doc/
[official-gcc.git] / gcc / cp / call.c
blob131e175631eff7d557cfbc03eb92a4c16bddc099
1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) and
5 modified by Brendan Kehoe (brendan@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 /* High-level class interface. */
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "cp-tree.h"
33 #include "output.h"
34 #include "flags.h"
35 #include "rtl.h"
36 #include "toplev.h"
37 #include "expr.h"
38 #include "diagnostic.h"
39 #include "intl.h"
40 #include "target.h"
41 #include "convert.h"
43 /* The various kinds of conversion. */
45 typedef enum conversion_kind {
46 ck_identity,
47 ck_lvalue,
48 ck_qual,
49 ck_std,
50 ck_ptr,
51 ck_pmem,
52 ck_base,
53 ck_ref_bind,
54 ck_user,
55 ck_ambig,
56 ck_rvalue
57 } conversion_kind;
59 /* The rank of the conversion. Order of the enumerals matters; better
60 conversions should come earlier in the list. */
62 typedef enum conversion_rank {
63 cr_identity,
64 cr_exact,
65 cr_promotion,
66 cr_std,
67 cr_pbool,
68 cr_user,
69 cr_ellipsis,
70 cr_bad
71 } conversion_rank;
73 /* An implicit conversion sequence, in the sense of [over.best.ics].
74 The first conversion to be performed is at the end of the chain.
75 That conversion is always an cr_identity conversion. */
77 typedef struct conversion conversion;
78 struct conversion {
79 /* The kind of conversion represented by this step. */
80 conversion_kind kind;
81 /* The rank of this conversion. */
82 conversion_rank rank;
83 BOOL_BITFIELD user_conv_p : 1;
84 BOOL_BITFIELD ellipsis_p : 1;
85 BOOL_BITFIELD this_p : 1;
86 BOOL_BITFIELD bad_p : 1;
87 /* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
88 temporary should be created to hold the result of the
89 conversion. */
90 BOOL_BITFIELD need_temporary_p : 1;
91 /* If KIND is ck_identity or ck_base_conv, true to indicate that the
92 copy constructor must be accessible, even though it is not being
93 used. */
94 BOOL_BITFIELD check_copy_constructor_p : 1;
95 /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
96 from a pointer-to-derived to pointer-to-base is being performed. */
97 BOOL_BITFIELD base_p : 1;
98 /* The type of the expression resulting from the conversion. */
99 tree type;
100 union {
101 /* The next conversion in the chain. Since the conversions are
102 arranged from outermost to innermost, the NEXT conversion will
103 actually be performed before this conversion. This variant is
104 used only when KIND is neither ck_identity nor ck_ambig. */
105 conversion *next;
106 /* The expression at the beginning of the conversion chain. This
107 variant is used only if KIND is ck_identity or ck_ambig. */
108 tree expr;
109 } u;
110 /* The function candidate corresponding to this conversion
111 sequence. This field is only used if KIND is ck_user. */
112 struct z_candidate *cand;
115 #define CONVERSION_RANK(NODE) \
116 ((NODE)->bad_p ? cr_bad \
117 : (NODE)->ellipsis_p ? cr_ellipsis \
118 : (NODE)->user_conv_p ? cr_user \
119 : (NODE)->rank)
121 static struct obstack conversion_obstack;
122 static bool conversion_obstack_initialized;
124 static struct z_candidate * tourney (struct z_candidate *);
125 static int equal_functions (tree, tree);
126 static int joust (struct z_candidate *, struct z_candidate *, bool);
127 static int compare_ics (conversion *, conversion *);
128 static tree build_over_call (struct z_candidate *, int);
129 static tree build_java_interface_fn_ref (tree, tree);
130 #define convert_like(CONV, EXPR) \
131 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
132 /*issue_conversion_warnings=*/true, \
133 /*c_cast_p=*/false)
134 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
135 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
136 /*issue_conversion_warnings=*/true, \
137 /*c_cast_p=*/false)
138 static tree convert_like_real (conversion *, tree, tree, int, int, bool,
139 bool);
140 static void op_error (enum tree_code, enum tree_code, tree, tree,
141 tree, const char *);
142 static tree build_object_call (tree, tree);
143 static tree resolve_args (tree);
144 static struct z_candidate *build_user_type_conversion_1 (tree, tree, int);
145 static void print_z_candidate (const char *, struct z_candidate *);
146 static void print_z_candidates (struct z_candidate *);
147 static tree build_this (tree);
148 static struct z_candidate *splice_viable (struct z_candidate *, bool, bool *);
149 static bool any_strictly_viable (struct z_candidate *);
150 static struct z_candidate *add_template_candidate
151 (struct z_candidate **, tree, tree, tree, tree, tree,
152 tree, tree, int, unification_kind_t);
153 static struct z_candidate *add_template_candidate_real
154 (struct z_candidate **, tree, tree, tree, tree, tree,
155 tree, tree, int, tree, unification_kind_t);
156 static struct z_candidate *add_template_conv_candidate
157 (struct z_candidate **, tree, tree, tree, tree, tree, tree);
158 static void add_builtin_candidates
159 (struct z_candidate **, enum tree_code, enum tree_code,
160 tree, tree *, int);
161 static void add_builtin_candidate
162 (struct z_candidate **, enum tree_code, enum tree_code,
163 tree, tree, tree, tree *, tree *, int);
164 static bool is_complete (tree);
165 static void build_builtin_candidate
166 (struct z_candidate **, tree, tree, tree, tree *, tree *,
167 int);
168 static struct z_candidate *add_conv_candidate
169 (struct z_candidate **, tree, tree, tree, tree, tree);
170 static struct z_candidate *add_function_candidate
171 (struct z_candidate **, tree, tree, tree, tree, tree, int);
172 static conversion *implicit_conversion (tree, tree, tree, int);
173 static conversion *standard_conversion (tree, tree, tree, int);
174 static conversion *reference_binding (tree, tree, tree, int);
175 static conversion *build_conv (conversion_kind, tree, conversion *);
176 static bool is_subseq (conversion *, conversion *);
177 static tree maybe_handle_ref_bind (conversion **);
178 static void maybe_handle_implicit_object (conversion **);
179 static struct z_candidate *add_candidate
180 (struct z_candidate **, tree, tree, size_t,
181 conversion **, tree, tree, int);
182 static tree source_type (conversion *);
183 static void add_warning (struct z_candidate *, struct z_candidate *);
184 static bool reference_related_p (tree, tree);
185 static bool reference_compatible_p (tree, tree);
186 static conversion *convert_class_to_reference (tree, tree, tree);
187 static conversion *direct_reference_binding (tree, conversion *);
188 static bool promoted_arithmetic_type_p (tree);
189 static conversion *conditional_conversion (tree, tree);
190 static char *name_as_c_string (tree, tree, bool *);
191 static tree call_builtin_trap (void);
192 static tree prep_operand (tree);
193 static void add_candidates (tree, tree, tree, bool, tree, tree,
194 int, struct z_candidate **);
195 static conversion *merge_conversion_sequences (conversion *, conversion *);
196 static bool magic_varargs_p (tree);
197 static tree build_temp (tree, tree, int, void (**)(const char *, ...));
198 static void check_constructor_callable (tree, tree);
200 /* Returns nonzero iff the destructor name specified in NAME
201 (a BIT_NOT_EXPR) matches BASETYPE. The operand of NAME can take many
202 forms... */
204 bool
205 check_dtor_name (tree basetype, tree name)
207 name = TREE_OPERAND (name, 0);
209 /* Just accept something we've already complained about. */
210 if (name == error_mark_node)
211 return true;
213 if (TREE_CODE (name) == TYPE_DECL)
214 name = TREE_TYPE (name);
215 else if (TYPE_P (name))
216 /* OK */;
217 else if (TREE_CODE (name) == IDENTIFIER_NODE)
219 if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
220 || (TREE_CODE (basetype) == ENUMERAL_TYPE
221 && name == TYPE_IDENTIFIER (basetype)))
222 name = basetype;
223 else
224 name = get_type_value (name);
226 else
228 /* In the case of:
230 template <class T> struct S { ~S(); };
231 int i;
232 i.~S();
234 NAME will be a class template. */
235 gcc_assert (DECL_CLASS_TEMPLATE_P (name));
236 return false;
239 if (name && TYPE_MAIN_VARIANT (basetype) == TYPE_MAIN_VARIANT (name))
240 return true;
241 return false;
244 /* We want the address of a function or method. We avoid creating a
245 pointer-to-member function. */
247 tree
248 build_addr_func (tree function)
250 tree type = TREE_TYPE (function);
252 /* We have to do these by hand to avoid real pointer to member
253 functions. */
254 if (TREE_CODE (type) == METHOD_TYPE)
256 if (TREE_CODE (function) == OFFSET_REF)
258 tree object = build_address (TREE_OPERAND (function, 0));
259 return get_member_function_from_ptrfunc (&object,
260 TREE_OPERAND (function, 1));
262 function = build_address (function);
264 else
265 function = decay_conversion (function);
267 return function;
270 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
271 POINTER_TYPE to those. Note, pointer to member function types
272 (TYPE_PTRMEMFUNC_P) must be handled by our callers. */
274 tree
275 build_call (tree function, tree parms)
277 int is_constructor = 0;
278 int nothrow;
279 tree tmp;
280 tree decl;
281 tree result_type;
282 tree fntype;
284 function = build_addr_func (function);
286 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function)))
288 sorry ("unable to call pointer to member function here");
289 return error_mark_node;
292 fntype = TREE_TYPE (TREE_TYPE (function));
293 result_type = TREE_TYPE (fntype);
295 if (TREE_CODE (function) == ADDR_EXPR
296 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
297 decl = TREE_OPERAND (function, 0);
298 else
299 decl = NULL_TREE;
301 /* We check both the decl and the type; a function may be known not to
302 throw without being declared throw(). */
303 nothrow = ((decl && TREE_NOTHROW (decl))
304 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function))));
306 if (decl && TREE_THIS_VOLATILE (decl) && cfun)
307 current_function_returns_abnormally = 1;
309 if (decl && TREE_DEPRECATED (decl))
310 warn_deprecated_use (decl);
311 require_complete_eh_spec_types (fntype, decl);
313 if (decl && DECL_CONSTRUCTOR_P (decl))
314 is_constructor = 1;
316 if (decl && ! TREE_USED (decl))
318 /* We invoke build_call directly for several library functions.
319 These may have been declared normally if we're building libgcc,
320 so we can't just check DECL_ARTIFICIAL. */
321 gcc_assert (DECL_ARTIFICIAL (decl)
322 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
323 "__", 2));
324 mark_used (decl);
327 /* Don't pass empty class objects by value. This is useful
328 for tags in STL, which are used to control overload resolution.
329 We don't need to handle other cases of copying empty classes. */
330 if (! decl || ! DECL_BUILT_IN (decl))
331 for (tmp = parms; tmp; tmp = TREE_CHAIN (tmp))
332 if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp)))
333 && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp))))
335 tree t = build0 (EMPTY_CLASS_EXPR, TREE_TYPE (TREE_VALUE (tmp)));
336 TREE_VALUE (tmp) = build2 (COMPOUND_EXPR, TREE_TYPE (t),
337 TREE_VALUE (tmp), t);
340 function = build3 (CALL_EXPR, result_type, function, parms, NULL_TREE);
341 TREE_HAS_CONSTRUCTOR (function) = is_constructor;
342 TREE_NOTHROW (function) = nothrow;
344 return function;
347 /* Build something of the form ptr->method (args)
348 or object.method (args). This can also build
349 calls to constructors, and find friends.
351 Member functions always take their class variable
352 as a pointer.
354 INSTANCE is a class instance.
356 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
358 PARMS help to figure out what that NAME really refers to.
360 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
361 down to the real instance type to use for access checking. We need this
362 information to get protected accesses correct.
364 FLAGS is the logical disjunction of zero or more LOOKUP_
365 flags. See cp-tree.h for more info.
367 If this is all OK, calls build_function_call with the resolved
368 member function.
370 This function must also handle being called to perform
371 initialization, promotion/coercion of arguments, and
372 instantiation of default parameters.
374 Note that NAME may refer to an instance variable name. If
375 `operator()()' is defined for the type of that field, then we return
376 that result. */
378 /* New overloading code. */
380 typedef struct z_candidate z_candidate;
382 typedef struct candidate_warning candidate_warning;
383 struct candidate_warning {
384 z_candidate *loser;
385 candidate_warning *next;
388 struct z_candidate {
389 /* The FUNCTION_DECL that will be called if this candidate is
390 selected by overload resolution. */
391 tree fn;
392 /* The arguments to use when calling this function. */
393 tree args;
394 /* The implicit conversion sequences for each of the arguments to
395 FN. */
396 conversion **convs;
397 /* The number of implicit conversion sequences. */
398 size_t num_convs;
399 /* If FN is a user-defined conversion, the standard conversion
400 sequence from the type returned by FN to the desired destination
401 type. */
402 conversion *second_conv;
403 int viable;
404 /* If FN is a member function, the binfo indicating the path used to
405 qualify the name of FN at the call site. This path is used to
406 determine whether or not FN is accessible if it is selected by
407 overload resolution. The DECL_CONTEXT of FN will always be a
408 (possibly improper) base of this binfo. */
409 tree access_path;
410 /* If FN is a non-static member function, the binfo indicating the
411 subobject to which the `this' pointer should be converted if FN
412 is selected by overload resolution. The type pointed to the by
413 the `this' pointer must correspond to the most derived class
414 indicated by the CONVERSION_PATH. */
415 tree conversion_path;
416 tree template_decl;
417 candidate_warning *warnings;
418 z_candidate *next;
421 /* Returns true iff T is a null pointer constant in the sense of
422 [conv.ptr]. */
424 bool
425 null_ptr_cst_p (tree t)
427 /* [conv.ptr]
429 A null pointer constant is an integral constant expression
430 (_expr.const_) rvalue of integer type that evaluates to zero. */
431 t = integral_constant_value (t);
432 if (t == null_node
433 || (CP_INTEGRAL_TYPE_P (TREE_TYPE (t)) && integer_zerop (t)))
434 return true;
435 return false;
438 /* Returns nonzero if PARMLIST consists of only default parms and/or
439 ellipsis. */
441 bool
442 sufficient_parms_p (tree parmlist)
444 for (; parmlist && parmlist != void_list_node;
445 parmlist = TREE_CHAIN (parmlist))
446 if (!TREE_PURPOSE (parmlist))
447 return false;
448 return true;
451 /* Allocate N bytes of memory from the conversion obstack. The memory
452 is zeroed before being returned. */
454 static void *
455 conversion_obstack_alloc (size_t n)
457 void *p;
458 if (!conversion_obstack_initialized)
460 gcc_obstack_init (&conversion_obstack);
461 conversion_obstack_initialized = true;
463 p = obstack_alloc (&conversion_obstack, n);
464 memset (p, 0, n);
465 return p;
468 /* Dynamically allocate a conversion. */
470 static conversion *
471 alloc_conversion (conversion_kind kind)
473 conversion *c;
474 c = conversion_obstack_alloc (sizeof (conversion));
475 c->kind = kind;
476 return c;
479 #ifdef ENABLE_CHECKING
481 /* Make sure that all memory on the conversion obstack has been
482 freed. */
484 void
485 validate_conversion_obstack (void)
487 if (conversion_obstack_initialized)
488 gcc_assert ((obstack_next_free (&conversion_obstack)
489 == obstack_base (&conversion_obstack)));
492 #endif /* ENABLE_CHECKING */
494 /* Dynamically allocate an array of N conversions. */
496 static conversion **
497 alloc_conversions (size_t n)
499 return conversion_obstack_alloc (n * sizeof (conversion *));
502 static conversion *
503 build_conv (conversion_kind code, tree type, conversion *from)
505 conversion *t;
506 conversion_rank rank = CONVERSION_RANK (from);
508 /* We can't use buildl1 here because CODE could be USER_CONV, which
509 takes two arguments. In that case, the caller is responsible for
510 filling in the second argument. */
511 t = alloc_conversion (code);
512 t->type = type;
513 t->u.next = from;
515 switch (code)
517 case ck_ptr:
518 case ck_pmem:
519 case ck_base:
520 case ck_std:
521 if (rank < cr_std)
522 rank = cr_std;
523 break;
525 case ck_qual:
526 if (rank < cr_exact)
527 rank = cr_exact;
528 break;
530 default:
531 break;
533 t->rank = rank;
534 t->user_conv_p = (code == ck_user || from->user_conv_p);
535 t->bad_p = from->bad_p;
536 t->base_p = false;
537 return t;
540 /* Build a representation of the identity conversion from EXPR to
541 itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
543 static conversion *
544 build_identity_conv (tree type, tree expr)
546 conversion *c;
548 c = alloc_conversion (ck_identity);
549 c->type = type;
550 c->u.expr = expr;
552 return c;
555 /* Converting from EXPR to TYPE was ambiguous in the sense that there
556 were multiple user-defined conversions to accomplish the job.
557 Build a conversion that indicates that ambiguity. */
559 static conversion *
560 build_ambiguous_conv (tree type, tree expr)
562 conversion *c;
564 c = alloc_conversion (ck_ambig);
565 c->type = type;
566 c->u.expr = expr;
568 return c;
571 tree
572 strip_top_quals (tree t)
574 if (TREE_CODE (t) == ARRAY_TYPE)
575 return t;
576 return cp_build_qualified_type (t, 0);
579 /* Returns the standard conversion path (see [conv]) from type FROM to type
580 TO, if any. For proper handling of null pointer constants, you must
581 also pass the expression EXPR to convert from. */
583 static conversion *
584 standard_conversion (tree to, tree from, tree expr, int flags)
586 enum tree_code fcode, tcode;
587 conversion *conv;
588 bool fromref = false;
590 to = non_reference (to);
591 if (TREE_CODE (from) == REFERENCE_TYPE)
593 fromref = true;
594 from = TREE_TYPE (from);
596 to = strip_top_quals (to);
597 from = strip_top_quals (from);
599 if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
600 && expr && type_unknown_p (expr))
602 expr = instantiate_type (to, expr, tf_conv);
603 if (expr == error_mark_node)
604 return NULL;
605 from = TREE_TYPE (expr);
608 fcode = TREE_CODE (from);
609 tcode = TREE_CODE (to);
611 conv = build_identity_conv (from, expr);
612 if (fcode == FUNCTION_TYPE)
614 from = build_pointer_type (from);
615 fcode = TREE_CODE (from);
616 conv = build_conv (ck_lvalue, from, conv);
618 else if (fcode == ARRAY_TYPE)
620 from = build_pointer_type (TREE_TYPE (from));
621 fcode = TREE_CODE (from);
622 conv = build_conv (ck_lvalue, from, conv);
624 else if (fromref || (expr && lvalue_p (expr)))
625 conv = build_conv (ck_rvalue, from, conv);
627 /* Allow conversion between `__complex__' data types. */
628 if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE)
630 /* The standard conversion sequence to convert FROM to TO is
631 the standard conversion sequence to perform componentwise
632 conversion. */
633 conversion *part_conv = standard_conversion
634 (TREE_TYPE (to), TREE_TYPE (from), NULL_TREE, flags);
636 if (part_conv)
638 conv = build_conv (part_conv->kind, to, conv);
639 conv->rank = part_conv->rank;
641 else
642 conv = NULL;
644 return conv;
647 if (same_type_p (from, to))
648 return conv;
650 if ((tcode == POINTER_TYPE || TYPE_PTR_TO_MEMBER_P (to))
651 && expr && null_ptr_cst_p (expr))
652 conv = build_conv (ck_std, to, conv);
653 else if ((tcode == INTEGER_TYPE && fcode == POINTER_TYPE)
654 || (tcode == POINTER_TYPE && fcode == INTEGER_TYPE))
656 /* For backwards brain damage compatibility, allow interconversion of
657 pointers and integers with a pedwarn. */
658 conv = build_conv (ck_std, to, conv);
659 conv->bad_p = true;
661 else if (tcode == ENUMERAL_TYPE && fcode == INTEGER_TYPE)
663 /* For backwards brain damage compatibility, allow interconversion of
664 enums and integers with a pedwarn. */
665 conv = build_conv (ck_std, to, conv);
666 conv->bad_p = true;
668 else if ((tcode == POINTER_TYPE && fcode == POINTER_TYPE)
669 || (TYPE_PTRMEM_P (to) && TYPE_PTRMEM_P (from)))
671 tree to_pointee;
672 tree from_pointee;
674 if (tcode == POINTER_TYPE
675 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from),
676 TREE_TYPE (to)))
678 else if (VOID_TYPE_P (TREE_TYPE (to))
679 && !TYPE_PTRMEM_P (from)
680 && TREE_CODE (TREE_TYPE (from)) != FUNCTION_TYPE)
682 from = build_pointer_type
683 (cp_build_qualified_type (void_type_node,
684 cp_type_quals (TREE_TYPE (from))));
685 conv = build_conv (ck_ptr, from, conv);
687 else if (TYPE_PTRMEM_P (from))
689 tree fbase = TYPE_PTRMEM_CLASS_TYPE (from);
690 tree tbase = TYPE_PTRMEM_CLASS_TYPE (to);
692 if (DERIVED_FROM_P (fbase, tbase)
693 && (same_type_ignoring_top_level_qualifiers_p
694 (TYPE_PTRMEM_POINTED_TO_TYPE (from),
695 TYPE_PTRMEM_POINTED_TO_TYPE (to))))
697 from = build_ptrmem_type (tbase,
698 TYPE_PTRMEM_POINTED_TO_TYPE (from));
699 conv = build_conv (ck_pmem, from, conv);
701 else if (!same_type_p (fbase, tbase))
702 return NULL;
704 else if (IS_AGGR_TYPE (TREE_TYPE (from))
705 && IS_AGGR_TYPE (TREE_TYPE (to))
706 /* [conv.ptr]
708 An rvalue of type "pointer to cv D," where D is a
709 class type, can be converted to an rvalue of type
710 "pointer to cv B," where B is a base class (clause
711 _class.derived_) of D. If B is an inaccessible
712 (clause _class.access_) or ambiguous
713 (_class.member.lookup_) base class of D, a program
714 that necessitates this conversion is ill-formed.
