1 /* Implementation of the MATMUL intrinsic
2 Copyright 2002, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
36 #if defined (HAVE_GFC_LOGICAL_8)
38 /* Dimensions: retarray(x,y) a(x, count) b(count,y).
39 Either a or b can be rank 1. In this case x or y is 1. */
41 extern void matmul_l8 (gfc_array_l8
* const restrict
,
42 gfc_array_l1
* const restrict
, gfc_array_l1
* const restrict
);
43 export_proto(matmul_l8
);
46 matmul_l8 (gfc_array_l8
* const restrict retarray
,
47 gfc_array_l1
* const restrict a
, gfc_array_l1
* const restrict b
)
49 const GFC_LOGICAL_1
* restrict abase
;
50 const GFC_LOGICAL_1
* restrict bbase
;
51 GFC_LOGICAL_8
* restrict dest
;
63 const GFC_LOGICAL_1
* restrict pa
;
64 const GFC_LOGICAL_1
* restrict pb
;
70 assert (GFC_DESCRIPTOR_RANK (a
) == 2
71 || GFC_DESCRIPTOR_RANK (b
) == 2);
73 if (retarray
->data
== NULL
)
75 if (GFC_DESCRIPTOR_RANK (a
) == 1)
77 retarray
->dim
[0].lbound
= 0;
78 retarray
->dim
[0].ubound
= b
->dim
[1].ubound
- b
->dim
[1].lbound
;
79 retarray
->dim
[0].stride
= 1;
81 else if (GFC_DESCRIPTOR_RANK (b
) == 1)
83 retarray
->dim
[0].lbound
= 0;
84 retarray
->dim
[0].ubound
= a
->dim
[0].ubound
- a
->dim
[0].lbound
;
85 retarray
->dim
[0].stride
= 1;
89 retarray
->dim
[0].lbound
= 0;
90 retarray
->dim
[0].ubound
= a
->dim
[0].ubound
- a
->dim
[0].lbound
;
91 retarray
->dim
[0].stride
= 1;
93 retarray
->dim
[1].lbound
= 0;
94 retarray
->dim
[1].ubound
= b
->dim
[1].ubound
- b
->dim
[1].lbound
;
95 retarray
->dim
[1].stride
= retarray
->dim
[0].ubound
+1;
99 = internal_malloc_size (sizeof (GFC_LOGICAL_8
) * size0 ((array_t
*) retarray
));
100 retarray
->offset
= 0;
104 a_kind
= GFC_DESCRIPTOR_SIZE (a
);
106 if (a_kind
== 1 || a_kind
== 2 || a_kind
== 4 || a_kind
== 8
107 #ifdef HAVE_GFC_LOGICAL_16
111 abase
= GFOR_POINTER_TO_L1 (abase
, a_kind
);
113 internal_error (NULL
, "Funny sized logical array");
116 b_kind
= GFC_DESCRIPTOR_SIZE (b
);
118 if (b_kind
== 1 || b_kind
== 2 || b_kind
== 4 || b_kind
== 8
119 #ifdef HAVE_GFC_LOGICAL_16
123 bbase
= GFOR_POINTER_TO_L1 (bbase
, b_kind
);
125 internal_error (NULL
, "Funny sized logical array");
127 dest
= retarray
->data
;
130 if (GFC_DESCRIPTOR_RANK (retarray
) == 1)
132 rxstride
= retarray
->dim
[0].stride
;
137 rxstride
= retarray
->dim
[0].stride
;
138 rystride
= retarray
->dim
[1].stride
;
141 /* If we have rank 1 parameters, zero the absent stride, and set the size to
143 if (GFC_DESCRIPTOR_RANK (a
) == 1)
145 astride
= a
->dim
[0].stride
* a_kind
;
146 count
= a
->dim
[0].ubound
+ 1 - a
->dim
[0].lbound
;
153 astride
= a
->dim
[1].stride
* a_kind
;
154 count
= a
->dim
[1].ubound
+ 1 - a
->dim
[1].lbound
;
155 xstride
= a
->dim
[0].stride
;
156 xcount
= a
->dim
[0].ubound
+ 1 - a
->dim
[0].lbound
;
158 if (GFC_DESCRIPTOR_RANK (b
) == 1)
160 bstride
= b
->dim
[0].stride
* b_kind
;
161 assert(count
== b
->dim
[0].ubound
+ 1 - b
->dim
[0].lbound
);
168 bstride
= b
->dim
[0].stride
* b_kind
;
169 assert(count
== b
->dim
[0].ubound
+ 1 - b
->dim
[0].lbound
);
170 ystride
= b
->dim
[1].stride
;
171 ycount
= b
->dim
[1].ubound
+ 1 - b
->dim
[1].lbound
;
174 for (y
= 0; y
< ycount
; y
++)
176 for (x
= 0; x
< xcount
; x
++)
178 /* Do the summation for this element. For real and integer types
179 this is the same as DOT_PRODUCT. For complex types we use do
180 a*b, not conjg(a)*b. */
185 for (n
= 0; n
< count
; n
++)
199 abase
-= xstride
* xcount
;
201 dest
+= rystride
- (rxstride
* xcount
);