1 /* Alias analysis for GNU C
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
30 #include "fold-const.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
45 #include "diagnostic-core.h"
46 #include "alloc-pool.h"
48 #include "langhooks.h"
52 #include "dominance.h"
56 #include "basic-block.h"
58 #include "tree-ssa-alias.h"
59 #include "internal-fn.h"
60 #include "gimple-expr.h"
63 #include "gimple-ssa.h"
66 /* The aliasing API provided here solves related but different problems:
68 Say there exists (in c)
82 Consider the four questions:
84 Can a store to x1 interfere with px2->y1?
85 Can a store to x1 interfere with px2->z2?
86 Can a store to x1 change the value pointed to by with py?
87 Can a store to x1 change the value pointed to by with pz?
89 The answer to these questions can be yes, yes, yes, and maybe.
91 The first two questions can be answered with a simple examination
92 of the type system. If structure X contains a field of type Y then
93 a store through a pointer to an X can overwrite any field that is
94 contained (recursively) in an X (unless we know that px1 != px2).
96 The last two questions can be solved in the same way as the first
97 two questions but this is too conservative. The observation is
98 that in some cases we can know which (if any) fields are addressed
99 and if those addresses are used in bad ways. This analysis may be
100 language specific. In C, arbitrary operations may be applied to
101 pointers. However, there is some indication that this may be too
102 conservative for some C++ types.
104 The pass ipa-type-escape does this analysis for the types whose
105 instances do not escape across the compilation boundary.
107 Historically in GCC, these two problems were combined and a single
108 data structure that was used to represent the solution to these
109 problems. We now have two similar but different data structures,
110 The data structure to solve the last two questions is similar to
111 the first, but does not contain the fields whose address are never
112 taken. For types that do escape the compilation unit, the data
113 structures will have identical information.
116 /* The alias sets assigned to MEMs assist the back-end in determining
117 which MEMs can alias which other MEMs. In general, two MEMs in
118 different alias sets cannot alias each other, with one important
119 exception. Consider something like:
121 struct S { int i; double d; };
123 a store to an `S' can alias something of either type `int' or type
124 `double'. (However, a store to an `int' cannot alias a `double'
125 and vice versa.) We indicate this via a tree structure that looks
133 (The arrows are directed and point downwards.)
134 In this situation we say the alias set for `struct S' is the
135 `superset' and that those for `int' and `double' are `subsets'.
137 To see whether two alias sets can point to the same memory, we must
138 see if either alias set is a subset of the other. We need not trace
139 past immediate descendants, however, since we propagate all
140 grandchildren up one level.
142 Alias set zero is implicitly a superset of all other alias sets.
143 However, this is no actual entry for alias set zero. It is an
144 error to attempt to explicitly construct a subset of zero. */
146 struct alias_set_traits
: default_hashmap_traits
152 return e
.m_key
== INT_MIN
;
159 return e
.m_key
== (INT_MIN
+ 1);
162 template<typename T
> static void mark_empty (T
&e
) { e
.m_key
= INT_MIN
; }
168 e
.m_key
= INT_MIN
+ 1;
172 struct GTY(()) alias_set_entry_d
{
173 /* The alias set number, as stored in MEM_ALIAS_SET. */
174 alias_set_type alias_set
;
176 /* The children of the alias set. These are not just the immediate
177 children, but, in fact, all descendants. So, if we have:
179 struct T { struct S s; float f; }
181 continuing our example above, the children here will be all of
182 `int', `double', `float', and `struct S'. */
183 hash_map
<int, int, alias_set_traits
> *children
;
185 /* Nonzero if would have a child of zero: this effectively makes this
186 alias set the same as alias set zero. */
188 /* Nonzero if alias set corresponds to pointer type itself (i.e. not to
189 aggregate contaiing pointer.
190 This is used for a special case where we need an universal pointer type
191 compatible with all other pointer types. */
193 /* Nonzero if is_pointer or if one of childs have has_pointer set. */
196 typedef struct alias_set_entry_d
*alias_set_entry
;
198 static int rtx_equal_for_memref_p (const_rtx
, const_rtx
);
199 static int memrefs_conflict_p (int, rtx
, int, rtx
, HOST_WIDE_INT
);
200 static void record_set (rtx
, const_rtx
, void *);
201 static int base_alias_check (rtx
, rtx
, rtx
, rtx
, machine_mode
,
203 static rtx
find_base_value (rtx
);
204 static int mems_in_disjoint_alias_sets_p (const_rtx
, const_rtx
);
205 static alias_set_entry
get_alias_set_entry (alias_set_type
);
206 static tree
decl_for_component_ref (tree
);
207 static int write_dependence_p (const_rtx
,
208 const_rtx
, machine_mode
, rtx
,
211 static void memory_modified_1 (rtx
, const_rtx
, void *);
213 /* Query statistics for the different low-level disambiguators.
214 A high-level query may trigger multiple of them. */
217 unsigned long long num_alias_zero
;
218 unsigned long long num_same_alias_set
;
219 unsigned long long num_same_objects
;
220 unsigned long long num_volatile
;
221 unsigned long long num_dag
;
222 unsigned long long num_universal
;
223 unsigned long long num_disambiguated
;
227 /* Set up all info needed to perform alias analysis on memory references. */
229 /* Returns the size in bytes of the mode of X. */
230 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
232 /* Cap the number of passes we make over the insns propagating alias
233 information through set chains.
234 ??? 10 is a completely arbitrary choice. This should be based on the
235 maximum loop depth in the CFG, but we do not have this information
236 available (even if current_loops _is_ available). */
237 #define MAX_ALIAS_LOOP_PASSES 10
239 /* reg_base_value[N] gives an address to which register N is related.
240 If all sets after the first add or subtract to the current value
241 or otherwise modify it so it does not point to a different top level
242 object, reg_base_value[N] is equal to the address part of the source
245 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
246 expressions represent three types of base:
248 1. incoming arguments. There is just one ADDRESS to represent all
249 arguments, since we do not know at this level whether accesses
250 based on different arguments can alias. The ADDRESS has id 0.
252 2. stack_pointer_rtx, frame_pointer_rtx, hard_frame_pointer_rtx
253 (if distinct from frame_pointer_rtx) and arg_pointer_rtx.
254 Each of these rtxes has a separate ADDRESS associated with it,
255 each with a negative id.
257 GCC is (and is required to be) precise in which register it
258 chooses to access a particular region of stack. We can therefore
259 assume that accesses based on one of these rtxes do not alias
260 accesses based on another of these rtxes.
262 3. bases that are derived from malloc()ed memory (REG_NOALIAS).
263 Each such piece of memory has a separate ADDRESS associated
264 with it, each with an id greater than 0.
266 Accesses based on one ADDRESS do not alias accesses based on other
267 ADDRESSes. Accesses based on ADDRESSes in groups (2) and (3) do not
268 alias globals either; the ADDRESSes have Pmode to indicate this.
269 The ADDRESS in group (1) _may_ alias globals; it has VOIDmode to
272 static GTY(()) vec
<rtx
, va_gc
> *reg_base_value
;
273 static rtx
*new_reg_base_value
;
275 /* The single VOIDmode ADDRESS that represents all argument bases.
277 static GTY(()) rtx arg_base_value
;
279 /* Used to allocate unique ids to each REG_NOALIAS ADDRESS. */
280 static int unique_id
;
282 /* We preserve the copy of old array around to avoid amount of garbage
283 produced. About 8% of garbage produced were attributed to this
285 static GTY((deletable
)) vec
<rtx
, va_gc
> *old_reg_base_value
;
287 /* Values of XINT (address, 0) of Pmode ADDRESS rtxes for special
289 #define UNIQUE_BASE_VALUE_SP -1
290 #define UNIQUE_BASE_VALUE_ARGP -2
291 #define UNIQUE_BASE_VALUE_FP -3
292 #define UNIQUE_BASE_VALUE_HFP -4
294 #define static_reg_base_value \
295 (this_target_rtl->x_static_reg_base_value)
297 #define REG_BASE_VALUE(X) \
298 (REGNO (X) < vec_safe_length (reg_base_value) \
299 ? (*reg_base_value)[REGNO (X)] : 0)
301 /* Vector indexed by N giving the initial (unchanging) value known for
302 pseudo-register N. This vector is initialized in init_alias_analysis,
303 and does not change until end_alias_analysis is called. */
304 static GTY(()) vec
<rtx
, va_gc
> *reg_known_value
;
306 /* Vector recording for each reg_known_value whether it is due to a
307 REG_EQUIV note. Future passes (viz., reload) may replace the
308 pseudo with the equivalent expression and so we account for the
309 dependences that would be introduced if that happens.
311 The REG_EQUIV notes created in assign_parms may mention the arg
312 pointer, and there are explicit insns in the RTL that modify the
313 arg pointer. Thus we must ensure that such insns don't get
314 scheduled across each other because that would invalidate the
315 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
316 wrong, but solving the problem in the scheduler will likely give
317 better code, so we do it here. */
318 static sbitmap reg_known_equiv_p
;
320 /* True when scanning insns from the start of the rtl to the
321 NOTE_INSN_FUNCTION_BEG note. */
322 static bool copying_arguments
;
325 /* The splay-tree used to store the various alias set entries. */
326 static GTY (()) vec
<alias_set_entry
, va_gc
> *alias_sets
;
328 /* Build a decomposed reference object for querying the alias-oracle
329 from the MEM rtx and store it in *REF.
