PR c++/79896
[official-gcc.git] / gcc / combine.c
blob66215a607bd9c968f1e5a736fb1fd738cec70989
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* Basic block in which we are performing combines. */
306 static basic_block this_basic_block;
307 static bool optimize_this_for_speed_p;
310 /* Length of the currently allocated uid_insn_cost array. */
312 static int max_uid_known;
314 /* The following array records the insn_rtx_cost for every insn
315 in the instruction stream. */
317 static int *uid_insn_cost;
319 /* The following array records the LOG_LINKS for every insn in the
320 instruction stream as struct insn_link pointers. */
322 struct insn_link {
323 rtx_insn *insn;
324 unsigned int regno;
325 struct insn_link *next;
328 static struct insn_link **uid_log_links;
330 static inline int
331 insn_uid_check (const_rtx insn)
333 int uid = INSN_UID (insn);
334 gcc_checking_assert (uid <= max_uid_known);
335 return uid;
338 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
339 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
341 #define FOR_EACH_LOG_LINK(L, INSN) \
342 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
344 /* Links for LOG_LINKS are allocated from this obstack. */
346 static struct obstack insn_link_obstack;
348 /* Allocate a link. */
350 static inline struct insn_link *
351 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
353 struct insn_link *l
354 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
355 sizeof (struct insn_link));
356 l->insn = insn;
357 l->regno = regno;
358 l->next = next;
359 return l;
362 /* Incremented for each basic block. */
364 static int label_tick;
366 /* Reset to label_tick for each extended basic block in scanning order. */
368 static int label_tick_ebb_start;
370 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
371 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
373 static machine_mode nonzero_bits_mode;
375 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
376 be safely used. It is zero while computing them and after combine has
377 completed. This former test prevents propagating values based on
378 previously set values, which can be incorrect if a variable is modified
379 in a loop. */
381 static int nonzero_sign_valid;
384 /* Record one modification to rtl structure
385 to be undone by storing old_contents into *where. */
387 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
389 struct undo
391 struct undo *next;
392 enum undo_kind kind;
393 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
394 union { rtx *r; int *i; struct insn_link **l; } where;
397 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
398 num_undo says how many are currently recorded.
400 other_insn is nonzero if we have modified some other insn in the process
401 of working on subst_insn. It must be verified too. */
403 struct undobuf
405 struct undo *undos;
406 struct undo *frees;
407 rtx_insn *other_insn;
410 static struct undobuf undobuf;
412 /* Number of times the pseudo being substituted for
413 was found and replaced. */
415 static int n_occurrences;
417 static rtx reg_nonzero_bits_for_combine (const_rtx, machine_mode, const_rtx,
418 machine_mode,
419 unsigned HOST_WIDE_INT,
420 unsigned HOST_WIDE_INT *);
421 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, machine_mode, const_rtx,
422 machine_mode,
423 unsigned int, unsigned int *);
424 static void do_SUBST (rtx *, rtx);
425 static void do_SUBST_INT (int *, int);
426 static void init_reg_last (void);
427 static void setup_incoming_promotions (rtx_insn *);
428 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
429 static int cant_combine_insn_p (rtx_insn *);
430 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
431 rtx_insn *, rtx_insn *, rtx *, rtx *);
432 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
433 static int contains_muldiv (rtx);
434 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
435 int *, rtx_insn *);
436 static void undo_all (void);
437 static void undo_commit (void);
438 static rtx *find_split_point (rtx *, rtx_insn *, bool);
439 static rtx subst (rtx, rtx, rtx, int, int, int);
440 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
441 static rtx simplify_if_then_else (rtx);
442 static rtx simplify_set (rtx);
443 static rtx simplify_logical (rtx);
444 static rtx expand_compound_operation (rtx);
445 static const_rtx expand_field_assignment (const_rtx);
446 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
447 rtx, unsigned HOST_WIDE_INT, int, int, int);
448 static rtx extract_left_shift (rtx, int);
449 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
450 unsigned HOST_WIDE_INT *);
451 static rtx canon_reg_for_combine (rtx, rtx);
452 static rtx force_to_mode (rtx, machine_mode,
453 unsigned HOST_WIDE_INT, int);
454 static rtx if_then_else_cond (rtx, rtx *, rtx *);
455 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
456 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
457 static rtx make_field_assignment (rtx);
458 static rtx apply_distributive_law (rtx);
459 static rtx distribute_and_simplify_rtx (rtx, int);
460 static rtx simplify_and_const_int_1 (machine_mode, rtx,
461 unsigned HOST_WIDE_INT);
462 static rtx simplify_and_const_int (rtx, machine_mode, rtx,
463 unsigned HOST_WIDE_INT);
464 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
465 HOST_WIDE_INT, machine_mode, int *);
466 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
467 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
468 int);
469 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
470 static rtx gen_lowpart_for_combine (machine_mode, rtx);
471 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
472 rtx, rtx *);
473 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
474 static void update_table_tick (rtx);
475 static void record_value_for_reg (rtx, rtx_insn *, rtx);
476 static void check_promoted_subreg (rtx_insn *, rtx);
477 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
478 static void record_dead_and_set_regs (rtx_insn *);
479 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
480 static rtx get_last_value (const_rtx);
481 static int use_crosses_set_p (const_rtx, int);
482 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
483 static int reg_dead_at_p (rtx, rtx_insn *);
484 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
485 static int reg_bitfield_target_p (rtx, rtx);
486 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
487 static void distribute_links (struct insn_link *);
488 static void mark_used_regs_combine (rtx);
489 static void record_promoted_value (rtx_insn *, rtx);
490 static bool unmentioned_reg_p (rtx, rtx);
491 static void record_truncated_values (rtx *, void *);
492 static bool reg_truncated_to_mode (machine_mode, const_rtx);
493 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
496 /* It is not safe to use ordinary gen_lowpart in combine.
