[RS6000] Power10 ICE running gcc.target/powerpc/ppc-ne0-1.c
[official-gcc.git] / gcc / expr.c
blob9d951e82522f58308c786ba49ef73ebf810511a6
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "ssa.h"
32 #include "expmed.h"
33 #include "optabs.h"
34 #include "regs.h"
35 #include "emit-rtl.h"
36 #include "recog.h"
37 #include "cgraph.h"
38 #include "diagnostic.h"
39 #include "alias.h"
40 #include "fold-const.h"
41 #include "stor-layout.h"
42 #include "attribs.h"
43 #include "varasm.h"
44 #include "except.h"
45 #include "insn-attr.h"
46 #include "dojump.h"
47 #include "explow.h"
48 #include "calls.h"
49 #include "stmt.h"
50 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
51 #include "expr.h"
52 #include "optabs-tree.h"
53 #include "libfuncs.h"
54 #include "reload.h"
55 #include "langhooks.h"
56 #include "common/common-target.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa-live.h"
59 #include "tree-outof-ssa.h"
60 #include "tree-ssa-address.h"
61 #include "builtins.h"
62 #include "ccmp.h"
63 #include "gimple-fold.h"
64 #include "rtx-vector-builder.h"
67 /* If this is nonzero, we do not bother generating VOLATILE
68 around volatile memory references, and we are willing to
69 output indirect addresses. If cse is to follow, we reject
70 indirect addresses so a useful potential cse is generated;
71 if it is used only once, instruction combination will produce
72 the same indirect address eventually. */
73 int cse_not_expected;
75 static bool block_move_libcall_safe_for_call_parm (void);
76 static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
77 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
78 unsigned HOST_WIDE_INT,
79 unsigned HOST_WIDE_INT, bool);
80 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
81 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
82 static rtx_insn *compress_float_constant (rtx, rtx);
83 static rtx get_subtarget (rtx);
84 static void store_constructor (tree, rtx, int, poly_int64, bool);
85 static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
86 machine_mode, tree, alias_set_type, bool, bool);
88 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
90 static int is_aligning_offset (const_tree, const_tree);
91 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
92 static rtx do_store_flag (sepops, rtx, machine_mode);
93 #ifdef PUSH_ROUNDING
94 static void emit_single_push_insn (machine_mode, rtx, tree);
95 #endif
96 static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
97 profile_probability);
98 static rtx const_vector_from_tree (tree);
99 static rtx const_scalar_mask_from_tree (scalar_int_mode, tree);
100 static tree tree_expr_size (const_tree);
101 static HOST_WIDE_INT int_expr_size (tree);
102 static void convert_mode_scalar (rtx, rtx, int);
105 /* This is run to set up which modes can be used
106 directly in memory and to initialize the block move optab. It is run
107 at the beginning of compilation and when the target is reinitialized. */
109 void
110 init_expr_target (void)
112 rtx pat;
113 int num_clobbers;
114 rtx mem, mem1;
115 rtx reg;
117 /* Try indexing by frame ptr and try by stack ptr.
118 It is known that on the Convex the stack ptr isn't a valid index.
119 With luck, one or the other is valid on any machine. */
120 mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
121 mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
123 /* A scratch register we can modify in-place below to avoid
124 useless RTL allocations. */
125 reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
127 rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
128 pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
129 PATTERN (insn) = pat;
131 for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
132 mode = (machine_mode) ((int) mode + 1))
134 int regno;
136 direct_load[(int) mode] = direct_store[(int) mode] = 0;
137 PUT_MODE (mem, mode);
138 PUT_MODE (mem1, mode);
140 /* See if there is some register that can be used in this mode and
141 directly loaded or stored from memory. */
143 if (mode != VOIDmode && mode != BLKmode)
144 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
145 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
146 regno++)
148 if (!targetm.hard_regno_mode_ok (regno, mode))
149 continue;
151 set_mode_and_regno (reg, mode, regno);
153 SET_SRC (pat) = mem;
154 SET_DEST (pat) = reg;
155 if (recog (pat, insn, &num_clobbers) >= 0)
156 direct_load[(int) mode] = 1;
158 SET_SRC (pat) = mem1;
159 SET_DEST (pat) = reg;
160 if (recog (pat, insn, &num_clobbers) >= 0)
161 direct_load[(int) mode] = 1;
163 SET_SRC (pat) = reg;
164 SET_DEST (pat) = mem;
165 if (recog (pat, insn, &num_clobbers) >= 0)
166 direct_store[(int) mode] = 1;
168 SET_SRC (pat) = reg;
169 SET_DEST (pat) = mem1;
170 if (recog (pat, insn, &num_clobbers) >= 0)
171 direct_store[(int) mode] = 1;
175 mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
177 opt_scalar_float_mode mode_iter;
178 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
180 scalar_float_mode mode = mode_iter.require ();
181 scalar_float_mode srcmode;
182 FOR_EACH_MODE_UNTIL (srcmode, mode)
184 enum insn_code ic;
186 ic = can_extend_p (mode, srcmode, 0);
187 if (ic == CODE_FOR_nothing)
188 continue;
190 PUT_MODE (mem, srcmode);
192 if (insn_operand_matches (ic, 1, mem))
193 float_extend_from_mem[mode][srcmode] = true;
198 /* This is run at the start of compiling a function. */
200 void
201 init_expr (void)
203 memset (&crtl->expr, 0, sizeof (crtl->expr));
206 /* Copy data from FROM to TO, where the machine modes are not the same.
207 Both modes may be integer, or both may be floating, or both may be
208 fixed-point.
209 UNSIGNEDP should be nonzero if FROM is an unsigned type.
210 This causes zero-extension instead of sign-extension. */
212 void
213 convert_move (rtx to, rtx from, int unsignedp)
215 machine_mode to_mode = GET_MODE (to);
216 machine_mode from_mode = GET_MODE (from);
218 gcc_assert (to_mode != BLKmode);
219 gcc_assert (from_mode != BLKmode);
221 /* If the source and destination are already the same, then there's
222 nothing to do. */
223 if (to == from)
224 return;
226 /* If FROM is a SUBREG that indicates that we have already done at least
227 the required extension, strip it. We don't handle such SUBREGs as
228 TO here. */
230 scalar_int_mode to_int_mode;
231 if (GET_CODE (from) == SUBREG
232 && SUBREG_PROMOTED_VAR_P (from)
233 && is_a <scalar_int_mode> (to_mode, &to_int_mode)
234 && (GET_MODE_PRECISION (subreg_promoted_mode (from))
235 >= GET_MODE_PRECISION (to_int_mode))
236 && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
238 from = gen_lowpart (to_int_mode, SUBREG_REG (from));
239 from_mode = to_int_mode;
242 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
244 if (to_mode == from_mode
245 || (from_mode == VOIDmode && CONSTANT_P (from)))
247 emit_move_insn (to, from);
248 return;
251 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
253 if (GET_MODE_UNIT_PRECISION (to_mode)
254 > GET_MODE_UNIT_PRECISION (from_mode))
256 optab op = unsignedp ? zext_optab : sext_optab;
257 insn_code icode = convert_optab_handler (op, to_mode, from_mode);
258 if (icode != CODE_FOR_nothing)
260 emit_unop_insn (icode, to, from,
261 unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
262 return;
266 if (GET_MODE_UNIT_PRECISION (to_mode)
267 < GET_MODE_UNIT_PRECISION (from_mode))
269 insn_code icode = convert_optab_handler (trunc_optab,
270 to_mode, from_mode);
271 if (icode != CODE_FOR_nothing)
273 emit_unop_insn (icode, to, from, TRUNCATE);
274 return;
278 gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
279 GET_MODE_BITSIZE (to_mode)));
281 if (VECTOR_MODE_P (to_mode))
282 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
283 else
284 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
286 emit_move_insn (to, from);
287 return;
290 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
292 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
293 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
294 return;
297 convert_mode_scalar (to, from, unsignedp);
300 /* Like convert_move, but deals only with scalar modes. */
302 static void
303 convert_mode_scalar (rtx to, rtx from, int unsignedp)
305 /* Both modes should be scalar types. */
306 scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
307 scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
308 bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
309 bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
310 enum insn_code code;
311 rtx libcall;
313 gcc_assert (to_real == from_real);
315 /* rtx code for making an equivalent value. */
316 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
317 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
319 if (to_real)
321 rtx value;
322 rtx_insn *insns;
323 convert_optab tab;
325 gcc_assert ((GET_MODE_PRECISION (from_mode)
326 != GET_MODE_PRECISION (to_mode))
327 || (DECIMAL_FLOAT_MODE_P (from_mode)
328 != DECIMAL_FLOAT_MODE_P (to_mode)));
330 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
331 /* Conversion between decimal float and binary float, same size. */
332 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
333 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
334 tab = sext_optab;
335 else
336 tab = trunc_optab;
338 /* Try converting directly if the insn is supported. */
340 code = convert_optab_handler (tab, to_mode, from_mode);
341 if (code != CODE_FOR_nothing)
343 emit_unop_insn (code, to, from,
344 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
345 return;
348 /* Otherwise use a libcall. */
349 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
351 /* Is this conversion implemented yet? */
352 gcc_assert (libcall);
354 start_sequence ();
355 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
356 from, from_mode);
357 insns = get_insns ();
358 end_sequence ();
359 emit_libcall_block (insns, to, value,
360 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
361 from)
362 : gen_rtx_FLOAT_EXTEND (to_mode, from));
363 return;
366 /* Handle pointer conversion. */ /* SPEE 900220. */
367 /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
369 convert_optab ctab;
371 if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
372 ctab = trunc_optab;
373 else if (unsignedp)
374 ctab = zext_optab;
375 else
376 ctab = sext_optab;
378 if (convert_optab_handler (ctab, to_mode, from_mode)
379 != CODE_FOR_nothing)
381 emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
382 to, from, UNKNOWN);
383 return;
387 /* Targets are expected to provide conversion insns between PxImode and
388 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
389 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
391 scalar_int_mode full_mode
392 = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
394 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
395 != CODE_FOR_nothing);
397 if (full_mode != from_mode)
398 from = convert_to_mode (full_mode, from, unsignedp);
399 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
400 to, from, UNKNOWN);
401 return;
403 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
405 rtx new_from;
406 scalar_int_mode full_mode
407 = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
408 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
409 enum insn_code icode;
411 icode = convert_optab_handler (ctab, full_mode, from_mode);
412 gcc_assert (icode != CODE_FOR_nothing);
414 if (to_mode == full_mode)
416 emit_unop_insn (icode, to, from, UNKNOWN);
417 return;
420 new_from = gen_reg_rtx (full_mode);
421 emit_unop_insn (icode, new_from, from, UNKNOWN);
423 /* else proceed to integer conversions below. */
424 from_mode = full_mode;
425 from = new_from;
428 /* Make sure both are fixed-point modes or both are not. */
429 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
430 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
431 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
433 /* If we widen from_mode to to_mode and they are in the same class,
434 we won't saturate the result.
435 Otherwise, always saturate the result to play safe. */
436 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
437 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
438 expand_fixed_convert (to, from, 0, 0);
439 else
440 expand_fixed_convert (to, from, 0, 1);
441 return;
444 /* Now both modes are integers. */
446 /* Handle expanding beyond a word. */
447 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
448 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
450 rtx_insn *insns;
451 rtx lowpart;
452 rtx fill_value;
453 rtx lowfrom;
454 int i;
455 scalar_mode lowpart_mode;
456 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
458 /* Try converting directly if the insn is supported. */
459 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
460 != CODE_FOR_nothing)
462 /* If FROM is a SUBREG, put it into a register. Do this
463 so that we always generate the same set of insns for
464 better cse'ing; if an intermediate assignment occurred,
465 we won't be doing the operation directly on the SUBREG. */
466 if (optimize > 0 && GET_CODE (from) == SUBREG)
467 from = force_reg (from_mode, from);
468 emit_unop_insn (code, to, from, equiv_code);
469 return;
471 /* Next, try converting via full word. */
472 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
473 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
474 != CODE_FOR_nothing))
476 rtx word_to = gen_reg_rtx (word_mode);
477 if (REG_P (to))
479 if (reg_overlap_mentioned_p (to, from))
480 from = force_reg (from_mode, from);
481 emit_clobber (to);
483 convert_move (word_to, from, unsignedp);
484 emit_unop_insn (code, to, word_to, equiv_code);
485 return;
488 /* No special multiword conversion insn; do it by hand. */
489 start_sequence ();
491 /* Since we will turn this into a no conflict block, we must ensure
492 the source does not overlap the target so force it into an isolated
493 register when maybe so. Likewise for any MEM input, since the
494 conversion sequence might require several references to it and we
495 must ensure we're getting the same value every time. */
497 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
498 from = force_reg (from_mode, from);
500 /* Get a copy of FROM widened to a word, if necessary. */
501 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
502 lowpart_mode = word_mode;
503 else
504 lowpart_mode = from_mode;
506 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
508 lowpart = gen_lowpart (lowpart_mode, to);
509 emit_move_insn (lowpart, lowfrom);
511 /* Compute the value to put in each remaining word. */
512 if (unsignedp)
513 fill_value = const0_rtx;
514 else
515 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
516 LT, lowfrom, const0_rtx,
517 lowpart_mode, 0, -1);
519 /* Fill the remaining words. */
520 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
522 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
523 rtx subword = operand_subword (to, index, 1, to_mode);
525 gcc_assert (subword);
527 if (fill_value != subword)
528 emit_move_insn (subword, fill_value);
531 insns = get_insns ();
532 end_sequence ();
534 emit_insn (insns);
535 return;
538 /* Truncating multi-word to a word or less. */
539 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
540 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
542 if (!((MEM_P (from)
543 && ! MEM_VOLATILE_P (from)
544 && direct_load[(int) to_mode]
545 && ! mode_dependent_address_p (XEXP (from, 0),
546 MEM_ADDR_SPACE (from)))
547 || REG_P (from)
548 || GET_CODE (from) == SUBREG))
549 from = force_reg (from_mode, from);
550 convert_move (to, gen_lowpart (word_mode, from), 0);
551 return;
554 /* Now follow all the conversions between integers
555 no more than a word long. */
557 /* For truncation, usually we can just refer to FROM in a narrower mode. */
558 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
559 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
561 if (!((MEM_P (from)
562 && ! MEM_VOLATILE_P (from)
563 && direct_load[(int) to_mode]
564 && ! mode_dependent_address_p (XEXP (from, 0),
565 MEM_ADDR_SPACE (from)))
566 || REG_P (from)
567 || GET_CODE (from) == SUBREG))
568 from = force_reg (from_mode, from);
569 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
570 && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
571 from = copy_to_reg (from);
572 emit_move_insn (to, gen_lowpart (to_mode, from));
573 return;
576 /* Handle extension. */
577 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
579 /* Convert directly if that works. */
580 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
581 != CODE_FOR_nothing)
583 emit_unop_insn (code, to, from, equiv_code);
584 return;
586 else
588 rtx tmp;
589 int shift_amount;
591 /* Search for a mode to convert via. */
592 opt_scalar_mode intermediate_iter;
593 FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
595 scalar_mode intermediate = intermediate_iter.require ();
596 if (((can_extend_p (to_mode, intermediate, unsignedp)
597 != CODE_FOR_nothing)
598 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
599 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
600 intermediate)))
601 && (can_extend_p (intermediate, from_mode, unsignedp)
602 != CODE_FOR_nothing))
604 convert_move (to, convert_to_mode (intermediate, from,
605 unsignedp), unsignedp);
606 return;
610 /* No suitable intermediate mode.
611 Generate what we need with shifts. */
612 shift_amount = (GET_MODE_PRECISION (to_mode)
613 - GET_MODE_PRECISION (from_mode));
614 from = gen_lowpart (to_mode, force_reg (from_mode, from));
615 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
616 to, unsignedp);
617 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
618 to, unsignedp);
619 if (tmp != to)
620 emit_move_insn (to, tmp);
621 return;
625 /* Support special truncate insns for certain modes. */
626 if (convert_optab_handler (trunc_optab, to_mode,
627 from_mode) != CODE_FOR_nothing)
629 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
630 to, from, UNKNOWN);
631 return;
634 /* Handle truncation of volatile memrefs, and so on;
635 the things that couldn't be truncated directly,
636 and for which there was no special instruction.
638 ??? Code above formerly short-circuited this, for most integer
639 mode pairs, with a force_reg in from_mode followed by a recursive
640 call to this routine. Appears always to have been wrong. */
641 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
643 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
644 emit_move_insn (to, temp);
645 return;
648 /* Mode combination is not recognized. */
649 gcc_unreachable ();
652 /* Return an rtx for a value that would result
653 from converting X to mode MODE.
654 Both X and MODE may be floating, or both integer.
655 UNSIGNEDP is nonzero if X is an unsigned value.
656 This can be done by referring to a part of X in place
657 or by copying to a new temporary with conversion. */
660 convert_to_mode (machine_mode mode, rtx x, int unsignedp)
662 return convert_modes (mode, VOIDmode, x, unsignedp);
665 /* Return an rtx for a value that would result
666 from converting X from mode OLDMODE to mode MODE.
667 Both modes may be floating, or both integer.
668 UNSIGNEDP is nonzero if X is an unsigned value.
670 This can be done by referring to a part of X in place
671 or by copying to a new temporary with conversion.
673 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
676 convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
678 rtx temp;
679 scalar_int_mode int_mode;
681 /* If FROM is a SUBREG that indicates that we have already done at least
682 the required extension, strip it. */
684 if (GET_CODE (x) == SUBREG
685 && SUBREG_PROMOTED_VAR_P (x)
686 && is_a <scalar_int_mode> (mode, &int_mode)
687 && (GET_MODE_PRECISION (subreg_promoted_mode (x))
688 >= GET_MODE_PRECISION (int_mode))
689 && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
690 x = gen_lowpart (int_mode, SUBREG_REG (x));
692 if (GET_MODE (x) != VOIDmode)
693 oldmode = GET_MODE (x);
695 if (mode == oldmode)
696 return x;
698 if (CONST_SCALAR_INT_P (x)
699 && is_a <scalar_int_mode> (mode, &int_mode))
701 /* If the caller did not tell us the old mode, then there is not
702 much to do with respect to canonicalization. We have to
703 assume that all the bits are significant. */
704 if (!is_a <scalar_int_mode> (oldmode))
705 oldmode = MAX_MODE_INT;
706 wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
707 GET_MODE_PRECISION (int_mode),
708 unsignedp ? UNSIGNED : SIGNED);
709 return immed_wide_int_const (w, int_mode);
712 /* We can do this with a gen_lowpart if both desired and current modes
713 are integer, and this is either a constant integer, a register, or a
714 non-volatile MEM. */
715 scalar_int_mode int_oldmode;
716 if (is_int_mode (mode, &int_mode)
717 && is_int_mode (oldmode, &int_oldmode)
718 && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
719 && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
720 || CONST_POLY_INT_P (x)
721 || (REG_P (x)
722 && (!HARD_REGISTER_P (x)
723 || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
724 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
725 return gen_lowpart (int_mode, x);
727 /* Converting from integer constant into mode is always equivalent to an
728 subreg operation. */
729 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
731 gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
732 GET_MODE_BITSIZE (oldmode)));
733 return simplify_gen_subreg (mode, x, oldmode, 0);
736 temp = gen_reg_rtx (mode);
737 convert_move (temp, x, unsignedp);
738 return temp;
741 /* Return the largest alignment we can use for doing a move (or store)
742 of MAX_PIECES. ALIGN is the largest alignment we could use. */
744 static unsigned int
745 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
747 scalar_int_mode tmode
748 = int_mode_for_size (max_pieces * BITS_PER_UNIT, 1).require ();
750 if (align >= GET_MODE_ALIGNMENT (tmode))
751 align = GET_MODE_ALIGNMENT (tmode);
752 else
754 scalar_int_mode xmode = NARROWEST_INT_MODE;
755 opt_scalar_int_mode mode_iter;
756 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
758 tmode = mode_iter.require ();
759 if (GET_MODE_SIZE (tmode) > max_pieces
760 || targetm.slow_unaligned_access (tmode, align))
761 break;
762 xmode = tmode;
765 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
768 return align;
771 /* Return the widest integer mode that is narrower than SIZE bytes. */
773 static scalar_int_mode
774 widest_int_mode_for_size (unsigned int size)
776 scalar_int_mode result = NARROWEST_INT_MODE;
778 gcc_checking_assert (size > 1);
780 opt_scalar_int_mode tmode;
781 FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
782 if (GET_MODE_SIZE (tmode.require ()) < size)
783 result = tmode.require ();
785 return result;
788 /* Determine whether an operation OP on LEN bytes with alignment ALIGN can
789 and should be performed piecewise. */
791 static bool
792 can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
793 enum by_pieces_operation op)
795 return targetm.use_by_pieces_infrastructure_p (len, align, op,
796 optimize_insn_for_speed_p ());
799 /* Determine whether the LEN bytes can be moved by using several move
800 instructions. Return nonzero if a call to move_by_pieces should
801 succeed. */
803 bool
804 can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
806 return can_do_by_pieces (len, align, MOVE_BY_PIECES);
809 /* Return number of insns required to perform operation OP by pieces
810 for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
812 unsigned HOST_WIDE_INT
813 by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
814 unsigned int max_size, by_pieces_operation op)
816 unsigned HOST_WIDE_INT n_insns = 0;
818 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
820 while (max_size > 1 && l > 0)
822 scalar_int_mode mode = widest_int_mode_for_size (max_size);
823 enum insn_code icode;
825 unsigned int modesize = GET_MODE_SIZE (mode);
827 icode = optab_handler (mov_optab, mode);
828 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
830 unsigned HOST_WIDE_INT n_pieces = l / modesize;
831 l %= modesize;
832 switch (op)
834 default:
835 n_insns += n_pieces;
836 break;
838 case COMPARE_BY_PIECES:
839 int batch = targetm.compare_by_pieces_branch_ratio (mode);
840 int batch_ops = 4 * batch - 1;
841 unsigned HOST_WIDE_INT full = n_pieces / batch;
842 n_insns += full * batch_ops;
843 if (n_pieces % batch != 0)
844 n_insns++;
845 break;
849 max_size = modesize;
852 gcc_assert (!l);
853 return n_insns;
856 /* Used when performing piecewise block operations, holds information
857 about one of the memory objects involved. The member functions
858 can be used to generate code for loading from the object and
859 updating the address when iterating. */
861 class pieces_addr
863 /* The object being referenced, a MEM. Can be NULL_RTX to indicate
864 stack pushes. */
865 rtx m_obj;
866 /* The address of the object. Can differ from that seen in the
867 MEM rtx if we copied the address to a register. */
868 rtx m_addr;
869 /* Nonzero if the address on the object has an autoincrement already,
870 signifies whether that was an increment or decrement. */
871 signed char m_addr_inc;
872 /* Nonzero if we intend to use autoinc without the address already
873 having autoinc form. We will insert add insns around each memory
874 reference, expecting later passes to form autoinc addressing modes.
875 The only supported options are predecrement and postincrement. */
876 signed char m_explicit_inc;
877 /* True if we have either of the two possible cases of using
878 autoincrement. */
879 bool m_auto;
880 /* True if this is an address to be used for load operations rather
881 than stores. */
882 bool m_is_load;
884 /* Optionally, a function to obtain constants for any given offset into
885 the objects, and data associated with it. */
886 by_pieces_constfn m_constfn;
887 void *m_cfndata;
888 public:
889 pieces_addr (rtx, bool, by_pieces_constfn, void *);
890 rtx adjust (scalar_int_mode, HOST_WIDE_INT);
891 void increment_address (HOST_WIDE_INT);
892 void maybe_predec (HOST_WIDE_INT);
893 void maybe_postinc (HOST_WIDE_INT);
894 void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
895 int get_addr_inc ()
897 return m_addr_inc;
901 /* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
902 true if the operation to be performed on this object is a load
903 rather than a store. For stores, OBJ can be NULL, in which case we
904 assume the operation is a stack push. For loads, the optional
905 CONSTFN and its associated CFNDATA can be used in place of the
906 memory load. */
908 pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
909 void *cfndata)
910 : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
912 m_addr_inc = 0;
913 m_auto = false;
914 if (obj)
916 rtx addr = XEXP (obj, 0);
917 rtx_code code = GET_CODE (addr);
918 m_addr = addr;
919 bool dec = code == PRE_DEC || code == POST_DEC;
920 bool inc = code == PRE_INC || code == POST_INC;
921 m_auto = inc || dec;
922 if (m_auto)
923 m_addr_inc = dec ? -1 : 1;
925 /* While we have always looked for these codes here, the code
926 implementing the memory operation has never handled them.
927 Support could be added later if necessary or beneficial. */
928 gcc_assert (code != PRE_INC && code != POST_DEC);
930 else
932 m_addr = NULL_RTX;
933 if (!is_load)
935 m_auto = true;
936 if (STACK_GROWS_DOWNWARD)
937 m_addr_inc = -1;
938 else
939 m_addr_inc = 1;
941 else
942 gcc_assert (constfn != NULL);
944 m_explicit_inc = 0;
945 if (constfn)
946 gcc_assert (is_load);
949 /* Decide whether to use autoinc for an address involved in a memory op.
950 MODE is the mode of the accesses, REVERSE is true if we've decided to
951 perform the operation starting from the end, and LEN is the length of
952 the operation. Don't override an earlier decision to set m_auto. */
954 void
955 pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
956 HOST_WIDE_INT len)
958 if (m_auto || m_obj == NULL_RTX)
959 return;
961 bool use_predec = (m_is_load
962 ? USE_LOAD_PRE_DECREMENT (mode)
963 : USE_STORE_PRE_DECREMENT (mode));
964 bool use_postinc = (m_is_load
965 ? USE_LOAD_POST_INCREMENT (mode)
966 : USE_STORE_POST_INCREMENT (mode));
967 machine_mode addr_mode = get_address_mode (m_obj);
969 if (use_predec && reverse)
971 m_addr = copy_to_mode_reg (addr_mode,
972 plus_constant (addr_mode,
973 m_addr, len));
974 m_auto = true;
975 m_explicit_inc = -1;
977 else if (use_postinc && !reverse)
979 m_addr = copy_to_mode_reg (addr_mode, m_addr);
980 m_auto = true;
981 m_explicit_inc = 1;
983 else if (CONSTANT_P (m_addr))
984 m_addr = copy_to_mode_reg (addr_mode, m_addr);
987 /* Adjust the address to refer to the data at OFFSET in MODE. If we
988 are using autoincrement for this address, we don't add the offset,
989 but we still modify the MEM's properties. */
992 pieces_addr::adjust (scalar_int_mode mode, HOST_WIDE_INT offset)
994 if (m_constfn)
995 return m_constfn (m_cfndata, offset, mode);
996 if (m_obj == NULL_RTX)
997 return NULL_RTX;
998 if (m_auto)
999 return adjust_automodify_address (m_obj, mode, m_addr, offset);
1000 else
1001 return adjust_address (m_obj, mode, offset);
1004 /* Emit an add instruction to increment the address by SIZE. */
1006 void
1007 pieces_addr::increment_address (HOST_WIDE_INT size)
1009 rtx amount = gen_int_mode (size, GET_MODE (m_addr));
1010 emit_insn (gen_add2_insn (m_addr, amount));
1013 /* If we are supposed to decrement the address after each access, emit code
1014 to do so now. Increment by SIZE (which has should have the correct sign
1015 already). */
1017 void
1018 pieces_addr::maybe_predec (HOST_WIDE_INT size)
1020 if (m_explicit_inc >= 0)
1021 return;
1022 gcc_assert (HAVE_PRE_DECREMENT);
1023 increment_address (size);
1026 /* If we are supposed to decrement the address after each access, emit code
1027 to do so now. Increment by SIZE. */
1029 void
1030 pieces_addr::maybe_postinc (HOST_WIDE_INT size)
1032 if (m_explicit_inc <= 0)
1033 return;
1034 gcc_assert (HAVE_POST_INCREMENT);
1035 increment_address (size);
1038 /* This structure is used by do_op_by_pieces to describe the operation
1039 to be performed. */
1041 class op_by_pieces_d
1043 protected:
1044 pieces_addr m_to, m_from;
1045 unsigned HOST_WIDE_INT m_len;
1046 HOST_WIDE_INT m_offset;
1047 unsigned int m_align;
1048 unsigned int m_max_size;
1049 bool m_reverse;
1051 /* Virtual functions, overriden by derived classes for the specific
1052 operation. */
1053 virtual void generate (rtx, rtx, machine_mode) = 0;
1054 virtual bool prepare_mode (machine_mode, unsigned int) = 0;
1055 virtual void finish_mode (machine_mode)
1059 public:
1060 op_by_pieces_d (rtx, bool, rtx, bool, by_pieces_constfn, void *,
1061 unsigned HOST_WIDE_INT, unsigned int);
1062 void run ();
1065 /* The constructor for an op_by_pieces_d structure. We require two
1066 objects named TO and FROM, which are identified as loads or stores
1067 by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
1068 and its associated FROM_CFN_DATA can be used to replace loads with
1069 constant values. LEN describes the length of the operation. */
1071 op_by_pieces_d::op_by_pieces_d (rtx to, bool to_load,
1072 rtx from, bool from_load,
1073 by_pieces_constfn from_cfn,
1074 void *from_cfn_data,
1075 unsigned HOST_WIDE_INT len,
1076 unsigned int align)
1077 : m_to (to, to_load, NULL, NULL),
1078 m_from (from, from_load, from_cfn, from_cfn_data),
1079 m_len (len), m_max_size (MOVE_MAX_PIECES + 1)
1081 int toi = m_to.get_addr_inc ();
1082 int fromi = m_from.get_addr_inc ();
1083 if (toi >= 0 && fromi >= 0)
1084 m_reverse = false;
1085 else if (toi <= 0 && fromi <= 0)
1086 m_reverse = true;
1087 else
1088 gcc_unreachable ();
1090 m_offset = m_reverse ? len : 0;
1091 align = MIN (to ? MEM_ALIGN (to) : align,
1092 from ? MEM_ALIGN (from) : align);
1094 /* If copying requires more than two move insns,
1095 copy addresses to registers (to make displacements shorter)
1096 and use post-increment if available. */
1097 if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
1099 /* Find the mode of the largest comparison. */
1100 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1102 m_from.decide_autoinc (mode, m_reverse, len);
1103 m_to.decide_autoinc (mode, m_reverse, len);
1106 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1107 m_align = align;
1110 /* This function contains the main loop used for expanding a block
1111 operation. First move what we can in the largest integer mode,
1112 then go to successively smaller modes. For every access, call
1113 GENFUN with the two operands and the EXTRA_DATA. */
1115 void
1116 op_by_pieces_d::run ()
1118 while (m_max_size > 1 && m_len > 0)
1120 scalar_int_mode mode = widest_int_mode_for_size (m_max_size);
1122 if (prepare_mode (mode, m_align))
1124 unsigned int size = GET_MODE_SIZE (mode);
1125 rtx to1 = NULL_RTX, from1;
1127 while (m_len >= size)
1129 if (m_reverse)
1130 m_offset -= size;
1132 to1 = m_to.adjust (mode, m_offset);
1133 from1 = m_from.adjust (mode, m_offset);
1135 m_to.maybe_predec (-(HOST_WIDE_INT)size);
1136 m_from.maybe_predec (-(HOST_WIDE_INT)size);
1138 generate (to1, from1, mode);
1140 m_to.maybe_postinc (size);
1141 m_from.maybe_postinc (size);
1143 if (!m_reverse)
1144 m_offset += size;
1146 m_len -= size;
1149 finish_mode (mode);
1152 m_max_size = GET_MODE_SIZE (mode);
1155 /* The code above should have handled everything. */
1156 gcc_assert (!m_len);
1159 /* Derived class from op_by_pieces_d, providing support for block move
1160 operations. */
1162 class move_by_pieces_d : public op_by_pieces_d
1164 insn_gen_fn m_gen_fun;
1165 void generate (rtx, rtx, machine_mode);
1166 bool prepare_mode (machine_mode, unsigned int);
1168 public:
1169 move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1170 unsigned int align)
1171 : op_by_pieces_d (to, false, from, true, NULL, NULL, len, align)
1174 rtx finish_retmode (memop_ret);
1177 /* Return true if MODE can be used for a set of copies, given an
1178 alignment ALIGN. Prepare whatever data is necessary for later
1179 calls to generate. */
1181 bool
1182 move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1184 insn_code icode = optab_handler (mov_optab, mode);
1185 m_gen_fun = GEN_FCN (icode);
1186 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1189 /* A callback used when iterating for a compare_by_pieces_operation.
1190 OP0 and OP1 are the values that have been loaded and should be
1191 compared in MODE. If OP0 is NULL, this means we should generate a
1192 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1193 gen function that should be used to generate the mode. */
1195 void
1196 move_by_pieces_d::generate (rtx op0, rtx op1,
1197 machine_mode mode ATTRIBUTE_UNUSED)
1199 #ifdef PUSH_ROUNDING
1200 if (op0 == NULL_RTX)
1202 emit_single_push_insn (mode, op1, NULL);
1203 return;
1205 #endif
1206 emit_insn (m_gen_fun (op0, op1));
1209 /* Perform the final adjustment at the end of a string to obtain the
1210 correct return value for the block operation.
1211 Return value is based on RETMODE argument. */
1214 move_by_pieces_d::finish_retmode (memop_ret retmode)
1216 gcc_assert (!m_reverse);
1217 if (retmode == RETURN_END_MINUS_ONE)
1219 m_to.maybe_postinc (-1);
1220 --m_offset;
1222 return m_to.adjust (QImode, m_offset);
1225 /* Generate several move instructions to copy LEN bytes from block FROM to
1226 block TO. (These are MEM rtx's with BLKmode).
1228 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1229 used to push FROM to the stack.
1231 ALIGN is maximum stack alignment we can assume.
1233 Return value is based on RETMODE argument. */
1236 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
1237 unsigned int align, memop_ret retmode)
1239 #ifndef PUSH_ROUNDING
1240 if (to == NULL)
1241 gcc_unreachable ();
1242 #endif
1244 move_by_pieces_d data (to, from, len, align);
1246 data.run ();
1248 if (retmode != RETURN_BEGIN)
1249 return data.finish_retmode (retmode);
1250 else
1251 return to;
1254 /* Derived class from op_by_pieces_d, providing support for block move
1255 operations. */
1257 class store_by_pieces_d : public op_by_pieces_d
1259 insn_gen_fn m_gen_fun;
1260 void generate (rtx, rtx, machine_mode);
1261 bool prepare_mode (machine_mode, unsigned int);
1263 public:
1264 store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
1265 unsigned HOST_WIDE_INT len, unsigned int align)
1266 : op_by_pieces_d (to, false, NULL_RTX, true, cfn, cfn_data, len, align)
1269 rtx finish_retmode (memop_ret);
1272 /* Return true if MODE can be used for a set of stores, given an
1273 alignment ALIGN. Prepare whatever data is necessary for later
1274 calls to generate. */
1276 bool
1277 store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1279 insn_code icode = optab_handler (mov_optab, mode);
1280 m_gen_fun = GEN_FCN (icode);
1281 return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
1284 /* A callback used when iterating for a store_by_pieces_operation.
1285 OP0 and OP1 are the values that have been loaded and should be
1286 compared in MODE. If OP0 is NULL, this means we should generate a
1287 push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
1288 gen function that should be used to generate the mode. */
1290 void
1291 store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
1293 emit_insn (m_gen_fun (op0, op1));
1296 /* Perform the final adjustment at the end of a string to obtain the
1297 correct return value for the block operation.
1298 Return value is based on RETMODE argument. */
1301 store_by_pieces_d::finish_retmode (memop_ret retmode)
1303 gcc_assert (!m_reverse);
1304 if (retmode == RETURN_END_MINUS_ONE)
1306 m_to.maybe_postinc (-1);
1307 --m_offset;
1309 return m_to.adjust (QImode, m_offset);
1312 /* Determine whether the LEN bytes generated by CONSTFUN can be
1313 stored to memory using several move instructions. CONSTFUNDATA is
1314 a pointer which will be passed as argument in every CONSTFUN call.
1315 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1316 a memset operation and false if it's a copy of a constant string.
1317 Return nonzero if a call to store_by_pieces should succeed. */
1320 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1321 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1322 void *constfundata, unsigned int align, bool memsetp)
1324 unsigned HOST_WIDE_INT l;
1325 unsigned int max_size;
1326 HOST_WIDE_INT offset = 0;
1327 enum insn_code icode;
1328 int reverse;
1329 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
1330 rtx cst ATTRIBUTE_UNUSED;
1332 if (len == 0)
1333 return 1;
1335 if (!targetm.use_by_pieces_infrastructure_p (len, align,
1336 memsetp
1337 ? SET_BY_PIECES
1338 : STORE_BY_PIECES,
1339 optimize_insn_for_speed_p ()))
1340 return 0;
1342 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
1344 /* We would first store what we can in the largest integer mode, then go to
1345 successively smaller modes. */
1347 for (reverse = 0;
1348 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
1349 reverse++)
1351 l = len;
1352 max_size = STORE_MAX_PIECES + 1;
1353 while (max_size > 1 && l > 0)
1355 scalar_int_mode mode = widest_int_mode_for_size (max_size);
1357 icode = optab_handler (mov_optab, mode);
1358 if (icode != CODE_FOR_nothing
1359 && align >= GET_MODE_ALIGNMENT (mode))
1361 unsigned int size = GET_MODE_SIZE (mode);
1363 while (l >= size)
1365 if (reverse)
1366 offset -= size;
1368 cst = (*constfun) (constfundata, offset, mode);
1369 if (!targetm.legitimate_constant_p (mode, cst))
1370 return 0;
1372 if (!reverse)
1373 offset += size;
1375 l -= size;
1379 max_size = GET_MODE_SIZE (mode);
1382 /* The code above should have handled everything. */
1383 gcc_assert (!l);
1386 return 1;
1389 /* Generate several move instructions to store LEN bytes generated by
1390 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
1391 pointer which will be passed as argument in every CONSTFUN call.
1392 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
1393 a memset operation and false if it's a copy of a constant string.
1394 Return value is based on RETMODE argument. */
1397 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
1398 rtx (*constfun) (void *, HOST_WIDE_INT, scalar_int_mode),
1399 void *constfundata, unsigned int align, bool memsetp,
1400 memop_ret retmode)
1402 if (len == 0)
1404 gcc_assert (retmode != RETURN_END_MINUS_ONE);
1405 return to;
1408 gcc_assert (targetm.use_by_pieces_infrastructure_p
1409 (len, align,
1410 memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
1411 optimize_insn_for_speed_p ()));
1413 store_by_pieces_d data (to, constfun, constfundata, len, align);
1414 data.run ();
1416 if (retmode != RETURN_BEGIN)
1417 return data.finish_retmode (retmode);
1418 else
1419 return to;
1422 /* Callback routine for clear_by_pieces.
1423 Return const0_rtx unconditionally. */
1425 static rtx
1426 clear_by_pieces_1 (void *, HOST_WIDE_INT, scalar_int_mode)
1428 return const0_rtx;
1431 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
1432 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
1434 static void
1435 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
1437 if (len == 0)
1438 return;
1440 store_by_pieces_d data (to, clear_by_pieces_1, NULL, len, align);
1441 data.run ();
1444 /* Context used by compare_by_pieces_genfn. It stores the fail label
1445 to jump to in case of miscomparison, and for branch ratios greater than 1,
1446 it stores an accumulator and the current and maximum counts before
1447 emitting another branch. */
1449 class compare_by_pieces_d : public op_by_pieces_d
1451 rtx_code_label *m_fail_label;
1452 rtx m_accumulator;
1453 int m_count, m_batch;
1455 void generate (rtx, rtx, machine_mode);
1456 bool prepare_mode (machine_mode, unsigned int);
1457 void finish_mode (machine_mode);
1458 public:
1459 compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
1460 void *op1_cfn_data, HOST_WIDE_INT len, int align,
1461 rtx_code_label *fail_label)
1462 : op_by_pieces_d (op0, true, op1, true, op1_cfn, op1_cfn_data, len, align)
1464 m_fail_label = fail_label;
1468 /* A callback used when iterating for a compare_by_pieces_operation.
1469 OP0 and OP1 are the values that have been loaded and should be
1470 compared in MODE. DATA holds a pointer to the compare_by_pieces_data
1471 context structure. */
1473 void
1474 compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
1476 if (m_batch > 1)
1478 rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
1479 true, OPTAB_LIB_WIDEN);
1480 if (m_count != 0)
1481 temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
1482 true, OPTAB_LIB_WIDEN);
1483 m_accumulator = temp;
1485 if (++m_count < m_batch)
1486 return;
1488 m_count = 0;
1489 op0 = m_accumulator;
1490 op1 = const0_rtx;
1491 m_accumulator = NULL_RTX;
1493 do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
1494 m_fail_label, profile_probability::uninitialized ());
1497 /* Return true if MODE can be used for a set of moves and comparisons,
1498 given an alignment ALIGN. Prepare whatever data is necessary for
1499 later calls to generate. */
1501 bool
1502 compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
1504 insn_code icode = optab_handler (mov_optab, mode);
1505 if (icode == CODE_FOR_nothing
1506 || align < GET_MODE_ALIGNMENT (mode)
1507 || !can_compare_p (EQ, mode, ccp_jump))
1508 return false;
1509 m_batch = targetm.compare_by_pieces_branch_ratio (mode);
1510 if (m_batch < 0)
1511 return false;
1512 m_accumulator = NULL_RTX;
1513 m_count = 0;
1514 return true;
1517 /* Called after expanding a series of comparisons in MODE. If we have
1518 accumulated results for which we haven't emitted a branch yet, do
1519 so now. */
1521 void
1522 compare_by_pieces_d::finish_mode (machine_mode mode)
1524 if (m_accumulator != NULL_RTX)
1525 do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
1526 NULL_RTX, NULL, m_fail_label,
1527 profile_probability::uninitialized ());
1530 /* Generate several move instructions to compare LEN bytes from blocks
1531 ARG0 and ARG1. (These are MEM rtx's with BLKmode).
1533 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
1534 used to push FROM to the stack.
1536 ALIGN is maximum stack alignment we can assume.
1538 Optionally, the caller can pass a constfn and associated data in A1_CFN
1539 and A1_CFN_DATA. describing that the second operand being compared is a
1540 known constant and how to obtain its data. */
1542 static rtx
1543 compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
1544 rtx target, unsigned int align,
1545 by_pieces_constfn a1_cfn, void *a1_cfn_data)
1547 rtx_code_label *fail_label = gen_label_rtx ();
1548 rtx_code_label *end_label = gen_label_rtx ();
1550 if (target == NULL_RTX
1551 || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
1552 target = gen_reg_rtx (TYPE_MODE (integer_type_node));
1554 compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
1555 fail_label);
1557 data.run ();
1559 emit_move_insn (target, const0_rtx);
1560 emit_jump (end_label);
1561 emit_barrier ();
1562 emit_label (fail_label);
1563 emit_move_insn (target, const1_rtx);
1564 emit_label (end_label);
1566 return target;
1569 /* Emit code to move a block Y to a block X. This may be done with
1570 string-move instructions, with multiple scalar move instructions,
1571 or with a library call.
1573 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1574 SIZE is an rtx that says how long they are.
1575 ALIGN is the maximum alignment we can assume they have.
1576 METHOD describes what kind of copy this is, and what mechanisms may be used.
1577 MIN_SIZE is the minimal size of block to move
1578 MAX_SIZE is the maximal size of block to move, if it cannot be represented
1579 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1581 Return the address of the new block, if memcpy is called and returns it,
1582 0 otherwise. */
1585 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1586 unsigned int expected_align, HOST_WIDE_INT expected_size,
1587 unsigned HOST_WIDE_INT min_size,
1588 unsigned HOST_WIDE_INT max_size,
1589 unsigned HOST_WIDE_INT probable_max_size,
1590 bool bail_out_libcall, bool *is_move_done,
1591 bool might_overlap)
1593 int may_use_call;
1594 rtx retval = 0;
1595 unsigned int align;
1597 if (is_move_done)
1598 *is_move_done = true;
1600 gcc_assert (size);
1601 if (CONST_INT_P (size) && INTVAL (size) == 0)
1602 return 0;
1604 switch (method)
1606 case BLOCK_OP_NORMAL:
1607 case BLOCK_OP_TAILCALL:
1608 may_use_call = 1;
1609 break;
1611 case BLOCK_OP_CALL_PARM:
1612 may_use_call = block_move_libcall_safe_for_call_parm ();
1614 /* Make inhibit_defer_pop nonzero around the library call
1615 to force it to pop the arguments right away. */
1616 NO_DEFER_POP;
1617 break;
1619 case BLOCK_OP_NO_LIBCALL:
1620 may_use_call = 0;
1621 break;
1623 case BLOCK_OP_NO_LIBCALL_RET:
1624 may_use_call = -1;
1625 break;
1627 default:
1628 gcc_unreachable ();
1631 gcc_assert (MEM_P (x) && MEM_P (y));
1632 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1633 gcc_assert (align >= BITS_PER_UNIT);
1635 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1636 block copy is more efficient for other large modes, e.g. DCmode. */
1637 x = adjust_address (x, BLKmode, 0);
1638 y = adjust_address (y, BLKmode, 0);
1640 /* If source and destination are the same, no need to copy anything. */
1641 if (rtx_equal_p (x, y)
1642 && !MEM_VOLATILE_P (x)
1643 && !MEM_VOLATILE_P (y))
1644 return 0;
1646 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1647 can be incorrect is coming from __builtin_memcpy. */
1648 poly_int64 const_size;
1649 if (poly_int_rtx_p (size, &const_size))
1651 x = shallow_copy_rtx (x);
1652 y = shallow_copy_rtx (y);
1653 set_mem_size (x, const_size);
1654 set_mem_size (y, const_size);
1657 bool pieces_ok = CONST_INT_P (size)
1658 && can_move_by_pieces (INTVAL (size), align);
1659 bool pattern_ok = false;
1661 if (!pieces_ok || might_overlap)
1663 pattern_ok
1664 = emit_block_move_via_pattern (x, y, size, align,
1665 expected_align, expected_size,
1666 min_size, max_size, probable_max_size,
1667 might_overlap);
1668 if (!pattern_ok && might_overlap)
1670 /* Do not try any of the other methods below as they are not safe
1671 for overlapping moves. */
1672 *is_move_done = false;
1673 return retval;
1677 if (pattern_ok)
1679 else if (pieces_ok)
1680 move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
1681 else if (may_use_call && !might_overlap
1682 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1683 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1685 if (bail_out_libcall)
1687 if (is_move_done)
1688 *is_move_done = false;
1689 return retval;
1692 if (may_use_call < 0)
1693 return pc_rtx;
1695 retval = emit_block_copy_via_libcall (x, y, size,
1696 method == BLOCK_OP_TAILCALL);
1698 else if (might_overlap)
1699 *is_move_done = false;
1700 else
1701 emit_block_move_via_loop (x, y, size, align);
1703 if (method == BLOCK_OP_CALL_PARM)
1704 OK_DEFER_POP;
1706 return retval;
1710 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1712 unsigned HOST_WIDE_INT max, min = 0;
1713 if (GET_CODE (size) == CONST_INT)
1714 min = max = UINTVAL (size);
1715 else
1716 max = GET_MODE_MASK (GET_MODE (size));
1717 return emit_block_move_hints (x, y, size, method, 0, -1,
1718 min, max, max);
1721 /* A subroutine of emit_block_move. Returns true if calling the
1722 block move libcall will not clobber any parameters which may have
1723 already been placed on the stack. */
1725 static bool
1726 block_move_libcall_safe_for_call_parm (void)
1728 tree fn;
1730 /* If arguments are pushed on the stack, then they're safe. */
1731 if (PUSH_ARGS)
1732 return true;
1734 /* If registers go on the stack anyway, any argument is sure to clobber
1735 an outgoing argument. */
1736 #if defined (REG_PARM_STACK_SPACE)
1737 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1738 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1739 depend on its argument. */
1740 (void) fn;
1741 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1742 && REG_PARM_STACK_SPACE (fn) != 0)
1743 return false;
1744 #endif
1746 /* If any argument goes in memory, then it might clobber an outgoing
1747 argument. */
1749 CUMULATIVE_ARGS args_so_far_v;
1750 cumulative_args_t args_so_far;
1751 tree arg;
1753 fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
1754 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1755 args_so_far = pack_cumulative_args (&args_so_far_v);
1757 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1758 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1760 machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1761 function_arg_info arg_info (mode, /*named=*/true);
1762 rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
1763 if (!tmp || !REG_P (tmp))
1764 return false;
1765 if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
1766 return false;
1767 targetm.calls.function_arg_advance (args_so_far, arg_info);
1770 return true;
1773 /* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
1774 return true if successful.