330 Returns false if MEM is not suitable for the alias-oracle. */
333 ao_ref_from_mem (ao_ref
*ref
, const_rtx mem
)
335 tree expr
= MEM_EXPR (mem
);
341 ao_ref_init (ref
, expr
);
343 /* Get the base of the reference and see if we have to reject or
345 base
= ao_ref_base (ref
);
346 if (base
== NULL_TREE
)
349 /* The tree oracle doesn't like bases that are neither decls
350 nor indirect references of SSA names. */
352 || (TREE_CODE (base
) == MEM_REF
353 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
354 || (TREE_CODE (base
) == TARGET_MEM_REF
355 && TREE_CODE (TMR_BASE (base
)) == SSA_NAME
)))
358 /* If this is a reference based on a partitioned decl replace the
359 base with a MEM_REF of the pointer representative we
360 created during stack slot partitioning. */
361 if (TREE_CODE (base
) == VAR_DECL
362 && ! is_global_var (base
)
363 && cfun
->gimple_df
->decls_to_pointers
!= NULL
)
365 tree
*namep
= cfun
->gimple_df
->decls_to_pointers
->get (base
);
367 ref
->base
= build_simple_mem_ref (*namep
);
370 ref
->ref_alias_set
= MEM_ALIAS_SET (mem
);
372 /* If MEM_OFFSET or MEM_SIZE are unknown what we got from MEM_EXPR
373 is conservative, so trust it. */
374 if (!MEM_OFFSET_KNOWN_P (mem
)
375 || !MEM_SIZE_KNOWN_P (mem
))
378 /* If the base decl is a parameter we can have negative MEM_OFFSET in
379 case of promoted subregs on bigendian targets. Trust the MEM_EXPR
381 if (MEM_OFFSET (mem
) < 0
382 && (MEM_SIZE (mem
) + MEM_OFFSET (mem
)) * BITS_PER_UNIT
== ref
->size
)
385 /* Otherwise continue and refine size and offset we got from analyzing
386 MEM_EXPR by using MEM_SIZE and MEM_OFFSET. */
388 ref
->offset
+= MEM_OFFSET (mem
) * BITS_PER_UNIT
;
389 ref
->size
= MEM_SIZE (mem
) * BITS_PER_UNIT
;
391 /* The MEM may extend into adjacent fields, so adjust max_size if
393 if (ref
->max_size
!= -1
394 && ref
->size
> ref
->max_size
)
395 ref
->max_size
= ref
->size
;
397 /* If MEM_OFFSET and MEM_SIZE get us outside of the base object of
398 the MEM_EXPR punt. This happens for STRICT_ALIGNMENT targets a lot. */
399 if (MEM_EXPR (mem
) != get_spill_slot_decl (false)
401 || (DECL_P (ref
->base
)
402 && (DECL_SIZE (ref
->base
) == NULL_TREE
403 || TREE_CODE (DECL_SIZE (ref
->base
)) != INTEGER_CST
404 || wi::ltu_p (wi::to_offset (DECL_SIZE (ref
->base
)),
405 ref
->offset
+ ref
->size
)))))
411 /* Query the alias-oracle on whether the two memory rtx X and MEM may
412 alias. If TBAA_P is set also apply TBAA. Returns true if the
413 two rtxen may alias, false otherwise. */
416 rtx_refs_may_alias_p (const_rtx x
, const_rtx mem
, bool tbaa_p
)
420 if (!ao_ref_from_mem (&ref1
, x
)
421 || !ao_ref_from_mem (&ref2
, mem
))
424 return refs_may_alias_p_1 (&ref1
, &ref2
,
426 && MEM_ALIAS_SET (x
) != 0
427 && MEM_ALIAS_SET (mem
) != 0);
430 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
431 such an entry, or NULL otherwise. */
433 static inline alias_set_entry
434 get_alias_set_entry (alias_set_type alias_set
)
436 return (*alias_sets
)[alias_set
];
439 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
440 the two MEMs cannot alias each other. */
443 mems_in_disjoint_alias_sets_p (const_rtx mem1
, const_rtx mem2
)
445 return (flag_strict_aliasing
446 && ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
),
447 MEM_ALIAS_SET (mem2
)));
450 /* Return true if the first alias set is a subset of the second. */
453 alias_set_subset_of (alias_set_type set1
, alias_set_type set2
)
455 alias_set_entry ase2
;
457 /* Everything is a subset of the "aliases everything" set. */
461 /* Check if set1 is a subset of set2. */
462 ase2
= get_alias_set_entry (set2
);
464 && (ase2
->has_zero_child
465 || (ase2
->children
&& ase2
->children
->get (set1
))))
468 /* As a special case we consider alias set of "void *" to be both subset
469 and superset of every alias set of a pointer. This extra symmetry does
470 not matter for alias_sets_conflict_p but it makes aliasing_component_refs_p
471 to return true on the following testcase:
474 char **ptr2=(char **)&ptr;
477 Additionally if a set contains universal pointer, we consider every pointer
478 to be a subset of it, but we do not represent this explicitely - doing so
479 would require us to update transitive closure each time we introduce new
480 pointer type. This makes aliasing_component_refs_p to return true
481 on the following testcase:
483 struct a {void *ptr;}
484 char **ptr = (char **)&a.ptr;
487 This makes void * truly universal pointer type. See pointer handling in
488 get_alias_set for more details. */
489 if (ase2
&& ase2
->has_pointer
)
491 alias_set_entry ase1
= get_alias_set_entry (set1
);
493 if (ase1
&& ase1
->is_pointer
)
495 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
496 /* If one is ptr_type_node and other is pointer, then we consider
497 them subset of each other. */
498 if (set1
== voidptr_set
|| set2
== voidptr_set
)
500 /* If SET2 contains universal pointer's alias set, then we consdier
501 every (non-universal) pointer. */
502 if (ase2
->children
&& set1
!= voidptr_set
503 && ase2
->children
->get (voidptr_set
))
510 /* Return 1 if the two specified alias sets may conflict. */
513 alias_sets_conflict_p (alias_set_type set1
, alias_set_type set2
)
515 alias_set_entry ase1
;
516 alias_set_entry ase2
;
519 if (alias_sets_must_conflict_p (set1
, set2
))
522 /* See if the first alias set is a subset of the second. */
523 ase1
= get_alias_set_entry (set1
);
525 && ase1
->children
&& ase1
->children
->get (set2
))
527 ++alias_stats
.num_dag
;
531 /* Now do the same, but with the alias sets reversed. */
532 ase2
= get_alias_set_entry (set2
);
534 && ase2
->children
&& ase2
->children
->get (set1
))
536 ++alias_stats
.num_dag
;
540 /* We want void * to be compatible with any other pointer without
541 really dropping it to alias set 0. Doing so would make it
542 compatible with all non-pointer types too.
544 This is not strictly necessary by the C/C++ language
545 standards, but avoids common type punning mistakes. In
546 addition to that, we need the existence of such universal
547 pointer to implement Fortran's C_PTR type (which is defined as
548 type compatible with all C pointers). */
549 if (ase1
&& ase2
&& ase1
->has_pointer
&& ase2
->has_pointer
)
551 alias_set_type voidptr_set
= TYPE_ALIAS_SET (ptr_type_node
);
553 /* If one of the sets corresponds to universal pointer,
554 we consider it to conflict with anything that is
555 or contains pointer. */
556 if (set1
== voidptr_set
|| set2
== voidptr_set
)
558 ++alias_stats
.num_universal
;
561 /* If one of sets is (non-universal) pointer and the other
562 contains universal pointer, we also get conflict. */
563 if (ase1
->is_pointer
&& set2
!= voidptr_set
564 && ase2
->children
&& ase2
->children
->get (voidptr_set
))
566 ++alias_stats
.num_universal
;
569 if (ase2
->is_pointer
&& set1
!= voidptr_set
570 && ase1
->children
&& ase1
->children
->get (voidptr_set
))
572 ++alias_stats
.num_universal
;
577 ++alias_stats
.num_disambiguated
;
579 /* The two alias sets are distinct and neither one is the
580 child of the other. Therefore, they cannot conflict. */
584 /* Return 1 if the two specified alias sets will always conflict. */
587 alias_sets_must_conflict_p (alias_set_type set1
, alias_set_type set2
)
589 if (set1
== 0 || set2
== 0)
591 ++alias_stats
.num_alias_zero
;
596 ++alias_stats
.num_same_alias_set
;
603 /* Return 1 if any MEM object of type T1 will always conflict (using the
604 dependency routines in this file) with any MEM object of type T2.
605 This is used when allocating temporary storage. If T1 and/or T2 are
606 NULL_TREE, it means we know nothing about the storage. */
609 objects_must_conflict_p (tree t1
, tree t2
)
611 alias_set_type set1
, set2
;
613 /* If neither has a type specified, we don't know if they'll conflict
614 because we may be using them to store objects of various types, for
615 example the argument and local variables areas of inlined functions. */
616 if (t1
== 0 && t2
== 0)
619 /* If they are the same type, they must conflict. */
622 ++alias_stats
.num_same_objects
;
625 /* Likewise if both are volatile. */
626 if (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
))
628 ++alias_stats
.num_volatile
;
632 set1
= t1
? get_alias_set (t1
) : 0;
633 set2
= t2
? get_alias_set (t2
) : 0;
635 /* We can't use alias_sets_conflict_p because we must make sure
636 that every subtype of t1 will conflict with every subtype of
637 t2 for which a pair of subobjects of these respective subtypes
638 overlaps on the stack. */
639 return alias_sets_must_conflict_p (set1
, set2
);
642 /* Return the outermost parent of component present in the chain of
643 component references handled by get_inner_reference in T with the
645 - the component is non-addressable, or
646 - the parent has alias set zero,
647 or NULL_TREE if no such parent exists. In the former cases, the alias
648 set of this parent is the alias set that must be used for T itself. */
651 component_uses_parent_alias_set_from (const_tree t
)
653 const_tree found
= NULL_TREE
;
655 while (handled_component_p (t
))
657 switch (TREE_CODE (t
))
660 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1)))
665 case ARRAY_RANGE_REF
:
666 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0))))
675 case VIEW_CONVERT_EXPR
:
676 /* Bitfields and casts are never addressable. */
684 if (get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) == 0)
687 t
= TREE_OPERAND (t
, 0);
691 return TREE_OPERAND (found
, 0);
697 /* Return whether the pointer-type T effective for aliasing may
698 access everything and thus the reference has to be assigned
702 ref_all_alias_ptr_type_p (const_tree t
)
704 return (TREE_CODE (TREE_TYPE (t
)) == VOID_TYPE
705 || TYPE_REF_CAN_ALIAS_ALL (t
));
708 /* Return the alias set for the memory pointed to by T, which may be
709 either a type or an expression. Return -1 if there is nothing
710 special about dereferencing T. */
712 static alias_set_type
713 get_deref_alias_set_1 (tree t
)
715 /* All we care about is the type. */
719 /* If we have an INDIRECT_REF via a void pointer, we don't
720 know anything about what that might alias. Likewise if the
721 pointer is marked that way. */
722 if (ref_all_alias_ptr_type_p (t
))
728 /* Return the alias set for the memory pointed to by T, which may be
729 either a type or an expression. */
732 get_deref_alias_set (tree t
)
734 /* If we're not doing any alias analysis, just assume everything
735 aliases everything else. */
736 if (!flag_strict_aliasing
)
739 alias_set_type set
= get_deref_alias_set_1 (t
);
741 /* Fall back to the alias-set of the pointed-to type. */
746 set
= get_alias_set (TREE_TYPE (t
));
752 /* Return the pointer-type relevant for TBAA purposes from the
753 memory reference tree *T or NULL_TREE in which case *T is
754 adjusted to point to the outermost component reference that
755 can be used for assigning an alias set. */
758 reference_alias_ptr_type_1 (tree
*t
)
762 /* Get the base object of the reference. */
764 while (handled_component_p (inner
))
766 /* If there is a VIEW_CONVERT_EXPR in the chain we cannot use
767 the type of any component references that wrap it to
768 determine the alias-set. */
769 if (TREE_CODE (inner
) == VIEW_CONVERT_EXPR
)
770 *t
= TREE_OPERAND (inner
, 0);
771 inner
= TREE_OPERAND (inner
, 0);
774 /* Handle pointer dereferences here, they can override the
776 if (INDIRECT_REF_P (inner
)
777 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 0))))
