei
))
1434 ei_next (&stack
[sp
- 1]);
1441 BITMAP_FREE (visited
);
1442 return post_order_num
;
1446 /* Analyze dataflow info for the basic blocks contained in LOOP. */
1449 df_analyze_loop (struct loop
*loop
)
1451 free (df
->postorder
);
1452 free (df
->postorder_inverted
);
1454 df
->postorder
= XNEWVEC (int, loop
->num_nodes
);
1455 df
->postorder_inverted
= XNEWVEC (int, loop
->num_nodes
);
1456 df
->n_blocks
= loop_post_order_compute (df
->postorder
, loop
);
1457 df
->n_blocks_inverted
1458 = loop_inverted_post_order_compute (df
->postorder_inverted
, loop
);
1459 gcc_assert ((unsigned) df
->n_blocks
== loop
->num_nodes
);
1460 gcc_assert ((unsigned) df
->n_blocks_inverted
== loop
->num_nodes
);
1462 bitmap blocks
= BITMAP_ALLOC (&df_bitmap_obstack
);
1463 for (int i
= 0; i
< df
->n_blocks
; ++i
)
1464 bitmap_set_bit (blocks
, df
->postorder
[i
]);
1465 df_set_blocks (blocks
);
1466 BITMAP_FREE (blocks
);
1472 /* Return the number of basic blocks from the last call to df_analyze. */
1475 df_get_n_blocks (enum df_flow_dir dir
)
1477 gcc_assert (dir
!= DF_NONE
);
1479 if (dir
== DF_FORWARD
)
1481 gcc_assert (df
->postorder_inverted
);
1482 return df
->n_blocks_inverted
;
1485 gcc_assert (df
->postorder
);
1486 return df
->n_blocks
;
1490 /* Return a pointer to the array of basic blocks in the reverse postorder.
1491 Depending on the direction of the dataflow problem,
1492 it returns either the usual reverse postorder array
1493 or the reverse postorder of inverted traversal. */
1495 df_get_postorder (enum df_flow_dir dir
)
1497 gcc_assert (dir
!= DF_NONE
);
1499 if (dir
== DF_FORWARD
)
1501 gcc_assert (df
->postorder_inverted
);
1502 return df
->postorder_inverted
;
1504 gcc_assert (df
->postorder
);
1505 return df
->postorder
;
1508 static struct df_problem user_problem
;
1509 static struct dataflow user_dflow
;
1511 /* Interface for calling iterative dataflow with user defined
1512 confluence and transfer functions. All that is necessary is to
1513 supply DIR, a direction, CONF_FUN_0, a confluence function for
1514 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1515 confluence function, TRANS_FUN, the basic block transfer function,
1516 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1517 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1520 df_simple_dataflow (enum df_flow_dir dir
,
1521 df_init_function init_fun
,
1522 df_confluence_function_0 con_fun_0
,
1523 df_confluence_function_n con_fun_n
,
1524 df_transfer_function trans_fun
,
1525 bitmap blocks
, int * postorder
, int n_blocks
)
1527 memset (&user_problem
, 0, sizeof (struct df_problem
));
1528 user_problem
.dir
= dir
;
1529 user_problem
.init_fun
= init_fun
;
1530 user_problem
.con_fun_0
= con_fun_0
;
1531 user_problem
.con_fun_n
= con_fun_n
;
1532 user_problem
.trans_fun
= trans_fun
;
1533 user_dflow
.problem
= &user_problem
;
1534 df_worklist_dataflow (&user_dflow
, blocks
, postorder
, n_blocks
);
1539 /*----------------------------------------------------------------------------