1776 X is the destination of the copy or move.
1777 Y is the source of the copy or move.
1778 SIZE is the size of the block to be moved.
1780 MIGHT_OVERLAP indicates this originated with expansion of a
1781 builtin_memmove() and the source and destination blocks may
1782 overlap.
1785 static bool
1786 emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
1787 unsigned int expected_align,
1788 HOST_WIDE_INT expected_size,
1789 unsigned HOST_WIDE_INT min_size,
1790 unsigned HOST_WIDE_INT max_size,
1791 unsigned HOST_WIDE_INT probable_max_size,
1792 bool might_overlap)
1794 if (expected_align < align)
1795 expected_align = align;
1796 if (expected_size != -1)
1798 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1799 expected_size = probable_max_size;
1800 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1801 expected_size = min_size;
1804 /* Since this is a move insn, we don't care about volatility. */
1805 temporary_volatile_ok v (true);
1807 /* Try the most limited insn first, because there's no point
1808 including more than one in the machine description unless
1809 the more limited one has some advantage. */
1811 opt_scalar_int_mode mode_iter;
1812 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
1814 scalar_int_mode mode = mode_iter.require ();
1815 enum insn_code code;
1816 if (might_overlap)
1817 code = direct_optab_handler (movmem_optab, mode);
1818 else
1819 code = direct_optab_handler (cpymem_optab, mode);
1821 if (code != CODE_FOR_nothing
1822 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1823 here because if SIZE is less than the mode mask, as it is
1824 returned by the macro, it will definitely be less than the
1825 actual mode mask. Since SIZE is within the Pmode address
1826 space, we limit MODE to Pmode. */
1827 && ((CONST_INT_P (size)
1828 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1829 <= (GET_MODE_MASK (mode) >> 1)))
1830 || max_size <= (GET_MODE_MASK (mode) >> 1)
1831 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1833 class expand_operand ops[9];
1834 unsigned int nops;
1836 /* ??? When called via emit_block_move_for_call, it'd be
1837 nice if there were some way to inform the backend, so
1838 that it doesn't fail the expansion because it thinks
1839 emitting the libcall would be more efficient. */
1840 nops = insn_data[(int) code].n_generator_args;
1841 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1843 create_fixed_operand (&ops[0], x);
1844 create_fixed_operand (&ops[1], y);
1845 /* The check above guarantees that this size conversion is valid. */
1846 create_convert_operand_to (&ops[2], size, mode, true);
1847 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1848 if (nops >= 6)
1850 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1851 create_integer_operand (&ops[5], expected_size);
1853 if (nops >= 8)
1855 create_integer_operand (&ops[6], min_size);
1856 /* If we cannot represent the maximal size,
1857 make parameter NULL. */
1858 if ((HOST_WIDE_INT) max_size != -1)
1859 create_integer_operand (&ops[7], max_size);
1860 else
1861 create_fixed_operand (&ops[7], NULL);
1863 if (nops == 9)
1865 /* If we cannot represent the maximal size,
1866 make parameter NULL. */
1867 if ((HOST_WIDE_INT) probable_max_size != -1)
1868 create_integer_operand (&ops[8], probable_max_size);
1869 else
1870 create_fixed_operand (&ops[8], NULL);
1872 if (maybe_expand_insn (code, nops, ops))
1873 return true;
1877 return false;
1880 /* A subroutine of emit_block_move. Copy the data via an explicit
1881 loop. This is used only when libcalls are forbidden. */
1882 /* ??? It'd be nice to copy in hunks larger than QImode. */
1884 static void
1885 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1886 unsigned int align ATTRIBUTE_UNUSED)
1888 rtx_code_label *cmp_label, *top_label;
1889 rtx iter, x_addr, y_addr, tmp;
1890 machine_mode x_addr_mode = get_address_mode (x);
1891 machine_mode y_addr_mode = get_address_mode (y);
1892 machine_mode iter_mode;
1894 iter_mode = GET_MODE (size);
1895 if (iter_mode == VOIDmode)
1896 iter_mode = word_mode;
1898 top_label = gen_label_rtx ();
1899 cmp_label = gen_label_rtx ();
1900 iter = gen_reg_rtx (iter_mode);
1902 emit_move_insn (iter, const0_rtx);
1904 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1905 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1906 do_pending_stack_adjust ();
1908 emit_jump (cmp_label);
1909 emit_label (top_label);
1911 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1912 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1914 if (x_addr_mode != y_addr_mode)
1915 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1916 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1918 x = change_address (x, QImode, x_addr);
1919 y = change_address (y, QImode, y_addr);
1921 emit_move_insn (x, y);
1923 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1924 true, OPTAB_LIB_WIDEN);
1925 if (tmp != iter)
1926 emit_move_insn (iter, tmp);
1928 emit_label (cmp_label);
1930 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1931 true, top_label,
1932 profile_probability::guessed_always ()
1933 .apply_scale (9, 10));
1936 /* Expand a call to memcpy or memmove or memcmp, and return the result.
1937 TAILCALL is true if this is a tail call. */
1940 emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
1941 rtx size, bool tailcall)
1943 rtx dst_addr, src_addr;
1944 tree call_expr, dst_tree, src_tree, size_tree;
1945 machine_mode size_mode;
1947 /* Since dst and src are passed to a libcall, mark the corresponding
1948 tree EXPR as addressable. */
1949 tree dst_expr = MEM_EXPR (dst);
1950 tree src_expr = MEM_EXPR (src);
1951 if (dst_expr)
1952 mark_addressable (dst_expr);
1953 if (src_expr)
1954 mark_addressable (src_expr);
1956 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1957 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1958 dst_tree = make_tree (ptr_type_node, dst_addr);
1960 src_addr = copy_addr_to_reg (XEXP (src, 0));
1961 src_addr = convert_memory_address (ptr_mode, src_addr);
1962 src_tree = make_tree (ptr_type_node, src_addr);
1964 size_mode = TYPE_MODE (sizetype);
1965 size = convert_to_mode (size_mode, size, 1);
1966 size = copy_to_mode_reg (size_mode, size);
1967 size_tree = make_tree (sizetype, size);
1969 /* It is incorrect to use the libcall calling conventions for calls to
1970 memcpy/memmove/memcmp because they can be provided by the user. */
1971 tree fn = builtin_decl_implicit (fncode);
1972 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1973 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1975 return expand_call (call_expr, NULL_RTX, false);
1978 /* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
1979 ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
1980 otherwise return null. */
1983 expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
1984 rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
1985 HOST_WIDE_INT align)
1987 machine_mode insn_mode = insn_data[icode].operand[0].mode;
1989 if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
1990 target = NULL_RTX;
1992 class expand_operand ops[5];
1993 create_output_operand (&ops[0], target, insn_mode);
1994 create_fixed_operand (&ops[1], arg1_rtx);
1995 create_fixed_operand (&ops[2], arg2_rtx);
1996 create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
1997 TYPE_UNSIGNED (arg3_type));
1998 create_integer_operand (&ops[4], align);
1999 if (maybe_expand_insn (icode, 5, ops))
2000 return ops[0].value;
2001 return NULL_RTX;
2004 /* Expand a block compare between X and Y with length LEN using the
2005 cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
2006 of the expression that was used to calculate the length. ALIGN
2007 gives the known minimum common alignment. */
2009 static rtx
2010 emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
2011 unsigned align)
2013 /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
2014 implementing memcmp because it will stop if it encounters two
2015 zero bytes. */
2016 insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
2018 if (icode == CODE_FOR_nothing)
2019 return NULL_RTX;
2021 return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
2024 /* Emit code to compare a block Y to a block X. This may be done with
2025 string-compare instructions, with multiple scalar instructions,
2026 or with a library call.
2028 Both X and Y must be MEM rtx's. LEN is an rtx that says how long
2029 they are. LEN_TYPE is the type of the expression that was used to
2030 calculate it.
2032 If EQUALITY_ONLY is true, it means we don't have to return the tri-state
2033 value of a normal memcmp call, instead we can just compare for equality.
2034 If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
2035 returning NULL_RTX.
2037 Optionally, the caller can pass a constfn and associated data in Y_CFN
2038 and Y_CFN_DATA. describing that the second operand being compared is a
2039 known constant and how to obtain its data.
2040 Return the result of the comparison, or NULL_RTX if we failed to
2041 perform the operation. */
2044 emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
2045 bool equality_only, by_pieces_constfn y_cfn,
2046 void *y_cfndata)
2048 rtx result = 0;
2050 if (CONST_INT_P (len) && INTVAL (len) == 0)
2051 return const0_rtx;
2053 gcc_assert (MEM_P (x) && MEM_P (y));
2054 unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
2055 gcc_assert (align >= BITS_PER_UNIT);
2057 x = adjust_address (x, BLKmode, 0);
2058 y = adjust_address (y, BLKmode, 0);
2060 if (equality_only
2061 && CONST_INT_P (len)
2062 && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
2063 result = compare_by_pieces (x, y, INTVAL (len), target, align,
2064 y_cfn, y_cfndata);
2065 else
2066 result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
2068 return result;
2071 /* Copy all or part of a value X into registers starting at REGNO.
2072 The number of registers to be filled is NREGS. */
2074 void
2075 move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
2077 if (nregs == 0)
2078 return;
2080 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
2081 x = validize_mem (force_const_mem (mode, x));
2083 /* See if the machine can do this with a load multiple insn. */
2084 if (targetm.have_load_multiple ())
2086 rtx_insn *last = get_last_insn ();
2087 rtx first = gen_rtx_REG (word_mode, regno);
2088 if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
2089 GEN_INT (nregs)))
2091 emit_insn (pat);
2092 return;
2094 else
2095 delete_insns_since (last);
2098 for (int i = 0; i < nregs; i++)
2099 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
2100 operand_subword_force (x, i, mode));
2103 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
2104 The number of registers to be filled is NREGS. */
2106 void
2107 move_block_from_reg (int regno, rtx x, int nregs)
2109 if (nregs == 0)
2110 return;
2112 /* See if the machine can do this with a store multiple insn. */
2113 if (targetm.have_store_multiple ())
2115 rtx_insn *last = get_last_insn ();
2116 rtx first = gen_rtx_REG (word_mode, regno);
2117 if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
2118 GEN_INT (nregs)))
2120 emit_insn (pat);
2121 return;
2123 else
2124 delete_insns_since (last);
2127 for (int i = 0; i < nregs; i++)
2129 rtx tem = operand_subword (x, i, 1, BLKmode);
2131 gcc_assert (tem);
2133 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
2137 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
2138 ORIG, where ORIG is a non-consecutive group of registers represented by
2139 a PARALLEL. The clone is identical to the original except in that the
2140 original set of registers is replaced by a new set of pseudo registers.
2141 The new set has the same modes as the original set. */
2144 gen_group_rtx (rtx orig)
2146 int i, length;
2147 rtx *tmps;
2149 gcc_assert (GET_CODE (orig) == PARALLEL);
2151 length = XVECLEN (orig, 0);
2152 tmps = XALLOCAVEC (rtx, length);
2154 /* Skip a NULL entry in first slot. */
2155 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
2157 if (i)
2158 tmps[0] = 0;
2160 for (; i < length; i++)
2162 machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
2163 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
2165 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
2168 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
2171 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
2172 except that values are placed in TMPS[i], and must later be moved
2173 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
2175 static void
2176 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
2177 poly_int64 ssize)
2179 rtx src;
2180 int start, i;
2181 machine_mode m = GET_MODE (orig_src);
2183 gcc_assert (GET_CODE (dst) == PARALLEL);
2185 if (m != VOIDmode
2186 && !SCALAR_INT_MODE_P (m)
2187 && !MEM_P (orig_src)
2188 && GET_CODE (orig_src) != CONCAT)
2190 scalar_int_mode imode;
2191 if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
2193 src = gen_reg_rtx (imode);
2194 emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
2196 else
2198 src = assign_stack_temp (GET_MODE (orig_src), ssize);
2199 emit_move_insn (src, orig_src);
2201 emit_group_load_1 (tmps, dst, src, type, ssize);
2202 return;
2205 /* Check for a NULL entry, used to indicate that the parameter goes
2206 both on the stack and in registers. */
2207 if (XEXP (XVECEXP (dst, 0, 0), 0))
2208 start = 0;
2209 else
2210 start = 1;
2212 /* Process the pieces. */
2213 for (i = start; i < XVECLEN (dst, 0); i++)
2215 machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
2216 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
2217 poly_int64 bytelen = GET_MODE_SIZE (mode);
2218 poly_int64 shift = 0;
2220 /* Handle trailing fragments that run over the size of the struct.
2221 It's the target's responsibility to make sure that the fragment
2222 cannot be strictly smaller in some cases and strictly larger
2223 in others. */
2224 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2225 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2227 /* Arrange to shift the fragment to where it belongs.
2228 extract_bit_field loads to the lsb of the reg. */
2229 if (
2230 #ifdef BLOCK_REG_PADDING
2231 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
2232 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2233 #else
2234 BYTES_BIG_ENDIAN
2235 #endif
2237 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2238 bytelen = ssize - bytepos;
2239 gcc_assert (maybe_gt (bytelen, 0));
2242 /* If we won't be loading directly from memory, protect the real source
2243 from strange tricks we might play; but make sure that the source can
2244 be loaded directly into the destination. */
2245 src = orig_src;
2246 if (!MEM_P (orig_src)
2247 && (!CONSTANT_P (orig_src)
2248 || (GET_MODE (orig_src) != mode
2249 && GET_MODE (orig_src) != VOIDmode)))
2251 if (GET_MODE (orig_src) == VOIDmode)
2252 src = gen_reg_rtx (mode);
2253 else
2254 src = gen_reg_rtx (GET_MODE (orig_src));
2256 emit_move_insn (src, orig_src);
2259 /* Optimize the access just a bit. */
2260 if (MEM_P (src)
2261 && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
2262 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
2263 && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
2264 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2266 tmps[i] = gen_reg_rtx (mode);
2267 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
2269 else if (COMPLEX_MODE_P (mode)
2270 && GET_MODE (src) == mode
2271 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2272 /* Let emit_move_complex do the bulk of the work. */
2273 tmps[i] = src;
2274 else if (GET_CODE (src) == CONCAT)
2276 poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
2277 poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
2278 unsigned int elt;
2279 poly_int64 subpos;
2281 if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
2282 && known_le (subpos + bytelen, slen0))
2284 /* The following assumes that the concatenated objects all
2285 have the same size. In this case, a simple calculation
2286 can be used to determine the object and the bit field
2287 to be extracted. */
2288 tmps[i] = XEXP (src, elt);
2289 if (maybe_ne (subpos, 0)
2290 || maybe_ne (subpos + bytelen, slen0)
2291 || (!CONSTANT_P (tmps[i])
2292 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
2293 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
2294 subpos * BITS_PER_UNIT,
2295 1, NULL_RTX, mode, mode, false,
2296 NULL);
2298 else
2300 rtx mem;
2302 gcc_assert (known_eq (bytepos, 0));
2303 mem = assign_stack_temp (GET_MODE (src), slen);
2304 emit_move_insn (mem, src);
2305 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
2306 0, 1, NULL_RTX, mode, mode, false,
2307 NULL);
2310 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
2311 SIMD register, which is currently broken. While we get GCC
2312 to emit proper RTL for these cases, let's dump to memory. */
2313 else if (VECTOR_MODE_P (GET_MODE (dst))
2314 && REG_P (src))
2316 poly_uint64 slen = GET_MODE_SIZE (GET_MODE (src));
2317 rtx mem;
2319 mem = assign_stack_temp (GET_MODE (src), slen);
2320 emit_move_insn (mem, src);
2321 tmps[i] = adjust_address (mem, mode, bytepos);
2323 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
2324 && XVECLEN (dst, 0) > 1)
2325 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
2326 else if (CONSTANT_P (src))
2328 if (known_eq (bytelen, ssize))
2329 tmps[i] = src;
2330 else
2332 rtx first, second;
2334 /* TODO: const_wide_int can have sizes other than this... */
2335 gcc_assert (known_eq (2 * bytelen, ssize));
2336 split_double (src, &first, &second);
2337 if (i)
2338 tmps[i] = second;
2339 else
2340 tmps[i] = first;
2343 else if (REG_P (src) && GET_MODE (src) == mode)
2344 tmps[i] = src;
2345 else
2346 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
2347 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
2348 mode, mode, false, NULL);
2350 if (maybe_ne (shift, 0))
2351 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
2352 shift, tmps[i], 0);
2356 /* Emit code to move a block SRC of type TYPE to a block DST,
2357 where DST is non-consecutive registers represented by a PARALLEL.
2358 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
2359 if not known. */
2361 void
2362 emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
2364 rtx *tmps;
2365 int i;
2367 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
2368 emit_group_load_1 (tmps, dst, src, type, ssize);
2370 /* Copy the extracted pieces into the proper (probable) hard regs. */
2371 for (i = 0; i < XVECLEN (dst, 0); i++)
2373 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
2374 if (d == NULL)
2375 continue;
2376 emit_move_insn (d, tmps[i]);
2380 /* Similar, but load SRC into new pseudos in a format that looks like
2381 PARALLEL. This can later be fed to emit_group_move to get things
2382 in the right place. */
2385 emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
2387 rtvec vec;
2388 int i;
2390 vec = rtvec_alloc (XVECLEN (parallel, 0));
2391 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
2393 /* Convert the vector to look just like the original PARALLEL, except
2394 with the computed values. */
2395 for (i = 0; i < XVECLEN (parallel, 0); i++)
2397 rtx e = XVECEXP (parallel, 0, i);
2398 rtx d = XEXP (e, 0);
2400 if (d)
2402 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
2403 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
2405 RTVEC_ELT (vec, i) = e;
2408 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
2411 /* Emit code to move a block SRC to block DST, where SRC and DST are
2412 non-consecutive groups of registers, each represented by a PARALLEL. */
2414 void
2415 emit_group_move (rtx dst, rtx src)
2417 int i;
2419 gcc_assert (GET_CODE (src) == PARALLEL
2420 && GET_CODE (dst) == PARALLEL
2421 && XVECLEN (src, 0) == XVECLEN (dst, 0));
2423 /* Skip first entry if NULL. */
2424 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
2425 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
2426 XEXP (XVECEXP (src, 0, i), 0));
2429 /* Move a group of registers represented by a PARALLEL into pseudos. */
2432 emit_group_move_into_temps (rtx src)
2434 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
2435 int i;
2437 for (i = 0; i < XVECLEN (src, 0); i++)
2439 rtx e = XVECEXP (src, 0, i);
2440 rtx d = XEXP (e, 0);
2442 if (d)
2443 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
2444 RTVEC_ELT (vec, i) = e;
2447 return gen_rtx_PARALLEL (GET_MODE (src), vec);
2450 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
2451 where SRC is non-consecutive registers represented by a PARALLEL.
2452 SSIZE represents the total size of block ORIG_DST, or -1 if not
2453 known. */
2455 void
2456 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
2457 poly_int64 ssize)
2459 rtx *tmps, dst;
2460 int start, finish, i;
2461 machine_mode m = GET_MODE (orig_dst);
2463 gcc_assert (GET_CODE (src) == PARALLEL);
2465 if (!SCALAR_INT_MODE_P (m)
2466 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
2468 scalar_int_mode imode;
2469 if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
2471 dst = gen_reg_rtx (imode);
2472 emit_group_store (dst, src, type, ssize);
2473 dst = gen_lowpart (GET_MODE (orig_dst), dst);
2475 else
2477 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
2478 emit_group_store (dst, src, type, ssize);
2480 emit_move_insn (orig_dst, dst);
2481 return;
2484 /* Check for a NULL entry, used to indicate that the parameter goes
2485 both on the stack and in registers. */
2486 if (XEXP (XVECEXP (src, 0, 0), 0))
2487 start = 0;
2488 else
2489 start = 1;
2490 finish = XVECLEN (src, 0);
2492 tmps = XALLOCAVEC (rtx, finish);
2494 /* Copy the (probable) hard regs into pseudos. */
2495 for (i = start; i < finish; i++)
2497 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
2498 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
2500 tmps[i] = gen_reg_rtx (GET_MODE (reg));
2501 emit_move_insn (tmps[i], reg);
2503 else
2504 tmps[i] = reg;
2507 /* If we won't be storing directly into memory, protect the real destination
2508 from strange tricks we might play. */
2509 dst = orig_dst;
2510 if (GET_CODE (dst) == PARALLEL)
2512 rtx temp;
2514 /* We can get a PARALLEL dst if there is a conditional expression in
2515 a return statement. In that case, the dst and src are the same,
2516 so no action is necessary. */
2517 if (rtx_equal_p (dst, src))
2518 return;
2520 /* It is unclear if we can ever reach here, but we may as well handle
2521 it. Allocate a temporary, and split this into a store/load to/from
2522 the temporary. */
2523 temp = assign_stack_temp (GET_MODE (dst), ssize);
2524 emit_group_store (temp, src, type, ssize);
2525 emit_group_load (dst, temp, type, ssize);
2526 return;
2528 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2530 machine_mode outer = GET_MODE (dst);
2531 machine_mode inner;
2532 poly_int64 bytepos;
2533 bool done = false;
2534 rtx temp;
2536 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2537 dst = gen_reg_rtx (outer);
2539 /* Make life a bit easier for combine. */
2540 /* If the first element of the vector is the low part
2541 of the destination mode, use a paradoxical subreg to
2542 initialize the destination. */
2543 if (start < finish)
2545 inner = GET_MODE (tmps[start]);
2546 bytepos = subreg_lowpart_offset (inner, outer);
2547 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
2548 bytepos))
2550 temp = simplify_gen_subreg (outer, tmps[start],
2551 inner, 0);
2552 if (temp)
2554 emit_move_insn (dst, temp);
2555 done = true;
2556 start++;
2561 /* If the first element wasn't the low part, try the last. */
2562 if (!done
2563 && start < finish - 1)
2565 inner = GET_MODE (tmps[finish - 1]);
2566 bytepos = subreg_lowpart_offset (inner, outer);
2567 if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
2568 finish - 1), 1)),
2569 bytepos))
2571 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2572 inner, 0);
2573 if (temp)
2575 emit_move_insn (dst, temp);
2576 done = true;
2577 finish--;
2582 /* Otherwise, simply initialize the result to zero. */
2583 if (!done)
2584 emit_move_insn (dst, CONST0_RTX (outer));
2587 /* Process the pieces. */
2588 for (i = start; i < finish; i++)
2590 poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
2591 machine_mode mode = GET_MODE (tmps[i]);
2592 poly_int64 bytelen = GET_MODE_SIZE (mode);
2593 poly_uint64 adj_bytelen;
2594 rtx dest = dst;
2596 /* Handle trailing fragments that run over the size of the struct.
2597 It's the target's responsibility to make sure that the fragment
2598 cannot be strictly smaller in some cases and strictly larger
2599 in others. */
2600 gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
2601 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2602 adj_bytelen = ssize - bytepos;
2603 else
2604 adj_bytelen = bytelen;
2606 if (GET_CODE (dst) == CONCAT)
2608 if (known_le (bytepos + adj_bytelen,
2609 GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2610 dest = XEXP (dst, 0);
2611 else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
2613 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2614 dest = XEXP (dst, 1);
2616 else
2618 machine_mode dest_mode = GET_MODE (dest);
2619 machine_mode tmp_mode = GET_MODE (tmps[i]);
2621 gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
2623 if (GET_MODE_ALIGNMENT (dest_mode)
2624 >= GET_MODE_ALIGNMENT (tmp_mode))
2626 dest = assign_stack_temp (dest_mode,
2627 GET_MODE_SIZE (dest_mode));
2628 emit_move_insn (adjust_address (dest,
2629 tmp_mode,
2630 bytepos),
2631 tmps[i]);
2632 dst = dest;
2634 else
2636 dest = assign_stack_temp (tmp_mode,
2637 GET_MODE_SIZE (tmp_mode));
2638 emit_move_insn (dest, tmps[i]);
2639 dst = adjust_address (dest, dest_mode, bytepos);
2641 break;
2645 /* Handle trailing fragments that run over the size of the struct. */
2646 if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
2648 /* store_bit_field always takes its value from the lsb.
2649 Move the fragment to the lsb if it's not already there. */
2650 if (
2651 #ifdef BLOCK_REG_PADDING
2652 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2653 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
2654 #else
2655 BYTES_BIG_ENDIAN
2656 #endif
2659 poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2660 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2661 shift, tmps[i], 0);
2664 /* Make sure not to write past the end of the struct. */
2665 store_bit_field (dest,
2666 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2667 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2668 VOIDmode, tmps[i], false);
2671 /* Optimize the access just a bit. */
2672 else if (MEM_P (dest)
2673 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
2674 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2675 && multiple_p (bytepos * BITS_PER_UNIT,
2676 GET_MODE_ALIGNMENT (mode))
2677 && known_eq (bytelen, GET_MODE_SIZE (mode)))
2678 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2680 else
2681 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2682 0, 0, mode, tmps[i], false);
2685 /* Copy from the pseudo into the (probable) hard reg. */
2686 if (orig_dst != dst)
2687 emit_move_insn (orig_dst, dst);
2690 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2691 of the value stored in X. */
2694 maybe_emit_group_store (rtx x, tree type)
2696 machine_mode mode = TYPE_MODE (type);
2697 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2698 if (GET_CODE (x) == PARALLEL)
2700 rtx result = gen_reg_rtx (mode);
2701 emit_group_store (result, x, type, int_size_in_bytes (type));
2702 return result;
2704 return x;
2707 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2709 This is used on targets that return BLKmode values in registers. */
2711 static void
2712 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2714 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2715 rtx src = NULL, dst = NULL;
2716 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2717 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2718 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2719 fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
2720 fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
2721 fixed_size_mode copy_mode;
2723 /* BLKmode registers created in the back-end shouldn't have survived. */
2724 gcc_assert (mode != BLKmode);
2726 /* If the structure doesn't take up a whole number of words, see whether
2727 SRCREG is padded on the left or on the right. If it's on the left,
2728 set PADDING_CORRECTION to the number of bits to skip.
2730 In most ABIs, the structure will be returned at the least end of
2731 the register, which translates to right padding on little-endian
2732 targets and left padding on big-endian targets. The opposite
2733 holds if the structure is returned at the most significant
2734 end of the register. */
2735 if (bytes % UNITS_PER_WORD != 0
2736 && (targetm.calls.return_in_msb (type)
2737 ? !BYTES_BIG_ENDIAN
2738 : BYTES_BIG_ENDIAN))
2739 padding_correction
2740 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2742 /* We can use a single move if we have an exact mode for the size. */
2743 else if (MEM_P (target)
2744 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
2745 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2746 && bytes == GET_MODE_SIZE (mode))
2748 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2749 return;
2752 /* And if we additionally have the same mode for a register. */
2753 else if (REG_P (target)
2754 && GET_MODE (target) == mode
2755 && bytes == GET_MODE_SIZE (mode))
2757 emit_move_insn (target, srcreg);
2758 return;
2761 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2762 into a new pseudo which is a full word. */
2763 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2765 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2766 mode = word_mode;
2769 /* Copy the structure BITSIZE bits at a time. If the target lives in
2770 memory, take care of not reading/writing past its end by selecting
2771 a copy mode suited to BITSIZE. This should always be possible given
2772 how it is computed.
2774 If the target lives in register, make sure not to select a copy mode
2775 larger than the mode of the register.
2777 We could probably emit more efficient code for machines which do not use
2778 strict alignment, but it doesn't seem worth the effort at the current
2779 time. */
2781 copy_mode = word_mode;
2782 if (MEM_P (target))
2784 opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
2785 if (mem_mode.exists ())
2786 copy_mode = mem_mode.require ();
2788 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2789 copy_mode = tmode;
2791 for (bitpos = 0, xbitpos = padding_correction;
2792 bitpos < bytes * BITS_PER_UNIT;
2793 bitpos += bitsize, xbitpos += bitsize)
2795 /* We need a new source operand each time xbitpos is on a
2796 word boundary and when xbitpos == padding_correction
2797 (the first time through). */
2798 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2799 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2801 /* We need a new destination operand each time bitpos is on
2802 a word boundary. */
2803 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2804 dst = target;
2805 else if (bitpos % BITS_PER_WORD == 0)
2806 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2808 /* Use xbitpos for the source extraction (right justified) and
2809 bitpos for the destination store (left justified). */
2810 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2811 extract_bit_field (src, bitsize,
2812 xbitpos % BITS_PER_WORD, 1,
2813 NULL_RTX, copy_mode, copy_mode,
2814 false, NULL),
2815 false);
2819 /* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
2820 register if it contains any data, otherwise return null.
2822 This is used on targets that return BLKmode values in registers. */
2825 copy_blkmode_to_reg (machine_mode mode_in, tree src)
2827 int i, n_regs;
2828 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2829 unsigned int bitsize;
2830 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2831 /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
2832 fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
2833 fixed_size_mode dst_mode;
2834 scalar_int_mode min_mode;
2836 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2838 x = expand_normal (src);
2840 bytes = arg_int_size_in_bytes (TREE_TYPE (src));
2841 if (bytes == 0)
2842 return NULL_RTX;
2844 /* If the structure doesn't take up a whole number of words, see
2845 whether the register value should be padded on the left or on
2846 the right. Set PADDING_CORRECTION to the number of padding
2847 bits needed on the left side.
2849 In most ABIs, the structure will be returned at the least end of
2850 the register, which translates to right padding on little-endian
2851 targets and left padding on big-endian targets. The opposite
2852 holds if the structure is returned at the most significant
2853 end of the register. */
2854 if (bytes % UNITS_PER_WORD != 0
2855 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2856 ? !BYTES_BIG_ENDIAN
2857 : BYTES_BIG_ENDIAN))
2858 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2859 * BITS_PER_UNIT));
2861 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2862 dst_words = XALLOCAVEC (rtx, n_regs);
2863 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2864 min_mode = smallest_int_mode_for_size (bitsize);
2866 /* Copy the structure BITSIZE bits at a time. */
2867 for (bitpos = 0, xbitpos = padding_correction;
2868 bitpos < bytes * BITS_PER_UNIT;
2869 bitpos += bitsize, xbitpos += bitsize)
2871 /* We need a new destination pseudo each time xbitpos is
2872 on a word boundary and when xbitpos == padding_correction
2873 (the first time through). */
2874 if (xbitpos % BITS_PER_WORD == 0
2875 || xbitpos == padding_correction)
2877 /* Generate an appropriate register. */
2878 dst_word = gen_reg_rtx (word_mode);
2879 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2881 /* Clear the destination before we move anything into it. */
2882 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2885 /* Find the largest integer mode that can be used to copy all or as
2886 many bits as possible of the structure if the target supports larger
2887 copies. There are too many corner cases here w.r.t to alignments on
2888 the read/writes. So if there is any padding just use single byte
2889 operations. */
2890 opt_scalar_int_mode mode_iter;
2891 if (padding_correction == 0 && !STRICT_ALIGNMENT)
2893 FOR_EACH_MODE_FROM (mode_iter, min_mode)
2895 unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
2896 if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
2897 && msize <= BITS_PER_WORD)
2898 bitsize = msize;
2899 else
2900 break;
2904 /* We need a new source operand each time bitpos is on a word
2905 boundary. */
2906 if (bitpos % BITS_PER_WORD == 0)
2907 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2909 /* Use bitpos for the source extraction (left justified) and
2910 xbitpos for the destination store (right justified). */
2911 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2912 0, 0, word_mode,
2913 extract_bit_field (src_word, bitsize,
2914 bitpos % BITS_PER_WORD, 1,
2915 NULL_RTX, word_mode, word_mode,
2916 false, NULL),
2917 false);
2920 if (mode == BLKmode)
2922 /* Find the smallest integer mode large enough to hold the
2923 entire structure. */
2924 opt_scalar_int_mode mode_iter;
2925 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2926 if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
2927 break;
2929 /* A suitable mode should have been found. */
2930 mode = mode_iter.require ();
2933 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2934 dst_mode = word_mode;
2935 else
2936 dst_mode = mode;
2937 dst = gen_reg_rtx (dst_mode);
2939 for (i = 0; i < n_regs; i++)
2940 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2942 if (mode != dst_mode)
2943 dst = gen_lowpart (mode, dst);
2945 return dst;
2948 /* Add a USE expression for REG to the (possibly empty) list pointed
2949 to by CALL_FUSAGE. REG must denote a hard register. */
2951 void
2952 use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2954 gcc_assert (REG_P (reg));
2956 if (!HARD_REGISTER_P (reg))
2957 return;
2959 *call_fusage
2960 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2963 /* Add a CLOBBER expression for REG to the (possibly empty) list pointed
2964 to by CALL_FUSAGE. REG must denote a hard register. */
2966 void
2967 clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
2969 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2971 *call_fusage
2972 = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
2975 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2976 starting at REGNO. All of these registers must be hard registers. */
2978 void
2979 use_regs (rtx *call_fusage, int regno, int nregs)
2981 int i;
2983 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2985 for (i = 0; i < nregs; i++)
2986 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2989 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2990 PARALLEL REGS. This is for calls that pass values in multiple
2991 non-contiguous locations. The Irix 6 ABI has examples of this. */
2993 void
2994 use_group_regs (rtx *call_fusage, rtx regs)
2996 int i;
2998 for (i = 0; i < XVECLEN (regs, 0); i++)
3000 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
3002 /* A NULL entry means the parameter goes both on the stack and in
3003 registers. This can also be a MEM for targets that pass values
3004 partially on the stack and partially in registers. */
3005 if (reg != 0 && REG_P (reg))
3006 use_reg (call_fusage, reg);
3010 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3011 assigment and the code of the expresion on the RHS is CODE. Return
3012 NULL otherwise. */
3014 static gimple *
3015 get_def_for_expr (tree name, enum tree_code code)
3017 gimple *def_stmt;
3019 if (TREE_CODE (name) != SSA_NAME)
3020 return NULL;
3022 def_stmt = get_gimple_for_ssa_name (name);
3023 if (!def_stmt
3024 || gimple_assign_rhs_code (def_stmt) != code)
3025 return NULL;
3027 return def_stmt;
3030 /* Return the defining gimple statement for SSA_NAME NAME if it is an
3031 assigment and the class of the expresion on the RHS is CLASS. Return
3032 NULL otherwise. */
3034 static gimple *
3035 get_def_for_expr_class (tree name, enum tree_code_class tclass)
3037 gimple *def_stmt;
3039 if (TREE_CODE (name) != SSA_NAME)
3040 return NULL;
3042 def_stmt = get_gimple_for_ssa_name (name);
3043 if (!def_stmt
3044 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
3045 return NULL;
3047 return def_stmt;
3050 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
3051 its length in bytes. */
3054 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
3055 unsigned int expected_align, HOST_WIDE_INT expected_size,
3056 unsigned HOST_WIDE_INT min_size,
3057 unsigned HOST_WIDE_INT max_size,
3058 unsigned HOST_WIDE_INT probable_max_size)
3060 machine_mode mode = GET_MODE (object);
3061 unsigned int align;
3063 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
3065 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
3066 just move a zero. Otherwise, do this a piece at a time. */
3067 poly_int64 size_val;
3068 if (mode != BLKmode
3069 && poly_int_rtx_p (size, &size_val)
3070 && known_eq (size_val, GET_MODE_SIZE (mode)))
3072 rtx zero = CONST0_RTX (mode);
3073 if (zero != NULL)
3075 emit_move_insn (object, zero);
3076 return NULL;
3079 if (COMPLEX_MODE_P (mode))
3081 zero = CONST0_RTX (GET_MODE_INNER (mode));
3082 if (zero != NULL)
3084 write_complex_part (object, zero, 0);
3085 write_complex_part (object, zero, 1);
3086 return NULL;
3091 if (size == const0_rtx)
3092 return NULL;
3094 align = MEM_ALIGN (object);
3096 if (CONST_INT_P (size)
3097 && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
3098 CLEAR_BY_PIECES,
3099 optimize_insn_for_speed_p ()))
3100 clear_by_pieces (object, INTVAL (size), align);
3101 else if (set_storage_via_setmem (object, size, const0_rtx, align,
3102 expected_align, expected_size,
3103 min_size, max_size, probable_max_size))
3105 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
3106 return set_storage_via_libcall (object, size, const0_rtx,
3107 method == BLOCK_OP_TAILCALL);
3108 else
3109 gcc_unreachable ();
3111 return NULL;
3115 clear_storage (rtx object, rtx size, enum block_op_methods method)
3117 unsigned HOST_WIDE_INT max, min = 0;
3118 if (GET_CODE (size) == CONST_INT)
3119 min = max = UINTVAL (size);
3120 else
3121 max = GET_MODE_MASK (GET_MODE (size));
3122 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
3126 /* A subroutine of clear_storage. Expand a call to memset.
3127 Return the return value of memset, 0 otherwise. */
3130 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
3132 tree call_expr, fn, object_tree, size_tree, val_tree;
3133 machine_mode size_mode;
3135 object = copy_addr_to_reg (XEXP (object, 0));
3136 object_tree = make_tree (ptr_type_node, object);
3138 if (!CONST_INT_P (val))
3139 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
3140 val_tree = make_tree (integer_type_node, val);
3142 size_mode = TYPE_MODE (sizetype);
3143 size = convert_to_mode (size_mode, size, 1);
3144 size = copy_to_mode_reg (size_mode, size);
3145 size_tree = make_tree (sizetype, size);
3147 /* It is incorrect to use the libcall calling conventions for calls to
3148 memset because it can be provided by the user. */
3149 fn = builtin_decl_implicit (BUILT_IN_MEMSET);
3150 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
3151 CALL_EXPR_TAILCALL (call_expr) = tailcall;
3153 return expand_call (call_expr, NULL_RTX, false);
3156 /* Expand a setmem pattern; return true if successful. */
3158 bool
3159 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
3160 unsigned int expected_align, HOST_WIDE_INT expected_size,
3161 unsigned HOST_WIDE_INT min_size,
3162 unsigned HOST_WIDE_INT max_size,
3163 unsigned HOST_WIDE_INT probable_max_size)
3165 /* Try the most limited insn first, because there's no point
3166 including more than one in the machine description unless
3167 the more limited one has some advantage. */
3169 if (expected_align < align)
3170 expected_align = align;
3171 if (expected_size != -1)
3173 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
3174 expected_size = max_size;
3175 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
3176 expected_size = min_size;
3179 opt_scalar_int_mode mode_iter;
3180 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
3182 scalar_int_mode mode = mode_iter.require ();
3183 enum insn_code code = direct_optab_handler (setmem_optab, mode);
3185 if (code != CODE_FOR_nothing
3186 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
3187 here because if SIZE is less than the mode mask, as it is
3188 returned by the macro, it will definitely be less than the
3189 actual mode mask. Since SIZE is within the Pmode address
3190 space, we limit MODE to Pmode. */
3191 && ((CONST_INT_P (size)
3192 && ((unsigned HOST_WIDE_INT) INTVAL (size)
3193 <= (GET_MODE_MASK (mode) >> 1)))
3194 || max_size <= (GET_MODE_MASK (mode) >> 1)
3195 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
3197 class expand_operand ops[9];
3198 unsigned int nops;
3200 nops = insn_data[(int) code].n_generator_args;
3201 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
3203 create_fixed_operand (&ops[0], object);
3204 /* The check above guarantees that this size conversion is valid. */
3205 create_convert_operand_to (&ops[1], size, mode, true);
3206 create_convert_operand_from (&ops[2], val, byte_mode, true);
3207 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
3208 if (nops >= 6)
3210 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
3211 create_integer_operand (&ops[5], expected_size);
3213 if (nops >= 8)
3215 create_integer_operand (&ops[6], min_size);
3216 /* If we cannot represent the maximal size,
3217 make parameter NULL. */
3218 if ((HOST_WIDE_INT) max_size != -1)
3219 create_integer_operand (&ops[7], max_size);
3220 else
3221 create_fixed_operand (&ops[7], NULL);
3223 if (nops == 9)
3225 /* If we cannot represent the maximal size,
3226 make parameter NULL. */
3227 if ((HOST_WIDE_INT) probable_max_size != -1)
3228 create_integer_operand (&ops[8], probable_max_size);
3229 else
3230 create_fixed_operand (&ops[8], NULL);
3232 if (maybe_expand_insn (code, nops, ops))
3233 return true;
3237 return false;
3241 /* Write to one of the components of the complex value CPLX. Write VAL to
3242 the real part if IMAG_P is false, and the imaginary part if its true. */
3244 void
3245 write_complex_part (rtx cplx, rtx val, bool imag_p)
3247 machine_mode cmode;
3248 scalar_mode imode;
3249 unsigned ibitsize;
3251 if (GET_CODE (cplx) == CONCAT)
3253 emit_move_insn (XEXP (cplx, imag_p), val);
3254 return;
3257 cmode = GET_MODE (cplx);
3258 imode = GET_MODE_INNER (cmode);
3259 ibitsize = GET_MODE_BITSIZE (imode);
3261 /* For MEMs simplify_gen_subreg may generate an invalid new address
3262 because, e.g., the original address is considered mode-dependent
3263 by the target, which restricts simplify_subreg from invoking
3264 adjust_address_nv. Instead of preparing fallback support for an
3265 invalid address, we call adjust_address_nv directly. */
3266 if (MEM_P (cplx))
3268 emit_move_insn (adjust_address_nv (cplx, imode,
3269 imag_p ? GET_MODE_SIZE (imode) : 0),
3270 val);
3271 return;
3274 /* If the sub-object is at least word sized, then we know that subregging
3275 will work. This special case is important, since store_bit_field
3276 wants to operate on integer modes, and there's rarely an OImode to
3277 correspond to TCmode. */
3278 if (ibitsize >= BITS_PER_WORD
3279 /* For hard regs we have exact predicates. Assume we can split
3280 the original object if it spans an even number of hard regs.
3281 This special case is important for SCmode on 64-bit platforms
3282 where the natural size of floating-point regs is 32-bit. */
3283 || (REG_P (cplx)
3284 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3285 && REG_NREGS (cplx) % 2 == 0))
3287 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3288 imag_p ? GET_MODE_SIZE (imode) : 0);
3289 if (part)
3291 emit_move_insn (part, val);
3292 return;
3294 else
3295 /* simplify_gen_subreg may fail for sub-word MEMs. */
3296 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3299 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
3300 false);
3303 /* Extract one of the components of the complex value CPLX. Extract the
3304 real part if IMAG_P is false, and the imaginary part if it's true. */
3307 read_complex_part (rtx cplx, bool imag_p)
3309 machine_mode cmode;
3310 scalar_mode imode;
3311 unsigned ibitsize;
3313 if (GET_CODE (cplx) == CONCAT)
3314 return XEXP (cplx, imag_p);
3316 cmode = GET_MODE (cplx);
3317 imode = GET_MODE_INNER (cmode);
3318 ibitsize = GET_MODE_BITSIZE (imode);
3320 /* Special case reads from complex constants that got spilled to memory. */
3321 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3323 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3324 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3326 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3327 if (CONSTANT_CLASS_P (part))
3328 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3332 /* For MEMs simplify_gen_subreg may generate an invalid new address
3333 because, e.g., the original address is considered mode-dependent
3334 by the target, which restricts simplify_subreg from invoking
3335 adjust_address_nv. Instead of preparing fallback support for an
3336 invalid address, we call adjust_address_nv directly. */
3337 if (MEM_P (cplx))
3338 return adjust_address_nv (cplx, imode,
3339 imag_p ? GET_MODE_SIZE (imode) : 0);
3341 /* If the sub-object is at least word sized, then we know that subregging
3342 will work. This special case is important, since extract_bit_field
3343 wants to operate on integer modes, and there's rarely an OImode to
3344 correspond to TCmode. */
3345 if (ibitsize >= BITS_PER_WORD
3346 /* For hard regs we have exact predicates. Assume we can split
3347 the original object if it spans an even number of hard regs.
3348 This special case is important for SCmode on 64-bit platforms
3349 where the natural size of floating-point regs is 32-bit. */
3350 || (REG_P (cplx)
3351 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3352 && REG_NREGS (cplx) % 2 == 0))
3354 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3355 imag_p ? GET_MODE_SIZE (imode) : 0);
3356 if (ret)
3357 return ret;
3358 else
3359 /* simplify_gen_subreg may fail for sub-word MEMs. */
3360 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3363 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3364 true, NULL_RTX, imode, imode, false, NULL);
3367 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3368 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3369 represented in NEW_MODE. If FORCE is true, this will never happen, as
3370 we'll force-create a SUBREG if needed. */
3372 static rtx
3373 emit_move_change_mode (machine_mode new_mode,
3374 machine_mode old_mode, rtx x, bool force)
3376 rtx ret;
3378 if (push_operand (x, GET_MODE (x)))
3380 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3381 MEM_COPY_ATTRIBUTES (ret, x);
3383 else if (MEM_P (x))
3385 /* We don't have to worry about changing the address since the
3386 size in bytes is supposed to be the same. */
3387 if (reload_in_progress)
3389 /* Copy the MEM to change the mode and move any
3390 substitutions from the old MEM to the new one. */
3391 ret = adjust_address_nv (x, new_mode, 0);
3392 copy_replacements (x, ret);
3394 else
3395 ret = adjust_address (x, new_mode, 0);
3397 else
3399 /* Note that we do want simplify_subreg's behavior of validating
3400 that the new mode is ok for a hard register. If we were to use
3401 simplify_gen_subreg, we would create the subreg, but would
3402 probably run into the target not being able to implement it. */
3403 /* Except, of course, when FORCE is true, when this is exactly what
3404 we want. Which is needed for CCmodes on some targets. */
3405 if (force)
3406 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3407 else
3408 ret = simplify_subreg (new_mode, x, old_mode, 0);
3411 return ret;
3414 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3415 an integer mode of the same size as MODE. Returns the instruction
3416 emitted, or NULL if such a move could not be generated. */
3418 static rtx_insn *
3419 emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
3421 scalar_int_mode imode;
3422 enum insn_code code;
3424 /* There must exist a mode of the exact size we require. */
3425 if (!int_mode_for_mode (mode).exists (&imode))
3426 return NULL;
3428 /* The target must support moves in this mode. */
3429 code = optab_handler (mov_optab, imode);
3430 if (code == CODE_FOR_nothing)
3431 return NULL;
3433 x = emit_move_change_mode (imode, mode, x, force);
3434 if (x == NULL_RTX)
3435 return NULL;
3436 y = emit_move_change_mode (imode, mode, y, force);
3437 if (y == NULL_RTX)
3438 return NULL;
3439 return emit_insn (GEN_FCN (code) (x, y));
3442 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3443 Return an equivalent MEM that does not use an auto-increment. */
3446 emit_move_resolve_push (machine_mode mode, rtx x)
3448 enum rtx_code code = GET_CODE (XEXP (x, 0));
3449 rtx temp;
3451 poly_int64 adjust = GET_MODE_SIZE (mode);
3452 #ifdef PUSH_ROUNDING
3453 adjust = PUSH_ROUNDING (adjust);
3454 #endif
3455 if (code == PRE_DEC || code == POST_DEC)
3456 adjust = -adjust;
3457 else if (code == PRE_MODIFY || code == POST_MODIFY)
3459 rtx expr = XEXP (XEXP (x, 0), 1);
3461 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3462 poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
3463 if (GET_CODE (expr) == MINUS)
3464 val = -val;
3465 gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
3466 adjust = val;
3469 /* Do not use anti_adjust_stack, since we don't want to update
3470 stack_pointer_delta. */
3471 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3472 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3473 0, OPTAB_LIB_WIDEN);
3474 if (temp != stack_pointer_rtx)
3475 emit_move_insn (stack_pointer_rtx, temp);
3477 switch (code)
3479 case PRE_INC:
3480 case PRE_DEC:
3481 case PRE_MODIFY:
3482 temp = stack_pointer_rtx;
3483 break;
3484 case POST_INC:
3485 case POST_DEC:
3486 case POST_MODIFY:
3487 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3488 break;
3489 default:
3490 gcc_unreachable ();
3493 return replace_equiv_address (x, temp);
3496 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3497 X is known to satisfy push_operand, and MODE is known to be complex.