778 return TREE_TYPE (TREE_OPERAND (inner
, 0));
779 else if (TREE_CODE (inner
) == TARGET_MEM_REF
)
780 return TREE_TYPE (TMR_OFFSET (inner
));
781 else if (TREE_CODE (inner
) == MEM_REF
782 && ref_all_alias_ptr_type_p (TREE_TYPE (TREE_OPERAND (inner
, 1))))
783 return TREE_TYPE (TREE_OPERAND (inner
, 1));
785 /* If the innermost reference is a MEM_REF that has a
786 conversion embedded treat it like a VIEW_CONVERT_EXPR above,
787 using the memory access type for determining the alias-set. */
788 if (TREE_CODE (inner
) == MEM_REF
789 && (TYPE_MAIN_VARIANT (TREE_TYPE (inner
))
791 (TREE_TYPE (TREE_TYPE (TREE_OPERAND (inner
, 1))))))
792 return TREE_TYPE (TREE_OPERAND (inner
, 1));
794 /* Otherwise, pick up the outermost object that we could have
796 tree tem
= component_uses_parent_alias_set_from (*t
);
803 /* Return the pointer-type relevant for TBAA purposes from the
804 gimple memory reference tree T. This is the type to be used for
805 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T
806 and guarantees that get_alias_set will return the same alias
807 set for T and the replacement. */
810 reference_alias_ptr_type (tree t
)
812 tree ptype
= reference_alias_ptr_type_1 (&t
);
813 /* If there is a given pointer type for aliasing purposes, return it. */
814 if (ptype
!= NULL_TREE
)
817 /* Otherwise build one from the outermost component reference we
819 if (TREE_CODE (t
) == MEM_REF
820 || TREE_CODE (t
) == TARGET_MEM_REF
)
821 return TREE_TYPE (TREE_OPERAND (t
, 1));
823 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (t
)));
826 /* Return whether the pointer-types T1 and T2 used to determine
827 two alias sets of two references will yield the same answer
828 from get_deref_alias_set. */
831 alias_ptr_types_compatible_p (tree t1
, tree t2
)
833 if (TYPE_MAIN_VARIANT (t1
) == TYPE_MAIN_VARIANT (t2
))
836 if (ref_all_alias_ptr_type_p (t1
)
837 || ref_all_alias_ptr_type_p (t2
))
840 return (TYPE_MAIN_VARIANT (TREE_TYPE (t1
))
841 == TYPE_MAIN_VARIANT (TREE_TYPE (t2
)));
844 /* Create emptry alias set entry. */
847 init_alias_set_entry (alias_set_type set
)
849 alias_set_entry ase
= ggc_alloc
<alias_set_entry_d
> ();
850 ase
->alias_set
= set
;
851 ase
->children
= NULL
;
852 ase
->has_zero_child
= false;
853 ase
->is_pointer
= false;
854 ase
->has_pointer
= false;
855 gcc_checking_assert (!get_alias_set_entry (set
));
856 (*alias_sets
)[set
] = ase
;
860 /* Return the alias set for T, which may be either a type or an
861 expression. Call language-specific routine for help, if needed. */
864 get_alias_set (tree t
)
868 /* If we're not doing any alias analysis, just assume everything
869 aliases everything else. Also return 0 if this or its type is
871 if (! flag_strict_aliasing
|| t
== error_mark_node
873 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
876 /* We can be passed either an expression or a type. This and the
877 language-specific routine may make mutually-recursive calls to each other
878 to figure out what to do. At each juncture, we see if this is a tree
879 that the language may need to handle specially. First handle things that
883 /* Give the language a chance to do something with this tree
884 before we look at it. */
886 set
= lang_hooks
.get_alias_set (t
);
890 /* Get the alias pointer-type to use or the outermost object
891 that we could have a pointer to. */
892 tree ptype
= reference_alias_ptr_type_1 (&t
);
894 return get_deref_alias_set (ptype
);
896 /* If we've already determined the alias set for a decl, just return
897 it. This is necessary for C++ anonymous unions, whose component
898 variables don't look like union members (boo!). */
899 if (TREE_CODE (t
) == VAR_DECL
900 && DECL_RTL_SET_P (t
) && MEM_P (DECL_RTL (t
)))
901 return MEM_ALIAS_SET (DECL_RTL (t
));
903 /* Now all we care about is the type. */
907 /* Variant qualifiers don't affect the alias set, so get the main
909 t
= TYPE_MAIN_VARIANT (t
);
911 /* Always use the canonical type as well. If this is a type that
912 requires structural comparisons to identify compatible types
913 use alias set zero. */
914 if (TYPE_STRUCTURAL_EQUALITY_P (t
))
916 /* Allow the language to specify another alias set for this
918 set
= lang_hooks
.get_alias_set (t
);
924 t
= TYPE_CANONICAL (t
);
926 /* The canonical type should not require structural equality checks. */
927 gcc_checking_assert (!TYPE_STRUCTURAL_EQUALITY_P (t
));
929 /* If this is a type with a known alias set, return it. */
930 if (TYPE_ALIAS_SET_KNOWN_P (t
))
931 return TYPE_ALIAS_SET (t
);
933 /* We don't want to set TYPE_ALIAS_SET for incomplete types. */
934 if (!COMPLETE_TYPE_P (t
))
936 /* For arrays with unknown size the conservative answer is the
937 alias set of the element type. */
938 if (TREE_CODE (t
) == ARRAY_TYPE
)
939 return get_alias_set (TREE_TYPE (t
));
941 /* But return zero as a conservative answer for incomplete types. */
945 /* See if the language has special handling for this type. */
946 set
= lang_hooks
.get_alias_set (t
);
950 /* There are no objects of FUNCTION_TYPE, so there's no point in
951 using up an alias set for them. (There are, of course, pointers
952 and references to functions, but that's different.) */
953 else if (TREE_CODE (t
) == FUNCTION_TYPE
|| TREE_CODE (t
) == METHOD_TYPE
)
956 /* Unless the language specifies otherwise, let vector types alias
957 their components. This avoids some nasty type punning issues in
958 normal usage. And indeed lets vectors be treated more like an
960 else if (TREE_CODE (t
) == VECTOR_TYPE
)
961 set
= get_alias_set (TREE_TYPE (t
));
963 /* Unless the language specifies otherwise, treat array types the
964 same as their components. This avoids the asymmetry we get
965 through recording the components. Consider accessing a
966 character(kind=1) through a reference to a character(kind=1)[1:1].
967 Or consider if we want to assign integer(kind=4)[0:D.1387] and
968 integer(kind=4)[4] the same alias set or not.
969 Just be pragmatic here and make sure the array and its element
970 type get the same alias set assigned. */
971 else if (TREE_CODE (t
) == ARRAY_TYPE
&& !TYPE_NONALIASED_COMPONENT (t
))
972 set
= get_alias_set (TREE_TYPE (t
));
974 /* From the former common C and C++ langhook implementation:
976 Unfortunately, there is no canonical form of a pointer type.
977 In particular, if we have `typedef int I', then `int *', and
978 `I *' are different types. So, we have to pick a canonical
979 representative. We do this below.
981 Technically, this approach is actually more conservative that
982 it needs to be. In particular, `const int *' and `int *'
983 should be in different alias sets, according to the C and C++
984 standard, since their types are not the same, and so,
985 technically, an `int **' and `const int **' cannot point at
988 But, the standard is wrong. In particular, this code is
993 const int* const* cipp = ipp;
994 And, it doesn't make sense for that to be legal unless you
995 can dereference IPP and CIPP. So, we ignore cv-qualifiers on
996 the pointed-to types. This issue has been reported to the
999 For this reason go to canonical type of the unqalified pointer type.
1000 Until GCC 6 this code set all pointers sets to have alias set of
1001 ptr_type_node but that is a bad idea, because it prevents disabiguations
1002 in between pointers. For Firefox this accounts about 20% of all
1003 disambiguations in the program. */
1004 else if (POINTER_TYPE_P (t
) && t
!= ptr_type_node
&& !in_lto_p
)
1007 auto_vec
<bool, 8> reference
;
1009 /* Unnest all pointers and references.
1010 We also want to make pointer to array equivalent to pointer to its
1011 element. So skip all array types, too. */
1012 for (p
= t
; POINTER_TYPE_P (p
)
1013 || (TREE_CODE (p
) == ARRAY_TYPE
&& !TYPE_NONALIASED_COMPONENT (p
));
1016 if (TREE_CODE (p
) == REFERENCE_TYPE
)
1017 reference
.safe_push (true);
1018 if (TREE_CODE (p
) == POINTER_TYPE
)
1019 reference
.safe_push (false);
1021 p
= TYPE_MAIN_VARIANT (p
);
1023 /* Make void * compatible with char * and also void **.
1024 Programs are commonly violating TBAA by this.
1026 We also make void * to conflict with every pointer
1027 (see record_component_aliases) and thus it is safe it to use it for
1028 pointers to types with TYPE_STRUCTURAL_EQUALITY_P. */
1029 if (TREE_CODE (p
) == VOID_TYPE
|| TYPE_STRUCTURAL_EQUALITY_P (p
))
1030 set
= get_alias_set (ptr_type_node
);
1033 /* Rebuild pointer type from starting from canonical types using
1034 unqualified pointers and references only. This way all such
1035 pointers will have the same alias set and will conflict with
1038 Most of time we already have pointers or references of a given type.
1039 If not we build new one just to be sure that if someone later
1040 (probably only middle-end can, as we should assign all alias
1041 classes only after finishing translation unit) builds the pointer
1042 type, the canonical type will match. */
1043 p
= TYPE_CANONICAL (p
);
1044 while (!reference
.is_empty ())
1046 if (reference
.pop ())
1047 p
= build_reference_type (p
);
1049 p
= build_pointer_type (p
);
1050 p
= TYPE_CANONICAL (TYPE_MAIN_VARIANT (p
));
1052 gcc_checking_assert (TYPE_CANONICAL (p
) == p
);
1054 /* Assign the alias set to both p and t.
1055 We can not call get_alias_set (p) here as that would trigger
1056 infinite recursion when p == t. In other cases it would just
1057 trigger unnecesary legwork of rebuilding the pointer again. */
1058 if (TYPE_ALIAS_SET_KNOWN_P (p
))
1059 set
= TYPE_ALIAS_SET (p
);
1062 set
= new_alias_set ();
1063 TYPE_ALIAS_SET (p
) = set
;
1067 /* In LTO the rules above needs to be part of canonical type machinery.
1068 For now just punt. */
1069 else if (POINTER_TYPE_P (t
)
1070 && t
!= TYPE_CANONICAL (ptr_type_node
) && in_lto_p
)
1071 set
= get_alias_set (TYPE_CANONICAL (ptr_type_node
));
1073 /* Otherwise make a new alias set for this type. */
1076 /* Each canonical type gets its own alias set, so canonical types
1077 shouldn't form a tree. It doesn't really matter for types
1078 we handle specially above, so only check it where it possibly
1079 would result in a bogus alias set. */
1080 gcc_checking_assert (TYPE_CANONICAL (t
) == t
);
1082 set
= new_alias_set ();
1085 TYPE_ALIAS_SET (t
) = set
;
1087 /* If this is an aggregate type or a complex type, we must record any
1088 component aliasing information. */
1089 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
1090 record_component_aliases (t
);
1092 /* We treat pointer types specially in alias_set_subset_of. */
1093 if (POINTER_TYPE_P (t
) && set
)
1095 alias_set_entry ase
= get_alias_set_entry (set
);
1097 ase
= init_alias_set_entry (set
);
1098 ase
->is_pointer
= true;
1099 ase
->has_pointer
= true;
1105 /* Return a brand-new alias set. */
1108 new_alias_set (void)
1110 if (flag_strict_aliasing
)
1112 if (alias_sets
== 0)
1113 vec_safe_push (alias_sets
, (alias_set_entry
) 0);
1114 vec_safe_push (alias_sets
, (alias_set_entry
) 0);
1115 return alias_sets
->length () - 1;
1121 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
1122 not everything that aliases SUPERSET also aliases SUBSET. For example,
1123 in C, a store to an `int' can alias a load of a structure containing an
1124 `int', and vice versa. But it can't alias a load of a 'double' member
1125 of the same structure. Here, the structure would be the SUPERSET and
1126 `int' the SUBSET. This relationship is also described in the comment at
1127 the beginning of this file.
