1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains various simple utilities to analyze the CFG. */
24 #include "coretypes.h"
27 #include "hard-reg-set.h"
30 #include "dominance.h"
33 #include "basic-block.h"
38 /* Store the data structures necessary for depth-first search. */
39 struct depth_first_search_dsS
{
40 /* stack for backtracking during the algorithm */
43 /* number of edges in the stack. That is, positions 0, ..., sp-1
47 /* record of basic blocks already seen by depth-first search */
48 sbitmap visited_blocks
;
50 typedef struct depth_first_search_dsS
*depth_first_search_ds
;
52 static void flow_dfs_compute_reverse_init (depth_first_search_ds
);
53 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds
,
55 static basic_block
flow_dfs_compute_reverse_execute (depth_first_search_ds
,
57 static void flow_dfs_compute_reverse_finish (depth_first_search_ds
);
59 /* Mark the back edges in DFS traversal.
60 Return nonzero if a loop (natural or otherwise) is present.
61 Inspired by Depth_First_Search_PP described in:
63 Advanced Compiler Design and Implementation
67 and heavily borrowed from pre_and_rev_post_order_compute. */
70 mark_dfs_back_edges (void)
81 /* Allocate the preorder and postorder number arrays. */
82 pre
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
83 post
= XCNEWVEC (int, last_basic_block_for_fn (cfun
));
85 /* Allocate stack for back-tracking up CFG. */
86 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
89 /* Allocate bitmap to track nodes that have been visited. */
90 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
92 /* None of the nodes in the CFG have been visited yet. */
93 bitmap_clear (visited
);
95 /* Push the first edge on to the stack. */
96 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
104 /* Look at the edge on the top of the stack. */
106 src
= ei_edge (ei
)->src
;
107 dest
= ei_edge (ei
)->dest
;
108 ei_edge (ei
)->flags
&= ~EDGE_DFS_BACK
;
110 /* Check if the edge destination has been visited yet. */
111 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
) && ! bitmap_bit_p (visited
,
114 /* Mark that we have visited the destination. */
115 bitmap_set_bit (visited
, dest
->index
);
117 pre
[dest
->index
] = prenum
++;
118 if (EDGE_COUNT (dest
->succs
) > 0)
120 /* Since the DEST node has been visited for the first
121 time, check its successors. */
122 stack
[sp
++] = ei_start (dest
->succs
);
125 post
[dest
->index
] = postnum
++;
129 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
130 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
)
131 && pre
[src
->index
] >= pre
[dest
->index
]
132 && post
[dest
->index
] == 0)
133 ei_edge (ei
)->flags
|= EDGE_DFS_BACK
, found
= true;
135 if (ei_one_before_end_p (ei
)
136 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
137 post
[src
->index
] = postnum
++;
139 if (!ei_one_before_end_p (ei
))
140 ei_next (&stack
[sp
- 1]);
149 sbitmap_free (visited
);
154 /* Find unreachable blocks. An unreachable block will have 0 in
155 the reachable bit in block->flags. A nonzero value indicates the
156 block is reachable. */
159 find_unreachable_blocks (void)
163 basic_block
*tos
, *worklist
, bb
;
165 tos
= worklist
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
167 /* Clear all the reachability flags. */
169 FOR_EACH_BB_FN (bb
, cfun
)
170 bb
->flags
&= ~BB_REACHABLE
;
172 /* Add our starting points to the worklist. Almost always there will
173 be only one. It isn't inconceivable that we might one day directly
174 support Fortran alternate entry points. */
176 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
180 /* Mark the block reachable. */
181 e
->dest
->flags
|= BB_REACHABLE
;
184 /* Iterate: find everything reachable from what we've already seen. */
186 while (tos
!= worklist
)
188 basic_block b
= *--tos
;
190 FOR_EACH_EDGE (e
, ei
, b
->succs
)
192 basic_block dest
= e
->dest
;
194 if (!(dest
->flags
& BB_REACHABLE
))
197 dest
->flags
|= BB_REACHABLE
;
205 /* Functions to access an edge list with a vector representation.
206 Enough data is kept such that given an index number, the
207 pred and succ that edge represents can be determined, or
208 given a pred and a succ, its index number can be returned.