3498 Returns the last instruction emitted. */
3500 rtx_insn *
3501 emit_move_complex_push (machine_mode mode, rtx x, rtx y)
3503 scalar_mode submode = GET_MODE_INNER (mode);
3504 bool imag_first;
3506 #ifdef PUSH_ROUNDING
3507 poly_int64 submodesize = GET_MODE_SIZE (submode);
3509 /* In case we output to the stack, but the size is smaller than the
3510 machine can push exactly, we need to use move instructions. */
3511 if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
3513 x = emit_move_resolve_push (mode, x);
3514 return emit_move_insn (x, y);
3516 #endif
3518 /* Note that the real part always precedes the imag part in memory
3519 regardless of machine's endianness. */
3520 switch (GET_CODE (XEXP (x, 0)))
3522 case PRE_DEC:
3523 case POST_DEC:
3524 imag_first = true;
3525 break;
3526 case PRE_INC:
3527 case POST_INC:
3528 imag_first = false;
3529 break;
3530 default:
3531 gcc_unreachable ();
3534 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3535 read_complex_part (y, imag_first));
3536 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3537 read_complex_part (y, !imag_first));
3540 /* A subroutine of emit_move_complex. Perform the move from Y to X
3541 via two moves of the parts. Returns the last instruction emitted. */
3543 rtx_insn *
3544 emit_move_complex_parts (rtx x, rtx y)
3546 /* Show the output dies here. This is necessary for SUBREGs
3547 of pseudos since we cannot track their lifetimes correctly;
3548 hard regs shouldn't appear here except as return values. */
3549 if (!reload_completed && !reload_in_progress
3550 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3551 emit_clobber (x);
3553 write_complex_part (x, read_complex_part (y, false), false);
3554 write_complex_part (x, read_complex_part (y, true), true);
3556 return get_last_insn ();
3559 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3560 MODE is known to be complex. Returns the last instruction emitted. */
3562 static rtx_insn *
3563 emit_move_complex (machine_mode mode, rtx x, rtx y)
3565 bool try_int;
3567 /* Need to take special care for pushes, to maintain proper ordering
3568 of the data, and possibly extra padding. */
3569 if (push_operand (x, mode))
3570 return emit_move_complex_push (mode, x, y);
3572 /* See if we can coerce the target into moving both values at once, except
3573 for floating point where we favor moving as parts if this is easy. */
3574 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3575 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3576 && !(REG_P (x)
3577 && HARD_REGISTER_P (x)
3578 && REG_NREGS (x) == 1)
3579 && !(REG_P (y)
3580 && HARD_REGISTER_P (y)
3581 && REG_NREGS (y) == 1))
3582 try_int = false;
3583 /* Not possible if the values are inherently not adjacent. */
3584 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3585 try_int = false;
3586 /* Is possible if both are registers (or subregs of registers). */
3587 else if (register_operand (x, mode) && register_operand (y, mode))
3588 try_int = true;
3589 /* If one of the operands is a memory, and alignment constraints
3590 are friendly enough, we may be able to do combined memory operations.
3591 We do not attempt this if Y is a constant because that combination is
3592 usually better with the by-parts thing below. */
3593 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3594 && (!STRICT_ALIGNMENT
3595 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3596 try_int = true;
3597 else
3598 try_int = false;
3600 if (try_int)
3602 rtx_insn *ret;
3604 /* For memory to memory moves, optimal behavior can be had with the
3605 existing block move logic. But use normal expansion if optimizing
3606 for size. */
3607 if (MEM_P (x) && MEM_P (y))
3609 emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
3610 (optimize_insn_for_speed_p()
3611 ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
3612 return get_last_insn ();
3615 ret = emit_move_via_integer (mode, x, y, true);
3616 if (ret)
3617 return ret;
3620 return emit_move_complex_parts (x, y);
3623 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3624 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3626 static rtx_insn *
3627 emit_move_ccmode (machine_mode mode, rtx x, rtx y)
3629 rtx_insn *ret;
3631 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3632 if (mode != CCmode)
3634 enum insn_code code = optab_handler (mov_optab, CCmode);
3635 if (code != CODE_FOR_nothing)
3637 x = emit_move_change_mode (CCmode, mode, x, true);
3638 y = emit_move_change_mode (CCmode, mode, y, true);
3639 return emit_insn (GEN_FCN (code) (x, y));
3643 /* Otherwise, find the MODE_INT mode of the same width. */
3644 ret = emit_move_via_integer (mode, x, y, false);
3645 gcc_assert (ret != NULL);
3646 return ret;
3649 /* Return true if word I of OP lies entirely in the
3650 undefined bits of a paradoxical subreg. */
3652 static bool
3653 undefined_operand_subword_p (const_rtx op, int i)
3655 if (GET_CODE (op) != SUBREG)
3656 return false;
3657 machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
3658 poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
3659 return (known_ge (offset, GET_MODE_SIZE (innermostmode))
3660 || known_le (offset, -UNITS_PER_WORD));
3663 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3664 MODE is any multi-word or full-word mode that lacks a move_insn
3665 pattern. Note that you will get better code if you define such
3666 patterns, even if they must turn into multiple assembler instructions. */
3668 static rtx_insn *
3669 emit_move_multi_word (machine_mode mode, rtx x, rtx y)
3671 rtx_insn *last_insn = 0;
3672 rtx_insn *seq;
3673 rtx inner;
3674 bool need_clobber;
3675 int i, mode_size;
3677 /* This function can only handle cases where the number of words is
3678 known at compile time. */
3679 mode_size = GET_MODE_SIZE (mode).to_constant ();
3680 gcc_assert (mode_size >= UNITS_PER_WORD);
3682 /* If X is a push on the stack, do the push now and replace
3683 X with a reference to the stack pointer. */
3684 if (push_operand (x, mode))
3685 x = emit_move_resolve_push (mode, x);
3687 /* If we are in reload, see if either operand is a MEM whose address
3688 is scheduled for replacement. */
3689 if (reload_in_progress && MEM_P (x)
3690 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3691 x = replace_equiv_address_nv (x, inner);
3692 if (reload_in_progress && MEM_P (y)
3693 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3694 y = replace_equiv_address_nv (y, inner);
3696 start_sequence ();
3698 need_clobber = false;
3699 for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
3701 /* Do not generate code for a move if it would go entirely
3702 to the non-existing bits of a paradoxical subreg. */
3703 if (undefined_operand_subword_p (x, i))
3704 continue;
3706 rtx xpart = operand_subword (x, i, 1, mode);
3707 rtx ypart;
3709 /* Do not generate code for a move if it would come entirely
3710 from the undefined bits of a paradoxical subreg. */
3711 if (undefined_operand_subword_p (y, i))
3712 continue;
3714 ypart = operand_subword (y, i, 1, mode);
3716 /* If we can't get a part of Y, put Y into memory if it is a
3717 constant. Otherwise, force it into a register. Then we must
3718 be able to get a part of Y. */
3719 if (ypart == 0 && CONSTANT_P (y))
3721 y = use_anchored_address (force_const_mem (mode, y));
3722 ypart = operand_subword (y, i, 1, mode);
3724 else if (ypart == 0)
3725 ypart = operand_subword_force (y, i, mode);
3727 gcc_assert (xpart && ypart);
3729 need_clobber |= (GET_CODE (xpart) == SUBREG);
3731 last_insn = emit_move_insn (xpart, ypart);
3734 seq = get_insns ();
3735 end_sequence ();
3737 /* Show the output dies here. This is necessary for SUBREGs
3738 of pseudos since we cannot track their lifetimes correctly;
3739 hard regs shouldn't appear here except as return values.
3740 We never want to emit such a clobber after reload. */
3741 if (x != y
3742 && ! (reload_in_progress || reload_completed)
3743 && need_clobber != 0)
3744 emit_clobber (x);
3746 emit_insn (seq);
3748 return last_insn;
3751 /* Low level part of emit_move_insn.
3752 Called just like emit_move_insn, but assumes X and Y
3753 are basically valid. */
3755 rtx_insn *
3756 emit_move_insn_1 (rtx x, rtx y)
3758 machine_mode mode = GET_MODE (x);
3759 enum insn_code code;
3761 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3763 code = optab_handler (mov_optab, mode);
3764 if (code != CODE_FOR_nothing)
3765 return emit_insn (GEN_FCN (code) (x, y));
3767 /* Expand complex moves by moving real part and imag part. */
3768 if (COMPLEX_MODE_P (mode))
3769 return emit_move_complex (mode, x, y);
3771 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3772 || ALL_FIXED_POINT_MODE_P (mode))
3774 rtx_insn *result = emit_move_via_integer (mode, x, y, true);
3776 /* If we can't find an integer mode, use multi words. */
3777 if (result)
3778 return result;
3779 else
3780 return emit_move_multi_word (mode, x, y);
3783 if (GET_MODE_CLASS (mode) == MODE_CC)
3784 return emit_move_ccmode (mode, x, y);
3786 /* Try using a move pattern for the corresponding integer mode. This is
3787 only safe when simplify_subreg can convert MODE constants into integer
3788 constants. At present, it can only do this reliably if the value
3789 fits within a HOST_WIDE_INT. */
3790 if (!CONSTANT_P (y)
3791 || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
3793 rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3795 if (ret)
3797 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3798 return ret;
3802 return emit_move_multi_word (mode, x, y);
3805 /* Generate code to copy Y into X.
3806 Both Y and X must have the same mode, except that
3807 Y can be a constant with VOIDmode.
3808 This mode cannot be BLKmode; use emit_block_move for that.
3810 Return the last instruction emitted. */
3812 rtx_insn *
3813 emit_move_insn (rtx x, rtx y)
3815 machine_mode mode = GET_MODE (x);
3816 rtx y_cst = NULL_RTX;
3817 rtx_insn *last_insn;
3818 rtx set;
3820 gcc_assert (mode != BLKmode
3821 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3823 /* If we have a copy that looks like one of the following patterns:
3824 (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
3825 (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
3826 (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
3827 (set (subreg:M1 (reg:M2 ...)) (constant C))
3828 where mode M1 is equal in size to M2, try to detect whether the
3829 mode change involves an implicit round trip through memory.
3830 If so, see if we can avoid that by removing the subregs and
3831 doing the move in mode M2 instead. */
3833 rtx x_inner = NULL_RTX;
3834 rtx y_inner = NULL_RTX;
3836 auto candidate_subreg_p = [&](rtx subreg) {
3837 return (REG_P (SUBREG_REG (subreg))
3838 && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
3839 GET_MODE_SIZE (GET_MODE (subreg)))
3840 && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
3841 != CODE_FOR_nothing);
3844 auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
3845 return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
3846 && !push_operand (mem, GET_MODE (mem))
3847 /* Not a candiate if innermode requires too much alignment. */
3848 && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
3849 || targetm.slow_unaligned_access (GET_MODE (mem),
3850 MEM_ALIGN (mem))
3851 || !targetm.slow_unaligned_access (innermode,
3852 MEM_ALIGN (mem))));
3855 if (SUBREG_P (x) && candidate_subreg_p (x))
3856 x_inner = SUBREG_REG (x);
3858 if (SUBREG_P (y) && candidate_subreg_p (y))
3859 y_inner = SUBREG_REG (y);
3861 if (x_inner != NULL_RTX
3862 && y_inner != NULL_RTX
3863 && GET_MODE (x_inner) == GET_MODE (y_inner)
3864 && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
3866 x = x_inner;
3867 y = y_inner;
3868 mode = GET_MODE (x_inner);
3870 else if (x_inner != NULL_RTX
3871 && MEM_P (y)
3872 && candidate_mem_p (GET_MODE (x_inner), y))
3874 x = x_inner;
3875 y = adjust_address (y, GET_MODE (x_inner), 0);
3876 mode = GET_MODE (x_inner);
3878 else if (y_inner != NULL_RTX
3879 && MEM_P (x)
3880 && candidate_mem_p (GET_MODE (y_inner), x))
3882 x = adjust_address (x, GET_MODE (y_inner), 0);
3883 y = y_inner;
3884 mode = GET_MODE (y_inner);
3886 else if (x_inner != NULL_RTX
3887 && CONSTANT_P (y)
3888 && !targetm.can_change_mode_class (GET_MODE (x_inner),
3889 mode, ALL_REGS)
3890 && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
3892 x = x_inner;
3893 y = y_inner;
3894 mode = GET_MODE (x_inner);
3897 if (CONSTANT_P (y))
3899 if (optimize
3900 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3901 && (last_insn = compress_float_constant (x, y)))
3902 return last_insn;
3904 y_cst = y;
3906 if (!targetm.legitimate_constant_p (mode, y))
3908 y = force_const_mem (mode, y);
3910 /* If the target's cannot_force_const_mem prevented the spill,
3911 assume that the target's move expanders will also take care
3912 of the non-legitimate constant. */
3913 if (!y)
3914 y = y_cst;
3915 else
3916 y = use_anchored_address (y);
3920 /* If X or Y are memory references, verify that their addresses are valid
3921 for the machine. */
3922 if (MEM_P (x)
3923 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3924 MEM_ADDR_SPACE (x))
3925 && ! push_operand (x, GET_MODE (x))))
3926 x = validize_mem (x);
3928 if (MEM_P (y)
3929 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3930 MEM_ADDR_SPACE (y)))
3931 y = validize_mem (y);
3933 gcc_assert (mode != BLKmode);
3935 last_insn = emit_move_insn_1 (x, y);
3937 if (y_cst && REG_P (x)
3938 && (set = single_set (last_insn)) != NULL_RTX
3939 && SET_DEST (set) == x
3940 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3941 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3943 return last_insn;
3946 /* Generate the body of an instruction to copy Y into X.
3947 It may be a list of insns, if one insn isn't enough. */
3949 rtx_insn *
3950 gen_move_insn (rtx x, rtx y)
3952 rtx_insn *seq;
3954 start_sequence ();
3955 emit_move_insn_1 (x, y);
3956 seq = get_insns ();
3957 end_sequence ();
3958 return seq;
3961 /* If Y is representable exactly in a narrower mode, and the target can
3962 perform the extension directly from constant or memory, then emit the
3963 move as an extension. */
3965 static rtx_insn *
3966 compress_float_constant (rtx x, rtx y)
3968 machine_mode dstmode = GET_MODE (x);
3969 machine_mode orig_srcmode = GET_MODE (y);
3970 machine_mode srcmode;
3971 const REAL_VALUE_TYPE *r;
3972 int oldcost, newcost;
3973 bool speed = optimize_insn_for_speed_p ();
3975 r = CONST_DOUBLE_REAL_VALUE (y);
3977 if (targetm.legitimate_constant_p (dstmode, y))
3978 oldcost = set_src_cost (y, orig_srcmode, speed);
3979 else
3980 oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
3982 FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
3984 enum insn_code ic;
3985 rtx trunc_y;
3986 rtx_insn *last_insn;
3988 /* Skip if the target can't extend this way. */
3989 ic = can_extend_p (dstmode, srcmode, 0);
3990 if (ic == CODE_FOR_nothing)
3991 continue;
3993 /* Skip if the narrowed value isn't exact. */
3994 if (! exact_real_truncate (srcmode, r))
3995 continue;
3997 trunc_y = const_double_from_real_value (*r, srcmode);
3999 if (targetm.legitimate_constant_p (srcmode, trunc_y))
4001 /* Skip if the target needs extra instructions to perform
4002 the extension. */
4003 if (!insn_operand_matches (ic, 1, trunc_y))
4004 continue;
4005 /* This is valid, but may not be cheaper than the original. */
4006 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4007 dstmode, speed);
4008 if (oldcost < newcost)
4009 continue;
4011 else if (float_extend_from_mem[dstmode][srcmode])
4013 trunc_y = force_const_mem (srcmode, trunc_y);
4014 /* This is valid, but may not be cheaper than the original. */
4015 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
4016 dstmode, speed);
4017 if (oldcost < newcost)
4018 continue;
4019 trunc_y = validize_mem (trunc_y);
4021 else
4022 continue;
4024 /* For CSE's benefit, force the compressed constant pool entry
4025 into a new pseudo. This constant may be used in different modes,
4026 and if not, combine will put things back together for us. */
4027 trunc_y = force_reg (srcmode, trunc_y);
4029 /* If x is a hard register, perform the extension into a pseudo,
4030 so that e.g. stack realignment code is aware of it. */
4031 rtx target = x;
4032 if (REG_P (x) && HARD_REGISTER_P (x))
4033 target = gen_reg_rtx (dstmode);
4035 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
4036 last_insn = get_last_insn ();
4038 if (REG_P (target))
4039 set_unique_reg_note (last_insn, REG_EQUAL, y);
4041 if (target != x)
4042 return emit_move_insn (x, target);
4043 return last_insn;
4046 return NULL;
4049 /* Pushing data onto the stack. */
4051 /* Push a block of length SIZE (perhaps variable)
4052 and return an rtx to address the beginning of the block.
4053 The value may be virtual_outgoing_args_rtx.
4055 EXTRA is the number of bytes of padding to push in addition to SIZE.
4056 BELOW nonzero means this padding comes at low addresses;
4057 otherwise, the padding comes at high addresses. */
4060 push_block (rtx size, poly_int64 extra, int below)
4062 rtx temp;
4064 size = convert_modes (Pmode, ptr_mode, size, 1);
4065 if (CONSTANT_P (size))
4066 anti_adjust_stack (plus_constant (Pmode, size, extra));
4067 else if (REG_P (size) && known_eq (extra, 0))
4068 anti_adjust_stack (size);
4069 else
4071 temp = copy_to_mode_reg (Pmode, size);
4072 if (maybe_ne (extra, 0))
4073 temp = expand_binop (Pmode, add_optab, temp,
4074 gen_int_mode (extra, Pmode),
4075 temp, 0, OPTAB_LIB_WIDEN);
4076 anti_adjust_stack (temp);
4079 if (STACK_GROWS_DOWNWARD)
4081 temp = virtual_outgoing_args_rtx;
4082 if (maybe_ne (extra, 0) && below)
4083 temp = plus_constant (Pmode, temp, extra);
4085 else
4087 poly_int64 csize;
4088 if (poly_int_rtx_p (size, &csize))
4089 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
4090 -csize - (below ? 0 : extra));
4091 else if (maybe_ne (extra, 0) && !below)
4092 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4093 negate_rtx (Pmode, plus_constant (Pmode, size,
4094 extra)));
4095 else
4096 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
4097 negate_rtx (Pmode, size));
4100 return memory_address (NARROWEST_INT_MODE, temp);
4103 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
4105 static rtx
4106 mem_autoinc_base (rtx mem)
4108 if (MEM_P (mem))
4110 rtx addr = XEXP (mem, 0);
4111 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
4112 return XEXP (addr, 0);
4114 return NULL;
4117 /* A utility routine used here, in reload, and in try_split. The insns
4118 after PREV up to and including LAST are known to adjust the stack,
4119 with a final value of END_ARGS_SIZE. Iterate backward from LAST
4120 placing notes as appropriate. PREV may be NULL, indicating the
4121 entire insn sequence prior to LAST should be scanned.
4123 The set of allowed stack pointer modifications is small:
4124 (1) One or more auto-inc style memory references (aka pushes),
4125 (2) One or more addition/subtraction with the SP as destination,
4126 (3) A single move insn with the SP as destination,
4127 (4) A call_pop insn,
4128 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
4130 Insns in the sequence that do not modify the SP are ignored,
4131 except for noreturn calls.
4133 The return value is the amount of adjustment that can be trivially
4134 verified, via immediate operand or auto-inc. If the adjustment
4135 cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
4137 poly_int64
4138 find_args_size_adjust (rtx_insn *insn)
4140 rtx dest, set, pat;
4141 int i;
4143 pat = PATTERN (insn);
4144 set = NULL;
4146 /* Look for a call_pop pattern. */
4147 if (CALL_P (insn))
4149 /* We have to allow non-call_pop patterns for the case
4150 of emit_single_push_insn of a TLS address. */
4151 if (GET_CODE (pat) != PARALLEL)
4152 return 0;
4154 /* All call_pop have a stack pointer adjust in the parallel.
4155 The call itself is always first, and the stack adjust is
4156 usually last, so search from the end. */
4157 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
4159 set = XVECEXP (pat, 0, i);
4160 if (GET_CODE (set) != SET)
4161 continue;
4162 dest = SET_DEST (set);
4163 if (dest == stack_pointer_rtx)
4164 break;
4166 /* We'd better have found the stack pointer adjust. */
4167 if (i == 0)
4168 return 0;
4169 /* Fall through to process the extracted SET and DEST
4170 as if it was a standalone insn. */
4172 else if (GET_CODE (pat) == SET)
4173 set = pat;
4174 else if ((set = single_set (insn)) != NULL)
4176 else if (GET_CODE (pat) == PARALLEL)
4178 /* ??? Some older ports use a parallel with a stack adjust
4179 and a store for a PUSH_ROUNDING pattern, rather than a
4180 PRE/POST_MODIFY rtx. Don't force them to update yet... */
4181 /* ??? See h8300 and m68k, pushqi1. */
4182 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
4184 set = XVECEXP (pat, 0, i);
4185 if (GET_CODE (set) != SET)
4186 continue;
4187 dest = SET_DEST (set);
4188 if (dest == stack_pointer_rtx)
4189 break;
4191 /* We do not expect an auto-inc of the sp in the parallel. */
4192 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
4193 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4194 != stack_pointer_rtx);
4196 if (i < 0)
4197 return 0;
4199 else
4200 return 0;
4202 dest = SET_DEST (set);
4204 /* Look for direct modifications of the stack pointer. */
4205 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
4207 /* Look for a trivial adjustment, otherwise assume nothing. */
4208 /* Note that the SPU restore_stack_block pattern refers to
4209 the stack pointer in V4SImode. Consider that non-trivial. */
4210 poly_int64 offset;
4211 if (SCALAR_INT_MODE_P (GET_MODE (dest))
4212 && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
4213 return offset;
4214 /* ??? Reload can generate no-op moves, which will be cleaned
4215 up later. Recognize it and continue searching. */
4216 else if (rtx_equal_p (dest, SET_SRC (set)))
4217 return 0;
4218 else
4219 return HOST_WIDE_INT_MIN;
4221 else
4223 rtx mem, addr;
4225 /* Otherwise only think about autoinc patterns. */
4226 if (mem_autoinc_base (dest) == stack_pointer_rtx)
4228 mem = dest;
4229 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
4230 != stack_pointer_rtx);
4232 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
4233 mem = SET_SRC (set);
4234 else
4235 return 0;
4237 addr = XEXP (mem, 0);
4238 switch (GET_CODE (addr))
4240 case PRE_INC:
4241 case POST_INC:
4242 return GET_MODE_SIZE (GET_MODE (mem));
4243 case PRE_DEC:
4244 case POST_DEC:
4245 return -GET_MODE_SIZE (GET_MODE (mem));
4246 case PRE_MODIFY:
4247 case POST_MODIFY:
4248 addr = XEXP (addr, 1);
4249 gcc_assert (GET_CODE (addr) == PLUS);
4250 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
4251 return rtx_to_poly_int64 (XEXP (addr, 1));
4252 default:
4253 gcc_unreachable ();
4258 poly_int64
4259 fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
4260 poly_int64 end_args_size)
4262 poly_int64 args_size = end_args_size;
4263 bool saw_unknown = false;
4264 rtx_insn *insn;
4266 for (insn = last; insn != prev; insn = PREV_INSN (insn))
4268 if (!NONDEBUG_INSN_P (insn))
4269 continue;
4271 /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
4272 a call argument containing a TLS address that itself requires
4273 a call to __tls_get_addr. The handling of stack_pointer_delta
4274 in emit_single_push_insn is supposed to ensure that any such
4275 notes are already correct. */
4276 rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4277 gcc_assert (!note || known_eq (args_size, get_args_size (note)));
4279 poly_int64 this_delta = find_args_size_adjust (insn);
4280 if (known_eq (this_delta, 0))
4282 if (!CALL_P (insn)
4283 || ACCUMULATE_OUTGOING_ARGS
4284 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
4285 continue;
4288 gcc_assert (!saw_unknown);
4289 if (known_eq (this_delta, HOST_WIDE_INT_MIN))
4290 saw_unknown = true;
4292 if (!note)
4293 add_args_size_note (insn, args_size);
4294 if (STACK_GROWS_DOWNWARD)
4295 this_delta = -poly_uint64 (this_delta);
4297 if (saw_unknown)
4298 args_size = HOST_WIDE_INT_MIN;
4299 else
4300 args_size -= this_delta;
4303 return args_size;
4306 #ifdef PUSH_ROUNDING
4307 /* Emit single push insn. */
4309 static void
4310 emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
4312 rtx dest_addr;
4313 poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4314 rtx dest;
4315 enum insn_code icode;
4317 /* If there is push pattern, use it. Otherwise try old way of throwing
4318 MEM representing push operation to move expander. */
4319 icode = optab_handler (push_optab, mode);
4320 if (icode != CODE_FOR_nothing)
4322 class expand_operand ops[1];
4324 create_input_operand (&ops[0], x, mode);
4325 if (maybe_expand_insn (icode, 1, ops))
4326 return;
4328 if (known_eq (GET_MODE_SIZE (mode), rounded_size))
4329 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4330 /* If we are to pad downward, adjust the stack pointer first and
4331 then store X into the stack location using an offset. This is
4332 because emit_move_insn does not know how to pad; it does not have
4333 access to type. */
4334 else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
4336 emit_move_insn (stack_pointer_rtx,
4337 expand_binop (Pmode,
4338 STACK_GROWS_DOWNWARD ? sub_optab
4339 : add_optab,
4340 stack_pointer_rtx,
4341 gen_int_mode (rounded_size, Pmode),
4342 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4344 poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
4345 if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
4346 /* We have already decremented the stack pointer, so get the
4347 previous value. */
4348 offset += rounded_size;
4350 if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
4351 /* We have already incremented the stack pointer, so get the
4352 previous value. */
4353 offset -= rounded_size;
4355 dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
4357 else
4359 if (STACK_GROWS_DOWNWARD)
4360 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4361 dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
4362 else
4363 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4364 dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
4366 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4369 dest = gen_rtx_MEM (mode, dest_addr);
4371 if (type != 0)
4373 set_mem_attributes (dest, type, 1);
4375 if (cfun->tail_call_marked)
4376 /* Function incoming arguments may overlap with sibling call
4377 outgoing arguments and we cannot allow reordering of reads
4378 from function arguments with stores to outgoing arguments
4379 of sibling calls. */
4380 set_mem_alias_set (dest, 0);
4382 emit_move_insn (dest, x);
4385 /* Emit and annotate a single push insn. */
4387 static void
4388 emit_single_push_insn (machine_mode mode, rtx x, tree type)
4390 poly_int64 delta, old_delta = stack_pointer_delta;
4391 rtx_insn *prev = get_last_insn ();
4392 rtx_insn *last;
4394 emit_single_push_insn_1 (mode, x, type);
4396 /* Adjust stack_pointer_delta to describe the situation after the push
4397 we just performed. Note that we must do this after the push rather
4398 than before the push in case calculating X needs pushes and pops of
4399 its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
4400 for such pushes and pops must not include the effect of the future
4401 push of X. */
4402 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4404 last = get_last_insn ();
4406 /* Notice the common case where we emitted exactly one insn. */
4407 if (PREV_INSN (last) == prev)
4409 add_args_size_note (last, stack_pointer_delta);
4410 return;
4413 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4414 gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
4415 || known_eq (delta, old_delta));
4417 #endif
4419 /* If reading SIZE bytes from X will end up reading from
4420 Y return the number of bytes that overlap. Return -1
4421 if there is no overlap or -2 if we can't determine
4422 (for example when X and Y have different base registers). */
4424 static int
4425 memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
4427 rtx tmp = plus_constant (Pmode, x, size);
4428 rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
4430 if (!CONST_INT_P (sub))
4431 return -2;
4433 HOST_WIDE_INT val = INTVAL (sub);
4435 return IN_RANGE (val, 1, size) ? val : -1;
4438 /* Generate code to push X onto the stack, assuming it has mode MODE and
4439 type TYPE.
4440 MODE is redundant except when X is a CONST_INT (since they don't
4441 carry mode info).
4442 SIZE is an rtx for the size of data to be copied (in bytes),
4443 needed only if X is BLKmode.
4444 Return true if successful. May return false if asked to push a
4445 partial argument during a sibcall optimization (as specified by
4446 SIBCALL_P) and the incoming and outgoing pointers cannot be shown
4447 to not overlap.
4449 ALIGN (in bits) is maximum alignment we can assume.
4451 If PARTIAL and REG are both nonzero, then copy that many of the first
4452 bytes of X into registers starting with REG, and push the rest of X.
4453 The amount of space pushed is decreased by PARTIAL bytes.
4454 REG must be a hard register in this case.
4455 If REG is zero but PARTIAL is not, take any all others actions for an
4456 argument partially in registers, but do not actually load any
4457 registers.
4459 EXTRA is the amount in bytes of extra space to leave next to this arg.
4460 This is ignored if an argument block has already been allocated.
4462 On a machine that lacks real push insns, ARGS_ADDR is the address of
4463 the bottom of the argument block for this call. We use indexing off there
4464 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4465 argument block has not been preallocated.
4467 ARGS_SO_FAR is the size of args previously pushed for this call.
4469 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4470 for arguments passed in registers. If nonzero, it will be the number
4471 of bytes required. */
4473 bool
4474 emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
4475 unsigned int align, int partial, rtx reg, poly_int64 extra,
4476 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4477 rtx alignment_pad, bool sibcall_p)
4479 rtx xinner;
4480 pad_direction stack_direction
4481 = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
4483 /* Decide where to pad the argument: PAD_DOWNWARD for below,
4484 PAD_UPWARD for above, or PAD_NONE for don't pad it.
4485 Default is below for small data on big-endian machines; else above. */
4486 pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
4488 /* Invert direction if stack is post-decrement.
4489 FIXME: why? */
4490 if (STACK_PUSH_CODE == POST_DEC)
4491 if (where_pad != PAD_NONE)
4492 where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
4494 xinner = x;
4496 int nregs = partial / UNITS_PER_WORD;
4497 rtx *tmp_regs = NULL;
4498 int overlapping = 0;
4500 if (mode == BLKmode
4501 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4503 /* Copy a block into the stack, entirely or partially. */
4505 rtx temp;
4506 int used;
4507 int offset;
4508 int skip;
4510 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4511 used = partial - offset;
4513 if (mode != BLKmode)
4515 /* A value is to be stored in an insufficiently aligned
4516 stack slot; copy via a suitably aligned slot if
4517 necessary. */
4518 size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
4519 if (!MEM_P (xinner))
4521 temp = assign_temp (type, 1, 1);
4522 emit_move_insn (temp, xinner);
4523 xinner = temp;
4527 gcc_assert (size);
4529 /* USED is now the # of bytes we need not copy to the stack
4530 because registers will take care of them. */
4532 if (partial != 0)
4533 xinner = adjust_address (xinner, BLKmode, used);
4535 /* If the partial register-part of the arg counts in its stack size,
4536 skip the part of stack space corresponding to the registers.
4537 Otherwise, start copying to the beginning of the stack space,
4538 by setting SKIP to 0. */
4539 skip = (reg_parm_stack_space == 0) ? 0 : used;
4541 #ifdef PUSH_ROUNDING
4542 /* Do it with several push insns if that doesn't take lots of insns
4543 and if there is no difficulty with push insns that skip bytes
4544 on the stack for alignment purposes. */
4545 if (args_addr == 0
4546 && PUSH_ARGS
4547 && CONST_INT_P (size)
4548 && skip == 0
4549 && MEM_ALIGN (xinner) >= align
4550 && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
4551 /* Here we avoid the case of a structure whose weak alignment
4552 forces many pushes of a small amount of data,
4553 and such small pushes do rounding that causes trouble. */
4554 && ((!targetm.slow_unaligned_access (word_mode, align))
4555 || align >= BIGGEST_ALIGNMENT
4556 || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
4557 align / BITS_PER_UNIT))
4558 && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
4560 /* Push padding now if padding above and stack grows down,
4561 or if padding below and stack grows up.
4562 But if space already allocated, this has already been done. */
4563 if (maybe_ne (extra, 0)
4564 && args_addr == 0
4565 && where_pad != PAD_NONE
4566 && where_pad != stack_direction)
4567 anti_adjust_stack (gen_int_mode (extra, Pmode));
4569 move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
4570 RETURN_BEGIN);
4572 else
4573 #endif /* PUSH_ROUNDING */
4575 rtx target;
4577 /* Otherwise make space on the stack and copy the data
4578 to the address of that space. */
4580 /* Deduct words put into registers from the size we must copy. */
4581 if (partial != 0)
4583 if (CONST_INT_P (size))
4584 size = GEN_INT (INTVAL (size) - used);
4585 else
4586 size = expand_binop (GET_MODE (size), sub_optab, size,
4587 gen_int_mode (used, GET_MODE (size)),
4588 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4591 /* Get the address of the stack space.
4592 In this case, we do not deal with EXTRA separately.
4593 A single stack adjust will do. */
4594 poly_int64 const_args_so_far;
4595 if (! args_addr)
4597 temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
4598 extra = 0;
4600 else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
4601 temp = memory_address (BLKmode,
4602 plus_constant (Pmode, args_addr,
4603 skip + const_args_so_far));
4604 else
4605 temp = memory_address (BLKmode,
4606 plus_constant (Pmode,
4607 gen_rtx_PLUS (Pmode,
4608 args_addr,
4609 args_so_far),
4610 skip));
4612 if (!ACCUMULATE_OUTGOING_ARGS)
4614 /* If the source is referenced relative to the stack pointer,
4615 copy it to another register to stabilize it. We do not need
4616 to do this if we know that we won't be changing sp. */
4618 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4619 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4620 temp = copy_to_reg (temp);
4623 target = gen_rtx_MEM (BLKmode, temp);
4625 /* We do *not* set_mem_attributes here, because incoming arguments
4626 may overlap with sibling call outgoing arguments and we cannot
4627 allow reordering of reads from function arguments with stores
4628 to outgoing arguments of sibling calls. We do, however, want
4629 to record the alignment of the stack slot. */
4630 /* ALIGN may well be better aligned than TYPE, e.g. due to
4631 PARM_BOUNDARY. Assume the caller isn't lying. */
4632 set_mem_align (target, align);
4634 /* If part should go in registers and pushing to that part would
4635 overwrite some of the values that need to go into regs, load the
4636 overlapping values into temporary pseudos to be moved into the hard
4637 regs at the end after the stack pushing has completed.
4638 We cannot load them directly into the hard regs here because
4639 they can be clobbered by the block move expansions.
4640 See PR 65358. */
4642 if (partial > 0 && reg != 0 && mode == BLKmode
4643 && GET_CODE (reg) != PARALLEL)
4645 overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
4646 if (overlapping > 0)
4648 gcc_assert (overlapping % UNITS_PER_WORD == 0);
4649 overlapping /= UNITS_PER_WORD;
4651 tmp_regs = XALLOCAVEC (rtx, overlapping);
4653 for (int i = 0; i < overlapping; i++)
4654 tmp_regs[i] = gen_reg_rtx (word_mode);
4656 for (int i = 0; i < overlapping; i++)
4657 emit_move_insn (tmp_regs[i],
4658 operand_subword_force (target, i, mode));
4660 else if (overlapping == -1)
4661 overlapping = 0;
4662 /* Could not determine whether there is overlap.
4663 Fail the sibcall. */
4664 else
4666 overlapping = 0;
4667 if (sibcall_p)
4668 return false;
4671 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4674 else if (partial > 0)
4676 /* Scalar partly in registers. This case is only supported
4677 for fixed-wdth modes. */
4678 int num_words = GET_MODE_SIZE (mode).to_constant ();
4679 num_words /= UNITS_PER_WORD;
4680 int i;
4681 int not_stack;
4682 /* # bytes of start of argument
4683 that we must make space for but need not store. */
4684 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4685 int args_offset = INTVAL (args_so_far);
4686 int skip;
4688 /* Push padding now if padding above and stack grows down,
4689 or if padding below and stack grows up.
4690 But if space already allocated, this has already been done. */
4691 if (maybe_ne (extra, 0)
4692 && args_addr == 0
4693 && where_pad != PAD_NONE
4694 && where_pad != stack_direction)
4695 anti_adjust_stack (gen_int_mode (extra, Pmode));
4697 /* If we make space by pushing it, we might as well push
4698 the real data. Otherwise, we can leave OFFSET nonzero
4699 and leave the space uninitialized. */
4700 if (args_addr == 0)
4701 offset = 0;
4703 /* Now NOT_STACK gets the number of words that we don't need to
4704 allocate on the stack. Convert OFFSET to words too. */
4705 not_stack = (partial - offset) / UNITS_PER_WORD;
4706 offset /= UNITS_PER_WORD;
4708 /* If the partial register-part of the arg counts in its stack size,
4709 skip the part of stack space corresponding to the registers.
4710 Otherwise, start copying to the beginning of the stack space,
4711 by setting SKIP to 0. */
4712 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4714 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4715 x = validize_mem (force_const_mem (mode, x));
4717 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4718 SUBREGs of such registers are not allowed. */
4719 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4720 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4721 x = copy_to_reg (x);
4723 /* Loop over all the words allocated on the stack for this arg. */
4724 /* We can do it by words, because any scalar bigger than a word
4725 has a size a multiple of a word. */
4726 for (i = num_words - 1; i >= not_stack; i--)
4727 if (i >= not_stack + offset)
4728 if (!emit_push_insn (operand_subword_force (x, i, mode),
4729 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4730 0, args_addr,
4731 GEN_INT (args_offset + ((i - not_stack + skip)
4732 * UNITS_PER_WORD)),
4733 reg_parm_stack_space, alignment_pad, sibcall_p))
4734 return false;
4736 else
4738 rtx addr;
4739 rtx dest;
4741 /* Push padding now if padding above and stack grows down,
4742 or if padding below and stack grows up.
4743 But if space already allocated, this has already been done. */
4744 if (maybe_ne (extra, 0)
4745 && args_addr == 0
4746 && where_pad != PAD_NONE
4747 && where_pad != stack_direction)
4748 anti_adjust_stack (gen_int_mode (extra, Pmode));
4750 #ifdef PUSH_ROUNDING
4751 if (args_addr == 0 && PUSH_ARGS)
4752 emit_single_push_insn (mode, x, type);
4753 else
4754 #endif
4756 addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
4757 dest = gen_rtx_MEM (mode, memory_address (mode, addr));
4759 /* We do *not* set_mem_attributes here, because incoming arguments
4760 may overlap with sibling call outgoing arguments and we cannot
4761 allow reordering of reads from function arguments with stores
4762 to outgoing arguments of sibling calls. We do, however, want
4763 to record the alignment of the stack slot. */
4764 /* ALIGN may well be better aligned than TYPE, e.g. due to
4765 PARM_BOUNDARY. Assume the caller isn't lying. */
4766 set_mem_align (dest, align);
4768 emit_move_insn (dest, x);
4772 /* Move the partial arguments into the registers and any overlapping
4773 values that we moved into the pseudos in tmp_regs. */
4774 if (partial > 0 && reg != 0)
4776 /* Handle calls that pass values in multiple non-contiguous locations.
4777 The Irix 6 ABI has examples of this. */
4778 if (GET_CODE (reg) == PARALLEL)
4779 emit_group_load (reg, x, type, -1);
4780 else
4782 gcc_assert (partial % UNITS_PER_WORD == 0);
4783 move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
4785 for (int i = 0; i < overlapping; i++)
4786 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
4787 + nregs - overlapping + i),
4788 tmp_regs[i]);
4793 if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
4794 anti_adjust_stack (gen_int_mode (extra, Pmode));
4796 if (alignment_pad && args_addr == 0)
4797 anti_adjust_stack (alignment_pad);
4799 return true;
4802 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4803 operations. */
4805 static rtx
4806 get_subtarget (rtx x)
4808 return (optimize
4809 || x == 0
4810 /* Only registers can be subtargets. */
4811 || !REG_P (x)
4812 /* Don't use hard regs to avoid extending their life. */
4813 || REGNO (x) < FIRST_PSEUDO_REGISTER
4814 ? 0 : x);
4817 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4818 FIELD is a bitfield. Returns true if the optimization was successful,
4819 and there's nothing else to do. */
4821 static bool
4822 optimize_bitfield_assignment_op (poly_uint64 pbitsize,
4823 poly_uint64 pbitpos,
4824 poly_uint64 pbitregion_start,
4825 poly_uint64 pbitregion_end,
4826 machine_mode mode1, rtx str_rtx,
4827 tree to, tree src, bool reverse)
4829 /* str_mode is not guaranteed to be a scalar type. */
4830 machine_mode str_mode = GET_MODE (str_rtx);
4831 unsigned int str_bitsize;
4832 tree op0, op1;
4833 rtx value, result;
4834 optab binop;
4835 gimple *srcstmt;
4836 enum tree_code code;
4838 unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
4839 if (mode1 != VOIDmode
4840 || !pbitsize.is_constant (&bitsize)
4841 || !pbitpos.is_constant (&bitpos)
4842 || !pbitregion_start.is_constant (&bitregion_start)
4843 || !pbitregion_end.is_constant (&bitregion_end)
4844 || bitsize >= BITS_PER_WORD
4845 || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
4846 || str_bitsize > BITS_PER_WORD
4847 || TREE_SIDE_EFFECTS (to)
4848 || TREE_THIS_VOLATILE (to))
4849 return false;
4851 STRIP_NOPS (src);
4852 if (TREE_CODE (src) != SSA_NAME)
4853 return false;
4854 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4855 return false;
4857 srcstmt = get_gimple_for_ssa_name (src);
4858 if (!srcstmt
4859 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4860 return false;
4862 code = gimple_assign_rhs_code (srcstmt);
4864 op0 = gimple_assign_rhs1 (srcstmt);
4866 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4867 to find its initialization. Hopefully the initialization will
4868 be from a bitfield load. */
4869 if (TREE_CODE (op0) == SSA_NAME)
4871 gimple *op0stmt = get_gimple_for_ssa_name (op0);
4873 /* We want to eventually have OP0 be the same as TO, which
4874 should be a bitfield. */
4875 if (!op0stmt
4876 || !is_gimple_assign (op0stmt)
4877 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4878 return false;
4879 op0 = gimple_assign_rhs1 (op0stmt);
4882 op1 = gimple_assign_rhs2 (srcstmt);
4884 if (!operand_equal_p (to, op0, 0))
4885 return false;
4887 if (MEM_P (str_rtx))
4889 unsigned HOST_WIDE_INT offset1;
4891 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4892 str_bitsize = BITS_PER_WORD;
4894 scalar_int_mode best_mode;
4895 if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
4896 MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
4897 return false;
4898 str_mode = best_mode;
4899 str_bitsize = GET_MODE_BITSIZE (best_mode);
4901 offset1 = bitpos;
4902 bitpos %= str_bitsize;
4903 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4904 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4906 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4907 return false;
4909 /* If the bit field covers the whole REG/MEM, store_field
4910 will likely generate better code. */
4911 if (bitsize >= str_bitsize)
4912 return false;
4914 /* We can't handle fields split across multiple entities. */
4915 if (bitpos + bitsize > str_bitsize)
4916 return false;
4918 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
4919 bitpos = str_bitsize - bitpos - bitsize;
4921 switch (code)
4923 case PLUS_EXPR:
4924 case MINUS_EXPR:
4925 /* For now, just optimize the case of the topmost bitfield
4926 where we don't need to do any masking and also
4927 1 bit bitfields where xor can be used.
4928 We might win by one instruction for the other bitfields
4929 too if insv/extv instructions aren't used, so that
4930 can be added later. */
4931 if ((reverse || bitpos + bitsize != str_bitsize)
4932 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4933 break;
4935 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4936 value = convert_modes (str_mode,
4937 TYPE_MODE (TREE_TYPE (op1)), value,
4938 TYPE_UNSIGNED (TREE_TYPE (op1)));
4940 /* We may be accessing data outside the field, which means
4941 we can alias adjacent data. */
4942 if (MEM_P (str_rtx))
4944 str_rtx = shallow_copy_rtx (str_rtx);
4945 set_mem_alias_set (str_rtx, 0);
4946 set_mem_expr (str_rtx, 0);
4949 if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
4951 value = expand_and (str_mode, value, const1_rtx, NULL);
4952 binop = xor_optab;
4954 else
4955 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4957 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4958 if (reverse)
4959 value = flip_storage_order (str_mode, value);
4960 result = expand_binop (str_mode, binop, str_rtx,
4961 value, str_rtx, 1, OPTAB_WIDEN);
4962 if (result != str_rtx)
4963 emit_move_insn (str_rtx, result);
4964 return true;
4966 case BIT_IOR_EXPR:
4967 case BIT_XOR_EXPR:
4968 if (TREE_CODE (op1) != INTEGER_CST)
4969 break;
4970 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4971 value = convert_modes (str_mode,
4972 TYPE_MODE (TREE_TYPE (op1)), value,
4973 TYPE_UNSIGNED (TREE_TYPE (op1)));
4975 /* We may be accessing data outside the field, which means
4976 we can alias adjacent data. */
4977 if (MEM_P (str_rtx))
4979 str_rtx = shallow_copy_rtx (str_rtx);
4980 set_mem_alias_set (str_rtx, 0);
4981 set_mem_expr (str_rtx, 0);
4984 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4985 if (bitpos + bitsize != str_bitsize)
4987 rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
4988 str_mode);
4989 value = expand_and (str_mode, value, mask, NULL_RTX);
4991 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4992 if (reverse)
4993 value = flip_storage_order (str_mode, value);
4994 result = expand_binop (str_mode, binop, str_rtx,
4995 value, str_rtx, 1, OPTAB_WIDEN);
4996 if (result != str_rtx)
4997 emit_move_insn (str_rtx, result);
4998 return true;
5000 default:
5001 break;
5004 return false;
5007 /* In the C++ memory model, consecutive bit fields in a structure are
5008 considered one memory location.
5010 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
5011 returns the bit range of consecutive bits in which this COMPONENT_REF
5012 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
5013 and *OFFSET may be adjusted in the process.
5015 If the access does not need to be restricted, 0 is returned in both
5016 *BITSTART and *BITEND. */
5018 void
5019 get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
5020 poly_int64_pod *bitpos, tree *offset)
5022 poly_int64 bitoffset;
5023 tree field, repr;
5025 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
5027 field = TREE_OPERAND (exp, 1);
5028 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
5029 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
5030 need to limit the range we can access. */
5031 if (!repr)
5033 *bitstart = *bitend = 0;
5034 return;
5037 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
5038 part of a larger bit field, then the representative does not serve any
5039 useful purpose. This can occur in Ada. */
5040 if (handled_component_p (TREE_OPERAND (exp, 0)))
5042 machine_mode rmode;
5043 poly_int64 rbitsize, rbitpos;
5044 tree roffset;
5045 int unsignedp, reversep, volatilep = 0;
5046 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
5047 &roffset, &rmode, &unsignedp, &reversep,
5048 &volatilep);
5049 if (!multiple_p (rbitpos, BITS_PER_UNIT))
5051 *bitstart = *bitend = 0;
5052 return;
5056 /* Compute the adjustment to bitpos from the offset of the field
5057 relative to the representative. DECL_FIELD_OFFSET of field and
5058 repr are the same by construction if they are not constants,
5059 see finish_bitfield_layout. */
5060 poly_uint64 field_offset, repr_offset;
5061 if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
5062 && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
5063 bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
5064 else
5065 bitoffset = 0;
5066 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
5067 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
5069 /* If the adjustment is larger than bitpos, we would have a negative bit
5070 position for the lower bound and this may wreak havoc later. Adjust
5071 offset and bitpos to make the lower bound non-negative in that case. */
5072 if (maybe_gt (bitoffset, *bitpos))
5074 poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
5075 poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
5077 *bitpos += adjust_bits;
5078 if (*offset == NULL_TREE)
5079 *offset = size_int (-adjust_bytes);
5080 else
5081 *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
5082 *bitstart = 0;
5084 else
5085 *bitstart = *bitpos - bitoffset;
5087 *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
5090 /* Returns true if BASE is a DECL that does not reside in memory and
5091 has non-BLKmode. DECL_RTL must not be a MEM; if
5092 DECL_RTL was not set yet, return false. */
5094 static inline bool
5095 non_mem_decl_p (tree base)
5097 if (!DECL_P (base)
5098 || TREE_ADDRESSABLE (base)
5099 || DECL_MODE (base) == BLKmode)
5100 return false;
5102 if (!DECL_RTL_SET_P (base))
5103 return false;
5105 return (!MEM_P (DECL_RTL (base)));
5108 /* Returns true if REF refers to an object that does not
5109 reside in memory and has non-BLKmode. */
5111 static inline bool
5112 mem_ref_refers_to_non_mem_p (tree ref)
5114 tree base;
5116 if (TREE_CODE (ref) == MEM_REF
5117 || TREE_CODE (ref) == TARGET_MEM_REF)
5119 tree addr = TREE_OPERAND (ref, 0);
5121 if (TREE_CODE (addr) != ADDR_EXPR)
5122 return false;
5124 base = TREE_OPERAND (addr, 0);
5126 else
5127 base = ref;
5129 return non_mem_decl_p (base);
5132 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
5133 is true, try generating a nontemporal store. */
5135 void
5136 expand_assignment (tree to, tree from, bool nontemporal)
5138 rtx to_rtx = 0;
5139 rtx result;
5140 machine_mode mode;
5141 unsigned int align;
5142 enum insn_code icode;
5144 /* Don't crash if the lhs of the assignment was erroneous. */
5145 if (TREE_CODE (to) == ERROR_MARK)
5147 expand_normal (from);
5148 return;
5151 /* Optimize away no-op moves without side-effects. */
5152 if (operand_equal_p (to, from, 0))
5153 return;
5155 /* Handle misaligned stores. */
5156 mode = TYPE_MODE (TREE_TYPE (to));
5157 if ((TREE_CODE (to) == MEM_REF
5158 || TREE_CODE (to) == TARGET_MEM_REF
5159 || DECL_P (to))
5160 && mode != BLKmode
5161 && !mem_ref_refers_to_non_mem_p (to)
5162 && ((align = get_object_alignment (to))
5163 < GET_MODE_ALIGNMENT (mode))
5164 && (((icode = optab_handler (movmisalign_optab, mode))
5165 != CODE_FOR_nothing)
5166 || targetm.slow_unaligned_access (mode, align)))
5168 rtx reg, mem;
5170 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
5171 /* Handle PARALLEL. */
5172 reg = maybe_emit_group_store (reg, TREE_TYPE (from));
5173 reg = force_not_mem (reg);
5174 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5175 if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
5176 reg = flip_storage_order (mode, reg);
5178 if (icode != CODE_FOR_nothing)
5180 class expand_operand ops[2];
5182 create_fixed_operand (&ops[0], mem);
5183 create_input_operand (&ops[1], reg, mode);
5184 /* The movmisalign<mode> pattern cannot fail, else the assignment
5185 would silently be omitted. */
5186 expand_insn (icode, 2, ops);
5188 else
5189 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
5190 false);
5191 return;
5194 /* Assignment of a structure component needs special treatment
5195 if the structure component's rtx is not simply a MEM.