1540 Functions to support limited incremental change.
1541 ----------------------------------------------------------------------------*/
1544 /* Get basic block info. */
1547 df_get_bb_info (struct dataflow
*dflow
, unsigned int index
)
1549 if (dflow
->block_info
== NULL
)
1551 if (index
>= dflow
->block_info_size
)
1553 return (void *)((char *)dflow
->block_info
1554 + index
* dflow
->problem
->block_info_elt_size
);
1558 /* Set basic block info. */
1561 df_set_bb_info (struct dataflow
*dflow
, unsigned int index
,
1564 gcc_assert (dflow
->block_info
);
1565 memcpy ((char *)dflow
->block_info
1566 + index
* dflow
->problem
->block_info_elt_size
,
1567 bb_info
, dflow
->problem
->block_info_elt_size
);
1571 /* Clear basic block info. */
1574 df_clear_bb_info (struct dataflow
*dflow
, unsigned int index
)
1576 gcc_assert (dflow
->block_info
);
1577 gcc_assert (dflow
->block_info_size
> index
);
1578 memset ((char *)dflow
->block_info
1579 + index
* dflow
->problem
->block_info_elt_size
,
1580 0, dflow
->problem
->block_info_elt_size
);
1584 /* Mark the solutions as being out of date. */
1587 df_mark_solutions_dirty (void)
1592 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1593 df
->problems_in_order
[p
]->solutions_dirty
= true;
1598 /* Return true if BB needs it's transfer functions recomputed. */
1601 df_get_bb_dirty (basic_block bb
)
1603 return bitmap_bit_p ((df_live
1604 ? df_live
: df_lr
)->out_of_date_transfer_functions
,
1609 /* Mark BB as needing it's transfer functions as being out of
1613 df_set_bb_dirty (basic_block bb
)
1615 bb
->flags
|= BB_MODIFIED
;
1619 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1621 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1622 if (dflow
->out_of_date_transfer_functions
)
1623 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, bb
->index
);
1625 df_mark_solutions_dirty ();
1630 /* Grow the bb_info array. */
1633 df_grow_bb_info (struct dataflow
*dflow
)
1635 unsigned int new_size
= last_basic_block_for_fn (cfun
) + 1;
1636 if (dflow
->block_info_size
< new_size
)
1638 new_size
+= new_size
/ 4;
1640 = (void *)XRESIZEVEC (char, (char *)dflow
->block_info
,
1642 * dflow
->problem
->block_info_elt_size
);
1643 memset ((char *)dflow
->block_info
1644 + dflow
->block_info_size
1645 * dflow
->problem
->block_info_elt_size
,
1647 (new_size
- dflow
->block_info_size
)
1648 * dflow
->problem
->block_info_elt_size
);
1649 dflow
->block_info_size
= new_size
;
1654 /* Clear the dirty bits. This is called from places that delete
1657 df_clear_bb_dirty (basic_block bb
)
1660 for (p
= 1; p
< df
->num_problems_defined
; p
++)
1662 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1663 if (dflow
->out_of_date_transfer_functions
)
1664 bitmap_clear_bit (dflow
->out_of_date_transfer_functions
, bb
->index
);
1668 /* Called from the rtl_compact_blocks to reorganize the problems basic
1672 df_compact_blocks (void)
1676 void *problem_temps
;
1679 bitmap_initialize (&tmp
, &df_bitmap_obstack
);
1680 for (p
= 0; p
< df
->num_problems_defined
; p
++)
1682 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1684 /* Need to reorganize the out_of_date_transfer_functions for the
1686 if (dflow
->out_of_date_transfer_functions
)
1688 bitmap_copy (&tmp
, dflow
->out_of_date_transfer_functions