209 This allows algorithms which consume a lot of memory to
210 represent the normally full matrix of edge (pred,succ) with a
211 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
212 wasted space in the client code due to sparse flow graphs. */
214 /* This functions initializes the edge list. Basically the entire
215 flowgraph is processed, and all edges are assigned a number,
216 and the data structure is filled in. */
219 create_edge_list (void)
221 struct edge_list
*elist
;
227 /* Determine the number of edges in the flow graph by counting successor
228 edges on each basic block. */
230 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
231 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
233 num_edges
+= EDGE_COUNT (bb
->succs
);
236 elist
= XNEW (struct edge_list
);
237 elist
->num_edges
= num_edges
;
238 elist
->index_to_edge
= XNEWVEC (edge
, num_edges
);
242 /* Follow successors of blocks, and register these edges. */
243 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
244 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
245 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
246 elist
->index_to_edge
[num_edges
++] = e
;
251 /* This function free's memory associated with an edge list. */
254 free_edge_list (struct edge_list
*elist
)
258 free (elist
->index_to_edge
);
263 /* This function provides debug output showing an edge list. */
266 print_edge_list (FILE *f
, struct edge_list
*elist
)
270 fprintf (f
, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
271 n_basic_blocks_for_fn (cfun
), elist
->num_edges
);
273 for (x
= 0; x
< elist
->num_edges
; x
++)
275 fprintf (f
, " %-4d - edge(", x
);
276 if (INDEX_EDGE_PRED_BB (elist
, x
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
277 fprintf (f
, "entry,");
279 fprintf (f
, "%d,", INDEX_EDGE_PRED_BB (elist
, x
)->index
);
281 if (INDEX_EDGE_SUCC_BB (elist
, x
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
282 fprintf (f
, "exit)\n");
284 fprintf (f
, "%d)\n", INDEX_EDGE_SUCC_BB (elist
, x
)->index
);
288 /* This function provides an internal consistency check of an edge list,
289 verifying that all edges are present, and that there are no
293 verify_edge_list (FILE *f
, struct edge_list
*elist
)
295 int pred
, succ
, index
;
297 basic_block bb
, p
, s
;
300 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
301 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
303 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
305 pred
= e
->src
->index
;
306 succ
= e
->dest
->index
;
307 index
= EDGE_INDEX (elist
, e
->src
, e
->dest
);
308 if (index
== EDGE_INDEX_NO_EDGE
)
310 fprintf (f
, "*p* No index for edge from %d to %d\n", pred
, succ
);
314 if (INDEX_EDGE_PRED_BB (elist
, index
)->index
!= pred
)
315 fprintf (f
, "*p* Pred for index %d should be %d not %d\n",
316 index
, pred
, INDEX_EDGE_PRED_BB (elist
, index
)->index
);
317 if (INDEX_EDGE_SUCC_BB (elist
, index
)->index
!= succ
)
318 fprintf (f
, "*p* Succ for index %d should be %d not %d\n",
319 index
, succ
, INDEX_EDGE_SUCC_BB (elist
, index
)->index
);
323 /* We've verified that all the edges are in the list, now lets make sure
324 there are no spurious edges in the list. This is an expensive check! */
326 FOR_BB_BETWEEN (p
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
327 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
328 FOR_BB_BETWEEN (s
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
332 FOR_EACH_EDGE (e
, ei
, p
->succs
)
339 FOR_EACH_EDGE (e
, ei
, s
->preds
)
346 if (EDGE_INDEX (elist
, p
, s
)
347 == EDGE_INDEX_NO_EDGE
&& found_edge
!= 0)
348 fprintf (f
, "*** Edge (%d, %d) appears to not have an index\n",
350 if (EDGE_INDEX (elist
, p
, s
)
351 != EDGE_INDEX_NO_EDGE
&& found_edge
== 0)
352 fprintf (f
, "*** Edge (%d, %d) has index %d, but there is no edge\n",
353 p
->index
, s
->index
, EDGE_INDEX (elist
, p
, s
));
358 /* Functions to compute control dependences. */
360 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
362 control_dependences::set_control_dependence_map_bit (basic_block bb
,
365 if (bb
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
367 gcc_assert (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
));
368 bitmap_set_bit (control_dependence_map
[bb
->index
], edge_index
);
371 /* Clear all control dependences for block BB. */
373 control_dependences::clear_control_dependence_bitmap (basic_block bb
)
375 bitmap_clear (control_dependence_map
[bb
->index
]);
378 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
379 This function is necessary because some blocks have negative numbers. */
381 static inline basic_block
382 find_pdom (basic_block block
)
384 gcc_assert (block
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
));
386 if (block
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
387 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