5196 Assignment of an array element at a constant index, and assignment of
5197 an array element in an unaligned packed structure field, has the same
5198 problem. Same for (partially) storing into a non-memory object. */
5199 if (handled_component_p (to)
5200 || (TREE_CODE (to) == MEM_REF
5201 && (REF_REVERSE_STORAGE_ORDER (to)
5202 || mem_ref_refers_to_non_mem_p (to)))
5203 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
5205 machine_mode mode1;
5206 poly_int64 bitsize, bitpos;
5207 poly_uint64 bitregion_start = 0;
5208 poly_uint64 bitregion_end = 0;
5209 tree offset;
5210 int unsignedp, reversep, volatilep = 0;
5211 tree tem;
5213 push_temp_slots ();
5214 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
5215 &unsignedp, &reversep, &volatilep);
5217 /* Make sure bitpos is not negative, it can wreak havoc later. */
5218 if (maybe_lt (bitpos, 0))
5220 gcc_assert (offset == NULL_TREE);
5221 offset = size_int (bits_to_bytes_round_down (bitpos));
5222 bitpos = num_trailing_bits (bitpos);
5225 if (TREE_CODE (to) == COMPONENT_REF
5226 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
5227 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
5228 /* The C++ memory model naturally applies to byte-aligned fields.
5229 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
5230 BITSIZE are not byte-aligned, there is no need to limit the range
5231 we can access. This can occur with packed structures in Ada. */
5232 else if (maybe_gt (bitsize, 0)
5233 && multiple_p (bitsize, BITS_PER_UNIT)
5234 && multiple_p (bitpos, BITS_PER_UNIT))
5236 bitregion_start = bitpos;
5237 bitregion_end = bitpos + bitsize - 1;
5240 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
5242 /* If the field has a mode, we want to access it in the
5243 field's mode, not the computed mode.
5244 If a MEM has VOIDmode (external with incomplete type),
5245 use BLKmode for it instead. */
5246 if (MEM_P (to_rtx))
5248 if (mode1 != VOIDmode)
5249 to_rtx = adjust_address (to_rtx, mode1, 0);
5250 else if (GET_MODE (to_rtx) == VOIDmode)
5251 to_rtx = adjust_address (to_rtx, BLKmode, 0);
5254 if (offset != 0)
5256 machine_mode address_mode;
5257 rtx offset_rtx;
5259 if (!MEM_P (to_rtx))
5261 /* We can get constant negative offsets into arrays with broken
5262 user code. Translate this to a trap instead of ICEing. */
5263 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
5264 expand_builtin_trap ();
5265 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
5268 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
5269 address_mode = get_address_mode (to_rtx);
5270 if (GET_MODE (offset_rtx) != address_mode)
5272 /* We cannot be sure that the RTL in offset_rtx is valid outside
5273 of a memory address context, so force it into a register
5274 before attempting to convert it to the desired mode. */
5275 offset_rtx = force_operand (offset_rtx, NULL_RTX);
5276 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5279 /* If we have an expression in OFFSET_RTX and a non-zero
5280 byte offset in BITPOS, adding the byte offset before the
5281 OFFSET_RTX results in better intermediate code, which makes
5282 later rtl optimization passes perform better.
5284 We prefer intermediate code like this:
5286 r124:DI=r123:DI+0x18
5287 [r124:DI]=r121:DI
5289 ... instead of ...
5291 r124:DI=r123:DI+0x10
5292 [r124:DI+0x8]=r121:DI
5294 This is only done for aligned data values, as these can
5295 be expected to result in single move instructions. */
5296 poly_int64 bytepos;
5297 if (mode1 != VOIDmode
5298 && maybe_ne (bitpos, 0)
5299 && maybe_gt (bitsize, 0)
5300 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
5301 && multiple_p (bitpos, bitsize)
5302 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
5303 && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
5305 to_rtx = adjust_address (to_rtx, mode1, bytepos);
5306 bitregion_start = 0;
5307 if (known_ge (bitregion_end, poly_uint64 (bitpos)))
5308 bitregion_end -= bitpos;
5309 bitpos = 0;
5312 to_rtx = offset_address (to_rtx, offset_rtx,
5313 highest_pow2_factor_for_target (to,
5314 offset));
5317 /* No action is needed if the target is not a memory and the field
5318 lies completely outside that target. This can occur if the source
5319 code contains an out-of-bounds access to a small array. */
5320 if (!MEM_P (to_rtx)
5321 && GET_MODE (to_rtx) != BLKmode
5322 && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
5324 expand_normal (from);
5325 result = NULL;
5327 /* Handle expand_expr of a complex value returning a CONCAT. */
5328 else if (GET_CODE (to_rtx) == CONCAT)
5330 machine_mode to_mode = GET_MODE (to_rtx);
5331 gcc_checking_assert (COMPLEX_MODE_P (to_mode));
5332 poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
5333 unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
5334 if (TYPE_MODE (TREE_TYPE (from)) == to_mode
5335 && known_eq (bitpos, 0)
5336 && known_eq (bitsize, mode_bitsize))
5337 result = store_expr (from, to_rtx, false, nontemporal, reversep);
5338 else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
5339 && known_eq (bitsize, inner_bitsize)
5340 && (known_eq (bitpos, 0)
5341 || known_eq (bitpos, inner_bitsize)))
5342 result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
5343 false, nontemporal, reversep);
5344 else if (known_le (bitpos + bitsize, inner_bitsize))
5345 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
5346 bitregion_start, bitregion_end,
5347 mode1, from, get_alias_set (to),
5348 nontemporal, reversep);
5349 else if (known_ge (bitpos, inner_bitsize))
5350 result = store_field (XEXP (to_rtx, 1), bitsize,
5351 bitpos - inner_bitsize,
5352 bitregion_start, bitregion_end,
5353 mode1, from, get_alias_set (to),
5354 nontemporal, reversep);
5355 else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
5357 result = expand_normal (from);
5358 if (GET_CODE (result) == CONCAT)
5360 to_mode = GET_MODE_INNER (to_mode);
5361 machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
5362 rtx from_real
5363 = simplify_gen_subreg (to_mode, XEXP (result, 0),
5364 from_mode, 0);
5365 rtx from_imag
5366 = simplify_gen_subreg (to_mode, XEXP (result, 1),
5367 from_mode, 0);
5368 if (!from_real || !from_imag)
5369 goto concat_store_slow;
5370 emit_move_insn (XEXP (to_rtx, 0), from_real);
5371 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5373 else
5375 machine_mode from_mode
5376 = GET_MODE (result) == VOIDmode
5377 ? TYPE_MODE (TREE_TYPE (from))
5378 : GET_MODE (result);
5379 rtx from_rtx;
5380 if (MEM_P (result))
5381 from_rtx = change_address (result, to_mode, NULL_RTX);
5382 else
5383 from_rtx
5384 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5385 if (from_rtx)
5387 emit_move_insn (XEXP (to_rtx, 0),
5388 read_complex_part (from_rtx, false));
5389 emit_move_insn (XEXP (to_rtx, 1),
5390 read_complex_part (from_rtx, true));
5392 else
5394 to_mode = GET_MODE_INNER (to_mode);
5395 rtx from_real
5396 = simplify_gen_subreg (to_mode, result, from_mode, 0);
5397 rtx from_imag
5398 = simplify_gen_subreg (to_mode, result, from_mode,
5399 GET_MODE_SIZE (to_mode));
5400 if (!from_real || !from_imag)
5401 goto concat_store_slow;
5402 emit_move_insn (XEXP (to_rtx, 0), from_real);
5403 emit_move_insn (XEXP (to_rtx, 1), from_imag);
5407 else
5409 concat_store_slow:;
5410 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5411 GET_MODE_SIZE (GET_MODE (to_rtx)));
5412 write_complex_part (temp, XEXP (to_rtx, 0), false);
5413 write_complex_part (temp, XEXP (to_rtx, 1), true);
5414 result = store_field (temp, bitsize, bitpos,
5415 bitregion_start, bitregion_end,
5416 mode1, from, get_alias_set (to),
5417 nontemporal, reversep);
5418 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
5419 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
5422 /* For calls to functions returning variable length structures, if TO_RTX
5423 is not a MEM, go through a MEM because we must not create temporaries
5424 of the VLA type. */
5425 else if (!MEM_P (to_rtx)
5426 && TREE_CODE (from) == CALL_EXPR
5427 && COMPLETE_TYPE_P (TREE_TYPE (from))
5428 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
5430 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
5431 GET_MODE_SIZE (GET_MODE (to_rtx)));
5432 result = store_field (temp, bitsize, bitpos, bitregion_start,
5433 bitregion_end, mode1, from, get_alias_set (to),
5434 nontemporal, reversep);
5435 emit_move_insn (to_rtx, temp);
5437 else
5439 if (MEM_P (to_rtx))
5441 /* If the field is at offset zero, we could have been given the
5442 DECL_RTX of the parent struct. Don't munge it. */
5443 to_rtx = shallow_copy_rtx (to_rtx);
5444 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
5445 if (volatilep)
5446 MEM_VOLATILE_P (to_rtx) = 1;
5449 gcc_checking_assert (known_ge (bitpos, 0));
5450 if (optimize_bitfield_assignment_op (bitsize, bitpos,
5451 bitregion_start, bitregion_end,
5452 mode1, to_rtx, to, from,
5453 reversep))
5454 result = NULL;
5455 else
5456 result = store_field (to_rtx, bitsize, bitpos,
5457 bitregion_start, bitregion_end,
5458 mode1, from, get_alias_set (to),
5459 nontemporal, reversep);
5462 if (result)
5463 preserve_temp_slots (result);
5464 pop_temp_slots ();
5465 return;
5468 /* If the rhs is a function call and its value is not an aggregate,
5469 call the function before we start to compute the lhs.
5470 This is needed for correct code for cases such as
5471 val = setjmp (buf) on machines where reference to val
5472 requires loading up part of an address in a separate insn.
5474 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
5475 since it might be a promoted variable where the zero- or sign- extension
5476 needs to be done. Handling this in the normal way is safe because no
5477 computation is done before the call. The same is true for SSA names. */
5478 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5479 && COMPLETE_TYPE_P (TREE_TYPE (from))
5480 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5481 && ! (((VAR_P (to)
5482 || TREE_CODE (to) == PARM_DECL
5483 || TREE_CODE (to) == RESULT_DECL)
5484 && REG_P (DECL_RTL (to)))
5485 || TREE_CODE (to) == SSA_NAME))
5487 rtx value;
5489 push_temp_slots ();
5490 value = expand_normal (from);
5492 if (to_rtx == 0)
5493 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5495 /* Handle calls that return values in multiple non-contiguous locations.
5496 The Irix 6 ABI has examples of this. */
5497 if (GET_CODE (to_rtx) == PARALLEL)
5499 if (GET_CODE (value) == PARALLEL)
5500 emit_group_move (to_rtx, value);
5501 else
5502 emit_group_load (to_rtx, value, TREE_TYPE (from),
5503 int_size_in_bytes (TREE_TYPE (from)));
5505 else if (GET_CODE (value) == PARALLEL)
5506 emit_group_store (to_rtx, value, TREE_TYPE (from),
5507 int_size_in_bytes (TREE_TYPE (from)));
5508 else if (GET_MODE (to_rtx) == BLKmode)
5510 /* Handle calls that return BLKmode values in registers. */
5511 if (REG_P (value))
5512 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5513 else
5514 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5516 else
5518 if (POINTER_TYPE_P (TREE_TYPE (to)))
5519 value = convert_memory_address_addr_space
5520 (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
5521 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5523 emit_move_insn (to_rtx, value);
5526 preserve_temp_slots (to_rtx);
5527 pop_temp_slots ();
5528 return;
5531 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5532 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5534 /* Don't move directly into a return register. */
5535 if (TREE_CODE (to) == RESULT_DECL
5536 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5538 rtx temp;
5540 push_temp_slots ();
5542 /* If the source is itself a return value, it still is in a pseudo at
5543 this point so we can move it back to the return register directly. */
5544 if (REG_P (to_rtx)
5545 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5546 && TREE_CODE (from) != CALL_EXPR)
5547 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5548 else
5549 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5551 /* Handle calls that return values in multiple non-contiguous locations.
5552 The Irix 6 ABI has examples of this. */
5553 if (GET_CODE (to_rtx) == PARALLEL)
5555 if (GET_CODE (temp) == PARALLEL)
5556 emit_group_move (to_rtx, temp);
5557 else
5558 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5559 int_size_in_bytes (TREE_TYPE (from)));
5561 else if (temp)
5562 emit_move_insn (to_rtx, temp);
5564 preserve_temp_slots (to_rtx);
5565 pop_temp_slots ();
5566 return;
5569 /* In case we are returning the contents of an object which overlaps
5570 the place the value is being stored, use a safe function when copying
5571 a value through a pointer into a structure value return block. */
5572 if (TREE_CODE (to) == RESULT_DECL
5573 && TREE_CODE (from) == INDIRECT_REF
5574 && ADDR_SPACE_GENERIC_P
5575 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5576 && refs_may_alias_p (to, from)
5577 && cfun->returns_struct
5578 && !cfun->returns_pcc_struct)
5580 rtx from_rtx, size;
5582 push_temp_slots ();
5583 size = expr_size (from);
5584 from_rtx = expand_normal (from);
5586 emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
5588 preserve_temp_slots (to_rtx);
5589 pop_temp_slots ();
5590 return;
5593 /* Compute FROM and store the value in the rtx we got. */
5595 push_temp_slots ();
5596 result = store_expr (from, to_rtx, 0, nontemporal, false);
5597 preserve_temp_slots (result);
5598 pop_temp_slots ();
5599 return;
5602 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5603 succeeded, false otherwise. */
5605 bool
5606 emit_storent_insn (rtx to, rtx from)
5608 class expand_operand ops[2];
5609 machine_mode mode = GET_MODE (to);
5610 enum insn_code code = optab_handler (storent_optab, mode);
5612 if (code == CODE_FOR_nothing)
5613 return false;
5615 create_fixed_operand (&ops[0], to);
5616 create_input_operand (&ops[1], from, mode);
5617 return maybe_expand_insn (code, 2, ops);
5620 /* Helper function for store_expr storing of STRING_CST. */
5622 static rtx
5623 string_cst_read_str (void *data, HOST_WIDE_INT offset, scalar_int_mode mode)
5625 tree str = (tree) data;
5627 gcc_assert (offset >= 0);
5628 if (offset >= TREE_STRING_LENGTH (str))
5629 return const0_rtx;
5631 if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
5632 > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
5634 char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
5635 size_t l = TREE_STRING_LENGTH (str) - offset;
5636 memcpy (p, TREE_STRING_POINTER (str) + offset, l);
5637 memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
5638 return c_readstr (p, mode, false);
5641 return c_readstr (TREE_STRING_POINTER (str) + offset, mode, false);
5644 /* Generate code for computing expression EXP,
5645 and storing the value into TARGET.
5647 If the mode is BLKmode then we may return TARGET itself.
5648 It turns out that in BLKmode it doesn't cause a problem.
5649 because C has no operators that could combine two different
5650 assignments into the same BLKmode object with different values
5651 with no sequence point. Will other languages need this to
5652 be more thorough?
5654 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5655 stack, and block moves may need to be treated specially.
5657 If NONTEMPORAL is true, try using a nontemporal store instruction.
5659 If REVERSE is true, the store is to be done in reverse order. */
5662 store_expr (tree exp, rtx target, int call_param_p,
5663 bool nontemporal, bool reverse)
5665 rtx temp;
5666 rtx alt_rtl = NULL_RTX;
5667 location_t loc = curr_insn_location ();
5668 bool shortened_string_cst = false;
5670 if (VOID_TYPE_P (TREE_TYPE (exp)))
5672 /* C++ can generate ?: expressions with a throw expression in one
5673 branch and an rvalue in the other. Here, we resolve attempts to
5674 store the throw expression's nonexistent result. */
5675 gcc_assert (!call_param_p);
5676 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5677 return NULL_RTX;
5679 if (TREE_CODE (exp) == COMPOUND_EXPR)
5681 /* Perform first part of compound expression, then assign from second
5682 part. */
5683 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5684 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5685 return store_expr (TREE_OPERAND (exp, 1), target,
5686 call_param_p, nontemporal, reverse);
5688 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5690 /* For conditional expression, get safe form of the target. Then
5691 test the condition, doing the appropriate assignment on either
5692 side. This avoids the creation of unnecessary temporaries.
5693 For non-BLKmode, it is more efficient not to do this. */
5695 rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
5697 do_pending_stack_adjust ();
5698 NO_DEFER_POP;
5699 jumpifnot (TREE_OPERAND (exp, 0), lab1,
5700 profile_probability::uninitialized ());
5701 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5702 nontemporal, reverse);
5703 emit_jump_insn (targetm.gen_jump (lab2));
5704 emit_barrier ();
5705 emit_label (lab1);
5706 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5707 nontemporal, reverse);
5708 emit_label (lab2);
5709 OK_DEFER_POP;
5711 return NULL_RTX;
5713 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5714 /* If this is a scalar in a register that is stored in a wider mode
5715 than the declared mode, compute the result into its declared mode
5716 and then convert to the wider mode. Our value is the computed
5717 expression. */
5719 rtx inner_target = 0;
5720 scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
5721 scalar_int_mode inner_mode = subreg_promoted_mode (target);
5723 /* We can do the conversion inside EXP, which will often result
5724 in some optimizations. Do the conversion in two steps: first
5725 change the signedness, if needed, then the extend. But don't
5726 do this if the type of EXP is a subtype of something else
5727 since then the conversion might involve more than just
5728 converting modes. */
5729 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5730 && TREE_TYPE (TREE_TYPE (exp)) == 0
5731 && GET_MODE_PRECISION (outer_mode)
5732 == TYPE_PRECISION (TREE_TYPE (exp)))
5734 if (!SUBREG_CHECK_PROMOTED_SIGN (target,
5735 TYPE_UNSIGNED (TREE_TYPE (exp))))
5737 /* Some types, e.g. Fortran's logical*4, won't have a signed
5738 version, so use the mode instead. */
5739 tree ntype
5740 = (signed_or_unsigned_type_for
5741 (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
5742 if (ntype == NULL)
5743 ntype = lang_hooks.types.type_for_mode
5744 (TYPE_MODE (TREE_TYPE (exp)),
5745 SUBREG_PROMOTED_SIGN (target));
5747 exp = fold_convert_loc (loc, ntype, exp);
5750 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5751 (inner_mode, SUBREG_PROMOTED_SIGN (target)),
5752 exp);
5754 inner_target = SUBREG_REG (target);
5757 temp = expand_expr (exp, inner_target, VOIDmode,
5758 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5761 /* If TEMP is a VOIDmode constant, use convert_modes to make
5762 sure that we properly convert it. */
5763 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5765 temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
5766 temp, SUBREG_PROMOTED_SIGN (target));
5767 temp = convert_modes (inner_mode, outer_mode, temp,
5768 SUBREG_PROMOTED_SIGN (target));
5771 convert_move (SUBREG_REG (target), temp,
5772 SUBREG_PROMOTED_SIGN (target));
5774 return NULL_RTX;
5776 else if ((TREE_CODE (exp) == STRING_CST
5777 || (TREE_CODE (exp) == MEM_REF
5778 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5779 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5780 == STRING_CST
5781 && integer_zerop (TREE_OPERAND (exp, 1))))
5782 && !nontemporal && !call_param_p
5783 && MEM_P (target))
5785 /* Optimize initialization of an array with a STRING_CST. */
5786 HOST_WIDE_INT exp_len, str_copy_len;
5787 rtx dest_mem;
5788 tree str = TREE_CODE (exp) == STRING_CST
5789 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5791 exp_len = int_expr_size (exp);
5792 if (exp_len <= 0)
5793 goto normal_expr;
5795 if (TREE_STRING_LENGTH (str) <= 0)
5796 goto normal_expr;
5798 if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
5799 MEM_ALIGN (target), false))
5801 store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
5802 MEM_ALIGN (target), false, RETURN_BEGIN);
5803 return NULL_RTX;
5806 str_copy_len = TREE_STRING_LENGTH (str);
5807 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
5809 str_copy_len += STORE_MAX_PIECES - 1;
5810 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5812 if (str_copy_len >= exp_len)
5813 goto normal_expr;
5815 if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
5816 (void *) str, MEM_ALIGN (target), false))
5817 goto normal_expr;
5819 dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
5820 (void *) str, MEM_ALIGN (target), false,
5821 RETURN_END);
5822 clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
5823 exp_len - str_copy_len),
5824 GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
5825 return NULL_RTX;
5827 else
5829 rtx tmp_target;
5831 normal_expr:
5832 /* If we want to use a nontemporal or a reverse order store, force the
5833 value into a register first. */
5834 tmp_target = nontemporal || reverse ? NULL_RTX : target;
5835 tree rexp = exp;
5836 if (TREE_CODE (exp) == STRING_CST
5837 && tmp_target == target
5838 && GET_MODE (target) == BLKmode
5839 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
5841 rtx size = expr_size (exp);
5842 if (CONST_INT_P (size)
5843 && size != const0_rtx
5844 && (UINTVAL (size)
5845 > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
5847 /* If the STRING_CST has much larger array type than
5848 TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
5849 it into the rodata section as the code later on will use
5850 memset zero for the remainder anyway. See PR95052. */
5851 tmp_target = NULL_RTX;
5852 rexp = copy_node (exp);
5853 tree index
5854 = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
5855 TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
5856 index);
5857 shortened_string_cst = true;
5860 temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
5861 (call_param_p
5862 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5863 &alt_rtl, false);
5864 if (shortened_string_cst)
5866 gcc_assert (MEM_P (temp));
5867 temp = change_address (temp, BLKmode, NULL_RTX);
5871 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5872 the same as that of TARGET, adjust the constant. This is needed, for
5873 example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
5874 only a word-sized value. */
5875 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5876 && TREE_CODE (exp) != ERROR_MARK
5877 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5879 gcc_assert (!shortened_string_cst);
5880 if (GET_MODE_CLASS (GET_MODE (target))
5881 != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
5882 && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
5883 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
5885 rtx t = simplify_gen_subreg (GET_MODE (target), temp,
5886 TYPE_MODE (TREE_TYPE (exp)), 0);
5887 if (t)
5888 temp = t;
5890 if (GET_MODE (temp) == VOIDmode)
5891 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5892 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5895 /* If value was not generated in the target, store it there.
5896 Convert the value to TARGET's type first if necessary and emit the
5897 pending incrementations that have been queued when expanding EXP.
5898 Note that we cannot emit the whole queue blindly because this will
5899 effectively disable the POST_INC optimization later.
5901 If TEMP and TARGET compare equal according to rtx_equal_p, but
5902 one or both of them are volatile memory refs, we have to distinguish
5903 two cases:
5904 - expand_expr has used TARGET. In this case, we must not generate
5905 another copy. This can be detected by TARGET being equal according
5906 to == .
5907 - expand_expr has not used TARGET - that means that the source just
5908 happens to have the same RTX form. Since temp will have been created
5909 by expand_expr, it will compare unequal according to == .
5910 We must generate a copy in this case, to reach the correct number
5911 of volatile memory references. */
5913 if ((! rtx_equal_p (temp, target)
5914 || (temp != target && (side_effects_p (temp)
5915 || side_effects_p (target))))
5916 && TREE_CODE (exp) != ERROR_MARK
5917 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5918 but TARGET is not valid memory reference, TEMP will differ
5919 from TARGET although it is really the same location. */
5920 && !(alt_rtl
5921 && rtx_equal_p (alt_rtl, target)
5922 && !side_effects_p (alt_rtl)
5923 && !side_effects_p (target))
5924 /* If there's nothing to copy, don't bother. Don't call
5925 expr_size unless necessary, because some front-ends (C++)
5926 expr_size-hook must not be given objects that are not
5927 supposed to be bit-copied or bit-initialized. */
5928 && expr_size (exp) != const0_rtx)
5930 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5932 gcc_assert (!shortened_string_cst);
5933 if (GET_MODE (target) == BLKmode)
5935 /* Handle calls that return BLKmode values in registers. */
5936 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5937 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5938 else
5939 store_bit_field (target,
5940 rtx_to_poly_int64 (expr_size (exp))
5941 * BITS_PER_UNIT,
5942 0, 0, 0, GET_MODE (temp), temp, reverse);
5944 else
5945 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5948 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5950 /* Handle copying a string constant into an array. The string
5951 constant may be shorter than the array. So copy just the string's
5952 actual length, and clear the rest. First get the size of the data
5953 type of the string, which is actually the size of the target. */
5954 rtx size = expr_size (exp);
5956 if (CONST_INT_P (size)
5957 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5958 emit_block_move (target, temp, size,
5959 (call_param_p
5960 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5961 else
5963 machine_mode pointer_mode
5964 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5965 machine_mode address_mode = get_address_mode (target);
5967 /* Compute the size of the data to copy from the string. */
5968 tree copy_size
5969 = size_binop_loc (loc, MIN_EXPR,
5970 make_tree (sizetype, size),
5971 size_int (TREE_STRING_LENGTH (exp)));
5972 rtx copy_size_rtx
5973 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5974 (call_param_p
5975 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5976 rtx_code_label *label = 0;
5978 /* Copy that much. */
5979 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5980 TYPE_UNSIGNED (sizetype));
5981 emit_block_move (target, temp, copy_size_rtx,
5982 (call_param_p
5983 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5985 /* Figure out how much is left in TARGET that we have to clear.
5986 Do all calculations in pointer_mode. */
5987 poly_int64 const_copy_size;
5988 if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
5990 size = plus_constant (address_mode, size, -const_copy_size);
5991 target = adjust_address (target, BLKmode, const_copy_size);
5993 else
5995 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5996 copy_size_rtx, NULL_RTX, 0,
5997 OPTAB_LIB_WIDEN);
5999 if (GET_MODE (copy_size_rtx) != address_mode)
6000 copy_size_rtx = convert_to_mode (address_mode,
6001 copy_size_rtx,
6002 TYPE_UNSIGNED (sizetype));
6004 target = offset_address (target, copy_size_rtx,
6005 highest_pow2_factor (copy_size));
6006 label = gen_label_rtx ();
6007 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
6008 GET_MODE (size), 0, label);
6011 if (size != const0_rtx)
6012 clear_storage (target, size, BLOCK_OP_NORMAL);
6014 if (label)
6015 emit_label (label);
6018 else if (shortened_string_cst)
6019 gcc_unreachable ();
6020 /* Handle calls that return values in multiple non-contiguous locations.
6021 The Irix 6 ABI has examples of this. */
6022 else if (GET_CODE (target) == PARALLEL)
6024 if (GET_CODE (temp) == PARALLEL)
6025 emit_group_move (target, temp);
6026 else
6027 emit_group_load (target, temp, TREE_TYPE (exp),
6028 int_size_in_bytes (TREE_TYPE (exp)));
6030 else if (GET_CODE (temp) == PARALLEL)
6031 emit_group_store (target, temp, TREE_TYPE (exp),
6032 int_size_in_bytes (TREE_TYPE (exp)));
6033 else if (GET_MODE (temp) == BLKmode)
6034 emit_block_move (target, temp, expr_size (exp),
6035 (call_param_p
6036 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
6037 /* If we emit a nontemporal store, there is nothing else to do. */
6038 else if (nontemporal && emit_storent_insn (target, temp))
6040 else
6042 if (reverse)
6043 temp = flip_storage_order (GET_MODE (target), temp);
6044 temp = force_operand (temp, target);
6045 if (temp != target)
6046 emit_move_insn (target, temp);
6049 else
6050 gcc_assert (!shortened_string_cst);
6052 return NULL_RTX;
6055 /* Return true if field F of structure TYPE is a flexible array. */
6057 static bool
6058 flexible_array_member_p (const_tree f, const_tree type)
6060 const_tree tf;
6062 tf = TREE_TYPE (f);
6063 return (DECL_CHAIN (f) == NULL
6064 && TREE_CODE (tf) == ARRAY_TYPE
6065 && TYPE_DOMAIN (tf)
6066 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
6067 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
6068 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
6069 && int_size_in_bytes (type) >= 0);
6072 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
6073 must have in order for it to completely initialize a value of type TYPE.
6074 Return -1 if the number isn't known.
6076 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
6078 static HOST_WIDE_INT
6079 count_type_elements (const_tree type, bool for_ctor_p)
6081 switch (TREE_CODE (type))
6083 case ARRAY_TYPE:
6085 tree nelts;
6087 nelts = array_type_nelts (type);
6088 if (nelts && tree_fits_uhwi_p (nelts))
6090 unsigned HOST_WIDE_INT n;
6092 n = tree_to_uhwi (nelts) + 1;
6093 if (n == 0 || for_ctor_p)
6094 return n;
6095 else
6096 return n * count_type_elements (TREE_TYPE (type), false);
6098 return for_ctor_p ? -1 : 1;
6101 case RECORD_TYPE:
6103 unsigned HOST_WIDE_INT n;
6104 tree f;
6106 n = 0;
6107 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6108 if (TREE_CODE (f) == FIELD_DECL)
6110 if (!for_ctor_p)
6111 n += count_type_elements (TREE_TYPE (f), false);
6112 else if (!flexible_array_member_p (f, type))
6113 /* Don't count flexible arrays, which are not supposed
6114 to be initialized. */
6115 n += 1;
6118 return n;
6121 case UNION_TYPE:
6122 case QUAL_UNION_TYPE:
6124 tree f;
6125 HOST_WIDE_INT n, m;
6127 gcc_assert (!for_ctor_p);
6128 /* Estimate the number of scalars in each field and pick the
6129 maximum. Other estimates would do instead; the idea is simply
6130 to make sure that the estimate is not sensitive to the ordering
6131 of the fields. */
6132 n = 1;
6133 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
6134 if (TREE_CODE (f) == FIELD_DECL)
6136 m = count_type_elements (TREE_TYPE (f), false);
6137 /* If the field doesn't span the whole union, add an extra
6138 scalar for the rest. */
6139 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
6140 TYPE_SIZE (type)) != 1)
6141 m++;
6142 if (n < m)
6143 n = m;
6145 return n;
6148 case COMPLEX_TYPE:
6149 return 2;
6151 case VECTOR_TYPE:
6153 unsigned HOST_WIDE_INT nelts;
6154 if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
6155 return nelts;
6156 else
6157 return -1;
6160 case INTEGER_TYPE:
6161 case REAL_TYPE:
6162 case FIXED_POINT_TYPE:
6163 case ENUMERAL_TYPE:
6164 case BOOLEAN_TYPE:
6165 case POINTER_TYPE:
6166 case OFFSET_TYPE:
6167 case REFERENCE_TYPE:
6168 case NULLPTR_TYPE:
6169 return 1;
6171 case ERROR_MARK:
6172 return 0;
6174 case VOID_TYPE:
6175 case METHOD_TYPE:
6176 case FUNCTION_TYPE:
6177 case LANG_TYPE:
6178 default:
6179 gcc_unreachable ();
6183 /* Helper for categorize_ctor_elements. Identical interface. */
6185 static bool
6186 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6187 HOST_WIDE_INT *p_unique_nz_elts,
6188 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6190 unsigned HOST_WIDE_INT idx;
6191 HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
6192 tree value, purpose, elt_type;
6194 /* Whether CTOR is a valid constant initializer, in accordance with what
6195 initializer_constant_valid_p does. If inferred from the constructor
6196 elements, true until proven otherwise. */
6197 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
6198 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
6200 nz_elts = 0;
6201 unique_nz_elts = 0;
6202 init_elts = 0;
6203 num_fields = 0;
6204 elt_type = NULL_TREE;
6206 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
6208 HOST_WIDE_INT mult = 1;
6210 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
6212 tree lo_index = TREE_OPERAND (purpose, 0);
6213 tree hi_index = TREE_OPERAND (purpose, 1);
6215 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
6216 mult = (tree_to_uhwi (hi_index)
6217 - tree_to_uhwi (lo_index) + 1);
6219 num_fields += mult;
6220 elt_type = TREE_TYPE (value);
6222 switch (TREE_CODE (value))
6224 case CONSTRUCTOR:
6226 HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
6228 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
6229 &ic, p_complete);
6231 nz_elts += mult * nz;
6232 unique_nz_elts += unz;
6233 init_elts += mult * ic;
6235 if (const_from_elts_p && const_p)
6236 const_p = const_elt_p;
6238 break;
6240 case INTEGER_CST:
6241 case REAL_CST:
6242 case FIXED_CST:
6243 if (!initializer_zerop (value))
6245 nz_elts += mult;
6246 unique_nz_elts++;
6248 init_elts += mult;
6249 break;
6251 case STRING_CST:
6252 nz_elts += mult * TREE_STRING_LENGTH (value);
6253 unique_nz_elts += TREE_STRING_LENGTH (value);
6254 init_elts += mult * TREE_STRING_LENGTH (value);
6255 break;
6257 case COMPLEX_CST:
6258 if (!initializer_zerop (TREE_REALPART (value)))
6260 nz_elts += mult;
6261 unique_nz_elts++;
6263 if (!initializer_zerop (TREE_IMAGPART (value)))
6265 nz_elts += mult;
6266 unique_nz_elts++;
6268 init_elts += 2 * mult;
6269 break;
6271 case VECTOR_CST:
6273 /* We can only construct constant-length vectors using
6274 CONSTRUCTOR. */
6275 unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
6276 for (unsigned int i = 0; i < nunits; ++i)
6278 tree v = VECTOR_CST_ELT (value, i);
6279 if (!initializer_zerop (v))
6281 nz_elts += mult;
6282 unique_nz_elts++;
6284 init_elts += mult;
6287 break;
6289 default:
6291 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
6292 nz_elts += mult * tc;
6293 unique_nz_elts += tc;
6294 init_elts += mult * tc;
6296 if (const_from_elts_p && const_p)
6297 const_p
6298 = initializer_constant_valid_p (value,
6299 elt_type,
6300 TYPE_REVERSE_STORAGE_ORDER
6301 (TREE_TYPE (ctor)))
6302 != NULL_TREE;
6304 break;
6308 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
6309 num_fields, elt_type))
6310 *p_complete = false;
6312 *p_nz_elts += nz_elts;
6313 *p_unique_nz_elts += unique_nz_elts;
6314 *p_init_elts += init_elts;
6316 return const_p;
6319 /* Examine CTOR to discover:
6320 * how many scalar fields are set to nonzero values,
6321 and place it in *P_NZ_ELTS;
6322 * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
6323 high - low + 1 (this can be useful for callers to determine ctors
6324 that could be cheaply initialized with - perhaps nested - loops
6325 compared to copied from huge read-only data),
6326 and place it in *P_UNIQUE_NZ_ELTS;
6327 * how many scalar fields in total are in CTOR,
6328 and place it in *P_ELT_COUNT.
6329 * whether the constructor is complete -- in the sense that every
6330 meaningful byte is explicitly given a value --
6331 and place it in *P_COMPLETE.
6333 Return whether or not CTOR is a valid static constant initializer, the same
6334 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
6336 bool
6337 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
6338 HOST_WIDE_INT *p_unique_nz_elts,
6339 HOST_WIDE_INT *p_init_elts, bool *p_complete)
6341 *p_nz_elts = 0;
6342 *p_unique_nz_elts = 0;
6343 *p_init_elts = 0;
6344 *p_complete = true;
6346 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
6347 p_init_elts, p_complete);
6350 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
6351 of which had type LAST_TYPE. Each element was itself a complete
6352 initializer, in the sense that every meaningful byte was explicitly
6353 given a value. Return true if the same is true for the constructor
6354 as a whole. */
6356 bool
6357 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
6358 const_tree last_type)
6360 if (TREE_CODE (type) == UNION_TYPE
6361 || TREE_CODE (type) == QUAL_UNION_TYPE)
6363 if (num_elts == 0)
6364 return false;
6366 gcc_assert (num_elts == 1 && last_type);
6368 /* ??? We could look at each element of the union, and find the
6369 largest element. Which would avoid comparing the size of the
6370 initialized element against any tail padding in the union.
6371 Doesn't seem worth the effort... */
6372 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
6375 return count_type_elements (type, true) == num_elts;
6378 /* Return 1 if EXP contains mostly (3/4) zeros. */
6380 static int
6381 mostly_zeros_p (const_tree exp)
6383 if (TREE_CODE (exp) == CONSTRUCTOR)
6385 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6386 bool complete_p;
6388 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6389 &complete_p);
6390 return !complete_p || nz_elts < init_elts / 4;
6393 return initializer_zerop (exp);
6396 /* Return 1 if EXP contains all zeros. */
6398 static int
6399 all_zeros_p (const_tree exp)
6401 if (TREE_CODE (exp) == CONSTRUCTOR)
6403 HOST_WIDE_INT nz_elts, unz_elts, init_elts;
6404 bool complete_p;
6406 categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
6407 &complete_p);
6408 return nz_elts == 0;
6411 return initializer_zerop (exp);
6414 /* Helper function for store_constructor.
6415 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
6416 CLEARED is as for store_constructor.
6417 ALIAS_SET is the alias set to use for any stores.
6418 If REVERSE is true, the store is to be done in reverse order.
6420 This provides a recursive shortcut back to store_constructor when it isn't
6421 necessary to go through store_field. This is so that we can pass through
6422 the cleared field to let store_constructor know that we may not have to
6423 clear a substructure if the outer structure has already been cleared. */
6425 static void
6426 store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
6427 poly_uint64 bitregion_start,
6428 poly_uint64 bitregion_end,
6429 machine_mode mode,
6430 tree exp, int cleared,
6431 alias_set_type alias_set, bool reverse)
6433 poly_int64 bytepos;
6434 poly_uint64 bytesize;
6435 if (TREE_CODE (exp) == CONSTRUCTOR
6436 /* We can only call store_constructor recursively if the size and
6437 bit position are on a byte boundary. */
6438 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
6439 && maybe_ne (bitsize, 0U)
6440 && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
6441 /* If we have a nonzero bitpos for a register target, then we just
6442 let store_field do the bitfield handling. This is unlikely to
6443 generate unnecessary clear instructions anyways. */
6444 && (known_eq (bitpos, 0) || MEM_P (target)))
6446 if (MEM_P (target))
6448 machine_mode target_mode = GET_MODE (target);
6449 if (target_mode != BLKmode
6450 && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
6451 target_mode = BLKmode;
6452 target = adjust_address (target, target_mode, bytepos);
6456 /* Update the alias set, if required. */
6457 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
6458 && MEM_ALIAS_SET (target) != 0)
6460 target = copy_rtx (target);
6461 set_mem_alias_set (target, alias_set);
6464 store_constructor (exp, target, cleared, bytesize, reverse);
6466 else
6467 store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
6468 exp, alias_set, false, reverse);
6472 /* Returns the number of FIELD_DECLs in TYPE. */
6474 static int
6475 fields_length (const_tree type)
6477 tree t = TYPE_FIELDS (type);
6478 int count = 0;
6480 for (; t; t = DECL_CHAIN (t))
6481 if (TREE_CODE (t) == FIELD_DECL)
6482 ++count;
6484 return count;
6488 /* Store the value of constructor EXP into the rtx TARGET.
6489 TARGET is either a REG or a MEM; we know it cannot conflict, since
6490 safe_from_p has been called.
6491 CLEARED is true if TARGET is known to have been zero'd.
6492 SIZE is the number of bytes of TARGET we are allowed to modify: this
6493 may not be the same as the size of EXP if we are assigning to a field
6494 which has been packed to exclude padding bits.