);
1689 bitmap_clear (dflow
->out_of_date_transfer_functions
);
1690 if (bitmap_bit_p (&tmp
, ENTRY_BLOCK
))
1691 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, ENTRY_BLOCK
);
1692 if (bitmap_bit_p (&tmp
, EXIT_BLOCK
))
1693 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, EXIT_BLOCK
);
1695 i
= NUM_FIXED_BLOCKS
;
1696 FOR_EACH_BB_FN (bb
, cfun
)
1698 if (bitmap_bit_p (&tmp
, bb
->index
))
1699 bitmap_set_bit (dflow
->out_of_date_transfer_functions
, i
);
1704 /* Now shuffle the block info for the problem. */
1705 if (dflow
->problem
->free_bb_fun
)
1707 int size
= (last_basic_block_for_fn (cfun
)
1708 * dflow
->problem
->block_info_elt_size
);
1709 problem_temps
= XNEWVAR (char, size
);
1710 df_grow_bb_info (dflow
);
1711 memcpy (problem_temps
, dflow
->block_info
, size
);
1713 /* Copy the bb info from the problem tmps to the proper
1714 place in the block_info vector. Null out the copied
1715 item. The entry and exit blocks never move. */
1716 i
= NUM_FIXED_BLOCKS
;
1717 FOR_EACH_BB_FN (bb
, cfun
)
1719 df_set_bb_info (dflow
, i
,
1720 (char *)problem_temps
1721 + bb
->index
* dflow
->problem
->block_info_elt_size
);
1724 memset ((char *)dflow
->block_info
1725 + i
* dflow
->problem
->block_info_elt_size
, 0,
1726 (last_basic_block_for_fn (cfun
) - i
)
1727 * dflow
->problem
->block_info_elt_size
);
1728 free (problem_temps
);
1732 /* Shuffle the bits in the basic_block indexed arrays. */
1734 if (df
->blocks_to_analyze
)
1736 if (bitmap_bit_p (&tmp
, ENTRY_BLOCK
))
1737 bitmap_set_bit (df
->blocks_to_analyze
, ENTRY_BLOCK
);
1738 if (bitmap_bit_p (&tmp
, EXIT_BLOCK
))
1739 bitmap_set_bit (df
->blocks_to_analyze
, EXIT_BLOCK
);
1740 bitmap_copy (&tmp
, df
->blocks_to_analyze
);
1741 bitmap_clear (df
->blocks_to_analyze
);
1742 i
= NUM_FIXED_BLOCKS
;
1743 FOR_EACH_BB_FN (bb
, cfun
)
1745 if (bitmap_bit_p (&tmp
, bb
->index
))
1746 bitmap_set_bit (df
->blocks_to_analyze
, i
);
1751 bitmap_clear (&tmp
);
1753 i
= NUM_FIXED_BLOCKS
;
1754 FOR_EACH_BB_FN (bb
, cfun
)
1756 SET_BASIC_BLOCK_FOR_FN (cfun
, i
, bb
);
1761 gcc_assert (i
== n_basic_blocks_for_fn (cfun
));
1763 for (; i
< last_basic_block_for_fn (cfun
); i
++)
1764 SET_BASIC_BLOCK_FOR_FN (cfun
, i
, NULL
);
1767 if (!df_lr
->solutions_dirty
)
1768 df_set_clean_cfg ();
1773 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1774 block. There is no excuse for people to do this kind of thing. */
1777 df_bb_replace (int old_index
, basic_block new_block
)
1779 int new_block_index
= new_block
->index
;
1783 fprintf (dump_file
, "shoving block %d into %d\n", new_block_index
, old_index
);
1786 gcc_assert (BASIC_BLOCK_FOR_FN (cfun
, old_index
) == NULL
);
1788 for (p
= 0; p
< df
->num_problems_defined
; p
++)
1790 struct dataflow
*dflow
= df
->problems_in_order
[p
];
1791 if (dflow
->block_info
)
1793 df_grow_bb_info (dflow
);
1794 df_set_bb_info (dflow
, old_index
,
1795 df_get_bb_info (dflow
, new_block_index
));
1799 df_clear_bb_dirty (new_block
);
1800 SET_BASIC_BLOCK_FOR_FN (cfun
, old_index
, new_block
);
1801 new_block
->index
= old_index
;
1802 df_set_bb_dirty (BASIC_BLOCK_FOR_FN (cfun
, old_index
));
1803 SET_BASIC_BLOCK_FOR_FN (cfun
, new_block_index
, NULL
);
1807 /* Free all of the per basic block dataflow from all of the problems.