390 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
392 return EXIT_BLOCK_PTR_FOR_FN (cfun
);
397 /* Determine all blocks' control dependences on the given edge with edge_list
398 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
401 control_dependences::find_control_dependence (int edge_index
)
403 basic_block current_block
;
404 basic_block ending_block
;
406 gcc_assert (INDEX_EDGE_PRED_BB (m_el
, edge_index
)
407 != EXIT_BLOCK_PTR_FOR_FN (cfun
));
409 if (INDEX_EDGE_PRED_BB (m_el
, edge_index
) == ENTRY_BLOCK_PTR_FOR_FN (cfun
))
410 ending_block
= single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
412 ending_block
= find_pdom (INDEX_EDGE_PRED_BB (m_el
, edge_index
));
414 for (current_block
= INDEX_EDGE_SUCC_BB (m_el
, edge_index
);
415 current_block
!= ending_block
416 && current_block
!= EXIT_BLOCK_PTR_FOR_FN (cfun
);
417 current_block
= find_pdom (current_block
))
419 edge e
= INDEX_EDGE (m_el
, edge_index
);
421 /* For abnormal edges, we don't make current_block control
422 dependent because instructions that throw are always necessary
424 if (e
->flags
& EDGE_ABNORMAL
)
427 set_control_dependence_map_bit (current_block
, edge_index
);
431 /* Record all blocks' control dependences on all edges in the edge
432 list EL, ala Morgan, Section 3.6. */
434 control_dependences::control_dependences (struct edge_list
*edges
)
437 timevar_push (TV_CONTROL_DEPENDENCES
);
438 control_dependence_map
.create (last_basic_block_for_fn (cfun
));
439 for (int i
= 0; i
< last_basic_block_for_fn (cfun
); ++i
)
440 control_dependence_map
.quick_push (BITMAP_ALLOC (NULL
));
441 for (int i
= 0; i
< NUM_EDGES (m_el
); ++i
)
442 find_control_dependence (i
);
443 timevar_pop (TV_CONTROL_DEPENDENCES
);
446 /* Free control dependences and the associated edge list. */
448 control_dependences::~control_dependences ()
450 for (unsigned i
= 0; i
< control_dependence_map
.length (); ++i
)
451 BITMAP_FREE (control_dependence_map
[i
]);
452 control_dependence_map
.release ();
453 free_edge_list (m_el
);
456 /* Returns the bitmap of edges the basic-block I is dependent on. */
459 control_dependences::get_edges_dependent_on (int i
)
461 return control_dependence_map
[i
];
464 /* Returns the edge with index I from the edge list. */
467 control_dependences::get_edge (int i
)
469 return INDEX_EDGE (m_el
, i
);
473 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
474 If no such edge exists, return NULL. */
477 find_edge (basic_block pred
, basic_block succ
)
482 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
484 FOR_EACH_EDGE (e
, ei
, pred
->succs
)
490 FOR_EACH_EDGE (e
, ei
, succ
->preds
)
498 /* This routine will determine what, if any, edge there is between
499 a specified predecessor and successor. */
502 find_edge_index (struct edge_list
*edge_list
, basic_block pred
, basic_block succ
)
506 for (x
= 0; x
< NUM_EDGES (edge_list
); x
++)
507 if (INDEX_EDGE_PRED_BB (edge_list
, x
) == pred
508 && INDEX_EDGE_SUCC_BB (edge_list
, x
) == succ
)
511 return (EDGE_INDEX_NO_EDGE
);
514 /* This routine will remove any fake predecessor edges for a basic block.
515 When the edge is removed, it is also removed from whatever successor
519 remove_fake_predecessors (basic_block bb
)
524 for (ei
= ei_start (bb
->preds
); (e
= ei_safe_edge (ei
)); )
526 if ((e
->flags
& EDGE_FAKE
) == EDGE_FAKE
)
533 /* This routine will remove all fake edges from the flow graph. If
534 we remove all fake successors, it will automatically remove all
535 fake predecessors. */
538 remove_fake_edges (void)
542 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
, NULL
, next_bb
)
543 remove_fake_predecessors (bb
);
546 /* This routine will remove all fake edges to the EXIT_BLOCK. */
549 remove_fake_exit_edges (void)
551 remove_fake_predecessors (EXIT_BLOCK_PTR_FOR_FN (cfun
));
555 /* This function will add a fake edge between any block which has no
556 successors, and the exit block. Some data flow equations require these
560 add_noreturn_fake_exit_edges (void)
564 FOR_EACH_BB_FN (bb
, cfun
)
565 if (EDGE_COUNT (bb
->succs
) == 0)
566 make_single_succ_edge (bb
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
569 /* This function adds a fake edge between any infinite loops to the
570 exit block. Some optimizations require a path from each node to
573 See also Morgan, Figure 3.10, pp. 82-83.
575 The current implementation is ugly, not attempting to minimize the
576 number of inserted fake edges. To reduce the number of fake edges
577 to insert, add fake edges from _innermost_ loops containing only
578 nodes not reachable from the exit block. */
581 connect_infinite_loops_to_exit (void)
583 basic_block unvisited_block
= EXIT_BLOCK_PTR_FOR_FN (cfun
);
584 basic_block deadend_block
;
585 struct depth_first_search_dsS dfs_ds
;
587 /* Perform depth-first search in the reverse graph to find nodes
588 reachable from the exit block. */
589 flow_dfs_compute_reverse_init (&dfs_ds