715 Therefore, we use DERIVED_FROM_P, and do not check
716 access or uniqueness. */
717 && DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from)))
719 from =
720 cp_build_qualified_type (TREE_TYPE (to),
721 cp_type_quals (TREE_TYPE (from)));
722 from = build_pointer_type (from);
723 conv = build_conv (ck_ptr, from, conv);
724 conv->base_p = true;
727 if (tcode == POINTER_TYPE)
729 to_pointee = TREE_TYPE (to);
730 from_pointee = TREE_TYPE (from);
732 else
734 to_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (to);
735 from_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (from);
738 if (same_type_p (from, to))
739 /* OK */;
740 else if (comp_ptr_ttypes (to_pointee, from_pointee))
741 conv = build_conv (ck_qual, to, conv);
742 else if (expr && string_conv_p (to, expr, 0))
743 /* converting from string constant to char *. */
744 conv = build_conv (ck_qual, to, conv);
745 else if (ptr_reasonably_similar (to_pointee, from_pointee))
747 conv = build_conv (ck_ptr, to, conv);
748 conv->bad_p = true;
750 else
751 return NULL;
753 from = to;
755 else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
757 tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
758 tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
759 tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
760 tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
762 if (!DERIVED_FROM_P (fbase, tbase)
763 || !same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
764 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
765 TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
766 || cp_type_quals (fbase) != cp_type_quals (tbase))
767 return 0;
769 from = cp_build_qualified_type (tbase, cp_type_quals (fbase));
770 from = build_method_type_directly (from,
771 TREE_TYPE (fromfn),
772 TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
773 from = build_ptrmemfunc_type (build_pointer_type (from));
774 conv = build_conv (ck_pmem, from, conv);
775 conv->base_p = true;
777 else if (tcode == BOOLEAN_TYPE)
779 /* [conv.bool]
781 An rvalue of arithmetic, enumeration, pointer, or pointer to
782 member type can be converted to an rvalue of type bool. */
783 if (ARITHMETIC_TYPE_P (from)
784 || fcode == ENUMERAL_TYPE
785 || fcode == POINTER_TYPE
786 || TYPE_PTR_TO_MEMBER_P (from))
788 conv = build_conv (ck_std, to, conv);
789 if (fcode == POINTER_TYPE
790 || TYPE_PTRMEM_P (from)
791 || (TYPE_PTRMEMFUNC_P (from)
792 && conv->rank < cr_pbool))
793 conv->rank = cr_pbool;
794 return conv;
797 return NULL;
799 /* We don't check for ENUMERAL_TYPE here because there are no standard
800 conversions to enum type. */
801 else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
802 || tcode == REAL_TYPE)
804 if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
805 return 0;
806 conv = build_conv (ck_std, to, conv);
808 /* Give this a better rank if it's a promotion. */
809 if (same_type_p (to, type_promotes_to (from))
810 && conv->u.next->rank <= cr_promotion)
811 conv->rank = cr_promotion;
813 else if (fcode == VECTOR_TYPE && tcode == VECTOR_TYPE
814 && vector_types_convertible_p (from, to))
815 return build_conv (ck_std, to, conv);
816 else if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE)
817 && IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
818 && is_properly_derived_from (from, to))
820 if (conv->kind == ck_rvalue)
821 conv = conv->u.next;
822 conv = build_conv (ck_base, to, conv);
823 /* The derived-to-base conversion indicates the initialization
824 of a parameter with base type from an object of a derived
825 type. A temporary object is created to hold the result of
826 the conversion. */
827 conv->need_temporary_p = true;
829 else
830 return NULL;
832 return conv;
835 /* Returns nonzero if T1 is reference-related to T2. */
837 static bool
838 reference_related_p (tree t1, tree t2)
840 t1 = TYPE_MAIN_VARIANT (t1);
841 t2 = TYPE_MAIN_VARIANT (t2);
843 /* [dcl.init.ref]
845 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
846 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
847 of T2. */
848 return (same_type_p (t1, t2)
849 || (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
850 && DERIVED_FROM_P (t1, t2)));
853 /* Returns nonzero if T1 is reference-compatible with T2. */
855 static bool
856 reference_compatible_p (tree t1, tree t2)
858 /* [dcl.init.ref]
860 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
861 reference-related to T2 and cv1 is the same cv-qualification as,
862 or greater cv-qualification than, cv2. */
863 return (reference_related_p (t1, t2)
864 && at_least_as_qualified_p (t1, t2));
867 /* Determine whether or not the EXPR (of class type S) can be
868 converted to T as in [over.match.ref]. */
870 static conversion *
871 convert_class_to_reference (tree t, tree s, tree expr)
873 tree conversions;
874 tree arglist;
875 conversion *conv;
876 tree reference_type;
877 struct z_candidate *candidates;
878 struct z_candidate *cand;
879 bool any_viable_p;
881 conversions = lookup_conversions (s);
882 if (!conversions)
883 return NULL;
885 /* [over.match.ref]
887 Assuming that "cv1 T" is the underlying type of the reference
888 being initialized, and "cv S" is the type of the initializer
889 expression, with S a class type, the candidate functions are
890 selected as follows:
892 --The conversion functions of S and its base classes are
893 considered. Those that are not hidden within S and yield type
894 "reference to cv2 T2", where "cv1 T" is reference-compatible
895 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
897 The argument list has one argument, which is the initializer
898 expression. */
900 candidates = 0;
902 /* Conceptually, we should take the address of EXPR and put it in
903 the argument list. Unfortunately, however, that can result in
904 error messages, which we should not issue now because we are just
905 trying to find a conversion operator. Therefore, we use NULL,
906 cast to the appropriate type. */
907 arglist = build_int_cst (build_pointer_type (s), 0);
908 arglist = build_tree_list (NULL_TREE, arglist);
910 reference_type = build_reference_type (t);
912 while (conversions)
914 tree fns = TREE_VALUE (conversions);
916 for (; fns; fns = OVL_NEXT (fns))
918 tree f = OVL_CURRENT (fns);
919 tree t2 = TREE_TYPE (TREE_TYPE (f));
921 cand = NULL;
923 /* If this is a template function, try to get an exact
924 match. */
925 if (TREE_CODE (f) == TEMPLATE_DECL)
927 cand = add_template_candidate (&candidates,
928 f, s,
929 NULL_TREE,
930 arglist,
931 reference_type,
932 TYPE_BINFO (s),
933 TREE_PURPOSE (conversions),
934 LOOKUP_NORMAL,
935 DEDUCE_CONV);
937 if (cand)
939 /* Now, see if the conversion function really returns
940 an lvalue of the appropriate type. From the
941 point of view of unification, simply returning an
942 rvalue of the right type is good enough. */
943 f = cand->fn;
944 t2 = TREE_TYPE (TREE_TYPE (f));
945 if (TREE_CODE (t2) != REFERENCE_TYPE
946 || !reference_compatible_p (t, TREE_TYPE (t2)))
948 candidates = candidates->next;
949 cand = NULL;
953 else if (TREE_CODE (t2) == REFERENCE_TYPE
954 && reference_compatible_p (t, TREE_TYPE (t2)))
955 cand = add_function_candidate (&candidates, f, s, arglist,
956 TYPE_BINFO (s),
957 TREE_PURPOSE (conversions),
958 LOOKUP_NORMAL);
960 if (cand)
962 conversion *identity_conv;
963 /* Build a standard conversion sequence indicating the
964 binding from the reference type returned by the
965 function to the desired REFERENCE_TYPE. */
966 identity_conv
967 = build_identity_conv (TREE_TYPE (TREE_TYPE
968 (TREE_TYPE (cand->fn))),
969 NULL_TREE);
970 cand->second_conv
971 = (direct_reference_binding
972 (reference_type, identity_conv));
973 cand->second_conv->bad_p |= cand->convs[0]->bad_p;
976 conversions = TREE_CHAIN (conversions);
979 candidates = splice_viable (candidates, pedantic, &any_viable_p);
980 /* If none of the conversion functions worked out, let our caller
981 know. */
982 if (!any_viable_p)
983 return NULL;
985 cand = tourney (candidates);
986 if (!cand)
987 return NULL;
989 /* Now that we know that this is the function we're going to use fix
990 the dummy first argument. */
991 cand->args = tree_cons (NULL_TREE,
992 build_this (expr),
993 TREE_CHAIN (cand->args));
995 /* Build a user-defined conversion sequence representing the
996 conversion. */
997 conv = build_conv (ck_user,
998 TREE_TYPE (TREE_TYPE (cand->fn)),
999 build_identity_conv (TREE_TYPE (expr), expr));
1000 conv->cand = cand;
1002 /* Merge it with the standard conversion sequence from the
1003 conversion function's return type to the desired type. */
1004 cand->second_conv = merge_conversion_sequences (conv, cand->second_conv);
1006 if (cand->viable == -1)
1007 conv->bad_p = true;
1009 return cand->second_conv;
1012 /* A reference of the indicated TYPE is being bound directly to the
1013 expression represented by the implicit conversion sequence CONV.
1014 Return a conversion sequence for this binding. */
1016 static conversion *
1017 direct_reference_binding (tree type, conversion *conv)
1019 tree t;
1021 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
1022 gcc_assert (TREE_CODE (conv->type) != REFERENCE_TYPE);
1024 t = TREE_TYPE (type);
1026 /* [over.ics.rank]
1028 When a parameter of reference type binds directly
1029 (_dcl.init.ref_) to an argument expression, the implicit
1030 conversion sequence is the identity conversion, unless the
1031 argument expression has a type that is a derived class of the
1032 parameter type, in which case the implicit conversion sequence is
1033 a derived-to-base Conversion.
1035 If the parameter binds directly to the result of applying a
1036 conversion function to the argument expression, the implicit
1037 conversion sequence is a user-defined conversion sequence
1038 (_over.ics.user_), with the second standard conversion sequence
1039 either an identity conversion or, if the conversion function
1040 returns an entity of a type that is a derived class of the
1041 parameter type, a derived-to-base conversion. */
1042 if (!same_type_ignoring_top_level_qualifiers_p (t, conv->type))
1044 /* Represent the derived-to-base conversion. */
1045 conv = build_conv (ck_base, t, conv);
1046 /* We will actually be binding to the base-class subobject in
1047 the derived class, so we mark this conversion appropriately.
1048 That way, convert_like knows not to generate a temporary. */
1049 conv->need_temporary_p = false;
1051 return build_conv (ck_ref_bind, type, conv);
1054 /* Returns the conversion path from type FROM to reference type TO for
1055 purposes of reference binding. For lvalue binding, either pass a
1056 reference type to FROM or an lvalue expression to EXPR. If the
1057 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1058 the conversion returned. */
1060 static conversion *
1061 reference_binding (tree rto, tree rfrom, tree expr, int flags)
1063 conversion *conv = NULL;
1064 tree to = TREE_TYPE (rto);
1065 tree from = rfrom;
1066 bool related_p;
1067 bool compatible_p;
1068 cp_lvalue_kind lvalue_p = clk_none;
1070 if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
1072 expr = instantiate_type (to, expr, tf_none);
1073 if (expr == error_mark_node)
1074 return NULL;
1075 from = TREE_TYPE (expr);
1078 if (TREE_CODE (from) == REFERENCE_TYPE)
1080 /* Anything with reference type is an lvalue. */
1081 lvalue_p = clk_ordinary;
1082 from = TREE_TYPE (from);
1084 else if (expr)
1085 lvalue_p = real_lvalue_p (expr);
1087 /* Figure out whether or not the types are reference-related and
1088 reference compatible. We have do do this after stripping
1089 references from FROM. */
1090 related_p = reference_related_p (to, from);
1091 compatible_p = reference_compatible_p (to, from);
1093 if (lvalue_p && compatible_p)
1095 /* [dcl.init.ref]
1097 If the initializer expression
1099 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1100 is reference-compatible with "cv2 T2,"
1102 the reference is bound directly to the initializer expression
1103 lvalue. */
1104 conv = build_identity_conv (from, expr);
1105 conv = direct_reference_binding (rto, conv);
1106 if ((lvalue_p & clk_bitfield) != 0
1107 || ((lvalue_p & clk_packed) != 0 && !TYPE_PACKED (to)))
1108 /* For the purposes of overload resolution, we ignore the fact
1109 this expression is a bitfield or packed field. (In particular,
1110 [over.ics.ref] says specifically that a function with a
1111 non-const reference parameter is viable even if the
1112 argument is a bitfield.)
1114 However, when we actually call the function we must create
1115 a temporary to which to bind the reference. If the
1116 reference is volatile, or isn't const, then we cannot make
1117 a temporary, so we just issue an error when the conversion
1118 actually occurs. */
1119 conv->need_temporary_p = true;
1121 return conv;
1123 else if (CLASS_TYPE_P (from) && !(flags & LOOKUP_NO_CONVERSION))
1125 /* [dcl.init.ref]
1127 If the initializer expression
1129 -- has a class type (i.e., T2 is a class type) can be
1130 implicitly converted to an lvalue of type "cv3 T3," where
1131 "cv1 T1" is reference-compatible with "cv3 T3". (this
1132 conversion is selected by enumerating the applicable
1133 conversion functions (_over.match.ref_) and choosing the
1134 best one through overload resolution. (_over.match_).
1136 the reference is bound to the lvalue result of the conversion
1137 in the second case. */
1138 conv = convert_class_to_reference (to, from, expr);
1139 if (conv)
1140 return conv;
1143 /* From this point on, we conceptually need temporaries, even if we
1144 elide them. Only the cases above are "direct bindings". */
1145 if (flags & LOOKUP_NO_TEMP_BIND)
1146 return NULL;
1148 /* [over.ics.rank]
1150 When a parameter of reference type is not bound directly to an
1151 argument expression, the conversion sequence is the one required
1152 to convert the argument expression to the underlying type of the
1153 reference according to _over.best.ics_. Conceptually, this
1154 conversion sequence corresponds to copy-initializing a temporary
1155 of the underlying type with the argument expression. Any
1156 difference in top-level cv-qualification is subsumed by the
1157 initialization itself and does not constitute a conversion. */
1159 /* [dcl.init.ref]
1161 Otherwise, the reference shall be to a non-volatile const type. */
1162 if (!CP_TYPE_CONST_NON_VOLATILE_P (to))
1163 return NULL;
1165 /* [dcl.init.ref]
1167 If the initializer expression is an rvalue, with T2 a class type,
1168 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1169 is bound in one of the following ways:
1171 -- The reference is bound to the object represented by the rvalue
1172 or to a sub-object within that object.
1174 -- ...
1176 We use the first alternative. The implicit conversion sequence
1177 is supposed to be same as we would obtain by generating a
1178 temporary. Fortunately, if the types are reference compatible,
1179 then this is either an identity conversion or the derived-to-base
1180 conversion, just as for direct binding. */
1181 if (CLASS_TYPE_P (from) && compatible_p)
1183 conv = build_identity_conv (from, expr);
1184 conv = direct_reference_binding (rto, conv);
1185 if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE))
1186 conv->u.next->check_copy_constructor_p = true;
1187 return conv;
1190 /* [dcl.init.ref]
1192 Otherwise, a temporary of type "cv1 T1" is created and
1193 initialized from the initializer expression using the rules for a
1194 non-reference copy initialization. If T1 is reference-related to
1195 T2, cv1 must be the same cv-qualification as, or greater
1196 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1197 if (related_p && !at_least_as_qualified_p (to, from))
1198 return NULL;
1200 conv = implicit_conversion (to, from, expr, flags);
1201 if (!conv)
1202 return NULL;
1204 conv = build_conv (ck_ref_bind, rto, conv);
1205 /* This reference binding, unlike those above, requires the
1206 creation of a temporary. */
1207 conv->need_temporary_p = true;
1209 return conv;
1212 /* Returns the implicit conversion sequence (see [over.ics]) from type FROM
1213 to type TO. The optional expression EXPR may affect the conversion.
1214 FLAGS are the usual overloading flags. Only LOOKUP_NO_CONVERSION is
1215 significant. */
1217 static conversion *
1218 implicit_conversion (tree to, tree from, tree expr, int flags)
1220 conversion *conv;
1222 if (from == error_mark_node || to == error_mark_node
1223 || expr == error_mark_node)
1224 return NULL;
1226 if (TREE_CODE (to) == REFERENCE_TYPE)
1227 conv = reference_binding (to, from, expr, flags);
1228 else
1229 conv = standard_conversion (to, from, expr, flags);
1231 if (conv)
1232 return conv;
1234 if (expr != NULL_TREE
1235 && (IS_AGGR_TYPE (from)
1236 || IS_AGGR_TYPE (to))
1237 && (flags & LOOKUP_NO_CONVERSION) == 0)
1239 struct z_candidate *cand;
1241 cand = build_user_type_conversion_1
1242 (to, expr, LOOKUP_ONLYCONVERTING);
1243 if (cand)
1244 conv = cand->second_conv;
1246 /* We used to try to bind a reference to a temporary here, but that
1247 is now handled by the recursive call to this function at the end
1248 of reference_binding. */
1249 return conv;
1252 return NULL;
1255 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1256 functions. */
1258 static struct z_candidate *
1259 add_candidate (struct z_candidate **candidates,
1260 tree fn, tree args,
1261 size_t num_convs, conversion **convs,
1262 tree access_path, tree conversion_path,
1263 int viable)
1265 struct z_candidate *cand
1266 = conversion_obstack_alloc (sizeof (struct z_candidate));
1268 cand->fn = fn;
1269 cand->args = args;
1270 cand->convs = convs;
1271 cand->num_convs = num_convs;
1272 cand->access_path = access_path;
1273 cand->conversion_path = conversion_path;
1274 cand->viable = viable;
1275 cand->next = *candidates;
1276 *candidates = cand;
1278 return cand;
1281 /* Create an overload candidate for the function or method FN called with
1282 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1283 to implicit_conversion.
1285 CTYPE, if non-NULL, is the type we want to pretend this function
1286 comes from for purposes of overload resolution. */
1288 static struct z_candidate *
1289 add_function_candidate (struct z_candidate **candidates,
1290 tree fn, tree ctype, tree arglist,
1291 tree access_path, tree conversion_path,
1292 int flags)
1294 tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
1295 int i, len;
1296 conversion **convs;
1297 tree parmnode, argnode;
1298 tree orig_arglist;
1299 int viable = 1;
1301 /* Built-in functions that haven't been declared don't really
1302 exist. */
1303 if (DECL_ANTICIPATED (fn))
1304 return NULL;
1306 /* The `this', `in_chrg' and VTT arguments to constructors are not
1307 considered in overload resolution. */
1308 if (DECL_CONSTRUCTOR_P (fn))
1310 parmlist = skip_artificial_parms_for (fn, parmlist);
1311 orig_arglist = arglist;
1312 arglist = skip_artificial_parms_for (fn, arglist);
1314 else
1315 orig_arglist = arglist;
1317 len = list_length (arglist);
1318 convs = alloc_conversions (len);
1320 /* 13.3.2 - Viable functions [over.match.viable]
1321 First, to be a viable function, a candidate function shall have enough
1322 parameters to agree in number with the arguments in the list.
1324 We need to check this first; otherwise, checking the ICSes might cause
1325 us to produce an ill-formed template instantiation. */
1327 parmnode = parmlist;
1328 for (i = 0; i < len; ++i)
1330 if (parmnode == NULL_TREE || parmnode == void_list_node)
1331 break;
1332 parmnode = TREE_CHAIN (parmnode);
1335 if (i < len && parmnode)
1336 viable = 0;
1338 /* Make sure there are default args for the rest of the parms. */
1339 else if (!sufficient_parms_p (parmnode))
1340 viable = 0;
1342 if (! viable)
1343 goto out;
1345 /* Second, for F to be a viable function, there shall exist for each
1346 argument an implicit conversion sequence that converts that argument
1347 to the corresponding parameter of F. */
1349 parmnode = parmlist;
1350 argnode = arglist;
1352 for (i = 0; i < len; ++i)
1354 tree arg = TREE_VALUE (argnode);
1355 tree argtype = lvalue_type (arg);
1356 conversion *t;
1357 int is_this;
1359 if (parmnode == void_list_node)
1360 break;
1362 is_this = (i == 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
1363 && ! DECL_CONSTRUCTOR_P (fn));
1365 if (parmnode)
1367 tree parmtype = TREE_VALUE (parmnode);
1369 /* The type of the implicit object parameter ('this') for
1370 overload resolution is not always the same as for the
1371 function itself; conversion functions are considered to
1372 be members of the class being converted, and functions
1373 introduced by a using-declaration are considered to be
1374 members of the class that uses them.
1376 Since build_over_call ignores the ICS for the `this'
1377 parameter, we can just change the parm type. */
1378 if (ctype && is_this)
1380 parmtype
1381 = build_qualified_type (ctype,
1382 TYPE_QUALS (TREE_TYPE (parmtype)));
1383 parmtype = build_pointer_type (parmtype);
1386 t = implicit_conversion (parmtype, argtype, arg, flags);
1388 else
1390 t = build_identity_conv (argtype, arg);
1391 t->ellipsis_p = true;
1394 if (t && is_this)
1395 t->this_p = true;
1397 convs[i] = t;
1398 if (! t)
1400 viable = 0;
1401 break;
1404 if (t->bad_p)
1405 viable = -1;
1407 if (parmnode)
1408 parmnode = TREE_CHAIN (parmnode);
1409 argnode = TREE_CHAIN (argnode);
1412 out:
1413 return add_candidate (candidates, fn, orig_arglist, len, convs,
1414 access_path, conversion_path, viable);
1417 /* Create an overload candidate for the conversion function FN which will
1418 be invoked for expression OBJ, producing a pointer-to-function which
1419 will in turn be called with the argument list ARGLIST, and add it to
1420 CANDIDATES. FLAGS is passed on to implicit_conversion.
1422 Actually, we don't really care about FN; we care about the type it
1423 converts to. There may be multiple conversion functions that will
1424 convert to that type, and we rely on build_user_type_conversion_1 to
1425 choose the best one; so when we create our candidate, we record the type
1426 instead of the function. */
1428 static struct z_candidate *
1429 add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj,
1430 tree arglist, tree access_path, tree conversion_path)
1432 tree totype = TREE_TYPE (TREE_TYPE (fn));
1433 int i, len, viable, flags;
1434 tree parmlist, parmnode, argnode;
1435 conversion **convs;
1437 for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; )
1438 parmlist = TREE_TYPE (parmlist);
1439 parmlist = TYPE_ARG_TYPES (parmlist);
1441 len = list_length (arglist) + 1;
1442 convs = alloc_conversions (len);
1443 parmnode = parmlist;
1444 argnode = arglist;
1445 viable = 1;
1446 flags = LOOKUP_NORMAL;
1448 /* Don't bother looking up the same type twice. */
1449 if (*candidates && (*candidates)->fn == totype)
1450 return NULL;
1452 for (i = 0; i < len; ++i)
1454 tree arg = i == 0 ? obj : TREE_VALUE (argnode);
1455 tree argtype = lvalue_type (arg);
1456 conversion *t;
1458 if (i == 0)
1459 t = implicit_conversion (totype, argtype, arg, flags);
1460 else if (parmnode == void_list_node)
1461 break;
1462 else if (parmnode)
1463 t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg, flags);
1464 else
1466 t = build_identity_conv (argtype, arg);
1467 t->ellipsis_p = true;
1470 convs[i] = t;
1471 if (! t)
1472 break;
1474 if (t->bad_p)
1475 viable = -1;
1477 if (i == 0)
1478 continue;
1480 if (parmnode)
1481 parmnode = TREE_CHAIN (parmnode);
1482 argnode = TREE_CHAIN (argnode);
1485 if (i < len)
1486 viable = 0;
1488 if (!sufficient_parms_p (parmnode))
1489 viable = 0;
1491 return add_candidate (candidates, totype, arglist, len, convs,
1492 access_path, conversion_path, viable);
1495 static void
1496 build_builtin_candidate (struct z_candidate **candidates, tree fnname,
1497 tree type1, tree type2, tree *args, tree *argtypes,
1498 int flags)
1500 conversion *t;
1501 conversion **convs;
1502 size_t num_convs;
1503 int viable = 1, i;
1504 tree types[2];
1506 types[0] = type1;
1507 types[1] = type2;
1509 num_convs = args[2] ? 3 : (args[1] ? 2 : 1);
1510 convs = alloc_conversions (num_convs);
1512 for (i = 0; i < 2; ++i)
1514 if (! args[i])
1515 break;
1517 t = implicit_conversion (types[i], argtypes[i], args[i], flags);
1518 if (! t)
1520 viable = 0;
1521 /* We need something for printing the candidate. */
1522 t = build_identity_conv (types[i], NULL_TREE);
1524 else if (t->bad_p)
1525 viable = 0;
1526 convs[i] = t;
1529 /* For COND_EXPR we rearranged the arguments; undo that now. */
1530 if (args[2])
1532 convs[2] = convs[1];
1533 convs[1] = convs[0];
1534 t = implicit_conversion (boolean_type_node, argtypes[2], args[2], flags);
1535 if (t)
1536 convs[0] = t;
1537 else
1538 viable = 0;
1541 add_candidate (candidates, fnname, /*args=*/NULL_TREE,
1542 num_convs, convs,
1543 /*access_path=*/NULL_TREE,
1544 /*conversion_path=*/NULL_TREE,
1545 viable);
1548 static bool
1549 is_complete (tree t)
1551 return COMPLETE_TYPE_P (complete_type (t));
1554 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1556 static bool
1557 promoted_arithmetic_type_p (tree type)
1559 /* [over.built]
1561 In this section, the term promoted integral type is used to refer
1562 to those integral types which are preserved by integral promotion
1563 (including e.g. int and long but excluding e.g. char).
1564 Similarly, the term promoted arithmetic type refers to promoted
1565 integral types plus floating types. */
1566 return ((INTEGRAL_TYPE_P (type)
1567 && same_type_p (type_promotes_to (type), type))
1568 || TREE_CODE (type) == REAL_TYPE);
1571 /* Create any builtin operator overload candidates for the operator in
1572 question given the converted operand types TYPE1 and TYPE2. The other
1573 args are passed through from add_builtin_candidates to
1574 build_builtin_candidate.
1576 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1577 If CODE is requires candidates operands of the same type of the kind
1578 of which TYPE1 and TYPE2 are, we add both candidates
1579 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1581 static void
1582 add_builtin_candidate (struct z_candidate **candidates, enum tree_code code,
1583 enum tree_code code2, tree fnname, tree type1,
1584 tree type2, tree *args, tree *argtypes, int flags)
1586 switch (code)
1588 case POSTINCREMENT_EXPR:
1589 case POSTDECREMENT_EXPR:
1590 args[1] = integer_zero_node;
1591 type2 = integer_type_node;
1592 break;
1593 default:
1594 break;
1597 switch (code)
1600 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1601 and VQ is either volatile or empty, there exist candidate operator
1602 functions of the form
1603 VQ T& operator++(VQ T&);
1604 T operator++(VQ T&, int);
1605 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1606 type other than bool, and VQ is either volatile or empty, there exist
1607 candidate operator functions of the form
1608 VQ T& operator--(VQ T&);
1609 T operator--(VQ T&, int);
1610 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1611 complete object type, and VQ is either volatile or empty, there exist
1612 candidate operator functions of the form
1613 T*VQ& operator++(T*VQ&);
1614 T*VQ& operator--(T*VQ&);
1615 T* operator++(T*VQ&, int);
1616 T* operator--(T*VQ&, int); */
1618 case POSTDECREMENT_EXPR:
1619 case PREDECREMENT_EXPR:
1620 if (TREE_CODE (type1) == BOOLEAN_TYPE)
1621 return;
1622 case POSTINCREMENT_EXPR:
1623 case PREINCREMENT_EXPR:
1624 if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1))
1626 type1 = build_reference_type (type1);
1627 break;
1629 return;
1631 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1632 exist candidate operator functions of the form
1634 T& operator*(T*);
1636 8 For every function type T, there exist candidate operator functions of
1637 the form
1638 T& operator*(T*); */
1640 case INDIRECT_REF:
1641 if (TREE_CODE (type1) == POINTER_TYPE
1642 && (TYPE_PTROB_P (type1)
1643 || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
1644 break;
1645 return;
1647 /* 9 For every type T, there exist candidate operator functions of the form
1648 T* operator+(T*);
1650 10For every promoted arithmetic type T, there exist candidate operator
1651 functions of the form
1652 T operator+(T);
1653 T operator-(T); */
1655 case CONVERT_EXPR: /* unary + */
1656 if (TREE_CODE (type1) == POINTER_TYPE)
1657 break;
1658 case NEGATE_EXPR:
1659 if (ARITHMETIC_TYPE_P (type1))
1660 break;
1661 return;
1663 /* 11For every promoted integral type T, there exist candidate operator
1664 functions of the form
1665 T operator~(T); */
1667 case BIT_NOT_EXPR:
1668 if (INTEGRAL_TYPE_P (type1))
1669 break;
1670 return;
1672 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1673 is the same type as C2 or is a derived class of C2, T is a complete
1674 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1675 there exist candidate operator functions of the form
1676 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1677 where CV12 is the union of CV1 and CV2. */
1679 case MEMBER_REF:
1680 if (TREE_CODE (type1) == POINTER_TYPE
1681 && TYPE_PTR_TO_MEMBER_P (type2))
1683 tree c1 = TREE_TYPE (type1);
1684 tree c2 = TYPE_PTRMEM_CLASS_TYPE (type2);
1686 if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
1687 && (TYPE_PTRMEMFUNC_P (type2)
1688 || is_complete (TREE_TYPE (TREE_TYPE (type2)))))
1689 break;
1691 return;
1693 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1694 didate operator functions of the form
1695 LR operator*(L, R);
1696 LR operator/(L, R);
1697 LR operator+(L, R);
1698 LR operator-(L, R);
1699 bool operator<(L, R);
1700 bool operator>(L, R);
1701 bool operator<=(L, R);
1702 bool operator>=(L, R);
1703 bool operator==(L, R);
1704 bool operator!=(L, R);
1705 where LR is the result of the usual arithmetic conversions between
1706 types L and R.