1808 This is typically called before a basic block is deleted and the
1809 problem will be reanalyzed. */
1812 df_bb_delete (int bb_index
)
1814 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
1820 for (i
= 0; i
< df
->num_problems_defined
; i
++)
1822 struct dataflow
*dflow
= df
->problems_in_order
[i
];
1823 if (dflow
->problem
->free_bb_fun
)
1825 void *bb_info
= df_get_bb_info (dflow
, bb_index
);
1828 dflow
->problem
->free_bb_fun (bb
, bb_info
);
1829 df_clear_bb_info (dflow
, bb_index
);
1833 df_clear_bb_dirty (bb
);
1834 df_mark_solutions_dirty ();
1838 /* Verify that there is a place for everything and everything is in
1839 its place. This is too expensive to run after every pass in the
1840 mainline. However this is an excellent debugging tool if the
1841 dataflow information is not being updated properly. You can just
1842 sprinkle calls in until you find the place that is changing an
1843 underlying structure without calling the proper updating
1850 #ifdef ENABLE_DF_CHECKING
1851 df_lr_verify_transfer_functions ();
1853 df_live_verify_transfer_functions ();
1859 /* Compute an array of ints that describes the cfg. This can be used
1860 to discover places where the cfg is modified by the appropriate
1861 calls have not been made to the keep df informed. The internals of
1862 this are unexciting, the key is that two instances of this can be
1863 compared to see if any changes have been made to the cfg. */
1866 df_compute_cfg_image (void)
1869 int size
= 2 + (2 * n_basic_blocks_for_fn (cfun
));
1873 FOR_ALL_BB_FN (bb
, cfun
)
1875 size
+= EDGE_COUNT (bb
->succs
);
1878 map
= XNEWVEC (int, size
);
1881 FOR_ALL_BB_FN (bb
, cfun
)
1886 map
[i
++] = bb
->index
;
1887 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1888 map
[i
++] = e
->dest
->index
;
1895 static int *saved_cfg
= NULL
;
1898 /* This function compares the saved version of the cfg with the
1899 current cfg and aborts if the two are identical. The function
1900 silently returns if the cfg has been marked as dirty or the two are
1904 df_check_cfg_clean (void)
1911 if (df_lr
->solutions_dirty
)
1914 if (saved_cfg
== NULL
)
1917 new_map
= df_compute_cfg_image ();
1918 gcc_assert (memcmp (saved_cfg
, new_map
, saved_cfg
[0] * sizeof (int)) == 0);
1923 /* This function builds a cfg fingerprint and squirrels it away in
1927 df_set_clean_cfg (void)
1930 saved_cfg
= df_compute_cfg_image ();
1933 #endif /* DF_DEBUG_CFG */
1934 /*----------------------------------------------------------------------------
1935 PUBLIC INTERFACES TO QUERY INFORMATION.
1936 ----------------------------------------------------------------------------*/
1939 /* Return first def of REGNO within BB. */
1942 df_bb_regno_first_def_find (basic_block bb
, unsigned int regno
)
1947 FOR_BB_INSNS (bb
, insn
)
1952 FOR_EACH_INSN_DEF (def
, insn
)
1953 if (DF_REF_REGNO (def
) == regno
)
1960 /* Return last def of REGNO within BB. */
1963 df_bb_regno_last_def_find (basic_block bb
, unsigned int regno
)
1968 FOR_BB_INSNS_REVERSE (bb
, insn
)
1973 FOR_EACH_INSN_DEF (def
, insn
)
1974 if (DF_REF_REGNO (def
) == regno
)
1981 /* Finds the reference corresponding to the definition of REG in INSN.
1982 DF is the dataflow object. */
1985 df_find_def (rtx_insn
*insn
, rtx reg
)
1989 if (GET_CODE (reg
) == SUBREG
)
1990 reg
= SUBREG_REG (reg
);
1991 gcc_assert (REG_P (reg
));
1993 FOR_EACH_INSN_DEF (def
, insn
)
1994 if (DF_REF_REGNO (def
) == REGNO (reg
))
2001 /* Return true if REG is defined in INSN, zero otherwise. */
2004 df_reg_defined (rtx_insn
*insn
, rtx reg
)
2006 return df_find_def (insn
, reg
) != NULL
;
2010 /* Finds the reference corresponding to the use of REG in INSN.