);
590 flow_dfs_compute_reverse_add_bb (&dfs_ds
, EXIT_BLOCK_PTR_FOR_FN (cfun
));
592 /* Repeatedly add fake edges, updating the unreachable nodes. */
595 unvisited_block
= flow_dfs_compute_reverse_execute (&dfs_ds
,
597 if (!unvisited_block
)
600 deadend_block
= dfs_find_deadend (unvisited_block
);
601 make_edge (deadend_block
, EXIT_BLOCK_PTR_FOR_FN (cfun
), EDGE_FAKE
);
602 flow_dfs_compute_reverse_add_bb (&dfs_ds
, deadend_block
);
605 flow_dfs_compute_reverse_finish (&dfs_ds
);
609 /* Compute reverse top sort order. This is computing a post order
610 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then
611 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
612 true, unreachable blocks are deleted. */
615 post_order_compute (int *post_order
, bool include_entry_exit
,
616 bool delete_unreachable
)
618 edge_iterator
*stack
;
620 int post_order_num
= 0;
624 if (include_entry_exit
)
625 post_order
[post_order_num
++] = EXIT_BLOCK
;
627 /* Allocate stack for back-tracking up CFG. */
628 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
631 /* Allocate bitmap to track nodes that have been visited. */
632 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
634 /* None of the nodes in the CFG have been visited yet. */
635 bitmap_clear (visited
);
637 /* Push the first edge on to the stack. */
638 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
);
646 /* Look at the edge on the top of the stack. */
648 src
= ei_edge (ei
)->src
;
649 dest
= ei_edge (ei
)->dest
;
651 /* Check if the edge destination has been visited yet. */
652 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
653 && ! bitmap_bit_p (visited
, dest
->index
))
655 /* Mark that we have visited the destination. */
656 bitmap_set_bit (visited
, dest
->index
);
658 if (EDGE_COUNT (dest
->succs
) > 0)
659 /* Since the DEST node has been visited for the first
660 time, check its successors. */
661 stack
[sp
++] = ei_start (dest
->succs
);
663 post_order
[post_order_num
++] = dest
->index
;
667 if (ei_one_before_end_p (ei
)
668 && src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
669 post_order
[post_order_num
++] = src
->index
;
671 if (!ei_one_before_end_p (ei
))
672 ei_next (&stack
[sp
- 1]);
678 if (include_entry_exit
)
680 post_order
[post_order_num
++] = ENTRY_BLOCK
;
681 count
= post_order_num
;
684 count
= post_order_num
+ 2;
686 /* Delete the unreachable blocks if some were found and we are
687 supposed to do it. */
688 if (delete_unreachable
&& (count
!= n_basic_blocks_for_fn (cfun
)))
692 for (b
= ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
; b
693 != EXIT_BLOCK_PTR_FOR_FN (cfun
); b
= next_bb
)
695 next_bb
= b
->next_bb
;
697 if (!(bitmap_bit_p (visited
, b
->index
)))
698 delete_basic_block (b
);
701 tidy_fallthru_edges ();
705 sbitmap_free (visited
);
706 return post_order_num
;
710 /* Helper routine for inverted_post_order_compute
711 flow_dfs_compute_reverse_execute, and the reverse-CFG
712 deapth first search in dominance.c.
713 BB has to belong to a region of CFG
714 unreachable by inverted traversal from the exit.
715 i.e. there's no control flow path from ENTRY to EXIT
716 that contains this BB.
717 This can happen in two cases - if there's an infinite loop
718 or if there's a block that has no successor
719 (call to a function with no return).
720 Some RTL passes deal with this condition by
721 calling connect_infinite_loops_to_exit () and/or
722 add_noreturn_fake_exit_edges ().
723 However, those methods involve modifying the CFG itself
724 which may not be desirable.
725 Hence, we deal with the infinite loop/no return cases
726 by identifying a unique basic block that can reach all blocks
727 in such a region by inverted traversal.
728 This function returns a basic block that guarantees
729 that all blocks in the region are reachable
730 by starting an inverted traversal from the returned block. */
733 dfs_find_deadend (basic_block bb
)
735 bitmap visited
= BITMAP_ALLOC (NULL
);
739 if (EDGE_COUNT (bb
->succs
) == 0
740 || ! bitmap_set_bit (visited
, bb
->index
))
742 BITMAP_FREE (visited
);
746 bb
= EDGE_SUCC (bb
, 0)->dest
;
753 /* Compute the reverse top sort order of the inverted CFG
754 i.e. starting from the exit block and following the edges backward
755 (from successors to predecessors).
756 This ordering can be used for forward dataflow problems among others.
758 This function assumes that all blocks in the CFG are reachable
759 from the ENTRY (but not necessarily from EXIT).
761 If there's an infinite loop,
762 a simple inverted traversal starting from the blocks
763 with no successors can't visit all blocks.
764 To solve this problem, we first do inverted traversal
765 starting from the blocks with no successor.
766 And if there's any block left that's not visited by the regular
767 inverted traversal from EXIT,
768 those blocks are in such problematic region.