497 See comments in gen_lowpart_for_combine. */
498 #undef RTL_HOOKS_GEN_LOWPART
499 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
501 /* Our implementation of gen_lowpart never emits a new pseudo. */
502 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
503 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
505 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
506 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
508 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
509 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
511 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
512 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
514 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
517 /* Convenience wrapper for the canonicalize_comparison target hook.
518 Target hooks cannot use enum rtx_code. */
519 static inline void
520 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
521 bool op0_preserve_value)
523 int code_int = (int)*code;
524 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
525 *code = (enum rtx_code)code_int;
528 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
529 PATTERN can not be split. Otherwise, it returns an insn sequence.
530 This is a wrapper around split_insns which ensures that the
531 reg_stat vector is made larger if the splitter creates a new
532 register. */
534 static rtx_insn *
535 combine_split_insns (rtx pattern, rtx_insn *insn)
537 rtx_insn *ret;
538 unsigned int nregs;
540 ret = split_insns (pattern, insn);
541 nregs = max_reg_num ();
542 if (nregs > reg_stat.length ())
543 reg_stat.safe_grow_cleared (nregs);
544 return ret;
547 /* This is used by find_single_use to locate an rtx in LOC that
548 contains exactly one use of DEST, which is typically either a REG
549 or CC0. It returns a pointer to the innermost rtx expression
550 containing DEST. Appearances of DEST that are being used to
551 totally replace it are not counted. */
553 static rtx *
554 find_single_use_1 (rtx dest, rtx *loc)
556 rtx x = *loc;
557 enum rtx_code code = GET_CODE (x);
558 rtx *result = NULL;
559 rtx *this_result;
560 int i;
561 const char *fmt;
563 switch (code)
565 case CONST:
566 case LABEL_REF:
567 case SYMBOL_REF:
568 CASE_CONST_ANY:
569 case CLOBBER:
570 return 0;
572 case SET:
573 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
574 of a REG that occupies all of the REG, the insn uses DEST if
575 it is mentioned in the destination or the source. Otherwise, we
576 need just check the source. */
577 if (GET_CODE (SET_DEST (x)) != CC0
578 && GET_CODE (SET_DEST (x)) != PC
579 && !REG_P (SET_DEST (x))
580 && ! (GET_CODE (SET_DEST (x)) == SUBREG
581 && REG_P (SUBREG_REG (SET_DEST (x)))
582 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
583 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
584 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
585 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
586 break;
588 return find_single_use_1 (dest, &SET_SRC (x));
590 case MEM:
591 case SUBREG:
592 return find_single_use_1 (dest, &XEXP (x, 0));
594 default:
595 break;
598 /* If it wasn't one of the common cases above, check each expression and
599 vector of this code. Look for a unique usage of DEST. */
601 fmt = GET_RTX_FORMAT (code);
602 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 if (fmt[i] == 'e')
606 if (dest == XEXP (x, i)
607 || (REG_P (dest) && REG_P (XEXP (x, i))
608 && REGNO (dest) == REGNO (XEXP (x, i))))
609 this_result = loc;
610 else
611 this_result = find_single_use_1 (dest, &XEXP (x, i));
613 if (result == NULL)
614 result = this_result;
615 else if (this_result)
616 /* Duplicate usage. */
617 return NULL;
619 else if (fmt[i] == 'E')
621 int j;
623 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
625 if (XVECEXP (x, i, j) == dest
626 || (REG_P (dest)
627 && REG_P (XVECEXP (x, i, j))
628 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
629 this_result = loc;
630 else
631 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
633 if (result == NULL)
634 result = this_result;
635 else if (this_result)
636 return NULL;
641 return result;
645 /* See if DEST, produced in INSN, is used only a single time in the
646 sequel. If so, return a pointer to the innermost rtx expression in which
647 it is used.
649 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
651 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
652 care about REG_DEAD notes or LOG_LINKS.