1708 14For every pair of types T and I, where T is a cv-qualified or cv-
1709 unqualified complete object type and I is a promoted integral type,
1710 there exist candidate operator functions of the form
1711 T* operator+(T*, I);
1712 T& operator[](T*, I);
1713 T* operator-(T*, I);
1714 T* operator+(I, T*);
1715 T& operator[](I, T*);
1717 15For every T, where T is a pointer to complete object type, there exist
1718 candidate operator functions of the form112)
1719 ptrdiff_t operator-(T, T);
1721 16For every pointer or enumeration type T, there exist candidate operator
1722 functions of the form
1723 bool operator<(T, T);
1724 bool operator>(T, T);
1725 bool operator<=(T, T);
1726 bool operator>=(T, T);
1727 bool operator==(T, T);
1728 bool operator!=(T, T);
1730 17For every pointer to member type T, there exist candidate operator
1731 functions of the form
1732 bool operator==(T, T);
1733 bool operator!=(T, T); */
1735 case MINUS_EXPR:
1736 if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
1737 break;
1738 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1740 type2 = ptrdiff_type_node;
1741 break;
1743 case MULT_EXPR:
1744 case TRUNC_DIV_EXPR:
1745 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1746 break;
1747 return;
1749 case EQ_EXPR:
1750 case NE_EXPR:
1751 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1752 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
1753 break;
1754 if (TYPE_PTR_TO_MEMBER_P (type1) && null_ptr_cst_p (args[1]))
1756 type2 = type1;
1757 break;
1759 if (TYPE_PTR_TO_MEMBER_P (type2) && null_ptr_cst_p (args[0]))
1761 type1 = type2;
1762 break;
1764 /* Fall through. */
1765 case LT_EXPR:
1766 case GT_EXPR:
1767 case LE_EXPR:
1768 case GE_EXPR:
1769 case MAX_EXPR:
1770 case MIN_EXPR:
1771 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1772 break;
1773 if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1774 break;
1775 if (TREE_CODE (type1) == ENUMERAL_TYPE && TREE_CODE (type2) == ENUMERAL_TYPE)
1776 break;
1777 if (TYPE_PTR_P (type1) && null_ptr_cst_p (args[1]))
1779 type2 = type1;
1780 break;
1782 if (null_ptr_cst_p (args[0]) && TYPE_PTR_P (type2))
1784 type1 = type2;
1785 break;
1787 return;
1789 case PLUS_EXPR:
1790 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1791 break;
1792 case ARRAY_REF:
1793 if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
1795 type1 = ptrdiff_type_node;
1796 break;
1798 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1800 type2 = ptrdiff_type_node;
1801 break;
1803 return;
1805 /* 18For every pair of promoted integral types L and R, there exist candi-
1806 date operator functions of the form
1807 LR operator%(L, R);
1808 LR operator&(L, R);
1809 LR operator^(L, R);
1810 LR operator|(L, R);
1811 L operator<<(L, R);
1812 L operator>>(L, R);
1813 where LR is the result of the usual arithmetic conversions between
1814 types L and R. */
1816 case TRUNC_MOD_EXPR:
1817 case BIT_AND_EXPR:
1818 case BIT_IOR_EXPR:
1819 case BIT_XOR_EXPR:
1820 case LSHIFT_EXPR:
1821 case RSHIFT_EXPR:
1822 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1823 break;
1824 return;
1826 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1827 type, VQ is either volatile or empty, and R is a promoted arithmetic
1828 type, there exist candidate operator functions of the form
1829 VQ L& operator=(VQ L&, R);
1830 VQ L& operator*=(VQ L&, R);
1831 VQ L& operator/=(VQ L&, R);
1832 VQ L& operator+=(VQ L&, R);
1833 VQ L& operator-=(VQ L&, R);
1835 20For every pair T, VQ), where T is any type and VQ is either volatile
1836 or empty, there exist candidate operator functions of the form
1837 T*VQ& operator=(T*VQ&, T*);
1839 21For every pair T, VQ), where T is a pointer to member type and VQ is
1840 either volatile or empty, there exist candidate operator functions of
1841 the form
1842 VQ T& operator=(VQ T&, T);
1844 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1845 unqualified complete object type, VQ is either volatile or empty, and
1846 I is a promoted integral type, there exist candidate operator func-
1847 tions of the form
1848 T*VQ& operator+=(T*VQ&, I);
1849 T*VQ& operator-=(T*VQ&, I);
1851 23For every triple L, VQ, R), where L is an integral or enumeration
1852 type, VQ is either volatile or empty, and R is a promoted integral
1853 type, there exist candidate operator functions of the form
1855 VQ L& operator%=(VQ L&, R);
1856 VQ L& operator<<=(VQ L&, R);
1857 VQ L& operator>>=(VQ L&, R);
1858 VQ L& operator&=(VQ L&, R);
1859 VQ L& operator^=(VQ L&, R);
1860 VQ L& operator|=(VQ L&, R); */
1862 case MODIFY_EXPR:
1863 switch (code2)
1865 case PLUS_EXPR:
1866 case MINUS_EXPR:
1867 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1869 type2 = ptrdiff_type_node;
1870 break;
1872 case MULT_EXPR:
1873 case TRUNC_DIV_EXPR:
1874 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1875 break;
1876 return;
1878 case TRUNC_MOD_EXPR:
1879 case BIT_AND_EXPR:
1880 case BIT_IOR_EXPR:
1881 case BIT_XOR_EXPR:
1882 case LSHIFT_EXPR:
1883 case RSHIFT_EXPR:
1884 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1885 break;
1886 return;
1888 case NOP_EXPR:
1889 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1890 break;
1891 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1892 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1893 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
1894 || ((TYPE_PTRMEMFUNC_P (type1)
1895 || TREE_CODE (type1) == POINTER_TYPE)
1896 && null_ptr_cst_p (args[1])))
1898 type2 = type1;
1899 break;
1901 return;
1903 default:
1904 gcc_unreachable ();
1906 type1 = build_reference_type (type1);
1907 break;
1909 case COND_EXPR:
1910 /* [over.built]
1912 For every pair of promoted arithmetic types L and R, there
1913 exist candidate operator functions of the form
1915 LR operator?(bool, L, R);
1917 where LR is the result of the usual arithmetic conversions
1918 between types L and R.
1920 For every type T, where T is a pointer or pointer-to-member
1921 type, there exist candidate operator functions of the form T
1922 operator?(bool, T, T); */
1924 if (promoted_arithmetic_type_p (type1)
1925 && promoted_arithmetic_type_p (type2))
1926 /* That's OK. */
1927 break;
1929 /* Otherwise, the types should be pointers. */
1930 if (!(TYPE_PTR_P (type1) || TYPE_PTR_TO_MEMBER_P (type1))
1931 || !(TYPE_PTR_P (type2) || TYPE_PTR_TO_MEMBER_P (type2)))
1932 return;
1934 /* We don't check that the two types are the same; the logic
1935 below will actually create two candidates; one in which both
1936 parameter types are TYPE1, and one in which both parameter
1937 types are TYPE2. */
1938 break;
1940 default:
1941 gcc_unreachable ();
1944 /* If we're dealing with two pointer types or two enumeral types,
1945 we need candidates for both of them. */
1946 if (type2 && !same_type_p (type1, type2)
1947 && TREE_CODE (type1) == TREE_CODE (type2)
1948 && (TREE_CODE (type1) == REFERENCE_TYPE
1949 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1950 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
1951 || TYPE_PTRMEMFUNC_P (type1)
1952 || IS_AGGR_TYPE (type1)
1953 || TREE_CODE (type1) == ENUMERAL_TYPE))
1955 build_builtin_candidate
1956 (candidates, fnname, type1, type1, args, argtypes, flags);
1957 build_builtin_candidate
1958 (candidates, fnname, type2, type2, args, argtypes, flags);
1959 return;
1962 build_builtin_candidate
1963 (candidates, fnname, type1, type2, args, argtypes, flags);
1966 tree
1967 type_decays_to (tree type)
1969 if (TREE_CODE (type) == ARRAY_TYPE)
1970 return build_pointer_type (TREE_TYPE (type));
1971 if (TREE_CODE (type) == FUNCTION_TYPE)
1972 return build_pointer_type (type);
1973 return type;
1976 /* There are three conditions of builtin candidates:
1978 1) bool-taking candidates. These are the same regardless of the input.
1979 2) pointer-pair taking candidates. These are generated for each type
1980 one of the input types converts to.
1981 3) arithmetic candidates. According to the standard, we should generate
1982 all of these, but I'm trying not to...
1984 Here we generate a superset of the possible candidates for this particular
1985 case. That is a subset of the full set the standard defines, plus some
1986 other cases which the standard disallows. add_builtin_candidate will
1987 filter out the invalid set. */
1989 static void
1990 add_builtin_candidates (struct z_candidate **candidates, enum tree_code code,
1991 enum tree_code code2, tree fnname, tree *args,
1992 int flags)
1994 int ref1, i;
1995 int enum_p = 0;
1996 tree type, argtypes[3];
1997 /* TYPES[i] is the set of possible builtin-operator parameter types
1998 we will consider for the Ith argument. These are represented as
1999 a TREE_LIST; the TREE_VALUE of each node is the potential
2000 parameter type. */
2001 tree types[2];
2003 for (i = 0; i < 3; ++i)
2005 if (args[i])
2006 argtypes[i] = lvalue_type (args[i]);
2007 else
2008 argtypes[i] = NULL_TREE;
2011 switch (code)
2013 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
2014 and VQ is either volatile or empty, there exist candidate operator
2015 functions of the form
2016 VQ T& operator++(VQ T&); */
2018 case POSTINCREMENT_EXPR:
2019 case PREINCREMENT_EXPR:
2020 case POSTDECREMENT_EXPR:
2021 case PREDECREMENT_EXPR:
2022 case MODIFY_EXPR:
2023 ref1 = 1;
2024 break;
2026 /* 24There also exist candidate operator functions of the form
2027 bool operator!(bool);
2028 bool operator&&(bool, bool);
2029 bool operator||(bool, bool); */
2031 case TRUTH_NOT_EXPR:
2032 build_builtin_candidate
2033 (candidates, fnname, boolean_type_node,
2034 NULL_TREE, args, argtypes, flags);
2035 return;
2037 case TRUTH_ORIF_EXPR:
2038 case TRUTH_ANDIF_EXPR:
2039 build_builtin_candidate
2040 (candidates, fnname, boolean_type_node,
2041 boolean_type_node, args, argtypes, flags);
2042 return;
2044 case ADDR_EXPR:
2045 case COMPOUND_EXPR:
2046 case COMPONENT_REF:
2047 return;
2049 case COND_EXPR:
2050 case EQ_EXPR:
2051 case NE_EXPR:
2052 case LT_EXPR:
2053 case LE_EXPR:
2054 case GT_EXPR:
2055 case GE_EXPR:
2056 enum_p = 1;
2057 /* Fall through. */
2059 default:
2060 ref1 = 0;
2063 types[0] = types[1] = NULL_TREE;
2065 for (i = 0; i < 2; ++i)
2067 if (! args[i])
2069 else if (IS_AGGR_TYPE (argtypes[i]))
2071 tree convs;
2073 if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
2074 return;
2076 convs = lookup_conversions (argtypes[i]);
2078 if (code == COND_EXPR)
2080 if (real_lvalue_p (args[i]))
2081 types[i] = tree_cons
2082 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2084 types[i] = tree_cons
2085 (NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
2088 else if (! convs)
2089 return;
2091 for (; convs; convs = TREE_CHAIN (convs))
2093 type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));
2095 if (i == 0 && ref1
2096 && (TREE_CODE (type) != REFERENCE_TYPE
2097 || CP_TYPE_CONST_P (TREE_TYPE (type))))
2098 continue;
2100 if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
2101 types[i] = tree_cons (NULL_TREE, type, types[i]);
2103 type = non_reference (type);
2104 if (i != 0 || ! ref1)
2106 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2107 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2108 types[i] = tree_cons (NULL_TREE, type, types[i]);
2109 if (INTEGRAL_TYPE_P (type))
2110 type = type_promotes_to (type);
2113 if (! value_member (type, types[i]))
2114 types[i] = tree_cons (NULL_TREE, type, types[i]);
2117 else
2119 if (code == COND_EXPR && real_lvalue_p (args[i]))
2120 types[i] = tree_cons
2121 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2122 type = non_reference (argtypes[i]);
2123 if (i != 0 || ! ref1)
2125 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2126 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2127 types[i] = tree_cons (NULL_TREE, type, types[i]);
2128 if (INTEGRAL_TYPE_P (type))
2129 type = type_promotes_to (type);
2131 types[i] = tree_cons (NULL_TREE, type, types[i]);
2135 /* Run through the possible parameter types of both arguments,
2136 creating candidates with those parameter types. */
2137 for (; types[0]; types[0] = TREE_CHAIN (types[0]))
2139 if (types[1])
2140 for (type = types[1]; type; type = TREE_CHAIN (type))
2141 add_builtin_candidate
2142 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2143 TREE_VALUE (type), args, argtypes, flags);
2144 else
2145 add_builtin_candidate
2146 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2147 NULL_TREE, args, argtypes, flags);
2150 return;
2154 /* If TMPL can be successfully instantiated as indicated by
2155 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2157 TMPL is the template. EXPLICIT_TARGS are any explicit template
2158 arguments. ARGLIST is the arguments provided at the call-site.
2159 The RETURN_TYPE is the desired type for conversion operators. If
2160 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2161 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2162 add_conv_candidate. */
2164 static struct z_candidate*
2165 add_template_candidate_real (struct z_candidate **candidates, tree tmpl,
2166 tree ctype, tree explicit_targs, tree arglist,
2167 tree return_type, tree access_path,
2168 tree conversion_path, int flags, tree obj,
2169 unification_kind_t strict)
2171 int ntparms = DECL_NTPARMS (tmpl);
2172 tree targs = make_tree_vec (ntparms);
2173 tree args_without_in_chrg = arglist;
2174 struct z_candidate *cand;
2175 int i;
2176 tree fn;
2178 /* We don't do deduction on the in-charge parameter, the VTT
2179 parameter or 'this'. */
2180 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl))
2181 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2183 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl)
2184 || DECL_BASE_CONSTRUCTOR_P (tmpl))
2185 && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl)))
2186 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2188 i = fn_type_unification (tmpl, explicit_targs, targs,
2189 args_without_in_chrg,
2190 return_type, strict, -1);
2192 if (i != 0)
2193 return NULL;
2195 fn = instantiate_template (tmpl, targs, tf_none);
2196 if (fn == error_mark_node)
2197 return NULL;
2199 /* In [class.copy]:
2201 A member function template is never instantiated to perform the
2202 copy of a class object to an object of its class type.
2204 It's a little unclear what this means; the standard explicitly
2205 does allow a template to be used to copy a class. For example,
2208 struct A {
2209 A(A&);
2210 template <class T> A(const T&);
2212 const A f ();
2213 void g () { A a (f ()); }
2215 the member template will be used to make the copy. The section
2216 quoted above appears in the paragraph that forbids constructors
2217 whose only parameter is (a possibly cv-qualified variant of) the
2218 class type, and a logical interpretation is that the intent was
2219 to forbid the instantiation of member templates which would then
2220 have that form. */
2221 if (DECL_CONSTRUCTOR_P (fn) && list_length (arglist) == 2)
2223 tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (fn);
2224 if (arg_types && same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types)),
2225 ctype))
2226 return NULL;
2229 if (obj != NULL_TREE)
2230 /* Aha, this is a conversion function. */
2231 cand = add_conv_candidate (candidates, fn, obj, access_path,
2232 conversion_path, arglist);
2233 else
2234 cand = add_function_candidate (candidates, fn, ctype,
2235 arglist, access_path,
2236 conversion_path, flags);
2237 if (DECL_TI_TEMPLATE (fn) != tmpl)
2238 /* This situation can occur if a member template of a template
2239 class is specialized. Then, instantiate_template might return
2240 an instantiation of the specialization, in which case the
2241 DECL_TI_TEMPLATE field will point at the original
2242 specialization. For example:
2244 template <class T> struct S { template <class U> void f(U);
2245 template <> void f(int) {}; };
2246 S<double> sd;
2247 sd.f(3);
2249 Here, TMPL will be template <class U> S<double>::f(U).
2250 And, instantiate template will give us the specialization
2251 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2252 for this will point at template <class T> template <> S<T>::f(int),
2253 so that we can find the definition. For the purposes of
2254 overload resolution, however, we want the original TMPL. */
2255 cand->template_decl = tree_cons (tmpl, targs, NULL_TREE);
2256 else
2257 cand->template_decl = DECL_TEMPLATE_INFO (fn);
2259 return cand;
2263 static struct z_candidate *
2264 add_template_candidate (struct z_candidate **candidates, tree tmpl, tree ctype,
2265 tree explicit_targs, tree arglist, tree return_type,
2266 tree access_path, tree conversion_path, int flags,
2267 unification_kind_t strict)
2269 return
2270 add_template_candidate_real (candidates, tmpl, ctype,
2271 explicit_targs, arglist, return_type,
2272 access_path, conversion_path,
2273 flags, NULL_TREE, strict);
2277 static struct z_candidate *
2278 add_template_conv_candidate (struct z_candidate **candidates, tree tmpl,
2279 tree obj, tree arglist, tree return_type,
2280 tree access_path, tree conversion_path)
2282 return
2283 add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE,
2284 arglist, return_type, access_path,
2285 conversion_path, 0, obj, DEDUCE_CONV);
2288 /* The CANDS are the set of candidates that were considered for
2289 overload resolution. Return the set of viable candidates. If none
2290 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2291 is true if a candidate should be considered viable only if it is
2292 strictly viable. */
2294 static struct z_candidate*
2295 splice_viable (struct z_candidate *cands,
2296 bool strict_p,
2297 bool *any_viable_p)
2299 struct z_candidate *viable;
2300 struct z_candidate **last_viable;
2301 struct z_candidate **cand;
2303 viable = NULL;
2304 last_viable = &viable;
2305 *any_viable_p = false;
2307 cand = &cands;
2308 while (*cand)
2310 struct z_candidate *c = *cand;
2311 if (strict_p ? c->viable == 1 : c->viable)
2313 *last_viable = c;
2314 *cand = c->next;
2315 c->next = NULL;
2316 last_viable = &c->next;
2317 *any_viable_p = true;
2319 else
2320 cand = &c->next;
2323 return viable ? viable : cands;
2326 static bool
2327 any_strictly_viable (struct z_candidate *cands)
2329 for (; cands; cands = cands->next)
2330 if (cands->viable == 1)
2331 return true;
2332 return false;
2335 /* OBJ is being used in an expression like "OBJ.f (...)". In other
2336 words, it is about to become the "this" pointer for a member
2337 function call. Take the address of the object. */
2339 static tree
2340 build_this (tree obj)
2342 /* In a template, we are only concerned about the type of the
2343 expression, so we can take a shortcut. */
2344 if (processing_template_decl)
2345 return build_address (obj);
2347 return build_unary_op (ADDR_EXPR, obj, 0);
2350 /* Returns true iff functions are equivalent. Equivalent functions are
2351 not '==' only if one is a function-local extern function or if
2352 both are extern "C". */
2354 static inline int
2355 equal_functions (tree fn1, tree fn2)
2357 if (DECL_LOCAL_FUNCTION_P (fn1) || DECL_LOCAL_FUNCTION_P (fn2)
2358 || DECL_EXTERN_C_FUNCTION_P (fn1))
2359 return decls_match (fn1, fn2);
2360 return fn1 == fn2;
2363 /* Print information about one overload candidate CANDIDATE. MSGSTR
2364 is the text to print before the candidate itself.
2366 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2367 to have been run through gettext by the caller. This wart makes
2368 life simpler in print_z_candidates and for the translators. */
2370 static void
2371 print_z_candidate (const char *msgstr, struct z_candidate *candidate)
2373 if (TREE_CODE (candidate->fn) == IDENTIFIER_NODE)
2375 if (candidate->num_convs == 3)
2376 inform ("%s %D(%T, %T, %T) <built-in>", msgstr, candidate->fn,
2377 candidate->convs[0]->type,
2378 candidate->convs[1]->type,
2379 candidate->convs[2]->type);
2380 else if (candidate->num_convs == 2)
2381 inform ("%s %D(%T, %T) <built-in>", msgstr, candidate->fn,
2382 candidate->convs[0]->type,
2383 candidate->convs[1]->type);
2384 else
2385 inform ("%s %D(%T) <built-in>", msgstr, candidate->fn,
2386 candidate->convs[0]->type);
2388 else if (TYPE_P (candidate->fn))
2389 inform ("%s %T <conversion>", msgstr, candidate->fn);
2390 else if (candidate->viable == -1)
2391 inform ("%J%s %+#D <near match>", candidate->fn, msgstr, candidate->fn);
2392 else
2393 inform ("%J%s %+#D", candidate->fn, msgstr, candidate->fn);
2396 static void
2397 print_z_candidates (struct z_candidate *candidates)
2399 const char *str;
2400 struct z_candidate *cand1;
2401 struct z_candidate **cand2;
2403 /* There may be duplicates in the set of candidates. We put off
2404 checking this condition as long as possible, since we have no way
2405 to eliminate duplicates from a set of functions in less than n^2
2406 time. Now we are about to emit an error message, so it is more
2407 permissible to go slowly. */
2408 for (cand1 = candidates; cand1; cand1 = cand1->next)
2410 tree fn = cand1->fn;
2411 /* Skip builtin candidates and conversion functions. */
2412 if (TREE_CODE (fn) != FUNCTION_DECL)
2413 continue;
2414 cand2 = &cand1->next;
2415 while (*cand2)
2417 if (TREE_CODE ((*cand2)->fn) == FUNCTION_DECL
2418 && equal_functions (fn, (*cand2)->fn))
2419 *cand2 = (*cand2)->next;
2420 else
2421 cand2 = &(*cand2)->next;
2425 if (!candidates)
2426 return;
2428 str = _("candidates are:");
2429 print_z_candidate (str, candidates);
2430 if (candidates->next)
2432 /* Indent successive candidates by the width of the translation
2433 of the above string. */
2434 size_t len = gcc_gettext_width (str) + 1;
2435 char *spaces = alloca (len);
2436 memset (spaces, ' ', len-1);
2437 spaces[len - 1] = '\0';
2439 candidates = candidates->next;
2442 print_z_candidate (spaces, candidates);
2443 candidates = candidates->next;
2445 while (candidates);
2449 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2450 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2451 the result of the conversion function to convert it to the final
2452 desired type. Merge the two sequences into a single sequence,
2453 and return the merged sequence. */
2455 static conversion *
2456 merge_conversion_sequences (conversion *user_seq, conversion *std_seq)
2458 conversion **t;
2460 gcc_assert (user_seq->kind == ck_user);
2462 /* Find the end of the second conversion sequence. */
2463 t = &(std_seq);
2464 while ((*t)->kind != ck_identity)
2465 t = &((*t)->u.next);
2467 /* Replace the identity conversion with the user conversion
2468 sequence. */
2469 *t = user_seq;
2471 /* The entire sequence is a user-conversion sequence. */
2472 std_seq->user_conv_p = true;
2474 return std_seq;
2477 /* Returns the best overload candidate to perform the requested
2478 conversion. This function is used for three the overloading situations
2479 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2480 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2481 per [dcl.init.ref], so we ignore temporary bindings. */
2483 static struct z_candidate *
2484 build_user_type_conversion_1 (tree totype, tree expr, int flags)
2486 struct z_candidate *candidates, *cand;
2487 tree fromtype = TREE_TYPE (expr);
2488 tree ctors = NULL_TREE;
2489 tree conv_fns = NULL_TREE;
2490 conversion *conv = NULL;
2491 tree args = NULL_TREE;
2492 bool any_viable_p;
2494 /* We represent conversion within a hierarchy using RVALUE_CONV and
2495 BASE_CONV, as specified by [over.best.ics]; these become plain
2496 constructor calls, as specified in [dcl.init]. */
2497 gcc_assert (!IS_AGGR_TYPE (fromtype) || !IS_AGGR_TYPE (totype)
2498 || !DERIVED_FROM_P (totype, fromtype));
2500 if (IS_AGGR_TYPE (totype))
2501 ctors = lookup_fnfields (totype, complete_ctor_identifier, 0);
2503 if (IS_AGGR_TYPE (fromtype))
2504 conv_fns = lookup_conversions (fromtype);
2506 candidates = 0;
2507 flags |= LOOKUP_NO_CONVERSION;
2509 if (ctors)
2511 tree t;
2513 ctors = BASELINK_FUNCTIONS (ctors);
2515 t = build_int_cst (build_pointer_type (totype), 0);
2516 args = build_tree_list (NULL_TREE, expr);
2517 /* We should never try to call the abstract or base constructor
2518 from here. */
2519 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors))
2520 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors)));
2521 args = tree_cons (NULL_TREE, t, args);
2523 for (; ctors; ctors = OVL_NEXT (ctors))
2525 tree ctor = OVL_CURRENT (ctors);
2526 if (DECL_NONCONVERTING_P (ctor))
2527 continue;
2529 if (TREE_CODE (ctor) == TEMPLATE_DECL)
2530 cand = add_template_candidate (&candidates, ctor, totype,
2531 NULL_TREE, args, NULL_TREE,
2532 TYPE_BINFO (totype),
2533 TYPE_BINFO (totype),
2534 flags,
2535 DEDUCE_CALL);
2536 else
2537 cand = add_function_candidate (&candidates, ctor, totype,
2538 args, TYPE_BINFO (totype),
2539 TYPE_BINFO (totype),
2540 flags);
2542 if (cand)
2543 cand->second_conv = build_identity_conv (totype, NULL_TREE);
2546 if (conv_fns)
2547 args = build_tree_list (NULL_TREE, build_this (expr));
2549 for (; conv_fns; conv_fns = TREE_CHAIN (conv_fns))
2551 tree fns;
2552 tree conversion_path = TREE_PURPOSE (conv_fns);
2553 int convflags = LOOKUP_NO_CONVERSION;
2555 /* If we are called to convert to a reference type, we are trying to
2556 find an lvalue binding, so don't even consider temporaries. If
2557 we don't find an lvalue binding, the caller will try again to
2558 look for a temporary binding. */
2559 if (TREE_CODE (totype) == REFERENCE_TYPE)
2560 convflags |= LOOKUP_NO_TEMP_BIND;
2562 for (fns = TREE_VALUE (conv_fns); fns; fns = OVL_NEXT (fns))
2564 tree fn = OVL_CURRENT (fns);
2566 /* [over.match.funcs] For conversion functions, the function
2567 is considered to be a member of the class of the implicit
2568 object argument for the purpose of defining the type of
2569 the implicit object parameter.