1129 This function should be called only once per SUPERSET/SUBSET pair.
1131 It is illegal for SUPERSET to be zero; everything is implicitly a
1132 subset of alias set zero. */
1135 record_alias_subset (alias_set_type superset
, alias_set_type subset
)
1137 alias_set_entry superset_entry
;
1138 alias_set_entry subset_entry
;
1140 /* It is possible in complex type situations for both sets to be the same,
1141 in which case we can ignore this operation. */
1142 if (superset
== subset
)
1145 gcc_assert (superset
);
1147 superset_entry
= get_alias_set_entry (superset
);
1148 if (superset_entry
== 0)
1150 /* Create an entry for the SUPERSET, so that we have a place to
1151 attach the SUBSET. */
1152 superset_entry
= init_alias_set_entry (superset
);
1156 superset_entry
->has_zero_child
= 1;
1159 subset_entry
= get_alias_set_entry (subset
);
1160 if (!superset_entry
->children
)
1161 superset_entry
->children
1162 = hash_map
<int, int, alias_set_traits
>::create_ggc (64);
1163 /* If there is an entry for the subset, enter all of its children
1164 (if they are not already present) as children of the SUPERSET. */
1167 if (subset_entry
->has_zero_child
)
1168 superset_entry
->has_zero_child
= true;
1169 if (subset_entry
->has_pointer
)
1170 superset_entry
->has_pointer
= true;
1172 if (subset_entry
->children
)
1174 hash_map
<int, int, alias_set_traits
>::iterator iter
1175 = subset_entry
->children
->begin ();
1176 for (; iter
!= subset_entry
->children
->end (); ++iter
)
1177 superset_entry
->children
->put ((*iter
).first
, (*iter
).second
);
1181 /* Enter the SUBSET itself as a child of the SUPERSET. */
1182 superset_entry
->children
->put (subset
, 0);
1186 /* Record that component types of TYPE, if any, are part of that type for
1187 aliasing purposes. For record types, we only record component types
1188 for fields that are not marked non-addressable. For array types, we
1189 only record the component type if it is not marked non-aliased. */
1192 record_component_aliases (tree type
)
1194 alias_set_type superset
= get_alias_set (type
);
1200 switch (TREE_CODE (type
))
1204 case QUAL_UNION_TYPE
:
1205 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= DECL_CHAIN (field
))
1206 if (TREE_CODE (field
) == FIELD_DECL
&& !DECL_NONADDRESSABLE_P (field
))
1207 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
1211 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
1214 /* VECTOR_TYPE and ARRAY_TYPE share the alias set with their
1222 /* Allocate an alias set for use in storing and reading from the varargs
1225 static GTY(()) alias_set_type varargs_set
= -1;
1228 get_varargs_alias_set (void)
1231 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
1232 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
1233 consistently use the varargs alias set for loads from the varargs
1234 area. So don't use it anywhere. */
1237 if (varargs_set
== -1)
1238 varargs_set
= new_alias_set ();
1244 /* Likewise, but used for the fixed portions of the frame, e.g., register
1247 static GTY(()) alias_set_type frame_set
= -1;
1250 get_frame_alias_set (void)
1252 if (frame_set
== -1)
1253 frame_set
= new_alias_set ();
1258 /* Create a new, unique base with id ID. */
1261 unique_base_value (HOST_WIDE_INT id
)
1263 return gen_rtx_ADDRESS (Pmode
, id
);
1266 /* Return true if accesses based on any other base value cannot alias
1267 those based on X. */
1270 unique_base_value_p (rtx x
)
1272 return GET_CODE (x
) == ADDRESS
&& GET_MODE (x
) == Pmode
;
1275 /* Return true if X is known to be a base value. */
1278 known_base_value_p (rtx x
)
1280 switch (GET_CODE (x
))
1287 /* Arguments may or may not be bases; we don't know for sure. */
1288 return GET_MODE (x
) != VOIDmode
;
1295 /* Inside SRC, the source of a SET, find a base address. */
1298 find_base_value (rtx src
)
1302 #if defined (FIND_BASE_TERM)
1303 /* Try machine-dependent ways to find the base term. */
1304 src
= FIND_BASE_TERM (src
);
1307 switch (GET_CODE (src
))
1314 regno
= REGNO (src
);
1315 /* At the start of a function, argument registers have known base
1316 values which may be lost later. Returning an ADDRESS
1317 expression here allows optimization based on argument values
1318 even when the argument registers are used for other purposes. */
1319 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
1320 return new_reg_base_value
[regno
];
1322 /* If a pseudo has a known base value, return it. Do not do this
1323 for non-fixed hard regs since it can result in a circular
1324 dependency chain for registers which have values at function entry.
1326 The test above is not sufficient because the scheduler may move
1327 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
1328 if ((regno
>= FIRST_PSEUDO_REGISTER
|| fixed_regs
[regno
])
1329 && regno
< vec_safe_length (reg_base_value
))
1331 /* If we're inside init_alias_analysis, use new_reg_base_value
1332 to reduce the number of relaxation iterations. */
1333 if (new_reg_base_value
&& new_reg_base_value
[regno
]
1334 && DF_REG_DEF_COUNT (regno
) == 1)
1335 return new_reg_base_value
[regno
];
1337 if ((*reg_base_value
)[regno
])
1338 return (*reg_base_value
)[regno
];
1344 /* Check for an argument passed in memory. Only record in the
1345 copying-arguments block; it is too hard to track changes
1347 if (copying_arguments
1348 && (XEXP (src
, 0) == arg_pointer_rtx
1349 || (GET_CODE (XEXP (src
, 0)) == PLUS
1350 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
1351 return arg_base_value
;
1355 src
= XEXP (src
, 0);
1356 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
1359 /* ... fall through ... */
1364 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
1366 /* If either operand is a REG that is a known pointer, then it
1368 if (REG_P (src_0
) && REG_POINTER (src_0
))
1369 return find_base_value (src_0
);
1370 if (REG_P (src_1
) && REG_POINTER (src_1
))
1371 return find_base_value (src_1
);
1373 /* If either operand is a REG, then see if we already have
1374 a known value for it. */
1377 temp
= find_base_value (src_0
);
1384 temp
= find_base_value (src_1
);
1389 /* If either base is named object or a special address
1390 (like an argument or stack reference), then use it for the
1392 if (src_0
!= 0 && known_base_value_p (src_0
))
1395 if (src_1
!= 0 && known_base_value_p (src_1
))
1398 /* Guess which operand is the base address:
1399 If either operand is a symbol, then it is the base. If
1400 either operand is a CONST_INT, then the other is the base. */
1401 if (CONST_INT_P (src_1
) || CONSTANT_P (src_0
))
1402 return find_base_value (src_0
);
1403 else if (CONST_INT_P (src_0
) || CONSTANT_P (src_1
))
1404 return find_base_value (src_1
);
1410 /* The standard form is (lo_sum reg sym) so look only at the
1412 return find_base_value (XEXP (src
, 1));
1415 /* If the second operand is constant set the base
1416 address to the first operand. */
1417 if (CONST_INT_P (XEXP (src
, 1)) && INTVAL (XEXP (src
, 1)) != 0)
1418 return find_base_value (XEXP (src
, 0));
1422 /* As we do not know which address space the pointer is referring to, we can
1423 handle this only if the target does not support different pointer or
1424 address modes depending on the address space. */
1425 if (!target_default_pointer_address_modes_p ())
1427 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
1437 return find_base_value (XEXP (src
, 0));
1440 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
1441 /* As we do not know which address space the pointer is referring to, we can
1442 handle this only if the target does not support different pointer or
1443 address modes depending on the address space. */
1444 if (!target_default_pointer_address_modes_p ())
1448 rtx temp
= find_base_value (XEXP (src
, 0));
1450 if (temp
!= 0 && CONSTANT_P (temp
))
1451 temp
= convert_memory_address (Pmode
, temp
);
1463 /* Called from init_alias_analysis indirectly through note_stores,
1464 or directly if DEST is a register with a REG_NOALIAS note attached.
1465 SET is null in the latter case. */
1467 /* While scanning insns to find base values, reg_seen[N] is nonzero if
1468 register N has been set in this function. */
1469 static sbitmap reg_seen
;
1472 record_set (rtx dest
, const_rtx set
, void *data ATTRIBUTE_UNUSED
)
1481 regno
= REGNO (dest
);
1483 gcc_checking_assert (regno
< reg_base_value
->length ());
1485 n
= REG_NREGS (dest
);
1490 bitmap_set_bit (reg_seen
, regno
+ n
);
1491 new_reg_base_value
[regno
+ n
] = 0;
1498 /* A CLOBBER wipes out any old value but does not prevent a previously
1499 unset register from acquiring a base address (i.e. reg_seen is not
1501 if (GET_CODE (set
) == CLOBBER
)
1503 new_reg_base_value
[regno
] = 0;
1506 src
= SET_SRC (set
);
1510 /* There's a REG_NOALIAS note against DEST. */
1511 if (bitmap_bit_p (reg_seen
, regno
))
1513 new_reg_base_value
[regno
] = 0;
1516 bitmap_set_bit (reg_seen
, regno
);
1517 new_reg_base_value
[regno
] = unique_base_value (unique_id
++);
1521 /* If this is not the first set of REGNO, see whether the new value
1522 is related to the old one. There are two cases of interest:
1524 (1) The register might be assigned an entirely new value
1525 that has the same base term as the original set.
1527 (2) The set might be a simple self-modification that
1528 cannot change REGNO's base value.
1530 If neither case holds, reject the original base value as invalid.
1531 Note that the following situation is not detected:
1533 extern int x, y; int *p = &x; p += (&y-&x);
1535 ANSI C does not allow computing the difference of addresses
1536 of distinct top level objects. */
1537 if (new_reg_base_value
[regno
] != 0
1538 && find_base_value (src
) != new_reg_base_value
[regno
])
1539 switch (GET_CODE (src
))
1543 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
1544 new_reg_base_value
[regno
] = 0;
1547 /* If the value we add in the PLUS is also a valid base value,
1548 this might be the actual base value, and the original value
1551 rtx other
= NULL_RTX
;
1553 if (XEXP (src
, 0) == dest
)
1554 other
= XEXP (src
, 1);
1555 else if (XEXP (src
, 1) == dest
)
1556 other
= XEXP (src
, 0);
1558 if (! other
|| find_base_value (other
))
1559 new_reg_base_value
[regno
] = 0;
1563 if (XEXP (src
, 0) != dest
|| !CONST_INT_P (XEXP (src
, 1)))
1564 new_reg_base_value
[regno
] = 0;
1567 new_reg_base_value
[regno
] = 0;
1570 /* If this is the first set of a register, record the value. */
1571 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
1572 && ! bitmap_bit_p (reg_seen
, regno
) && new_reg_base_value
[regno
] == 0)
1573 new_reg_base_value
[regno
] = find_base_value (src
);
1575 bitmap_set_bit (reg_seen
, regno
);
1578 /* Return REG_BASE_VALUE for REGNO. Selective scheduler uses this to avoid
1579 using hard registers with non-null REG_BASE_VALUE for renaming. */
1581 get_reg_base_value (unsigned int regno
)
1583 return (*reg_base_value
)[regno
];
1586 /* If a value is known for REGNO, return it. */
1589 get_reg_known_value (unsigned int regno
)
1591 if (regno
>= FIRST_PSEUDO_REGISTER
)
1593 regno
-= FIRST_PSEUDO_REGISTER
;
1594 if (regno
< vec_safe_length (reg_known_value
))
1595 return (*reg_known_value
)[regno
];
1603 set_reg_known_value (unsigned int regno
, rtx val
)
1605 if (regno
>= FIRST_PSEUDO_REGISTER
)
1607 regno
-= FIRST_PSEUDO_REGISTER
;
1608 if (regno
< vec_safe_length (reg_known_value
))
1609 (*reg_known_value
)[regno
] = val
;
1613 /* Similarly for reg_known_equiv_p. */
1616 get_reg_known_equiv_p (unsigned int regno
)
1618 if (regno
>= FIRST_PSEUDO_REGISTER
)
1620 regno
-= FIRST_PSEUDO_REGISTER
;
1621 if (regno
< vec_safe_length (reg_known_value
))
1622 return bitmap_bit_p (reg_known_equiv_p
, regno
);
1628 set_reg_known_equiv_p (unsigned int regno
, bool val
)
1630 if (regno
>= FIRST_PSEUDO_REGISTER
)
1632 regno
-= FIRST_PSEUDO_REGISTER
;
1633 if (regno
< vec_safe_length (reg_known_value
))
1636 bitmap_set_bit (reg_known_equiv_p
, regno
);
1638 bitmap_clear_bit (reg_known_equiv_p
, regno
);
1644 /* Returns a canonical version of X, from the point of view alias
1645 analysis. (For example, if X is a MEM whose address is a register,
1646 and the register has a known value (say a SYMBOL_REF), then a MEM
1647 whose address is the SYMBOL_REF is returned.) */
1652 /* Recursively look for equivalences. */
1653 if (REG_P (x
) && REGNO (x
) >= FIRST_PSEUDO_REGISTER
)
1655 rtx t
= get_reg_known_value (REGNO (x
));
1659 return canon_rtx (t
);
1662 if (GET_CODE (x
) == PLUS
)
1664 rtx x0
= canon_rtx (XEXP (x
, 0));
1665 rtx x1
= canon_rtx (XEXP (x
, 1));
1667 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1669 if (CONST_INT_P (x0
))
1670 return plus_constant (GET_MODE (x
), x1
, INTVAL (x0
));
1671 else if (CONST_INT_P (x1
))
1672 return plus_constant (GET_MODE (x
), x0
, INTVAL (x1
));
1673 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1677 /* This gives us much better alias analysis when called from
1678 the loop optimizer. Note we want to leave the original
1679 MEM alone, but need to return the canonicalized MEM with
1680 all the flags with their original values. */
1682 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1687 /* Return 1 if X and Y are identical-looking rtx's.