769 Among those, we find one block that has
770 any visited predecessor (which is an entry into such a region),
771 and start looking for a "dead end" from that block
772 and do another inverted traversal from that block. */
775 inverted_post_order_compute (int *post_order
)
778 edge_iterator
*stack
;
780 int post_order_num
= 0;
783 /* Allocate stack for back-tracking up CFG. */
784 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
787 /* Allocate bitmap to track nodes that have been visited. */
788 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
790 /* None of the nodes in the CFG have been visited yet. */
791 bitmap_clear (visited
);
793 /* Put all blocks that have no successor into the initial work list. */
794 FOR_ALL_BB_FN (bb
, cfun
)
795 if (EDGE_COUNT (bb
->succs
) == 0)
797 /* Push the initial edge on to the stack. */
798 if (EDGE_COUNT (bb
->preds
) > 0)
800 stack
[sp
++] = ei_start (bb
->preds
);
801 bitmap_set_bit (visited
, bb
->index
);
807 bool has_unvisited_bb
= false;
809 /* The inverted traversal loop. */
815 /* Look at the edge on the top of the stack. */
817 bb
= ei_edge (ei
)->dest
;
818 pred
= ei_edge (ei
)->src
;
820 /* Check if the predecessor has been visited yet. */
821 if (! bitmap_bit_p (visited
, pred
->index
))
823 /* Mark that we have visited the destination. */
824 bitmap_set_bit (visited
, pred
->index
);
826 if (EDGE_COUNT (pred
->preds
) > 0)
827 /* Since the predecessor node has been visited for the first
828 time, check its predecessors. */
829 stack
[sp
++] = ei_start (pred
->preds
);
831 post_order
[post_order_num
++] = pred
->index
;
835 if (bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
836 && ei_one_before_end_p (ei
))
837 post_order
[post_order_num
++] = bb
->index
;
839 if (!ei_one_before_end_p (ei
))
840 ei_next (&stack
[sp
- 1]);
846 /* Detect any infinite loop and activate the kludge.
847 Note that this doesn't check EXIT_BLOCK itself
848 since EXIT_BLOCK is always added after the outer do-while loop. */
849 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR_FOR_FN (cfun
),
850 EXIT_BLOCK_PTR_FOR_FN (cfun
), next_bb
)
851 if (!bitmap_bit_p (visited
, bb
->index
))
853 has_unvisited_bb
= true;
855 if (EDGE_COUNT (bb
->preds
) > 0)
859 basic_block visited_pred
= NULL
;
861 /* Find an already visited predecessor. */
862 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
864 if (bitmap_bit_p (visited
, e
->src
->index
))
865 visited_pred
= e
->src
;
870 basic_block be
= dfs_find_deadend (bb
);
871 gcc_assert (be
!= NULL
);
872 bitmap_set_bit (visited
, be
->index
);
873 stack
[sp
++] = ei_start (be
->preds
);
879 if (has_unvisited_bb
&& sp
== 0)
881 /* No blocks are reachable from EXIT at all.
882 Find a dead-end from the ENTRY, and restart the iteration. */
883 basic_block be
= dfs_find_deadend (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
884 gcc_assert (be
!= NULL
);
885 bitmap_set_bit (visited
, be
->index
);
886 stack
[sp
++] = ei_start (be
->preds
);
889 /* The only case the below while fires is
890 when there's an infinite loop. */
894 /* EXIT_BLOCK is always included. */
895 post_order
[post_order_num
++] = EXIT_BLOCK
;
898 sbitmap_free (visited
);
899 return post_order_num
;
902 /* Compute the depth first search order of FN and store in the array
903 PRE_ORDER if nonzero. If REV_POST_ORDER is nonzero, return the
904 reverse completion number for each node. Returns the number of nodes
905 visited. A depth first search tries to get as far away from the starting
906 point as quickly as possible.
908 In case the function has unreachable blocks the number of nodes
909 visited does not include them.
911 pre_order is a really a preorder numbering of the graph.
912 rev_post_order is really a reverse postorder numbering of the graph. */
915 pre_and_rev_post_order_compute_fn (struct function
*fn
,
916 int *pre_order
, int *rev_post_order
,
917 bool include_entry_exit
)
919 edge_iterator
*stack
;
921 int pre_order_num
= 0;
922 int rev_post_order_num
= n_basic_blocks_for_fn (cfun
) - 1;
925 /* Allocate stack for back-tracking up CFG. */
926 stack
= XNEWVEC (edge_iterator
, n_basic_blocks_for_fn (cfun
) + 1);
929 if (include_entry_exit
)
932 pre_order
[pre_order_num
] = ENTRY_BLOCK
;
935 rev_post_order
[rev_post_order_num
--] = ENTRY_BLOCK
;
938 rev_post_order_num
-= NUM_FIXED_BLOCKS
;
940 /* Allocate bitmap to track nodes that have been visited. */
941 visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
943 /* None of the nodes in the CFG have been visited yet. */
944 bitmap_clear (visited
);
946 /* Push the first edge on to the stack. */
947 stack
[sp
++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (fn
)->succs
);
955 /* Look at the edge on the top of the stack. */
957 src
= ei_edge (ei
)->src
;
958 dest
= ei_edge (ei
)->dest
;
960 /* Check if the edge destination has been visited yet. */
961 if (dest
!= EXIT_BLOCK_PTR_FOR_FN (fn
)
962 && ! bitmap_bit_p (visited
, dest
->index
))
964 /* Mark that we have visited the destination. */
965 bitmap_set_bit (visited
, dest
->index
);
968 pre_order
[pre_order_num
] = dest
->index
;
972 if (EDGE_COUNT (dest
->succs
) > 0)
973 /* Since the DEST node has been visited for the first
974 time, check its successors. */
975 stack
[sp
++] = ei_start (dest
->succs
);
976 else if (rev_post_order
)
977 /* There are no successors for the DEST node so assign
978 its reverse completion number. */
979 rev_post_order
[rev_post_order_num
--] = dest
->index
;
983 if (ei_one_before_end_p (ei
)
984 && src
!= ENTRY_BLOCK_PTR_FOR_FN (fn
)
986 /* There are no more successors for the SRC node
987 so assign its reverse completion number. */
988 rev_post_order
[rev_post_order_num
--] = src
->index
;
990 if (!ei_one_before_end_p (ei
))
991 ei_next (&stack
[sp
- 1]);
998 sbitmap_free (visited
);
1000 if (include_entry_exit
)
1003 pre_order
[pre_order_num
] = EXIT_BLOCK