2011 DF is the dataflow object. */
2014 df_find_use (rtx_insn
*insn
, rtx reg
)
2018 if (GET_CODE (reg
) == SUBREG
)
2019 reg
= SUBREG_REG (reg
);
2020 gcc_assert (REG_P (reg
));
2022 df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
2023 FOR_EACH_INSN_INFO_USE (use
, insn_info
)
2024 if (DF_REF_REGNO (use
) == REGNO (reg
))
2026 if (df
->changeable_flags
& DF_EQ_NOTES
)
2027 FOR_EACH_INSN_INFO_EQ_USE (use
, insn_info
)
2028 if (DF_REF_REGNO (use
) == REGNO (reg
))
2034 /* Return true if REG is referenced in INSN, zero otherwise. */
2037 df_reg_used (rtx_insn
*insn
, rtx reg
)
2039 return df_find_use (insn
, reg
) != NULL
;
2043 /*----------------------------------------------------------------------------
2044 Debugging and printing functions.
2045 ----------------------------------------------------------------------------*/
2047 /* Write information about registers and basic blocks into FILE.
2048 This is part of making a debugging dump. */
2051 dump_regset (regset r
, FILE *outf
)
2054 reg_set_iterator rsi
;
2058 fputs (" (nil)", outf
);
2062 EXECUTE_IF_SET_IN_REG_SET (r
, 0, i
, rsi
)
2064 fprintf (outf
, " %d", i
);
2065 if (i
< FIRST_PSEUDO_REGISTER
)
2066 fprintf (outf
, " [%s]",
2071 /* Print a human-readable representation of R on the standard error
2072 stream. This function is designed to be used from within the
2074 extern void debug_regset (regset
);
2076 debug_regset (regset r
)
2078 dump_regset (r
, stderr
);
2079 putc ('\n', stderr
);
2082 /* Write information about registers and basic blocks into FILE.
2083 This is part of making a debugging dump. */
2086 df_print_regset (FILE *file
, bitmap r
)
2092 fputs (" (nil)", file
);
2095 EXECUTE_IF_SET_IN_BITMAP (r
, 0, i
, bi
)
2097 fprintf (file
, " %d", i
);
2098 if (i
< FIRST_PSEUDO_REGISTER
)
2099 fprintf (file
, " [%s]", reg_names
[i
]);
2102 fprintf (file
, "\n");
2106 /* Write information about registers and basic blocks into FILE. The
2107 bitmap is in the form used by df_byte_lr. This is part of making a
2111 df_print_word_regset (FILE *file
, bitmap r
)
2113 unsigned int max_reg
= max_reg_num ();
2116 fputs (" (nil)", file
);
2120 for (i
= FIRST_PSEUDO_REGISTER
; i
< max_reg
; i
++)
2122 bool found
= (bitmap_bit_p (r
, 2 * i
)
2123 || bitmap_bit_p (r
, 2 * i
+ 1));
2127 const char * sep
= "";
2128 fprintf (file
, " %d", i
);
2129 fprintf (file
, "(");
2130 for (word
= 0; word
< 2; word
++)
2131 if (bitmap_bit_p (r
, 2 * i
+ word
))
2133 fprintf (file
, "%s%d", sep
, word
);
2136 fprintf (file
, ")");
2140 fprintf (file
, "\n");
2144 /* Dump dataflow info. */
2147 df_dump (FILE *file
)
2150 df_dump_start (file
);
2152 FOR_ALL_BB_FN (bb
, cfun
)
2154 df_print_bb_index (bb
, file
);
2155 df_dump_top (bb
, file
);
2156 df_dump_bottom (bb
, file
);
2159 fprintf (file
, "\n");
2163 /* Dump dataflow info for df->blocks_to_analyze. */
2166 df_dump_region (FILE *file
)
2168 if (df
->blocks_to_analyze
)
2171 unsigned int bb_index
;
2173 fprintf (file
, "\n\nstarting region dump\n");
2174 df_dump_start (file
);
2176 EXECUTE_IF_SET_IN_BITMAP (df
->blocks_to_analyze
, 0, bb_index
, bi
)
2178 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, bb_index