1688 Expect that X and Y has been already canonicalized.
1690 We use the data in reg_known_value above to see if two registers with
1691 different numbers are, in fact, equivalent. */
1694 rtx_equal_for_memref_p (const_rtx x
, const_rtx y
)
1701 if (x
== 0 && y
== 0)
1703 if (x
== 0 || y
== 0)
1709 code
= GET_CODE (x
);
1710 /* Rtx's of different codes cannot be equal. */
1711 if (code
!= GET_CODE (y
))
1714 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1715 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1717 if (GET_MODE (x
) != GET_MODE (y
))
1720 /* Some RTL can be compared without a recursive examination. */
1724 return REGNO (x
) == REGNO (y
);
1727 return LABEL_REF_LABEL (x
) == LABEL_REF_LABEL (y
);
1730 return XSTR (x
, 0) == XSTR (y
, 0);
1733 /* This is magic, don't go through canonicalization et al. */
1734 return rtx_equal_p (ENTRY_VALUE_EXP (x
), ENTRY_VALUE_EXP (y
));
1738 /* Pointer equality guarantees equality for these nodes. */
1745 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1747 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1748 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1749 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1750 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1751 /* For commutative operations, the RTX match if the operand match in any
1752 order. Also handle the simple binary and unary cases without a loop. */
1753 if (COMMUTATIVE_P (x
))
1755 rtx xop0
= canon_rtx (XEXP (x
, 0));
1756 rtx yop0
= canon_rtx (XEXP (y
, 0));
1757 rtx yop1
= canon_rtx (XEXP (y
, 1));
1759 return ((rtx_equal_for_memref_p (xop0
, yop0
)
1760 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop1
))
1761 || (rtx_equal_for_memref_p (xop0
, yop1
)
1762 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)), yop0
)));
1764 else if (NON_COMMUTATIVE_P (x
))
1766 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1767 canon_rtx (XEXP (y
, 0)))
1768 && rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 1)),
1769 canon_rtx (XEXP (y
, 1))));
1771 else if (UNARY_P (x
))
1772 return rtx_equal_for_memref_p (canon_rtx (XEXP (x
, 0)),
1773 canon_rtx (XEXP (y
, 0)));
1775 /* Compare the elements. If any pair of corresponding elements
1776 fail to match, return 0 for the whole things.
1778 Limit cases to types which actually appear in addresses. */
1780 fmt
= GET_RTX_FORMAT (code
);
1781 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1786 if (XINT (x
, i
) != XINT (y
, i
))
1791 /* Two vectors must have the same length. */
1792 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1795 /* And the corresponding elements must match. */
1796 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1797 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x
, i
, j
)),
1798 canon_rtx (XVECEXP (y
, i
, j
))) == 0)
1803 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x
, i
)),
1804 canon_rtx (XEXP (y
, i
))) == 0)
1808 /* This can happen for asm operands. */
1810 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1814 /* This can happen for an asm which clobbers memory. */
1818 /* It is believed that rtx's at this level will never
1819 contain anything but integers and other rtx's,
1820 except for within LABEL_REFs and SYMBOL_REFs. */
1829 find_base_term (rtx x
)
1832 struct elt_loc_list
*l
, *f
;
1835 #if defined (FIND_BASE_TERM)
1836 /* Try machine-dependent ways to find the base term. */
1837 x
= FIND_BASE_TERM (x
);
1840 switch (GET_CODE (x
))
1843 return REG_BASE_VALUE (x
);
1846 /* As we do not know which address space the pointer is referring to, we can
1847 handle this only if the target does not support different pointer or
1848 address modes depending on the address space. */
1849 if (!target_default_pointer_address_modes_p ())
1851 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (Pmode
))
1861 return find_base_term (XEXP (x
, 0));
1864 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1865 /* As we do not know which address space the pointer is referring to, we can
1866 handle this only if the target does not support different pointer or
1867 address modes depending on the address space. */
1868 if (!target_default_pointer_address_modes_p ())
1872 rtx temp
= find_base_term (XEXP (x
, 0));
1874 if (temp
!= 0 && CONSTANT_P (temp
))
1875 temp
= convert_memory_address (Pmode
, temp
);
1881 val
= CSELIB_VAL_PTR (x
);
1887 if (cselib_sp_based_value_p (val
))
1888 return static_reg_base_value
[STACK_POINTER_REGNUM
];
1891 /* Temporarily reset val->locs to avoid infinite recursion. */
1894 for (l
= f
; l
; l
= l
->next
)
1895 if (GET_CODE (l
->loc
) == VALUE
1896 && CSELIB_VAL_PTR (l
->loc
)->locs
1897 && !CSELIB_VAL_PTR (l
->loc
)->locs
->next
1898 && CSELIB_VAL_PTR (l
->loc
)->locs
->loc
== x
)
1900 else if ((ret
= find_base_term (l
->loc
)) != 0)
1907 /* The standard form is (lo_sum reg sym) so look only at the
1909 return find_base_term (XEXP (x
, 1));
1913 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1919 rtx tmp1
= XEXP (x
, 0);
1920 rtx tmp2
= XEXP (x
, 1);
1922 /* This is a little bit tricky since we have to determine which of
1923 the two operands represents the real base address. Otherwise this
1924 routine may return the index register instead of the base register.
1926 That may cause us to believe no aliasing was possible, when in
1927 fact aliasing is possible.
1929 We use a few simple tests to guess the base register. Additional
1930 tests can certainly be added. For example, if one of the operands
1931 is a shift or multiply, then it must be the index register and the
1932 other operand is the base register. */
1934 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1935 return find_base_term (tmp2
);
1937 /* If either operand is known to be a pointer, then prefer it
1938 to determine the base term. */
1939 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1941 else if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1942 std::swap (tmp1
, tmp2
);
1943 /* If second argument is constant which has base term, prefer it
1944 over variable tmp1. See PR64025. */
1945 else if (CONSTANT_P (tmp2
) && !CONST_INT_P (tmp2
))
1946 std::swap (tmp1
, tmp2
);
1948 /* Go ahead and find the base term for both operands. If either base
1949 term is from a pointer or is a named object or a special address
1950 (like an argument or stack reference), then use it for the
1952 rtx base
= find_base_term (tmp1
);
1953 if (base
!= NULL_RTX
1954 && ((REG_P (tmp1
) && REG_POINTER (tmp1
))
1955 || known_base_value_p (base
)))
1957 base
= find_base_term (tmp2
);
1958 if (base
!= NULL_RTX
1959 && ((REG_P (tmp2
) && REG_POINTER (tmp2
))
1960 || known_base_value_p (base
)))
1963 /* We could not determine which of the two operands was the
1964 base register and which was the index. So we can determine
1965 nothing from the base alias check. */
1970 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) != 0)
1971 return find_base_term (XEXP (x
, 0));
1983 /* Return true if accesses to address X may alias accesses based
1984 on the stack pointer. */
1987 may_be_sp_based_p (rtx x
)
1989 rtx base
= find_base_term (x
);
1990 return !base
|| base
== static_reg_base_value
[STACK_POINTER_REGNUM
];
1993 /* Return 0 if the addresses X and Y are known to point to different
1994 objects, 1 if they might be pointers to the same object. */
1997 base_alias_check (rtx x
, rtx x_base
, rtx y
, rtx y_base
,
1998 machine_mode x_mode
, machine_mode y_mode
)
2000 /* If the address itself has no known base see if a known equivalent
2001 value has one. If either address still has no known base, nothing
2002 is known about aliasing. */
2007 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
2010 x_base
= find_base_term (x_c
);
2018 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
2021 y_base
= find_base_term (y_c
);
2026 /* If the base addresses are equal nothing is known about aliasing. */
2027 if (rtx_equal_p (x_base
, y_base
))
2030 /* The base addresses are different expressions. If they are not accessed
2031 via AND, there is no conflict. We can bring knowledge of object
2032 alignment into play here. For example, on alpha, "char a, b;" can
2033 alias one another, though "char a; long b;" cannot. AND addesses may
2034 implicitly alias surrounding objects; i.e. unaligned access in DImode
2035 via AND address can alias all surrounding object types except those
2036 with aligment 8 or higher. */
2037 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
2039 if (GET_CODE (x
) == AND
2040 && (!CONST_INT_P (XEXP (x
, 1))
2041 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
2043 if (GET_CODE (y
) == AND
2044 && (!CONST_INT_P (XEXP (y
, 1))
2045 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
2048 /* Differing symbols not accessed via AND never alias. */
2049 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
2052 if (unique_base_value_p (x_base
) || unique_base_value_p (y_base
))
2058 /* Return TRUE if EXPR refers to a VALUE whose uid is greater than
2062 refs_newer_value_p (const_rtx expr
, rtx v
)
2064 int minuid
= CSELIB_VAL_PTR (v
)->uid
;
2065 subrtx_iterator::array_type array
;
2066 FOR_EACH_SUBRTX (iter
, array
, expr
, NONCONST
)
2067 if (GET_CODE (*iter
) == VALUE
&& CSELIB_VAL_PTR (*iter
)->uid
> minuid
)
2072 /* Convert the address X into something we can use. This is done by returning
2073 it unchanged unless it is a value; in the latter case we call cselib to get
2074 a more useful rtx. */
2080 struct elt_loc_list
*l
;
2082 if (GET_CODE (x
) != VALUE
)
2084 v
= CSELIB_VAL_PTR (x
);
2087 bool have_equivs
= cselib_have_permanent_equivalences ();
2089 v
= canonical_cselib_val (v
);
2090 for (l
= v
->locs
; l
; l
= l
->next
)
2091 if (CONSTANT_P (l
->loc
))
2093 for (l
= v
->locs
; l
; l
= l
->next
)
2094 if (!REG_P (l
->loc
) && !MEM_P (l
->loc
)
2095 /* Avoid infinite recursion when potentially dealing with
2096 var-tracking artificial equivalences, by skipping the
2097 equivalences themselves, and not choosing expressions
2098 that refer to newer VALUEs. */
2100 || (GET_CODE (l
->loc
) != VALUE
2101 && !refs_newer_value_p (l
->loc
, x
))))
2105 for (l
= v
->locs
; l
; l
= l
->next
)
2107 || (GET_CODE (l
->loc
) != VALUE
2108 && !refs_newer_value_p (l
->loc
, x
)))
2110 /* Return the canonical value. */
2114 return v
->locs
->loc
;
2119 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
2120 where SIZE is the size in bytes of the memory reference. If ADDR
2121 is not modified by the memory reference then ADDR is returned. */
2124 addr_side_effect_eval (rtx addr
, int size
, int n_refs
)
2128 switch (GET_CODE (addr
))
2131 offset
= (n_refs
+ 1) * size
;
2134 offset
= -(n_refs
+ 1) * size
;
2137 offset
= n_refs
* size
;
2140 offset
= -n_refs
* size
;
2148 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0),
2149 gen_int_mode (offset
, GET_MODE (addr
)));
2151 addr
= XEXP (addr
, 0);
2152 addr
= canon_rtx (addr
);
2157 /* Return TRUE if an object X sized at XSIZE bytes and another object
2158 Y sized at YSIZE bytes, starting C bytes after X, may overlap. If
2159 any of the sizes is zero, assume an overlap, otherwise use the
2160 absolute value of the sizes as the actual sizes. */
2163 offset_overlap_p (HOST_WIDE_INT c
, int xsize
, int ysize
)
2165 return (xsize
== 0 || ysize
== 0
2168 : (abs (ysize
) > -c
)));
2171 /* Return one if X and Y (memory addresses) reference the
2172 same location in memory or if the references overlap.