6495 If REVERSE is true, the store is to be done in reverse order. */
6497 static void
6498 store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
6499 bool reverse)
6501 tree type = TREE_TYPE (exp);
6502 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
6503 poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
6505 switch (TREE_CODE (type))
6507 case RECORD_TYPE:
6508 case UNION_TYPE:
6509 case QUAL_UNION_TYPE:
6511 unsigned HOST_WIDE_INT idx;
6512 tree field, value;
6514 /* The storage order is specified for every aggregate type. */
6515 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6517 /* If size is zero or the target is already cleared, do nothing. */
6518 if (known_eq (size, 0) || cleared)
6519 cleared = 1;
6520 /* We either clear the aggregate or indicate the value is dead. */
6521 else if ((TREE_CODE (type) == UNION_TYPE
6522 || TREE_CODE (type) == QUAL_UNION_TYPE)
6523 && ! CONSTRUCTOR_ELTS (exp))
6524 /* If the constructor is empty, clear the union. */
6526 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6527 cleared = 1;
6530 /* If we are building a static constructor into a register,
6531 set the initial value as zero so we can fold the value into
6532 a constant. But if more than one register is involved,
6533 this probably loses. */
6534 else if (REG_P (target) && TREE_STATIC (exp)
6535 && known_le (GET_MODE_SIZE (GET_MODE (target)),
6536 REGMODE_NATURAL_SIZE (GET_MODE (target))))
6538 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6539 cleared = 1;
6542 /* If the constructor has fewer fields than the structure or
6543 if we are initializing the structure to mostly zeros, clear
6544 the whole structure first. Don't do this if TARGET is a
6545 register whose mode size isn't equal to SIZE since
6546 clear_storage can't handle this case. */
6547 else if (known_size_p (size)
6548 && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
6549 || mostly_zeros_p (exp))
6550 && (!REG_P (target)
6551 || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
6553 clear_storage (target, gen_int_mode (size, Pmode),
6554 BLOCK_OP_NORMAL);
6555 cleared = 1;
6558 if (REG_P (target) && !cleared)
6559 emit_clobber (target);
6561 /* Store each element of the constructor into the
6562 corresponding field of TARGET. */
6563 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
6565 machine_mode mode;
6566 HOST_WIDE_INT bitsize;
6567 HOST_WIDE_INT bitpos = 0;
6568 tree offset;
6569 rtx to_rtx = target;
6571 /* Just ignore missing fields. We cleared the whole
6572 structure, above, if any fields are missing. */
6573 if (field == 0)
6574 continue;
6576 if (cleared && initializer_zerop (value))
6577 continue;
6579 if (tree_fits_uhwi_p (DECL_SIZE (field)))
6580 bitsize = tree_to_uhwi (DECL_SIZE (field));
6581 else
6582 gcc_unreachable ();
6584 mode = DECL_MODE (field);
6585 if (DECL_BIT_FIELD (field))
6586 mode = VOIDmode;
6588 offset = DECL_FIELD_OFFSET (field);
6589 if (tree_fits_shwi_p (offset)
6590 && tree_fits_shwi_p (bit_position (field)))
6592 bitpos = int_bit_position (field);
6593 offset = NULL_TREE;
6595 else
6596 gcc_unreachable ();
6598 /* If this initializes a field that is smaller than a
6599 word, at the start of a word, try to widen it to a full
6600 word. This special case allows us to output C++ member
6601 function initializations in a form that the optimizers
6602 can understand. */
6603 if (WORD_REGISTER_OPERATIONS
6604 && REG_P (target)
6605 && bitsize < BITS_PER_WORD
6606 && bitpos % BITS_PER_WORD == 0
6607 && GET_MODE_CLASS (mode) == MODE_INT
6608 && TREE_CODE (value) == INTEGER_CST
6609 && exp_size >= 0
6610 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6612 type = TREE_TYPE (value);
6614 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6616 type = lang_hooks.types.type_for_mode
6617 (word_mode, TYPE_UNSIGNED (type));
6618 value = fold_convert (type, value);
6619 /* Make sure the bits beyond the original bitsize are zero
6620 so that we can correctly avoid extra zeroing stores in
6621 later constructor elements. */
6622 tree bitsize_mask
6623 = wide_int_to_tree (type, wi::mask (bitsize, false,
6624 BITS_PER_WORD));
6625 value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
6628 if (BYTES_BIG_ENDIAN)
6629 value
6630 = fold_build2 (LSHIFT_EXPR, type, value,
6631 build_int_cst (type,
6632 BITS_PER_WORD - bitsize));
6633 bitsize = BITS_PER_WORD;
6634 mode = word_mode;
6637 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6638 && DECL_NONADDRESSABLE_P (field))
6640 to_rtx = copy_rtx (to_rtx);
6641 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6644 store_constructor_field (to_rtx, bitsize, bitpos,
6645 0, bitregion_end, mode,
6646 value, cleared,
6647 get_alias_set (TREE_TYPE (field)),
6648 reverse);
6650 break;
6652 case ARRAY_TYPE:
6654 tree value, index;
6655 unsigned HOST_WIDE_INT i;
6656 int need_to_clear;
6657 tree domain;
6658 tree elttype = TREE_TYPE (type);
6659 int const_bounds_p;
6660 HOST_WIDE_INT minelt = 0;
6661 HOST_WIDE_INT maxelt = 0;
6663 /* The storage order is specified for every aggregate type. */
6664 reverse = TYPE_REVERSE_STORAGE_ORDER (type);
6666 domain = TYPE_DOMAIN (type);
6667 const_bounds_p = (TYPE_MIN_VALUE (domain)
6668 && TYPE_MAX_VALUE (domain)
6669 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6670 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6672 /* If we have constant bounds for the range of the type, get them. */
6673 if (const_bounds_p)
6675 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6676 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6679 /* If the constructor has fewer elements than the array, clear
6680 the whole array first. Similarly if this is static
6681 constructor of a non-BLKmode object. */
6682 if (cleared)
6683 need_to_clear = 0;
6684 else if (REG_P (target) && TREE_STATIC (exp))
6685 need_to_clear = 1;
6686 else
6688 unsigned HOST_WIDE_INT idx;
6689 HOST_WIDE_INT count = 0, zero_count = 0;
6690 need_to_clear = ! const_bounds_p;
6692 /* This loop is a more accurate version of the loop in
6693 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6694 is also needed to check for missing elements. */
6695 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6697 HOST_WIDE_INT this_node_count;
6699 if (need_to_clear)
6700 break;
6702 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6704 tree lo_index = TREE_OPERAND (index, 0);
6705 tree hi_index = TREE_OPERAND (index, 1);
6707 if (! tree_fits_uhwi_p (lo_index)
6708 || ! tree_fits_uhwi_p (hi_index))
6710 need_to_clear = 1;
6711 break;
6714 this_node_count = (tree_to_uhwi (hi_index)
6715 - tree_to_uhwi (lo_index) + 1);
6717 else
6718 this_node_count = 1;
6720 count += this_node_count;
6721 if (mostly_zeros_p (value))
6722 zero_count += this_node_count;
6725 /* Clear the entire array first if there are any missing
6726 elements, or if the incidence of zero elements is >=
6727 75%. */
6728 if (! need_to_clear
6729 && (count < maxelt - minelt + 1
6730 || 4 * zero_count >= 3 * count))
6731 need_to_clear = 1;
6734 if (need_to_clear && maybe_gt (size, 0))
6736 if (REG_P (target))
6737 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6738 else
6739 clear_storage (target, gen_int_mode (size, Pmode),
6740 BLOCK_OP_NORMAL);
6741 cleared = 1;
6744 if (!cleared && REG_P (target))
6745 /* Inform later passes that the old value is dead. */
6746 emit_clobber (target);
6748 /* Store each element of the constructor into the
6749 corresponding element of TARGET, determined by counting the
6750 elements. */
6751 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6753 machine_mode mode;
6754 poly_int64 bitsize;
6755 HOST_WIDE_INT bitpos;
6756 rtx xtarget = target;
6758 if (cleared && initializer_zerop (value))
6759 continue;
6761 mode = TYPE_MODE (elttype);
6762 if (mode != BLKmode)
6763 bitsize = GET_MODE_BITSIZE (mode);
6764 else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
6765 bitsize = -1;
6767 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6769 tree lo_index = TREE_OPERAND (index, 0);
6770 tree hi_index = TREE_OPERAND (index, 1);
6771 rtx index_r, pos_rtx;
6772 HOST_WIDE_INT lo, hi, count;
6773 tree position;
6775 /* If the range is constant and "small", unroll the loop. */
6776 if (const_bounds_p
6777 && tree_fits_shwi_p (lo_index)
6778 && tree_fits_shwi_p (hi_index)
6779 && (lo = tree_to_shwi (lo_index),
6780 hi = tree_to_shwi (hi_index),
6781 count = hi - lo + 1,
6782 (!MEM_P (target)
6783 || count <= 2
6784 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6785 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6786 <= 40 * 8)))))
6788 lo -= minelt; hi -= minelt;
6789 for (; lo <= hi; lo++)
6791 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6793 if (MEM_P (target)
6794 && !MEM_KEEP_ALIAS_SET_P (target)
6795 && TREE_CODE (type) == ARRAY_TYPE
6796 && TYPE_NONALIASED_COMPONENT (type))
6798 target = copy_rtx (target);
6799 MEM_KEEP_ALIAS_SET_P (target) = 1;
6802 store_constructor_field
6803 (target, bitsize, bitpos, 0, bitregion_end,
6804 mode, value, cleared,
6805 get_alias_set (elttype), reverse);
6808 else
6810 rtx_code_label *loop_start = gen_label_rtx ();
6811 rtx_code_label *loop_end = gen_label_rtx ();
6812 tree exit_cond;
6814 expand_normal (hi_index);
6816 index = build_decl (EXPR_LOCATION (exp),
6817 VAR_DECL, NULL_TREE, domain);
6818 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6819 SET_DECL_RTL (index, index_r);
6820 store_expr (lo_index, index_r, 0, false, reverse);
6822 /* Build the head of the loop. */
6823 do_pending_stack_adjust ();
6824 emit_label (loop_start);
6826 /* Assign value to element index. */
6827 position =
6828 fold_convert (ssizetype,
6829 fold_build2 (MINUS_EXPR,
6830 TREE_TYPE (index),
6831 index,
6832 TYPE_MIN_VALUE (domain)));
6834 position =
6835 size_binop (MULT_EXPR, position,
6836 fold_convert (ssizetype,
6837 TYPE_SIZE_UNIT (elttype)));
6839 pos_rtx = expand_normal (position);
6840 xtarget = offset_address (target, pos_rtx,
6841 highest_pow2_factor (position));
6842 xtarget = adjust_address (xtarget, mode, 0);
6843 if (TREE_CODE (value) == CONSTRUCTOR)
6844 store_constructor (value, xtarget, cleared,
6845 exact_div (bitsize, BITS_PER_UNIT),
6846 reverse);
6847 else
6848 store_expr (value, xtarget, 0, false, reverse);
6850 /* Generate a conditional jump to exit the loop. */
6851 exit_cond = build2 (LT_EXPR, integer_type_node,
6852 index, hi_index);
6853 jumpif (exit_cond, loop_end,
6854 profile_probability::uninitialized ());
6856 /* Update the loop counter, and jump to the head of
6857 the loop. */
6858 expand_assignment (index,
6859 build2 (PLUS_EXPR, TREE_TYPE (index),
6860 index, integer_one_node),
6861 false);
6863 emit_jump (loop_start);
6865 /* Build the end of the loop. */
6866 emit_label (loop_end);
6869 else if ((index != 0 && ! tree_fits_shwi_p (index))
6870 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6872 tree position;
6874 if (index == 0)
6875 index = ssize_int (1);
6877 if (minelt)
6878 index = fold_convert (ssizetype,
6879 fold_build2 (MINUS_EXPR,
6880 TREE_TYPE (index),
6881 index,
6882 TYPE_MIN_VALUE (domain)));
6884 position =
6885 size_binop (MULT_EXPR, index,
6886 fold_convert (ssizetype,
6887 TYPE_SIZE_UNIT (elttype)));
6888 xtarget = offset_address (target,
6889 expand_normal (position),
6890 highest_pow2_factor (position));
6891 xtarget = adjust_address (xtarget, mode, 0);
6892 store_expr (value, xtarget, 0, false, reverse);
6894 else
6896 if (index != 0)
6897 bitpos = ((tree_to_shwi (index) - minelt)
6898 * tree_to_uhwi (TYPE_SIZE (elttype)));
6899 else
6900 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6902 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6903 && TREE_CODE (type) == ARRAY_TYPE
6904 && TYPE_NONALIASED_COMPONENT (type))
6906 target = copy_rtx (target);
6907 MEM_KEEP_ALIAS_SET_P (target) = 1;
6909 store_constructor_field (target, bitsize, bitpos, 0,
6910 bitregion_end, mode, value,
6911 cleared, get_alias_set (elttype),
6912 reverse);
6915 break;
6918 case VECTOR_TYPE:
6920 unsigned HOST_WIDE_INT idx;
6921 constructor_elt *ce;
6922 int i;
6923 int need_to_clear;
6924 insn_code icode = CODE_FOR_nothing;
6925 tree elt;
6926 tree elttype = TREE_TYPE (type);
6927 int elt_size = vector_element_bits (type);
6928 machine_mode eltmode = TYPE_MODE (elttype);
6929 HOST_WIDE_INT bitsize;
6930 HOST_WIDE_INT bitpos;
6931 rtvec vector = NULL;
6932 poly_uint64 n_elts;
6933 unsigned HOST_WIDE_INT const_n_elts;
6934 alias_set_type alias;
6935 bool vec_vec_init_p = false;
6936 machine_mode mode = GET_MODE (target);
6938 gcc_assert (eltmode != BLKmode);
6940 /* Try using vec_duplicate_optab for uniform vectors. */
6941 if (!TREE_SIDE_EFFECTS (exp)
6942 && VECTOR_MODE_P (mode)
6943 && eltmode == GET_MODE_INNER (mode)
6944 && ((icode = optab_handler (vec_duplicate_optab, mode))
6945 != CODE_FOR_nothing)
6946 && (elt = uniform_vector_p (exp)))
6948 class expand_operand ops[2];
6949 create_output_operand (&ops[0], target, mode);
6950 create_input_operand (&ops[1], expand_normal (elt), eltmode);
6951 expand_insn (icode, 2, ops);
6952 if (!rtx_equal_p (target, ops[0].value))
6953 emit_move_insn (target, ops[0].value);
6954 break;
6957 n_elts = TYPE_VECTOR_SUBPARTS (type);
6958 if (REG_P (target)
6959 && VECTOR_MODE_P (mode)
6960 && n_elts.is_constant (&const_n_elts))
6962 machine_mode emode = eltmode;
6963 bool vector_typed_elts_p = false;
6965 if (CONSTRUCTOR_NELTS (exp)
6966 && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
6967 == VECTOR_TYPE))
6969 tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6970 gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
6971 * TYPE_VECTOR_SUBPARTS (etype),
6972 n_elts));
6973 emode = TYPE_MODE (etype);
6974 vector_typed_elts_p = true;
6976 icode = convert_optab_handler (vec_init_optab, mode, emode);
6977 if (icode != CODE_FOR_nothing)
6979 unsigned int n = const_n_elts;
6981 if (vector_typed_elts_p)
6983 n = CONSTRUCTOR_NELTS (exp);
6984 vec_vec_init_p = true;
6986 vector = rtvec_alloc (n);
6987 for (unsigned int k = 0; k < n; k++)
6988 RTVEC_ELT (vector, k) = CONST0_RTX (emode);
6992 /* Compute the size of the elements in the CTOR. It differs
6993 from the size of the vector type elements only when the
6994 CTOR elements are vectors themselves. */
6995 tree val_type = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
6996 if (VECTOR_TYPE_P (val_type))
6997 bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
6998 else
6999 bitsize = elt_size;
7001 /* If the constructor has fewer elements than the vector,
7002 clear the whole array first. Similarly if this is static
7003 constructor of a non-BLKmode object. */
7004 if (cleared)
7005 need_to_clear = 0;
7006 else if (REG_P (target) && TREE_STATIC (exp))
7007 need_to_clear = 1;
7008 else
7010 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
7011 tree value;
7013 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7015 int n_elts_here = bitsize / elt_size;
7016 count += n_elts_here;
7017 if (mostly_zeros_p (value))
7018 zero_count += n_elts_here;
7021 /* Clear the entire vector first if there are any missing elements,
7022 or if the incidence of zero elements is >= 75%. */
7023 need_to_clear = (maybe_lt (count, n_elts)
7024 || 4 * zero_count >= 3 * count);
7027 if (need_to_clear && maybe_gt (size, 0) && !vector)
7029 if (REG_P (target))
7030 emit_move_insn (target, CONST0_RTX (mode));
7031 else
7032 clear_storage (target, gen_int_mode (size, Pmode),
7033 BLOCK_OP_NORMAL);
7034 cleared = 1;
7037 /* Inform later passes that the old value is dead. */
7038 if (!cleared && !vector && REG_P (target))
7039 emit_move_insn (target, CONST0_RTX (mode));
7041 if (MEM_P (target))
7042 alias = MEM_ALIAS_SET (target);
7043 else
7044 alias = get_alias_set (elttype);
7046 /* Store each element of the constructor into the corresponding
7047 element of TARGET, determined by counting the elements. */
7048 for (idx = 0, i = 0;
7049 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
7050 idx++, i += bitsize / elt_size)
7052 HOST_WIDE_INT eltpos;
7053 tree value = ce->value;
7055 if (cleared && initializer_zerop (value))
7056 continue;
7058 if (ce->index)
7059 eltpos = tree_to_uhwi (ce->index);
7060 else
7061 eltpos = i;
7063 if (vector)
7065 if (vec_vec_init_p)
7067 gcc_assert (ce->index == NULL_TREE);
7068 gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
7069 eltpos = idx;
7071 else
7072 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
7073 RTVEC_ELT (vector, eltpos) = expand_normal (value);
7075 else
7077 machine_mode value_mode
7078 = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
7079 ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
7080 bitpos = eltpos * elt_size;
7081 store_constructor_field (target, bitsize, bitpos, 0,
7082 bitregion_end, value_mode,
7083 value, cleared, alias, reverse);
7087 if (vector)
7088 emit_insn (GEN_FCN (icode) (target,
7089 gen_rtx_PARALLEL (mode, vector)));
7090 break;
7093 default:
7094 gcc_unreachable ();
7098 /* Store the value of EXP (an expression tree)
7099 into a subfield of TARGET which has mode MODE and occupies
7100 BITSIZE bits, starting BITPOS bits from the start of TARGET.
7101 If MODE is VOIDmode, it means that we are storing into a bit-field.
7103 BITREGION_START is bitpos of the first bitfield in this region.
7104 BITREGION_END is the bitpos of the ending bitfield in this region.
7105 These two fields are 0, if the C++ memory model does not apply,
7106 or we are not interested in keeping track of bitfield regions.
7108 Always return const0_rtx unless we have something particular to
7109 return.
7111 ALIAS_SET is the alias set for the destination. This value will
7112 (in general) be different from that for TARGET, since TARGET is a
7113 reference to the containing structure.
7115 If NONTEMPORAL is true, try generating a nontemporal store.
7117 If REVERSE is true, the store is to be done in reverse order. */
7119 static rtx
7120 store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
7121 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
7122 machine_mode mode, tree exp,
7123 alias_set_type alias_set, bool nontemporal, bool reverse)
7125 if (TREE_CODE (exp) == ERROR_MARK)
7126 return const0_rtx;
7128 /* If we have nothing to store, do nothing unless the expression has
7129 side-effects. Don't do that for zero sized addressable lhs of
7130 calls. */
7131 if (known_eq (bitsize, 0)
7132 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7133 || TREE_CODE (exp) != CALL_EXPR))
7134 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
7136 if (GET_CODE (target) == CONCAT)
7138 /* We're storing into a struct containing a single __complex. */
7140 gcc_assert (known_eq (bitpos, 0));
7141 return store_expr (exp, target, 0, nontemporal, reverse);
7144 /* If the structure is in a register or if the component
7145 is a bit field, we cannot use addressing to access it.
7146 Use bit-field techniques or SUBREG to store in it. */
7148 poly_int64 decl_bitsize;
7149 if (mode == VOIDmode
7150 || (mode != BLKmode && ! direct_store[(int) mode]
7151 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7152 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
7153 || REG_P (target)
7154 || GET_CODE (target) == SUBREG
7155 /* If the field isn't aligned enough to store as an ordinary memref,
7156 store it as a bit field. */
7157 || (mode != BLKmode
7158 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
7159 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
7160 && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
7161 || !multiple_p (bitpos, BITS_PER_UNIT)))
7162 || (known_size_p (bitsize)
7163 && mode != BLKmode
7164 && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
7165 /* If the RHS and field are a constant size and the size of the
7166 RHS isn't the same size as the bitfield, we must use bitfield
7167 operations. */
7168 || (known_size_p (bitsize)
7169 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
7170 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
7171 bitsize)
7172 /* Except for initialization of full bytes from a CONSTRUCTOR, which
7173 we will handle specially below. */
7174 && !(TREE_CODE (exp) == CONSTRUCTOR
7175 && multiple_p (bitsize, BITS_PER_UNIT))
7176 /* And except for bitwise copying of TREE_ADDRESSABLE types,
7177 where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
7178 includes some extra padding. store_expr / expand_expr will in
7179 that case call get_inner_reference that will have the bitsize
7180 we check here and thus the block move will not clobber the
7181 padding that shouldn't be clobbered. In the future we could
7182 replace the TREE_ADDRESSABLE check with a check that
7183 get_base_address needs to live in memory. */
7184 && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
7185 || TREE_CODE (exp) != COMPONENT_REF
7186 || !multiple_p (bitsize, BITS_PER_UNIT)
7187 || !multiple_p (bitpos, BITS_PER_UNIT)
7188 || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
7189 &decl_bitsize)
7190 || maybe_ne (decl_bitsize, bitsize)))
7191 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
7192 decl we must use bitfield operations. */
7193 || (known_size_p (bitsize)
7194 && TREE_CODE (exp) == MEM_REF
7195 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7196 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7197 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7198 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
7200 rtx temp;
7201 gimple *nop_def;
7203 /* If EXP is a NOP_EXPR of precision less than its mode, then that
7204 implies a mask operation. If the precision is the same size as
7205 the field we're storing into, that mask is redundant. This is
7206 particularly common with bit field assignments generated by the
7207 C front end. */
7208 nop_def = get_def_for_expr (exp, NOP_EXPR);
7209 if (nop_def)
7211 tree type = TREE_TYPE (exp);
7212 if (INTEGRAL_TYPE_P (type)
7213 && maybe_ne (TYPE_PRECISION (type),
7214 GET_MODE_BITSIZE (TYPE_MODE (type)))
7215 && known_eq (bitsize, TYPE_PRECISION (type)))
7217 tree op = gimple_assign_rhs1 (nop_def);
7218 type = TREE_TYPE (op);
7219 if (INTEGRAL_TYPE_P (type)
7220 && known_ge (TYPE_PRECISION (type), bitsize))
7221 exp = op;
7225 temp = expand_normal (exp);
7227 /* We don't support variable-sized BLKmode bitfields, since our
7228 handling of BLKmode is bound up with the ability to break
7229 things into words. */
7230 gcc_assert (mode != BLKmode || bitsize.is_constant ());
7232 /* Handle calls that return values in multiple non-contiguous locations.
7233 The Irix 6 ABI has examples of this. */
7234 if (GET_CODE (temp) == PARALLEL)
7236 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
7237 machine_mode temp_mode = GET_MODE (temp);
7238 if (temp_mode == BLKmode || temp_mode == VOIDmode)
7239 temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
7240 rtx temp_target = gen_reg_rtx (temp_mode);
7241 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
7242 temp = temp_target;
7245 /* Handle calls that return BLKmode values in registers. */
7246 else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
7248 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
7249 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
7250 temp = temp_target;
7253 /* If the value has aggregate type and an integral mode then, if BITSIZE
7254 is narrower than this mode and this is for big-endian data, we first
7255 need to put the value into the low-order bits for store_bit_field,
7256 except when MODE is BLKmode and BITSIZE larger than the word size
7257 (see the handling of fields larger than a word in store_bit_field).
7258 Moreover, the field may be not aligned on a byte boundary; in this
7259 case, if it has reverse storage order, it needs to be accessed as a
7260 scalar field with reverse storage order and we must first put the
7261 value into target order. */
7262 scalar_int_mode temp_mode;
7263 if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
7264 && is_int_mode (GET_MODE (temp), &temp_mode))
7266 HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
7268 reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
7270 if (reverse)
7271 temp = flip_storage_order (temp_mode, temp);
7273 gcc_checking_assert (known_le (bitsize, size));
7274 if (maybe_lt (bitsize, size)
7275 && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
7276 /* Use of to_constant for BLKmode was checked above. */
7277 && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
7278 temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
7279 size - bitsize, NULL_RTX, 1);
7282 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
7283 if (mode != VOIDmode && mode != BLKmode
7284 && mode != TYPE_MODE (TREE_TYPE (exp)))
7285 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
7287 /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
7288 and BITPOS must be aligned on a byte boundary. If so, we simply do
7289 a block copy. Likewise for a BLKmode-like TARGET. */
7290 if (GET_MODE (temp) == BLKmode
7291 && (GET_MODE (target) == BLKmode
7292 || (MEM_P (target)
7293 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
7294 && multiple_p (bitpos, BITS_PER_UNIT)
7295 && multiple_p (bitsize, BITS_PER_UNIT))))
7297 gcc_assert (MEM_P (target) && MEM_P (temp));
7298 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
7299 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
7301 target = adjust_address (target, VOIDmode, bytepos);
7302 emit_block_move (target, temp,
7303 gen_int_mode (bytesize, Pmode),
7304 BLOCK_OP_NORMAL);
7306 return const0_rtx;
7309 /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
7310 word size, we need to load the value (see again store_bit_field). */
7311 if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
7313 temp_mode = smallest_int_mode_for_size (bitsize);
7314 temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
7315 temp_mode, false, NULL);
7318 /* Store the value in the bitfield. */
7319 gcc_checking_assert (known_ge (bitpos, 0));
7320 store_bit_field (target, bitsize, bitpos,
7321 bitregion_start, bitregion_end,
7322 mode, temp, reverse);
7324 return const0_rtx;
7326 else
7328 /* Now build a reference to just the desired component. */
7329 rtx to_rtx = adjust_address (target, mode,
7330 exact_div (bitpos, BITS_PER_UNIT));
7332 if (to_rtx == target)
7333 to_rtx = copy_rtx (to_rtx);
7335 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
7336 set_mem_alias_set (to_rtx, alias_set);
7338 /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
7339 into a target smaller than its type; handle that case now. */
7340 if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
7342 poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
7343 store_constructor (exp, to_rtx, 0, bytesize, reverse);
7344 return to_rtx;
7347 return store_expr (exp, to_rtx, 0, nontemporal, reverse);
7351 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
7352 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
7353 codes and find the ultimate containing object, which we return.
7355 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
7356 bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
7357 storage order of the field.
7358 If the position of the field is variable, we store a tree
7359 giving the variable offset (in units) in *POFFSET.
7360 This offset is in addition to the bit position.
7361 If the position is not variable, we store 0 in *POFFSET.
7363 If any of the extraction expressions is volatile,
7364 we store 1 in *PVOLATILEP. Otherwise we don't change that.
7366 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
7367 Otherwise, it is a mode that can be used to access the field.
7369 If the field describes a variable-sized object, *PMODE is set to
7370 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
7371 this case, but the address of the object can be found. */
7373 tree
7374 get_inner_reference (tree exp, poly_int64_pod *pbitsize,
7375 poly_int64_pod *pbitpos, tree *poffset,
7376 machine_mode *pmode, int *punsignedp,
7377 int *preversep, int *pvolatilep)
7379 tree size_tree = 0;
7380 machine_mode mode = VOIDmode;
7381 bool blkmode_bitfield = false;
7382 tree offset = size_zero_node;
7383 poly_offset_int bit_offset = 0;
7385 /* First get the mode, signedness, storage order and size. We do this from
7386 just the outermost expression. */
7387 *pbitsize = -1;
7388 if (TREE_CODE (exp) == COMPONENT_REF)
7390 tree field = TREE_OPERAND (exp, 1);
7391 size_tree = DECL_SIZE (field);
7392 if (flag_strict_volatile_bitfields > 0
7393 && TREE_THIS_VOLATILE (exp)
7394 && DECL_BIT_FIELD_TYPE (field)
7395 && DECL_MODE (field) != BLKmode)
7396 /* Volatile bitfields should be accessed in the mode of the
7397 field's type, not the mode computed based on the bit
7398 size. */
7399 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
7400 else if (!DECL_BIT_FIELD (field))
7402 mode = DECL_MODE (field);
7403 /* For vector fields re-check the target flags, as DECL_MODE
7404 could have been set with different target flags than
7405 the current function has. */
7406 if (mode == BLKmode
7407 && VECTOR_TYPE_P (TREE_TYPE (field))
7408 && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
7409 mode = TYPE_MODE (TREE_TYPE (field));
7411 else if (DECL_MODE (field) == BLKmode)
7412 blkmode_bitfield = true;
7414 *punsignedp = DECL_UNSIGNED (field);
7416 else if (TREE_CODE (exp) == BIT_FIELD_REF)
7418 size_tree = TREE_OPERAND (exp, 1);
7419 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
7420 || TYPE_UNSIGNED (TREE_TYPE (exp)));
7422 /* For vector element types with the correct size of access or for
7423 vector typed accesses use the mode of the access type. */
7424 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
7425 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
7426 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
7427 || VECTOR_TYPE_P (TREE_TYPE (exp)))
7428 mode = TYPE_MODE (TREE_TYPE (exp));
7430 else
7432 mode = TYPE_MODE (TREE_TYPE (exp));
7433 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
7435 if (mode == BLKmode)
7436 size_tree = TYPE_SIZE (TREE_TYPE (exp));
7437 else
7438 *pbitsize = GET_MODE_BITSIZE (mode);
7441 if (size_tree != 0)
7443 if (! tree_fits_uhwi_p (size_tree))
7444 mode = BLKmode, *pbitsize = -1;
7445 else
7446 *pbitsize = tree_to_uhwi (size_tree);
7449 *preversep = reverse_storage_order_for_component_p (exp);
7451 /* Compute cumulative bit-offset for nested component-refs and array-refs,
7452 and find the ultimate containing object. */
7453 while (1)
7455 switch (TREE_CODE (exp))
7457 case BIT_FIELD_REF:
7458 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
7459 break;
7461 case COMPONENT_REF:
7463 tree field = TREE_OPERAND (exp, 1);
7464 tree this_offset = component_ref_field_offset (exp);
7466 /* If this field hasn't been filled in yet, don't go past it.
7467 This should only happen when folding expressions made during
7468 type construction. */
7469 if (this_offset == 0)
7470 break;
7472 offset = size_binop (PLUS_EXPR, offset, this_offset);
7473 bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
7475 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
7477 break;
7479 case ARRAY_REF:
7480 case ARRAY_RANGE_REF:
7482 tree index = TREE_OPERAND (exp, 1);
7483 tree low_bound = array_ref_low_bound (exp);
7484 tree unit_size = array_ref_element_size (exp);
7486 /* We assume all arrays have sizes that are a multiple of a byte.
7487 First subtract the lower bound, if any, in the type of the
7488 index, then convert to sizetype and multiply by the size of
7489 the array element. */
7490 if (! integer_zerop (low_bound))
7491 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
7492 index, low_bound);
7494 offset = size_binop (PLUS_EXPR, offset,
7495 size_binop (MULT_EXPR,
7496 fold_convert (sizetype, index),
7497 unit_size));
7499 break;
7501 case REALPART_EXPR:
7502 break;
7504 case IMAGPART_EXPR:
7505 bit_offset += *pbitsize;
7506 break;
7508 case VIEW_CONVERT_EXPR:
7509 break;
7511 case MEM_REF:
7512 /* Hand back the decl for MEM[&decl, off]. */
7513 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
7515 tree off = TREE_OPERAND (exp, 1);
7516 if (!integer_zerop (off))
7518 poly_offset_int boff = mem_ref_offset (exp);
7519 boff <<= LOG2_BITS_PER_UNIT;
7520 bit_offset += boff;
7522 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7524 goto done;
7526 default:
7527 goto done;
7530 /* If any reference in the chain is volatile, the effect is volatile. */
7531 if (TREE_THIS_VOLATILE (exp))
7532 *pvolatilep = 1;
7534 exp = TREE_OPERAND (exp, 0);
7536 done:
7538 /* If OFFSET is constant, see if we can return the whole thing as a
7539 constant bit position. Make sure to handle overflow during
7540 this conversion. */
7541 if (poly_int_tree_p (offset))
7543 poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
7544 TYPE_PRECISION (sizetype));
7545 tem <<= LOG2_BITS_PER_UNIT;
7546 tem += bit_offset;
7547 if (tem.to_shwi (pbitpos))
7548 *poffset = offset = NULL_TREE;
7551 /* Otherwise, split it up. */
7552 if (offset)
7554 /* Avoid returning a negative bitpos as this may wreak havoc later. */
7555 if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
7557 *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
7558 poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
7559 offset = size_binop (PLUS_EXPR, offset,
7560 build_int_cst (sizetype, bytes.force_shwi ()));
7563 *poffset = offset;
7566 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
7567 if (mode == VOIDmode
7568 && blkmode_bitfield
7569 && multiple_p (*pbitpos, BITS_PER_UNIT)
7570 && multiple_p (*pbitsize, BITS_PER_UNIT))
7571 *pmode = BLKmode;
7572 else
7573 *pmode = mode;
7575 return exp;
7578 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7580 static unsigned HOST_WIDE_INT
7581 target_align (const_tree target)
7583 /* We might have a chain of nested references with intermediate misaligning
7584 bitfields components, so need to recurse to find out. */
7586 unsigned HOST_WIDE_INT this_align, outer_align;
7588 switch (TREE_CODE (target))
7590 case BIT_FIELD_REF:
7591 return 1;
7593 case COMPONENT_REF:
7594 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7595 outer_align = target_align (TREE_OPERAND (target, 0));
7596 return MIN (this_align, outer_align);
7598 case ARRAY_REF:
7599 case ARRAY_RANGE_REF:
7600 this_align = TYPE_ALIGN (TREE_TYPE (target));
7601 outer_align = target_align (TREE_OPERAND (target, 0));
7602 return MIN (this_align, outer_align);
7604 CASE_CONVERT:
7605 case NON_LVALUE_EXPR:
7606 case VIEW_CONVERT_EXPR:
7607 this_align = TYPE_ALIGN (TREE_TYPE (target));
7608 outer_align = target_align (TREE_OPERAND (target, 0));
7609 return MAX (this_align, outer_align);
7611 default:
7612 return TYPE_ALIGN (TREE_TYPE (target));
7617 /* Given an rtx VALUE that may contain additions and multiplications, return
7618 an equivalent value that just refers to a register, memory, or constant.
7619 This is done by generating instructions to perform the arithmetic and
7620 returning a pseudo-register containing the value.
7622 The returned value may be a REG, SUBREG, MEM or constant. */
7625 force_operand (rtx value, rtx target)
7627 rtx op1, op2;
7628 /* Use subtarget as the target for operand 0 of a binary operation. */
7629 rtx subtarget = get_subtarget (target);
7630 enum rtx_code code = GET_CODE (value);
7632 /* Check for subreg applied to an expression produced by loop optimizer. */
7633 if (code == SUBREG
7634 && !REG_P (SUBREG_REG (value))
7635 && !MEM_P (SUBREG_REG (value)))
7637 value
7638 = simplify_gen_subreg (GET_MODE (value),
7639 force_reg (GET_MODE (SUBREG_REG (value)),
7640 force_operand (SUBREG_REG (value),
7641 NULL_RTX)),
7642 GET_MODE (SUBREG_REG (value)),
7643 SUBREG_BYTE (value));
7644 code = GET_CODE (value);
7647 /* Check for a PIC address load. */
7648 if ((code == PLUS || code == MINUS)
7649 && XEXP (value, 0) == pic_offset_table_rtx
7650 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7651 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7652 || GET_CODE (XEXP (value, 1)) == CONST))
7654 if (!subtarget)
7655 subtarget = gen_reg_rtx (GET_MODE (value));
7656 emit_move_insn (subtarget, value);
7657 return subtarget;
7660 if (ARITHMETIC_P (value))
7662 op2 = XEXP (value, 1);
7663 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7664 subtarget = 0;
7665 if (code == MINUS && CONST_INT_P (op2))
7667 code = PLUS;
7668 op2 = negate_rtx (GET_MODE (value), op2);
7671 /* Check for an addition with OP2 a constant integer and our first
7672 operand a PLUS of a virtual register and something else. In that
7673 case, we want to emit the sum of the virtual register and the
7674 constant first and then add the other value. This allows virtual
7675 register instantiation to simply modify the constant rather than
7676 creating another one around this addition. */
7677 if (code == PLUS && CONST_INT_P (op2)
7678 && GET_CODE (XEXP (value, 0)) == PLUS
7679 && REG_P (XEXP (XEXP (value, 0), 0))
7680 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7681 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7683 rtx temp = expand_simple_binop (GET_MODE (value), code,
7684 XEXP (XEXP (value, 0), 0), op2,
7685 subtarget, 0, OPTAB_LIB_WIDEN);
7686 return expand_simple_binop (GET_MODE (value), code, temp,
7687 force_operand (XEXP (XEXP (value,
7688 0), 1), 0),
7689 target, 0, OPTAB_LIB_WIDEN);
7692 op1 = force_operand (XEXP (value, 0), subtarget);
7693 op2 = force_operand (op2, NULL_RTX);
7694 switch (code)
7696 case MULT:
7697 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7698 case DIV:
7699 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7700 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7701 target, 1, OPTAB_LIB_WIDEN);
7702 else
7703 return expand_divmod (0,
7704 FLOAT_MODE_P (GET_MODE (value))
7705 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7706 GET_MODE (value), op1, op2, target, 0);
7707 case MOD:
7708 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7709 target, 0);
7710 case UDIV:
7711 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7712 target, 1);
7713 case UMOD:
7714 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7715 target, 1);
7716 case ASHIFTRT:
7717 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7718 target, 0, OPTAB_LIB_WIDEN);
7719 default:
7720 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7721 target, 1, OPTAB_LIB_WIDEN);
7724 if (UNARY_P (value))
7726 if (!target)
7727 target = gen_reg_rtx (GET_MODE (value));
7728 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7729 switch (code)
7731 case ZERO_EXTEND:
7732 case SIGN_EXTEND:
7733 case TRUNCATE:
7734 case FLOAT_EXTEND:
7735 case FLOAT_TRUNCATE:
7736 convert_move (target, op1, code == ZERO_EXTEND);
7737 return target;
7739 case FIX:
7740 case UNSIGNED_FIX:
7741 expand_fix (target, op1, code == UNSIGNED_FIX);
7742 return target;
7744 case FLOAT:
7745 case UNSIGNED_FLOAT:
7746 expand_float (target, op1, code == UNSIGNED_FLOAT);
7747 return target;
7749 default:
7750 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7754 #ifdef INSN_SCHEDULING
7755 /* On machines that have insn scheduling, we want all memory reference to be
7756 explicit, so we need to deal with such paradoxical SUBREGs. */
7757 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7758 value
7759 = simplify_gen_subreg (GET_MODE (value),
7760 force_reg (GET_MODE (SUBREG_REG (value)),
7761 force_operand (SUBREG_REG (value),
7762 NULL_RTX)),
7763 GET_MODE (SUBREG_REG (value)),
7764 SUBREG_BYTE (value));
7765 #endif
7767 return value;
7770 /* Subroutine of expand_expr: return nonzero iff there is no way that
7771 EXP can reference X, which is being modified. TOP_P is nonzero if this
7772 call is going to be used to determine whether we need a temporary
7773 for EXP, as opposed to a recursive call to this function.
7775 It is always safe for this routine to return zero since it merely
7776 searches for optimization opportunities. */
7779 safe_from_p (const_rtx x, tree exp, int top_p)
7781 rtx exp_rtl = 0;
7782 int i, nops;
7784 if (x == 0
7785 /* If EXP has varying size, we MUST use a target since we currently
7786 have no way of allocating temporaries of variable size
7787 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7788 So we assume here that something at a higher level has prevented a
7789 clash. This is somewhat bogus, but the best we can do. Only
7790 do this when X is BLKmode and when we are at the top level. */
7791 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7792 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7793 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7794 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7795 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7796 != INTEGER_CST)
7797 && GET_MODE (x) == BLKmode)
7798 /* If X is in the outgoing argument area, it is always safe. */
7799 || (MEM_P (x)
7800 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7801 || (GET_CODE (XEXP (x, 0)) == PLUS
7802 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7803 return 1;
7805 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7806 find the underlying pseudo. */
7807 if (GET_CODE (x) == SUBREG)
7809 x = SUBREG_REG (x);
7810 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7811 return 0;
7814 /* Now look at our tree code and possibly recurse. */
7815 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7817 case tcc_declaration:
7818 exp_rtl = DECL_RTL_IF_SET (exp);
7819 break;
7821 case tcc_constant:
7822 return 1;
7824 case tcc_exceptional:
7825 if (TREE_CODE (exp) == TREE_LIST)
7827 while (1)
7829 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7830 return 0;
7831 exp = TREE_CHAIN (exp);
7832 if (!exp)
7833 return 1;
7834 if (TREE_CODE (exp) != TREE_LIST)
7835 return safe_from_p (x, exp, 0);
7838 else if (TREE_CODE (exp) == CONSTRUCTOR)
7840 constructor_elt *ce;
7841 unsigned HOST_WIDE_INT idx;
7843 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7844 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7845 || !safe_from_p (x, ce->value, 0))
7846 return 0;
7847 return 1;
7849 else if (TREE_CODE (exp) == ERROR_MARK)
7850 return 1; /* An already-visited SAVE_EXPR? */
7851 else
7852 return 0;
7854 case tcc_statement:
7855 /* The only case we look at here is the DECL_INITIAL inside a
7856 DECL_EXPR. */
7857 return (TREE_CODE (exp) != DECL_EXPR
7858 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7859 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7860 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7862 case tcc_binary:
7863 case tcc_comparison:
7864 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7865 return 0;
7866 /* Fall through. */
7868 case tcc_unary:
7869 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7871 case tcc_expression:
7872 case tcc_reference:
7873 case tcc_vl_exp:
7874 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7875 the expression. If it is set, we conflict iff we are that rtx or
7876 both are in memory. Otherwise, we check all operands of the
7877 expression recursively. */
7879 switch (TREE_CODE (exp))
7881 case ADDR_EXPR:
7882 /* If the operand is static or we are static, we can't conflict.
7883 Likewise if we don't conflict with the operand at all. */
7884 if (staticp (TREE_OPERAND (exp, 0))
7885 || TREE_STATIC (exp)
7886 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7887 return 1;
7889 /* Otherwise, the only way this can conflict is if we are taking
7890 the address of a DECL a that address if part of X, which is
7891 very rare. */
7892 exp = TREE_OPERAND (exp, 0);
7893 if (DECL_P (exp))
7895 if (!DECL_RTL_SET_P (exp)
7896 || !MEM_P (DECL_RTL (exp)))
7897 return 0;
7898 else
7899 exp_rtl = XEXP (DECL_RTL (exp), 0);
7901 break;
7903 case MEM_REF:
7904 if (MEM_P (x)
7905 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7906 get_alias_set (exp)))
7907 return 0;
7908 break;
7910 case CALL_EXPR:
7911 /* Assume that the call will clobber all hard registers and
7912 all of memory. */
7913 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7914 || MEM_P (x))
7915 return 0;
7916 break;
7918 case WITH_CLEANUP_EXPR:
7919 case CLEANUP_POINT_EXPR:
7920 /* Lowered by gimplify.c. */
7921 gcc_unreachable ();
7923 case SAVE_EXPR:
7924 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7926 default:
7927 break;
7930 /* If we have an rtx, we do not need to scan our operands. */
7931 if (exp_rtl)
7932 break;
7934 nops = TREE_OPERAND_LENGTH (exp);
7935 for (i = 0; i < nops; i++)
7936 if (TREE_OPERAND (exp, i) != 0
7937 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7938 return 0;
7940 break;
7942 case tcc_type:
7943 /* Should never get a type here. */
7944 gcc_unreachable ();
7947 /* If we have an rtl, find any enclosed object. Then see if we conflict
7948 with it. */
7949 if (exp_rtl)
7951 if (GET_CODE (exp_rtl) == SUBREG)
7953 exp_rtl = SUBREG_REG (exp_rtl);
7954 if (REG_P (exp_rtl)
7955 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7956 return 0;
7959 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7960 are memory and they conflict. */
7961 return ! (rtx_equal_p (x, exp_rtl)
7962 || (MEM_P (x) && MEM_P (exp_rtl)
7963 && true_dependence (exp_rtl, VOIDmode, x)));
7966 /* If we reach here, it is safe. */
7967 return 1;
7971 /* Return the highest power of two that EXP is known to be a multiple of.
7972 This is used in updating alignment of MEMs in array references. */
7974 unsigned HOST_WIDE_INT
7975 highest_pow2_factor (const_tree exp)
7977 unsigned HOST_WIDE_INT ret;
7978 int trailing_zeros = tree_ctz (exp);
7979 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7980 return BIGGEST_ALIGNMENT;
7981 ret = HOST_WIDE_INT_1U << trailing_zeros;
7982 if (ret > BIGGEST_ALIGNMENT)
7983 return BIGGEST_ALIGNMENT;
7984 return ret;
7987 /* Similar, except that the alignment requirements of TARGET are
7988 taken into account. Assume it is at least as aligned as its
7989 type, unless it is a COMPONENT_REF in which case the layout of
7990 the structure gives the alignment. */
7992 static unsigned HOST_WIDE_INT
7993 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7995 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7996 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7998 return MAX (factor, talign);
8001 /* Convert the tree comparison code TCODE to the rtl one where the
8002 signedness is UNSIGNEDP. */
8004 static enum rtx_code
8005 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
8007 enum rtx_code code;
8008 switch (tcode)
8010 case EQ_EXPR:
8011 code = EQ;
8012 break;
8013 case NE_EXPR:
8014 code = NE;
8015 break;
8016 case LT_EXPR:
8017 code = unsignedp ? LTU : LT;
8018 break;
8019 case LE_EXPR:
8020 code = unsignedp ? LEU : LE;
8021 break;
8022 case GT_EXPR:
8023 code = unsignedp ? GTU : GT;
8024 break;
8025 case GE_EXPR:
8026 code = unsignedp ? GEU : GE;
8027 break;
8028 case UNORDERED_EXPR:
8029 code = UNORDERED;
8030 break;
8031 case ORDERED_EXPR:
8032 code = ORDERED;
8033 break;
8034 case UNLT_EXPR:
8035 code = UNLT;
8036 break;
8037 case UNLE_EXPR:
8038 code = UNLE;
8039 break;
8040 case UNGT_EXPR:
8041 code = UNGT;
8042 break;
8043 case UNGE_EXPR:
8044 code = UNGE;
8045 break;
8046 case UNEQ_EXPR:
8047 code = UNEQ;
8048 break;
8049 case LTGT_EXPR:
8050 code = LTGT;
8051 break;
8053 default:
8054 gcc_unreachable ();
8056 return code;
8059 /* Subroutine of expand_expr. Expand the two operands of a binary
8060 expression EXP0 and EXP1 placing the results in OP0 and OP1.
8061 The value may be stored in TARGET if TARGET is nonzero. The
8062 MODIFIER argument is as documented by expand_expr. */
8064 void
8065 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
8066 enum expand_modifier modifier)
8068 if (! safe_from_p (target, exp1, 1))
8069 target = 0;
8070 if (operand_equal_p (exp0, exp1, 0))
8072 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8073 *op1 = copy_rtx (*op0);
8075 else
8077 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
8078 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
8083 /* Return a MEM that contains constant EXP. DEFER is as for
8084 output_constant_def and MODIFIER is as for expand_expr. */
8086 static rtx
8087 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
8089 rtx mem;
8091 mem = output_constant_def (exp, defer);
8092 if (modifier != EXPAND_INITIALIZER)
8093 mem = use_anchored_address (mem);
8094 return mem;
8097 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
8098 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8100 static rtx
8101 expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
8102 enum expand_modifier modifier, addr_space_t as)
8104 rtx result, subtarget;
8105 tree inner, offset;
8106 poly_int64 bitsize, bitpos;
8107 int unsignedp, reversep, volatilep = 0;
8108 machine_mode mode1;
8110 /* If we are taking the address of a constant and are at the top level,
8111 we have to use output_constant_def since we can't call force_const_mem
8112 at top level. */
8113 /* ??? This should be considered a front-end bug. We should not be
8114 generating ADDR_EXPR of something that isn't an LVALUE. The only
8115 exception here is STRING_CST. */
8116 if (CONSTANT_CLASS_P (exp))
8118 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
8119 if (modifier < EXPAND_SUM)
8120 result = force_operand (result, target);
8121 return result;
8124 /* Everything must be something allowed by is_gimple_addressable. */
8125 switch (TREE_CODE (exp))
8127 case INDIRECT_REF:
8128 /* This case will happen via recursion for &a->b. */
8129 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
8131 case MEM_REF:
8133 tree tem = TREE_OPERAND (exp, 0);
8134 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8135 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
8136 return expand_expr (tem, target, tmode, modifier);
8139 case TARGET_MEM_REF:
8140 return addr_for_mem_ref (exp, as, true);
8142 case CONST_DECL:
8143 /* Expand the initializer like constants above. */
8144 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
8145 0, modifier), 0);
8146 if (modifier < EXPAND_SUM)
8147 result = force_operand (result, target);
8148 return result;
8150 case REALPART_EXPR:
8151 /* The real part of the complex number is always first, therefore
8152 the address is the same as the address of the parent object. */
8153 offset = 0;
8154 bitpos = 0;
8155 inner = TREE_OPERAND (exp, 0);
8156 break;
8158 case IMAGPART_EXPR:
8159 /* The imaginary part of the complex number is always second.
8160 The expression is therefore always offset by the size of the
8161 scalar type. */
8162 offset = 0;
8163 bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
8164 inner = TREE_OPERAND (exp, 0);
8165 break;
8167 case COMPOUND_LITERAL_EXPR:
8168 /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
8169 initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
8170 with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
8171 array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
8172 the initializers aren't gimplified. */
8173 if (COMPOUND_LITERAL_EXPR_DECL (exp)
8174 && TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (exp)))
8175 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
8176 target, tmode, modifier, as);
8177 /* FALLTHRU */
8178 default:
8179 /* If the object is a DECL, then expand it for its rtl. Don't bypass
8180 expand_expr, as that can have various side effects; LABEL_DECLs for
8181 example, may not have their DECL_RTL set yet. Expand the rtl of
8182 CONSTRUCTORs too, which should yield a memory reference for the
8183 constructor's contents. Assume language specific tree nodes can
8184 be expanded in some interesting way. */
8185 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
8186 if (DECL_P (exp)
8187 || TREE_CODE (exp) == CONSTRUCTOR
8188 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
8190 result = expand_expr (exp, target, tmode,
8191 modifier == EXPAND_INITIALIZER
8192 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
8194 /* If the DECL isn't in memory, then the DECL wasn't properly
8195 marked TREE_ADDRESSABLE, which will be either a front-end
8196 or a tree optimizer bug. */
8198 gcc_assert (MEM_P (result));
8199 result = XEXP (result, 0);
8201 /* ??? Is this needed anymore? */
8202 if (DECL_P (exp))
8203 TREE_USED (exp) = 1;
8205 if (modifier != EXPAND_INITIALIZER
8206 && modifier != EXPAND_CONST_ADDRESS
8207 && modifier != EXPAND_SUM)
8208 result = force_operand (result, target);
8209 return result;
8212 /* Pass FALSE as the last argument to get_inner_reference although
8213 we are expanding to RTL. The rationale is that we know how to
8214 handle "aligning nodes" here: we can just bypass them because
8215 they won't change the final object whose address will be returned
8216 (they actually exist only for that purpose). */
8217 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
8218 &unsignedp, &reversep, &volatilep);
8219 break;
8222 /* We must have made progress. */
8223 gcc_assert (inner != exp);
8225 subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
8226 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
8227 inner alignment, force the inner to be sufficiently aligned. */
8228 if (CONSTANT_CLASS_P (inner)
8229 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
8231 inner = copy_node (inner);
8232 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
8233 SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
8234 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
8236 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
8238 if (offset)
8240 rtx tmp;
8242 if (modifier != EXPAND_NORMAL)
8243 result = force_operand (result, NULL);
8244 tmp = expand_expr (offset, NULL_RTX, tmode,
8245 modifier == EXPAND_INITIALIZER
8246 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
8248 /* expand_expr is allowed to return an object in a mode other
8249 than TMODE. If it did, we need to convert. */
8250 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
8251 tmp = convert_modes (tmode, GET_MODE (tmp),
8252 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
8253 result = convert_memory_address_addr_space (tmode, result, as);
8254 tmp = convert_memory_address_addr_space (tmode, tmp, as);
8256 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8257 result = simplify_gen_binary (PLUS, tmode, result, tmp);
8258 else
8260 subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
8261 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
8262 1, OPTAB_LIB_WIDEN);
8266 if (maybe_ne (bitpos, 0))
8268 /* Someone beforehand should have rejected taking the address
8269 of an object that isn't byte-aligned. */
8270 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
8271 result = convert_memory_address_addr_space (tmode, result, as);
8272 result = plus_constant (tmode, result, bytepos);
8273 if (modifier < EXPAND_SUM)
8274 result = force_operand (result, target);
8277 return result;
8280 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
8281 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
8283 static rtx
8284 expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
8285 enum expand_modifier modifier)
8287 addr_space_t as = ADDR_SPACE_GENERIC;
8288 scalar_int_mode address_mode = Pmode;
8289 scalar_int_mode pointer_mode = ptr_mode;
8290 machine_mode rmode;
8291 rtx result;
8293 /* Target mode of VOIDmode says "whatever's natural". */
8294 if (tmode == VOIDmode)
8295 tmode = TYPE_MODE (TREE_TYPE (exp));
8297 if (POINTER_TYPE_P (TREE_TYPE (exp)))
8299 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
8300 address_mode = targetm.addr_space.address_mode (as);
8301 pointer_mode = targetm.addr_space.pointer_mode (as);
8304 /* We can get called with some Weird Things if the user does silliness
8305 like "(short) &a". In that case, convert_memory_address won't do
8306 the right thing, so ignore the given target mode. */
8307 scalar_int_mode new_tmode = (tmode == pointer_mode
8308 ? pointer_mode
8309 : address_mode);
8311 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
8312 new_tmode, modifier, as);
8314 /* Despite expand_expr claims concerning ignoring TMODE when not
8315 strictly convenient, stuff breaks if we don't honor it. Note
8316 that combined with the above, we only do this for pointer modes. */
8317 rmode = GET_MODE (result);
8318 if (rmode == VOIDmode)
8319 rmode = new_tmode;
8320 if (rmode != new_tmode)
8321 result = convert_memory_address_addr_space (new_tmode, result, as);
8323 return result;
8326 /* Generate code for computing CONSTRUCTOR EXP.
8327 An rtx for the computed value is returned. If AVOID_TEMP_MEM
8328 is TRUE, instead of creating a temporary variable in memory
8329 NULL is returned and the caller needs to handle it differently. */
8331 static rtx
8332 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
8333 bool avoid_temp_mem)
8335 tree type = TREE_TYPE (exp);
8336 machine_mode mode = TYPE_MODE (type);
8338 /* Try to avoid creating a temporary at all. This is possible
8339 if all of the initializer is zero.