);
2179 dump_bb (file
, bb
, 0, TDF_DETAILS
);
2181 fprintf (file
, "\n");
2188 /* Dump the introductory information for each problem defined. */
2191 df_dump_start (FILE *file
)
2198 fprintf (file
, "\n\n%s\n", current_function_name ());
2199 fprintf (file
, "\nDataflow summary:\n");
2200 if (df
->blocks_to_analyze
)
2201 fprintf (file
, "def_info->table_size = %d, use_info->table_size = %d\n",
2202 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2204 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2206 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2207 if (dflow
->computed
)
2209 df_dump_problem_function fun
= dflow
->problem
->dump_start_fun
;
2217 /* Dump the top or bottom of the block information for BB. */
2219 df_dump_bb_problem_data (basic_block bb
, FILE *file
, bool top
)
2226 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2228 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2229 if (dflow
->computed
)
2231 df_dump_bb_problem_function bbfun
;
2234 bbfun
= dflow
->problem
->dump_top_fun
;
2236 bbfun
= dflow
->problem
->dump_bottom_fun
;
2244 /* Dump the top of the block information for BB. */
2247 df_dump_top (basic_block bb
, FILE *file
)
2249 df_dump_bb_problem_data (bb
, file
, /*top=*/true);
2252 /* Dump the bottom of the block information for BB. */
2255 df_dump_bottom (basic_block bb
, FILE *file
)
2257 df_dump_bb_problem_data (bb
, file
, /*top=*/false);
2261 /* Dump information about INSN just before or after dumping INSN itself. */
2263 df_dump_insn_problem_data (const rtx_insn
*insn
, FILE *file
, bool top
)
2270 for (i
= 0; i
< df
->num_problems_defined
; i
++)
2272 struct dataflow
*dflow
= df
->problems_in_order
[i
];
2273 if (dflow
->computed
)
2275 df_dump_insn_problem_function insnfun
;
2278 insnfun
= dflow
->problem
->dump_insn_top_fun
;
2280 insnfun
= dflow
->problem
->dump_insn_bottom_fun
;
2283 insnfun (insn
, file
);
2288 /* Dump information about INSN before dumping INSN itself. */
2291 df_dump_insn_top (const rtx_insn
*insn
, FILE *file
)
2293 df_dump_insn_problem_data (insn
, file
, /*top=*/true);
2296 /* Dump information about INSN after dumping INSN itself. */
2299 df_dump_insn_bottom (const rtx_insn
*insn
, FILE *file
)
2301 df_dump_insn_problem_data (insn
, file
, /*top=*/false);
2306 df_ref_dump (df_ref ref
, FILE *file
)
2308 fprintf (file
, "%c%d(%d)",
2309 DF_REF_REG_DEF_P (ref
)
2311 : (DF_REF_FLAGS (ref
) & DF_REF_IN_NOTE
) ? 'e' : 'u',
2313 DF_REF_REGNO (ref
));
2317 df_refs_chain_dump (df_ref ref
, bool follow_chain
, FILE *file
)
2319 fprintf (file
, "{ ");
2320 for (; ref
; ref
= DF_REF_NEXT_LOC (ref
))
2322 df_ref_dump (ref
, file
);
2324 df_chain_dump (DF_REF_CHAIN (ref
), file
);
2326 fprintf (file
, "}");
2330 /* Dump either a ref-def or reg-use chain. */
2333 df_regs_chain_dump (df_ref ref
, FILE *file
)
2335 fprintf (file
, "{ ");
2338 df_ref_dump (ref
, file
);
2339 ref
= DF_REF_NEXT_REG (ref
);
2341 fprintf (file
, "}");
2346 df_mws_dump (struct df_mw_hardreg
*mws
, FILE *file
)
2348 for (; mws
; mws
= DF_MWS_NEXT (mws
))
2349 fprintf (file
, "mw %c r[%d..%d]\n",
2350 DF_MWS_REG_DEF_P (mws