2173 Return zero if they do not overlap, else return
2174 minus one in which case they still might reference the same location.
2176 C is an offset accumulator. When
2177 C is nonzero, we are testing aliases between X and Y + C.
2178 XSIZE is the size in bytes of the X reference,
2179 similarly YSIZE is the size in bytes for Y.
2180 Expect that canon_rtx has been already called for X and Y.
2182 If XSIZE or YSIZE is zero, we do not know the amount of memory being
2183 referenced (the reference was BLKmode), so make the most pessimistic
2186 If XSIZE or YSIZE is negative, we may access memory outside the object
2187 being referenced as a side effect. This can happen when using AND to
2188 align memory references, as is done on the Alpha.
2190 Nice to notice that varying addresses cannot conflict with fp if no
2191 local variables had their addresses taken, but that's too hard now.
2193 ??? Contrary to the tree alias oracle this does not return
2194 one for X + non-constant and Y + non-constant when X and Y are equal.
2195 If that is fixed the TBAA hack for union type-punning can be removed. */
2198 memrefs_conflict_p (int xsize
, rtx x
, int ysize
, rtx y
, HOST_WIDE_INT c
)
2200 if (GET_CODE (x
) == VALUE
)
2204 struct elt_loc_list
*l
= NULL
;
2205 if (CSELIB_VAL_PTR (x
))
2206 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (x
))->locs
;
2208 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, y
))
2215 /* Don't call get_addr if y is the same VALUE. */
2219 if (GET_CODE (y
) == VALUE
)
2223 struct elt_loc_list
*l
= NULL
;
2224 if (CSELIB_VAL_PTR (y
))
2225 for (l
= canonical_cselib_val (CSELIB_VAL_PTR (y
))->locs
;
2227 if (REG_P (l
->loc
) && rtx_equal_for_memref_p (l
->loc
, x
))
2234 /* Don't call get_addr if x is the same VALUE. */
2238 if (GET_CODE (x
) == HIGH
)
2240 else if (GET_CODE (x
) == LO_SUM
)
2243 x
= addr_side_effect_eval (x
, abs (xsize
), 0);
2244 if (GET_CODE (y
) == HIGH
)
2246 else if (GET_CODE (y
) == LO_SUM
)
2249 y
= addr_side_effect_eval (y
, abs (ysize
), 0);
2251 if (rtx_equal_for_memref_p (x
, y
))
2253 return offset_overlap_p (c
, xsize
, ysize
);
2256 /* This code used to check for conflicts involving stack references and
2257 globals but the base address alias code now handles these cases. */
2259 if (GET_CODE (x
) == PLUS
)
2261 /* The fact that X is canonicalized means that this
2262 PLUS rtx is canonicalized. */
2263 rtx x0
= XEXP (x
, 0);
2264 rtx x1
= XEXP (x
, 1);
2266 if (GET_CODE (y
) == PLUS
)
2268 /* The fact that Y is canonicalized means that this
2269 PLUS rtx is canonicalized. */
2270 rtx y0
= XEXP (y
, 0);
2271 rtx y1
= XEXP (y
, 1);
2273 if (rtx_equal_for_memref_p (x1
, y1
))
2274 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2275 if (rtx_equal_for_memref_p (x0
, y0
))
2276 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
2277 if (CONST_INT_P (x1
))
2279 if (CONST_INT_P (y1
))
2280 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
2281 c
- INTVAL (x1
) + INTVAL (y1
));
2283 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
2286 else if (CONST_INT_P (y1
))
2287 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2291 else if (CONST_INT_P (x1
))
2292 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
2294 else if (GET_CODE (y
) == PLUS
)
2296 /* The fact that Y is canonicalized means that this
2297 PLUS rtx is canonicalized. */
2298 rtx y0
= XEXP (y
, 0);
2299 rtx y1
= XEXP (y
, 1);
2301 if (CONST_INT_P (y1
))
2302 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
2307 if (GET_CODE (x
) == GET_CODE (y
))
2308 switch (GET_CODE (x
))
2312 /* Handle cases where we expect the second operands to be the
2313 same, and check only whether the first operand would conflict
2316 rtx x1
= canon_rtx (XEXP (x
, 1));
2317 rtx y1
= canon_rtx (XEXP (y
, 1));
2318 if (! rtx_equal_for_memref_p (x1
, y1
))
2320 x0
= canon_rtx (XEXP (x
, 0));
2321 y0
= canon_rtx (XEXP (y
, 0));
2322 if (rtx_equal_for_memref_p (x0
, y0
))
2323 return offset_overlap_p (c
, xsize
, ysize
);
2325 /* Can't properly adjust our sizes. */
2326 if (!CONST_INT_P (x1
))
2328 xsize
/= INTVAL (x1
);
2329 ysize
/= INTVAL (x1
);
2331 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
2338 /* Deal with alignment ANDs by adjusting offset and size so as to
2339 cover the maximum range, without taking any previously known
2340 alignment into account. Make a size negative after such an
2341 adjustments, so that, if we end up with e.g. two SYMBOL_REFs, we
2342 assume a potential overlap, because they may end up in contiguous
2343 memory locations and the stricter-alignment access may span over
2345 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1)))
2347 HOST_WIDE_INT sc
= INTVAL (XEXP (x
, 1));
2348 unsigned HOST_WIDE_INT uc
= sc
;
2349 if (sc
< 0 && -uc
== (uc
& -uc
))
2356 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2360 if (GET_CODE (y
) == AND
&& CONST_INT_P (XEXP (y
, 1)))
2362 HOST_WIDE_INT sc
= INTVAL (XEXP (y
, 1));
2363 unsigned HOST_WIDE_INT uc
= sc
;
2364 if (sc
< 0 && -uc
== (uc
& -uc
))
2371 return memrefs_conflict_p (xsize
, x
,
2372 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2378 if (CONST_INT_P (x
) && CONST_INT_P (y
))
2380 c
+= (INTVAL (y
) - INTVAL (x
));
2381 return offset_overlap_p (c
, xsize
, ysize
);
2384 if (GET_CODE (x
) == CONST
)
2386 if (GET_CODE (y
) == CONST
)
2387 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2388 ysize
, canon_rtx (XEXP (y
, 0)), c
);
2390 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
2393 if (GET_CODE (y
) == CONST
)
2394 return memrefs_conflict_p (xsize
, x
, ysize
,
2395 canon_rtx (XEXP (y
, 0)), c
);
2397 /* Assume a potential overlap for symbolic addresses that went
2398 through alignment adjustments (i.e., that have negative
2399 sizes), because we can't know how far they are from each
2402 return (xsize
< 0 || ysize
< 0 || offset_overlap_p (c
, xsize
, ysize
));
2410 /* Functions to compute memory dependencies.
2412 Since we process the insns in execution order, we can build tables
2413 to keep track of what registers are fixed (and not aliased), what registers
2414 are varying in known ways, and what registers are varying in unknown
2417 If both memory references are volatile, then there must always be a
2418 dependence between the two references, since their order can not be
2419 changed. A volatile and non-volatile reference can be interchanged
2422 We also must allow AND addresses, because they may generate accesses
2423 outside the object being referenced. This is used to generate aligned
2424 addresses from unaligned addresses, for instance, the alpha
2425 storeqi_unaligned pattern. */
2427 /* Read dependence: X is read after read in MEM takes place. There can
2428 only be a dependence here if both reads are volatile, or if either is
2429 an explicit barrier. */
2432 read_dependence (const_rtx mem
, const_rtx x
)
2434 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2436 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2437 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2442 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
2445 decl_for_component_ref (tree x
)
2449 x
= TREE_OPERAND (x
, 0);
2451 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2453 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
2456 /* Walk up the COMPONENT_REF list in X and adjust *OFFSET to compensate
2457 for the offset of the field reference. *KNOWN_P says whether the
2461 adjust_offset_for_component_ref (tree x
, bool *known_p
,
2462 HOST_WIDE_INT
*offset
)
2468 tree xoffset
= component_ref_field_offset (x
);
2469 tree field
= TREE_OPERAND (x
, 1);
2470 if (TREE_CODE (xoffset
) != INTEGER_CST
)
2477 = (wi::to_offset (xoffset
)
2478 + wi::lrshift (wi::to_offset (DECL_FIELD_BIT_OFFSET (field
)),
2479 LOG2_BITS_PER_UNIT
));
2480 if (!wi::fits_uhwi_p (woffset
))
2485 *offset
+= woffset
.to_uhwi ();
2487 x
= TREE_OPERAND (x
, 0);
2489 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
2492 /* Return nonzero if we can determine the exprs corresponding to memrefs
2493 X and Y and they do not overlap.
2494 If LOOP_VARIANT is set, skip offset-based disambiguation */
2497 nonoverlapping_memrefs_p (const_rtx x
, const_rtx y
, bool loop_invariant
)
2499 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
2502 bool moffsetx_known_p
, moffsety_known_p
;
2503 HOST_WIDE_INT moffsetx
= 0, moffsety
= 0;
2504 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
2506 /* Unless both have exprs, we can't tell anything. */
2507 if (exprx
== 0 || expry
== 0)
2510 /* For spill-slot accesses make sure we have valid offsets. */
2511 if ((exprx
== get_spill_slot_decl (false)
2512 && ! MEM_OFFSET_KNOWN_P (x
))
2513 || (expry
== get_spill_slot_decl (false)
2514 && ! MEM_OFFSET_KNOWN_P (y
)))
2517 /* If the field reference test failed, look at the DECLs involved. */
2518 moffsetx_known_p
= MEM_OFFSET_KNOWN_P (x
);
2519 if (moffsetx_known_p
)
2520 moffsetx
= MEM_OFFSET (x
);
2521 if (TREE_CODE (exprx
) == COMPONENT_REF
)
2523 tree t
= decl_for_component_ref (exprx
);
2526 adjust_offset_for_component_ref (exprx
, &moffsetx_known_p
, &moffsetx
);
2530 moffsety_known_p
= MEM_OFFSET_KNOWN_P (y
);
2531 if (moffsety_known_p
)
2532 moffsety
= MEM_OFFSET (y
);
2533 if (TREE_CODE (expry
) == COMPONENT_REF
)
2535 tree t
= decl_for_component_ref (expry
);
2538 adjust_offset_for_component_ref (expry
, &moffsety_known_p
, &moffsety
);
2542 if (! DECL_P (exprx
) || ! DECL_P (expry
))
2545 /* With invalid code we can end up storing into the constant pool.
