Daily bump.
[official-gcc.git] / libgfortran / generated / matmul_l8.c
blob0b9b0be6b51946a7028eb7c69c0e27ac3026df5d
1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_LOGICAL_8)
38 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
39 Either a or b can be rank 1. In this case x or y is 1. */
41 extern void matmul_l8 (gfc_array_l8 * const restrict,
42 gfc_array_l1 * const restrict, gfc_array_l1 * const restrict);
43 export_proto(matmul_l8);
45 void
46 matmul_l8 (gfc_array_l8 * const restrict retarray,
47 gfc_array_l1 * const restrict a, gfc_array_l1 * const restrict b)
49 const GFC_LOGICAL_1 * restrict abase;
50 const GFC_LOGICAL_1 * restrict bbase;
51 GFC_LOGICAL_8 * restrict dest;
52 index_type rxstride;
53 index_type rystride;
54 index_type xcount;
55 index_type ycount;
56 index_type xstride;
57 index_type ystride;
58 index_type x;
59 index_type y;
60 int a_kind;
61 int b_kind;
63 const GFC_LOGICAL_1 * restrict pa;
64 const GFC_LOGICAL_1 * restrict pb;
65 index_type astride;
66 index_type bstride;
67 index_type count;
68 index_type n;
70 assert (GFC_DESCRIPTOR_RANK (a) == 2
71 || GFC_DESCRIPTOR_RANK (b) == 2);
73 if (retarray->data == NULL)
75 if (GFC_DESCRIPTOR_RANK (a) == 1)
77 retarray->dim[0].lbound = 0;
78 retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
79 retarray->dim[0].stride = 1;
81 else if (GFC_DESCRIPTOR_RANK (b) == 1)
83 retarray->dim[0].lbound = 0;
84 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
85 retarray->dim[0].stride = 1;
87 else
89 retarray->dim[0].lbound = 0;
90 retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
91 retarray->dim[0].stride = 1;
93 retarray->dim[1].lbound = 0;
94 retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
95 retarray->dim[1].stride = retarray->dim[0].ubound+1;
98 retarray->data
99 = internal_malloc_size (sizeof (GFC_LOGICAL_8) * size0 ((array_t *) retarray));
100 retarray->offset = 0;
103 abase = a->data;
104 a_kind = GFC_DESCRIPTOR_SIZE (a);
106 if (a_kind == 1 || a_kind == 2 || a_kind == 4 || a_kind == 8
107 #ifdef HAVE_GFC_LOGICAL_16
108 || a_kind == 16
109 #endif
111 abase = GFOR_POINTER_TO_L1 (abase, a_kind);
112 else
113 internal_error (NULL, "Funny sized logical array");
115 bbase = b->data;
116 b_kind = GFC_DESCRIPTOR_SIZE (b);
118 if (b_kind == 1 || b_kind == 2 || b_kind == 4 || b_kind == 8
119 #ifdef HAVE_GFC_LOGICAL_16
120 || b_kind == 16
121 #endif
123 bbase = GFOR_POINTER_TO_L1 (bbase, b_kind);
124 else
125 internal_error (NULL, "Funny sized logical array");
127 dest = retarray->data;
130 if (GFC_DESCRIPTOR_RANK (retarray) == 1)
132 rxstride = retarray->dim[0].stride;
133 rystride = rxstride;
135 else
137 rxstride = retarray->dim[0].stride;
138 rystride = retarray->dim[1].stride;
141 /* If we have rank 1 parameters, zero the absent stride, and set the size to
142 one. */
143 if (GFC_DESCRIPTOR_RANK (a) == 1)
145 astride = a->dim[0].stride * a_kind;
146 count = a->dim[0].ubound + 1 - a->dim[0].lbound;
147 xstride = 0;
148 rxstride = 0;
149 xcount = 1;
151 else
153 astride = a->dim[1].stride * a_kind;
154 count = a->dim[1].ubound + 1 - a->dim[1].lbound;
155 xstride = a->dim[0].stride;
156 xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
158 if (GFC_DESCRIPTOR_RANK (b) == 1)
160 bstride = b->dim[0].stride * b_kind;
161 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
162 ystride = 0;
163 rystride = 0;
164 ycount = 1;
166 else
168 bstride = b->dim[0].stride * b_kind;
169 assert(count == b->dim[0].ubound + 1 - b->dim[0].lbound);
170 ystride = b->dim[1].stride;
171 ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
174 for (y = 0; y < ycount; y++)
176 for (x = 0; x < xcount; x++)
178 /* Do the summation for this element. For real and integer types
179 this is the same as DOT_PRODUCT. For complex types we use do
180 a*b, not conjg(a)*b. */
181 pa = abase;
182 pb = bbase;
183 *dest = 0;
185 for (n = 0; n < count; n++)
187 if (*pa && *pb)
189 *dest = 1;
190 break;
192 pa += astride;
193 pb += bstride;
196 dest += rxstride;
197 abase += xstride;
199 abase -= xstride * xcount;
200 bbase += ystride;
201 dest += rystride - (rxstride * xcount);
205 #endif