8340 FIXME: try to handle all [0..255] initializers we can handle
8341 with memset. */
8342 if (TREE_STATIC (exp)
8343 && !TREE_ADDRESSABLE (exp)
8344 && target != 0 && mode == BLKmode
8345 && all_zeros_p (exp))
8347 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
8348 return target;
8351 /* All elts simple constants => refer to a constant in memory. But
8352 if this is a non-BLKmode mode, let it store a field at a time
8353 since that should make a CONST_INT, CONST_WIDE_INT or
8354 CONST_DOUBLE when we fold. Likewise, if we have a target we can
8355 use, it is best to store directly into the target unless the type
8356 is large enough that memcpy will be used. If we are making an
8357 initializer and all operands are constant, put it in memory as
8358 well.
8360 FIXME: Avoid trying to fill vector constructors piece-meal.
8361 Output them with output_constant_def below unless we're sure
8362 they're zeros. This should go away when vector initializers
8363 are treated like VECTOR_CST instead of arrays. */
8364 if ((TREE_STATIC (exp)
8365 && ((mode == BLKmode
8366 && ! (target != 0 && safe_from_p (target, exp, 1)))
8367 || TREE_ADDRESSABLE (exp)
8368 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
8369 && (! can_move_by_pieces
8370 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
8371 TYPE_ALIGN (type)))
8372 && ! mostly_zeros_p (exp))))
8373 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
8374 && TREE_CONSTANT (exp)))
8376 rtx constructor;
8378 if (avoid_temp_mem)
8379 return NULL_RTX;
8381 constructor = expand_expr_constant (exp, 1, modifier);
8383 if (modifier != EXPAND_CONST_ADDRESS
8384 && modifier != EXPAND_INITIALIZER
8385 && modifier != EXPAND_SUM)
8386 constructor = validize_mem (constructor);
8388 return constructor;
8391 /* Handle calls that pass values in multiple non-contiguous
8392 locations. The Irix 6 ABI has examples of this. */
8393 if (target == 0 || ! safe_from_p (target, exp, 1)
8394 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
8395 /* Also make a temporary if the store is to volatile memory, to
8396 avoid individual accesses to aggregate members. */
8397 || (GET_CODE (target) == MEM
8398 && MEM_VOLATILE_P (target)
8399 && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
8401 if (avoid_temp_mem)
8402 return NULL_RTX;
8404 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
8407 store_constructor (exp, target, 0, int_expr_size (exp), false);
8408 return target;
8412 /* expand_expr: generate code for computing expression EXP.
8413 An rtx for the computed value is returned. The value is never null.
8414 In the case of a void EXP, const0_rtx is returned.
8416 The value may be stored in TARGET if TARGET is nonzero.
8417 TARGET is just a suggestion; callers must assume that
8418 the rtx returned may not be the same as TARGET.
8420 If TARGET is CONST0_RTX, it means that the value will be ignored.
8422 If TMODE is not VOIDmode, it suggests generating the
8423 result in mode TMODE. But this is done only when convenient.
8424 Otherwise, TMODE is ignored and the value generated in its natural mode.
8425 TMODE is just a suggestion; callers must assume that
8426 the rtx returned may not have mode TMODE.
8428 Note that TARGET may have neither TMODE nor MODE. In that case, it
8429 probably will not be used.
8431 If MODIFIER is EXPAND_SUM then when EXP is an addition
8432 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
8433 or a nest of (PLUS ...) and (MINUS ...) where the terms are
8434 products as above, or REG or MEM, or constant.
8435 Ordinarily in such cases we would output mul or add instructions
8436 and then return a pseudo reg containing the sum.
8438 EXPAND_INITIALIZER is much like EXPAND_SUM except that
8439 it also marks a label as absolutely required (it can't be dead).
8440 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
8441 This is used for outputting expressions used in initializers.
8443 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
8444 with a constant address even if that address is not normally legitimate.
8445 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
8447 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
8448 a call parameter. Such targets require special care as we haven't yet
8449 marked TARGET so that it's safe from being trashed by libcalls. We
8450 don't want to use TARGET for anything but the final result;
8451 Intermediate values must go elsewhere. Additionally, calls to
8452 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
8454 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
8455 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
8456 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
8457 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
8458 recursively.
8459 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8460 then *ALT_RTL is set to TARGET (before legitimziation).
8462 If INNER_REFERENCE_P is true, we are expanding an inner reference.
8463 In this case, we don't adjust a returned MEM rtx that wouldn't be
8464 sufficiently aligned for its mode; instead, it's up to the caller
8465 to deal with it afterwards. This is used to make sure that unaligned
8466 base objects for which out-of-bounds accesses are supported, for
8467 example record types with trailing arrays, aren't realigned behind
8468 the back of the caller.
8469 The normal operating mode is to pass FALSE for this parameter. */
8472 expand_expr_real (tree exp, rtx target, machine_mode tmode,
8473 enum expand_modifier modifier, rtx *alt_rtl,
8474 bool inner_reference_p)
8476 rtx ret;
8478 /* Handle ERROR_MARK before anybody tries to access its type. */
8479 if (TREE_CODE (exp) == ERROR_MARK
8480 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
8482 ret = CONST0_RTX (tmode);
8483 return ret ? ret : const0_rtx;
8486 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
8487 inner_reference_p);
8488 return ret;
8491 /* Try to expand the conditional expression which is represented by
8492 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
8493 return the rtl reg which represents the result. Otherwise return
8494 NULL_RTX. */
8496 static rtx
8497 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
8498 tree treeop1 ATTRIBUTE_UNUSED,
8499 tree treeop2 ATTRIBUTE_UNUSED)
8501 rtx insn;
8502 rtx op00, op01, op1, op2;
8503 enum rtx_code comparison_code;
8504 machine_mode comparison_mode;
8505 gimple *srcstmt;
8506 rtx temp;
8507 tree type = TREE_TYPE (treeop1);
8508 int unsignedp = TYPE_UNSIGNED (type);
8509 machine_mode mode = TYPE_MODE (type);
8510 machine_mode orig_mode = mode;
8511 static bool expanding_cond_expr_using_cmove = false;
8513 /* Conditional move expansion can end up TERing two operands which,
8514 when recursively hitting conditional expressions can result in
8515 exponential behavior if the cmove expansion ultimatively fails.
8516 It's hardly profitable to TER a cmove into a cmove so avoid doing
8517 that by failing early if we end up recursing. */
8518 if (expanding_cond_expr_using_cmove)
8519 return NULL_RTX;
8521 /* If we cannot do a conditional move on the mode, try doing it
8522 with the promoted mode. */
8523 if (!can_conditionally_move_p (mode))
8525 mode = promote_mode (type, mode, &unsignedp);
8526 if (!can_conditionally_move_p (mode))
8527 return NULL_RTX;
8528 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
8530 else
8531 temp = assign_temp (type, 0, 1);
8533 expanding_cond_expr_using_cmove = true;
8534 start_sequence ();
8535 expand_operands (treeop1, treeop2,
8536 temp, &op1, &op2, EXPAND_NORMAL);
8538 if (TREE_CODE (treeop0) == SSA_NAME
8539 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
8541 type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
8542 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
8543 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
8544 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
8545 comparison_mode = TYPE_MODE (type);
8546 unsignedp = TYPE_UNSIGNED (type);
8547 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8549 else if (COMPARISON_CLASS_P (treeop0))
8551 type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8552 enum tree_code cmpcode = TREE_CODE (treeop0);
8553 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8554 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8555 unsignedp = TYPE_UNSIGNED (type);
8556 comparison_mode = TYPE_MODE (type);
8557 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8559 else
8561 op00 = expand_normal (treeop0);
8562 op01 = const0_rtx;
8563 comparison_code = NE;
8564 comparison_mode = GET_MODE (op00);
8565 if (comparison_mode == VOIDmode)
8566 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8568 expanding_cond_expr_using_cmove = false;
8570 if (GET_MODE (op1) != mode)
8571 op1 = gen_lowpart (mode, op1);
8573 if (GET_MODE (op2) != mode)
8574 op2 = gen_lowpart (mode, op2);
8576 /* Try to emit the conditional move. */
8577 insn = emit_conditional_move (temp, comparison_code,
8578 op00, op01, comparison_mode,
8579 op1, op2, mode,
8580 unsignedp);
8582 /* If we could do the conditional move, emit the sequence,
8583 and return. */
8584 if (insn)
8586 rtx_insn *seq = get_insns ();
8587 end_sequence ();
8588 emit_insn (seq);
8589 return convert_modes (orig_mode, mode, temp, 0);
8592 /* Otherwise discard the sequence and fall back to code with
8593 branches. */
8594 end_sequence ();
8595 return NULL_RTX;
8598 /* A helper function for expand_expr_real_2 to be used with a
8599 misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
8600 is nonzero, with alignment ALIGN in bits.
8601 Store the value at TARGET if possible (if TARGET is nonzero).
8602 Regardless of TARGET, we return the rtx for where the value is placed.
8603 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
8604 then *ALT_RTL is set to TARGET (before legitimziation). */
8606 static rtx
8607 expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
8608 unsigned int align, rtx target, rtx *alt_rtl)
8610 enum insn_code icode;
8612 if ((icode = optab_handler (movmisalign_optab, mode))
8613 != CODE_FOR_nothing)
8615 class expand_operand ops[2];
8617 /* We've already validated the memory, and we're creating a
8618 new pseudo destination. The predicates really can't fail,
8619 nor can the generator. */
8620 create_output_operand (&ops[0], NULL_RTX, mode);
8621 create_fixed_operand (&ops[1], temp);
8622 expand_insn (icode, 2, ops);
8623 temp = ops[0].value;
8625 else if (targetm.slow_unaligned_access (mode, align))
8626 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
8627 0, unsignedp, target,
8628 mode, mode, false, alt_rtl);
8629 return temp;
8633 expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
8634 enum expand_modifier modifier)
8636 rtx op0, op1, op2, temp;
8637 rtx_code_label *lab;
8638 tree type;
8639 int unsignedp;
8640 machine_mode mode;
8641 scalar_int_mode int_mode;
8642 enum tree_code code = ops->code;
8643 optab this_optab;
8644 rtx subtarget, original_target;
8645 int ignore;
8646 bool reduce_bit_field;
8647 location_t loc = ops->location;
8648 tree treeop0, treeop1, treeop2;
8649 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8650 ? reduce_to_bit_field_precision ((expr), \
8651 target, \
8652 type) \
8653 : (expr))
8655 type = ops->type;
8656 mode = TYPE_MODE (type);
8657 unsignedp = TYPE_UNSIGNED (type);
8659 treeop0 = ops->op0;
8660 treeop1 = ops->op1;
8661 treeop2 = ops->op2;
8663 /* We should be called only on simple (binary or unary) expressions,
8664 exactly those that are valid in gimple expressions that aren't
8665 GIMPLE_SINGLE_RHS (or invalid). */
8666 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8667 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8668 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8670 ignore = (target == const0_rtx
8671 || ((CONVERT_EXPR_CODE_P (code)
8672 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8673 && TREE_CODE (type) == VOID_TYPE));
8675 /* We should be called only if we need the result. */
8676 gcc_assert (!ignore);
8678 /* An operation in what may be a bit-field type needs the
8679 result to be reduced to the precision of the bit-field type,
8680 which is narrower than that of the type's mode. */
8681 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8682 && !type_has_mode_precision_p (type));
8684 if (reduce_bit_field
8685 && (modifier == EXPAND_STACK_PARM
8686 || (target && GET_MODE (target) != mode)))
8687 target = 0;
8689 /* Use subtarget as the target for operand 0 of a binary operation. */
8690 subtarget = get_subtarget (target);
8691 original_target = target;
8693 switch (code)
8695 case NON_LVALUE_EXPR:
8696 case PAREN_EXPR:
8697 CASE_CONVERT:
8698 if (treeop0 == error_mark_node)
8699 return const0_rtx;
8701 if (TREE_CODE (type) == UNION_TYPE)
8703 tree valtype = TREE_TYPE (treeop0);
8705 /* If both input and output are BLKmode, this conversion isn't doing
8706 anything except possibly changing memory attribute. */
8707 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8709 rtx result = expand_expr (treeop0, target, tmode,
8710 modifier);
8712 result = copy_rtx (result);
8713 set_mem_attributes (result, type, 0);
8714 return result;
8717 if (target == 0)
8719 if (TYPE_MODE (type) != BLKmode)
8720 target = gen_reg_rtx (TYPE_MODE (type));
8721 else
8722 target = assign_temp (type, 1, 1);
8725 if (MEM_P (target))
8726 /* Store data into beginning of memory target. */
8727 store_expr (treeop0,
8728 adjust_address (target, TYPE_MODE (valtype), 0),
8729 modifier == EXPAND_STACK_PARM,
8730 false, TYPE_REVERSE_STORAGE_ORDER (type));
8732 else
8734 gcc_assert (REG_P (target)
8735 && !TYPE_REVERSE_STORAGE_ORDER (type));
8737 /* Store this field into a union of the proper type. */
8738 poly_uint64 op0_size
8739 = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
8740 poly_uint64 union_size = GET_MODE_BITSIZE (mode);
8741 store_field (target,
8742 /* The conversion must be constructed so that
8743 we know at compile time how many bits
8744 to preserve. */
8745 ordered_min (op0_size, union_size),
8746 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
8747 false, false);
8750 /* Return the entire union. */
8751 return target;
8754 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8756 op0 = expand_expr (treeop0, target, VOIDmode,
8757 modifier);
8759 /* If the signedness of the conversion differs and OP0 is
8760 a promoted SUBREG, clear that indication since we now
8761 have to do the proper extension. */
8762 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8763 && GET_CODE (op0) == SUBREG)
8764 SUBREG_PROMOTED_VAR_P (op0) = 0;
8766 return REDUCE_BIT_FIELD (op0);
8769 op0 = expand_expr (treeop0, NULL_RTX, mode,
8770 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8771 if (GET_MODE (op0) == mode)
8774 /* If OP0 is a constant, just convert it into the proper mode. */
8775 else if (CONSTANT_P (op0))
8777 tree inner_type = TREE_TYPE (treeop0);
8778 machine_mode inner_mode = GET_MODE (op0);
8780 if (inner_mode == VOIDmode)
8781 inner_mode = TYPE_MODE (inner_type);
8783 if (modifier == EXPAND_INITIALIZER)
8784 op0 = lowpart_subreg (mode, op0, inner_mode);
8785 else
8786 op0= convert_modes (mode, inner_mode, op0,
8787 TYPE_UNSIGNED (inner_type));
8790 else if (modifier == EXPAND_INITIALIZER)
8791 op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8792 ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8794 else if (target == 0)
8795 op0 = convert_to_mode (mode, op0,
8796 TYPE_UNSIGNED (TREE_TYPE
8797 (treeop0)));
8798 else
8800 convert_move (target, op0,
8801 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8802 op0 = target;
8805 return REDUCE_BIT_FIELD (op0);
8807 case ADDR_SPACE_CONVERT_EXPR:
8809 tree treeop0_type = TREE_TYPE (treeop0);
8811 gcc_assert (POINTER_TYPE_P (type));
8812 gcc_assert (POINTER_TYPE_P (treeop0_type));
8814 addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8815 addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8817 /* Conversions between pointers to the same address space should
8818 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8819 gcc_assert (as_to != as_from);
8821 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8823 /* Ask target code to handle conversion between pointers
8824 to overlapping address spaces. */
8825 if (targetm.addr_space.subset_p (as_to, as_from)
8826 || targetm.addr_space.subset_p (as_from, as_to))
8828 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8830 else
8832 /* For disjoint address spaces, converting anything but a null
8833 pointer invokes undefined behavior. We truncate or extend the
8834 value as if we'd converted via integers, which handles 0 as
8835 required, and all others as the programmer likely expects. */
8836 #ifndef POINTERS_EXTEND_UNSIGNED
8837 const int POINTERS_EXTEND_UNSIGNED = 1;
8838 #endif
8839 op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
8840 op0, POINTERS_EXTEND_UNSIGNED);
8842 gcc_assert (op0);
8843 return op0;
8846 case POINTER_PLUS_EXPR:
8847 /* Even though the sizetype mode and the pointer's mode can be different
8848 expand is able to handle this correctly and get the correct result out
8849 of the PLUS_EXPR code. */
8850 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8851 if sizetype precision is smaller than pointer precision. */
8852 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8853 treeop1 = fold_convert_loc (loc, type,
8854 fold_convert_loc (loc, ssizetype,
8855 treeop1));
8856 /* If sizetype precision is larger than pointer precision, truncate the
8857 offset to have matching modes. */
8858 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8859 treeop1 = fold_convert_loc (loc, type, treeop1);
8860 /* FALLTHRU */
8862 case PLUS_EXPR:
8863 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8864 something else, make sure we add the register to the constant and
8865 then to the other thing. This case can occur during strength
8866 reduction and doing it this way will produce better code if the
8867 frame pointer or argument pointer is eliminated.
8869 fold-const.c will ensure that the constant is always in the inner
8870 PLUS_EXPR, so the only case we need to do anything about is if
8871 sp, ap, or fp is our second argument, in which case we must swap
8872 the innermost first argument and our second argument. */
8874 if (TREE_CODE (treeop0) == PLUS_EXPR
8875 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8876 && VAR_P (treeop1)
8877 && (DECL_RTL (treeop1) == frame_pointer_rtx
8878 || DECL_RTL (treeop1) == stack_pointer_rtx
8879 || DECL_RTL (treeop1) == arg_pointer_rtx))
8881 gcc_unreachable ();
8884 /* If the result is to be ptr_mode and we are adding an integer to
8885 something, we might be forming a constant. So try to use
8886 plus_constant. If it produces a sum and we can't accept it,
8887 use force_operand. This allows P = &ARR[const] to generate
8888 efficient code on machines where a SYMBOL_REF is not a valid
8889 address.
8891 If this is an EXPAND_SUM call, always return the sum. */
8892 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8893 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8895 if (modifier == EXPAND_STACK_PARM)
8896 target = 0;
8897 if (TREE_CODE (treeop0) == INTEGER_CST
8898 && HWI_COMPUTABLE_MODE_P (mode)
8899 && TREE_CONSTANT (treeop1))
8901 rtx constant_part;
8902 HOST_WIDE_INT wc;
8903 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
8905 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8906 EXPAND_SUM);
8907 /* Use wi::shwi to ensure that the constant is
8908 truncated according to the mode of OP1, then sign extended
8909 to a HOST_WIDE_INT. Using the constant directly can result
8910 in non-canonical RTL in a 64x32 cross compile. */
8911 wc = TREE_INT_CST_LOW (treeop0);
8912 constant_part =
8913 immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8914 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8915 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8916 op1 = force_operand (op1, target);
8917 return REDUCE_BIT_FIELD (op1);
8920 else if (TREE_CODE (treeop1) == INTEGER_CST
8921 && HWI_COMPUTABLE_MODE_P (mode)
8922 && TREE_CONSTANT (treeop0))
8924 rtx constant_part;
8925 HOST_WIDE_INT wc;
8926 machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
8928 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8929 (modifier == EXPAND_INITIALIZER
8930 ? EXPAND_INITIALIZER : EXPAND_SUM));
8931 if (! CONSTANT_P (op0))
8933 op1 = expand_expr (treeop1, NULL_RTX,
8934 VOIDmode, modifier);
8935 /* Return a PLUS if modifier says it's OK. */
8936 if (modifier == EXPAND_SUM
8937 || modifier == EXPAND_INITIALIZER)
8938 return simplify_gen_binary (PLUS, mode, op0, op1);
8939 goto binop2;
8941 /* Use wi::shwi to ensure that the constant is
8942 truncated according to the mode of OP1, then sign extended
8943 to a HOST_WIDE_INT. Using the constant directly can result
8944 in non-canonical RTL in a 64x32 cross compile. */
8945 wc = TREE_INT_CST_LOW (treeop1);
8946 constant_part
8947 = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
8948 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8949 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8950 op0 = force_operand (op0, target);
8951 return REDUCE_BIT_FIELD (op0);
8955 /* Use TER to expand pointer addition of a negated value
8956 as pointer subtraction. */
8957 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8958 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8959 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8960 && TREE_CODE (treeop1) == SSA_NAME
8961 && TYPE_MODE (TREE_TYPE (treeop0))
8962 == TYPE_MODE (TREE_TYPE (treeop1)))
8964 gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
8965 if (def)
8967 treeop1 = gimple_assign_rhs1 (def);
8968 code = MINUS_EXPR;
8969 goto do_minus;
8973 /* No sense saving up arithmetic to be done
8974 if it's all in the wrong mode to form part of an address.
8975 And force_operand won't know whether to sign-extend or
8976 zero-extend. */
8977 if (modifier != EXPAND_INITIALIZER
8978 && (modifier != EXPAND_SUM || mode != ptr_mode))
8980 expand_operands (treeop0, treeop1,
8981 subtarget, &op0, &op1, modifier);
8982 if (op0 == const0_rtx)
8983 return op1;
8984 if (op1 == const0_rtx)
8985 return op0;
8986 goto binop2;
8989 expand_operands (treeop0, treeop1,
8990 subtarget, &op0, &op1, modifier);
8991 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8993 case MINUS_EXPR:
8994 case POINTER_DIFF_EXPR:
8995 do_minus:
8996 /* For initializers, we are allowed to return a MINUS of two
8997 symbolic constants. Here we handle all cases when both operands
8998 are constant. */
8999 /* Handle difference of two symbolic constants,
9000 for the sake of an initializer. */
9001 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9002 && really_constant_p (treeop0)
9003 && really_constant_p (treeop1))
9005 expand_operands (treeop0, treeop1,
9006 NULL_RTX, &op0, &op1, modifier);
9007 return simplify_gen_binary (MINUS, mode, op0, op1);
9010 /* No sense saving up arithmetic to be done
9011 if it's all in the wrong mode to form part of an address.
9012 And force_operand won't know whether to sign-extend or
9013 zero-extend. */
9014 if (modifier != EXPAND_INITIALIZER
9015 && (modifier != EXPAND_SUM || mode != ptr_mode))
9016 goto binop;
9018 expand_operands (treeop0, treeop1,
9019 subtarget, &op0, &op1, modifier);
9021 /* Convert A - const to A + (-const). */
9022 if (CONST_INT_P (op1))
9024 op1 = negate_rtx (mode, op1);
9025 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
9028 goto binop2;
9030 case WIDEN_MULT_PLUS_EXPR:
9031 case WIDEN_MULT_MINUS_EXPR:
9032 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9033 op2 = expand_normal (treeop2);
9034 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9035 target, unsignedp);
9036 return target;
9038 case WIDEN_MULT_EXPR:
9039 /* If first operand is constant, swap them.
9040 Thus the following special case checks need only
9041 check the second operand. */
9042 if (TREE_CODE (treeop0) == INTEGER_CST)
9043 std::swap (treeop0, treeop1);
9045 /* First, check if we have a multiplication of one signed and one
9046 unsigned operand. */
9047 if (TREE_CODE (treeop1) != INTEGER_CST
9048 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
9049 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
9051 machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
9052 this_optab = usmul_widen_optab;
9053 if (find_widening_optab_handler (this_optab, mode, innermode)
9054 != CODE_FOR_nothing)
9056 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9057 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9058 EXPAND_NORMAL);
9059 else
9060 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
9061 EXPAND_NORMAL);
9062 /* op0 and op1 might still be constant, despite the above
9063 != INTEGER_CST check. Handle it. */
9064 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9066 op0 = convert_modes (mode, innermode, op0, true);
9067 op1 = convert_modes (mode, innermode, op1, false);
9068 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9069 target, unsignedp));
9071 goto binop3;
9074 /* Check for a multiplication with matching signedness. */
9075 else if ((TREE_CODE (treeop1) == INTEGER_CST
9076 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
9077 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
9078 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
9080 tree op0type = TREE_TYPE (treeop0);
9081 machine_mode innermode = TYPE_MODE (op0type);
9082 bool zextend_p = TYPE_UNSIGNED (op0type);
9083 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
9084 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
9086 if (TREE_CODE (treeop0) != INTEGER_CST)
9088 if (find_widening_optab_handler (this_optab, mode, innermode)
9089 != CODE_FOR_nothing)
9091 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
9092 EXPAND_NORMAL);
9093 /* op0 and op1 might still be constant, despite the above
9094 != INTEGER_CST check. Handle it. */
9095 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9097 widen_mult_const:
9098 op0 = convert_modes (mode, innermode, op0, zextend_p);
9100 = convert_modes (mode, innermode, op1,
9101 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
9102 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
9103 target,
9104 unsignedp));
9106 temp = expand_widening_mult (mode, op0, op1, target,
9107 unsignedp, this_optab);
9108 return REDUCE_BIT_FIELD (temp);
9110 if (find_widening_optab_handler (other_optab, mode, innermode)
9111 != CODE_FOR_nothing
9112 && innermode == word_mode)
9114 rtx htem, hipart;
9115 op0 = expand_normal (treeop0);
9116 op1 = expand_normal (treeop1);
9117 /* op0 and op1 might be constants, despite the above
9118 != INTEGER_CST check. Handle it. */
9119 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
9120 goto widen_mult_const;
9121 temp = expand_binop (mode, other_optab, op0, op1, target,
9122 unsignedp, OPTAB_LIB_WIDEN);
9123 hipart = gen_highpart (word_mode, temp);
9124 htem = expand_mult_highpart_adjust (word_mode, hipart,
9125 op0, op1, hipart,
9126 zextend_p);
9127 if (htem != hipart)
9128 emit_move_insn (hipart, htem);
9129 return REDUCE_BIT_FIELD (temp);
9133 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
9134 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
9135 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9136 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9138 case MULT_EXPR:
9139 /* If this is a fixed-point operation, then we cannot use the code
9140 below because "expand_mult" doesn't support sat/no-sat fixed-point
9141 multiplications. */
9142 if (ALL_FIXED_POINT_MODE_P (mode))
9143 goto binop;
9145 /* If first operand is constant, swap them.
9146 Thus the following special case checks need only
9147 check the second operand. */
9148 if (TREE_CODE (treeop0) == INTEGER_CST)
9149 std::swap (treeop0, treeop1);
9151 /* Attempt to return something suitable for generating an
9152 indexed address, for machines that support that. */
9154 if (modifier == EXPAND_SUM && mode == ptr_mode
9155 && tree_fits_shwi_p (treeop1))
9157 tree exp1 = treeop1;
9159 op0 = expand_expr (treeop0, subtarget, VOIDmode,
9160 EXPAND_SUM);
9162 if (!REG_P (op0))
9163 op0 = force_operand (op0, NULL_RTX);
9164 if (!REG_P (op0))
9165 op0 = copy_to_mode_reg (mode, op0);
9167 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
9168 gen_int_mode (tree_to_shwi (exp1),
9169 TYPE_MODE (TREE_TYPE (exp1)))));
9172 if (modifier == EXPAND_STACK_PARM)
9173 target = 0;
9175 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9176 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
9178 case TRUNC_MOD_EXPR:
9179 case FLOOR_MOD_EXPR:
9180 case CEIL_MOD_EXPR:
9181 case ROUND_MOD_EXPR:
9183 case TRUNC_DIV_EXPR:
9184 case FLOOR_DIV_EXPR:
9185 case CEIL_DIV_EXPR:
9186 case ROUND_DIV_EXPR:
9187 case EXACT_DIV_EXPR:
9189 /* If this is a fixed-point operation, then we cannot use the code
9190 below because "expand_divmod" doesn't support sat/no-sat fixed-point
9191 divisions. */
9192 if (ALL_FIXED_POINT_MODE_P (mode))
9193 goto binop;
9195 if (modifier == EXPAND_STACK_PARM)
9196 target = 0;
9197 /* Possible optimization: compute the dividend with EXPAND_SUM
9198 then if the divisor is constant can optimize the case
9199 where some terms of the dividend have coeffs divisible by it. */
9200 expand_operands (treeop0, treeop1,
9201 subtarget, &op0, &op1, EXPAND_NORMAL);
9202 bool mod_p = code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
9203 || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR;
9204 if (SCALAR_INT_MODE_P (mode)
9205 && optimize >= 2
9206 && get_range_pos_neg (treeop0) == 1
9207 && get_range_pos_neg (treeop1) == 1)
9209 /* If both arguments are known to be positive when interpreted
9210 as signed, we can expand it as both signed and unsigned
9211 division or modulo. Choose the cheaper sequence in that case. */
9212 bool speed_p = optimize_insn_for_speed_p ();
9213 do_pending_stack_adjust ();
9214 start_sequence ();
9215 rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
9216 rtx_insn *uns_insns = get_insns ();
9217 end_sequence ();
9218 start_sequence ();
9219 rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
9220 rtx_insn *sgn_insns = get_insns ();
9221 end_sequence ();
9222 unsigned uns_cost = seq_cost (uns_insns, speed_p);
9223 unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
9225 /* If costs are the same then use as tie breaker the other
9226 other factor. */
9227 if (uns_cost == sgn_cost)
9229 uns_cost = seq_cost (uns_insns, !speed_p);
9230 sgn_cost = seq_cost (sgn_insns, !speed_p);
9233 if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
9235 emit_insn (uns_insns);
9236 return uns_ret;
9238 emit_insn (sgn_insns);
9239 return sgn_ret;
9241 return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
9243 case RDIV_EXPR:
9244 goto binop;
9246 case MULT_HIGHPART_EXPR:
9247 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
9248 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
9249 gcc_assert (temp);
9250 return temp;
9252 case FIXED_CONVERT_EXPR:
9253 op0 = expand_normal (treeop0);
9254 if (target == 0 || modifier == EXPAND_STACK_PARM)
9255 target = gen_reg_rtx (mode);
9257 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
9258 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9259 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
9260 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
9261 else
9262 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
9263 return target;
9265 case FIX_TRUNC_EXPR:
9266 op0 = expand_normal (treeop0);
9267 if (target == 0 || modifier == EXPAND_STACK_PARM)
9268 target = gen_reg_rtx (mode);
9269 expand_fix (target, op0, unsignedp);
9270 return target;
9272 case FLOAT_EXPR:
9273 op0 = expand_normal (treeop0);
9274 if (target == 0 || modifier == EXPAND_STACK_PARM)
9275 target = gen_reg_rtx (mode);
9276 /* expand_float can't figure out what to do if FROM has VOIDmode.
9277 So give it the correct mode. With -O, cse will optimize this. */
9278 if (GET_MODE (op0) == VOIDmode)
9279 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
9280 op0);
9281 expand_float (target, op0,
9282 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9283 return target;
9285 case NEGATE_EXPR:
9286 op0 = expand_expr (treeop0, subtarget,
9287 VOIDmode, EXPAND_NORMAL);
9288 if (modifier == EXPAND_STACK_PARM)
9289 target = 0;
9290 temp = expand_unop (mode,
9291 optab_for_tree_code (NEGATE_EXPR, type,
9292 optab_default),
9293 op0, target, 0);
9294 gcc_assert (temp);
9295 return REDUCE_BIT_FIELD (temp);
9297 case ABS_EXPR:
9298 case ABSU_EXPR:
9299 op0 = expand_expr (treeop0, subtarget,
9300 VOIDmode, EXPAND_NORMAL);
9301 if (modifier == EXPAND_STACK_PARM)
9302 target = 0;
9304 /* ABS_EXPR is not valid for complex arguments. */
9305 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9306 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
9308 /* Unsigned abs is simply the operand. Testing here means we don't
9309 risk generating incorrect code below. */
9310 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
9311 return op0;
9313 return expand_abs (mode, op0, target, unsignedp,
9314 safe_from_p (target, treeop0, 1));
9316 case MAX_EXPR:
9317 case MIN_EXPR:
9318 target = original_target;
9319 if (target == 0
9320 || modifier == EXPAND_STACK_PARM
9321 || (MEM_P (target) && MEM_VOLATILE_P (target))
9322 || GET_MODE (target) != mode
9323 || (REG_P (target)
9324 && REGNO (target) < FIRST_PSEUDO_REGISTER))
9325 target = gen_reg_rtx (mode);
9326 expand_operands (treeop0, treeop1,
9327 target, &op0, &op1, EXPAND_NORMAL);
9329 /* First try to do it with a special MIN or MAX instruction.
9330 If that does not win, use a conditional jump to select the proper
9331 value. */
9332 this_optab = optab_for_tree_code (code, type, optab_default);
9333 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9334 OPTAB_WIDEN);
9335 if (temp != 0)
9336 return temp;
9338 if (VECTOR_TYPE_P (type))
9339 gcc_unreachable ();
9341 /* At this point, a MEM target is no longer useful; we will get better
9342 code without it. */
9344 if (! REG_P (target))
9345 target = gen_reg_rtx (mode);
9347 /* If op1 was placed in target, swap op0 and op1. */
9348 if (target != op0 && target == op1)
9349 std::swap (op0, op1);
9351 /* We generate better code and avoid problems with op1 mentioning
9352 target by forcing op1 into a pseudo if it isn't a constant. */
9353 if (! CONSTANT_P (op1))
9354 op1 = force_reg (mode, op1);
9357 enum rtx_code comparison_code;
9358 rtx cmpop1 = op1;
9360 if (code == MAX_EXPR)
9361 comparison_code = unsignedp ? GEU : GE;
9362 else
9363 comparison_code = unsignedp ? LEU : LE;
9365 /* Canonicalize to comparisons against 0. */
9366 if (op1 == const1_rtx)
9368 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
9369 or (a != 0 ? a : 1) for unsigned.
9370 For MIN we are safe converting (a <= 1 ? a : 1)
9371 into (a <= 0 ? a : 1) */
9372 cmpop1 = const0_rtx;
9373 if (code == MAX_EXPR)
9374 comparison_code = unsignedp ? NE : GT;
9376 if (op1 == constm1_rtx && !unsignedp)
9378 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
9379 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
9380 cmpop1 = const0_rtx;
9381 if (code == MIN_EXPR)
9382 comparison_code = LT;
9385 /* Use a conditional move if possible. */
9386 if (can_conditionally_move_p (mode))
9388 rtx insn;
9390 start_sequence ();
9392 /* Try to emit the conditional move. */
9393 insn = emit_conditional_move (target, comparison_code,
9394 op0, cmpop1, mode,
9395 op0, op1, mode,
9396 unsignedp);
9398 /* If we could do the conditional move, emit the sequence,
9399 and return. */
9400 if (insn)
9402 rtx_insn *seq = get_insns ();
9403 end_sequence ();
9404 emit_insn (seq);
9405 return target;
9408 /* Otherwise discard the sequence and fall back to code with
9409 branches. */
9410 end_sequence ();
9413 if (target != op0)
9414 emit_move_insn (target, op0);
9416 lab = gen_label_rtx ();
9417 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
9418 unsignedp, mode, NULL_RTX, NULL, lab,
9419 profile_probability::uninitialized ());
9421 emit_move_insn (target, op1);
9422 emit_label (lab);
9423 return target;
9425 case BIT_NOT_EXPR:
9426 op0 = expand_expr (treeop0, subtarget,
9427 VOIDmode, EXPAND_NORMAL);
9428 if (modifier == EXPAND_STACK_PARM)
9429 target = 0;
9430 /* In case we have to reduce the result to bitfield precision
9431 for unsigned bitfield expand this as XOR with a proper constant
9432 instead. */
9433 if (reduce_bit_field && TYPE_UNSIGNED (type))
9435 int_mode = SCALAR_INT_TYPE_MODE (type);
9436 wide_int mask = wi::mask (TYPE_PRECISION (type),
9437 false, GET_MODE_PRECISION (int_mode));
9439 temp = expand_binop (int_mode, xor_optab, op0,
9440 immed_wide_int_const (mask, int_mode),
9441 target, 1, OPTAB_LIB_WIDEN);
9443 else
9444 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
9445 gcc_assert (temp);
9446 return temp;
9448 /* ??? Can optimize bitwise operations with one arg constant.
9449 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
9450 and (a bitwise1 b) bitwise2 b (etc)
9451 but that is probably not worth while. */
9453 case BIT_AND_EXPR:
9454 case BIT_IOR_EXPR:
9455 case BIT_XOR_EXPR:
9456 goto binop;
9458 case LROTATE_EXPR:
9459 case RROTATE_EXPR:
9460 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9461 || type_has_mode_precision_p (type));
9462 /* fall through */
9464 case LSHIFT_EXPR:
9465 case RSHIFT_EXPR:
9467 /* If this is a fixed-point operation, then we cannot use the code
9468 below because "expand_shift" doesn't support sat/no-sat fixed-point
9469 shifts. */
9470 if (ALL_FIXED_POINT_MODE_P (mode))
9471 goto binop;
9473 if (! safe_from_p (subtarget, treeop1, 1))
9474 subtarget = 0;
9475 if (modifier == EXPAND_STACK_PARM)
9476 target = 0;
9477 op0 = expand_expr (treeop0, subtarget,
9478 VOIDmode, EXPAND_NORMAL);
9480 /* Left shift optimization when shifting across word_size boundary.
9482 If mode == GET_MODE_WIDER_MODE (word_mode), then normally
9483 there isn't native instruction to support this wide mode
9484 left shift. Given below scenario:
9486 Type A = (Type) B << C
9488 |< T >|
9489 | dest_high | dest_low |
9491 | word_size |
9493 If the shift amount C caused we shift B to across the word
9494 size boundary, i.e part of B shifted into high half of
9495 destination register, and part of B remains in the low
9496 half, then GCC will use the following left shift expand
9497 logic:
9499 1. Initialize dest_low to B.
9500 2. Initialize every bit of dest_high to the sign bit of B.
9501 3. Logic left shift dest_low by C bit to finalize dest_low.
9502 The value of dest_low before this shift is kept in a temp D.
9503 4. Logic left shift dest_high by C.
9504 5. Logic right shift D by (word_size - C).
9505 6. Or the result of 4 and 5 to finalize dest_high.
9507 While, by checking gimple statements, if operand B is
9508 coming from signed extension, then we can simplify above
9509 expand logic into:
9511 1. dest_high = src_low >> (word_size - C).
9512 2. dest_low = src_low << C.
9514 We can use one arithmetic right shift to finish all the
9515 purpose of steps 2, 4, 5, 6, thus we reduce the steps
9516 needed from 6 into 2.
9518 The case is similar for zero extension, except that we
9519 initialize dest_high to zero rather than copies of the sign
9520 bit from B. Furthermore, we need to use a logical right shift
9521 in this case.
9523 The choice of sign-extension versus zero-extension is
9524 determined entirely by whether or not B is signed and is
9525 independent of the current setting of unsignedp. */
9527 temp = NULL_RTX;
9528 if (code == LSHIFT_EXPR
9529 && target
9530 && REG_P (target)
9531 && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
9532 && mode == int_mode
9533 && TREE_CONSTANT (treeop1)
9534 && TREE_CODE (treeop0) == SSA_NAME)
9536 gimple *def = SSA_NAME_DEF_STMT (treeop0);
9537 if (is_gimple_assign (def)
9538 && gimple_assign_rhs_code (def) == NOP_EXPR)
9540 scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
9541 (TREE_TYPE (gimple_assign_rhs1 (def)));
9543 if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
9544 && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
9545 && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
9546 >= GET_MODE_BITSIZE (word_mode)))
9548 rtx_insn *seq, *seq_old;
9549 poly_uint64 high_off = subreg_highpart_offset (word_mode,
9550 int_mode);
9551 bool extend_unsigned
9552 = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
9553 rtx low = lowpart_subreg (word_mode, op0, int_mode);
9554 rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
9555 rtx dest_high = simplify_gen_subreg (word_mode, target,
9556 int_mode, high_off);
9557 HOST_WIDE_INT ramount = (BITS_PER_WORD
9558 - TREE_INT_CST_LOW (treeop1));
9559 tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
9561 start_sequence ();
9562 /* dest_high = src_low >> (word_size - C). */
9563 temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
9564 rshift, dest_high,
9565 extend_unsigned);
9566 if (temp != dest_high)
9567 emit_move_insn (dest_high, temp);
9569 /* dest_low = src_low << C. */
9570 temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
9571 treeop1, dest_low, unsignedp);
9572 if (temp != dest_low)
9573 emit_move_insn (dest_low, temp);
9575 seq = get_insns ();
9576 end_sequence ();
9577 temp = target ;
9579 if (have_insn_for (ASHIFT, int_mode))
9581 bool speed_p = optimize_insn_for_speed_p ();
9582 start_sequence ();
9583 rtx ret_old = expand_variable_shift (code, int_mode,
9584 op0, treeop1,
9585 target,
9586 unsignedp);
9588 seq_old = get_insns ();
9589 end_sequence ();
9590 if (seq_cost (seq, speed_p)
9591 >= seq_cost (seq_old, speed_p))
9593 seq = seq_old;
9594 temp = ret_old;
9597 emit_insn (seq);
9602 if (temp == NULL_RTX)
9603 temp = expand_variable_shift (code, mode, op0, treeop1, target,
9604 unsignedp);
9605 if (code == LSHIFT_EXPR)
9606 temp = REDUCE_BIT_FIELD (temp);
9607 return temp;
9610 /* Could determine the answer when only additive constants differ. Also,
9611 the addition of one can be handled by changing the condition. */
9612 case LT_EXPR:
9613 case LE_EXPR:
9614 case GT_EXPR:
9615 case GE_EXPR:
9616 case EQ_EXPR:
9617 case NE_EXPR:
9618 case UNORDERED_EXPR:
9619 case ORDERED_EXPR:
9620 case UNLT_EXPR:
9621 case UNLE_EXPR:
9622 case UNGT_EXPR:
9623 case UNGE_EXPR:
9624 case UNEQ_EXPR:
9625 case LTGT_EXPR:
9627 temp = do_store_flag (ops,
9628 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9629 tmode != VOIDmode ? tmode : mode);
9630 if (temp)
9631 return temp;
9633 /* Use a compare and a jump for BLKmode comparisons, or for function
9634 type comparisons is have_canonicalize_funcptr_for_compare. */
9636 if ((target == 0
9637 || modifier == EXPAND_STACK_PARM
9638 || ! safe_from_p (target, treeop0, 1)
9639 || ! safe_from_p (target, treeop1, 1)
9640 /* Make sure we don't have a hard reg (such as function's return
9641 value) live across basic blocks, if not optimizing. */
9642 || (!optimize && REG_P (target)
9643 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9644 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9646 emit_move_insn (target, const0_rtx);
9648 rtx_code_label *lab1 = gen_label_rtx ();
9649 jumpifnot_1 (code, treeop0, treeop1, lab1,
9650 profile_probability::uninitialized ());
9652 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
9653 emit_move_insn (target, constm1_rtx);
9654 else
9655 emit_move_insn (target, const1_rtx);
9657 emit_label (lab1);
9658 return target;
9660 case COMPLEX_EXPR:
9661 /* Get the rtx code of the operands. */
9662 op0 = expand_normal (treeop0);
9663 op1 = expand_normal (treeop1);
9665 if (!target)
9666 target = gen_reg_rtx (TYPE_MODE (type));
9667 else
9668 /* If target overlaps with op1, then either we need to force
9669 op1 into a pseudo (if target also overlaps with op0),
9670 or write the complex parts in reverse order. */
9671 switch (GET_CODE (target))
9673 case CONCAT:
9674 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
9676 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
9678 complex_expr_force_op1:
9679 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
9680 emit_move_insn (temp, op1);
9681 op1 = temp;
9682 break;
9684 complex_expr_swap_order:
9685 /* Move the imaginary (op1) and real (op0) parts to their
9686 location. */
9687 write_complex_part (target, op1, true);
9688 write_complex_part (target, op0, false);
9690 return target;
9692 break;
9693 case MEM:
9694 temp = adjust_address_nv (target,
9695 GET_MODE_INNER (GET_MODE (target)), 0);
9696 if (reg_overlap_mentioned_p (temp, op1))
9698 scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
9699 temp = adjust_address_nv (target, imode,
9700 GET_MODE_SIZE (imode));
9701 if (reg_overlap_mentioned_p (temp, op0))
9702 goto complex_expr_force_op1;
9703 goto complex_expr_swap_order;
9705 break;
9706 default:
9707 if (reg_overlap_mentioned_p (target, op1))
9709 if (reg_overlap_mentioned_p (target, op0))
9710 goto complex_expr_force_op1;
9711 goto complex_expr_swap_order;
9713 break;
9716 /* Move the real (op0) and imaginary (op1) parts to their location. */
9717 write_complex_part (target, op0, false);
9718 write_complex_part (target, op1, true);
9720 return target;
9722 case WIDEN_SUM_EXPR:
9724 tree oprnd0 = treeop0;
9725 tree oprnd1 = treeop1;
9727 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9728 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9729 target, unsignedp);
9730 return target;
9733 case VEC_UNPACK_HI_EXPR:
9734 case VEC_UNPACK_LO_EXPR:
9735 case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
9736 case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
9738 op0 = expand_normal (treeop0);
9739 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9740 target, unsignedp);
9741 gcc_assert (temp);
9742 return temp;
9745 case VEC_UNPACK_FLOAT_HI_EXPR:
9746 case VEC_UNPACK_FLOAT_LO_EXPR:
9748 op0 = expand_normal (treeop0);
9749 /* The signedness is determined from input operand. */
9750 temp = expand_widen_pattern_expr
9751 (ops, op0, NULL_RTX, NULL_RTX,
9752 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9754 gcc_assert (temp);
9755 return temp;
9758 case VEC_WIDEN_MULT_HI_EXPR:
9759 case VEC_WIDEN_MULT_LO_EXPR:
9760 case VEC_WIDEN_MULT_EVEN_EXPR:
9761 case VEC_WIDEN_MULT_ODD_EXPR:
9762 case VEC_WIDEN_LSHIFT_HI_EXPR:
9763 case VEC_WIDEN_LSHIFT_LO_EXPR:
9764 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9765 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9766 target, unsignedp);
9767 gcc_assert (target);
9768 return target;
9770 case VEC_PACK_SAT_EXPR:
9771 case VEC_PACK_FIX_TRUNC_EXPR:
9772 mode = TYPE_MODE (TREE_TYPE (treeop0));
9773 goto binop;
9775 case VEC_PACK_TRUNC_EXPR:
9776 if (VECTOR_BOOLEAN_TYPE_P (type)
9777 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
9778 && mode == TYPE_MODE (TREE_TYPE (treeop0))
9779 && SCALAR_INT_MODE_P (mode))
9781 class expand_operand eops[4];
9782 machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
9783 expand_operands (treeop0, treeop1,
9784 subtarget, &op0, &op1, EXPAND_NORMAL);
9785 this_optab = vec_pack_sbool_trunc_optab;
9786 enum insn_code icode = optab_handler (this_optab, imode);
9787 create_output_operand (&eops[0], target, mode);
9788 create_convert_operand_from (&eops[1], op0, imode, false);
9789 create_convert_operand_from (&eops[2], op1, imode, false);
9790 temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
9791 create_input_operand (&eops[3], temp, imode);
9792 expand_insn (icode, 4, eops);
9793 return eops[0].value;
9795 mode = TYPE_MODE (TREE_TYPE (treeop0));
9796 goto binop;
9798 case VEC_PACK_FLOAT_EXPR:
9799 mode = TYPE_MODE (TREE_TYPE (treeop0));
9800 expand_operands (treeop0, treeop1,
9801 subtarget, &op0, &op1, EXPAND_NORMAL);
9802 this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
9803 optab_default);
9804 target = expand_binop (mode, this_optab, op0, op1, target,
9805 TYPE_UNSIGNED (TREE_TYPE (treeop0)),
9806 OPTAB_LIB_WIDEN);
9807 gcc_assert (target);
9808 return target;
9810 case VEC_PERM_EXPR:
9812 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9813 vec_perm_builder sel;
9814 if (TREE_CODE (treeop2) == VECTOR_CST
9815 && tree_to_vec_perm_builder (&sel, treeop2))
9817 machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
9818 temp = expand_vec_perm_const (mode, op0, op1, sel,
9819 sel_mode, target);
9821 else
9823 op2 = expand_normal (treeop2);
9824 temp = expand_vec_perm_var (mode, op0, op1, op2, target);
9826 gcc_assert (temp);
9827 return temp;
9830 case DOT_PROD_EXPR:
9832 tree oprnd0 = treeop0;
9833 tree oprnd1 = treeop1;
9834 tree oprnd2 = treeop2;
9836 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9837 op2 = expand_normal (oprnd2);
9838 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9839 target, unsignedp);
9840 return target;
9843 case SAD_EXPR:
9845 tree oprnd0 = treeop0;
9846 tree oprnd1 = treeop1;
9847 tree oprnd2 = treeop2;
9849 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9850 op2 = expand_normal (oprnd2);
9851 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9852 target, unsignedp);
9853 return target;
9856 case REALIGN_LOAD_EXPR:
9858 tree oprnd0 = treeop0;
9859 tree oprnd1 = treeop1;
9860 tree oprnd2 = treeop2;
9862 this_optab = optab_for_tree_code (code, type, optab_default);
9863 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9864 op2 = expand_normal (oprnd2);
9865 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9866 target, unsignedp);
9867 gcc_assert (temp);
9868 return temp;
9871 case COND_EXPR:
9873 /* A COND_EXPR with its type being VOID_TYPE represents a
9874 conditional jump and is handled in
9875 expand_gimple_cond_expr. */
9876 gcc_assert (!VOID_TYPE_P (type));
9878 /* Note that COND_EXPRs whose type is a structure or union
9879 are required to be constructed to contain assignments of
9880 a temporary variable, so that we can evaluate them here
9881 for side effect only. If type is void, we must do likewise. */
9883 gcc_assert (!TREE_ADDRESSABLE (type)
9884 && !ignore
9885 && TREE_TYPE (treeop1) != void_type_node
9886 && TREE_TYPE (treeop2) != void_type_node);
9888 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9889 if (temp)
9890 return temp;
9892 /* If we are not to produce a result, we have no target. Otherwise,
9893 if a target was specified use it; it will not be used as an
9894 intermediate target unless it is safe. If no target, use a
9895 temporary. */
9897 if (modifier != EXPAND_STACK_PARM
9898 && original_target
9899 && safe_from_p (original_target, treeop0, 1)
9900 && GET_MODE (original_target) == mode
9901 && !MEM_P (original_target))
9902 temp = original_target;
9903 else
9904 temp = assign_temp (type, 0, 1);
9906 do_pending_stack_adjust ();
9907 NO_DEFER_POP;
9908 rtx_code_label *lab0 = gen_label_rtx ();
9909 rtx_code_label *lab1 = gen_label_rtx ();
9910 jumpifnot (treeop0, lab0,
9911 profile_probability::uninitialized ());
9912 store_expr (treeop1, temp,
9913 modifier == EXPAND_STACK_PARM,
9914 false, false);
9916 emit_jump_insn (targetm.gen_jump (lab1));
9917 emit_barrier ();
9918 emit_label (lab0);
9919 store_expr (treeop2, temp,
9920 modifier == EXPAND_STACK_PARM,
9921 false, false);
9923 emit_label (lab1);
9924 OK_DEFER_POP;
9925 return temp;
9928 case VEC_DUPLICATE_EXPR:
9929 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
9930 target = expand_vector_broadcast (mode, op0);
9931 gcc_assert (target);
9932 return target;
9934 case VEC_SERIES_EXPR:
9935 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
9936 return expand_vec_series_expr (mode, op0, op1, target);
9938 case BIT_INSERT_EXPR:
9940 unsigned bitpos = tree_to_uhwi (treeop2);
9941 unsigned bitsize;
9942 if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
9943 bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
9944 else
9945 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
9946 op0 = expand_normal (treeop0);
9947 op1 = expand_normal (treeop1);
9948 rtx dst = gen_reg_rtx (mode);
9949 emit_move_insn (dst, op0);
9950 store_bit_field (dst, bitsize, bitpos, 0, 0,
9951 TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
9952 return dst;
9955 default:
9956 gcc_unreachable ();
9959 /* Here to do an ordinary binary operator. */
9960 binop:
9961 expand_operands (treeop0, treeop1,
9962 subtarget, &op0, &op1, EXPAND_NORMAL);
9963 binop2:
9964 this_optab = optab_for_tree_code (code, type, optab_default);
9965 binop3:
9966 if (modifier == EXPAND_STACK_PARM)
9967 target = 0;
9968 temp = expand_binop (mode, this_optab, op0, op1, target,
9969 unsignedp, OPTAB_LIB_WIDEN);
9970 gcc_assert (temp);
9971 /* Bitwise operations do not need bitfield reduction as we expect their
9972 operands being properly truncated. */
9973 if (code == BIT_XOR_EXPR
9974 || code == BIT_AND_EXPR
9975 || code == BIT_IOR_EXPR)
9976 return temp;
9977 return REDUCE_BIT_FIELD (temp);
9979 #undef REDUCE_BIT_FIELD
9982 /* Return TRUE if expression STMT is suitable for replacement.