2546 Bail out to avoid ICEing when creating RTL for this.
2547 See gfortran.dg/lto/20091028-2_0.f90. */
2548 if (TREE_CODE (exprx
) == CONST_DECL
2549 || TREE_CODE (expry
) == CONST_DECL
)
2552 rtlx
= DECL_RTL (exprx
);
2553 rtly
= DECL_RTL (expry
);
2555 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2556 can't overlap unless they are the same because we never reuse that part
2557 of the stack frame used for locals for spilled pseudos. */
2558 if ((!MEM_P (rtlx
) || !MEM_P (rtly
))
2559 && ! rtx_equal_p (rtlx
, rtly
))
2562 /* If we have MEMs referring to different address spaces (which can
2563 potentially overlap), we cannot easily tell from the addresses
2564 whether the references overlap. */
2565 if (MEM_P (rtlx
) && MEM_P (rtly
)
2566 && MEM_ADDR_SPACE (rtlx
) != MEM_ADDR_SPACE (rtly
))
2569 /* Get the base and offsets of both decls. If either is a register, we
2570 know both are and are the same, so use that as the base. The only
2571 we can avoid overlap is if we can deduce that they are nonoverlapping
2572 pieces of that decl, which is very rare. */
2573 basex
= MEM_P (rtlx
) ? XEXP (rtlx
, 0) : rtlx
;
2574 if (GET_CODE (basex
) == PLUS
&& CONST_INT_P (XEXP (basex
, 1)))
2575 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
2577 basey
= MEM_P (rtly
) ? XEXP (rtly
, 0) : rtly
;
2578 if (GET_CODE (basey
) == PLUS
&& CONST_INT_P (XEXP (basey
, 1)))
2579 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
2581 /* If the bases are different, we know they do not overlap if both
2582 are constants or if one is a constant and the other a pointer into the
2583 stack frame. Otherwise a different base means we can't tell if they
2585 if (! rtx_equal_p (basex
, basey
))
2586 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
2587 || (CONSTANT_P (basex
) && REG_P (basey
)
2588 && REGNO_PTR_FRAME_P (REGNO (basey
)))
2589 || (CONSTANT_P (basey
) && REG_P (basex
)
2590 && REGNO_PTR_FRAME_P (REGNO (basex
))));
2592 /* Offset based disambiguation not appropriate for loop invariant */
2596 sizex
= (!MEM_P (rtlx
) ? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
2597 : MEM_SIZE_KNOWN_P (rtlx
) ? MEM_SIZE (rtlx
)
2599 sizey
= (!MEM_P (rtly
) ? (int) GET_MODE_SIZE (GET_MODE (rtly
))
2600 : MEM_SIZE_KNOWN_P (rtly
) ? MEM_SIZE (rtly
)
2603 /* If we have an offset for either memref, it can update the values computed
2605 if (moffsetx_known_p
)
2606 offsetx
+= moffsetx
, sizex
-= moffsetx
;
2607 if (moffsety_known_p
)
2608 offsety
+= moffsety
, sizey
-= moffsety
;
2610 /* If a memref has both a size and an offset, we can use the smaller size.
2611 We can't do this if the offset isn't known because we must view this
2612 memref as being anywhere inside the DECL's MEM. */
2613 if (MEM_SIZE_KNOWN_P (x
) && moffsetx_known_p
)
2614 sizex
= MEM_SIZE (x
);
2615 if (MEM_SIZE_KNOWN_P (y
) && moffsety_known_p
)
2616 sizey
= MEM_SIZE (y
);
2618 /* Put the values of the memref with the lower offset in X's values. */
2619 if (offsetx
> offsety
)
2621 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
2622 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
2625 /* If we don't know the size of the lower-offset value, we can't tell
2626 if they conflict. Otherwise, we do the test. */
2627 return sizex
>= 0 && offsety
>= offsetx
+ sizex
;
2630 /* Helper for true_dependence and canon_true_dependence.
2631 Checks for true dependence: X is read after store in MEM takes place.
2633 If MEM_CANONICALIZED is FALSE, then X_ADDR and MEM_ADDR should be
2634 NULL_RTX, and the canonical addresses of MEM and X are both computed
2635 here. If MEM_CANONICALIZED, then MEM must be already canonicalized.
2637 If X_ADDR is non-NULL, it is used in preference of XEXP (x, 0).
2639 Returns 1 if there is a true dependence, 0 otherwise. */
2642 true_dependence_1 (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2643 const_rtx x
, rtx x_addr
, bool mem_canonicalized
)
2649 gcc_checking_assert (mem_canonicalized
? (mem_addr
!= NULL_RTX
)
2650 : (mem_addr
== NULL_RTX
&& x_addr
== NULL_RTX
));
2652 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2655 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2656 This is used in epilogue deallocation functions, and in cselib. */
2657 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2659 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2661 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2662 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2666 x_addr
= XEXP (x
, 0);
2667 x_addr
= get_addr (x_addr
);
2671 mem_addr
= XEXP (mem
, 0);
2672 if (mem_mode
== VOIDmode
)
2673 mem_mode
= GET_MODE (mem
);
2675 true_mem_addr
= get_addr (mem_addr
);
2677 /* Read-only memory is by definition never modified, and therefore can't
2678 conflict with anything. However, don't assume anything when AND
2679 addresses are involved and leave to the code below to determine
2680 dependence. We don't expect to find read-only set on MEM, but
2681 stupid user tricks can produce them, so don't die. */
2682 if (MEM_READONLY_P (x
)
2683 && GET_CODE (x_addr
) != AND
2684 && GET_CODE (true_mem_addr
) != AND
)
2687 /* If we have MEMs referring to different address spaces (which can
2688 potentially overlap), we cannot easily tell from the addresses
2689 whether the references overlap. */
2690 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2693 base
= find_base_term (x_addr
);
2694 if (base
&& (GET_CODE (base
) == LABEL_REF
2695 || (GET_CODE (base
) == SYMBOL_REF
2696 && CONSTANT_POOL_ADDRESS_P (base
))))
2699 rtx mem_base
= find_base_term (true_mem_addr
);
2700 if (! base_alias_check (x_addr
, base
, true_mem_addr
, mem_base
,
2701 GET_MODE (x
), mem_mode
))
2704 x_addr
= canon_rtx (x_addr
);
2705 if (!mem_canonicalized
)
2706 mem_addr
= canon_rtx (true_mem_addr
);
2708 if ((ret
= memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2709 SIZE_FOR_MODE (x
), x_addr
, 0)) != -1)
2712 if (mems_in_disjoint_alias_sets_p (x
, mem
))
2715 if (nonoverlapping_memrefs_p (mem
, x
, false))
2718 return rtx_refs_may_alias_p (x
, mem
, true);
2721 /* True dependence: X is read after store in MEM takes place. */
2724 true_dependence (const_rtx mem
, machine_mode mem_mode
, const_rtx x
)
2726 return true_dependence_1 (mem
, mem_mode
, NULL_RTX
,
2727 x
, NULL_RTX
, /*mem_canonicalized=*/false);
2730 /* Canonical true dependence: X is read after store in MEM takes place.
2731 Variant of true_dependence which assumes MEM has already been
2732 canonicalized (hence we no longer do that here).
2733 The mem_addr argument has been added, since true_dependence_1 computed
2734 this value prior to canonicalizing. */
2737 canon_true_dependence (const_rtx mem
, machine_mode mem_mode
, rtx mem_addr
,
2738 const_rtx x
, rtx x_addr
)
2740 return true_dependence_1 (mem
, mem_mode
, mem_addr
,
2741 x
, x_addr
, /*mem_canonicalized=*/true);
2744 /* Returns nonzero if a write to X might alias a previous read from
2745 (or, if WRITEP is true, a write to) MEM.
2746 If X_CANONCALIZED is true, then X_ADDR is the canonicalized address of X,
2747 and X_MODE the mode for that access.
2748 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2751 write_dependence_p (const_rtx mem
,
2752 const_rtx x
, machine_mode x_mode
, rtx x_addr
,
2753 bool mem_canonicalized
, bool x_canonicalized
, bool writep
)
2756 rtx true_mem_addr
, true_x_addr
;
2760 gcc_checking_assert (x_canonicalized
2761 ? (x_addr
!= NULL_RTX
&& x_mode
!= VOIDmode
)
2762 : (x_addr
== NULL_RTX
&& x_mode
== VOIDmode
));
2764 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2767 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2768 This is used in epilogue deallocation functions. */
2769 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2771 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2773 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2774 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2778 x_addr
= XEXP (x
, 0);
2779 true_x_addr
= get_addr (x_addr
);
2781 mem_addr
= XEXP (mem
, 0);
2782 true_mem_addr
= get_addr (mem_addr
);
2784 /* A read from read-only memory can't conflict with read-write memory.
2785 Don't assume anything when AND addresses are involved and leave to
2786 the code below to determine dependence. */
2788 && MEM_READONLY_P (mem
)
2789 && GET_CODE (true_x_addr
) != AND
2790 && GET_CODE (true_mem_addr
) != AND
)
2793 /* If we have MEMs referring to different address spaces (which can
2794 potentially overlap), we cannot easily tell from the addresses
2795 whether the references overlap. */
2796 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2799 base
= find_base_term (true_mem_addr
);
2802 && (GET_CODE (base
) == LABEL_REF
2803 || (GET_CODE (base
) == SYMBOL_REF
2804 && CONSTANT_POOL_ADDRESS_P (base
))))
2807 rtx x_base
= find_base_term (true_x_addr
);
2808 if (! base_alias_check (true_x_addr
, x_base
, true_mem_addr
, base
,
2809 GET_MODE (x
), GET_MODE (mem
)))
2812 if (!x_canonicalized
)
2814 x_addr
= canon_rtx (true_x_addr
);
2815 x_mode
= GET_MODE (x
);
2817 if (!mem_canonicalized
)
2818 mem_addr
= canon_rtx (true_mem_addr
);
2820 if ((ret
= memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2821 GET_MODE_SIZE (x_mode
), x_addr
, 0)) != -1)
2824 if (nonoverlapping_memrefs_p (x
, mem
, false))
2827 return rtx_refs_may_alias_p (x
, mem
, false);
2830 /* Anti dependence: X is written after read in MEM takes place. */
2833 anti_dependence (const_rtx mem
, const_rtx x
)
2835 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
2836 /*mem_canonicalized=*/false,
2837 /*x_canonicalized*/false, /*writep=*/false);
2840 /* Likewise, but we already have a canonicalized MEM, and X_ADDR for X.