654 Otherwise, we find the single use by finding an insn that has a
655 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
656 only referenced once in that insn, we know that it must be the first
657 and last insn referencing DEST. */
659 static rtx *
660 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
662 basic_block bb;
663 rtx_insn *next;
664 rtx *result;
665 struct insn_link *link;
667 if (dest == cc0_rtx)
669 next = NEXT_INSN (insn);
670 if (next == 0
671 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
672 return 0;
674 result = find_single_use_1 (dest, &PATTERN (next));
675 if (result && ploc)
676 *ploc = next;
677 return result;
680 if (!REG_P (dest))
681 return 0;
683 bb = BLOCK_FOR_INSN (insn);
684 for (next = NEXT_INSN (insn);
685 next && BLOCK_FOR_INSN (next) == bb;
686 next = NEXT_INSN (next))
687 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
689 FOR_EACH_LOG_LINK (link, next)
690 if (link->insn == insn && link->regno == REGNO (dest))
691 break;
693 if (link)
695 result = find_single_use_1 (dest, &PATTERN (next));
696 if (ploc)
697 *ploc = next;
698 return result;
702 return 0;
705 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
706 insn. The substitution can be undone by undo_all. If INTO is already
707 set to NEWVAL, do not record this change. Because computing NEWVAL might
708 also call SUBST, we have to compute it before we put anything into
709 the undo table. */
711 static void
712 do_SUBST (rtx *into, rtx newval)
714 struct undo *buf;
715 rtx oldval = *into;
717 if (oldval == newval)
718 return;
720 /* We'd like to catch as many invalid transformations here as
721 possible. Unfortunately, there are way too many mode changes
722 that are perfectly valid, so we'd waste too much effort for
723 little gain doing the checks here. Focus on catching invalid
724 transformations involving integer constants. */
725 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
726 && CONST_INT_P (newval))
728 /* Sanity check that we're replacing oldval with a CONST_INT
729 that is a valid sign-extension for the original mode. */
730 gcc_assert (INTVAL (newval)
731 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
733 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
734 CONST_INT is not valid, because after the replacement, the
735 original mode would be gone. Unfortunately, we can't tell
736 when do_SUBST is called to replace the operand thereof, so we
737 perform this test on oldval instead, checking whether an
738 invalid replacement took place before we got here. */
739 gcc_assert (!(GET_CODE (oldval) == SUBREG
740 && CONST_INT_P (SUBREG_REG (oldval))));
741 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
742 && CONST_INT_P (XEXP (oldval, 0))));
745 if (undobuf.frees)
746 buf = undobuf.frees, undobuf.frees = buf->next;
747 else
748 buf = XNEW (struct undo);
750 buf->kind = UNDO_RTX;
751 buf->where.r = into;
752 buf->old_contents.r = oldval;
753 *into = newval;
755 buf->next = undobuf.undos, undobuf.undos = buf;
758 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
760 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
761 for the value of a HOST_WIDE_INT value (including CONST_INT) is
762 not safe. */
764 static void
765 do_SUBST_INT (int *into, int newval)
767 struct undo *buf;
768 int oldval = *into;
770 if (oldval == newval)
771 return;
773 if (undobuf.frees)
774 buf = undobuf.frees, undobuf.frees = buf->next;
775 else
776 buf = XNEW (struct undo);
778 buf->kind = UNDO_INT;
779 buf->where.i = into;
780 buf->old_contents.i = oldval;
781 *into = newval;
783 buf->next = undobuf.undos, undobuf.undos = buf;
786 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
788 /* Similar to SUBST, but just substitute the mode. This is used when
789 changing the mode of a pseudo-register, so that any other
790 references to the entry in the regno_reg_rtx array will change as
791 well. */
793 static void
794 do_SUBST_MODE (rtx *into, machine_mode newval)
796 struct undo *buf;
797 machine_mode oldval = GET_MODE (*into);
799 if (oldval == newval)
800 return;
802 if (undobuf.frees)
803 buf = undobuf.frees, undobuf.frees = buf->next;
804 else
805 buf = XNEW (struct undo);
807 buf->kind = UNDO_MODE;
808 buf->where.r = into;
809 buf->old_contents.m = oldval;
810 adjust_reg_mode (*into, newval);
812 buf->next = undobuf.undos, undobuf.undos = buf;
815 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
819 static void
820 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
822 struct undo *buf;
823 struct insn_link * oldval = *into;
825 if (oldval == newval)
826 return;
828 if (undobuf.frees)
829 buf = undobuf.frees, undobuf.frees = buf->next;
830 else
831 buf = XNEW (struct undo);
833 buf->kind = UNDO_LINKS;
834 buf->where.l = into;
835 buf->old_contents.l = oldval;
836 *into = newval;
838 buf->next = undobuf.undos, undobuf.undos = buf;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
843 /* Subroutine of try_combine. Determine whether the replacement patterns
844 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
845 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
846 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
847 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
848 of all the instructions can be estimated and the replacements are more
849 expensive than the original sequence. */
851 static bool
852 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
853 rtx newpat, rtx newi2pat, rtx newotherpat)
855 int i0_cost, i1_cost, i2_cost, i3_cost;
856 int new_i2_cost, new_i3_cost;
857 int old_cost, new_cost;
859 /* Lookup the original insn_rtx_costs. */
860 i2_cost = INSN_COST (i2);
861 i3_cost = INSN_COST (i3);
863 if (i1)
865 i1_cost = INSN_COST (i1);
866 if (i0)
868 i0_cost = INSN_COST (i0);
869 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
870 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
872 else
874 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
875 ? i1_cost + i2_cost + i3_cost : 0);