;
1006 rev_post_order
[rev_post_order_num
--] = EXIT_BLOCK
;
1009 return pre_order_num
;
1012 /* Like pre_and_rev_post_order_compute_fn but operating on the
1013 current function and asserting that all nodes were visited. */
1016 pre_and_rev_post_order_compute (int *pre_order
, int *rev_post_order
,
1017 bool include_entry_exit
)
1020 = pre_and_rev_post_order_compute_fn (cfun
, pre_order
, rev_post_order
,
1021 include_entry_exit
);
1022 if (include_entry_exit
)
1023 /* The number of nodes visited should be the number of blocks. */
1024 gcc_assert (pre_order_num
== n_basic_blocks_for_fn (cfun
));
1026 /* The number of nodes visited should be the number of blocks minus
1027 the entry and exit blocks which are not visited here. */
1028 gcc_assert (pre_order_num
1029 == (n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
));
1031 return pre_order_num
;
1034 /* Compute the depth first search order on the _reverse_ graph and
1035 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1036 Returns the number of nodes visited.
1038 The computation is split into three pieces:
1040 flow_dfs_compute_reverse_init () creates the necessary data
1043 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1044 structures. The block will start the search.
1046 flow_dfs_compute_reverse_execute () continues (or starts) the
1047 search using the block on the top of the stack, stopping when the
1050 flow_dfs_compute_reverse_finish () destroys the necessary data
1053 Thus, the user will probably call ..._init(), call ..._add_bb() to
1054 add a beginning basic block to the stack, call ..._execute(),
1055 possibly add another bb to the stack and again call ..._execute(),
1056 ..., and finally call _finish(). */
1058 /* Initialize the data structures used for depth-first search on the
1059 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1060 added to the basic block stack. DATA is the current depth-first
1061 search context. If INITIALIZE_STACK is nonzero, there is an
1062 element on the stack. */
1065 flow_dfs_compute_reverse_init (depth_first_search_ds data
)
1067 /* Allocate stack for back-tracking up CFG. */
1068 data
->stack
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
1071 /* Allocate bitmap to track nodes that have been visited. */
1072 data
->visited_blocks
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1074 /* None of the nodes in the CFG have been visited yet. */
1075 bitmap_clear (data
->visited_blocks
);
1080 /* Add the specified basic block to the top of the dfs data
1081 structures. When the search continues, it will start at the
1085 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data
, basic_block bb
)
1087 data
->stack
[data
->sp
++] = bb
;
1088 bitmap_set_bit (data
->visited_blocks
, bb
->index
);
1091 /* Continue the depth-first search through the reverse graph starting with the
1092 block at the stack's top and ending when the stack is empty. Visited nodes
1093 are marked. Returns an unvisited basic block, or NULL if there is none
1097 flow_dfs_compute_reverse_execute (depth_first_search_ds data
,
1098 basic_block last_unvisited
)
1104 while (data
->sp
> 0)
1106 bb
= data
->stack
[--data
->sp
];
1108 /* Perform depth-first search on adjacent vertices. */
1109 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1110 if (!bitmap_bit_p (data
->visited_blocks
, e
->src
->index
))
1111 flow_dfs_compute_reverse_add_bb (data
, e
->src
);
1114 /* Determine if there are unvisited basic blocks. */
1115 FOR_BB_BETWEEN (bb
, last_unvisited
, NULL
, prev_bb
)
1116 if (!bitmap_bit_p (data
->visited_blocks
, bb
->index
))
1122 /* Destroy the data structures needed for depth-first search on the
1126 flow_dfs_compute_reverse_finish (depth_first_search_ds data
)
1129 sbitmap_free (data
->visited_blocks
);
1132 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1133 if REVERSE, go against direction of edges. Returns number of blocks
1134 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1136 dfs_enumerate_from (basic_block bb
, int reverse
,
1137 bool (*predicate
) (const_basic_block
, const void *),
1138 basic_block
*rslt
, int rslt_max
, const void *data
)
1140 basic_block
*st
, lbb
;
1144 /* A bitmap to keep track of visited blocks. Allocating it each time
1145 this function is called is not possible, since dfs_enumerate_from
1146 is often used on small (almost) disjoint parts of cfg (bodies of
1147 loops), and allocating a large sbitmap would lead to quadratic
1149 static sbitmap visited
;
1150 static unsigned v_size
;
1152 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1153 #define UNMARK_VISITED(BB) (bitmap_clear_bit (visited, (BB)->index))
1154 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1156 /* Resize the VISITED sbitmap if necessary. */
1157 size
= last_basic_block_for_fn (cfun
);
1164 visited
= sbitmap_alloc (size
);
1165 bitmap_clear (visited
);
1168 else if (v_size
< size
)
1170 /* Ensure that we increase the size of the sbitmap exponentially. */
1171 if (2 * v_size
> size
)
1174 visited
= sbitmap_resize (visited
, size
, 0);
1178 st
= XNEWVEC (basic_block
, rslt_max
);
1179 rslt
[tv
++] = st
[sp
++] = bb
;
1188 FOR_EACH_EDGE (e
, ei
, lbb
->preds
)
1189 if (!VISITED_P (e
->src
) && predicate (e
->src
, data
))
1191 gcc_assert (tv
!= rslt_max
);
1192 rslt
[tv
++] = st
[sp
++] = e
->src
;
1193 MARK_VISITED (e
->src
);
1198 FOR_EACH_EDGE (e
, ei
, lbb
->succs
)
1199 if (!VISITED_P (e
->dest
) && predicate (e
->dest
, data
))
1201 gcc_assert (tv
!= rslt_max
);
1202 rslt
[tv
++] = st
[sp
++] = e
->dest
;
1203 MARK_VISITED (e
->dest
);
1208 for (sp
= 0; sp
< tv
; sp
++)
1209 UNMARK_VISITED (rslt
[sp
]);
1212 #undef UNMARK_VISITED
1217 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1219 This algorithm can be found in Timothy Harvey's PhD thesis, at
1220 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1221 dominance algorithms.