2841 Also, consider X in X_MODE (which might be from an enclosing
2842 STRICT_LOW_PART / ZERO_EXTRACT).
2843 If MEM_CANONICALIZED is true, MEM is canonicalized. */
2846 canon_anti_dependence (const_rtx mem
, bool mem_canonicalized
,
2847 const_rtx x
, machine_mode x_mode
, rtx x_addr
)
2849 return write_dependence_p (mem
, x
, x_mode
, x_addr
,
2850 mem_canonicalized
, /*x_canonicalized=*/true,
2854 /* Output dependence: X is written after store in MEM takes place. */
2857 output_dependence (const_rtx mem
, const_rtx x
)
2859 return write_dependence_p (mem
, x
, VOIDmode
, NULL_RTX
,
2860 /*mem_canonicalized=*/false,
2861 /*x_canonicalized*/false, /*writep=*/true);
2866 /* Check whether X may be aliased with MEM. Don't do offset-based
2867 memory disambiguation & TBAA. */
2869 may_alias_p (const_rtx mem
, const_rtx x
)
2871 rtx x_addr
, mem_addr
;
2873 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2876 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2877 This is used in epilogue deallocation functions. */
2878 if (GET_MODE (x
) == BLKmode
&& GET_CODE (XEXP (x
, 0)) == SCRATCH
)
2880 if (GET_MODE (mem
) == BLKmode
&& GET_CODE (XEXP (mem
, 0)) == SCRATCH
)
2882 if (MEM_ALIAS_SET (x
) == ALIAS_SET_MEMORY_BARRIER
2883 || MEM_ALIAS_SET (mem
) == ALIAS_SET_MEMORY_BARRIER
)
2886 x_addr
= XEXP (x
, 0);
2887 x_addr
= get_addr (x_addr
);
2889 mem_addr
= XEXP (mem
, 0);
2890 mem_addr
= get_addr (mem_addr
);
2892 /* Read-only memory is by definition never modified, and therefore can't
2893 conflict with anything. However, don't assume anything when AND
2894 addresses are involved and leave to the code below to determine
2895 dependence. We don't expect to find read-only set on MEM, but
2896 stupid user tricks can produce them, so don't die. */
2897 if (MEM_READONLY_P (x
)
2898 && GET_CODE (x_addr
) != AND
2899 && GET_CODE (mem_addr
) != AND
)
2902 /* If we have MEMs referring to different address spaces (which can
2903 potentially overlap), we cannot easily tell from the addresses
2904 whether the references overlap. */
2905 if (MEM_ADDR_SPACE (mem
) != MEM_ADDR_SPACE (x
))
2908 rtx x_base
= find_base_term (x_addr
);
2909 rtx mem_base
= find_base_term (mem_addr
);
2910 if (! base_alias_check (x_addr
, x_base
, mem_addr
, mem_base
,
2911 GET_MODE (x
), GET_MODE (mem_addr
)))
2914 if (nonoverlapping_memrefs_p (mem
, x
, true))
2917 /* TBAA not valid for loop_invarint */
2918 return rtx_refs_may_alias_p (x
, mem
, false);
2922 init_alias_target (void)
2926 if (!arg_base_value
)
2927 arg_base_value
= gen_rtx_ADDRESS (VOIDmode
, 0);
2929 memset (static_reg_base_value
, 0, sizeof static_reg_base_value
);
2931 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2932 /* Check whether this register can hold an incoming pointer
2933 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2934 numbers, so translate if necessary due to register windows. */
2935 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2936 && HARD_REGNO_MODE_OK (i
, Pmode
))
2937 static_reg_base_value
[i
] = arg_base_value
;
2939 static_reg_base_value
[STACK_POINTER_REGNUM
]
2940 = unique_base_value (UNIQUE_BASE_VALUE_SP
);
2941 static_reg_base_value
[ARG_POINTER_REGNUM
]
2942 = unique_base_value (UNIQUE_BASE_VALUE_ARGP
);
2943 static_reg_base_value
[FRAME_POINTER_REGNUM
]
2944 = unique_base_value (UNIQUE_BASE_VALUE_FP
);
2945 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
)
2946 static_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2947 = unique_base_value (UNIQUE_BASE_VALUE_HFP
);
2950 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2951 to be memory reference. */
2952 static bool memory_modified
;
2954 memory_modified_1 (rtx x
, const_rtx pat ATTRIBUTE_UNUSED
, void *data
)
2958 if (anti_dependence (x
, (const_rtx
)data
) || output_dependence (x
, (const_rtx
)data
))
2959 memory_modified
= true;
2964 /* Return true when INSN possibly modify memory contents of MEM
2965 (i.e. address can be modified). */
2967 memory_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
2971 memory_modified
= false;
2972 note_stores (PATTERN (insn
), memory_modified_1
, CONST_CAST_RTX(mem
));
2973 return memory_modified
;
2976 /* Return TRUE if the destination of a set is rtx identical to
2979 set_dest_equal_p (const_rtx set
, const_rtx item
)
2981 rtx dest
= SET_DEST (set
);
2982 return rtx_equal_p (dest
, item
);
2985 /* Like memory_modified_in_insn_p, but return TRUE if INSN will
2986 *DEFINITELY* modify the memory contents of MEM. */
2988 memory_must_be_modified_in_insn_p (const_rtx mem
, const_rtx insn
)
2992 insn
= PATTERN (insn
);
2993 if (GET_CODE (insn
) == SET
)
2994 return set_dest_equal_p (insn
, mem
);
2995 else if (GET_CODE (insn
) == PARALLEL
)
2998 for (i
= 0; i
< XVECLEN (insn
, 0); i
++)
3000 rtx sub
= XVECEXP (insn
, 0, i
);
3001 if (GET_CODE (sub
) == SET
3002 && set_dest_equal_p (sub
, mem
))
3009 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
3013 init_alias_analysis (void)
3015 unsigned int maxreg
= max_reg_num ();
3024 timevar_push (TV_ALIAS_ANALYSIS
);
3026 vec_safe_grow_cleared (reg_known_value
, maxreg
- FIRST_PSEUDO_REGISTER
);
3027 reg_known_equiv_p
= sbitmap_alloc (maxreg
- FIRST_PSEUDO_REGISTER
);
3028 bitmap_clear (reg_known_equiv_p
);
3030 /* If we have memory allocated from the previous run, use it. */
3031 if (old_reg_base_value
)
3032 reg_base_value
= old_reg_base_value
;
3035 reg_base_value
->truncate (0);
3037 vec_safe_grow_cleared (reg_base_value
, maxreg
);
3039 new_reg_base_value
= XNEWVEC (rtx
, maxreg
);
3040 reg_seen
= sbitmap_alloc (maxreg
);
3042 /* The basic idea is that each pass through this loop will use the
3043 "constant" information from the previous pass to propagate alias
3044 information through another level of assignments.
3046 The propagation is done on the CFG in reverse post-order, to propagate
3047 things forward as far as possible in each iteration.
3049 This could get expensive if the assignment chains are long. Maybe
3050 we should throttle the number of iterations, possibly based on
3051 the optimization level or flag_expensive_optimizations.
3053 We could propagate more information in the first pass by making use
3054 of DF_REG_DEF_COUNT to determine immediately that the alias information
3055 for a pseudo is "constant".
3057 A program with an uninitialized variable can cause an infinite loop
3058 here. Instead of doing a full dataflow analysis to detect such problems
3059 we just cap the number of iterations for the loop.
3061 The state of the arrays for the set chain in question does not matter
3062 since the program has undefined behavior. */
3064 rpo
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
3065 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
3070 /* Assume nothing will change this iteration of the loop. */
3073 /* We want to assign the same IDs each iteration of this loop, so
3074 start counting from one each iteration of the loop. */
3077 /* We're at the start of the function each iteration through the
3078 loop, so we're copying arguments. */
3079 copying_arguments
= true;
3081 /* Wipe the potential alias information clean for this pass. */
3082 memset (new_reg_base_value
, 0, maxreg
* sizeof (rtx
));
3084 /* Wipe the reg_seen array clean. */
3085 bitmap_clear (reg_seen
);
3087 /* Initialize the alias information for this pass. */
3088 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3089 if (static_reg_base_value
[i
])
3091 new_reg_base_value
[i
] = static_reg_base_value
[i
];
3092 bitmap_set_bit (reg_seen
, i
);
3095 /* Walk the insns adding values to the new_reg_base_value array. */
3096 for (i
= 0; i
< rpo_cnt
; i
++)
3098 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, rpo
[i
]);
3099 FOR_BB_INSNS (bb
, insn
)
3101 if (NONDEBUG_INSN_P (insn
))
3105 #if defined (HAVE_prologue)
3106 static const bool prologue
= true;
3108 static const bool prologue
= false;
3111 /* The prologue/epilogue insns are not threaded onto the
3112 insn chain until after reload has completed. Thus,
3113 there is no sense wasting time checking if INSN is in
3114 the prologue/epilogue until after reload has completed. */
3115 if ((prologue
|| HAVE_epilogue
) && reload_completed
3116 && prologue_epilogue_contains (insn
))
3119 /* If this insn has a noalias note, process it, Otherwise,
3120 scan for sets. A simple set will have no side effects
3121 which could change the base value of any other register. */
3123 if (GET_CODE (PATTERN (insn
)) == SET
3124 && REG_NOTES (insn
) != 0
3125 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
3126 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
3128 note_stores (PATTERN (insn
), record_set
, NULL
);
3130 set
= single_set (insn
);
3133 && REG_P (SET_DEST (set
))
3134 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3136 unsigned int regno
= REGNO (SET_DEST (set
));
3137 rtx src
= SET_SRC (set
);
3140 note
= find_reg_equal_equiv_note (insn
);
3141 if (note
&& REG_NOTE_KIND (note
) == REG_EQUAL
3142 && DF_REG_DEF_COUNT (regno
) != 1)
3145 if (note
!= NULL_RTX
3146 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
3147 && ! rtx_varies_p (XEXP (note
, 0), 1)
3148 && ! reg_overlap_mentioned_p (SET_DEST (set
),
3151 set_reg_known_value (regno
, XEXP (note
, 0));
3152 set_reg_known_equiv_p (regno
,
3153 REG_NOTE_KIND (note
) == REG_EQUIV
);
3155 else if (DF_REG_DEF_COUNT (regno
) == 1
3156 && GET_CODE (src
) == PLUS
3157 && REG_P (XEXP (src
, 0))
3158 && (t
= get_reg_known_value (REGNO (XEXP (src
, 0))))
3159 && CONST_INT_P (XEXP (src
, 1)))
3161 t
= plus_constant (GET_MODE (src
), t
,
3162 INTVAL (XEXP (src
, 1)));
3163 set_reg_known_value (regno
, t
);
3164 set_reg_known_equiv_p (regno
, false);
3166 else if (DF_REG_DEF_COUNT (regno
) == 1
3167 && ! rtx_varies_p (src
, 1))
3169 set_reg_known_value (regno
, src
);
3170 set_reg_known_equiv_p (regno
, false);
3174 else if (NOTE_P (insn
)
3175 && NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
3176 copying_arguments
= false;
3180 /* Now propagate values from new_reg_base_value to reg_base_value. */
3181 gcc_assert (maxreg
== (unsigned int) max_reg_num ());
3183 for (ui
= 0; ui
< maxreg
; ui
++)
3185 if (new_reg_base_value
[ui
]
3186 && new_reg_base_value
[ui
] != (*reg_base_value
)[ui
]
3187 && ! rtx_equal_p (new_reg_base_value
[ui
], (*reg_base_value
)[ui
]))
3189 (*reg_base_value
)[ui
] = new_reg_base_value
[ui
];
3194 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
3197 /* Fill in the remaining entries. */
3198 FOR_EACH_VEC_ELT (*reg_known_value
, i
, val
)
3200 int regno
= i
+ FIRST_PSEUDO_REGISTER
;
3202 set_reg_known_value (regno
, regno_reg_rtx
[regno
]);
3206 free (new_reg_base_value
);
3207 new_reg_base_value
= 0;
3208 sbitmap_free (reg_seen
);
3210 timevar_pop (TV_ALIAS_ANALYSIS
);
3213 /* Equate REG_BASE_VALUE (reg1) to REG_BASE_VALUE (reg2).
3214 Special API for var-tracking pass purposes. */
3217 vt_equate_reg_base_value (const_rtx reg1
, const_rtx reg2
)
3219 (*reg_base_value
)[REGNO (reg1
)] = REG_BASE_VALUE (reg2
);
3223 end_alias_analysis (void)
3225 old_reg_base_value
= reg_base_value
;
3226 vec_free (reg_known_value
);
3227 sbitmap_free (reg_known_equiv_p
);
3231 dump_alias_stats_in_alias_c (FILE *s
)
3233 fprintf (s
, " TBAA oracle: %llu disambiguations %llu queries\n"
3234 " %llu are in alias set 0\n"
3235 " %llu queries asked about the same object\n"
3236 " %llu queries asked about the same alias set\n"
3237 " %llu access volatile\n"
3238 " %llu are dependent in the DAG\n"
3239 " %llu are aritificially in conflict with void *\n",
3240 alias_stats
.num_disambiguated
,
3241 alias_stats
.num_alias_zero
+ alias_stats
.num_same_alias_set
3242 + alias_stats
.num_same_objects
+ alias_stats
.num_volatile
3243 + alias_stats
.num_dag
+ alias_stats
.num_disambiguated
3244 + alias_stats
.num_universal
,
3245 alias_stats
.num_alias_zero
, alias_stats
.num_same_alias_set
,
3246 alias_stats
.num_same_objects
, alias_stats
.num_volatile
,
3247 alias_stats
.num_dag
, alias_stats
.num_universal
);
3249 #include "gt-alias.h"