876 i0_cost = 0;
879 else
881 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
882 i1_cost = i0_cost = 0;
885 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
886 correct that. */
887 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
888 old_cost -= i1_cost;
891 /* Calculate the replacement insn_rtx_costs. */
892 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
893 if (newi2pat)
895 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
896 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
897 ? new_i2_cost + new_i3_cost : 0;
899 else
901 new_cost = new_i3_cost;
902 new_i2_cost = 0;
905 if (undobuf.other_insn)
907 int old_other_cost, new_other_cost;
909 old_other_cost = INSN_COST (undobuf.other_insn);
910 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
911 if (old_other_cost > 0 && new_other_cost > 0)
913 old_cost += old_other_cost;
914 new_cost += new_other_cost;
916 else
917 old_cost = 0;
920 /* Disallow this combination if both new_cost and old_cost are greater than
921 zero, and new_cost is greater than old cost. */
922 int reject = old_cost > 0 && new_cost > old_cost;
924 if (dump_file)
926 fprintf (dump_file, "%s combination of insns ",
927 reject ? "rejecting" : "allowing");
928 if (i0)
929 fprintf (dump_file, "%d, ", INSN_UID (i0));
930 if (i1 && INSN_UID (i1) != INSN_UID (i2))
931 fprintf (dump_file, "%d, ", INSN_UID (i1));
932 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
934 fprintf (dump_file, "original costs ");
935 if (i0)
936 fprintf (dump_file, "%d + ", i0_cost);
937 if (i1 && INSN_UID (i1) != INSN_UID (i2))
938 fprintf (dump_file, "%d + ", i1_cost);
939 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
941 if (newi2pat)
942 fprintf (dump_file, "replacement costs %d + %d = %d\n",
943 new_i2_cost, new_i3_cost, new_cost);
944 else
945 fprintf (dump_file, "replacement cost %d\n", new_cost);
948 if (reject)
949 return false;
951 /* Update the uid_insn_cost array with the replacement costs. */
952 INSN_COST (i2) = new_i2_cost;
953 INSN_COST (i3) = new_i3_cost;
954 if (i1)
956 INSN_COST (i1) = 0;
957 if (i0)
958 INSN_COST (i0) = 0;
961 return true;
965 /* Delete any insns that copy a register to itself. */
967 static void
968 delete_noop_moves (void)
970 rtx_insn *insn, *next;
971 basic_block bb;
973 FOR_EACH_BB_FN (bb, cfun)
975 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
977 next = NEXT_INSN (insn);
978 if (INSN_P (insn) && noop_move_p (insn))
980 if (dump_file)
981 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
983 delete_insn_and_edges (insn);
990 /* Return false if we do not want to (or cannot) combine DEF. */
991 static bool
992 can_combine_def_p (df_ref def)
994 /* Do not consider if it is pre/post modification in MEM. */
995 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
996 return false;
998 unsigned int regno = DF_REF_REGNO (def);
1000 /* Do not combine frame pointer adjustments. */
1001 if ((regno == FRAME_POINTER_REGNUM
1002 && (!reload_completed || frame_pointer_needed))
1003 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1004 && regno == HARD_FRAME_POINTER_REGNUM
1005 && (!reload_completed || frame_pointer_needed))
1006 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1007 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1008 return false;
1010 return true;
1013 /* Return false if we do not want to (or cannot) combine USE. */
1014 static bool
1015 can_combine_use_p (df_ref use)
1017 /* Do not consider the usage of the stack pointer by function call. */
1018 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1019 return false;
1021 return true;
1024 /* Fill in log links field for all insns. */
1026 static void
1027 create_log_links (void)
1029 basic_block bb;
1030 rtx_insn **next_use;
1031 rtx_insn *insn;
1032 df_ref def, use;
1034 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1036 /* Pass through each block from the end, recording the uses of each
1037 register and establishing log links when def is encountered.
1038 Note that we do not clear next_use array in order to save time,
1039 so we have to test whether the use is in the same basic block as def.
1041 There are a few cases below when we do not consider the definition or
1042 usage -- these are taken from original flow.c did. Don't ask me why it is
1043 done this way; I don't know and if it works, I don't want to know. */
1045 FOR_EACH_BB_FN (bb, cfun)
1047 FOR_BB_INSNS_REVERSE (bb, insn)
1049 if (!NONDEBUG_INSN_P (insn))
1050 continue;
1052 /* Log links are created only once. */
1053 gcc_assert (!LOG_LINKS (insn));
1055 FOR_EACH_INSN_DEF (def, insn)
1057 unsigned int regno = DF_REF_REGNO (def);
1058 rtx_insn *use_insn;
1060 if (!next_use[regno])
1061 continue;
1063 if (!can_combine_def_p (def))
1064 continue;
1066 use_insn = next_use[regno];
1067 next_use[regno] = NULL;
1069 if (BLOCK_FOR_INSN (use_insn) != bb)
1070 continue;
1072 /* flow.c claimed:
1074 We don't build a LOG_LINK for hard registers contained
1075 in ASM_OPERANDs. If these registers get replaced,
1076 we might wind up changing the semantics of the insn,
1077 even if reload can make what appear to be valid
1078 assignments later. */
1079 if (regno < FIRST_PSEUDO_REGISTER
1080 && asm_noperands (PATTERN (use_insn)) >= 0)
1081 continue;
1083 /* Don't add duplicate links between instructions. */
1084 struct insn_link *links;
1085 FOR_EACH_LOG_LINK (links, use_insn)
1086 if (insn == links->insn && regno == links->regno)
1087 break;
1089 if (!links)
1090 LOG_LINKS (use_insn)
1091 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1094 FOR_EACH_INSN_USE (use, insn)
1095 if (can_combine_use_p (use))
1096 next_use[DF_REF_REGNO (use)] = insn;
1100 free (next_use);
1103 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1104 true if we found a LOG_LINK that proves that A feeds B. This only works
1105 if there are no instructions between A and B which could have a link
1106 depending on A, since in that case we would not record a link for B.