9983 Never consider memory loads as replaceable, because those don't ever lead
9984 into constant expressions. */
9986 static bool
9987 stmt_is_replaceable_p (gimple *stmt)
9989 if (ssa_is_replaceable_p (stmt))
9991 /* Don't move around loads. */
9992 if (!gimple_assign_single_p (stmt)
9993 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9994 return true;
9996 return false;
10000 expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
10001 enum expand_modifier modifier, rtx *alt_rtl,
10002 bool inner_reference_p)
10004 rtx op0, op1, temp, decl_rtl;
10005 tree type;
10006 int unsignedp;
10007 machine_mode mode, dmode;
10008 enum tree_code code = TREE_CODE (exp);
10009 rtx subtarget, original_target;
10010 int ignore;
10011 tree context;
10012 bool reduce_bit_field;
10013 location_t loc = EXPR_LOCATION (exp);
10014 struct separate_ops ops;
10015 tree treeop0, treeop1, treeop2;
10016 tree ssa_name = NULL_TREE;
10017 gimple *g;
10019 type = TREE_TYPE (exp);
10020 mode = TYPE_MODE (type);
10021 unsignedp = TYPE_UNSIGNED (type);
10023 treeop0 = treeop1 = treeop2 = NULL_TREE;
10024 if (!VL_EXP_CLASS_P (exp))
10025 switch (TREE_CODE_LENGTH (code))
10027 default:
10028 case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
10029 case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
10030 case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
10031 case 0: break;
10033 ops.code = code;
10034 ops.type = type;
10035 ops.op0 = treeop0;
10036 ops.op1 = treeop1;
10037 ops.op2 = treeop2;
10038 ops.location = loc;
10040 ignore = (target == const0_rtx
10041 || ((CONVERT_EXPR_CODE_P (code)
10042 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
10043 && TREE_CODE (type) == VOID_TYPE));
10045 /* An operation in what may be a bit-field type needs the
10046 result to be reduced to the precision of the bit-field type,
10047 which is narrower than that of the type's mode. */
10048 reduce_bit_field = (!ignore
10049 && INTEGRAL_TYPE_P (type)
10050 && !type_has_mode_precision_p (type));
10052 /* If we are going to ignore this result, we need only do something
10053 if there is a side-effect somewhere in the expression. If there
10054 is, short-circuit the most common cases here. Note that we must
10055 not call expand_expr with anything but const0_rtx in case this
10056 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
10058 if (ignore)
10060 if (! TREE_SIDE_EFFECTS (exp))
10061 return const0_rtx;
10063 /* Ensure we reference a volatile object even if value is ignored, but
10064 don't do this if all we are doing is taking its address. */
10065 if (TREE_THIS_VOLATILE (exp)
10066 && TREE_CODE (exp) != FUNCTION_DECL
10067 && mode != VOIDmode && mode != BLKmode
10068 && modifier != EXPAND_CONST_ADDRESS)
10070 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
10071 if (MEM_P (temp))
10072 copy_to_reg (temp);
10073 return const0_rtx;
10076 if (TREE_CODE_CLASS (code) == tcc_unary
10077 || code == BIT_FIELD_REF
10078 || code == COMPONENT_REF
10079 || code == INDIRECT_REF)
10080 return expand_expr (treeop0, const0_rtx, VOIDmode,
10081 modifier);
10083 else if (TREE_CODE_CLASS (code) == tcc_binary
10084 || TREE_CODE_CLASS (code) == tcc_comparison
10085 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
10087 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
10088 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
10089 return const0_rtx;
10092 target = 0;
10095 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
10096 target = 0;
10098 /* Use subtarget as the target for operand 0 of a binary operation. */
10099 subtarget = get_subtarget (target);
10100 original_target = target;
10102 switch (code)
10104 case LABEL_DECL:
10106 tree function = decl_function_context (exp);
10108 temp = label_rtx (exp);
10109 temp = gen_rtx_LABEL_REF (Pmode, temp);
10111 if (function != current_function_decl
10112 && function != 0)
10113 LABEL_REF_NONLOCAL_P (temp) = 1;
10115 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
10116 return temp;
10119 case SSA_NAME:
10120 /* ??? ivopts calls expander, without any preparation from
10121 out-of-ssa. So fake instructions as if this was an access to the
10122 base variable. This unnecessarily allocates a pseudo, see how we can
10123 reuse it, if partition base vars have it set already. */
10124 if (!currently_expanding_to_rtl)
10126 tree var = SSA_NAME_VAR (exp);
10127 if (var && DECL_RTL_SET_P (var))
10128 return DECL_RTL (var);
10129 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
10130 LAST_VIRTUAL_REGISTER + 1);
10133 g = get_gimple_for_ssa_name (exp);
10134 /* For EXPAND_INITIALIZER try harder to get something simpler. */
10135 if (g == NULL
10136 && modifier == EXPAND_INITIALIZER
10137 && !SSA_NAME_IS_DEFAULT_DEF (exp)
10138 && (optimize || !SSA_NAME_VAR (exp)
10139 || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
10140 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
10141 g = SSA_NAME_DEF_STMT (exp);
10142 if (g)
10144 rtx r;
10145 location_t saved_loc = curr_insn_location ();
10146 loc = gimple_location (g);
10147 if (loc != UNKNOWN_LOCATION)
10148 set_curr_insn_location (loc);
10149 ops.code = gimple_assign_rhs_code (g);
10150 switch (get_gimple_rhs_class (ops.code))
10152 case GIMPLE_TERNARY_RHS:
10153 ops.op2 = gimple_assign_rhs3 (g);
10154 /* Fallthru */
10155 case GIMPLE_BINARY_RHS:
10156 ops.op1 = gimple_assign_rhs2 (g);
10158 /* Try to expand conditonal compare. */
10159 if (targetm.gen_ccmp_first)
10161 gcc_checking_assert (targetm.gen_ccmp_next != NULL);
10162 r = expand_ccmp_expr (g, mode);
10163 if (r)
10164 break;
10166 /* Fallthru */
10167 case GIMPLE_UNARY_RHS:
10168 ops.op0 = gimple_assign_rhs1 (g);
10169 ops.type = TREE_TYPE (gimple_assign_lhs (g));
10170 ops.location = loc;
10171 r = expand_expr_real_2 (&ops, target, tmode, modifier);
10172 break;
10173 case GIMPLE_SINGLE_RHS:
10175 r = expand_expr_real (gimple_assign_rhs1 (g), target,
10176 tmode, modifier, alt_rtl,
10177 inner_reference_p);
10178 break;
10180 default:
10181 gcc_unreachable ();
10183 set_curr_insn_location (saved_loc);
10184 if (REG_P (r) && !REG_EXPR (r))
10185 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
10186 return r;
10189 ssa_name = exp;
10190 decl_rtl = get_rtx_for_ssa_name (ssa_name);
10191 exp = SSA_NAME_VAR (ssa_name);
10192 goto expand_decl_rtl;
10194 case PARM_DECL:
10195 case VAR_DECL:
10196 /* If a static var's type was incomplete when the decl was written,
10197 but the type is complete now, lay out the decl now. */
10198 if (DECL_SIZE (exp) == 0
10199 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
10200 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
10201 layout_decl (exp, 0);
10203 /* fall through */
10205 case FUNCTION_DECL:
10206 case RESULT_DECL:
10207 decl_rtl = DECL_RTL (exp);
10208 expand_decl_rtl:
10209 gcc_assert (decl_rtl);
10211 /* DECL_MODE might change when TYPE_MODE depends on attribute target
10212 settings for VECTOR_TYPE_P that might switch for the function. */
10213 if (currently_expanding_to_rtl
10214 && code == VAR_DECL && MEM_P (decl_rtl)
10215 && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
10216 decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
10217 else
10218 decl_rtl = copy_rtx (decl_rtl);
10220 /* Record writes to register variables. */
10221 if (modifier == EXPAND_WRITE
10222 && REG_P (decl_rtl)
10223 && HARD_REGISTER_P (decl_rtl))
10224 add_to_hard_reg_set (&crtl->asm_clobbers,
10225 GET_MODE (decl_rtl), REGNO (decl_rtl));
10227 /* Ensure variable marked as used even if it doesn't go through
10228 a parser. If it hasn't be used yet, write out an external
10229 definition. */
10230 if (exp)
10231 TREE_USED (exp) = 1;
10233 /* Show we haven't gotten RTL for this yet. */
10234 temp = 0;
10236 /* Variables inherited from containing functions should have
10237 been lowered by this point. */
10238 if (exp)
10239 context = decl_function_context (exp);
10240 gcc_assert (!exp
10241 || SCOPE_FILE_SCOPE_P (context)
10242 || context == current_function_decl
10243 || TREE_STATIC (exp)
10244 || DECL_EXTERNAL (exp)
10245 /* ??? C++ creates functions that are not TREE_STATIC. */
10246 || TREE_CODE (exp) == FUNCTION_DECL);
10248 /* This is the case of an array whose size is to be determined
10249 from its initializer, while the initializer is still being parsed.
10250 ??? We aren't parsing while expanding anymore. */
10252 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
10253 temp = validize_mem (decl_rtl);
10255 /* If DECL_RTL is memory, we are in the normal case and the
10256 address is not valid, get the address into a register. */
10258 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
10260 if (alt_rtl)
10261 *alt_rtl = decl_rtl;
10262 decl_rtl = use_anchored_address (decl_rtl);
10263 if (modifier != EXPAND_CONST_ADDRESS
10264 && modifier != EXPAND_SUM
10265 && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
10266 : GET_MODE (decl_rtl),
10267 XEXP (decl_rtl, 0),
10268 MEM_ADDR_SPACE (decl_rtl)))
10269 temp = replace_equiv_address (decl_rtl,
10270 copy_rtx (XEXP (decl_rtl, 0)));
10273 /* If we got something, return it. But first, set the alignment
10274 if the address is a register. */
10275 if (temp != 0)
10277 if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
10278 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
10280 else if (MEM_P (decl_rtl))
10281 temp = decl_rtl;
10283 if (temp != 0)
10285 if (MEM_P (temp)
10286 && modifier != EXPAND_WRITE
10287 && modifier != EXPAND_MEMORY
10288 && modifier != EXPAND_INITIALIZER
10289 && modifier != EXPAND_CONST_ADDRESS
10290 && modifier != EXPAND_SUM
10291 && !inner_reference_p
10292 && mode != BLKmode
10293 && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
10294 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10295 MEM_ALIGN (temp), NULL_RTX, NULL);
10297 return temp;
10300 if (exp)
10301 dmode = DECL_MODE (exp);
10302 else
10303 dmode = TYPE_MODE (TREE_TYPE (ssa_name));
10305 /* If the mode of DECL_RTL does not match that of the decl,
10306 there are two cases: we are dealing with a BLKmode value
10307 that is returned in a register, or we are dealing with
10308 a promoted value. In the latter case, return a SUBREG
10309 of the wanted mode, but mark it so that we know that it
10310 was already extended. */
10311 if (REG_P (decl_rtl)
10312 && dmode != BLKmode
10313 && GET_MODE (decl_rtl) != dmode)
10315 machine_mode pmode;
10317 /* Get the signedness to be used for this variable. Ensure we get
10318 the same mode we got when the variable was declared. */
10319 if (code != SSA_NAME)
10320 pmode = promote_decl_mode (exp, &unsignedp);
10321 else if ((g = SSA_NAME_DEF_STMT (ssa_name))
10322 && gimple_code (g) == GIMPLE_CALL
10323 && !gimple_call_internal_p (g))
10324 pmode = promote_function_mode (type, mode, &unsignedp,
10325 gimple_call_fntype (g),
10327 else
10328 pmode = promote_ssa_mode (ssa_name, &unsignedp);
10329 gcc_assert (GET_MODE (decl_rtl) == pmode);
10331 temp = gen_lowpart_SUBREG (mode, decl_rtl);
10332 SUBREG_PROMOTED_VAR_P (temp) = 1;
10333 SUBREG_PROMOTED_SET (temp, unsignedp);
10334 return temp;
10337 return decl_rtl;
10339 case INTEGER_CST:
10341 /* Given that TYPE_PRECISION (type) is not always equal to
10342 GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
10343 the former to the latter according to the signedness of the
10344 type. */
10345 scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
10346 temp = immed_wide_int_const
10347 (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
10348 return temp;
10351 case VECTOR_CST:
10353 tree tmp = NULL_TREE;
10354 if (VECTOR_MODE_P (mode))
10355 return const_vector_from_tree (exp);
10356 scalar_int_mode int_mode;
10357 if (is_int_mode (mode, &int_mode))
10359 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
10360 return const_scalar_mask_from_tree (int_mode, exp);
10361 else
10363 tree type_for_mode
10364 = lang_hooks.types.type_for_mode (int_mode, 1);
10365 if (type_for_mode)
10366 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
10367 type_for_mode, exp);
10370 if (!tmp)
10372 vec<constructor_elt, va_gc> *v;
10373 /* Constructors need to be fixed-length. FIXME. */
10374 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
10375 vec_alloc (v, nunits);
10376 for (unsigned int i = 0; i < nunits; ++i)
10377 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
10378 tmp = build_constructor (type, v);
10380 return expand_expr (tmp, ignore ? const0_rtx : target,
10381 tmode, modifier);
10384 case CONST_DECL:
10385 if (modifier == EXPAND_WRITE)
10387 /* Writing into CONST_DECL is always invalid, but handle it
10388 gracefully. */
10389 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
10390 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
10391 op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
10392 EXPAND_NORMAL, as);
10393 op0 = memory_address_addr_space (mode, op0, as);
10394 temp = gen_rtx_MEM (mode, op0);
10395 set_mem_addr_space (temp, as);
10396 return temp;
10398 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
10400 case REAL_CST:
10401 /* If optimized, generate immediate CONST_DOUBLE
10402 which will be turned into memory by reload if necessary.
10404 We used to force a register so that loop.c could see it. But
10405 this does not allow gen_* patterns to perform optimizations with
10406 the constants. It also produces two insns in cases like "x = 1.0;".
10407 On most machines, floating-point constants are not permitted in
10408 many insns, so we'd end up copying it to a register in any case.
10410 Now, we do the copying in expand_binop, if appropriate. */
10411 return const_double_from_real_value (TREE_REAL_CST (exp),
10412 TYPE_MODE (TREE_TYPE (exp)));
10414 case FIXED_CST:
10415 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
10416 TYPE_MODE (TREE_TYPE (exp)));
10418 case COMPLEX_CST:
10419 /* Handle evaluating a complex constant in a CONCAT target. */
10420 if (original_target && GET_CODE (original_target) == CONCAT)
10422 rtx rtarg, itarg;
10424 mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
10425 rtarg = XEXP (original_target, 0);
10426 itarg = XEXP (original_target, 1);
10428 /* Move the real and imaginary parts separately. */
10429 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
10430 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
10432 if (op0 != rtarg)
10433 emit_move_insn (rtarg, op0);
10434 if (op1 != itarg)
10435 emit_move_insn (itarg, op1);
10437 return original_target;
10440 /* fall through */
10442 case STRING_CST:
10443 temp = expand_expr_constant (exp, 1, modifier);
10445 /* temp contains a constant address.
10446 On RISC machines where a constant address isn't valid,
10447 make some insns to get that address into a register. */
10448 if (modifier != EXPAND_CONST_ADDRESS
10449 && modifier != EXPAND_INITIALIZER
10450 && modifier != EXPAND_SUM
10451 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
10452 MEM_ADDR_SPACE (temp)))
10453 return replace_equiv_address (temp,
10454 copy_rtx (XEXP (temp, 0)));
10455 return temp;
10457 case POLY_INT_CST:
10458 return immed_wide_int_const (poly_int_cst_value (exp), mode);
10460 case SAVE_EXPR:
10462 tree val = treeop0;
10463 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
10464 inner_reference_p);
10466 if (!SAVE_EXPR_RESOLVED_P (exp))
10468 /* We can indeed still hit this case, typically via builtin
10469 expanders calling save_expr immediately before expanding
10470 something. Assume this means that we only have to deal
10471 with non-BLKmode values. */
10472 gcc_assert (GET_MODE (ret) != BLKmode);
10474 val = build_decl (curr_insn_location (),
10475 VAR_DECL, NULL, TREE_TYPE (exp));
10476 DECL_ARTIFICIAL (val) = 1;
10477 DECL_IGNORED_P (val) = 1;
10478 treeop0 = val;
10479 TREE_OPERAND (exp, 0) = treeop0;
10480 SAVE_EXPR_RESOLVED_P (exp) = 1;
10482 if (!CONSTANT_P (ret))
10483 ret = copy_to_reg (ret);
10484 SET_DECL_RTL (val, ret);
10487 return ret;
10491 case CONSTRUCTOR:
10492 /* If we don't need the result, just ensure we evaluate any
10493 subexpressions. */
10494 if (ignore)
10496 unsigned HOST_WIDE_INT idx;
10497 tree value;
10499 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
10500 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
10502 return const0_rtx;
10505 return expand_constructor (exp, target, modifier, false);
10507 case TARGET_MEM_REF:
10509 addr_space_t as
10510 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10511 unsigned int align;
10513 op0 = addr_for_mem_ref (exp, as, true);
10514 op0 = memory_address_addr_space (mode, op0, as);
10515 temp = gen_rtx_MEM (mode, op0);
10516 set_mem_attributes (temp, exp, 0);
10517 set_mem_addr_space (temp, as);
10518 align = get_object_alignment (exp);
10519 if (modifier != EXPAND_WRITE
10520 && modifier != EXPAND_MEMORY
10521 && mode != BLKmode
10522 && align < GET_MODE_ALIGNMENT (mode))
10523 temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
10524 align, NULL_RTX, NULL);
10525 return temp;
10528 case MEM_REF:
10530 const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
10531 addr_space_t as
10532 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
10533 machine_mode address_mode;
10534 tree base = TREE_OPERAND (exp, 0);
10535 gimple *def_stmt;
10536 unsigned align;
10537 /* Handle expansion of non-aliased memory with non-BLKmode. That
10538 might end up in a register. */
10539 if (mem_ref_refers_to_non_mem_p (exp))
10541 poly_int64 offset = mem_ref_offset (exp).force_shwi ();
10542 base = TREE_OPERAND (base, 0);
10543 poly_uint64 type_size;
10544 if (known_eq (offset, 0)
10545 && !reverse
10546 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
10547 && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
10548 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
10549 target, tmode, modifier);
10550 if (TYPE_MODE (type) == BLKmode)
10552 temp = assign_stack_temp (DECL_MODE (base),
10553 GET_MODE_SIZE (DECL_MODE (base)));
10554 store_expr (base, temp, 0, false, false);
10555 temp = adjust_address (temp, BLKmode, offset);
10556 set_mem_size (temp, int_size_in_bytes (type));
10557 return temp;
10559 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
10560 bitsize_int (offset * BITS_PER_UNIT));
10561 REF_REVERSE_STORAGE_ORDER (exp) = reverse;
10562 return expand_expr (exp, target, tmode, modifier);
10564 address_mode = targetm.addr_space.address_mode (as);
10565 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
10567 tree mask = gimple_assign_rhs2 (def_stmt);
10568 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
10569 gimple_assign_rhs1 (def_stmt), mask);
10570 TREE_OPERAND (exp, 0) = base;
10572 align = get_object_alignment (exp);
10573 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
10574 op0 = memory_address_addr_space (mode, op0, as);
10575 if (!integer_zerop (TREE_OPERAND (exp, 1)))
10577 rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
10578 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
10579 op0 = memory_address_addr_space (mode, op0, as);
10581 temp = gen_rtx_MEM (mode, op0);
10582 set_mem_attributes (temp, exp, 0);
10583 set_mem_addr_space (temp, as);
10584 if (TREE_THIS_VOLATILE (exp))
10585 MEM_VOLATILE_P (temp) = 1;
10586 if (modifier != EXPAND_WRITE
10587 && modifier != EXPAND_MEMORY
10588 && !inner_reference_p
10589 && mode != BLKmode
10590 && align < GET_MODE_ALIGNMENT (mode))
10591 temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
10592 modifier == EXPAND_STACK_PARM
10593 ? NULL_RTX : target, alt_rtl);
10594 if (reverse
10595 && modifier != EXPAND_MEMORY
10596 && modifier != EXPAND_WRITE)
10597 temp = flip_storage_order (mode, temp);
10598 return temp;
10601 case ARRAY_REF:
10604 tree array = treeop0;
10605 tree index = treeop1;
10606 tree init;
10608 /* Fold an expression like: "foo"[2].
10609 This is not done in fold so it won't happen inside &.
10610 Don't fold if this is for wide characters since it's too
10611 difficult to do correctly and this is a very rare case. */
10613 if (modifier != EXPAND_CONST_ADDRESS
10614 && modifier != EXPAND_INITIALIZER
10615 && modifier != EXPAND_MEMORY)
10617 tree t = fold_read_from_constant_string (exp);
10619 if (t)
10620 return expand_expr (t, target, tmode, modifier);
10623 /* If this is a constant index into a constant array,
10624 just get the value from the array. Handle both the cases when
10625 we have an explicit constructor and when our operand is a variable
10626 that was declared const. */
10628 if (modifier != EXPAND_CONST_ADDRESS
10629 && modifier != EXPAND_INITIALIZER
10630 && modifier != EXPAND_MEMORY
10631 && TREE_CODE (array) == CONSTRUCTOR
10632 && ! TREE_SIDE_EFFECTS (array)
10633 && TREE_CODE (index) == INTEGER_CST)
10635 unsigned HOST_WIDE_INT ix;
10636 tree field, value;
10638 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
10639 field, value)
10640 if (tree_int_cst_equal (field, index))
10642 if (!TREE_SIDE_EFFECTS (value))
10643 return expand_expr (fold (value), target, tmode, modifier);
10644 break;
10648 else if (optimize >= 1
10649 && modifier != EXPAND_CONST_ADDRESS
10650 && modifier != EXPAND_INITIALIZER
10651 && modifier != EXPAND_MEMORY
10652 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
10653 && TREE_CODE (index) == INTEGER_CST
10654 && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
10655 && (init = ctor_for_folding (array)) != error_mark_node)
10657 if (init == NULL_TREE)
10659 tree value = build_zero_cst (type);
10660 if (TREE_CODE (value) == CONSTRUCTOR)
10662 /* If VALUE is a CONSTRUCTOR, this optimization is only
10663 useful if this doesn't store the CONSTRUCTOR into
10664 memory. If it does, it is more efficient to just
10665 load the data from the array directly. */
10666 rtx ret = expand_constructor (value, target,
10667 modifier, true);
10668 if (ret == NULL_RTX)
10669 value = NULL_TREE;
10672 if (value)
10673 return expand_expr (value, target, tmode, modifier);
10675 else if (TREE_CODE (init) == CONSTRUCTOR)
10677 unsigned HOST_WIDE_INT ix;
10678 tree field, value;
10680 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
10681 field, value)
10682 if (tree_int_cst_equal (field, index))
10684 if (TREE_SIDE_EFFECTS (value))
10685 break;
10687 if (TREE_CODE (value) == CONSTRUCTOR)
10689 /* If VALUE is a CONSTRUCTOR, this
10690 optimization is only useful if
10691 this doesn't store the CONSTRUCTOR
10692 into memory. If it does, it is more
10693 efficient to just load the data from
10694 the array directly. */
10695 rtx ret = expand_constructor (value, target,
10696 modifier, true);
10697 if (ret == NULL_RTX)
10698 break;
10701 return
10702 expand_expr (fold (value), target, tmode, modifier);
10705 else if (TREE_CODE (init) == STRING_CST)
10707 tree low_bound = array_ref_low_bound (exp);
10708 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
10710 /* Optimize the special case of a zero lower bound.
10712 We convert the lower bound to sizetype to avoid problems
10713 with constant folding. E.g. suppose the lower bound is
10714 1 and its mode is QI. Without the conversion
10715 (ARRAY + (INDEX - (unsigned char)1))
10716 becomes
10717 (ARRAY + (-(unsigned char)1) + INDEX)
10718 which becomes
10719 (ARRAY + 255 + INDEX). Oops! */
10720 if (!integer_zerop (low_bound))
10721 index1 = size_diffop_loc (loc, index1,
10722 fold_convert_loc (loc, sizetype,
10723 low_bound));
10725 if (tree_fits_uhwi_p (index1)
10726 && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
10728 tree char_type = TREE_TYPE (TREE_TYPE (init));
10729 scalar_int_mode char_mode;
10731 if (is_int_mode (TYPE_MODE (char_type), &char_mode)
10732 && GET_MODE_SIZE (char_mode) == 1)
10733 return gen_int_mode (TREE_STRING_POINTER (init)
10734 [TREE_INT_CST_LOW (index1)],
10735 char_mode);
10740 goto normal_inner_ref;
10742 case COMPONENT_REF:
10743 /* If the operand is a CONSTRUCTOR, we can just extract the
10744 appropriate field if it is present. */
10745 if (TREE_CODE (treeop0) == CONSTRUCTOR)
10747 unsigned HOST_WIDE_INT idx;
10748 tree field, value;
10749 scalar_int_mode field_mode;
10751 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
10752 idx, field, value)
10753 if (field == treeop1
10754 /* We can normally use the value of the field in the
10755 CONSTRUCTOR. However, if this is a bitfield in
10756 an integral mode that we can fit in a HOST_WIDE_INT,
10757 we must mask only the number of bits in the bitfield,
10758 since this is done implicitly by the constructor. If
10759 the bitfield does not meet either of those conditions,
10760 we can't do this optimization. */
10761 && (! DECL_BIT_FIELD (field)
10762 || (is_int_mode (DECL_MODE (field), &field_mode)
10763 && (GET_MODE_PRECISION (field_mode)
10764 <= HOST_BITS_PER_WIDE_INT))))
10766 if (DECL_BIT_FIELD (field)
10767 && modifier == EXPAND_STACK_PARM)
10768 target = 0;
10769 op0 = expand_expr (value, target, tmode, modifier);
10770 if (DECL_BIT_FIELD (field))
10772 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
10773 scalar_int_mode imode
10774 = SCALAR_INT_TYPE_MODE (TREE_TYPE (field));
10776 if (TYPE_UNSIGNED (TREE_TYPE (field)))
10778 op1 = gen_int_mode ((HOST_WIDE_INT_1 << bitsize) - 1,
10779 imode);
10780 op0 = expand_and (imode, op0, op1, target);
10782 else
10784 int count = GET_MODE_PRECISION (imode) - bitsize;
10786 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
10787 target, 0);
10788 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
10789 target, 0);
10793 return op0;
10796 goto normal_inner_ref;
10798 case BIT_FIELD_REF:
10799 case ARRAY_RANGE_REF:
10800 normal_inner_ref:
10802 machine_mode mode1, mode2;
10803 poly_int64 bitsize, bitpos, bytepos;
10804 tree offset;
10805 int reversep, volatilep = 0, must_force_mem;
10806 tree tem
10807 = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
10808 &unsignedp, &reversep, &volatilep);
10809 rtx orig_op0, memloc;
10810 bool clear_mem_expr = false;
10812 /* If we got back the original object, something is wrong. Perhaps
10813 we are evaluating an expression too early. In any event, don't
10814 infinitely recurse. */
10815 gcc_assert (tem != exp);
10817 /* If TEM's type is a union of variable size, pass TARGET to the inner
10818 computation, since it will need a temporary and TARGET is known
10819 to have to do. This occurs in unchecked conversion in Ada. */
10820 orig_op0 = op0
10821 = expand_expr_real (tem,
10822 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10823 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10824 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10825 != INTEGER_CST)
10826 && modifier != EXPAND_STACK_PARM
10827 ? target : NULL_RTX),
10828 VOIDmode,
10829 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10830 NULL, true);
10832 /* If the field has a mode, we want to access it in the
10833 field's mode, not the computed mode.
10834 If a MEM has VOIDmode (external with incomplete type),
10835 use BLKmode for it instead. */
10836 if (MEM_P (op0))
10838 if (mode1 != VOIDmode)
10839 op0 = adjust_address (op0, mode1, 0);
10840 else if (GET_MODE (op0) == VOIDmode)
10841 op0 = adjust_address (op0, BLKmode, 0);
10844 mode2
10845 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10847 /* Make sure bitpos is not negative, it can wreak havoc later. */
10848 if (maybe_lt (bitpos, 0))
10850 gcc_checking_assert (offset == NULL_TREE);
10851 offset = size_int (bits_to_bytes_round_down (bitpos));
10852 bitpos = num_trailing_bits (bitpos);
10855 /* If we have either an offset, a BLKmode result, or a reference
10856 outside the underlying object, we must force it to memory.
10857 Such a case can occur in Ada if we have unchecked conversion
10858 of an expression from a scalar type to an aggregate type or
10859 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10860 passed a partially uninitialized object or a view-conversion
10861 to a larger size. */
10862 must_force_mem = (offset
10863 || mode1 == BLKmode
10864 || (mode == BLKmode
10865 && !int_mode_for_size (bitsize, 1).exists ())
10866 || maybe_gt (bitpos + bitsize,
10867 GET_MODE_BITSIZE (mode2)));
10869 /* Handle CONCAT first. */
10870 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10872 if (known_eq (bitpos, 0)
10873 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
10874 && COMPLEX_MODE_P (mode1)
10875 && COMPLEX_MODE_P (GET_MODE (op0))
10876 && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
10877 == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
10879 if (reversep)
10880 op0 = flip_storage_order (GET_MODE (op0), op0);
10881 if (mode1 != GET_MODE (op0))
10883 rtx parts[2];
10884 for (int i = 0; i < 2; i++)
10886 rtx op = read_complex_part (op0, i != 0);
10887 if (GET_CODE (op) == SUBREG)
10888 op = force_reg (GET_MODE (op), op);
10889 temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
10890 if (temp)
10891 op = temp;
10892 else
10894 if (!REG_P (op) && !MEM_P (op))
10895 op = force_reg (GET_MODE (op), op);
10896 op = gen_lowpart (GET_MODE_INNER (mode1), op);
10898 parts[i] = op;
10900 op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
10902 return op0;
10904 if (known_eq (bitpos, 0)
10905 && known_eq (bitsize,
10906 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10907 && maybe_ne (bitsize, 0))
10909 op0 = XEXP (op0, 0);
10910 mode2 = GET_MODE (op0);
10912 else if (known_eq (bitpos,
10913 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
10914 && known_eq (bitsize,
10915 GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
10916 && maybe_ne (bitpos, 0)
10917 && maybe_ne (bitsize, 0))
10919 op0 = XEXP (op0, 1);
10920 bitpos = 0;
10921 mode2 = GET_MODE (op0);
10923 else
10924 /* Otherwise force into memory. */
10925 must_force_mem = 1;
10928 /* If this is a constant, put it in a register if it is a legitimate
10929 constant and we don't need a memory reference. */
10930 if (CONSTANT_P (op0)
10931 && mode2 != BLKmode
10932 && targetm.legitimate_constant_p (mode2, op0)
10933 && !must_force_mem)
10934 op0 = force_reg (mode2, op0);
10936 /* Otherwise, if this is a constant, try to force it to the constant
10937 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10938 is a legitimate constant. */
10939 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10940 op0 = validize_mem (memloc);
10942 /* Otherwise, if this is a constant or the object is not in memory
10943 and need be, put it there. */
10944 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10946 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10947 emit_move_insn (memloc, op0);
10948 op0 = memloc;
10949 clear_mem_expr = true;
10952 if (offset)
10954 machine_mode address_mode;
10955 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10956 EXPAND_SUM);
10958 gcc_assert (MEM_P (op0));
10960 address_mode = get_address_mode (op0);
10961 if (GET_MODE (offset_rtx) != address_mode)
10963 /* We cannot be sure that the RTL in offset_rtx is valid outside
10964 of a memory address context, so force it into a register
10965 before attempting to convert it to the desired mode. */
10966 offset_rtx = force_operand (offset_rtx, NULL_RTX);
10967 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10970 /* See the comment in expand_assignment for the rationale. */
10971 if (mode1 != VOIDmode
10972 && maybe_ne (bitpos, 0)
10973 && maybe_gt (bitsize, 0)
10974 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
10975 && multiple_p (bitpos, bitsize)
10976 && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
10977 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
10979 op0 = adjust_address (op0, mode1, bytepos);
10980 bitpos = 0;
10983 op0 = offset_address (op0, offset_rtx,
10984 highest_pow2_factor (offset));
10987 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10988 record its alignment as BIGGEST_ALIGNMENT. */
10989 if (MEM_P (op0)
10990 && known_eq (bitpos, 0)
10991 && offset != 0
10992 && is_aligning_offset (offset, tem))
10993 set_mem_align (op0, BIGGEST_ALIGNMENT);
10995 /* Don't forget about volatility even if this is a bitfield. */
10996 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10998 if (op0 == orig_op0)
10999 op0 = copy_rtx (op0);
11001 MEM_VOLATILE_P (op0) = 1;
11004 if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
11006 if (op0 == orig_op0)
11007 op0 = copy_rtx (op0);
11009 set_mem_align (op0, BITS_PER_UNIT);
11012 /* In cases where an aligned union has an unaligned object
11013 as a field, we might be extracting a BLKmode value from
11014 an integer-mode (e.g., SImode) object. Handle this case
11015 by doing the extract into an object as wide as the field
11016 (which we know to be the width of a basic mode), then
11017 storing into memory, and changing the mode to BLKmode. */
11018 if (mode1 == VOIDmode
11019 || REG_P (op0) || GET_CODE (op0) == SUBREG
11020 || (mode1 != BLKmode && ! direct_load[(int) mode1]
11021 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
11022 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
11023 && modifier != EXPAND_CONST_ADDRESS
11024 && modifier != EXPAND_INITIALIZER
11025 && modifier != EXPAND_MEMORY)
11026 /* If the bitfield is volatile and the bitsize
11027 is narrower than the access size of the bitfield,
11028 we need to extract bitfields from the access. */
11029 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
11030 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
11031 && mode1 != BLKmode
11032 && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
11033 /* If the field isn't aligned enough to fetch as a memref,
11034 fetch it as a bit field. */
11035 || (mode1 != BLKmode
11036 && (((MEM_P (op0)
11037 ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
11038 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
11039 : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
11040 || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
11041 && modifier != EXPAND_MEMORY
11042 && ((modifier == EXPAND_CONST_ADDRESS
11043 || modifier == EXPAND_INITIALIZER)
11044 ? STRICT_ALIGNMENT
11045 : targetm.slow_unaligned_access (mode1,
11046 MEM_ALIGN (op0))))
11047 || !multiple_p (bitpos, BITS_PER_UNIT)))
11048 /* If the type and the field are a constant size and the
11049 size of the type isn't the same size as the bitfield,
11050 we must use bitfield operations. */
11051 || (known_size_p (bitsize)
11052 && TYPE_SIZE (TREE_TYPE (exp))
11053 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
11054 && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
11055 bitsize)))
11057 machine_mode ext_mode = mode;
11059 if (ext_mode == BLKmode
11060 && ! (target != 0 && MEM_P (op0)
11061 && MEM_P (target)
11062 && multiple_p (bitpos, BITS_PER_UNIT)))
11063 ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
11065 if (ext_mode == BLKmode)
11067 if (target == 0)
11068 target = assign_temp (type, 1, 1);
11070 /* ??? Unlike the similar test a few lines below, this one is
11071 very likely obsolete. */
11072 if (known_eq (bitsize, 0))
11073 return target;
11075 /* In this case, BITPOS must start at a byte boundary and
11076 TARGET, if specified, must be a MEM. */
11077 gcc_assert (MEM_P (op0)
11078 && (!target || MEM_P (target)));
11080 bytepos = exact_div (bitpos, BITS_PER_UNIT);
11081 poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
11082 emit_block_move (target,
11083 adjust_address (op0, VOIDmode, bytepos),
11084 gen_int_mode (bytesize, Pmode),
11085 (modifier == EXPAND_STACK_PARM
11086 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
11088 return target;
11091 /* If we have nothing to extract, the result will be 0 for targets
11092 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
11093 return 0 for the sake of consistency, as reading a zero-sized
11094 bitfield is valid in Ada and the value is fully specified. */
11095 if (known_eq (bitsize, 0))
11096 return const0_rtx;
11098 op0 = validize_mem (op0);
11100 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
11101 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11103 /* If the result has aggregate type and the extraction is done in
11104 an integral mode, then the field may be not aligned on a byte
11105 boundary; in this case, if it has reverse storage order, it
11106 needs to be extracted as a scalar field with reverse storage
11107 order and put back into memory order afterwards. */
11108 if (AGGREGATE_TYPE_P (type)
11109 && GET_MODE_CLASS (ext_mode) == MODE_INT)
11110 reversep = TYPE_REVERSE_STORAGE_ORDER (type);
11112 gcc_checking_assert (known_ge (bitpos, 0));
11113 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
11114 (modifier == EXPAND_STACK_PARM
11115 ? NULL_RTX : target),
11116 ext_mode, ext_mode, reversep, alt_rtl);
11118 /* If the result has aggregate type and the mode of OP0 is an
11119 integral mode then, if BITSIZE is narrower than this mode
11120 and this is for big-endian data, we must put the field
11121 into the high-order bits. And we must also put it back
11122 into memory order if it has been previously reversed. */
11123 scalar_int_mode op0_mode;
11124 if (AGGREGATE_TYPE_P (type)
11125 && is_int_mode (GET_MODE (op0), &op0_mode))
11127 HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
11129 gcc_checking_assert (known_le (bitsize, size));
11130 if (maybe_lt (bitsize, size)
11131 && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
11132 op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
11133 size - bitsize, op0, 1);
11135 if (reversep)
11136 op0 = flip_storage_order (op0_mode, op0);
11139 /* If the result type is BLKmode, store the data into a temporary
11140 of the appropriate type, but with the mode corresponding to the
11141 mode for the data we have (op0's mode). */
11142 if (mode == BLKmode)
11144 rtx new_rtx
11145 = assign_stack_temp_for_type (ext_mode,
11146 GET_MODE_BITSIZE (ext_mode),
11147 type);
11148 emit_move_insn (new_rtx, op0);
11149 op0 = copy_rtx (new_rtx);
11150 PUT_MODE (op0, BLKmode);
11153 return op0;
11156 /* If the result is BLKmode, use that to access the object
11157 now as well. */
11158 if (mode == BLKmode)
11159 mode1 = BLKmode;
11161 /* Get a reference to just this component. */
11162 bytepos = bits_to_bytes_round_down (bitpos);
11163 if (modifier == EXPAND_CONST_ADDRESS
11164 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
11165 op0 = adjust_address_nv (op0, mode1, bytepos);
11166 else
11167 op0 = adjust_address (op0, mode1, bytepos);
11169 if (op0 == orig_op0)
11170 op0 = copy_rtx (op0);
11172 /* Don't set memory attributes if the base expression is
11173 SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
11174 we should just honor its original memory attributes. */
11175 if (!(TREE_CODE (tem) == SSA_NAME
11176 && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
11177 set_mem_attributes (op0, exp, 0);
11179 if (REG_P (XEXP (op0, 0)))
11180 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11182 /* If op0 is a temporary because the original expressions was forced
11183 to memory, clear MEM_EXPR so that the original expression cannot
11184 be marked as addressable through MEM_EXPR of the temporary. */
11185 if (clear_mem_expr)
11186 set_mem_expr (op0, NULL_TREE);
11188 MEM_VOLATILE_P (op0) |= volatilep;
11190 if (reversep
11191 && modifier != EXPAND_MEMORY
11192 && modifier != EXPAND_WRITE)
11193 op0 = flip_storage_order (mode1, op0);
11195 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
11196 || modifier == EXPAND_CONST_ADDRESS
11197 || modifier == EXPAND_INITIALIZER)
11198 return op0;
11200 if (target == 0)
11201 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
11203 convert_move (target, op0, unsignedp);
11204 return target;
11207 case OBJ_TYPE_REF:
11208 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
11210 case CALL_EXPR:
11211 /* All valid uses of __builtin_va_arg_pack () are removed during
11212 inlining. */
11213 if (CALL_EXPR_VA_ARG_PACK (exp))
11214 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
11216 tree fndecl = get_callee_fndecl (exp), attr;
11218 if (fndecl
11219 /* Don't diagnose the error attribute in thunks, those are
11220 artificially created. */
11221 && !CALL_FROM_THUNK_P (exp)
11222 && (attr = lookup_attribute ("error",
11223 DECL_ATTRIBUTES (fndecl))) != NULL)
11225 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11226 error ("%Kcall to %qs declared with attribute error: %s", exp,
11227 identifier_to_locale (ident),
11228 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11230 if (fndecl
11231 /* Don't diagnose the warning attribute in thunks, those are
11232 artificially created. */
11233 && !CALL_FROM_THUNK_P (exp)
11234 && (attr = lookup_attribute ("warning",
11235 DECL_ATTRIBUTES (fndecl))) != NULL)
11237 const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
11238 warning_at (tree_nonartificial_location (exp),
11239 OPT_Wattribute_warning,
11240 "%Kcall to %qs declared with attribute warning: %s",
11241 exp, identifier_to_locale (ident),
11242 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
11245 /* Check for a built-in function. */
11246 if (fndecl && fndecl_built_in_p (fndecl))
11248 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
11249 return expand_builtin (exp, target, subtarget, tmode, ignore);
11252 return expand_call (exp, target, ignore);
11254 case VIEW_CONVERT_EXPR:
11255 op0 = NULL_RTX;
11257 /* If we are converting to BLKmode, try to avoid an intermediate
11258 temporary by fetching an inner memory reference. */
11259 if (mode == BLKmode
11260 && poly_int_tree_p (TYPE_SIZE (type))
11261 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
11262 && handled_component_p (treeop0))
11264 machine_mode mode1;
11265 poly_int64 bitsize, bitpos, bytepos;
11266 tree offset;
11267 int reversep, volatilep = 0;
11268 tree tem
11269 = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
11270 &unsignedp, &reversep, &volatilep);
11272 /* ??? We should work harder and deal with non-zero offsets. */
11273 if (!offset
11274 && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
11275 && !reversep
11276 && known_size_p (bitsize)
11277 && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
11279 /* See the normal_inner_ref case for the rationale. */
11280 rtx orig_op0
11281 = expand_expr_real (tem,
11282 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
11283 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
11284 != INTEGER_CST)
11285 && modifier != EXPAND_STACK_PARM
11286 ? target : NULL_RTX),
11287 VOIDmode,
11288 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
11289 NULL, true);
11291 if (MEM_P (orig_op0))
11293 op0 = orig_op0;
11295 /* Get a reference to just this component. */
11296 if (modifier == EXPAND_CONST_ADDRESS
11297 || modifier == EXPAND_SUM
11298 || modifier == EXPAND_INITIALIZER)
11299 op0 = adjust_address_nv (op0, mode, bytepos);
11300 else
11301 op0 = adjust_address (op0, mode, bytepos);
11303 if (op0 == orig_op0)
11304 op0 = copy_rtx (op0);
11306 set_mem_attributes (op0, treeop0, 0);
11307 if (REG_P (XEXP (op0, 0)))
11308 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
11310 MEM_VOLATILE_P (op0) |= volatilep;
11315 if (!op0)
11316 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
11317 NULL, inner_reference_p);
11319 /* If the input and output modes are both the same, we are done. */
11320 if (mode == GET_MODE (op0))
11322 /* If neither mode is BLKmode, and both modes are the same size
11323 then we can use gen_lowpart. */
11324 else if (mode != BLKmode
11325 && GET_MODE (op0) != BLKmode
11326 && known_eq (GET_MODE_PRECISION (mode),
11327 GET_MODE_PRECISION (GET_MODE (op0)))
11328 && !COMPLEX_MODE_P (GET_MODE (op0)))
11330 if (GET_CODE (op0) == SUBREG)
11331 op0 = force_reg (GET_MODE (op0), op0);
11332 temp = gen_lowpart_common (mode, op0);
11333 if (temp)
11334 op0 = temp;
11335 else
11337 if (!REG_P (op0) && !MEM_P (op0))
11338 op0 = force_reg (GET_MODE (op0), op0);
11339 op0 = gen_lowpart (mode, op0);
11342 /* If both types are integral, convert from one mode to the other. */
11343 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
11344 op0 = convert_modes (mode, GET_MODE (op0), op0,
11345 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
11346 /* If the output type is a bit-field type, do an extraction. */
11347 else if (reduce_bit_field)
11348 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
11349 TYPE_UNSIGNED (type), NULL_RTX,
11350 mode, mode, false, NULL);
11351 /* As a last resort, spill op0 to memory, and reload it in a
11352 different mode. */
11353 else if (!MEM_P (op0))
11355 /* If the operand is not a MEM, force it into memory. Since we
11356 are going to be changing the mode of the MEM, don't call
11357 force_const_mem for constants because we don't allow pool
11358 constants to change mode. */
11359 tree inner_type = TREE_TYPE (treeop0);
11361 gcc_assert (!TREE_ADDRESSABLE (exp));
11363 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
11364 target
11365 = assign_stack_temp_for_type
11366 (TYPE_MODE (inner_type),
11367 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
11369 emit_move_insn (target, op0);
11370 op0 = target;
11373 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
11374 output type is such that the operand is known to be aligned, indicate
11375 that it is. Otherwise, we need only be concerned about alignment for
11376 non-BLKmode results. */
11377 if (MEM_P (op0))
11379 enum insn_code icode;
11381 if (modifier != EXPAND_WRITE
11382 && modifier != EXPAND_MEMORY
11383 && !inner_reference_p
11384 && mode != BLKmode
11385 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
11387 /* If the target does have special handling for unaligned
11388 loads of mode then use them. */
11389 if ((icode = optab_handler (movmisalign_optab, mode))
11390 != CODE_FOR_nothing)
11392 rtx reg;
11394 op0 = adjust_address (op0, mode, 0);
11395 /* We've already validated the memory, and we're creating a
11396 new pseudo destination. The predicates really can't
11397 fail. */
11398 reg = gen_reg_rtx (mode);
11400 /* Nor can the insn generator. */
11401 rtx_insn *insn = GEN_FCN (icode) (reg, op0);
11402 emit_insn (insn);
11403 return reg;
11405 else if (STRICT_ALIGNMENT)
11407 poly_uint64 mode_size = GET_MODE_SIZE (mode);
11408 poly_uint64 temp_size = mode_size;
11409 if (GET_MODE (op0) != BLKmode)
11410 temp_size = upper_bound (temp_size,
11411 GET_MODE_SIZE (GET_MODE (op0)));
11412 rtx new_rtx
11413 = assign_stack_temp_for_type (mode, temp_size, type);
11414 rtx new_with_op0_mode
11415 = adjust_address (new_rtx, GET_MODE (op0), 0);
11417 gcc_assert (!TREE_ADDRESSABLE (exp));
11419 if (GET_MODE (op0) == BLKmode)
11421 rtx size_rtx = gen_int_mode (mode_size, Pmode);
11422 emit_block_move (new_with_op0_mode, op0, size_rtx,
11423 (modifier == EXPAND_STACK_PARM
11424 ? BLOCK_OP_CALL_PARM
11425 : BLOCK_OP_NORMAL));
11427 else
11428 emit_move_insn (new_with_op0_mode, op0);
11430 op0 = new_rtx;
11434 op0 = adjust_address (op0, mode, 0);
11437 return op0;
11439 case MODIFY_EXPR:
11441 tree lhs = treeop0;
11442 tree rhs = treeop1;
11443 gcc_assert (ignore);
11445 /* Check for |= or &= of a bitfield of size one into another bitfield
11446 of size 1. In this case, (unless we need the result of the
11447 assignment) we can do this more efficiently with a
11448 test followed by an assignment, if necessary.