2571 So we pass fromtype as CTYPE to add_*_candidate. */
2573 if (TREE_CODE (fn) == TEMPLATE_DECL)
2574 cand = add_template_candidate (&candidates, fn, fromtype,
2575 NULL_TREE,
2576 args, totype,
2577 TYPE_BINFO (fromtype),
2578 conversion_path,
2579 flags,
2580 DEDUCE_CONV);
2581 else
2582 cand = add_function_candidate (&candidates, fn, fromtype,
2583 args,
2584 TYPE_BINFO (fromtype),
2585 conversion_path,
2586 flags);
2588 if (cand)
2590 conversion *ics
2591 = implicit_conversion (totype,
2592 TREE_TYPE (TREE_TYPE (cand->fn)),
2593 0, convflags);
2595 cand->second_conv = ics;
2597 if (!ics)
2598 cand->viable = 0;
2599 else if (candidates->viable == 1 && ics->bad_p)
2600 cand->viable = -1;
2605 candidates = splice_viable (candidates, pedantic, &any_viable_p);
2606 if (!any_viable_p)
2607 return 0;
2609 cand = tourney (candidates);
2610 if (cand == 0)
2612 if (flags & LOOKUP_COMPLAIN)
2614 error ("conversion from %qT to %qT is ambiguous",
2615 fromtype, totype);
2616 print_z_candidates (candidates);
2619 cand = candidates; /* any one will do */
2620 cand->second_conv = build_ambiguous_conv (totype, expr);
2621 cand->second_conv->user_conv_p = true;
2622 if (!any_strictly_viable (candidates))
2623 cand->second_conv->bad_p = true;
2624 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2625 ambiguous conversion is no worse than another user-defined
2626 conversion. */
2628 return cand;
2631 /* Build the user conversion sequence. */
2632 conv = build_conv
2633 (ck_user,
2634 (DECL_CONSTRUCTOR_P (cand->fn)
2635 ? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
2636 build_identity_conv (TREE_TYPE (expr), expr));
2637 conv->cand = cand;
2639 /* Combine it with the second conversion sequence. */
2640 cand->second_conv = merge_conversion_sequences (conv,
2641 cand->second_conv);
2643 if (cand->viable == -1)
2644 cand->second_conv->bad_p = true;
2646 return cand;
2649 tree
2650 build_user_type_conversion (tree totype, tree expr, int flags)
2652 struct z_candidate *cand
2653 = build_user_type_conversion_1 (totype, expr, flags);
2655 if (cand)
2657 if (cand->second_conv->kind == ck_ambig)
2658 return error_mark_node;
2659 expr = convert_like (cand->second_conv, expr);
2660 return convert_from_reference (expr);
2662 return NULL_TREE;
2665 /* Do any initial processing on the arguments to a function call. */
2667 static tree
2668 resolve_args (tree args)
2670 tree t;
2671 for (t = args; t; t = TREE_CHAIN (t))
2673 tree arg = TREE_VALUE (t);
2675 if (arg == error_mark_node)
2676 return error_mark_node;
2677 else if (VOID_TYPE_P (TREE_TYPE (arg)))
2679 error ("invalid use of void expression");
2680 return error_mark_node;
2683 return args;
2686 /* Perform overload resolution on FN, which is called with the ARGS.
2688 Return the candidate function selected by overload resolution, or
2689 NULL if the event that overload resolution failed. In the case
2690 that overload resolution fails, *CANDIDATES will be the set of
2691 candidates considered, and ANY_VIABLE_P will be set to true or
2692 false to indicate whether or not any of the candidates were
2693 viable.
2695 The ARGS should already have gone through RESOLVE_ARGS before this
2696 function is called. */
2698 static struct z_candidate *
2699 perform_overload_resolution (tree fn,
2700 tree args,
2701 struct z_candidate **candidates,
2702 bool *any_viable_p)
2704 struct z_candidate *cand;
2705 tree explicit_targs = NULL_TREE;
2706 int template_only = 0;
2708 *candidates = NULL;
2709 *any_viable_p = true;
2711 /* Check FN and ARGS. */
2712 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL
2713 || TREE_CODE (fn) == TEMPLATE_DECL
2714 || TREE_CODE (fn) == OVERLOAD
2715 || TREE_CODE (fn) == TEMPLATE_ID_EXPR);
2716 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
2718 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2720 explicit_targs = TREE_OPERAND (fn, 1);
2721 fn = TREE_OPERAND (fn, 0);
2722 template_only = 1;
2725 /* Add the various candidate functions. */
2726 add_candidates (fn, args, explicit_targs, template_only,
2727 /*conversion_path=*/NULL_TREE,
2728 /*access_path=*/NULL_TREE,
2729 LOOKUP_NORMAL,
2730 candidates);
2732 *candidates = splice_viable (*candidates, pedantic, any_viable_p);
2733 if (!*any_viable_p)
2734 return NULL;
2736 cand = tourney (*candidates);
2737 return cand;
2740 /* Return an expression for a call to FN (a namespace-scope function,
2741 or a static member function) with the ARGS. */
2743 tree
2744 build_new_function_call (tree fn, tree args)
2746 struct z_candidate *candidates, *cand;
2747 bool any_viable_p;
2748 void *p;
2749 tree result;
2751 args = resolve_args (args);
2752 if (args == error_mark_node)
2753 return error_mark_node;
2755 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2756 p = conversion_obstack_alloc (0);
2758 cand = perform_overload_resolution (fn, args, &candidates, &any_viable_p);
2760 if (!cand)
2762 if (!any_viable_p && candidates && ! candidates->next)
2763 return build_function_call (candidates->fn, args);
2764 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2765 fn = TREE_OPERAND (fn, 0);
2766 if (!any_viable_p)
2767 error ("no matching function for call to %<%D(%A)%>",
2768 DECL_NAME (OVL_CURRENT (fn)), args);
2769 else
2770 error ("call of overloaded %<%D(%A)%> is ambiguous",
2771 DECL_NAME (OVL_CURRENT (fn)), args);
2772 if (candidates)
2773 print_z_candidates (candidates);
2774 result = error_mark_node;
2776 else
2777 result = build_over_call (cand, LOOKUP_NORMAL);
2779 /* Free all the conversions we allocated. */
2780 obstack_free (&conversion_obstack, p);
2782 return result;
2785 /* Build a call to a global operator new. FNNAME is the name of the
2786 operator (either "operator new" or "operator new[]") and ARGS are
2787 the arguments provided. *SIZE points to the total number of bytes
2788 required by the allocation, and is updated if that is changed here.
2789 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2790 function determines that no cookie should be used, after all,
2791 *COOKIE_SIZE is set to NULL_TREE. */
2793 tree
2794 build_operator_new_call (tree fnname, tree args, tree *size, tree *cookie_size)
2796 tree fns;
2797 struct z_candidate *candidates;
2798 struct z_candidate *cand;
2799 bool any_viable_p;
2801 args = tree_cons (NULL_TREE, *size, args);
2802 args = resolve_args (args);
2803 if (args == error_mark_node)
2804 return args;
2806 /* Based on:
2808 [expr.new]
2810 If this lookup fails to find the name, or if the allocated type
2811 is not a class type, the allocation function's name is looked
2812 up in the global scope.
2814 we disregard block-scope declarations of "operator new". */
2815 fns = lookup_function_nonclass (fnname, args, /*block_p=*/false);
2817 /* Figure out what function is being called. */
2818 cand = perform_overload_resolution (fns, args, &candidates, &any_viable_p);
2820 /* If no suitable function could be found, issue an error message
2821 and give up. */
2822 if (!cand)
2824 if (!any_viable_p)
2825 error ("no matching function for call to %<%D(%A)%>",
2826 DECL_NAME (OVL_CURRENT (fns)), args);
2827 else
2828 error ("call of overloaded %<%D(%A)%> is ambiguous",
2829 DECL_NAME (OVL_CURRENT (fns)), args);
2830 if (candidates)
2831 print_z_candidates (candidates);
2832 return error_mark_node;
2835 /* If a cookie is required, add some extra space. Whether
2836 or not a cookie is required cannot be determined until
2837 after we know which function was called. */
2838 if (*cookie_size)
2840 bool use_cookie = true;
2841 if (!abi_version_at_least (2))
2843 tree placement = TREE_CHAIN (args);
2844 /* In G++ 3.2, the check was implemented incorrectly; it
2845 looked at the placement expression, rather than the
2846 type of the function. */
2847 if (placement && !TREE_CHAIN (placement)
2848 && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2849 ptr_type_node))
2850 use_cookie = false;
2852 else
2854 tree arg_types;
2856 arg_types = TYPE_ARG_TYPES (TREE_TYPE (cand->fn));
2857 /* Skip the size_t parameter. */
2858 arg_types = TREE_CHAIN (arg_types);
2859 /* Check the remaining parameters (if any). */
2860 if (arg_types
2861 && TREE_CHAIN (arg_types) == void_list_node
2862 && same_type_p (TREE_VALUE (arg_types),
2863 ptr_type_node))
2864 use_cookie = false;
2866 /* If we need a cookie, adjust the number of bytes allocated. */
2867 if (use_cookie)
2869 /* Update the total size. */
2870 *size = size_binop (PLUS_EXPR, *size, *cookie_size);
2871 /* Update the argument list to reflect the adjusted size. */
2872 TREE_VALUE (args) = *size;
2874 else
2875 *cookie_size = NULL_TREE;
2878 /* Build the CALL_EXPR. */
2879 return build_over_call (cand, LOOKUP_NORMAL);
2882 static tree
2883 build_object_call (tree obj, tree args)
2885 struct z_candidate *candidates = 0, *cand;
2886 tree fns, convs, mem_args = NULL_TREE;
2887 tree type = TREE_TYPE (obj);
2888 bool any_viable_p;
2889 tree result = NULL_TREE;
2890 void *p;
2892 if (TYPE_PTRMEMFUNC_P (type))
2894 /* It's no good looking for an overloaded operator() on a
2895 pointer-to-member-function. */
2896 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj);
2897 return error_mark_node;
2900 fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname (CALL_EXPR), 1);
2901 if (fns == error_mark_node)
2902 return error_mark_node;
2904 args = resolve_args (args);
2906 if (args == error_mark_node)
2907 return error_mark_node;
2909 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2910 p = conversion_obstack_alloc (0);
2912 if (fns)
2914 tree base = BINFO_TYPE (BASELINK_BINFO (fns));
2915 mem_args = tree_cons (NULL_TREE, build_this (obj), args);
2917 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
2919 tree fn = OVL_CURRENT (fns);
2920 if (TREE_CODE (fn) == TEMPLATE_DECL)
2921 add_template_candidate (&candidates, fn, base, NULL_TREE,
2922 mem_args, NULL_TREE,
2923 TYPE_BINFO (type),
2924 TYPE_BINFO (type),
2925 LOOKUP_NORMAL, DEDUCE_CALL);
2926 else
2927 add_function_candidate
2928 (&candidates, fn, base, mem_args, TYPE_BINFO (type),
2929 TYPE_BINFO (type), LOOKUP_NORMAL);
2933 convs = lookup_conversions (type);
2935 for (; convs; convs = TREE_CHAIN (convs))
2937 tree fns = TREE_VALUE (convs);
2938 tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));
2940 if ((TREE_CODE (totype) == POINTER_TYPE
2941 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
2942 || (TREE_CODE (totype) == REFERENCE_TYPE
2943 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
2944 || (TREE_CODE (totype) == REFERENCE_TYPE
2945 && TREE_CODE (TREE_TYPE (totype)) == POINTER_TYPE
2946 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype))) == FUNCTION_TYPE))
2947 for (; fns; fns = OVL_NEXT (fns))
2949 tree fn = OVL_CURRENT (fns);
2950 if (TREE_CODE (fn) == TEMPLATE_DECL)
2951 add_template_conv_candidate
2952 (&candidates, fn, obj, args, totype,
2953 /*access_path=*/NULL_TREE,
2954 /*conversion_path=*/NULL_TREE);
2955 else
2956 add_conv_candidate (&candidates, fn, obj, args,
2957 /*conversion_path=*/NULL_TREE,
2958 /*access_path=*/NULL_TREE);
2962 candidates = splice_viable (candidates, pedantic, &any_viable_p);
2963 if (!any_viable_p)
2965 error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj), args);
2966 print_z_candidates (candidates);
2967 result = error_mark_node;
2969 else
2971 cand = tourney (candidates);
2972 if (cand == 0)
2974 error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj), args);
2975 print_z_candidates (candidates);
2976 result = error_mark_node;
2978 /* Since cand->fn will be a type, not a function, for a conversion
2979 function, we must be careful not to unconditionally look at
2980 DECL_NAME here. */
2981 else if (TREE_CODE (cand->fn) == FUNCTION_DECL
2982 && DECL_OVERLOADED_OPERATOR_P (cand->fn) == CALL_EXPR)
2983 result = build_over_call (cand, LOOKUP_NORMAL);
2984 else
2986 obj = convert_like_with_context (cand->convs[0], obj, cand->fn, -1);
2987 obj = convert_from_reference (obj);
2988 result = build_function_call (obj, args);
2992 /* Free all the conversions we allocated. */
2993 obstack_free (&conversion_obstack, p);
2995 return result;
2998 static void
2999 op_error (enum tree_code code, enum tree_code code2,
3000 tree arg1, tree arg2, tree arg3, const char *problem)
3002 const char *opname;
3004 if (code == MODIFY_EXPR)
3005 opname = assignment_operator_name_info[code2].name;
3006 else
3007 opname = operator_name_info[code].name;
3009 switch (code)
3011 case COND_EXPR:
3012 error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
3013 problem, arg1, arg2, arg3);
3014 break;
3016 case POSTINCREMENT_EXPR:
3017 case POSTDECREMENT_EXPR:
3018 error ("%s for %<operator%s%> in %<%E%s%>", problem, opname, arg1, opname);
3019 break;
3021 case ARRAY_REF:
3022 error ("%s for %<operator[]%> in %<%E[%E]%>", problem, arg1, arg2);
3023 break;
3025 case REALPART_EXPR:
3026 case IMAGPART_EXPR:
3027 error ("%s for %qs in %<%s %E%>", problem, opname, opname, arg1);
3028 break;
3030 default:
3031 if (arg2)
3032 error ("%s for %<operator%s%> in %<%E %s %E%>",
3033 problem, opname, arg1, opname, arg2);
3034 else
3035 error ("%s for %<operator%s%> in %<%s%E%>",
3036 problem, opname, opname, arg1);
3037 break;
3041 /* Return the implicit conversion sequence that could be used to
3042 convert E1 to E2 in [expr.cond]. */
3044 static conversion *
3045 conditional_conversion (tree e1, tree e2)
3047 tree t1 = non_reference (TREE_TYPE (e1));
3048 tree t2 = non_reference (TREE_TYPE (e2));
3049 conversion *conv;
3050 bool good_base;
3052 /* [expr.cond]
3054 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3055 implicitly converted (clause _conv_) to the type "reference to
3056 T2", subject to the constraint that in the conversion the
3057 reference must bind directly (_dcl.init.ref_) to E1. */
3058 if (real_lvalue_p (e2))
3060 conv = implicit_conversion (build_reference_type (t2),
3063 LOOKUP_NO_TEMP_BIND);
3064 if (conv)
3065 return conv;
3068 /* [expr.cond]
3070 If E1 and E2 have class type, and the underlying class types are
3071 the same or one is a base class of the other: E1 can be converted
3072 to match E2 if the class of T2 is the same type as, or a base
3073 class of, the class of T1, and the cv-qualification of T2 is the
3074 same cv-qualification as, or a greater cv-qualification than, the
3075 cv-qualification of T1. If the conversion is applied, E1 is
3076 changed to an rvalue of type T2 that still refers to the original
3077 source class object (or the appropriate subobject thereof). */
3078 if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
3079 && ((good_base = DERIVED_FROM_P (t2, t1)) || DERIVED_FROM_P (t1, t2)))
3081 if (good_base && at_least_as_qualified_p (t2, t1))
3083 conv = build_identity_conv (t1, e1);
3084 if (!same_type_p (TYPE_MAIN_VARIANT (t1),
3085 TYPE_MAIN_VARIANT (t2)))
3086 conv = build_conv (ck_base, t2, conv);
3087 else
3088 conv = build_conv (ck_rvalue, t2, conv);
3089 return conv;
3091 else
3092 return NULL;
3094 else
3095 /* [expr.cond]
3097 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3098 converted to the type that expression E2 would have if E2 were
3099 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3100 return implicit_conversion (t2, t1, e1, LOOKUP_NORMAL);
3103 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3104 arguments to the conditional expression. */
3106 tree
3107 build_conditional_expr (tree arg1, tree arg2, tree arg3)
3109 tree arg2_type;
3110 tree arg3_type;
3111 tree result = NULL_TREE;
3112 tree result_type = NULL_TREE;
3113 bool lvalue_p = true;
3114 struct z_candidate *candidates = 0;
3115 struct z_candidate *cand;
3116 void *p;
3118 /* As a G++ extension, the second argument to the conditional can be
3119 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3120 c'.) If the second operand is omitted, make sure it is
3121 calculated only once. */
3122 if (!arg2)
3124 if (pedantic)
3125 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3127 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3128 if (real_lvalue_p (arg1))
3129 arg2 = arg1 = stabilize_reference (arg1);
3130 else
3131 arg2 = arg1 = save_expr (arg1);
3134 /* [expr.cond]
3136 The first expr ession is implicitly converted to bool (clause
3137 _conv_). */
3138 arg1 = perform_implicit_conversion (boolean_type_node, arg1);
3140 /* If something has already gone wrong, just pass that fact up the
3141 tree. */
3142 if (error_operand_p (arg1)
3143 || error_operand_p (arg2)
3144 || error_operand_p (arg3))
3145 return error_mark_node;
3147 /* [expr.cond]
3149 If either the second or the third operand has type (possibly
3150 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3151 array-to-pointer (_conv.array_), and function-to-pointer
3152 (_conv.func_) standard conversions are performed on the second
3153 and third operands. */
3154 arg2_type = TREE_TYPE (arg2);
3155 arg3_type = TREE_TYPE (arg3);
3156 if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type))
3158 /* Do the conversions. We don't these for `void' type arguments
3159 since it can't have any effect and since decay_conversion
3160 does not handle that case gracefully. */
3161 if (!VOID_TYPE_P (arg2_type))
3162 arg2 = decay_conversion (arg2);
3163 if (!VOID_TYPE_P (arg3_type))
3164 arg3 = decay_conversion (arg3);
3165 arg2_type = TREE_TYPE (arg2);
3166 arg3_type = TREE_TYPE (arg3);
3168 /* [expr.cond]
3170 One of the following shall hold:
3172 --The second or the third operand (but not both) is a
3173 throw-expression (_except.throw_); the result is of the
3174 type of the other and is an rvalue.
3176 --Both the second and the third operands have type void; the
3177 result is of type void and is an rvalue.
3179 We must avoid calling force_rvalue for expressions of type
3180 "void" because it will complain that their value is being
3181 used. */
3182 if (TREE_CODE (arg2) == THROW_EXPR
3183 && TREE_CODE (arg3) != THROW_EXPR)
3185 if (!VOID_TYPE_P (arg3_type))
3186 arg3 = force_rvalue (arg3);
3187 arg3_type = TREE_TYPE (arg3);
3188 result_type = arg3_type;
3190 else if (TREE_CODE (arg2) != THROW_EXPR
3191 && TREE_CODE (arg3) == THROW_EXPR)
3193 if (!VOID_TYPE_P (arg2_type))
3194 arg2 = force_rvalue (arg2);
3195 arg2_type = TREE_TYPE (arg2);
3196 result_type = arg2_type;
3198 else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type))
3199 result_type = void_type_node;
3200 else
3202 error ("%qE has type %<void%> and is not a throw-expression",
3203 VOID_TYPE_P (arg2_type) ? arg2 : arg3);
3204 return error_mark_node;
3207 lvalue_p = false;
3208 goto valid_operands;
3210 /* [expr.cond]
3212 Otherwise, if the second and third operand have different types,
3213 and either has (possibly cv-qualified) class type, an attempt is
3214 made to convert each of those operands to the type of the other. */
3215 else if (!same_type_p (arg2_type, arg3_type)
3216 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3218 conversion *conv2;
3219 conversion *conv3;
3221 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3222 p = conversion_obstack_alloc (0);
3224 conv2 = conditional_conversion (arg2, arg3);
3225 conv3 = conditional_conversion (arg3, arg2);
3227 /* [expr.cond]
3229 If both can be converted, or one can be converted but the
3230 conversion is ambiguous, the program is ill-formed. If
3231 neither can be converted, the operands are left unchanged and
3232 further checking is performed as described below. If exactly
3233 one conversion is possible, that conversion is applied to the
3234 chosen operand and the converted operand is used in place of
3235 the original operand for the remainder of this section. */
3236 if ((conv2 && !conv2->bad_p
3237 && conv3 && !conv3->bad_p)
3238 || (conv2 && conv2->kind == ck_ambig)
3239 || (conv3 && conv3->kind == ck_ambig))
3241 error ("operands to ?: have different types");
3242 result = error_mark_node;
3244 else if (conv2 && !conv2->bad_p)
3246 arg2 = convert_like (conv2, arg2);
3247 arg2 = convert_from_reference (arg2);
3248 arg2_type = TREE_TYPE (arg2);
3250 else if (conv3 && !conv3->bad_p)
3252 arg3 = convert_like (conv3, arg3);
3253 arg3 = convert_from_reference (arg3);
3254 arg3_type = TREE_TYPE (arg3);
3257 /* Free all the conversions we allocated. */
3258 obstack_free (&conversion_obstack, p);
3260 if (result)
3261 return result;
3263 /* If, after the conversion, both operands have class type,
3264 treat the cv-qualification of both operands as if it were the
3265 union of the cv-qualification of the operands.
3267 The standard is not clear about what to do in this
3268 circumstance. For example, if the first operand has type
3269 "const X" and the second operand has a user-defined
3270 conversion to "volatile X", what is the type of the second
3271 operand after this step? Making it be "const X" (matching
3272 the first operand) seems wrong, as that discards the
3273 qualification without actually performing a copy. Leaving it
3274 as "volatile X" seems wrong as that will result in the
3275 conditional expression failing altogether, even though,
3276 according to this step, the one operand could be converted to
3277 the type of the other. */
3278 if ((conv2 || conv3)
3279 && CLASS_TYPE_P (arg2_type)
3280 && TYPE_QUALS (arg2_type) != TYPE_QUALS (arg3_type))
3281 arg2_type = arg3_type =
3282 cp_build_qualified_type (arg2_type,
3283 TYPE_QUALS (arg2_type)
3284 | TYPE_QUALS (arg3_type));
3287 /* [expr.cond]
3289 If the second and third operands are lvalues and have the same
3290 type, the result is of that type and is an lvalue. */
3291 if (real_lvalue_p (arg2)
3292 && real_lvalue_p (arg3)
3293 && same_type_p (arg2_type, arg3_type))
3295 result_type = arg2_type;
3296 goto valid_operands;
3299 /* [expr.cond]
3301 Otherwise, the result is an rvalue. If the second and third
3302 operand do not have the same type, and either has (possibly
3303 cv-qualified) class type, overload resolution is used to
3304 determine the conversions (if any) to be applied to the operands
3305 (_over.match.oper_, _over.built_). */
3306 lvalue_p = false;
3307 if (!same_type_p (arg2_type, arg3_type)
3308 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3310 tree args[3];
3311 conversion *conv;
3312 bool any_viable_p;
3314 /* Rearrange the arguments so that add_builtin_candidate only has
3315 to know about two args. In build_builtin_candidates, the
3316 arguments are unscrambled. */
3317 args[0] = arg2;
3318 args[1] = arg3;
3319 args[2] = arg1;
3320 add_builtin_candidates (&candidates,
3321 COND_EXPR,
3322 NOP_EXPR,
3323 ansi_opname (COND_EXPR),
3324 args,
3325 LOOKUP_NORMAL);
3327 /* [expr.cond]
3329 If the overload resolution fails, the program is
3330 ill-formed. */
3331 candidates = splice_viable (candidates, pedantic, &any_viable_p);
3332 if (!any_viable_p)
3334 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3335 print_z_candidates (candidates);
3336 return error_mark_node;
3338 cand = tourney (candidates);
3339 if (!cand)
3341 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3342 print_z_candidates (candidates);
3343 return error_mark_node;
3346 /* [expr.cond]
3348 Otherwise, the conversions thus determined are applied, and
3349 the converted operands are used in place of the original
3350 operands for the remainder of this section. */
3351 conv = cand->convs[0];
3352 arg1 = convert_like (conv, arg1);
3353 conv = cand->convs[1];
3354 arg2 = convert_like (conv, arg2);
3355 conv = cand->convs[2];
3356 arg3 = convert_like (conv, arg3);
3359 /* [expr.cond]
3361 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3362 and function-to-pointer (_conv.func_) standard conversions are
3363 performed on the second and third operands.