1107 We also check the implicit dependency created by a cc0 setter/user
1108 pair. */
1110 static bool
1111 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1113 struct insn_link *links;
1114 FOR_EACH_LOG_LINK (links, b)
1115 if (links->insn == a)
1116 return true;
1117 if (HAVE_cc0 && sets_cc0_p (a))
1118 return true;
1119 return false;
1122 /* Main entry point for combiner. F is the first insn of the function.
1123 NREGS is the first unused pseudo-reg number.
1125 Return nonzero if the combiner has turned an indirect jump
1126 instruction into a direct jump. */
1127 static int
1128 combine_instructions (rtx_insn *f, unsigned int nregs)
1130 rtx_insn *insn, *next;
1131 rtx_insn *prev;
1132 struct insn_link *links, *nextlinks;
1133 rtx_insn *first;
1134 basic_block last_bb;
1136 int new_direct_jump_p = 0;
1138 for (first = f; first && !NONDEBUG_INSN_P (first); )
1139 first = NEXT_INSN (first);
1140 if (!first)
1141 return 0;
1143 combine_attempts = 0;
1144 combine_merges = 0;
1145 combine_extras = 0;
1146 combine_successes = 0;
1148 rtl_hooks = combine_rtl_hooks;
1150 reg_stat.safe_grow_cleared (nregs);
1152 init_recog_no_volatile ();
1154 /* Allocate array for insn info. */
1155 max_uid_known = get_max_uid ();
1156 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1157 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1158 gcc_obstack_init (&insn_link_obstack);
1160 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1162 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1163 problems when, for example, we have j <<= 1 in a loop. */
1165 nonzero_sign_valid = 0;
1166 label_tick = label_tick_ebb_start = 1;
1168 /* Scan all SETs and see if we can deduce anything about what
1169 bits are known to be zero for some registers and how many copies
1170 of the sign bit are known to exist for those registers.
1172 Also set any known values so that we can use it while searching
1173 for what bits are known to be set. */
1175 setup_incoming_promotions (first);
1176 /* Allow the entry block and the first block to fall into the same EBB.
1177 Conceptually the incoming promotions are assigned to the entry block. */
1178 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1180 create_log_links ();
1181 FOR_EACH_BB_FN (this_basic_block, cfun)
1183 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1184 last_call_luid = 0;
1185 mem_last_set = -1;
1187 label_tick++;
1188 if (!single_pred_p (this_basic_block)
1189 || single_pred (this_basic_block) != last_bb)
1190 label_tick_ebb_start = label_tick;
1191 last_bb = this_basic_block;
1193 FOR_BB_INSNS (this_basic_block, insn)
1194 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1196 rtx links;
1198 subst_low_luid = DF_INSN_LUID (insn);
1199 subst_insn = insn;
1201 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1202 insn);
1203 record_dead_and_set_regs (insn);
1205 if (AUTO_INC_DEC)
1206 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1207 if (REG_NOTE_KIND (links) == REG_INC)
1208 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1209 insn);
1211 /* Record the current insn_rtx_cost of this instruction. */
1212 if (NONJUMP_INSN_P (insn))
1213 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1214 optimize_this_for_speed_p);
1215 if (dump_file)
1216 fprintf (dump_file, "insn_cost %d: %d\n",
1217 INSN_UID (insn), INSN_COST (insn));
1221 nonzero_sign_valid = 1;
1223 /* Now scan all the insns in forward order. */
1224 label_tick = label_tick_ebb_start = 1;
1225 init_reg_last ();
1226 setup_incoming_promotions (first);
1227 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1228 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1230 FOR_EACH_BB_FN (this_basic_block, cfun)
1232 rtx_insn *last_combined_insn = NULL;
1233 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1234 last_call_luid = 0;
1235 mem_last_set = -1;
1237 label_tick++;
1238 if (!single_pred_p (this_basic_block)
1239 || single_pred (this_basic_block) != last_bb)
1240 label_tick_ebb_start = label_tick;
1241 last_bb = this_basic_block;
1243 rtl_profile_for_bb (this_basic_block);
1244 for (insn = BB_HEAD (this_basic_block);
1245 insn != NEXT_INSN (BB_END (this_basic_block));
1246 insn = next ? next : NEXT_INSN (insn))
1248 next = 0;
1249 if (!NONDEBUG_INSN_P (insn))
1250 continue;
1252 while (last_combined_insn
1253 && last_combined_insn->deleted ())
1254 last_combined_insn = PREV_INSN (last_combined_insn);
1255 if (last_combined_insn == NULL_RTX
1256 || BARRIER_P (last_combined_insn)
1257 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1258 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1259 last_combined_insn = insn;
1261 /* See if we know about function return values before this
1262 insn based upon SUBREG flags. */
1263 check_promoted_subreg (insn, PATTERN (insn));
1265 /* See if we can find hardregs and subreg of pseudos in
1266 narrower modes. This could help turning TRUNCATEs
1267 into SUBREGs. */
1268 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1270 /* Try this insn with each insn it links back to. */
1272 FOR_EACH_LOG_LINK (links, insn)
1273 if ((next = try_combine (insn, links->insn, NULL,
1274 NULL, &new_direct_jump_p,
1275 last_combined_insn)) != 0)
1277 statistics_counter_event (cfun, "two-insn combine", 1);
1278 goto retry;
1281 /* Try each sequence of three linked insns ending with this one. */
1283 if (max_combine >= 3)
1284 FOR_EACH_LOG_LINK (links, insn)
1286 rtx_insn *link = links->insn;
1288 /* If the linked insn has been replaced by a note, then there
1289 is no point in pursuing this chain any further. */
1290 if (NOTE_P (link))
1291 continue;
1293 FOR_EACH_LOG_LINK (nextlinks, link)
1294 if ((next = try_combine (insn, link, nextlinks->insn,
1295 NULL, &new_direct_jump_p,
1296 last_combined_insn)) != 0)
1298 statistics_counter_event (cfun, "three-insn combine", 1);
1299 goto retry;
1303 /* Try to combine a jump insn that uses CC0
1304 with a preceding insn that sets CC0, and maybe with its
1305 logical predecessor as well.