1223 First, we identify each join point, j (any node with more than one
1224 incoming edge is a join point).
1226 We then examine each predecessor, p, of j and walk up the dominator tree
1229 We stop the walk when we reach j's immediate dominator - j is in the
1230 dominance frontier of each of the nodes in the walk, except for j's
1231 immediate dominator. Intuitively, all of the rest of j's dominators are
1232 shared by j's predecessors as well.
1233 Since they dominate j, they will not have j in their dominance frontiers.
1235 The number of nodes touched by this algorithm is equal to the size
1236 of the dominance frontiers, no more, no less.
1241 compute_dominance_frontiers_1 (bitmap_head
*frontiers
)
1246 FOR_EACH_BB_FN (b
, cfun
)
1248 if (EDGE_COUNT (b
->preds
) >= 2)
1250 FOR_EACH_EDGE (p
, ei
, b
->preds
)
1252 basic_block runner
= p
->src
;
1254 if (runner
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1257 domsb
= get_immediate_dominator (CDI_DOMINATORS
, b
);
1258 while (runner
!= domsb
)
1260 if (!bitmap_set_bit (&frontiers
[runner
->index
],
1263 runner
= get_immediate_dominator (CDI_DOMINATORS
,
1273 compute_dominance_frontiers (bitmap_head
*frontiers
)
1275 timevar_push (TV_DOM_FRONTIERS
);
1277 compute_dominance_frontiers_1 (frontiers
);
1279 timevar_pop (TV_DOM_FRONTIERS
);
1282 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1283 return a bitmap with all the blocks in the iterated dominance
1284 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1285 frontier information as returned by compute_dominance_frontiers.
1287 The resulting set of blocks are the potential sites where PHI nodes
1288 are needed. The caller is responsible for freeing the memory
1289 allocated for the return value. */
1292 compute_idf (bitmap def_blocks
, bitmap_head
*dfs
)
1295 unsigned bb_index
, i
;
1296 bitmap phi_insertion_points
;
1298 /* Each block can appear at most twice on the work-stack. */
1299 auto_vec
<int> work_stack (2 * n_basic_blocks_for_fn (cfun
));
1300 phi_insertion_points
= BITMAP_ALLOC (NULL
);
1302 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1303 vec::quick_push here for speed. This is safe because we know that
1304 the number of definition blocks is no greater than the number of
1305 basic blocks, which is the initial capacity of WORK_STACK. */
1306 EXECUTE_IF_SET_IN_BITMAP (def_blocks
, 0, bb_index
, bi
)
1307 work_stack
.quick_push (bb_index
);
1309 /* Pop a block off the worklist, add every block that appears in
1310 the original block's DF that we have not already processed to
1311 the worklist. Iterate until the worklist is empty. Blocks
1312 which are added to the worklist are potential sites for
1314 while (work_stack
.length () > 0)
1316 bb_index
= work_stack
.pop ();
1318 /* Since the registration of NEW -> OLD name mappings is done
1319 separately from the call to update_ssa, when updating the SSA
1320 form, the basic blocks where new and/or old names are defined
1321 may have disappeared by CFG cleanup calls. In this case,
1322 we may pull a non-existing block from the work stack. */
1323 gcc_checking_assert (bb_index
1324 < (unsigned) last_basic_block_for_fn (cfun
));
1326 EXECUTE_IF_AND_COMPL_IN_BITMAP (&dfs
[bb_index
], phi_insertion_points
,
1329 work_stack
.quick_push (i
);
1330 bitmap_set_bit (phi_insertion_points
, i
);
1334 return phi_insertion_points
;
1337 /* Intersection and union of preds/succs for sbitmap based data flow
1338 solvers. All four functions defined below take the same arguments:
1339 B is the basic block to perform the operation for. DST is the
1340 target sbitmap, i.e. the result. SRC is an sbitmap vector of size
1341 last_basic_block so that it can be indexed with basic block indices.