3365 We need to force the lvalue-to-rvalue conversion here for class types,
3366 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3367 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3368 regions. */
3370 arg2 = force_rvalue (arg2);
3371 if (!CLASS_TYPE_P (arg2_type))
3372 arg2_type = TREE_TYPE (arg2);
3374 arg3 = force_rvalue (arg3);
3375 if (!CLASS_TYPE_P (arg2_type))
3376 arg3_type = TREE_TYPE (arg3);
3378 if (arg2 == error_mark_node || arg3 == error_mark_node)
3379 return error_mark_node;
3381 /* [expr.cond]
3383 After those conversions, one of the following shall hold:
3385 --The second and third operands have the same type; the result is of
3386 that type. */
3387 if (same_type_p (arg2_type, arg3_type))
3388 result_type = arg2_type;
3389 /* [expr.cond]
3391 --The second and third operands have arithmetic or enumeration
3392 type; the usual arithmetic conversions are performed to bring
3393 them to a common type, and the result is of that type. */
3394 else if ((ARITHMETIC_TYPE_P (arg2_type)
3395 || TREE_CODE (arg2_type) == ENUMERAL_TYPE)
3396 && (ARITHMETIC_TYPE_P (arg3_type)
3397 || TREE_CODE (arg3_type) == ENUMERAL_TYPE))
3399 /* In this case, there is always a common type. */
3400 result_type = type_after_usual_arithmetic_conversions (arg2_type,
3401 arg3_type);
3403 if (TREE_CODE (arg2_type) == ENUMERAL_TYPE
3404 && TREE_CODE (arg3_type) == ENUMERAL_TYPE)
3405 warning ("enumeral mismatch in conditional expression: %qT vs %qT",
3406 arg2_type, arg3_type);
3407 else if (extra_warnings
3408 && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE
3409 && !same_type_p (arg3_type, type_promotes_to (arg2_type)))
3410 || (TREE_CODE (arg3_type) == ENUMERAL_TYPE
3411 && !same_type_p (arg2_type, type_promotes_to (arg3_type)))))
3412 warning ("enumeral and non-enumeral type in conditional expression");
3414 arg2 = perform_implicit_conversion (result_type, arg2);
3415 arg3 = perform_implicit_conversion (result_type, arg3);
3417 /* [expr.cond]
3419 --The second and third operands have pointer type, or one has
3420 pointer type and the other is a null pointer constant; pointer
3421 conversions (_conv.ptr_) and qualification conversions
3422 (_conv.qual_) are performed to bring them to their composite
3423 pointer type (_expr.rel_). The result is of the composite
3424 pointer type.
3426 --The second and third operands have pointer to member type, or
3427 one has pointer to member type and the other is a null pointer
3428 constant; pointer to member conversions (_conv.mem_) and
3429 qualification conversions (_conv.qual_) are performed to bring
3430 them to a common type, whose cv-qualification shall match the
3431 cv-qualification of either the second or the third operand.
3432 The result is of the common type. */
3433 else if ((null_ptr_cst_p (arg2)
3434 && (TYPE_PTR_P (arg3_type) || TYPE_PTR_TO_MEMBER_P (arg3_type)))
3435 || (null_ptr_cst_p (arg3)
3436 && (TYPE_PTR_P (arg2_type) || TYPE_PTR_TO_MEMBER_P (arg2_type)))
3437 || (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type))
3438 || (TYPE_PTRMEM_P (arg2_type) && TYPE_PTRMEM_P (arg3_type))
3439 || (TYPE_PTRMEMFUNC_P (arg2_type) && TYPE_PTRMEMFUNC_P (arg3_type)))
3441 result_type = composite_pointer_type (arg2_type, arg3_type, arg2,
3442 arg3, "conditional expression");
3443 if (result_type == error_mark_node)
3444 return error_mark_node;
3445 arg2 = perform_implicit_conversion (result_type, arg2);
3446 arg3 = perform_implicit_conversion (result_type, arg3);
3449 if (!result_type)
3451 error ("operands to ?: have different types");
3452 return error_mark_node;
3455 valid_operands:
3456 result = fold_if_not_in_template (build3 (COND_EXPR, result_type, arg1,
3457 arg2, arg3));
3458 /* We can't use result_type below, as fold might have returned a
3459 throw_expr. */
3461 /* Expand both sides into the same slot, hopefully the target of the
3462 ?: expression. We used to check for TARGET_EXPRs here, but now we
3463 sometimes wrap them in NOP_EXPRs so the test would fail. */
3464 if (!lvalue_p && CLASS_TYPE_P (TREE_TYPE (result)))
3465 result = get_target_expr (result);
3467 /* If this expression is an rvalue, but might be mistaken for an
3468 lvalue, we must add a NON_LVALUE_EXPR. */
3469 if (!lvalue_p && real_lvalue_p (result))
3470 result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
3472 return result;
3475 /* OPERAND is an operand to an expression. Perform necessary steps
3476 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3477 returned. */
3479 static tree
3480 prep_operand (tree operand)
3482 if (operand)
3484 if (CLASS_TYPE_P (TREE_TYPE (operand))
3485 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand)))
3486 /* Make sure the template type is instantiated now. */
3487 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand)));
3490 return operand;
3493 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3494 OVERLOAD) to the CANDIDATES, returning an updated list of
3495 CANDIDATES. The ARGS are the arguments provided to the call,
3496 without any implicit object parameter. The EXPLICIT_TARGS are
3497 explicit template arguments provided. TEMPLATE_ONLY is true if
3498 only template functions should be considered. CONVERSION_PATH,
3499 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3501 static void
3502 add_candidates (tree fns, tree args,
3503 tree explicit_targs, bool template_only,
3504 tree conversion_path, tree access_path,
3505 int flags,
3506 struct z_candidate **candidates)
3508 tree ctype;
3509 tree non_static_args;
3511 ctype = conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE;
3512 /* Delay creating the implicit this parameter until it is needed. */
3513 non_static_args = NULL_TREE;
3515 while (fns)
3517 tree fn;
3518 tree fn_args;
3520 fn = OVL_CURRENT (fns);
3521 /* Figure out which set of arguments to use. */
3522 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
3524 /* If this function is a non-static member, prepend the implicit
3525 object parameter. */
3526 if (!non_static_args)
3527 non_static_args = tree_cons (NULL_TREE,
3528 build_this (TREE_VALUE (args)),
3529 TREE_CHAIN (args));
3530 fn_args = non_static_args;
3532 else
3533 /* Otherwise, just use the list of arguments provided. */
3534 fn_args = args;
3536 if (TREE_CODE (fn) == TEMPLATE_DECL)
3537 add_template_candidate (candidates,
3538 fn,
3539 ctype,
3540 explicit_targs,
3541 fn_args,
3542 NULL_TREE,
3543 access_path,
3544 conversion_path,
3545 flags,
3546 DEDUCE_CALL);
3547 else if (!template_only)
3548 add_function_candidate (candidates,
3550 ctype,
3551 fn_args,
3552 access_path,
3553 conversion_path,
3554 flags);
3555 fns = OVL_NEXT (fns);
3559 tree
3560 build_new_op (enum tree_code code, int flags, tree arg1, tree arg2, tree arg3,
3561 bool *overloaded_p)
3563 struct z_candidate *candidates = 0, *cand;
3564 tree arglist, fnname;
3565 tree args[3];
3566 tree result = NULL_TREE;
3567 bool result_valid_p = false;
3568 enum tree_code code2 = NOP_EXPR;
3569 conversion *conv;
3570 void *p;
3571 bool strict_p;
3572 bool any_viable_p;
3574 if (error_operand_p (arg1)
3575 || error_operand_p (arg2)
3576 || error_operand_p (arg3))
3577 return error_mark_node;
3579 if (code == MODIFY_EXPR)
3581 code2 = TREE_CODE (arg3);
3582 arg3 = NULL_TREE;
3583 fnname = ansi_assopname (code2);
3585 else
3586 fnname = ansi_opname (code);
3588 arg1 = prep_operand (arg1);
3590 switch (code)
3592 case NEW_EXPR:
3593 case VEC_NEW_EXPR:
3594 case VEC_DELETE_EXPR:
3595 case DELETE_EXPR:
3596 /* Use build_op_new_call and build_op_delete_call instead. */
3597 gcc_unreachable ();
3599 case CALL_EXPR:
3600 return build_object_call (arg1, arg2);
3602 default:
3603 break;
3606 arg2 = prep_operand (arg2);
3607 arg3 = prep_operand (arg3);
3609 if (code == COND_EXPR)
3611 if (arg2 == NULL_TREE
3612 || TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
3613 || TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
3614 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
3615 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
3616 goto builtin;
3618 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
3619 && (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
3620 goto builtin;
3622 if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
3623 arg2 = integer_zero_node;
3625 arglist = NULL_TREE;
3626 if (arg3)
3627 arglist = tree_cons (NULL_TREE, arg3, arglist);
3628 if (arg2)
3629 arglist = tree_cons (NULL_TREE, arg2, arglist);
3630 arglist = tree_cons (NULL_TREE, arg1, arglist);
3632 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3633 p = conversion_obstack_alloc (0);
3635 /* Add namespace-scope operators to the list of functions to
3636 consider. */
3637 add_candidates (lookup_function_nonclass (fnname, arglist, /*block_p=*/true),
3638 arglist, NULL_TREE, false, NULL_TREE, NULL_TREE,
3639 flags, &candidates);
3640 /* Add class-member operators to the candidate set. */
3641 if (CLASS_TYPE_P (TREE_TYPE (arg1)))
3643 tree fns;
3645 fns = lookup_fnfields (TREE_TYPE (arg1), fnname, 1);
3646 if (fns == error_mark_node)
3648 result = error_mark_node;
3649 goto user_defined_result_ready;
3651 if (fns)
3652 add_candidates (BASELINK_FUNCTIONS (fns), arglist,
3653 NULL_TREE, false,
3654 BASELINK_BINFO (fns),
3655 TYPE_BINFO (TREE_TYPE (arg1)),
3656 flags, &candidates);
3659 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3660 to know about two args; a builtin candidate will always have a first
3661 parameter of type bool. We'll handle that in
3662 build_builtin_candidate. */
3663 if (code == COND_EXPR)
3665 args[0] = arg2;
3666 args[1] = arg3;
3667 args[2] = arg1;
3669 else
3671 args[0] = arg1;
3672 args[1] = arg2;
3673 args[2] = NULL_TREE;
3676 add_builtin_candidates (&candidates, code, code2, fnname, args, flags);
3678 switch (code)
3680 case COMPOUND_EXPR:
3681 case ADDR_EXPR:
3682 /* For these, the built-in candidates set is empty
3683 [over.match.oper]/3. We don't want non-strict matches
3684 because exact matches are always possible with built-in
3685 operators. The built-in candidate set for COMPONENT_REF
3686 would be empty too, but since there are no such built-in
3687 operators, we accept non-strict matches for them. */
3688 strict_p = true;
3689 break;
3691 default:
3692 strict_p = pedantic;
3693 break;
3696 candidates = splice_viable (candidates, strict_p, &any_viable_p);
3697 if (!any_viable_p)
3699 switch (code)
3701 case POSTINCREMENT_EXPR:
3702 case POSTDECREMENT_EXPR:
3703 /* Look for an `operator++ (int)'. If they didn't have
3704 one, then we fall back to the old way of doing things. */
3705 if (flags & LOOKUP_COMPLAIN)
3706 pedwarn ("no %<%D(int)%> declared for postfix %qs, "
3707 "trying prefix operator instead",
3708 fnname,
3709 operator_name_info[code].name);
3710 if (code == POSTINCREMENT_EXPR)
3711 code = PREINCREMENT_EXPR;
3712 else
3713 code = PREDECREMENT_EXPR;
3714 result = build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE,
3715 overloaded_p);
3716 break;
3718 /* The caller will deal with these. */
3719 case ADDR_EXPR:
3720 case COMPOUND_EXPR:
3721 case COMPONENT_REF:
3722 result = NULL_TREE;
3723 result_valid_p = true;
3724 break;
3726 default:
3727 if (flags & LOOKUP_COMPLAIN)
3729 op_error (code, code2, arg1, arg2, arg3, "no match");
3730 print_z_candidates (candidates);
3732 result = error_mark_node;
3733 break;
3736 else
3738 cand = tourney (candidates);
3739 if (cand == 0)
3741 if (flags & LOOKUP_COMPLAIN)
3743 op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
3744 print_z_candidates (candidates);
3746 result = error_mark_node;
3748 else if (TREE_CODE (cand->fn) == FUNCTION_DECL)
3750 if (overloaded_p)
3751 *overloaded_p = true;
3753 result = build_over_call (cand, LOOKUP_NORMAL);
3755 else
3757 /* Give any warnings we noticed during overload resolution. */
3758 if (cand->warnings)
3760 struct candidate_warning *w;
3761 for (w = cand->warnings; w; w = w->next)
3762 joust (cand, w->loser, 1);
3765 /* Check for comparison of different enum types. */
3766 switch (code)
3768 case GT_EXPR:
3769 case LT_EXPR:
3770 case GE_EXPR:
3771 case LE_EXPR:
3772 case EQ_EXPR:
3773 case NE_EXPR:
3774 if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE
3775 && TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE
3776 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
3777 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
3779 warning ("comparison between %q#T and %q#T",
3780 TREE_TYPE (arg1), TREE_TYPE (arg2));
3782 break;
3783 default:
3784 break;
3787 /* We need to strip any leading REF_BIND so that bitfields
3788 don't cause errors. This should not remove any important
3789 conversions, because builtins don't apply to class
3790 objects directly. */
3791 conv = cand->convs[0];
3792 if (conv->kind == ck_ref_bind)
3793 conv = conv->u.next;
3794 arg1 = convert_like (conv, arg1);
3795 if (arg2)
3797 conv = cand->convs[1];
3798 if (conv->kind == ck_ref_bind)
3799 conv = conv->u.next;
3800 arg2 = convert_like (conv, arg2);
3802 if (arg3)
3804 conv = cand->convs[2];
3805 if (conv->kind == ck_ref_bind)
3806 conv = conv->u.next;
3807 arg3 = convert_like (conv, arg3);
3812 user_defined_result_ready:
3814 /* Free all the conversions we allocated. */
3815 obstack_free (&conversion_obstack, p);
3817 if (result || result_valid_p)
3818 return result;
3820 builtin:
3821 switch (code)
3823 case MODIFY_EXPR:
3824 return build_modify_expr (arg1, code2, arg2);
3826 case INDIRECT_REF:
3827 return build_indirect_ref (arg1, "unary *");
3829 case PLUS_EXPR:
3830 case MINUS_EXPR:
3831 case MULT_EXPR:
3832 case TRUNC_DIV_EXPR:
3833 case GT_EXPR:
3834 case LT_EXPR:
3835 case GE_EXPR:
3836 case LE_EXPR:
3837 case EQ_EXPR:
3838 case NE_EXPR:
3839 case MAX_EXPR:
3840 case MIN_EXPR:
3841 case LSHIFT_EXPR:
3842 case RSHIFT_EXPR:
3843 case TRUNC_MOD_EXPR:
3844 case BIT_AND_EXPR:
3845 case BIT_IOR_EXPR:
3846 case BIT_XOR_EXPR:
3847 case TRUTH_ANDIF_EXPR:
3848 case TRUTH_ORIF_EXPR:
3849 return cp_build_binary_op (code, arg1, arg2);
3851 case CONVERT_EXPR:
3852 case NEGATE_EXPR:
3853 case BIT_NOT_EXPR:
3854 case TRUTH_NOT_EXPR:
3855 case PREINCREMENT_EXPR:
3856 case POSTINCREMENT_EXPR:
3857 case PREDECREMENT_EXPR:
3858 case POSTDECREMENT_EXPR:
3859 case REALPART_EXPR:
3860 case IMAGPART_EXPR:
3861 return build_unary_op (code, arg1, candidates != 0);
3863 case ARRAY_REF:
3864 return build_array_ref (arg1, arg2);
3866 case COND_EXPR:
3867 return build_conditional_expr (arg1, arg2, arg3);
3869 case MEMBER_REF:
3870 return build_m_component_ref (build_indirect_ref (arg1, NULL), arg2);
3872 /* The caller will deal with these. */
3873 case ADDR_EXPR:
3874 case COMPONENT_REF:
3875 case COMPOUND_EXPR:
3876 return NULL_TREE;
3878 default:
3879 gcc_unreachable ();
3881 return NULL_TREE;
3884 /* Build a call to operator delete. This has to be handled very specially,
3885 because the restrictions on what signatures match are different from all
3886 other call instances. For a normal delete, only a delete taking (void *)
3887 or (void *, size_t) is accepted. For a placement delete, only an exact
3888 match with the placement new is accepted.
3890 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
3891 ADDR is the pointer to be deleted.
3892 SIZE is the size of the memory block to be deleted.
3893 GLOBAL_P is true if the delete-expression should not consider
3894 class-specific delete operators.
3895 PLACEMENT is the corresponding placement new call, or NULL_TREE. */
3897 tree
3898 build_op_delete_call (enum tree_code code, tree addr, tree size,
3899 bool global_p, tree placement)
3901 tree fn = NULL_TREE;
3902 tree fns, fnname, argtypes, args, type;
3903 int pass;
3905 if (addr == error_mark_node)
3906 return error_mark_node;
3908 type = strip_array_types (TREE_TYPE (TREE_TYPE (addr)));
3910 fnname = ansi_opname (code);
3912 if (CLASS_TYPE_P (type)
3913 && COMPLETE_TYPE_P (complete_type (type))
3914 && !global_p)
3915 /* In [class.free]
3917 If the result of the lookup is ambiguous or inaccessible, or if
3918 the lookup selects a placement deallocation function, the
3919 program is ill-formed.
3921 Therefore, we ask lookup_fnfields to complain about ambiguity. */
3923 fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
3924 if (fns == error_mark_node)
3925 return error_mark_node;
3927 else
3928 fns = NULL_TREE;
3930 if (fns == NULL_TREE)
3931 fns = lookup_name_nonclass (fnname);
3933 if (placement)
3935 tree alloc_fn;
3936 tree call_expr;
3938 /* Find the allocation function that is being called. */
3939 call_expr = placement;
3940 /* Extract the function. */
3941 alloc_fn = get_callee_fndecl (call_expr);
3942 gcc_assert (alloc_fn != NULL_TREE);
3943 /* Then the second parm type. */
3944 argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
3945 /* Also the second argument. */
3946 args = TREE_CHAIN (TREE_OPERAND (call_expr, 1));
3948 else
3950 /* First try it without the size argument. */
3951 argtypes = void_list_node;
3952 args = NULL_TREE;
3955 /* Strip const and volatile from addr. */
3956 addr = cp_convert (ptr_type_node, addr);
3958 /* We make two tries at finding a matching `operator delete'. On
3959 the first pass, we look for a one-operator (or placement)
3960 operator delete. If we're not doing placement delete, then on
3961 the second pass we look for a two-argument delete. */
3962 for (pass = 0; pass < (placement ? 1 : 2); ++pass)
3964 /* Go through the `operator delete' functions looking for one
3965 with a matching type. */
3966 for (fn = BASELINK_P (fns) ? BASELINK_FUNCTIONS (fns) : fns;
3967 fn;
3968 fn = OVL_NEXT (fn))
3970 tree t;
3972 /* The first argument must be "void *". */
3973 t = TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn)));
3974 if (!same_type_p (TREE_VALUE (t), ptr_type_node))
3975 continue;
3976 t = TREE_CHAIN (t);
3977 /* On the first pass, check the rest of the arguments. */
3978 if (pass == 0)
3980 tree a = argtypes;
3981 while (a && t)
3983 if (!same_type_p (TREE_VALUE (a), TREE_VALUE (t)))
3984 break;
3985 a = TREE_CHAIN (a);
3986 t = TREE_CHAIN (t);
3988 if (!a && !t)
3989 break;
3991 /* On the second pass, the second argument must be
3992 "size_t". */
3993 else if (pass == 1
3994 && same_type_p (TREE_VALUE (t), sizetype)
3995 && TREE_CHAIN (t) == void_list_node)
3996 break;
3999 /* If we found a match, we're done. */
4000 if (fn)
4001 break;
4004 /* If we have a matching function, call it. */
4005 if (fn)
4007 /* Make sure we have the actual function, and not an
4008 OVERLOAD. */
4009 fn = OVL_CURRENT (fn);
4011 /* If the FN is a member function, make sure that it is
4012 accessible. */
4013 if (DECL_CLASS_SCOPE_P (fn))
4014 perform_or_defer_access_check (TYPE_BINFO (type), fn);
4016 if (pass == 0)
4017 args = tree_cons (NULL_TREE, addr, args);
4018 else
4019 args = tree_cons (NULL_TREE, addr,
4020 build_tree_list (NULL_TREE, size));
4022 if (placement)
4024 /* The placement args might not be suitable for overload
4025 resolution at this point, so build the call directly. */
4026 mark_used (fn);
4027 return build_cxx_call (fn, args);
4029 else
4030 return build_function_call (fn, args);
4033 /* If we are doing placement delete we do nothing if we don't find a
4034 matching op delete. */
4035 if (placement)
4036 return NULL_TREE;
4038 error ("no suitable %<operator %s> for %qT",
4039 operator_name_info[(int)code].name, type);
4040 return error_mark_node;
4043 /* If the current scope isn't allowed to access DECL along
4044 BASETYPE_PATH, give an error. The most derived class in
4045 BASETYPE_PATH is the one used to qualify DECL. */
4047 bool
4048 enforce_access (tree basetype_path, tree decl)
4050 gcc_assert (TREE_CODE (basetype_path) == TREE_BINFO);
4052 if (!accessible_p (basetype_path, decl, true))
4054 if (TREE_PRIVATE (decl))
4055 cp_error_at ("%q+#D is private", decl);
4056 else if (TREE_PROTECTED (decl))
4057 cp_error_at ("%q+#D is protected", decl);
4058 else
4059 cp_error_at ("%q+#D is inaccessible", decl);
4060 error ("within this context");
4061 return false;
4064 return true;
4067 /* Check that a callable constructor to initialize a temporary of
4068 TYPE from an EXPR exists. */
4070 static void
4071 check_constructor_callable (tree type, tree expr)
4073 build_special_member_call (NULL_TREE,
4074 complete_ctor_identifier,
4075 build_tree_list (NULL_TREE, expr),
4076 type,
4077 LOOKUP_NORMAL | LOOKUP_ONLYCONVERTING
4078 | LOOKUP_NO_CONVERSION
4079 | LOOKUP_CONSTRUCTOR_CALLABLE);
4082 /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
4083 bitwise or of LOOKUP_* values. If any errors are warnings are
4084 generated, set *DIAGNOSTIC_FN to "error" or "warning",
4085 respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
4086 to NULL. */
4088 static tree
4089 build_temp (tree expr, tree type, int flags,
4090 void (**diagnostic_fn)(const char *, ...))
4092 int savew, savee;
4094 savew = warningcount, savee = errorcount;
4095 expr = build_special_member_call (NULL_TREE,
4096 complete_ctor_identifier,
4097 build_tree_list (NULL_TREE, expr),
4098 type, flags);
4099 if (warningcount > savew)
4100 *diagnostic_fn = warning;
4101 else if (errorcount > savee)
4102 *diagnostic_fn = error;
4103 else
4104 *diagnostic_fn = NULL;
4105 return expr;
4109 /* Perform the conversions in CONVS on the expression EXPR. FN and
4110 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
4111 indicates the `this' argument of a method. INNER is nonzero when
4112 being called to continue a conversion chain. It is negative when a
4113 reference binding will be applied, positive otherwise. If
4114 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
4115 conversions will be emitted if appropriate. If C_CAST_P is true,
4116 this conversion is coming from a C-style cast; in that case,
4117 conversions to inaccessible bases are permitted. */
4119 static tree
4120 convert_like_real (conversion *convs, tree expr, tree fn, int argnum,
4121 int inner, bool issue_conversion_warnings,
4122 bool c_cast_p)
4124 tree totype = convs->type;
4125 void (*diagnostic_fn)(const char *, ...);
4127 if (convs->bad_p
4128 && convs->kind != ck_user
4129 && convs->kind != ck_ambig
4130 && convs->kind != ck_ref_bind)
4132 conversion *t = convs;
4133 for (; t; t = convs->u.next)
4135 if (t->kind == ck_user || !t->bad_p)
4137 expr = convert_like_real (t, expr, fn, argnum, 1,
4138 /*issue_conversion_warnings=*/false,
4139 /*c_cast_p=*/false);
4140 break;
4142 else if (t->kind == ck_ambig)
4143 return convert_like_real (t, expr, fn, argnum, 1,
4144 /*issue_conversion_warnings=*/false,
4145 /*c_cast_p=*/false);
4146 else if (t->kind == ck_identity)
4147 break;
4149 pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr), totype);
4150 if (fn)
4151 pedwarn (" initializing argument %P of %qD", argnum, fn);
4152 return cp_convert (totype, expr);
4155 if (issue_conversion_warnings)
4157 tree t = non_reference (totype);
4159 /* Issue warnings about peculiar, but valid, uses of NULL. */
4160 if (ARITHMETIC_TYPE_P (t) && expr == null_node)
4162 if (fn)
4163 warning ("passing NULL to non-pointer argument %P of %qD",
4164 argnum, fn);
4165 else
4166 warning ("converting to non-pointer type %qT from NULL", t);
4169 /* Warn about assigning a floating-point type to an integer type. */
4170 if (TREE_CODE (TREE_TYPE (expr)) == REAL_TYPE
4171 && TREE_CODE (t) == INTEGER_TYPE)
4173 if (fn)
4174 warning ("passing %qT for argument %P to %qD",
4175 TREE_TYPE (expr), argnum, fn);
4176 else
4177 warning ("converting to %qT from %qT", t, TREE_TYPE (expr));
4179 /* And warn about assigning a negative value to an unsigned
4180 variable. */
4181 else if (TYPE_UNSIGNED (t) && TREE_CODE (t) != BOOLEAN_TYPE)
4183 if (TREE_CODE (expr) == INTEGER_CST && TREE_NEGATED_INT (expr))
4185 if (fn)
4186 warning ("passing negative value %qE for argument %P to %qD",
4187 expr, argnum, fn);
4188 else
4189 warning ("converting negative value %qE to %qT", expr, t);
4192 overflow_warning (expr);
4196 switch (convs->kind)
4198 case ck_user:
4200 struct z_candidate *cand = convs->cand;
4201 tree convfn = cand->fn;
4202 tree args;
4204 if (DECL_CONSTRUCTOR_P (convfn))
4206 tree t = build_int_cst (build_pointer_type (DECL_CONTEXT (convfn)),
4209 args = build_tree_list (NULL_TREE, expr);
4210 /* We should never try to call the abstract or base constructor
4211 from here. */
4212 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (convfn)
4213 && !DECL_HAS_VTT_PARM_P (convfn));
4214 args = tree_cons (NULL_TREE, t, args);
4216 else
4217 args = build_this (expr);
4218 expr = build_over_call (cand, LOOKUP_NORMAL);
4220 /* If this is a constructor or a function returning an aggr type,
4221 we need to build up a TARGET_EXPR. */
4222 if (DECL_CONSTRUCTOR_P (convfn))
4223 expr = build_cplus_new (totype, expr);
4225 /* The result of the call is then used to direct-initialize the object
4226 that is the destination of the copy-initialization. [dcl.init]
4228 Note that this step is not reflected in the conversion sequence;
4229 it affects the semantics when we actually perform the
4230 conversion, but is not considered during overload resolution.