1306 This is how we make decrement-and-branch insns.
1307 We need this special code because data flow connections
1308 via CC0 do not get entered in LOG_LINKS. */
1310 if (HAVE_cc0
1311 && JUMP_P (insn)
1312 && (prev = prev_nonnote_insn (insn)) != 0
1313 && NONJUMP_INSN_P (prev)
1314 && sets_cc0_p (PATTERN (prev)))
1316 if ((next = try_combine (insn, prev, NULL, NULL,
1317 &new_direct_jump_p,
1318 last_combined_insn)) != 0)
1319 goto retry;
1321 FOR_EACH_LOG_LINK (nextlinks, prev)
1322 if ((next = try_combine (insn, prev, nextlinks->insn,
1323 NULL, &new_direct_jump_p,
1324 last_combined_insn)) != 0)
1325 goto retry;
1328 /* Do the same for an insn that explicitly references CC0. */
1329 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1330 && (prev = prev_nonnote_insn (insn)) != 0
1331 && NONJUMP_INSN_P (prev)
1332 && sets_cc0_p (PATTERN (prev))
1333 && GET_CODE (PATTERN (insn)) == SET
1334 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1336 if ((next = try_combine (insn, prev, NULL, NULL,
1337 &new_direct_jump_p,
1338 last_combined_insn)) != 0)
1339 goto retry;
1341 FOR_EACH_LOG_LINK (nextlinks, prev)
1342 if ((next = try_combine (insn, prev, nextlinks->insn,
1343 NULL, &new_direct_jump_p,
1344 last_combined_insn)) != 0)
1345 goto retry;
1348 /* Finally, see if any of the insns that this insn links to
1349 explicitly references CC0. If so, try this insn, that insn,
1350 and its predecessor if it sets CC0. */
1351 if (HAVE_cc0)
1353 FOR_EACH_LOG_LINK (links, insn)
1354 if (NONJUMP_INSN_P (links->insn)
1355 && GET_CODE (PATTERN (links->insn)) == SET
1356 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1357 && (prev = prev_nonnote_insn (links->insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && (next = try_combine (insn, links->insn,
1361 prev, NULL, &new_direct_jump_p,
1362 last_combined_insn)) != 0)
1363 goto retry;
1366 /* Try combining an insn with two different insns whose results it
1367 uses. */
1368 if (max_combine >= 3)
1369 FOR_EACH_LOG_LINK (links, insn)
1370 for (nextlinks = links->next; nextlinks;
1371 nextlinks = nextlinks->next)
1372 if ((next = try_combine (insn, links->insn,
1373 nextlinks->insn, NULL,
1374 &new_direct_jump_p,
1375 last_combined_insn)) != 0)
1378 statistics_counter_event (cfun, "three-insn combine", 1);
1379 goto retry;
1382 /* Try four-instruction combinations. */
1383 if (max_combine >= 4)
1384 FOR_EACH_LOG_LINK (links, insn)
1386 struct insn_link *next1;
1387 rtx_insn *link = links->insn;
1389 /* If the linked insn has been replaced by a note, then there
1390 is no point in pursuing this chain any further. */
1391 if (NOTE_P (link))
1392 continue;
1394 FOR_EACH_LOG_LINK (next1, link)
1396 rtx_insn *link1 = next1->insn;
1397 if (NOTE_P (link1))
1398 continue;
1399 /* I0 -> I1 -> I2 -> I3. */
1400 FOR_EACH_LOG_LINK (nextlinks, link1)
1401 if ((next = try_combine (insn, link, link1,
1402 nextlinks->insn,
1403 &new_direct_jump_p,
1404 last_combined_insn)) != 0)
1406 statistics_counter_event (cfun, "four-insn combine", 1);
1407 goto retry;
1409 /* I0, I1 -> I2, I2 -> I3. */
1410 for (nextlinks = next1->next; nextlinks;
1411 nextlinks = nextlinks->next)
1412 if ((next = try_combine (insn, link, link1,
1413 nextlinks->insn,
1414 &new_direct_jump_p,
1415 last_combined_insn)) != 0)
1417 statistics_counter_event (cfun, "four-insn combine", 1);
1418 goto retry;
1422 for (next1 = links->next; next1; next1 = next1->next)
1424 rtx_insn *link1 = next1->insn;
1425 if (NOTE_P (link1))
1426 continue;
1427 /* I0 -> I2; I1, I2 -> I3. */
1428 FOR_EACH_LOG_LINK (nextlinks, link)
1429 if ((next = try_combine (insn, link, link1,
1430 nextlinks->insn,
1431 &new_direct_jump_p,
1432 last_combined_insn)) != 0)
1434 statistics_counter_event (cfun, "four-insn combine", 1);
1435 goto retry;
1437 /* I0 -> I1; I1, I2 -> I3. */
1438 FOR_EACH_LOG_LINK (nextlinks, link1)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1450 /* Try this insn with each REG_EQUAL note it links back to. */
1451 FOR_EACH_LOG_LINK (links, insn)
1453 rtx set, note;
1454 rtx_insn *temp = links->insn;
1455 if ((set = single_set (temp)) != 0
1456 && (note = find_reg_equal_equiv_note (temp)) != 0
1457 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1458 /* Avoid using a register that may already been marked
1459 dead by an earlier instruction. */
1460 && ! unmentioned_reg_p (note, SET_SRC (set))
1461 && (GET_MODE (note) == VOIDmode