) ? 'd' : 'u',
2351 mws
->start_regno
, mws
->end_regno
);
2356 df_insn_uid_debug (unsigned int uid
,
2357 bool follow_chain
, FILE *file
)
2359 fprintf (file
, "insn %d luid %d",
2360 uid
, DF_INSN_UID_LUID (uid
));
2362 if (DF_INSN_UID_DEFS (uid
))
2364 fprintf (file
, " defs ");
2365 df_refs_chain_dump (DF_INSN_UID_DEFS (uid
), follow_chain
, file
);
2368 if (DF_INSN_UID_USES (uid
))
2370 fprintf (file
, " uses ");
2371 df_refs_chain_dump (DF_INSN_UID_USES (uid
), follow_chain
, file
);
2374 if (DF_INSN_UID_EQ_USES (uid
))
2376 fprintf (file
, " eq uses ");
2377 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid
), follow_chain
, file
);
2380 if (DF_INSN_UID_MWS (uid
))
2382 fprintf (file
, " mws ");
2383 df_mws_dump (DF_INSN_UID_MWS (uid
), file
);
2385 fprintf (file
, "\n");
2390 df_insn_debug (rtx_insn
*insn
, bool follow_chain
, FILE *file
)
2392 df_insn_uid_debug (INSN_UID (insn
), follow_chain
, file
);
2396 df_insn_debug_regno (rtx_insn
*insn
, FILE *file
)
2398 struct df_insn_info
*insn_info
= DF_INSN_INFO_GET (insn
);
2400 fprintf (file
, "insn %d bb %d luid %d defs ",
2401 INSN_UID (insn
), BLOCK_FOR_INSN (insn
)->index
,
2402 DF_INSN_INFO_LUID (insn_info
));
2403 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info
), false, file
);
2405 fprintf (file
, " uses ");
2406 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info
), false, file
);
2408 fprintf (file
, " eq_uses ");
2409 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info
), false, file
);
2410 fprintf (file
, "\n");
2414 df_regno_debug (unsigned int regno
, FILE *file
)
2416 fprintf (file
, "reg %d defs ", regno
);
2417 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno
), file
);
2418 fprintf (file
, " uses ");
2419 df_regs_chain_dump (DF_REG_USE_CHAIN (regno
), file
);
2420 fprintf (file
, " eq_uses ");
2421 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno
), file
);
2422 fprintf (file
, "\n");
2427 df_ref_debug (df_ref ref
, FILE *file
)
2429 fprintf (file
, "%c%d ",
2430 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
2432 fprintf (file
, "reg %d bb %d insn %d flag %#x type %#x ",
2435 DF_REF_IS_ARTIFICIAL (ref
) ? -1 : DF_REF_INSN_UID (ref
),
2438 if (DF_REF_LOC (ref
))
2440 if (flag_dump_noaddr
)
2441 fprintf (file
, "loc #(#) chain ");
2443 fprintf (file
, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref
),
2444 (void *)*DF_REF_LOC (ref
));
2447 fprintf (file
, "chain ");
2448 df_chain_dump (DF_REF_CHAIN (ref
), file
);
2449 fprintf (file
, "\n");
2452 /* Functions for debugging from GDB. */
2455 debug_df_insn (rtx_insn
*insn
)
2457 df_insn_debug (insn
, true, stderr
);
2463 debug_df_reg (rtx reg
)
2465 df_regno_debug (REGNO (reg
), stderr
);
2470 debug_df_regno (unsigned int regno
)
2472 df_regno_debug (regno
, stderr
);
2477 debug_df_ref (df_ref ref
)
2479 df_ref_debug (ref
, stderr
);
2484 debug_df_defno (unsigned int defno
)
2486 df_ref_debug (DF_DEFS_GET (defno
), stderr
);
2491 debug_df_useno (unsigned int defno
)
2493 df_ref_debug (DF_USES_GET (defno
), stderr
);
2498 debug_df_chain (struct df_link
*link
)
2500 df_chain_dump (link
, stderr
);
2501 fputc ('\n', stderr
);