4232 If the target is a class, that means call a ctor. */
4233 if (IS_AGGR_TYPE (totype)
4234 && (inner >= 0 || !lvalue_p (expr)))
4236 expr = (build_temp
4237 (expr, totype,
4238 /* Core issue 84, now a DR, says that we don't
4239 allow UDCs for these args (which deliberately
4240 breaks copy-init of an auto_ptr<Base> from an
4241 auto_ptr<Derived>). */
4242 LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION,
4243 &diagnostic_fn));
4245 if (diagnostic_fn)
4247 if (fn)
4248 diagnostic_fn
4249 (" initializing argument %P of %qD from result of %qD",
4250 argnum, fn, convfn);
4251 else
4252 diagnostic_fn
4253 (" initializing temporary from result of %qD", convfn);
4255 expr = build_cplus_new (totype, expr);
4257 return expr;
4259 case ck_identity:
4260 if (type_unknown_p (expr))
4261 expr = instantiate_type (totype, expr, tf_error | tf_warning);
4262 /* Convert a constant to its underlying value, unless we are
4263 about to bind it to a reference, in which case we need to
4264 leave it as an lvalue. */
4265 if (inner >= 0)
4266 expr = integral_constant_value (expr);
4267 if (convs->check_copy_constructor_p)
4268 check_constructor_callable (totype, expr);
4269 return expr;
4270 case ck_ambig:
4271 /* Call build_user_type_conversion again for the error. */
4272 return build_user_type_conversion
4273 (totype, convs->u.expr, LOOKUP_NORMAL);
4275 default:
4276 break;
4279 expr = convert_like_real (convs->u.next, expr, fn, argnum,
4280 convs->kind == ck_ref_bind ? -1 : 1,
4281 /*issue_conversion_warnings=*/false,
4282 c_cast_p);
4283 if (expr == error_mark_node)
4284 return error_mark_node;
4286 switch (convs->kind)
4288 case ck_rvalue:
4289 if (! IS_AGGR_TYPE (totype))
4290 return expr;
4291 /* Else fall through. */
4292 case ck_base:
4293 if (convs->kind == ck_base && !convs->need_temporary_p)
4295 /* We are going to bind a reference directly to a base-class
4296 subobject of EXPR. */
4297 if (convs->check_copy_constructor_p)
4298 check_constructor_callable (TREE_TYPE (expr), expr);
4299 /* Build an expression for `*((base*) &expr)'. */
4300 expr = build_unary_op (ADDR_EXPR, expr, 0);
4301 expr = convert_to_base (expr, build_pointer_type (totype),
4302 !c_cast_p, /*nonnull=*/true);
4303 expr = build_indirect_ref (expr, "implicit conversion");
4304 return expr;
4307 /* Copy-initialization where the cv-unqualified version of the source
4308 type is the same class as, or a derived class of, the class of the
4309 destination [is treated as direct-initialization]. [dcl.init] */
4310 expr = build_temp (expr, totype, LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING,
4311 &diagnostic_fn);
4312 if (diagnostic_fn && fn)
4313 diagnostic_fn (" initializing argument %P of %qD", argnum, fn);
4314 return build_cplus_new (totype, expr);
4316 case ck_ref_bind:
4318 tree ref_type = totype;
4320 /* If necessary, create a temporary. */
4321 if (convs->need_temporary_p || !lvalue_p (expr))
4323 tree type = convs->u.next->type;
4324 cp_lvalue_kind lvalue = real_lvalue_p (expr);
4326 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type)))
4328 /* If the reference is volatile or non-const, we
4329 cannot create a temporary. */
4330 if (lvalue & clk_bitfield)
4331 error ("cannot bind bitfield %qE to %qT",
4332 expr, ref_type);
4333 else if (lvalue & clk_packed)
4334 error ("cannot bind packed field %qE to %qT",
4335 expr, ref_type);
4336 else
4337 error ("cannot bind rvalue %qE to %qT", expr, ref_type);
4338 return error_mark_node;
4340 /* If the source is a packed field, and we must use a copy
4341 constructor, then building the target expr will require
4342 binding the field to the reference parameter to the
4343 copy constructor, and we'll end up with an infinite
4344 loop. If we can use a bitwise copy, then we'll be
4345 OK. */
4346 if ((lvalue & clk_packed)
4347 && CLASS_TYPE_P (type)
4348 && !TYPE_HAS_TRIVIAL_INIT_REF (type))
4350 error ("cannot bind packed field %qE to %qT",
4351 expr, ref_type);
4352 return error_mark_node;
4354 expr = build_target_expr_with_type (expr, type);
4357 /* Take the address of the thing to which we will bind the
4358 reference. */
4359 expr = build_unary_op (ADDR_EXPR, expr, 1);
4360 if (expr == error_mark_node)
4361 return error_mark_node;
4363 /* Convert it to a pointer to the type referred to by the
4364 reference. This will adjust the pointer if a derived to
4365 base conversion is being performed. */
4366 expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)),
4367 expr);
4368 /* Convert the pointer to the desired reference type. */
4369 return build_nop (ref_type, expr);
4372 case ck_lvalue:
4373 return decay_conversion (expr);
4375 case ck_qual:
4376 /* Warn about deprecated conversion if appropriate. */
4377 string_conv_p (totype, expr, 1);
4378 break;
4380 case ck_ptr:
4381 if (convs->base_p)
4382 expr = convert_to_base (expr, totype, !c_cast_p,
4383 /*nonnull=*/false);
4384 return build_nop (totype, expr);
4386 case ck_pmem:
4387 return convert_ptrmem (totype, expr, /*allow_inverse_p=*/false,
4388 c_cast_p);
4390 default:
4391 break;
4393 return ocp_convert (totype, expr, CONV_IMPLICIT,
4394 LOOKUP_NORMAL|LOOKUP_NO_CONVERSION);
4397 /* Build a call to __builtin_trap. */
4399 static tree
4400 call_builtin_trap (void)
4402 tree fn = implicit_built_in_decls[BUILT_IN_TRAP];
4404 gcc_assert (fn != NULL);
4405 fn = build_call (fn, NULL_TREE);
4406 return fn;
4409 /* ARG is being passed to a varargs function. Perform any conversions
4410 required. Return the converted value. */
4412 tree
4413 convert_arg_to_ellipsis (tree arg)
4415 /* [expr.call]
4417 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4418 standard conversions are performed. */
4419 arg = decay_conversion (arg);
4420 /* [expr.call]
4422 If the argument has integral or enumeration type that is subject
4423 to the integral promotions (_conv.prom_), or a floating point
4424 type that is subject to the floating point promotion
4425 (_conv.fpprom_), the value of the argument is converted to the
4426 promoted type before the call. */
4427 if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
4428 && (TYPE_PRECISION (TREE_TYPE (arg))
4429 < TYPE_PRECISION (double_type_node)))
4430 arg = convert_to_real (double_type_node, arg);
4431 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg)))
4432 arg = perform_integral_promotions (arg);
4434 arg = require_complete_type (arg);
4436 if (arg != error_mark_node
4437 && !pod_type_p (TREE_TYPE (arg)))
4439 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4440 here and do a bitwise copy, but now cp_expr_size will abort if we
4441 try to do that.
4442 If the call appears in the context of a sizeof expression,
4443 there is no need to emit a warning, since the expression won't be
4444 evaluated. We keep the builtin_trap just as a safety check. */
4445 if (!skip_evaluation)
4446 warning ("cannot pass objects of non-POD type %q#T through %<...%>; "
4447 "call will abort at runtime", TREE_TYPE (arg));
4448 arg = call_builtin_trap ();
4449 arg = build2 (COMPOUND_EXPR, integer_type_node, arg,
4450 integer_zero_node);
4453 return arg;
4456 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4458 tree
4459 build_x_va_arg (tree expr, tree type)
4461 if (processing_template_decl)
4462 return build_min (VA_ARG_EXPR, type, expr);
4464 type = complete_type_or_else (type, NULL_TREE);
4466 if (expr == error_mark_node || !type)
4467 return error_mark_node;
4469 if (! pod_type_p (type))
4471 /* Undefined behavior [expr.call] 5.2.2/7. */
4472 warning ("cannot receive objects of non-POD type %q#T through %<...%>; "
4473 "call will abort at runtime", type);
4474 expr = convert (build_pointer_type (type), null_node);
4475 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr),
4476 call_builtin_trap (), expr);
4477 expr = build_indirect_ref (expr, NULL);
4478 return expr;
4481 return build_va_arg (expr, type);
4484 /* TYPE has been given to va_arg. Apply the default conversions which
4485 would have happened when passed via ellipsis. Return the promoted
4486 type, or the passed type if there is no change. */
4488 tree
4489 cxx_type_promotes_to (tree type)
4491 tree promote;
4493 /* Perform the array-to-pointer and function-to-pointer
4494 conversions. */
4495 type = type_decays_to (type);
4497 promote = type_promotes_to (type);
4498 if (same_type_p (type, promote))
4499 promote = type;
4501 return promote;
4504 /* ARG is a default argument expression being passed to a parameter of
4505 the indicated TYPE, which is a parameter to FN. Do any required
4506 conversions. Return the converted value. */
4508 tree
4509 convert_default_arg (tree type, tree arg, tree fn, int parmnum)
4511 /* If the ARG is an unparsed default argument expression, the
4512 conversion cannot be performed. */
4513 if (TREE_CODE (arg) == DEFAULT_ARG)
4515 error ("the default argument for parameter %d of %qD has "
4516 "not yet been parsed",
4517 parmnum, fn);
4518 return error_mark_node;
4521 if (fn && DECL_TEMPLATE_INFO (fn))
4522 arg = tsubst_default_argument (fn, type, arg);
4524 arg = break_out_target_exprs (arg);
4526 if (TREE_CODE (arg) == CONSTRUCTOR)
4528 arg = digest_init (type, arg, 0);
4529 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4530 "default argument", fn, parmnum);
4532 else
4534 /* This could get clobbered by the following call. */
4535 if (TREE_HAS_CONSTRUCTOR (arg))
4536 arg = copy_node (arg);
4538 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4539 "default argument", fn, parmnum);
4540 arg = convert_for_arg_passing (type, arg);
4543 return arg;
4546 /* Returns the type which will really be used for passing an argument of
4547 type TYPE. */
4549 tree
4550 type_passed_as (tree type)
4552 /* Pass classes with copy ctors by invisible reference. */
4553 if (TREE_ADDRESSABLE (type))
4555 type = build_reference_type (type);
4556 /* There are no other pointers to this temporary. */
4557 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
4559 else if (targetm.calls.promote_prototypes (type)
4560 && INTEGRAL_TYPE_P (type)
4561 && COMPLETE_TYPE_P (type)
4562 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4563 TYPE_SIZE (integer_type_node)))
4564 type = integer_type_node;
4566 return type;
4569 /* Actually perform the appropriate conversion. */
4571 tree
4572 convert_for_arg_passing (tree type, tree val)
4574 if (val == error_mark_node)
4576 /* Pass classes with copy ctors by invisible reference. */
4577 else if (TREE_ADDRESSABLE (type))
4578 val = build1 (ADDR_EXPR, build_reference_type (type), val);
4579 else if (targetm.calls.promote_prototypes (type)
4580 && INTEGRAL_TYPE_P (type)
4581 && COMPLETE_TYPE_P (type)
4582 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4583 TYPE_SIZE (integer_type_node)))
4584 val = perform_integral_promotions (val);
4585 return val;
4588 /* Returns true iff FN is a function with magic varargs, i.e. ones for
4589 which no conversions at all should be done. This is true for some
4590 builtins which don't act like normal functions. */
4592 static bool
4593 magic_varargs_p (tree fn)
4595 if (DECL_BUILT_IN (fn))
4596 switch (DECL_FUNCTION_CODE (fn))
4598 case BUILT_IN_CLASSIFY_TYPE:
4599 case BUILT_IN_CONSTANT_P:
4600 case BUILT_IN_NEXT_ARG:
4601 case BUILT_IN_STDARG_START:
4602 case BUILT_IN_VA_START:
4603 return true;
4605 default:;
4608 return false;
4611 /* Subroutine of the various build_*_call functions. Overload resolution
4612 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4613 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4614 bitmask of various LOOKUP_* flags which apply to the call itself. */
4616 static tree
4617 build_over_call (struct z_candidate *cand, int flags)
4619 tree fn = cand->fn;
4620 tree args = cand->args;
4621 conversion **convs = cand->convs;
4622 conversion *conv;
4623 tree converted_args = NULL_TREE;
4624 tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
4625 tree arg, val;
4626 int i = 0;
4627 int is_method = 0;
4629 /* In a template, there is no need to perform all of the work that
4630 is normally done. We are only interested in the type of the call
4631 expression, i.e., the return type of the function. Any semantic
4632 errors will be deferred until the template is instantiated. */
4633 if (processing_template_decl)
4635 tree expr;
4636 tree return_type;
4637 return_type = TREE_TYPE (TREE_TYPE (fn));
4638 expr = build3 (CALL_EXPR, return_type, fn, args, NULL_TREE);
4639 if (TREE_THIS_VOLATILE (fn) && cfun)
4640 current_function_returns_abnormally = 1;
4641 if (!VOID_TYPE_P (return_type))
4642 require_complete_type (return_type);
4643 return convert_from_reference (expr);
4646 /* Give any warnings we noticed during overload resolution. */
4647 if (cand->warnings)
4649 struct candidate_warning *w;
4650 for (w = cand->warnings; w; w = w->next)
4651 joust (cand, w->loser, 1);
4654 if (DECL_FUNCTION_MEMBER_P (fn))
4656 /* If FN is a template function, two cases must be considered.
4657 For example:
4659 struct A {
4660 protected:
4661 template <class T> void f();
4663 template <class T> struct B {
4664 protected:
4665 void g();
4667 struct C : A, B<int> {
4668 using A::f; // #1
4669 using B<int>::g; // #2
4672 In case #1 where `A::f' is a member template, DECL_ACCESS is
4673 recorded in the primary template but not in its specialization.
4674 We check access of FN using its primary template.
4676 In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
4677 because it is a member of class template B, DECL_ACCESS is
4678 recorded in the specialization `B<int>::g'. We cannot use its
4679 primary template because `B<T>::g' and `B<int>::g' may have
4680 different access. */
4681 if (DECL_TEMPLATE_INFO (fn)
4682 && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn)))
4683 perform_or_defer_access_check (cand->access_path,
4684 DECL_TI_TEMPLATE (fn));
4685 else
4686 perform_or_defer_access_check (cand->access_path, fn);
4689 if (args && TREE_CODE (args) != TREE_LIST)
4690 args = build_tree_list (NULL_TREE, args);
4691 arg = args;
4693 /* The implicit parameters to a constructor are not considered by overload
4694 resolution, and must be of the proper type. */
4695 if (DECL_CONSTRUCTOR_P (fn))
4697 converted_args = tree_cons (NULL_TREE, TREE_VALUE (arg), converted_args);
4698 arg = TREE_CHAIN (arg);
4699 parm = TREE_CHAIN (parm);
4700 /* We should never try to call the abstract constructor. */
4701 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn));
4703 if (DECL_HAS_VTT_PARM_P (fn))
4705 converted_args = tree_cons
4706 (NULL_TREE, TREE_VALUE (arg), converted_args);
4707 arg = TREE_CHAIN (arg);
4708 parm = TREE_CHAIN (parm);
4711 /* Bypass access control for 'this' parameter. */
4712 else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
4714 tree parmtype = TREE_VALUE (parm);
4715 tree argtype = TREE_TYPE (TREE_VALUE (arg));
4716 tree converted_arg;
4717 tree base_binfo;
4719 if (convs[i]->bad_p)
4720 pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
4721 TREE_TYPE (argtype), fn);
4723 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4724 X is called for an object that is not of type X, or of a type
4725 derived from X, the behavior is undefined.
4727 So we can assume that anything passed as 'this' is non-null, and
4728 optimize accordingly. */
4729 gcc_assert (TREE_CODE (parmtype) == POINTER_TYPE);
4730 /* Convert to the base in which the function was declared. */
4731 gcc_assert (cand->conversion_path != NULL_TREE);
4732 converted_arg = build_base_path (PLUS_EXPR,
4733 TREE_VALUE (arg),
4734 cand->conversion_path,
4736 /* Check that the base class is accessible. */
4737 if (!accessible_base_p (TREE_TYPE (argtype),
4738 BINFO_TYPE (cand->conversion_path), true))
4739 error ("%qT is not an accessible base of %qT",
4740 BINFO_TYPE (cand->conversion_path),
4741 TREE_TYPE (argtype));
4742 /* If fn was found by a using declaration, the conversion path
4743 will be to the derived class, not the base declaring fn. We
4744 must convert from derived to base. */
4745 base_binfo = lookup_base (TREE_TYPE (TREE_TYPE (converted_arg)),
4746 TREE_TYPE (parmtype), ba_unique, NULL);
4747 converted_arg = build_base_path (PLUS_EXPR, converted_arg,
4748 base_binfo, 1);
4750 converted_args = tree_cons (NULL_TREE, converted_arg, converted_args);
4751 parm = TREE_CHAIN (parm);
4752 arg = TREE_CHAIN (arg);
4753 ++i;
4754 is_method = 1;
4757 for (; arg && parm;
4758 parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
4760 tree type = TREE_VALUE (parm);
4762 conv = convs[i];
4763 val = convert_like_with_context
4764 (conv, TREE_VALUE (arg), fn, i - is_method);
4766 val = convert_for_arg_passing (type, val);
4767 converted_args = tree_cons (NULL_TREE, val, converted_args);
4770 /* Default arguments */
4771 for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm), i++)
4772 converted_args
4773 = tree_cons (NULL_TREE,
4774 convert_default_arg (TREE_VALUE (parm),
4775 TREE_PURPOSE (parm),
4776 fn, i - is_method),
4777 converted_args);
4779 /* Ellipsis */
4780 for (; arg; arg = TREE_CHAIN (arg))
4782 tree a = TREE_VALUE (arg);
4783 if (magic_varargs_p (fn))
4784 /* Do no conversions for magic varargs. */;
4785 else
4786 a = convert_arg_to_ellipsis (a);
4787 converted_args = tree_cons (NULL_TREE, a, converted_args);
4790 converted_args = nreverse (converted_args);
4792 check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn)),
4793 converted_args);
4795 /* Avoid actually calling copy constructors and copy assignment operators,
4796 if possible. */
4798 if (! flag_elide_constructors)
4799 /* Do things the hard way. */;
4800 else if (cand->num_convs == 1 && DECL_COPY_CONSTRUCTOR_P (fn))
4802 tree targ;
4803 arg = skip_artificial_parms_for (fn, converted_args);
4804 arg = TREE_VALUE (arg);
4806 /* Pull out the real argument, disregarding const-correctness. */
4807 targ = arg;
4808 while (TREE_CODE (targ) == NOP_EXPR
4809 || TREE_CODE (targ) == NON_LVALUE_EXPR
4810 || TREE_CODE (targ) == CONVERT_EXPR)
4811 targ = TREE_OPERAND (targ, 0);
4812 if (TREE_CODE (targ) == ADDR_EXPR)
4814 targ = TREE_OPERAND (targ, 0);
4815 if (!same_type_ignoring_top_level_qualifiers_p
4816 (TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ)))
4817 targ = NULL_TREE;
4819 else
4820 targ = NULL_TREE;
4822 if (targ)
4823 arg = targ;
4824 else
4825 arg = build_indirect_ref (arg, 0);
4827 /* [class.copy]: the copy constructor is implicitly defined even if
4828 the implementation elided its use. */
4829 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
4830 mark_used (fn);
4832 /* If we're creating a temp and we already have one, don't create a
4833 new one. If we're not creating a temp but we get one, use
4834 INIT_EXPR to collapse the temp into our target. Otherwise, if the
4835 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
4836 temp or an INIT_EXPR otherwise. */
4837 if (integer_zerop (TREE_VALUE (args)))
4839 if (TREE_CODE (arg) == TARGET_EXPR)
4840 return arg;
4841 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
4842 return build_target_expr_with_type (arg, DECL_CONTEXT (fn));
4844 else if (TREE_CODE (arg) == TARGET_EXPR
4845 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
4847 tree to = stabilize_reference
4848 (build_indirect_ref (TREE_VALUE (args), 0));
4850 val = build2 (INIT_EXPR, DECL_CONTEXT (fn), to, arg);
4851 return val;
4854 else if (DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR
4855 && copy_fn_p (fn)
4856 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn)))
4858 tree to = stabilize_reference
4859 (build_indirect_ref (TREE_VALUE (converted_args), 0));
4860 tree type = TREE_TYPE (to);
4861 tree as_base = CLASSTYPE_AS_BASE (type);
4863 arg = TREE_VALUE (TREE_CHAIN (converted_args));
4864 if (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (as_base)))
4866 arg = build_indirect_ref (arg, 0);
4867 val = build2 (MODIFY_EXPR, TREE_TYPE (to), to, arg);
4869 else
4871 /* We must only copy the non-tail padding parts.
4872 Use __builtin_memcpy for the bitwise copy. */
4874 tree args, t;
4876 args = tree_cons (NULL, TYPE_SIZE_UNIT (as_base), NULL);
4877 args = tree_cons (NULL, arg, args);
4878 t = build_unary_op (ADDR_EXPR, to, 0);
4879 args = tree_cons (NULL, t, args);
4880 t = implicit_built_in_decls[BUILT_IN_MEMCPY];
4881 t = build_call (t, args);
4883 t = convert (TREE_TYPE (TREE_VALUE (args)), t);
4884 val = build_indirect_ref (t, 0);
4887 return val;
4890 mark_used (fn);
4892 if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
4894 tree t, *p = &TREE_VALUE (converted_args);
4895 tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (*p)),
4896 DECL_CONTEXT (fn),
4897 ba_any, NULL);
4898 gcc_assert (binfo && binfo != error_mark_node);
4900 *p = build_base_path (PLUS_EXPR, *p, binfo, 1);
4901 if (TREE_SIDE_EFFECTS (*p))
4902 *p = save_expr (*p);
4903 t = build_pointer_type (TREE_TYPE (fn));
4904 if (DECL_CONTEXT (fn) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn)))
4905 fn = build_java_interface_fn_ref (fn, *p);
4906 else
4907 fn = build_vfn_ref (*p, DECL_VINDEX (fn));
4908 TREE_TYPE (fn) = t;
4910 else if (DECL_INLINE (fn))
4911 fn = inline_conversion (fn);
4912 else
4913 fn = build_addr_func (fn);
4915 return build_cxx_call (fn, converted_args);
4918 /* Build and return a call to FN, using ARGS. This function performs
4919 no overload resolution, conversion, or other high-level
4920 operations. */
4922 tree
4923 build_cxx_call (tree fn, tree args)
4925 tree fndecl;
4927 fn = build_call (fn, args);
4929 /* If this call might throw an exception, note that fact. */
4930 fndecl = get_callee_fndecl (fn);
4931 if ((!fndecl || !TREE_NOTHROW (fndecl))
4932 && at_function_scope_p ()
4933 && cfun)
4934 cp_function_chain->can_throw = 1;
4936 /* Some built-in function calls will be evaluated at compile-time in
4937 fold (). */
4938 fn = fold_if_not_in_template (fn);
4940 if (VOID_TYPE_P (TREE_TYPE (fn)))
4941 return fn;
4943 fn = require_complete_type (fn);
4944 if (fn == error_mark_node)
4945 return error_mark_node;
4947 if (IS_AGGR_TYPE (TREE_TYPE (fn)))
4948 fn = build_cplus_new (TREE_TYPE (fn), fn);
4949 return convert_from_reference (fn);
4952 static GTY(()) tree java_iface_lookup_fn;
4954 /* Make an expression which yields the address of the Java interface
4955 method FN. This is achieved by generating a call to libjava's
4956 _Jv_LookupInterfaceMethodIdx(). */
4958 static tree
4959 build_java_interface_fn_ref (tree fn, tree instance)
4961 tree lookup_args, lookup_fn, method, idx;
4962 tree klass_ref, iface, iface_ref;
4963 int i;
4965 if (!java_iface_lookup_fn)
4967 tree endlink = build_void_list_node ();
4968 tree t = tree_cons (NULL_TREE, ptr_type_node,
4969 tree_cons (NULL_TREE, ptr_type_node,
4970 tree_cons (NULL_TREE, java_int_type_node,
4971 endlink)));
4972 java_iface_lookup_fn
4973 = builtin_function ("_Jv_LookupInterfaceMethodIdx",
4974 build_function_type (ptr_type_node, t),
4975 0, NOT_BUILT_IN, NULL, NULL_TREE);
4978 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
4979 This is the first entry in the vtable. */
4980 klass_ref = build_vtbl_ref (build_indirect_ref (instance, 0),
4981 integer_zero_node);
4983 /* Get the java.lang.Class pointer for the interface being called. */
4984 iface = DECL_CONTEXT (fn);
4985 iface_ref = lookup_field (iface, get_identifier ("class$"), 0, false);
4986 if (!iface_ref || TREE_CODE (iface_ref) != VAR_DECL
4987 || DECL_CONTEXT (iface_ref) != iface)
4989 error ("could not find class$ field in java interface type %qT",
4990 iface);
4991 return error_mark_node;
4993 iface_ref = build_address (iface_ref);
4994 iface_ref = convert (build_pointer_type (iface), iface_ref);
4996 /* Determine the itable index of FN. */
4997 i = 1;
4998 for (method = TYPE_METHODS (iface); method; method = TREE_CHAIN (method))
5000 if (!DECL_VIRTUAL_P (method))
5001 continue;
5002 if (fn == method)
5003 break;
5004 i++;
5006 idx = build_int_cst (NULL_TREE, i);
5008 lookup_args = tree_cons (NULL_TREE, klass_ref,
5009 tree_cons (NULL_TREE, iface_ref,
5010 build_tree_list (NULL_TREE, idx)));
5011 lookup_fn = build1 (ADDR_EXPR,
5012 build_pointer_type (TREE_TYPE (java_iface_lookup_fn)),
5013 java_iface_lookup_fn);
5014 return build3 (CALL_EXPR, ptr_type_node, lookup_fn, lookup_args, NULL_TREE);
5017 /* Returns the value to use for the in-charge parameter when making a
5018 call to a function with the indicated NAME.