1462 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1463 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1464 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1465 || (GET_MODE (XEXP (SET_DEST (set), 0))
1466 == GET_MODE (note))))))
1468 /* Temporarily replace the set's source with the
1469 contents of the REG_EQUAL note. The insn will
1470 be deleted or recognized by try_combine. */
1471 rtx orig_src = SET_SRC (set);
1472 rtx orig_dest = SET_DEST (set);
1473 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1474 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1475 SET_SRC (set) = note;
1476 i2mod = temp;
1477 i2mod_old_rhs = copy_rtx (orig_src);
1478 i2mod_new_rhs = copy_rtx (note);
1479 next = try_combine (insn, i2mod, NULL, NULL,
1480 &new_direct_jump_p,
1481 last_combined_insn);
1482 i2mod = NULL;
1483 if (next)
1485 statistics_counter_event (cfun, "insn-with-note combine", 1);
1486 goto retry;
1488 SET_SRC (set) = orig_src;
1489 SET_DEST (set) = orig_dest;
1493 if (!NOTE_P (insn))
1494 record_dead_and_set_regs (insn);
1496 retry:
1501 default_rtl_profile ();
1502 clear_bb_flags ();
1503 new_direct_jump_p |= purge_all_dead_edges ();
1504 delete_noop_moves ();
1506 /* Clean up. */
1507 obstack_free (&insn_link_obstack, NULL);
1508 free (uid_log_links);
1509 free (uid_insn_cost);
1510 reg_stat.release ();
1513 struct undo *undo, *next;
1514 for (undo = undobuf.frees; undo; undo = next)
1516 next = undo->next;
1517 free (undo);
1519 undobuf.frees = 0;
1522 total_attempts += combine_attempts;
1523 total_merges += combine_merges;
1524 total_extras += combine_extras;
1525 total_successes += combine_successes;
1527 nonzero_sign_valid = 0;
1528 rtl_hooks = general_rtl_hooks;
1530 /* Make recognizer allow volatile MEMs again. */
1531 init_recog ();
1533 return new_direct_jump_p;
1536 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1538 static void
1539 init_reg_last (void)
1541 unsigned int i;
1542 reg_stat_type *p;
1544 FOR_EACH_VEC_ELT (reg_stat, i, p)
1545 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1548 /* Set up any promoted values for incoming argument registers. */
1550 static void
1551 setup_incoming_promotions (rtx_insn *first)
1553 tree arg;
1554 bool strictly_local = false;
1556 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1557 arg = DECL_CHAIN (arg))
1559 rtx x, reg = DECL_INCOMING_RTL (arg);
1560 int uns1, uns3;
1561 machine_mode mode1, mode2, mode3, mode4;
1563 /* Only continue if the incoming argument is in a register. */
1564 if (!REG_P (reg))
1565 continue;
1567 /* Determine, if possible, whether all call sites of the current
1568 function lie within the current compilation unit. (This does
1569 take into account the exporting of a function via taking its
1570 address, and so forth.) */
1571 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1573 /* The mode and signedness of the argument before any promotions happen
1574 (equal to the mode of the pseudo holding it at that stage). */
1575 mode1 = TYPE_MODE (TREE_TYPE (arg));
1576 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1578 /* The mode and signedness of the argument after any source language and
1579 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1580 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1581 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1583 /* The mode and signedness of the argument as it is actually passed,
1584 see assign_parm_setup_reg in function.c. */
1585 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1586 TREE_TYPE (cfun->decl), 0);
1588 /* The mode of the register in which the argument is being passed. */
1589 mode4 = GET_MODE (reg);
1591 /* Eliminate sign extensions in the callee when:
1592 (a) A mode promotion has occurred; */
1593 if (mode1 == mode3)
1594 continue;
1595 /* (b) The mode of the register is the same as the mode of
1596 the argument as it is passed; */
1597 if (mode3 != mode4)
1598 continue;
1599 /* (c) There's no language level extension; */
1600 if (mode1 == mode2)
1602 /* (c.1) All callers are from the current compilation unit. If that's
1603 the case we don't have to rely on an ABI, we only have to know
1604 what we're generating right now, and we know that we will do the
1605 mode1 to mode2 promotion with the given sign. */
1606 else if (!strictly_local)
1607 continue;
1608 /* (c.2) The combination of the two promotions is useful. This is
1609 true when the signs match, or if the first promotion is unsigned.