1342 DST may be (but does not have to be) SRC[B->index]. */
1344 /* Set the bitmap DST to the intersection of SRC of successors of
1348 bitmap_intersection_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1350 unsigned int set_size
= dst
->size
;
1354 gcc_assert (!dst
->popcount
);
1356 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1358 e
= EDGE_SUCC (b
, ix
);
1359 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1362 bitmap_copy (dst
, src
[e
->dest
->index
]);
1369 for (++ix
; ix
< EDGE_COUNT (b
->succs
); ix
++)
1372 SBITMAP_ELT_TYPE
*p
, *r
;
1374 e
= EDGE_SUCC (b
, ix
);
1375 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1378 p
= src
[e
->dest
->index
]->elms
;
1380 for (i
= 0; i
< set_size
; i
++)
1385 /* Set the bitmap DST to the intersection of SRC of predecessors of
1389 bitmap_intersection_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1391 unsigned int set_size
= dst
->size
;
1395 gcc_assert (!dst
->popcount
);
1397 for (e
= NULL
, ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1399 e
= EDGE_PRED (b
, ix
);
1400 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1403 bitmap_copy (dst
, src
[e
->src
->index
]);
1410 for (++ix
; ix
< EDGE_COUNT (b
->preds
); ix
++)
1413 SBITMAP_ELT_TYPE
*p
, *r
;
1415 e
= EDGE_PRED (b
, ix
);
1416 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1419 p
= src
[e
->src
->index
]->elms
;
1421 for (i
= 0; i
< set_size
; i
++)
1426 /* Set the bitmap DST to the union of SRC of successors of
1430 bitmap_union_of_succs (sbitmap dst
, sbitmap
*src
, basic_block b
)
1432 unsigned int set_size
= dst
->size
;
1436 gcc_assert (!dst
->popcount
);
1438 for (ix
= 0; ix
< EDGE_COUNT (b
->succs
); ix
++)
1440 e
= EDGE_SUCC (b
, ix
);
1441 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1444 bitmap_copy (dst
, src
[e
->dest
->index
]);
1448 if (ix
== EDGE_COUNT (b
->succs
))
1451 for (ix
++; ix
< EDGE_COUNT (b
->succs
); ix
++)
1454 SBITMAP_ELT_TYPE
*p
, *r
;
1456 e
= EDGE_SUCC (b
, ix
);
1457 if (e
->dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
1460 p
= src
[e
->dest
->index
]->elms
;
1462 for (i
= 0; i
< set_size
; i
++)
1467 /* Set the bitmap DST to the union of SRC of predecessors of
1471 bitmap_union_of_preds (sbitmap dst
, sbitmap
*src
, basic_block b
)
1473 unsigned int set_size
= dst
->size
;
1477 gcc_assert (!dst
->popcount
);
1479 for (ix
= 0; ix
< EDGE_COUNT (b
->preds
); ix
++)
1481 e
= EDGE_PRED (b
, ix
);
1482 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1485 bitmap_copy (dst
, src
[e
->src
->index
]);
1489 if (ix
== EDGE_COUNT (b
->preds
))
1492 for (ix
++; ix
< EDGE_COUNT (b
->preds
); ix
++)
1495 SBITMAP_ELT_TYPE
*p
, *r
;
1497 e
= EDGE_PRED (b
, ix
);
1498 if (e
->src
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1501 p
= src
[e
->src
->index
]->elms
;
1503 for (i
= 0; i
< set_size
; i
++)
1508 /* Returns the list of basic blocks in the function in an order that guarantees
1509 that if a block X has just a single predecessor Y, then Y is after X in the
1513 single_pred_before_succ_order (void)
1516 basic_block
*order
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
1517 unsigned n
= n_basic_blocks_for_fn (cfun
) - NUM_FIXED_BLOCKS
;
1519 sbitmap visited
= sbitmap_alloc (last_basic_block_for_fn (cfun
));
1521 #define MARK_VISITED(BB) (bitmap_set_bit (visited, (BB)->index))
1522 #define VISITED_P(BB) (bitmap_bit_p (visited, (BB)->index))
1524 bitmap_clear (visited
);
1526 MARK_VISITED (ENTRY_BLOCK_PTR_FOR_FN (cfun
));
1527 FOR_EACH_BB_FN (x
, cfun
)
1532 /* Walk the predecessors of x as long as they have precisely one
1533 predecessor and add them to the list, so that they get stored
1536 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1537 y
= single_pred (y
))
1539 for (y
= x
, i
= n
- np
;
1540 single_pred_p (y
) && !VISITED_P (single_pred (y
));
1541 y
= single_pred (y
), i
++)
1549 gcc_assert (i
== n
- 1);
1553 sbitmap_free (visited
);
1554 gcc_assert (n
== 0);