5020 FIXME:Can't we find a neater way to do this mapping? */
5022 tree
5023 in_charge_arg_for_name (tree name)
5025 if (name == base_ctor_identifier
5026 || name == base_dtor_identifier)
5027 return integer_zero_node;
5028 else if (name == complete_ctor_identifier)
5029 return integer_one_node;
5030 else if (name == complete_dtor_identifier)
5031 return integer_two_node;
5032 else if (name == deleting_dtor_identifier)
5033 return integer_three_node;
5035 /* This function should only be called with one of the names listed
5036 above. */
5037 gcc_unreachable ();
5038 return NULL_TREE;
5041 /* Build a call to a constructor, destructor, or an assignment
5042 operator for INSTANCE, an expression with class type. NAME
5043 indicates the special member function to call; ARGS are the
5044 arguments. BINFO indicates the base of INSTANCE that is to be
5045 passed as the `this' parameter to the member function called.
5047 FLAGS are the LOOKUP_* flags to use when processing the call.
5049 If NAME indicates a complete object constructor, INSTANCE may be
5050 NULL_TREE. In this case, the caller will call build_cplus_new to
5051 store the newly constructed object into a VAR_DECL. */
5053 tree
5054 build_special_member_call (tree instance, tree name, tree args,
5055 tree binfo, int flags)
5057 tree fns;
5058 /* The type of the subobject to be constructed or destroyed. */
5059 tree class_type;
5061 gcc_assert (name == complete_ctor_identifier
5062 || name == base_ctor_identifier
5063 || name == complete_dtor_identifier
5064 || name == base_dtor_identifier
5065 || name == deleting_dtor_identifier
5066 || name == ansi_assopname (NOP_EXPR));
5067 if (TYPE_P (binfo))
5069 /* Resolve the name. */
5070 if (!complete_type_or_else (binfo, NULL_TREE))
5071 return error_mark_node;
5073 binfo = TYPE_BINFO (binfo);
5076 gcc_assert (binfo != NULL_TREE);
5078 class_type = BINFO_TYPE (binfo);
5080 /* Handle the special case where INSTANCE is NULL_TREE. */
5081 if (name == complete_ctor_identifier && !instance)
5083 instance = build_int_cst (build_pointer_type (class_type), 0);
5084 instance = build1 (INDIRECT_REF, class_type, instance);
5086 else
5088 if (name == complete_dtor_identifier
5089 || name == base_dtor_identifier
5090 || name == deleting_dtor_identifier)
5091 gcc_assert (args == NULL_TREE);
5093 /* Convert to the base class, if necessary. */
5094 if (!same_type_ignoring_top_level_qualifiers_p
5095 (TREE_TYPE (instance), BINFO_TYPE (binfo)))
5097 if (name != ansi_assopname (NOP_EXPR))
5098 /* For constructors and destructors, either the base is
5099 non-virtual, or it is virtual but we are doing the
5100 conversion from a constructor or destructor for the
5101 complete object. In either case, we can convert
5102 statically. */
5103 instance = convert_to_base_statically (instance, binfo);
5104 else
5105 /* However, for assignment operators, we must convert
5106 dynamically if the base is virtual. */
5107 instance = build_base_path (PLUS_EXPR, instance,
5108 binfo, /*nonnull=*/1);
5112 gcc_assert (instance != NULL_TREE);
5114 fns = lookup_fnfields (binfo, name, 1);
5116 /* When making a call to a constructor or destructor for a subobject
5117 that uses virtual base classes, pass down a pointer to a VTT for
5118 the subobject. */
5119 if ((name == base_ctor_identifier
5120 || name == base_dtor_identifier)
5121 && CLASSTYPE_VBASECLASSES (class_type))
5123 tree vtt;
5124 tree sub_vtt;
5126 /* If the current function is a complete object constructor
5127 or destructor, then we fetch the VTT directly.
5128 Otherwise, we look it up using the VTT we were given. */
5129 vtt = TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type));
5130 vtt = decay_conversion (vtt);
5131 vtt = build3 (COND_EXPR, TREE_TYPE (vtt),
5132 build2 (EQ_EXPR, boolean_type_node,
5133 current_in_charge_parm, integer_zero_node),
5134 current_vtt_parm,
5135 vtt);
5136 gcc_assert (BINFO_SUBVTT_INDEX (binfo));
5137 sub_vtt = build2 (PLUS_EXPR, TREE_TYPE (vtt), vtt,
5138 BINFO_SUBVTT_INDEX (binfo));
5140 args = tree_cons (NULL_TREE, sub_vtt, args);
5143 return build_new_method_call (instance, fns, args,
5144 TYPE_BINFO (BINFO_TYPE (binfo)),
5145 flags);
5148 /* Return the NAME, as a C string. The NAME indicates a function that
5149 is a member of TYPE. *FREE_P is set to true if the caller must
5150 free the memory returned.
5152 Rather than go through all of this, we should simply set the names
5153 of constructors and destructors appropriately, and dispense with
5154 ctor_identifier, dtor_identifier, etc. */
5156 static char *
5157 name_as_c_string (tree name, tree type, bool *free_p)
5159 char *pretty_name;
5161 /* Assume that we will not allocate memory. */
5162 *free_p = false;
5163 /* Constructors and destructors are special. */
5164 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5166 pretty_name
5167 = (char *) IDENTIFIER_POINTER (constructor_name (type));
5168 /* For a destructor, add the '~'. */
5169 if (name == complete_dtor_identifier
5170 || name == base_dtor_identifier
5171 || name == deleting_dtor_identifier)
5173 pretty_name = concat ("~", pretty_name, NULL);
5174 /* Remember that we need to free the memory allocated. */
5175 *free_p = true;
5178 else if (IDENTIFIER_TYPENAME_P (name))
5180 pretty_name = concat ("operator ",
5181 type_as_string (TREE_TYPE (name),
5182 TFF_PLAIN_IDENTIFIER),
5183 NULL);
5184 /* Remember that we need to free the memory allocated. */
5185 *free_p = true;
5187 else
5188 pretty_name = (char *) IDENTIFIER_POINTER (name);
5190 return pretty_name;
5193 /* Build a call to "INSTANCE.FN (ARGS)". */
5195 tree
5196 build_new_method_call (tree instance, tree fns, tree args,
5197 tree conversion_path, int flags)
5199 struct z_candidate *candidates = 0, *cand;
5200 tree explicit_targs = NULL_TREE;
5201 tree basetype = NULL_TREE;
5202 tree access_binfo;
5203 tree optype;
5204 tree mem_args = NULL_TREE, instance_ptr;
5205 tree name;
5206 tree user_args;
5207 tree call;
5208 tree fn;
5209 tree class_type;
5210 int template_only = 0;
5211 bool any_viable_p;
5212 tree orig_instance;
5213 tree orig_fns;
5214 tree orig_args;
5215 void *p;
5217 gcc_assert (instance != NULL_TREE);
5219 if (error_operand_p (instance)
5220 || error_operand_p (fns)
5221 || args == error_mark_node)
5222 return error_mark_node;
5224 orig_instance = instance;
5225 orig_fns = fns;
5226 orig_args = args;
5228 if (processing_template_decl)
5230 instance = build_non_dependent_expr (instance);
5231 if (!BASELINK_P (fns)
5232 && TREE_CODE (fns) != PSEUDO_DTOR_EXPR
5233 && TREE_TYPE (fns) != unknown_type_node)
5234 fns = build_non_dependent_expr (fns);
5235 args = build_non_dependent_args (orig_args);
5238 /* Process the argument list. */
5239 user_args = args;
5240 args = resolve_args (args);
5241 if (args == error_mark_node)
5242 return error_mark_node;
5244 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));
5245 instance_ptr = build_this (instance);
5247 if (!BASELINK_P (fns))
5249 error ("call to non-function %qD", fns);
5250 return error_mark_node;
5253 if (!conversion_path)
5254 conversion_path = BASELINK_BINFO (fns);
5255 access_binfo = BASELINK_ACCESS_BINFO (fns);
5256 optype = BASELINK_OPTYPE (fns);
5257 fns = BASELINK_FUNCTIONS (fns);
5259 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
5261 explicit_targs = TREE_OPERAND (fns, 1);
5262 fns = TREE_OPERAND (fns, 0);
5263 template_only = 1;
5266 gcc_assert (TREE_CODE (fns) == FUNCTION_DECL
5267 || TREE_CODE (fns) == TEMPLATE_DECL
5268 || TREE_CODE (fns) == OVERLOAD);
5270 /* XXX this should be handled before we get here. */
5271 if (! IS_AGGR_TYPE (basetype))
5273 if ((flags & LOOKUP_COMPLAIN) && basetype != error_mark_node)
5274 error ("request for member %qD in %qE, which is of non-aggregate "
5275 "type %qT",
5276 fns, instance, basetype);
5278 return error_mark_node;
5281 fn = get_first_fn (fns);
5282 name = DECL_NAME (fn);
5284 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5286 /* Callers should explicitly indicate whether they want to construct
5287 the complete object or just the part without virtual bases. */
5288 gcc_assert (name != ctor_identifier);
5289 /* Similarly for destructors. */
5290 gcc_assert (name != dtor_identifier);
5293 /* It's OK to call destructors on cv-qualified objects. Therefore,
5294 convert the INSTANCE_PTR to the unqualified type, if necessary. */
5295 if (DECL_DESTRUCTOR_P (fn))
5297 tree type = build_pointer_type (basetype);
5298 if (!same_type_p (type, TREE_TYPE (instance_ptr)))
5299 instance_ptr = build_nop (type, instance_ptr);
5302 class_type = (conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE);
5303 mem_args = tree_cons (NULL_TREE, instance_ptr, args);
5305 /* Get the high-water mark for the CONVERSION_OBSTACK. */
5306 p = conversion_obstack_alloc (0);
5308 for (fn = fns; fn; fn = OVL_NEXT (fn))
5310 tree t = OVL_CURRENT (fn);
5311 tree this_arglist;
5313 /* We can end up here for copy-init of same or base class. */
5314 if ((flags & LOOKUP_ONLYCONVERTING)
5315 && DECL_NONCONVERTING_P (t))
5316 continue;
5318 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t))
5319 this_arglist = mem_args;
5320 else
5321 this_arglist = args;
5323 if (TREE_CODE (t) == TEMPLATE_DECL)
5324 /* A member template. */
5325 add_template_candidate (&candidates, t,
5326 class_type,
5327 explicit_targs,
5328 this_arglist, optype,
5329 access_binfo,
5330 conversion_path,
5331 flags,
5332 DEDUCE_CALL);
5333 else if (! template_only)
5334 add_function_candidate (&candidates, t,
5335 class_type,
5336 this_arglist,
5337 access_binfo,
5338 conversion_path,
5339 flags);
5342 candidates = splice_viable (candidates, pedantic, &any_viable_p);
5343 if (!any_viable_p)
5345 if (!COMPLETE_TYPE_P (basetype))
5346 cxx_incomplete_type_error (instance_ptr, basetype);
5347 else
5349 char *pretty_name;
5350 bool free_p;
5352 pretty_name = name_as_c_string (name, basetype, &free_p);
5353 error ("no matching function for call to %<%T::%s(%A)%#V%>",
5354 basetype, pretty_name, user_args,
5355 TREE_TYPE (TREE_TYPE (instance_ptr)));
5356 if (free_p)
5357 free (pretty_name);
5359 print_z_candidates (candidates);
5360 call = error_mark_node;
5362 else
5364 cand = tourney (candidates);
5365 if (cand == 0)
5367 char *pretty_name;
5368 bool free_p;
5370 pretty_name = name_as_c_string (name, basetype, &free_p);
5371 error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name,
5372 user_args);
5373 print_z_candidates (candidates);
5374 if (free_p)
5375 free (pretty_name);
5376 call = error_mark_node;
5378 else
5380 if (!(flags & LOOKUP_NONVIRTUAL)
5381 && DECL_PURE_VIRTUAL_P (cand->fn)
5382 && instance == current_class_ref
5383 && (DECL_CONSTRUCTOR_P (current_function_decl)
5384 || DECL_DESTRUCTOR_P (current_function_decl)))
5385 /* This is not an error, it is runtime undefined
5386 behavior. */
5387 warning ((DECL_CONSTRUCTOR_P (current_function_decl) ?
5388 "abstract virtual %q#D called from constructor"
5389 : "abstract virtual %q#D called from destructor"),
5390 cand->fn);
5392 if (TREE_CODE (TREE_TYPE (cand->fn)) == METHOD_TYPE
5393 && is_dummy_object (instance_ptr))
5395 error ("cannot call member function %qD without object",
5396 cand->fn);
5397 call = error_mark_node;
5399 else
5401 if (DECL_VINDEX (cand->fn) && ! (flags & LOOKUP_NONVIRTUAL)
5402 && resolves_to_fixed_type_p (instance, 0))
5403 flags |= LOOKUP_NONVIRTUAL;
5405 call = build_over_call (cand, flags);
5407 /* In an expression of the form `a->f()' where `f' turns
5408 out to be a static member function, `a' is
5409 none-the-less evaluated. */
5410 if (TREE_CODE (TREE_TYPE (cand->fn)) != METHOD_TYPE
5411 && !is_dummy_object (instance_ptr)
5412 && TREE_SIDE_EFFECTS (instance))
5413 call = build2 (COMPOUND_EXPR, TREE_TYPE (call),
5414 instance, call);
5419 if (processing_template_decl && call != error_mark_node)
5420 call = (build_min_non_dep
5421 (CALL_EXPR, call,
5422 build_min_nt (COMPONENT_REF, orig_instance, orig_fns, NULL_TREE),
5423 orig_args, NULL_TREE));
5425 /* Free all the conversions we allocated. */
5426 obstack_free (&conversion_obstack, p);
5428 return call;
5431 /* Returns true iff standard conversion sequence ICS1 is a proper
5432 subsequence of ICS2. */
5434 static bool
5435 is_subseq (conversion *ics1, conversion *ics2)
5437 /* We can assume that a conversion of the same code
5438 between the same types indicates a subsequence since we only get
5439 here if the types we are converting from are the same. */
5441 while (ics1->kind == ck_rvalue
5442 || ics1->kind == ck_lvalue)
5443 ics1 = ics1->u.next;
5445 while (1)
5447 while (ics2->kind == ck_rvalue
5448 || ics2->kind == ck_lvalue)
5449 ics2 = ics2->u.next;
5451 if (ics2->kind == ck_user
5452 || ics2->kind == ck_ambig
5453 || ics2->kind == ck_identity)
5454 /* At this point, ICS1 cannot be a proper subsequence of
5455 ICS2. We can get a USER_CONV when we are comparing the
5456 second standard conversion sequence of two user conversion
5457 sequences. */
5458 return false;
5460 ics2 = ics2->u.next;
5462 if (ics2->kind == ics1->kind
5463 && same_type_p (ics2->type, ics1->type)
5464 && same_type_p (ics2->u.next->type,
5465 ics1->u.next->type))
5466 return true;
5470 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5471 be any _TYPE nodes. */
5473 bool
5474 is_properly_derived_from (tree derived, tree base)
5476 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
5477 || !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
5478 return false;
5480 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5481 considers every class derived from itself. */
5482 return (!same_type_ignoring_top_level_qualifiers_p (derived, base)
5483 && DERIVED_FROM_P (base, derived));
5486 /* We build the ICS for an implicit object parameter as a pointer
5487 conversion sequence. However, such a sequence should be compared
5488 as if it were a reference conversion sequence. If ICS is the
5489 implicit conversion sequence for an implicit object parameter,
5490 modify it accordingly. */
5492 static void
5493 maybe_handle_implicit_object (conversion **ics)
5495 if ((*ics)->this_p)
5497 /* [over.match.funcs]
5499 For non-static member functions, the type of the
5500 implicit object parameter is "reference to cv X"
5501 where X is the class of which the function is a
5502 member and cv is the cv-qualification on the member
5503 function declaration. */
5504 conversion *t = *ics;
5505 tree reference_type;
5507 /* The `this' parameter is a pointer to a class type. Make the
5508 implicit conversion talk about a reference to that same class
5509 type. */
5510 reference_type = TREE_TYPE (t->type);
5511 reference_type = build_reference_type (reference_type);
5513 if (t->kind == ck_qual)
5514 t = t->u.next;
5515 if (t->kind == ck_ptr)
5516 t = t->u.next;
5517 t = build_identity_conv (TREE_TYPE (t->type), NULL_TREE);
5518 t = direct_reference_binding (reference_type, t);
5519 *ics = t;
5523 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5524 and return the type to which the reference refers. Otherwise,
5525 leave *ICS unchanged and return NULL_TREE. */
5527 static tree
5528 maybe_handle_ref_bind (conversion **ics)
5530 if ((*ics)->kind == ck_ref_bind)
5532 conversion *old_ics = *ics;
5533 tree type = TREE_TYPE (old_ics->type);
5534 *ics = old_ics->u.next;
5535 (*ics)->user_conv_p = old_ics->user_conv_p;
5536 (*ics)->bad_p = old_ics->bad_p;
5537 return type;
5540 return NULL_TREE;
5543 /* Compare two implicit conversion sequences according to the rules set out in
5544 [over.ics.rank]. Return values:
5546 1: ics1 is better than ics2
5547 -1: ics2 is better than ics1
5548 0: ics1 and ics2 are indistinguishable */
5550 static int
5551 compare_ics (conversion *ics1, conversion *ics2)
5553 tree from_type1;
5554 tree from_type2;
5555 tree to_type1;
5556 tree to_type2;
5557 tree deref_from_type1 = NULL_TREE;
5558 tree deref_from_type2 = NULL_TREE;
5559 tree deref_to_type1 = NULL_TREE;
5560 tree deref_to_type2 = NULL_TREE;
5561 conversion_rank rank1, rank2;
5563 /* REF_BINDING is nonzero if the result of the conversion sequence
5564 is a reference type. In that case TARGET_TYPE is the
5565 type referred to by the reference. */
5566 tree target_type1;
5567 tree target_type2;
5569 /* Handle implicit object parameters. */
5570 maybe_handle_implicit_object (&ics1);
5571 maybe_handle_implicit_object (&ics2);
5573 /* Handle reference parameters. */
5574 target_type1 = maybe_handle_ref_bind (&ics1);
5575 target_type2 = maybe_handle_ref_bind (&ics2);
5577 /* [over.ics.rank]
5579 When comparing the basic forms of implicit conversion sequences (as
5580 defined in _over.best.ics_)
5582 --a standard conversion sequence (_over.ics.scs_) is a better
5583 conversion sequence than a user-defined conversion sequence
5584 or an ellipsis conversion sequence, and
5586 --a user-defined conversion sequence (_over.ics.user_) is a
5587 better conversion sequence than an ellipsis conversion sequence
5588 (_over.ics.ellipsis_). */
5589 rank1 = CONVERSION_RANK (ics1);
5590 rank2 = CONVERSION_RANK (ics2);
5592 if (rank1 > rank2)
5593 return -1;
5594 else if (rank1 < rank2)
5595 return 1;
5597 if (rank1 == cr_bad)
5599 /* XXX Isn't this an extension? */
5600 /* Both ICS are bad. We try to make a decision based on what
5601 would have happened if they'd been good. */
5602 if (ics1->user_conv_p > ics2->user_conv_p
5603 || ics1->rank > ics2->rank)
5604 return -1;
5605 else if (ics1->user_conv_p < ics2->user_conv_p
5606 || ics1->rank < ics2->rank)
5607 return 1;
5609 /* We couldn't make up our minds; try to figure it out below. */
5612 if (ics1->ellipsis_p)
5613 /* Both conversions are ellipsis conversions. */
5614 return 0;
5616 /* User-defined conversion sequence U1 is a better conversion sequence
5617 than another user-defined conversion sequence U2 if they contain the
5618 same user-defined conversion operator or constructor and if the sec-
5619 ond standard conversion sequence of U1 is better than the second
5620 standard conversion sequence of U2. */
5622 if (ics1->user_conv_p)
5624 conversion *t1;
5625 conversion *t2;
5627 for (t1 = ics1; t1->kind != ck_user; t1 = t1->u.next)
5628 if (t1->kind == ck_ambig)
5629 return 0;
5630 for (t2 = ics2; t2->kind != ck_user; t2 = t2->u.next)
5631 if (t2->kind == ck_ambig)
5632 return 0;
5634 if (t1->cand->fn != t2->cand->fn)
5635 return 0;
5637 /* We can just fall through here, after setting up
5638 FROM_TYPE1 and FROM_TYPE2. */
5639 from_type1 = t1->type;
5640 from_type2 = t2->type;
5642 else
5644 conversion *t1;
5645 conversion *t2;
5647 /* We're dealing with two standard conversion sequences.
5649 [over.ics.rank]
5651 Standard conversion sequence S1 is a better conversion
5652 sequence than standard conversion sequence S2 if
5654 --S1 is a proper subsequence of S2 (comparing the conversion
5655 sequences in the canonical form defined by _over.ics.scs_,
5656 excluding any Lvalue Transformation; the identity
5657 conversion sequence is considered to be a subsequence of
5658 any non-identity conversion sequence */
5660 t1 = ics1;
5661 while (t1->kind != ck_identity)
5662 t1 = t1->u.next;
5663 from_type1 = t1->type;
5665 t2 = ics2;
5666 while (t2->kind != ck_identity)
5667 t2 = t2->u.next;
5668 from_type2 = t2->type;
5671 if (same_type_p (from_type1, from_type2))
5673 if (is_subseq (ics1, ics2))
5674 return 1;
5675 if (is_subseq (ics2, ics1))
5676 return -1;
5678 /* Otherwise, one sequence cannot be a subsequence of the other; they
5679 don't start with the same type. This can happen when comparing the
5680 second standard conversion sequence in two user-defined conversion
5681 sequences. */
5683 /* [over.ics.rank]
5685 Or, if not that,
5687 --the rank of S1 is better than the rank of S2 (by the rules
5688 defined below):
5690 Standard conversion sequences are ordered by their ranks: an Exact
5691 Match is a better conversion than a Promotion, which is a better
5692 conversion than a Conversion.
5694 Two conversion sequences with the same rank are indistinguishable
5695 unless one of the following rules applies:
5697 --A conversion that is not a conversion of a pointer, or pointer
5698 to member, to bool is better than another conversion that is such
5699 a conversion.
5701 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5702 so that we do not have to check it explicitly. */
5703 if (ics1->rank < ics2->rank)
5704 return 1;
5705 else if (ics2->rank < ics1->rank)
5706 return -1;
5708 to_type1 = ics1->type;
5709 to_type2 = ics2->type;
5711 if (TYPE_PTR_P (from_type1)
5712 && TYPE_PTR_P (from_type2)
5713 && TYPE_PTR_P (to_type1)
5714 && TYPE_PTR_P (to_type2))
5716 deref_from_type1 = TREE_TYPE (from_type1);
5717 deref_from_type2 = TREE_TYPE (from_type2);
5718 deref_to_type1 = TREE_TYPE (to_type1);
5719 deref_to_type2 = TREE_TYPE (to_type2);
5721 /* The rules for pointers to members A::* are just like the rules
5722 for pointers A*, except opposite: if B is derived from A then
5723 A::* converts to B::*, not vice versa. For that reason, we
5724 switch the from_ and to_ variables here. */
5725 else if ((TYPE_PTRMEM_P (from_type1) && TYPE_PTRMEM_P (from_type2)
5726 && TYPE_PTRMEM_P (to_type1) && TYPE_PTRMEM_P (to_type2))
5727 || (TYPE_PTRMEMFUNC_P (from_type1)
5728 && TYPE_PTRMEMFUNC_P (from_type2)
5729 && TYPE_PTRMEMFUNC_P (to_type1)
5730 && TYPE_PTRMEMFUNC_P (to_type2)))
5732 deref_to_type1 = TYPE_PTRMEM_CLASS_TYPE (from_type1);
5733 deref_to_type2 = TYPE_PTRMEM_CLASS_TYPE (from_type2);
5734 deref_from_type1 = TYPE_PTRMEM_CLASS_TYPE (to_type1);
5735 deref_from_type2 = TYPE_PTRMEM_CLASS_TYPE (to_type2);
5738 if (deref_from_type1 != NULL_TREE
5739 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
5740 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
5742 /* This was one of the pointer or pointer-like conversions.