11450 ??? At this point, we can't get a BIT_FIELD_REF here. But if
11451 things change so we do, this code should be enhanced to
11452 support it. */
11453 if (TREE_CODE (lhs) == COMPONENT_REF
11454 && (TREE_CODE (rhs) == BIT_IOR_EXPR
11455 || TREE_CODE (rhs) == BIT_AND_EXPR)
11456 && TREE_OPERAND (rhs, 0) == lhs
11457 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
11458 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
11459 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
11461 rtx_code_label *label = gen_label_rtx ();
11462 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
11463 profile_probability prob = profile_probability::uninitialized ();
11464 if (value)
11465 jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
11466 else
11467 jumpif (TREE_OPERAND (rhs, 1), label, prob);
11468 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
11469 false);
11470 do_pending_stack_adjust ();
11471 emit_label (label);
11472 return const0_rtx;
11475 expand_assignment (lhs, rhs, false);
11476 return const0_rtx;
11479 case ADDR_EXPR:
11480 return expand_expr_addr_expr (exp, target, tmode, modifier);
11482 case REALPART_EXPR:
11483 op0 = expand_normal (treeop0);
11484 return read_complex_part (op0, false);
11486 case IMAGPART_EXPR:
11487 op0 = expand_normal (treeop0);
11488 return read_complex_part (op0, true);
11490 case RETURN_EXPR:
11491 case LABEL_EXPR:
11492 case GOTO_EXPR:
11493 case SWITCH_EXPR:
11494 case ASM_EXPR:
11495 /* Expanded in cfgexpand.c. */
11496 gcc_unreachable ();
11498 case TRY_CATCH_EXPR:
11499 case CATCH_EXPR:
11500 case EH_FILTER_EXPR:
11501 case TRY_FINALLY_EXPR:
11502 case EH_ELSE_EXPR:
11503 /* Lowered by tree-eh.c. */
11504 gcc_unreachable ();
11506 case WITH_CLEANUP_EXPR:
11507 case CLEANUP_POINT_EXPR:
11508 case TARGET_EXPR:
11509 case CASE_LABEL_EXPR:
11510 case VA_ARG_EXPR:
11511 case BIND_EXPR:
11512 case INIT_EXPR:
11513 case CONJ_EXPR:
11514 case COMPOUND_EXPR:
11515 case PREINCREMENT_EXPR:
11516 case PREDECREMENT_EXPR:
11517 case POSTINCREMENT_EXPR:
11518 case POSTDECREMENT_EXPR:
11519 case LOOP_EXPR:
11520 case EXIT_EXPR:
11521 case COMPOUND_LITERAL_EXPR:
11522 /* Lowered by gimplify.c. */
11523 gcc_unreachable ();
11525 case FDESC_EXPR:
11526 /* Function descriptors are not valid except for as
11527 initialization constants, and should not be expanded. */
11528 gcc_unreachable ();
11530 case WITH_SIZE_EXPR:
11531 /* WITH_SIZE_EXPR expands to its first argument. The caller should
11532 have pulled out the size to use in whatever context it needed. */
11533 return expand_expr_real (treeop0, original_target, tmode,
11534 modifier, alt_rtl, inner_reference_p);
11536 default:
11537 return expand_expr_real_2 (&ops, target, tmode, modifier);
11541 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
11542 signedness of TYPE), possibly returning the result in TARGET.
11543 TYPE is known to be a partial integer type. */
11544 static rtx
11545 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
11547 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
11548 HOST_WIDE_INT prec = TYPE_PRECISION (type);
11549 gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
11550 && (!target || GET_MODE (target) == mode));
11552 /* For constant values, reduce using wide_int_to_tree. */
11553 if (poly_int_rtx_p (exp))
11555 auto value = wi::to_poly_wide (exp, mode);
11556 tree t = wide_int_to_tree (type, value);
11557 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
11559 else if (TYPE_UNSIGNED (type))
11561 rtx mask = immed_wide_int_const
11562 (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
11563 return expand_and (mode, exp, mask, target);
11565 else
11567 int count = GET_MODE_PRECISION (mode) - prec;
11568 exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
11569 return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
11573 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
11574 when applied to the address of EXP produces an address known to be
11575 aligned more than BIGGEST_ALIGNMENT. */
11577 static int
11578 is_aligning_offset (const_tree offset, const_tree exp)
11580 /* Strip off any conversions. */
11581 while (CONVERT_EXPR_P (offset))
11582 offset = TREE_OPERAND (offset, 0);
11584 /* We must now have a BIT_AND_EXPR with a constant that is one less than
11585 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
11586 if (TREE_CODE (offset) != BIT_AND_EXPR
11587 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
11588 || compare_tree_int (TREE_OPERAND (offset, 1),
11589 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
11590 || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
11591 return 0;
11593 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
11594 It must be NEGATE_EXPR. Then strip any more conversions. */
11595 offset = TREE_OPERAND (offset, 0);
11596 while (CONVERT_EXPR_P (offset))
11597 offset = TREE_OPERAND (offset, 0);
11599 if (TREE_CODE (offset) != NEGATE_EXPR)
11600 return 0;
11602 offset = TREE_OPERAND (offset, 0);
11603 while (CONVERT_EXPR_P (offset))
11604 offset = TREE_OPERAND (offset, 0);
11606 /* This must now be the address of EXP. */
11607 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
11610 /* If EXPR is a constant initializer (either an expression or CONSTRUCTOR),
11611 attempt to obtain its native representation as an array of nonzero BYTES.
11612 Return true on success and false on failure (the latter without modifying
11613 BYTES). */
11615 static bool
11616 convert_to_bytes (tree type, tree expr, vec<unsigned char> *bytes)
11618 if (TREE_CODE (expr) == CONSTRUCTOR)
11620 /* Set to the size of the CONSTRUCTOR elements. */
11621 unsigned HOST_WIDE_INT ctor_size = bytes->length ();
11623 if (TREE_CODE (type) == ARRAY_TYPE)
11625 tree val, idx;
11626 tree eltype = TREE_TYPE (type);
11627 unsigned HOST_WIDE_INT elsize =
11628 tree_to_uhwi (TYPE_SIZE_UNIT (eltype));
11630 /* Jump through hoops to determine the lower bound for languages
11631 like Ada that can set it to an (almost) arbitrary value. */
11632 tree dom = TYPE_DOMAIN (type);
11633 if (!dom)
11634 return false;
11635 tree min = TYPE_MIN_VALUE (dom);
11636 if (!min || !tree_fits_uhwi_p (min))
11637 return false;
11638 unsigned HOST_WIDE_INT i, last_idx = tree_to_uhwi (min) - 1;
11639 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (expr), i, idx, val)
11641 /* Append zeros for elements with no initializers. */
11642 if (!tree_fits_uhwi_p (idx))
11643 return false;
11644 unsigned HOST_WIDE_INT cur_idx = tree_to_uhwi (idx);
11645 if (unsigned HOST_WIDE_INT size = cur_idx - (last_idx + 1))
11647 size = size * elsize + bytes->length ();
11648 bytes->safe_grow_cleared (size, true);
11651 if (!convert_to_bytes (eltype, val, bytes))
11652 return false;
11654 last_idx = cur_idx;
11657 else if (TREE_CODE (type) == RECORD_TYPE)
11659 tree val, fld;
11660 unsigned HOST_WIDE_INT i;
11661 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (expr), i, fld, val)
11663 /* Append zeros for members with no initializers and
11664 any padding. */
11665 unsigned HOST_WIDE_INT cur_off = int_byte_position (fld);
11666 if (bytes->length () < cur_off)
11667 bytes->safe_grow_cleared (cur_off, true);
11669 if (!convert_to_bytes (TREE_TYPE (val), val, bytes))
11670 return false;
11673 else
11674 return false;
11676 /* Compute the size of the COSNTRUCTOR elements. */
11677 ctor_size = bytes->length () - ctor_size;
11679 /* Append zeros to the byte vector to the full size of the type.
11680 The type size can be less than the size of the CONSTRUCTOR
11681 if the latter contains initializers for a flexible array
11682 member. */
11683 tree size = TYPE_SIZE_UNIT (type);
11684 unsigned HOST_WIDE_INT type_size = tree_to_uhwi (size);
11685 if (ctor_size < type_size)
11686 if (unsigned HOST_WIDE_INT size_grow = type_size - ctor_size)
11687 bytes->safe_grow_cleared (bytes->length () + size_grow, true);
11689 return true;
11692 /* Except for RECORD_TYPE which may have an initialized flexible array
11693 member, the size of a type is the same as the size of the initializer
11694 (including any implicitly zeroed out members and padding). Allocate
11695 just enough for that many bytes. */
11696 tree expr_size = TYPE_SIZE_UNIT (TREE_TYPE (expr));
11697 if (!expr_size || !tree_fits_uhwi_p (expr_size))
11698 return false;
11699 const unsigned HOST_WIDE_INT expr_bytes = tree_to_uhwi (expr_size);
11700 const unsigned bytes_sofar = bytes->length ();
11701 /* native_encode_expr can convert at most INT_MAX bytes. vec is limited
11702 to at most UINT_MAX. */
11703 if (bytes_sofar + expr_bytes > INT_MAX)
11704 return false;
11706 /* Unlike for RECORD_TYPE, there is no need to clear the memory since
11707 it's completely overwritten by native_encode_expr. */
11708 bytes->safe_grow (bytes_sofar + expr_bytes, true);
11709 unsigned char *pnext = bytes->begin () + bytes_sofar;
11710 int nbytes = native_encode_expr (expr, pnext, expr_bytes, 0);
11711 /* NBYTES is zero on failure. Otherwise it should equal EXPR_BYTES. */
11712 return (unsigned HOST_WIDE_INT) nbytes == expr_bytes;
11715 /* Return a STRING_CST corresponding to ARG's constant initializer either
11716 if it's a string constant, or, when VALREP is set, any other constant,
11717 or null otherwise.
11718 On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
11719 within the byte string that ARG is references. If nonnull set *MEM_SIZE
11720 to the size of the byte string. If nonnull, set *DECL to the constant
11721 declaration ARG refers to. */
11723 static tree
11724 constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
11725 bool valrep = false)
11727 tree dummy = NULL_TREE;;
11728 if (!mem_size)
11729 mem_size = &dummy;
11731 /* Store the type of the original expression before conversions
11732 via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
11733 removed. */
11734 tree argtype = TREE_TYPE (arg);
11736 tree array;
11737 STRIP_NOPS (arg);
11739 /* Non-constant index into the character array in an ARRAY_REF
11740 expression or null. */
11741 tree varidx = NULL_TREE;
11743 poly_int64 base_off = 0;
11745 if (TREE_CODE (arg) == ADDR_EXPR)
11747 arg = TREE_OPERAND (arg, 0);
11748 tree ref = arg;
11749 if (TREE_CODE (arg) == ARRAY_REF)
11751 tree idx = TREE_OPERAND (arg, 1);
11752 if (TREE_CODE (idx) != INTEGER_CST)
11754 /* From a pointer (but not array) argument extract the variable
11755 index to prevent get_addr_base_and_unit_offset() from failing
11756 due to it. Use it later to compute the non-constant offset
11757 into the string and return it to the caller. */
11758 varidx = idx;
11759 ref = TREE_OPERAND (arg, 0);
11761 if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
11762 return NULL_TREE;
11764 if (!integer_zerop (array_ref_low_bound (arg)))
11765 return NULL_TREE;
11767 if (!integer_onep (array_ref_element_size (arg)))
11768 return NULL_TREE;
11771 array = get_addr_base_and_unit_offset (ref, &base_off);
11772 if (!array
11773 || (TREE_CODE (array) != VAR_DECL
11774 && TREE_CODE (array) != CONST_DECL
11775 && TREE_CODE (array) != STRING_CST))
11776 return NULL_TREE;
11778 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
11780 tree arg0 = TREE_OPERAND (arg, 0);
11781 tree arg1 = TREE_OPERAND (arg, 1);
11783 tree offset;
11784 tree str = string_constant (arg0, &offset, mem_size, decl);
11785 if (!str)
11787 str = string_constant (arg1, &offset, mem_size, decl);
11788 arg1 = arg0;
11791 if (str)
11793 /* Avoid pointers to arrays (see bug 86622). */
11794 if (POINTER_TYPE_P (TREE_TYPE (arg))
11795 && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
11796 && !(decl && !*decl)
11797 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11798 && tree_fits_uhwi_p (*mem_size)
11799 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11800 return NULL_TREE;
11802 tree type = TREE_TYPE (offset);
11803 arg1 = fold_convert (type, arg1);
11804 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
11805 return str;
11807 return NULL_TREE;
11809 else if (TREE_CODE (arg) == SSA_NAME)
11811 gimple *stmt = SSA_NAME_DEF_STMT (arg);
11812 if (!is_gimple_assign (stmt))
11813 return NULL_TREE;
11815 tree rhs1 = gimple_assign_rhs1 (stmt);
11816 tree_code code = gimple_assign_rhs_code (stmt);
11817 if (code == ADDR_EXPR)
11818 return string_constant (rhs1, ptr_offset, mem_size, decl);
11819 else if (code != POINTER_PLUS_EXPR)
11820 return NULL_TREE;
11822 tree offset;
11823 if (tree str = string_constant (rhs1, &offset, mem_size, decl))
11825 /* Avoid pointers to arrays (see bug 86622). */
11826 if (POINTER_TYPE_P (TREE_TYPE (rhs1))
11827 && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
11828 && !(decl && !*decl)
11829 && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
11830 && tree_fits_uhwi_p (*mem_size)
11831 && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
11832 return NULL_TREE;
11834 tree rhs2 = gimple_assign_rhs2 (stmt);
11835 tree type = TREE_TYPE (offset);
11836 rhs2 = fold_convert (type, rhs2);
11837 *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
11838 return str;
11840 return NULL_TREE;
11842 else if (DECL_P (arg))
11843 array = arg;
11844 else
11845 return NULL_TREE;
11847 tree offset = wide_int_to_tree (sizetype, base_off);
11848 if (varidx)
11850 if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
11851 return NULL_TREE;
11853 gcc_assert (TREE_CODE (arg) == ARRAY_REF);
11854 tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
11855 if (TREE_CODE (chartype) != INTEGER_TYPE)
11856 return NULL;
11858 offset = fold_convert (sizetype, varidx);
11861 if (TREE_CODE (array) == STRING_CST)
11863 *ptr_offset = fold_convert (sizetype, offset);
11864 *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
11865 if (decl)
11866 *decl = NULL_TREE;
11867 gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
11868 >= TREE_STRING_LENGTH (array));
11869 return array;
11872 tree init = ctor_for_folding (array);
11873 if (!init || init == error_mark_node)
11874 return NULL_TREE;
11876 if (valrep)
11878 HOST_WIDE_INT cstoff;
11879 if (!base_off.is_constant (&cstoff))
11880 return NULL_TREE;
11882 /* If value representation was requested convert the initializer
11883 for the whole array or object into a string of bytes forming
11884 its value representation and return it. */
11885 auto_vec<unsigned char> bytes;
11886 if (!convert_to_bytes (TREE_TYPE (init), init, &bytes))
11887 return NULL_TREE;
11889 unsigned n = bytes.length ();
11890 const char *p = reinterpret_cast<const char *>(bytes.address ());
11891 init = build_string_literal (n, p, char_type_node);
11892 init = TREE_OPERAND (init, 0);
11893 init = TREE_OPERAND (init, 0);
11895 *mem_size = size_int (TREE_STRING_LENGTH (init));
11896 *ptr_offset = wide_int_to_tree (ssizetype, base_off);
11898 if (decl)
11899 *decl = array;
11901 return init;
11904 if (TREE_CODE (init) == CONSTRUCTOR)
11906 /* Convert the 64-bit constant offset to a wider type to avoid
11907 overflow and use it to obtain the initializer for the subobject
11908 it points into. */
11909 offset_int wioff;
11910 if (!base_off.is_constant (&wioff))
11911 return NULL_TREE;
11913 wioff *= BITS_PER_UNIT;
11914 if (!wi::fits_uhwi_p (wioff))
11915 return NULL_TREE;
11917 base_off = wioff.to_uhwi ();
11918 unsigned HOST_WIDE_INT fieldoff = 0;
11919 init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
11920 &fieldoff);
11921 if (!init || init == error_mark_node)
11922 return NULL_TREE;
11924 HOST_WIDE_INT cstoff;
11925 if (!base_off.is_constant (&cstoff))
11926 return NULL_TREE;
11928 cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
11929 tree off = build_int_cst (sizetype, cstoff);
11930 if (varidx)
11931 offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
11932 else
11933 offset = off;
11936 *ptr_offset = offset;
11938 tree inittype = TREE_TYPE (init);
11940 if (TREE_CODE (init) == INTEGER_CST
11941 && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
11942 || TYPE_MAIN_VARIANT (inittype) == char_type_node))
11944 /* For a reference to (address of) a single constant character,
11945 store the native representation of the character in CHARBUF.
11946 If the reference is to an element of an array or a member
11947 of a struct, only consider narrow characters until ctors
11948 for wide character arrays are transformed to STRING_CSTs
11949 like those for narrow arrays. */
11950 unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11951 int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
11952 if (len > 0)
11954 /* Construct a string literal with elements of INITTYPE and
11955 the representation above. Then strip
11956 the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
11957 init = build_string_literal (len, (char *)charbuf, inittype);
11958 init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
11962 tree initsize = TYPE_SIZE_UNIT (inittype);
11964 if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
11966 /* Fold an empty/zero constructor for an implicitly initialized
11967 object or subobject into the empty string. */
11969 /* Determine the character type from that of the original
11970 expression. */
11971 tree chartype = argtype;
11972 if (POINTER_TYPE_P (chartype))
11973 chartype = TREE_TYPE (chartype);
11974 while (TREE_CODE (chartype) == ARRAY_TYPE)
11975 chartype = TREE_TYPE (chartype);
11977 if (INTEGRAL_TYPE_P (chartype)
11978 && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
11980 /* Convert a char array to an empty STRING_CST having an array
11981 of the expected type and size. */
11982 if (!initsize)
11983 initsize = integer_zero_node;
11985 unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
11986 init = build_string_literal (size, NULL, chartype, size);
11987 init = TREE_OPERAND (init, 0);
11988 init = TREE_OPERAND (init, 0);
11990 *ptr_offset = integer_zero_node;
11994 if (decl)
11995 *decl = array;
11997 if (TREE_CODE (init) != STRING_CST)
11998 return NULL_TREE;
12000 *mem_size = initsize;
12002 gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
12004 return init;
12007 /* Return STRING_CST if an ARG corresponds to a string constant or zero
12008 if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
12009 non-constant) offset in bytes within the string that ARG is accessing.
12010 If MEM_SIZE is non-zero the storage size of the memory is returned.
12011 If DECL is non-zero the constant declaration is returned if available. */
12013 tree
12014 string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12016 return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
12019 /* Similar to string_constant, return a STRING_CST corresponding
12020 to the value representation of the first argument if it's
12021 a constant. */
12023 tree
12024 byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
12026 return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
12029 /* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
12030 is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
12031 for C2 > 0 to x & C3 == C2
12032 for C2 < 0 to x & C3 == (C2 & C3). */
12033 enum tree_code
12034 maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12036 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12037 tree treeop0 = gimple_assign_rhs1 (stmt);
12038 tree treeop1 = gimple_assign_rhs2 (stmt);
12039 tree type = TREE_TYPE (*arg0);
12040 scalar_int_mode mode;
12041 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12042 return code;
12043 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12044 || TYPE_PRECISION (type) <= 1
12045 || TYPE_UNSIGNED (type)
12046 /* Signed x % c == 0 should have been optimized into unsigned modulo
12047 earlier. */
12048 || integer_zerop (*arg1)
12049 /* If c is known to be non-negative, modulo will be expanded as unsigned
12050 modulo. */
12051 || get_range_pos_neg (treeop0) == 1)
12052 return code;
12054 /* x % c == d where d < 0 && d <= -c should be always false. */
12055 if (tree_int_cst_sgn (*arg1) == -1
12056 && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
12057 return code;
12059 int prec = TYPE_PRECISION (type);
12060 wide_int w = wi::to_wide (treeop1) - 1;
12061 w |= wi::shifted_mask (0, prec - 1, true, prec);
12062 tree c3 = wide_int_to_tree (type, w);
12063 tree c4 = *arg1;
12064 if (tree_int_cst_sgn (*arg1) == -1)
12065 c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
12067 rtx op0 = expand_normal (treeop0);
12068 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12070 bool speed_p = optimize_insn_for_speed_p ();
12072 do_pending_stack_adjust ();
12074 location_t loc = gimple_location (stmt);
12075 struct separate_ops ops;
12076 ops.code = TRUNC_MOD_EXPR;
12077 ops.location = loc;
12078 ops.type = TREE_TYPE (treeop0);
12079 ops.op0 = treeop0;
12080 ops.op1 = treeop1;
12081 ops.op2 = NULL_TREE;
12082 start_sequence ();
12083 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12084 EXPAND_NORMAL);
12085 rtx_insn *moinsns = get_insns ();
12086 end_sequence ();
12088 unsigned mocost = seq_cost (moinsns, speed_p);
12089 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12090 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12092 ops.code = BIT_AND_EXPR;
12093 ops.location = loc;
12094 ops.type = TREE_TYPE (treeop0);
12095 ops.op0 = treeop0;
12096 ops.op1 = c3;
12097 ops.op2 = NULL_TREE;
12098 start_sequence ();
12099 rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12100 EXPAND_NORMAL);
12101 rtx_insn *muinsns = get_insns ();
12102 end_sequence ();
12104 unsigned mucost = seq_cost (muinsns, speed_p);
12105 mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
12106 mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
12108 if (mocost <= mucost)
12110 emit_insn (moinsns);
12111 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12112 return code;
12115 emit_insn (muinsns);
12116 *arg0 = make_tree (TREE_TYPE (*arg0), mur);
12117 *arg1 = c4;
12118 return code;
12121 /* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
12122 If C1 is odd to:
12123 (X - C2) * C3 <= C4 (or >), where
12124 C3 is modular multiplicative inverse of C1 and 1<<prec and
12125 C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
12126 if C2 > ((1<<prec) - 1) % C1).
12127 If C1 is even, S = ctz (C1) and C2 is 0, use
12128 ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
12129 inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
12131 For signed (X % C1) == 0 if C1 is odd to (all operations in it
12132 unsigned):
12133 (X * C3) + C4 <= 2 * C4, where
12134 C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
12135 C4 is ((1<<(prec - 1) - 1) / C1).
12136 If C1 is even, S = ctz(C1), use
12137 ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
12138 where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
12139 and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
12141 See the Hacker's Delight book, section 10-17. */
12142 enum tree_code
12143 maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
12145 gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
12146 gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
12148 if (optimize < 2)
12149 return code;
12151 gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
12152 if (stmt == NULL)
12153 return code;
12155 tree treeop0 = gimple_assign_rhs1 (stmt);
12156 tree treeop1 = gimple_assign_rhs2 (stmt);
12157 if (TREE_CODE (treeop0) != SSA_NAME
12158 || TREE_CODE (treeop1) != INTEGER_CST
12159 /* Don't optimize the undefined behavior case x % 0;
12160 x % 1 should have been optimized into zero, punt if
12161 it makes it here for whatever reason;
12162 x % -c should have been optimized into x % c. */
12163 || compare_tree_int (treeop1, 2) <= 0
12164 /* Likewise x % c == d where d >= c should be always false. */
12165 || tree_int_cst_le (treeop1, *arg1))
12166 return code;
12168 /* Unsigned x % pow2 is handled right already, for signed
12169 modulo handle it in maybe_optimize_pow2p_mod_cmp. */
12170 if (integer_pow2p (treeop1))
12171 return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
12173 tree type = TREE_TYPE (*arg0);
12174 scalar_int_mode mode;
12175 if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
12176 return code;
12177 if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
12178 || TYPE_PRECISION (type) <= 1)
12179 return code;
12181 signop sgn = UNSIGNED;
12182 /* If both operands are known to have the sign bit clear, handle
12183 even the signed modulo case as unsigned. treeop1 is always
12184 positive >= 2, checked above. */
12185 if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
12186 sgn = SIGNED;
12188 if (!TYPE_UNSIGNED (type))
12190 if (tree_int_cst_sgn (*arg1) == -1)
12191 return code;
12192 type = unsigned_type_for (type);
12193 if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
12194 return code;
12197 int prec = TYPE_PRECISION (type);
12198 wide_int w = wi::to_wide (treeop1);
12199 int shift = wi::ctz (w);
12200 /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
12201 C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
12202 If C1 is odd, we can handle all cases by subtracting
12203 C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
12204 e.g. by testing for overflow on the subtraction, punt on that for now
12205 though. */
12206 if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
12208 if (sgn == SIGNED)
12209 return code;
12210 wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
12211 if (wi::gtu_p (wi::to_wide (*arg1), x))
12212 return code;
12215 imm_use_iterator imm_iter;
12216 use_operand_p use_p;
12217 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
12219 gimple *use_stmt = USE_STMT (use_p);
12220 /* Punt if treeop0 is used in the same bb in a division
12221 or another modulo with the same divisor. We should expect
12222 the division and modulo combined together. */
12223 if (use_stmt == stmt
12224 || gimple_bb (use_stmt) != gimple_bb (stmt))
12225 continue;
12226 if (!is_gimple_assign (use_stmt)
12227 || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
12228 && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
12229 continue;
12230 if (gimple_assign_rhs1 (use_stmt) != treeop0
12231 || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
12232 continue;
12233 return code;
12236 w = wi::lrshift (w, shift);
12237 wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
12238 wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
12239 wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
12240 tree c3 = wide_int_to_tree (type, m);
12241 tree c5 = NULL_TREE;
12242 wide_int d, e;
12243 if (sgn == UNSIGNED)
12245 d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
12246 /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
12247 otherwise use < or subtract one from C4. E.g. for
12248 x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
12249 x % 3U == 1 already needs to be
12250 (x - 1) * 0xaaaaaaabU <= 0x55555554. */
12251 if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
12252 d -= 1;
12253 if (shift)
12254 d = wi::lrshift (d, shift);
12256 else
12258 e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
12259 if (!shift)
12260 d = wi::lshift (e, 1);
12261 else
12263 e = wi::bit_and (e, wi::mask (shift, true, prec));
12264 d = wi::lrshift (e, shift - 1);
12266 c5 = wide_int_to_tree (type, e);
12268 tree c4 = wide_int_to_tree (type, d);
12270 rtx op0 = expand_normal (treeop0);
12271 treeop0 = make_tree (TREE_TYPE (treeop0), op0);
12273 bool speed_p = optimize_insn_for_speed_p ();
12275 do_pending_stack_adjust ();
12277 location_t loc = gimple_location (stmt);
12278 struct separate_ops ops;
12279 ops.code = TRUNC_MOD_EXPR;
12280 ops.location = loc;
12281 ops.type = TREE_TYPE (treeop0);
12282 ops.op0 = treeop0;
12283 ops.op1 = treeop1;
12284 ops.op2 = NULL_TREE;
12285 start_sequence ();
12286 rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
12287 EXPAND_NORMAL);
12288 rtx_insn *moinsns = get_insns ();
12289 end_sequence ();
12291 unsigned mocost = seq_cost (moinsns, speed_p);
12292 mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
12293 mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
12295 tree t = fold_convert_loc (loc, type, treeop0);
12296 if (!integer_zerop (*arg1))
12297 t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
12298 t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
12299 if (sgn == SIGNED)
12300 t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
12301 if (shift)
12303 tree s = build_int_cst (NULL_TREE, shift);
12304 t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
12307 start_sequence ();
12308 rtx mur = expand_normal (t);
12309 rtx_insn *muinsns = get_insns ();
12310 end_sequence ();
12312 unsigned mucost = seq_cost (muinsns, speed_p);
12313 mucost += rtx_cost (mur, mode, LE, 0, speed_p);
12314 mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
12316 if (mocost <= mucost)
12318 emit_insn (moinsns);
12319 *arg0 = make_tree (TREE_TYPE (*arg0), mor);
12320 return code;
12323 emit_insn (muinsns);
12324 *arg0 = make_tree (type, mur);
12325 *arg1 = c4;
12326 return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
12329 /* Generate code to calculate OPS, and exploded expression
12330 using a store-flag instruction and return an rtx for the result.
12331 OPS reflects a comparison.
12333 If TARGET is nonzero, store the result there if convenient.
12335 Return zero if there is no suitable set-flag instruction
12336 available on this machine.
12338 Once expand_expr has been called on the arguments of the comparison,
12339 we are committed to doing the store flag, since it is not safe to
12340 re-evaluate the expression. We emit the store-flag insn by calling
12341 emit_store_flag, but only expand the arguments if we have a reason
12342 to believe that emit_store_flag will be successful. If we think that
12343 it will, but it isn't, we have to simulate the store-flag with a
12344 set/jump/set sequence. */
12346 static rtx
12347 do_store_flag (sepops ops, rtx target, machine_mode mode)
12349 enum rtx_code code;
12350 tree arg0, arg1, type;
12351 machine_mode operand_mode;
12352 int unsignedp;
12353 rtx op0, op1;
12354 rtx subtarget = target;
12355 location_t loc = ops->location;
12357 arg0 = ops->op0;
12358 arg1 = ops->op1;
12360 /* Don't crash if the comparison was erroneous. */
12361 if (arg0 == error_mark_node || arg1 == error_mark_node)
12362 return const0_rtx;
12364 type = TREE_TYPE (arg0);
12365 operand_mode = TYPE_MODE (type);
12366 unsignedp = TYPE_UNSIGNED (type);
12368 /* We won't bother with BLKmode store-flag operations because it would mean
12369 passing a lot of information to emit_store_flag. */
12370 if (operand_mode == BLKmode)
12371 return 0;
12373 /* We won't bother with store-flag operations involving function pointers
12374 when function pointers must be canonicalized before comparisons. */
12375 if (targetm.have_canonicalize_funcptr_for_compare ()
12376 && ((POINTER_TYPE_P (TREE_TYPE (arg0))
12377 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
12378 || (POINTER_TYPE_P (TREE_TYPE (arg1))
12379 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
12380 return 0;
12382 STRIP_NOPS (arg0);
12383 STRIP_NOPS (arg1);
12385 /* For vector typed comparisons emit code to generate the desired
12386 all-ones or all-zeros mask. */
12387 if (TREE_CODE (ops->type) == VECTOR_TYPE)
12389 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
12390 if (VECTOR_BOOLEAN_TYPE_P (ops->type)
12391 && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
12392 return expand_vec_cmp_expr (ops->type, ifexp, target);
12393 else
12394 gcc_unreachable ();
12397 /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
12398 into (x - C2) * C3 < C4. */
12399 if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
12400 && TREE_CODE (arg0) == SSA_NAME
12401 && TREE_CODE (arg1) == INTEGER_CST)
12403 enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
12404 &arg0, &arg1);
12405 if (new_code != ops->code)
12407 struct separate_ops nops = *ops;
12408 nops.code = ops->code = new_code;
12409 nops.op0 = arg0;
12410 nops.op1 = arg1;
12411 nops.type = TREE_TYPE (arg0);
12412 return do_store_flag (&nops, target, mode);
12416 /* Get the rtx comparison code to use. We know that EXP is a comparison
12417 operation of some type. Some comparisons against 1 and -1 can be
12418 converted to comparisons with zero. Do so here so that the tests
12419 below will be aware that we have a comparison with zero. These
12420 tests will not catch constants in the first operand, but constants
12421 are rarely passed as the first operand. */
12423 switch (ops->code)
12425 case EQ_EXPR:
12426 code = EQ;
12427 break;
12428 case NE_EXPR:
12429 code = NE;
12430 break;
12431 case LT_EXPR:
12432 if (integer_onep (arg1))
12433 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
12434 else
12435 code = unsignedp ? LTU : LT;
12436 break;
12437 case LE_EXPR:
12438 if (! unsignedp && integer_all_onesp (arg1))
12439 arg1 = integer_zero_node, code = LT;
12440 else
12441 code = unsignedp ? LEU : LE;
12442 break;
12443 case GT_EXPR:
12444 if (! unsignedp && integer_all_onesp (arg1))
12445 arg1 = integer_zero_node, code = GE;
12446 else
12447 code = unsignedp ? GTU : GT;
12448 break;
12449 case GE_EXPR:
12450 if (integer_onep (arg1))
12451 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
12452 else
12453 code = unsignedp ? GEU : GE;
12454 break;
12456 case UNORDERED_EXPR:
12457 code = UNORDERED;
12458 break;
12459 case ORDERED_EXPR:
12460 code = ORDERED;
12461 break;
12462 case UNLT_EXPR:
12463 code = UNLT;
12464 break;
12465 case UNLE_EXPR:
12466 code = UNLE;
12467 break;
12468 case UNGT_EXPR:
12469 code = UNGT;
12470 break;
12471 case UNGE_EXPR:
12472 code = UNGE;
12473 break;
12474 case UNEQ_EXPR:
12475 code = UNEQ;
12476 break;
12477 case LTGT_EXPR:
12478 code = LTGT;
12479 break;
12481 default:
12482 gcc_unreachable ();
12485 /* Put a constant second. */
12486 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
12487 || TREE_CODE (arg0) == FIXED_CST)
12489 std::swap (arg0, arg1);
12490 code = swap_condition (code);
12493 /* If this is an equality or inequality test of a single bit, we can
12494 do this by shifting the bit being tested to the low-order bit and
12495 masking the result with the constant 1. If the condition was EQ,
12496 we xor it with 1. This does not require an scc insn and is faster
12497 than an scc insn even if we have it.
12499 The code to make this transformation was moved into fold_single_bit_test,
12500 so we just call into the folder and expand its result. */
12502 if ((code == NE || code == EQ)
12503 && integer_zerop (arg1)
12504 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
12506 gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
12507 if (srcstmt
12508 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
12510 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
12511 type = lang_hooks.types.type_for_mode (mode, unsignedp);
12512 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
12513 gimple_assign_rhs1 (srcstmt),
12514 gimple_assign_rhs2 (srcstmt));
12515 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
12516 if (temp)
12517 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
12521 if (! get_subtarget (target)
12522 || GET_MODE (subtarget) != operand_mode)
12523 subtarget = 0;
12525 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
12527 if (target == 0)
12528 target = gen_reg_rtx (mode);
12530 /* Try a cstore if possible. */
12531 return emit_store_flag_force (target, code, op0, op1,
12532 operand_mode, unsignedp,
12533 (TYPE_PRECISION (ops->type) == 1
12534 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
12537 /* Attempt to generate a casesi instruction. Returns 1 if successful,
12538 0 otherwise (i.e. if there is no casesi instruction).
12540 DEFAULT_PROBABILITY is the probability of jumping to the default
12541 label. */
12543 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
12544 rtx table_label, rtx default_label, rtx fallback_label,
12545 profile_probability default_probability)
12547 class expand_operand ops[5];
12548 scalar_int_mode index_mode = SImode;
12549 rtx op1, op2, index;
12551 if (! targetm.have_casesi ())
12552 return 0;
12554 /* The index must be some form of integer. Convert it to SImode. */
12555 scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
12556 if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
12558 rtx rangertx = expand_normal (range);
12560 /* We must handle the endpoints in the original mode. */
12561 index_expr = build2 (MINUS_EXPR, index_type,
12562 index_expr, minval);
12563 minval = integer_zero_node;
12564 index = expand_normal (index_expr);
12565 if (default_label)
12566 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
12567 omode, 1, default_label,
12568 default_probability);
12569 /* Now we can safely truncate. */
12570 index = convert_to_mode (index_mode, index, 0);
12572 else
12574 if (omode != index_mode)
12576 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
12577 index_expr = fold_convert (index_type, index_expr);
12580 index = expand_normal (index_expr);
12583 do_pending_stack_adjust ();
12585 op1 = expand_normal (minval);
12586 op2 = expand_normal (range);
12588 create_input_operand (&ops[0], index, index_mode);
12589 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
12590 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
12591 create_fixed_operand (&ops[3], table_label);
12592 create_fixed_operand (&ops[4], (default_label
12593 ? default_label
12594 : fallback_label));
12595 expand_jump_insn (targetm.code_for_casesi, 5, ops);
12596 return 1;
12599 /* Attempt to generate a tablejump instruction; same concept. */
12600 /* Subroutine of the next function.
12602 INDEX is the value being switched on, with the lowest value
12603 in the table already subtracted.
12604 MODE is its expected mode (needed if INDEX is constant).
12605 RANGE is the length of the jump table.
12606 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
12608 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
12609 index value is out of range.
12610 DEFAULT_PROBABILITY is the probability of jumping to
12611 the default label. */
12613 static void
12614 do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
12615 rtx default_label, profile_probability default_probability)
12617 rtx temp, vector;
12619 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
12620 cfun->cfg->max_jumptable_ents = INTVAL (range);
12622 /* Do an unsigned comparison (in the proper mode) between the index
12623 expression and the value which represents the length of the range.
12624 Since we just finished subtracting the lower bound of the range
12625 from the index expression, this comparison allows us to simultaneously
12626 check that the original index expression value is both greater than
12627 or equal to the minimum value of the range and less than or equal to
12628 the maximum value of the range. */
12630 if (default_label)
12631 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
12632 default_label, default_probability);
12634 /* If index is in range, it must fit in Pmode.
12635 Convert to Pmode so we can index with it. */
12636 if (mode != Pmode)
12638 unsigned int width;
12640 /* We know the value of INDEX is between 0 and RANGE. If we have a
12641 sign-extended subreg, and RANGE does not have the sign bit set, then
12642 we have a value that is valid for both sign and zero extension. In
12643 this case, we get better code if we sign extend. */
12644 if (GET_CODE (index) == SUBREG
12645 && SUBREG_PROMOTED_VAR_P (index)
12646 && SUBREG_PROMOTED_SIGNED_P (index)
12647 && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
12648 <= HOST_BITS_PER_WIDE_INT)
12649 && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
12650 index = convert_to_mode (Pmode, index, 0);
12651 else
12652 index = convert_to_mode (Pmode, index, 1);
12655 /* Don't let a MEM slip through, because then INDEX that comes
12656 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
12657 and break_out_memory_refs will go to work on it and mess it up. */
12658 #ifdef PIC_CASE_VECTOR_ADDRESS
12659 if (flag_pic && !REG_P (index))
12660 index = copy_to_mode_reg (Pmode, index);
12661 #endif
12663 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
12664 GET_MODE_SIZE, because this indicates how large insns are. The other
12665 uses should all be Pmode, because they are addresses. This code
12666 could fail if addresses and insns are not the same size. */
12667 index = simplify_gen_binary (MULT, Pmode, index,
12668 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
12669 Pmode));
12670 index = simplify_gen_binary (PLUS, Pmode, index,
12671 gen_rtx_LABEL_REF (Pmode, table_label));
12673 #ifdef PIC_CASE_VECTOR_ADDRESS
12674 if (flag_pic)
12675 index = PIC_CASE_VECTOR_ADDRESS (index);
12676 else
12677 #endif
12678 index = memory_address (CASE_VECTOR_MODE, index);
12679 temp = gen_reg_rtx (CASE_VECTOR_MODE);
12680 vector = gen_const_mem (CASE_VECTOR_MODE, index);
12681 convert_move (temp, vector, 0);
12683 emit_jump_insn (targetm.gen_tablejump (temp, table_label));
12685 /* If we are generating PIC code or if the table is PC-relative, the
12686 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
12687 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
12688 emit_barrier ();
12692 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
12693 rtx table_label, rtx default_label,
12694 profile_probability default_probability)
12696 rtx index;
12698 if (! targetm.have_tablejump ())
12699 return 0;
12701 index_expr = fold_build2 (MINUS_EXPR, index_type,
12702 fold_convert (index_type, index_expr),
12703 fold_convert (index_type, minval));
12704 index = expand_normal (index_expr);
12705 do_pending_stack_adjust ();
12707 do_tablejump (index, TYPE_MODE (index_type),
12708 convert_modes (TYPE_MODE (index_type),
12709 TYPE_MODE (TREE_TYPE (range)),
12710 expand_normal (range),
12711 TYPE_UNSIGNED (TREE_TYPE (range))),
12712 table_label, default_label, default_probability);
12713 return 1;
12716 /* Return a CONST_VECTOR rtx representing vector mask for
12717 a VECTOR_CST of booleans. */
12718 static rtx
12719 const_vector_mask_from_tree (tree exp)
12721 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12722 machine_mode inner = GET_MODE_INNER (mode);
12724 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12725 VECTOR_CST_NELTS_PER_PATTERN (exp));
12726 unsigned int count = builder.encoded_nelts ();
12727 for (unsigned int i = 0; i < count; ++i)
12729 tree elt = VECTOR_CST_ELT (exp, i);
12730 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12731 if (integer_zerop (elt))
12732 builder.quick_push (CONST0_RTX (inner));
12733 else if (integer_onep (elt)
12734 || integer_minus_onep (elt))
12735 builder.quick_push (CONSTM1_RTX (inner));
12736 else
12737 gcc_unreachable ();
12739 return builder.build ();
12742 /* EXP is a VECTOR_CST in which each element is either all-zeros or all-ones.
12743 Return a constant scalar rtx of mode MODE in which bit X is set if element
12744 X of EXP is nonzero. */
12745 static rtx
12746 const_scalar_mask_from_tree (scalar_int_mode mode, tree exp)
12748 wide_int res = wi::zero (GET_MODE_PRECISION (mode));
12749 tree elt;
12751 /* The result has a fixed number of bits so the input must too. */
12752 unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
12753 for (unsigned int i = 0; i < nunits; ++i)
12755 elt = VECTOR_CST_ELT (exp, i);
12756 gcc_assert (TREE_CODE (elt) == INTEGER_CST);
12757 if (integer_all_onesp (elt))
12758 res = wi::set_bit (res, i);
12759 else
12760 gcc_assert (integer_zerop (elt));
12763 return immed_wide_int_const (res, mode);
12766 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
12767 static rtx
12768 const_vector_from_tree (tree exp)
12770 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
12772 if (initializer_zerop (exp))
12773 return CONST0_RTX (mode);
12775 if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
12776 return const_vector_mask_from_tree (exp);
12778 machine_mode inner = GET_MODE_INNER (mode);
12780 rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
12781 VECTOR_CST_NELTS_PER_PATTERN (exp));
12782 unsigned int count = builder.encoded_nelts ();
12783 for (unsigned int i = 0; i < count; ++i)
12785 tree elt = VECTOR_CST_ELT (exp, i);
12786 if (TREE_CODE (elt) == REAL_CST)
12787 builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
12788 inner));
12789 else if (TREE_CODE (elt) == FIXED_CST)
12790 builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
12791 inner));
12792 else
12793 builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
12794 inner));
12796 return builder.build ();
12799 /* Build a decl for a personality function given a language prefix. */
12801 tree
12802 build_personality_function (const char *lang)
12804 const char *unwind_and_version;
12805 tree decl, type;
12806 char *name;
12808 switch (targetm_common.except_unwind_info (&global_options))
12810 case UI_NONE:
12811 return NULL;
12812 case UI_SJLJ:
12813 unwind_and_version = "_sj0";
12814 break;
12815 case UI_DWARF2:
12816 case UI_TARGET:
12817 unwind_and_version = "_v0";
12818 break;
12819 case UI_SEH:
12820 unwind_and_version = "_seh0";
12821 break;
12822 default:
12823 gcc_unreachable ();
12826 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
12828 type = build_function_type_list (unsigned_type_node,
12829 integer_type_node, integer_type_node,
12830 long_long_unsigned_type_node,
12831 ptr_type_node, ptr_type_node, NULL_TREE);
12832 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
12833 get_identifier (name), type);
12834 DECL_ARTIFICIAL (decl) = 1;
12835 DECL_EXTERNAL (decl) = 1;
12836 TREE_PUBLIC (decl) = 1;
12838 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
12839 are the flags assigned by targetm.encode_section_info. */
12840 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
12842 return decl;
12845 /* Extracts the personality function of DECL and returns the corresponding
12846 libfunc. */
12849 get_personality_function (tree decl)
12851 tree personality = DECL_FUNCTION_PERSONALITY (decl);
12852 enum eh_personality_kind pk;
12854 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
12855 if (pk == eh_personality_none)
12856 return NULL;
12858 if (!personality
12859 && pk == eh_personality_any)
12860 personality = lang_hooks.eh_personality ();
12862 if (pk == eh_personality_lang)
12863 gcc_assert (personality != NULL_TREE);
12865 return XEXP (DECL_RTL (personality), 0);
12868 /* Returns a tree for the size of EXP in bytes. */
12870 static tree
12871 tree_expr_size (const_tree exp)
12873 if (DECL_P (exp)
12874 && DECL_SIZE_UNIT (exp) != 0)
12875 return DECL_SIZE_UNIT (exp);
12876 else
12877 return size_in_bytes (TREE_TYPE (exp));
12880 /* Return an rtx for the size in bytes of the value of EXP. */
12883 expr_size (tree exp)
12885 tree size;
12887 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12888 size = TREE_OPERAND (exp, 1);
12889 else
12891 size = tree_expr_size (exp);
12892 gcc_assert (size);
12893 gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
12896 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
12899 /* Return a wide integer for the size in bytes of the value of EXP, or -1
12900 if the size can vary or is larger than an integer. */
12902 static HOST_WIDE_INT
12903 int_expr_size (tree exp)
12905 tree size;
12907 if (TREE_CODE (exp) == WITH_SIZE_EXPR)
12908 size = TREE_OPERAND (exp, 1);
12909 else
12911 size = tree_expr_size (exp);
12912 gcc_assert (size);
12915 if (size == 0 || !tree_fits_shwi_p (size))
12916 return -1;
12918 return tree_to_shwi (size);