Daily bump.
[official-gcc.git] / libgfortran / generated / reshape_c16.c
blobc9cdaa931a9ed44ee5dcdc7ce32f3423ac587153
1 /* Implementation of the RESHAPE
2 Copyright 2002, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_COMPLEX_16)
38 typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type;
41 extern void reshape_c16 (gfc_array_c16 * const restrict,
42 gfc_array_c16 * const restrict,
43 shape_type * const restrict,
44 gfc_array_c16 * const restrict,
45 shape_type * const restrict);
46 export_proto(reshape_c16);
48 void
49 reshape_c16 (gfc_array_c16 * const restrict ret,
50 gfc_array_c16 * const restrict source,
51 shape_type * const restrict shape,
52 gfc_array_c16 * const restrict pad,
53 shape_type * const restrict order)
55 /* r.* indicates the return array. */
56 index_type rcount[GFC_MAX_DIMENSIONS];
57 index_type rextent[GFC_MAX_DIMENSIONS];
58 index_type rstride[GFC_MAX_DIMENSIONS];
59 index_type rstride0;
60 index_type rdim;
61 index_type rsize;
62 index_type rs;
63 index_type rex;
64 GFC_COMPLEX_16 *rptr;
65 /* s.* indicates the source array. */
66 index_type scount[GFC_MAX_DIMENSIONS];
67 index_type sextent[GFC_MAX_DIMENSIONS];
68 index_type sstride[GFC_MAX_DIMENSIONS];
69 index_type sstride0;
70 index_type sdim;
71 index_type ssize;
72 const GFC_COMPLEX_16 *sptr;
73 /* p.* indicates the pad array. */
74 index_type pcount[GFC_MAX_DIMENSIONS];
75 index_type pextent[GFC_MAX_DIMENSIONS];
76 index_type pstride[GFC_MAX_DIMENSIONS];
77 index_type pdim;
78 index_type psize;
79 const GFC_COMPLEX_16 *pptr;
81 const GFC_COMPLEX_16 *src;
82 int n;
83 int dim;
84 int sempty, pempty;
86 if (ret->data == NULL)
88 rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1;
89 rs = 1;
90 for (n = 0; n < rdim; n++)
92 ret->dim[n].lbound = 0;
93 rex = shape->data[n * shape->dim[0].stride];
94 ret->dim[n].ubound = rex - 1;
95 ret->dim[n].stride = rs;
96 rs *= rex;
98 ret->offset = 0;
99 ret->data = internal_malloc_size ( rs * sizeof (GFC_COMPLEX_16));
100 ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim;
102 else
104 rdim = GFC_DESCRIPTOR_RANK (ret);
107 rsize = 1;
108 for (n = 0; n < rdim; n++)
110 if (order)
111 dim = order->data[n * order->dim[0].stride] - 1;
112 else
113 dim = n;
115 rcount[n] = 0;
116 rstride[n] = ret->dim[dim].stride;
117 rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound;
119 if (rextent[n] != shape->data[dim * shape->dim[0].stride])
120 runtime_error ("shape and target do not conform");
122 if (rsize == rstride[n])
123 rsize *= rextent[n];
124 else
125 rsize = 0;
126 if (rextent[n] <= 0)
127 return;
130 sdim = GFC_DESCRIPTOR_RANK (source);
131 ssize = 1;
132 sempty = 0;
133 for (n = 0; n < sdim; n++)
135 scount[n] = 0;
136 sstride[n] = source->dim[n].stride;
137 sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound;
138 if (sextent[n] <= 0)
140 sempty = 1;
141 sextent[n] = 0;
144 if (ssize == sstride[n])
145 ssize *= sextent[n];
146 else
147 ssize = 0;
150 if (pad)
152 pdim = GFC_DESCRIPTOR_RANK (pad);
153 psize = 1;
154 pempty = 0;
155 for (n = 0; n < pdim; n++)
157 pcount[n] = 0;
158 pstride[n] = pad->dim[n].stride;
159 pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound;
160 if (pextent[n] <= 0)
162 pempty = 1;
163 pextent[n] = 0;
166 if (psize == pstride[n])
167 psize *= pextent[n];
168 else
169 psize = 0;
171 pptr = pad->data;
173 else
175 pdim = 0;
176 psize = 1;
177 pempty = 1;
178 pptr = NULL;
181 if (rsize != 0 && ssize != 0 && psize != 0)
183 rsize *= sizeof (GFC_COMPLEX_16);
184 ssize *= sizeof (GFC_COMPLEX_16);
185 psize *= sizeof (GFC_COMPLEX_16);
186 reshape_packed ((char *)ret->data, rsize, (char *)source->data,
187 ssize, pad ? (char *)pad->data : NULL, psize);
188 return;
190 rptr = ret->data;
191 src = sptr = source->data;
192 rstride0 = rstride[0];
193 sstride0 = sstride[0];
195 if (sempty && pempty)
196 abort ();
198 if (sempty)
200 /* Switch immediately to the pad array. */
201 src = pptr;
202 sptr = NULL;
203 sdim = pdim;
204 for (dim = 0; dim < pdim; dim++)
206 scount[dim] = pcount[dim];
207 sextent[dim] = pextent[dim];
208 sstride[dim] = pstride[dim];
209 sstride0 = sstride[0] * sizeof (GFC_COMPLEX_16);
213 while (rptr)
215 /* Select between the source and pad arrays. */
216 *rptr = *src;
217 /* Advance to the next element. */
218 rptr += rstride0;
219 src += sstride0;
220 rcount[0]++;
221 scount[0]++;
223 /* Advance to the next destination element. */
224 n = 0;
225 while (rcount[n] == rextent[n])
227 /* When we get to the end of a dimension, reset it and increment
228 the next dimension. */
229 rcount[n] = 0;
230 /* We could precalculate these products, but this is a less
231 frequently used path so probably not worth it. */
232 rptr -= rstride[n] * rextent[n];
233 n++;
234 if (n == rdim)
236 /* Break out of the loop. */
237 rptr = NULL;
238 break;
240 else
242 rcount[n]++;
243 rptr += rstride[n];
246 /* Advance to the next source element. */
247 n = 0;
248 while (scount[n] == sextent[n])
250 /* When we get to the end of a dimension, reset it and increment
251 the next dimension. */
252 scount[n] = 0;
253 /* We could precalculate these products, but this is a less
254 frequently used path so probably not worth it. */
255 src -= sstride[n] * sextent[n];
256 n++;
257 if (n == sdim)
259 if (sptr && pad)
261 /* Switch to the pad array. */
262 sptr = NULL;
263 sdim = pdim;
264 for (dim = 0; dim < pdim; dim++)
266 scount[dim] = pcount[dim];
267 sextent[dim] = pextent[dim];
268 sstride[dim] = pstride[dim];
269 sstride0 = sstride[0];
272 /* We now start again from the beginning of the pad array. */
273 src = pptr;
274 break;
276 else
278 scount[n]++;
279 src += sstride[n];
285 #endif