5744 [over.ics.rank]
5746 --If class B is derived directly or indirectly from class A,
5747 conversion of B* to A* is better than conversion of B* to
5748 void*, and conversion of A* to void* is better than
5749 conversion of B* to void*. */
5750 if (TREE_CODE (deref_to_type1) == VOID_TYPE
5751 && TREE_CODE (deref_to_type2) == VOID_TYPE)
5753 if (is_properly_derived_from (deref_from_type1,
5754 deref_from_type2))
5755 return -1;
5756 else if (is_properly_derived_from (deref_from_type2,
5757 deref_from_type1))
5758 return 1;
5760 else if (TREE_CODE (deref_to_type1) == VOID_TYPE
5761 || TREE_CODE (deref_to_type2) == VOID_TYPE)
5763 if (same_type_p (deref_from_type1, deref_from_type2))
5765 if (TREE_CODE (deref_to_type2) == VOID_TYPE)
5767 if (is_properly_derived_from (deref_from_type1,
5768 deref_to_type1))
5769 return 1;
5771 /* We know that DEREF_TO_TYPE1 is `void' here. */
5772 else if (is_properly_derived_from (deref_from_type1,
5773 deref_to_type2))
5774 return -1;
5777 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
5778 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
5780 /* [over.ics.rank]
5782 --If class B is derived directly or indirectly from class A
5783 and class C is derived directly or indirectly from B,
5785 --conversion of C* to B* is better than conversion of C* to
5786 A*,
5788 --conversion of B* to A* is better than conversion of C* to
5789 A* */
5790 if (same_type_p (deref_from_type1, deref_from_type2))
5792 if (is_properly_derived_from (deref_to_type1,
5793 deref_to_type2))
5794 return 1;
5795 else if (is_properly_derived_from (deref_to_type2,
5796 deref_to_type1))
5797 return -1;
5799 else if (same_type_p (deref_to_type1, deref_to_type2))
5801 if (is_properly_derived_from (deref_from_type2,
5802 deref_from_type1))
5803 return 1;
5804 else if (is_properly_derived_from (deref_from_type1,
5805 deref_from_type2))
5806 return -1;
5810 else if (CLASS_TYPE_P (non_reference (from_type1))
5811 && same_type_p (from_type1, from_type2))
5813 tree from = non_reference (from_type1);
5815 /* [over.ics.rank]
5817 --binding of an expression of type C to a reference of type
5818 B& is better than binding an expression of type C to a
5819 reference of type A&
5821 --conversion of C to B is better than conversion of C to A, */
5822 if (is_properly_derived_from (from, to_type1)
5823 && is_properly_derived_from (from, to_type2))
5825 if (is_properly_derived_from (to_type1, to_type2))
5826 return 1;
5827 else if (is_properly_derived_from (to_type2, to_type1))
5828 return -1;
5831 else if (CLASS_TYPE_P (non_reference (to_type1))
5832 && same_type_p (to_type1, to_type2))
5834 tree to = non_reference (to_type1);
5836 /* [over.ics.rank]
5838 --binding of an expression of type B to a reference of type
5839 A& is better than binding an expression of type C to a
5840 reference of type A&,
5842 --conversion of B to A is better than conversion of C to A */
5843 if (is_properly_derived_from (from_type1, to)
5844 && is_properly_derived_from (from_type2, to))
5846 if (is_properly_derived_from (from_type2, from_type1))
5847 return 1;
5848 else if (is_properly_derived_from (from_type1, from_type2))
5849 return -1;
5853 /* [over.ics.rank]
5855 --S1 and S2 differ only in their qualification conversion and yield
5856 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
5857 qualification signature of type T1 is a proper subset of the cv-
5858 qualification signature of type T2 */
5859 if (ics1->kind == ck_qual
5860 && ics2->kind == ck_qual
5861 && same_type_p (from_type1, from_type2))
5862 return comp_cv_qual_signature (to_type1, to_type2);
5864 /* [over.ics.rank]
5866 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
5867 types to which the references refer are the same type except for
5868 top-level cv-qualifiers, and the type to which the reference
5869 initialized by S2 refers is more cv-qualified than the type to
5870 which the reference initialized by S1 refers */
5872 if (target_type1 && target_type2
5873 && same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2))
5874 return comp_cv_qualification (target_type2, target_type1);
5876 /* Neither conversion sequence is better than the other. */
5877 return 0;
5880 /* The source type for this standard conversion sequence. */
5882 static tree
5883 source_type (conversion *t)
5885 for (;; t = t->u.next)
5887 if (t->kind == ck_user
5888 || t->kind == ck_ambig
5889 || t->kind == ck_identity)
5890 return t->type;
5892 gcc_unreachable ();
5895 /* Note a warning about preferring WINNER to LOSER. We do this by storing
5896 a pointer to LOSER and re-running joust to produce the warning if WINNER
5897 is actually used. */
5899 static void
5900 add_warning (struct z_candidate *winner, struct z_candidate *loser)
5902 candidate_warning *cw;
5904 cw = conversion_obstack_alloc (sizeof (candidate_warning));
5905 cw->loser = loser;
5906 cw->next = winner->warnings;
5907 winner->warnings = cw;
5910 /* Compare two candidates for overloading as described in
5911 [over.match.best]. Return values:
5913 1: cand1 is better than cand2
5914 -1: cand2 is better than cand1
5915 0: cand1 and cand2 are indistinguishable */
5917 static int
5918 joust (struct z_candidate *cand1, struct z_candidate *cand2, bool warn)
5920 int winner = 0;
5921 int off1 = 0, off2 = 0;
5922 size_t i;
5923 size_t len;
5925 /* Candidates that involve bad conversions are always worse than those
5926 that don't. */
5927 if (cand1->viable > cand2->viable)
5928 return 1;
5929 if (cand1->viable < cand2->viable)
5930 return -1;
5932 /* If we have two pseudo-candidates for conversions to the same type,
5933 or two candidates for the same function, arbitrarily pick one. */
5934 if (cand1->fn == cand2->fn
5935 && (IS_TYPE_OR_DECL_P (cand1->fn)))
5936 return 1;
5938 /* a viable function F1
5939 is defined to be a better function than another viable function F2 if
5940 for all arguments i, ICSi(F1) is not a worse conversion sequence than
5941 ICSi(F2), and then */
5943 /* for some argument j, ICSj(F1) is a better conversion sequence than
5944 ICSj(F2) */
5946 /* For comparing static and non-static member functions, we ignore
5947 the implicit object parameter of the non-static function. The
5948 standard says to pretend that the static function has an object
5949 parm, but that won't work with operator overloading. */
5950 len = cand1->num_convs;
5951 if (len != cand2->num_convs)
5953 int static_1 = DECL_STATIC_FUNCTION_P (cand1->fn);
5954 int static_2 = DECL_STATIC_FUNCTION_P (cand2->fn);
5956 gcc_assert (static_1 != static_2);
5958 if (static_1)
5959 off2 = 1;
5960 else
5962 off1 = 1;
5963 --len;
5967 for (i = 0; i < len; ++i)
5969 conversion *t1 = cand1->convs[i + off1];
5970 conversion *t2 = cand2->convs[i + off2];
5971 int comp = compare_ics (t1, t2);
5973 if (comp != 0)
5975 if (warn_sign_promo
5976 && (CONVERSION_RANK (t1) + CONVERSION_RANK (t2)
5977 == cr_std + cr_promotion)
5978 && t1->kind == ck_std
5979 && t2->kind == ck_std
5980 && TREE_CODE (t1->type) == INTEGER_TYPE
5981 && TREE_CODE (t2->type) == INTEGER_TYPE
5982 && (TYPE_PRECISION (t1->type)
5983 == TYPE_PRECISION (t2->type))
5984 && (TYPE_UNSIGNED (t1->u.next->type)
5985 || (TREE_CODE (t1->u.next->type)
5986 == ENUMERAL_TYPE)))
5988 tree type = t1->u.next->type;
5989 tree type1, type2;
5990 struct z_candidate *w, *l;
5991 if (comp > 0)
5992 type1 = t1->type, type2 = t2->type,
5993 w = cand1, l = cand2;
5994 else
5995 type1 = t2->type, type2 = t1->type,
5996 w = cand2, l = cand1;
5998 if (warn)
6000 warning ("passing %qT chooses %qT over %qT",
6001 type, type1, type2);
6002 warning (" in call to %qD", w->fn);
6004 else
6005 add_warning (w, l);
6008 if (winner && comp != winner)
6010 winner = 0;
6011 goto tweak;
6013 winner = comp;
6017 /* warn about confusing overload resolution for user-defined conversions,
6018 either between a constructor and a conversion op, or between two
6019 conversion ops. */
6020 if (winner && warn_conversion && cand1->second_conv
6021 && (!DECL_CONSTRUCTOR_P (cand1->fn) || !DECL_CONSTRUCTOR_P (cand2->fn))
6022 && winner != compare_ics (cand1->second_conv, cand2->second_conv))
6024 struct z_candidate *w, *l;
6025 bool give_warning = false;
6027 if (winner == 1)
6028 w = cand1, l = cand2;
6029 else
6030 w = cand2, l = cand1;
6032 /* We don't want to complain about `X::operator T1 ()'
6033 beating `X::operator T2 () const', when T2 is a no less
6034 cv-qualified version of T1. */
6035 if (DECL_CONTEXT (w->fn) == DECL_CONTEXT (l->fn)
6036 && !DECL_CONSTRUCTOR_P (w->fn) && !DECL_CONSTRUCTOR_P (l->fn))
6038 tree t = TREE_TYPE (TREE_TYPE (l->fn));
6039 tree f = TREE_TYPE (TREE_TYPE (w->fn));
6041 if (TREE_CODE (t) == TREE_CODE (f) && POINTER_TYPE_P (t))
6043 t = TREE_TYPE (t);
6044 f = TREE_TYPE (f);
6046 if (!comp_ptr_ttypes (t, f))
6047 give_warning = true;
6049 else
6050 give_warning = true;
6052 if (!give_warning)
6053 /*NOP*/;
6054 else if (warn)
6056 tree source = source_type (w->convs[0]);
6057 if (! DECL_CONSTRUCTOR_P (w->fn))
6058 source = TREE_TYPE (source);
6059 warning ("choosing %qD over %qD", w->fn, l->fn);
6060 warning (" for conversion from %qT to %qT",
6061 source, w->second_conv->type);
6062 warning (" because conversion sequence for the argument is better");
6064 else
6065 add_warning (w, l);
6068 if (winner)
6069 return winner;
6071 /* or, if not that,
6072 F1 is a non-template function and F2 is a template function
6073 specialization. */
6075 if (!cand1->template_decl && cand2->template_decl)
6076 return 1;
6077 else if (cand1->template_decl && !cand2->template_decl)
6078 return -1;
6080 /* or, if not that,
6081 F1 and F2 are template functions and the function template for F1 is
6082 more specialized than the template for F2 according to the partial
6083 ordering rules. */
6085 if (cand1->template_decl && cand2->template_decl)
6087 winner = more_specialized
6088 (TI_TEMPLATE (cand1->template_decl),
6089 TI_TEMPLATE (cand2->template_decl),
6090 DEDUCE_ORDER,
6091 /* Tell the deduction code how many real function arguments
6092 we saw, not counting the implicit 'this' argument. But,
6093 add_function_candidate() suppresses the "this" argument
6094 for constructors.
6096 [temp.func.order]: The presence of unused ellipsis and default
6097 arguments has no effect on the partial ordering of function
6098 templates. */
6099 cand1->num_convs
6100 - (DECL_NONSTATIC_MEMBER_FUNCTION_P (cand1->fn)
6101 - DECL_CONSTRUCTOR_P (cand1->fn)));
6102 if (winner)
6103 return winner;
6106 /* or, if not that,
6107 the context is an initialization by user-defined conversion (see
6108 _dcl.init_ and _over.match.user_) and the standard conversion
6109 sequence from the return type of F1 to the destination type (i.e.,
6110 the type of the entity being initialized) is a better conversion
6111 sequence than the standard conversion sequence from the return type
6112 of F2 to the destination type. */
6114 if (cand1->second_conv)
6116 winner = compare_ics (cand1->second_conv, cand2->second_conv);
6117 if (winner)
6118 return winner;
6121 /* Check whether we can discard a builtin candidate, either because we
6122 have two identical ones or matching builtin and non-builtin candidates.
6124 (Pedantically in the latter case the builtin which matched the user
6125 function should not be added to the overload set, but we spot it here.
6127 [over.match.oper]
6128 ... the builtin candidates include ...
6129 - do not have the same parameter type list as any non-template
6130 non-member candidate. */
6132 if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE
6133 || TREE_CODE (cand2->fn) == IDENTIFIER_NODE)
6135 for (i = 0; i < len; ++i)
6136 if (!same_type_p (cand1->convs[i]->type,
6137 cand2->convs[i]->type))
6138 break;
6139 if (i == cand1->num_convs)
6141 if (cand1->fn == cand2->fn)
6142 /* Two built-in candidates; arbitrarily pick one. */
6143 return 1;
6144 else if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
6145 /* cand1 is built-in; prefer cand2. */
6146 return -1;
6147 else
6148 /* cand2 is built-in; prefer cand1. */
6149 return 1;
6153 /* If the two functions are the same (this can happen with declarations
6154 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
6155 if (DECL_P (cand1->fn) && DECL_P (cand2->fn)
6156 && equal_functions (cand1->fn, cand2->fn))
6157 return 1;
6159 tweak:
6161 /* Extension: If the worst conversion for one candidate is worse than the
6162 worst conversion for the other, take the first. */
6163 if (!pedantic)
6165 conversion_rank rank1 = cr_identity, rank2 = cr_identity;
6166 struct z_candidate *w = 0, *l = 0;
6168 for (i = 0; i < len; ++i)
6170 if (CONVERSION_RANK (cand1->convs[i+off1]) > rank1)
6171 rank1 = CONVERSION_RANK (cand1->convs[i+off1]);
6172 if (CONVERSION_RANK (cand2->convs[i + off2]) > rank2)
6173 rank2 = CONVERSION_RANK (cand2->convs[i + off2]);
6175 if (rank1 < rank2)
6176 winner = 1, w = cand1, l = cand2;
6177 if (rank1 > rank2)
6178 winner = -1, w = cand2, l = cand1;
6179 if (winner)
6181 if (warn)
6183 pedwarn ("\
6184 ISO C++ says that these are ambiguous, even \
6185 though the worst conversion for the first is better than \
6186 the worst conversion for the second:");
6187 print_z_candidate (_("candidate 1:"), w);
6188 print_z_candidate (_("candidate 2:"), l);
6190 else
6191 add_warning (w, l);
6192 return winner;
6196 gcc_assert (!winner);
6197 return 0;
6200 /* Given a list of candidates for overloading, find the best one, if any.
6201 This algorithm has a worst case of O(2n) (winner is last), and a best
6202 case of O(n/2) (totally ambiguous); much better than a sorting
6203 algorithm. */
6205 static struct z_candidate *
6206 tourney (struct z_candidate *candidates)
6208 struct z_candidate *champ = candidates, *challenger;
6209 int fate;
6210 int champ_compared_to_predecessor = 0;
6212 /* Walk through the list once, comparing each current champ to the next
6213 candidate, knocking out a candidate or two with each comparison. */
6215 for (challenger = champ->next; challenger; )
6217 fate = joust (champ, challenger, 0);
6218 if (fate == 1)
6219 challenger = challenger->next;
6220 else
6222 if (fate == 0)
6224 champ = challenger->next;
6225 if (champ == 0)
6226 return 0;
6227 champ_compared_to_predecessor = 0;
6229 else
6231 champ = challenger;
6232 champ_compared_to_predecessor = 1;
6235 challenger = champ->next;
6239 /* Make sure the champ is better than all the candidates it hasn't yet
6240 been compared to. */
6242 for (challenger = candidates;
6243 challenger != champ
6244 && !(champ_compared_to_predecessor && challenger->next == champ);
6245 challenger = challenger->next)
6247 fate = joust (champ, challenger, 0);
6248 if (fate != 1)
6249 return 0;
6252 return champ;
6255 /* Returns nonzero if things of type FROM can be converted to TO. */
6257 bool
6258 can_convert (tree to, tree from)
6260 return can_convert_arg (to, from, NULL_TREE);
6263 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
6265 bool
6266 can_convert_arg (tree to, tree from, tree arg)
6268 conversion *t;
6269 void *p;
6270 bool ok_p;
6272 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6273 p = conversion_obstack_alloc (0);
6275 t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
6276 ok_p = (t && !t->bad_p);
6278 /* Free all the conversions we allocated. */
6279 obstack_free (&conversion_obstack, p);
6281 return ok_p;
6284 /* Like can_convert_arg, but allows dubious conversions as well. */
6286 bool
6287 can_convert_arg_bad (tree to, tree from, tree arg)
6289 conversion *t;
6290 void *p;
6292 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6293 p = conversion_obstack_alloc (0);
6294 /* Try to perform the conversion. */
6295 t = implicit_conversion (to, from, arg, LOOKUP_NORMAL);
6296 /* Free all the conversions we allocated. */
6297 obstack_free (&conversion_obstack, p);
6299 return t != NULL;
6302 /* Convert EXPR to TYPE. Return the converted expression.
6304 Note that we allow bad conversions here because by the time we get to
6305 this point we are committed to doing the conversion. If we end up
6306 doing a bad conversion, convert_like will complain. */
6308 tree
6309 perform_implicit_conversion (tree type, tree expr)
6311 conversion *conv;
6312 void *p;
6314 if (error_operand_p (expr))
6315 return error_mark_node;
6317 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6318 p = conversion_obstack_alloc (0);
6320 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6321 LOOKUP_NORMAL);
6322 if (!conv)
6324 error ("could not convert %qE to %qT", expr, type);
6325 expr = error_mark_node;
6327 else
6328 expr = convert_like (conv, expr);
6330 /* Free all the conversions we allocated. */
6331 obstack_free (&conversion_obstack, p);
6333 return expr;
6336 /* Convert EXPR to TYPE (as a direct-initialization) if that is
6337 permitted. If the conversion is valid, the converted expression is
6338 returned. Otherwise, NULL_TREE is returned, except in the case
6339 that TYPE is a class type; in that case, an error is issued. If
6340 C_CAST_P is true, then this direction initialization is taking
6341 place as part of a static_cast being attempted as part of a C-style
6342 cast. */
6344 tree
6345 perform_direct_initialization_if_possible (tree type,
6346 tree expr,
6347 bool c_cast_p)
6349 conversion *conv;
6350 void *p;
6352 if (type == error_mark_node || error_operand_p (expr))
6353 return error_mark_node;
6354 /* [dcl.init]
6356 If the destination type is a (possibly cv-qualified) class type:
6358 -- If the initialization is direct-initialization ...,
6359 constructors are considered. ... If no constructor applies, or
6360 the overload resolution is ambiguous, the initialization is
6361 ill-formed. */
6362 if (CLASS_TYPE_P (type))
6364 expr = build_special_member_call (NULL_TREE, complete_ctor_identifier,
6365 build_tree_list (NULL_TREE, expr),
6366 type, LOOKUP_NORMAL);
6367 return build_cplus_new (type, expr);
6370 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6371 p = conversion_obstack_alloc (0);
6373 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6374 LOOKUP_NORMAL);
6375 if (!conv || conv->bad_p)
6376 expr = NULL_TREE;
6377 else
6378 expr = convert_like_real (conv, expr, NULL_TREE, 0, 0,
6379 /*issue_conversion_warnings=*/false,
6380 c_cast_p);
6382 /* Free all the conversions we allocated. */
6383 obstack_free (&conversion_obstack, p);
6385 return expr;
6388 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
6389 is being bound to a temporary. Create and return a new VAR_DECL
6390 with the indicated TYPE; this variable will store the value to
6391 which the reference is bound. */
6393 tree
6394 make_temporary_var_for_ref_to_temp (tree decl, tree type)
6396 tree var;
6398 /* Create the variable. */
6399 var = build_decl (VAR_DECL, NULL_TREE, type);
6400 DECL_ARTIFICIAL (var) = 1;
6401 DECL_IGNORED_P (var) = 1;
6402 TREE_USED (var) = 1;
6404 /* Register the variable. */
6405 if (TREE_STATIC (decl))
6407 /* Namespace-scope or local static; give it a mangled name. */
6408 tree name;
6410 TREE_STATIC (var) = 1;
6411 name = mangle_ref_init_variable (decl);
6412 DECL_NAME (var) = name;
6413 SET_DECL_ASSEMBLER_NAME (var, name);
6414 var = pushdecl_top_level (var);
6416 else
6418 /* Create a new cleanup level if necessary. */
6419 maybe_push_cleanup_level (type);
6420 /* Don't push unnamed temps. Do set DECL_CONTEXT, though. */
6421 DECL_CONTEXT (var) = current_function_decl;
6424 return var;
6427 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6428 initializing a variable of that TYPE. If DECL is non-NULL, it is
6429 the VAR_DECL being initialized with the EXPR. (In that case, the
6430 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6431 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6432 return, if *CLEANUP is no longer NULL, it will be an expression
6433 that should be pushed as a cleanup after the returned expression
6434 is used to initialize DECL.
6436 Return the converted expression. */
6438 tree
6439 initialize_reference (tree type, tree expr, tree decl, tree *cleanup)
6441 conversion *conv;
6442 void *p;
6444 if (type == error_mark_node || error_operand_p (expr))
6445 return error_mark_node;
6447 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6448 p = conversion_obstack_alloc (0);
6450 conv = reference_binding (type, TREE_TYPE (expr), expr, LOOKUP_NORMAL);
6451 if (!conv || conv->bad_p)
6453 if (!(TYPE_QUALS (TREE_TYPE (type)) & TYPE_QUAL_CONST)
6454 && !real_lvalue_p (expr))
6455 error ("invalid initialization of non-const reference of "
6456 "type %qT from a temporary of type %qT",
6457 type, TREE_TYPE (expr));
6458 else
6459 error ("invalid initialization of reference of type "
6460 "%qT from expression of type %qT", type,
6461 TREE_TYPE (expr));
6462 return error_mark_node;
6465 /* If DECL is non-NULL, then this special rule applies:
6467 [class.temporary]
6469 The temporary to which the reference is bound or the temporary
6470 that is the complete object to which the reference is bound
6471 persists for the lifetime of the reference.
6473 The temporaries created during the evaluation of the expression
6474 initializing the reference, except the temporary to which the
6475 reference is bound, are destroyed at the end of the
6476 full-expression in which they are created.
6478 In that case, we store the converted expression into a new
6479 VAR_DECL in a new scope.
6481 However, we want to be careful not to create temporaries when
6482 they are not required. For example, given:
6484 struct B {};
6485 struct D : public B {};
6486 D f();
6487 const B& b = f();
6489 there is no need to copy the return value from "f"; we can just
6490 extend its lifetime. Similarly, given:
6492 struct S {};
6493 struct T { operator S(); };
6494 T t;
6495 const S& s = t;
6497 we can extend the lifetime of the return value of the conversion
6498 operator. */
6499 gcc_assert (conv->kind == ck_ref_bind);
6500 if (decl)
6502 tree var;
6503 tree base_conv_type;
6505 /* Skip over the REF_BIND. */
6506 conv = conv->u.next;
6507 /* If the next conversion is a BASE_CONV, skip that too -- but
6508 remember that the conversion was required. */
6509 if (conv->kind == ck_base)
6511 if (conv->check_copy_constructor_p)
6512 check_constructor_callable (TREE_TYPE (expr), expr);
6513 base_conv_type = conv->type;
6514 conv = conv->u.next;
6516 else
6517 base_conv_type = NULL_TREE;
6518 /* Perform the remainder of the conversion. */
6519 expr = convert_like_real (conv, expr,
6520 /*fn=*/NULL_TREE, /*argnum=*/0,
6521 /*inner=*/-1,
6522 /*issue_conversion_warnings=*/true,
6523 /*c_cast_p=*/false);
6524 if (error_operand_p (expr))
6525 expr = error_mark_node;
6526 else
6528 if (!real_lvalue_p (expr))
6530 tree init;
6531 tree type;
6533 /* Create the temporary variable. */
6534 type = TREE_TYPE (expr);
6535 var = make_temporary_var_for_ref_to_temp (decl, type);
6536 layout_decl (var, 0);
6537 /* If the rvalue is the result of a function call it will be
6538 a TARGET_EXPR. If it is some other construct (such as a
6539 member access expression where the underlying object is
6540 itself the result of a function call), turn it into a
6541 TARGET_EXPR here. It is important that EXPR be a
6542 TARGET_EXPR below since otherwise the INIT_EXPR will
6543 attempt to make a bitwise copy of EXPR to initialize
6544 VAR. */
6545 if (TREE_CODE (expr) != TARGET_EXPR)
6546 expr = get_target_expr (expr);
6547 /* Create the INIT_EXPR that will initialize the temporary
6548 variable. */
6549 init = build2 (INIT_EXPR, type, var, expr);
6550 if (at_function_scope_p ())
6552 add_decl_expr (var);
6553 *cleanup = cxx_maybe_build_cleanup (var);
6555 /* We must be careful to destroy the temporary only
6556 after its initialization has taken place. If the
6557 initialization throws an exception, then the
6558 destructor should not be run. We cannot simply
6559 transform INIT into something like:
6561 (INIT, ({ CLEANUP_STMT; }))
6563 because emit_local_var always treats the
6564 initializer as a full-expression. Thus, the
6565 destructor would run too early; it would run at the
6566 end of initializing the reference variable, rather
6567 than at the end of the block enclosing the
6568 reference variable.
6570 The solution is to pass back a cleanup expression
6571 which the caller is responsible for attaching to
6572 the statement tree. */
6574 else
6576 rest_of_decl_compilation (var, /*toplev=*/1, at_eof);
6577 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
6578 static_aggregates = tree_cons (NULL_TREE, var,
6579 static_aggregates);
6581 /* Use its address to initialize the reference variable. */
6582 expr = build_address (var);
6583 if (base_conv_type)
6584 expr = convert_to_base (expr,
6585 build_pointer_type (base_conv_type),
6586 /*check_access=*/true,
6587 /*nonnull=*/true);
6588 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr), init, expr);
6590 else
6591 /* Take the address of EXPR. */
6592 expr = build_unary_op (ADDR_EXPR, expr, 0);
6593 /* If a BASE_CONV was required, perform it now. */
6594 if (base_conv_type)
6595 expr = (perform_implicit_conversion
6596 (build_pointer_type (base_conv_type), expr));
6597 expr = build_nop (type, expr);
6600 else
6601 /* Perform the conversion. */
6602 expr = convert_like (conv, expr);
6604 /* Free all the conversions we allocated. */
6605 obstack_free (&conversion_obstack, p);
6607 return expr;
6610 #include "gt-cp-call.h"