1610 In the later case, (sign_extend (zero_extend x)) is the same as
1611 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1612 else if (uns1)
1613 uns3 = true;
1614 else if (uns3)
1615 continue;
1617 /* Record that the value was promoted from mode1 to mode3,
1618 so that any sign extension at the head of the current
1619 function may be eliminated. */
1620 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1621 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1622 record_value_for_reg (reg, first, x);
1626 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1627 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1628 because some machines (maybe most) will actually do the sign-extension and
1629 this is the conservative approach.
1631 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1632 kludge. */
1634 static rtx
1635 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1637 if (GET_MODE_PRECISION (mode) < prec
1638 && CONST_INT_P (src)
1639 && INTVAL (src) > 0
1640 && val_signbit_known_set_p (mode, INTVAL (src)))
1641 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (mode));
1643 return src;
1646 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1647 and SET. */
1649 static void
1650 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1651 rtx x)
1653 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1654 unsigned HOST_WIDE_INT bits = 0;
1655 rtx reg_equal = NULL, src = SET_SRC (set);
1656 unsigned int num = 0;
1658 if (reg_equal_note)
1659 reg_equal = XEXP (reg_equal_note, 0);
1661 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1663 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1664 if (reg_equal)
1665 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1668 /* Don't call nonzero_bits if it cannot change anything. */
1669 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1671 bits = nonzero_bits (src, nonzero_bits_mode);
1672 if (reg_equal && bits)
1673 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1674 rsp->nonzero_bits |= bits;
1677 /* Don't call num_sign_bit_copies if it cannot change anything. */
1678 if (rsp->sign_bit_copies != 1)
1680 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1681 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1683 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1684 if (num == 0 || numeq > num)
1685 num = numeq;
1687 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1688 rsp->sign_bit_copies = num;
1692 /* Called via note_stores. If X is a pseudo that is narrower than
1693 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1695 If we are setting only a portion of X and we can't figure out what
1696 portion, assume all bits will be used since we don't know what will
1697 be happening.
1699 Similarly, set how many bits of X are known to be copies of the sign bit
1700 at all locations in the function. This is the smallest number implied
1701 by any set of X. */
1703 static void
1704 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1706 rtx_insn *insn = (rtx_insn *) data;
1708 if (REG_P (x)
1709 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1710 /* If this register is undefined at the start of the file, we can't
1711 say what its contents were. */
1712 && ! REGNO_REG_SET_P
1713 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1714 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
1716 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1718 if (set == 0 || GET_CODE (set) == CLOBBER)
1720 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1721 rsp->sign_bit_copies = 1;
1722 return;
1725 /* If this register is being initialized using itself, and the
1726 register is uninitialized in this basic block, and there are
1727 no LOG_LINKS which set the register, then part of the
1728 register is uninitialized. In that case we can't assume
1729 anything about the number of nonzero bits.
1731 ??? We could do better if we checked this in
1732 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1733 could avoid making assumptions about the insn which initially
1734 sets the register, while still using the information in other
1735 insns. We would have to be careful to check every insn
1736 involved in the combination. */
1738 if (insn
1739 && reg_referenced_p (x, PATTERN (insn))
1740 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1741 REGNO (x)))
1743 struct insn_link *link;
1745 FOR_EACH_LOG_LINK (link, insn)
1746 if (dead_or_set_p (link->insn, x))
1747 break;
1748 if (!link)
1750 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1751 rsp->sign_bit_copies = 1;
1752 return;
1756 /* If this is a complex assignment, see if we can convert it into a
1757 simple assignment. */
1758 set = expand_field_assignment (set);
1760 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1761 set what we know about X. */
1763 if (SET_DEST (set) == x
1764 || (paradoxical_subreg_p (SET_DEST (set))
1765 && SUBREG_REG (SET_DEST (set)) == x))
1766 update_rsp_from_reg_equal (rsp, insn, set, x);
1767 else
1769 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1770 rsp->sign_bit_copies = 1;
1775 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1776 optionally insns that were previously combined into I3 or that will be
1777 combined into the merger of INSN and I3. The order is PRED, PRED2,
1778 INSN, SUCC, SUCC2, I3.
1780 Return 0 if the combination is not allowed for any reason.
1782 If the combination is allowed, *PDEST will be set to the single
1783 destination of INSN and *PSRC to the single source, and this function
1784 will return 1. */
1786 static int
1787 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1788 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1789 rtx *pdest, rtx *psrc)
1791 int i;
1792 const_rtx set = 0;
1793 rtx src, dest;
1794 rtx_insn *p;
1795 rtx link;
1796 bool all_adjacent = true;
1797 int (*is_volatile_p) (const_rtx);
1799 if (succ)
1801 if (succ2)
1803 if (next_active_insn (succ2) != i3)
1804 all_adjacent = false;
1805 if (next_active_insn (succ) != succ2)
1806 all_adjacent = false;
1808 else if (next_active_insn (succ) != i3)
1809 all_adjacent = false;
1810 if (next_active_insn (insn) != succ)
1811 all_adjacent = false;
1813 else if (next_active_insn (insn) != i3)
1814 all_adjacent = false;
1816 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1817 or a PARALLEL consisting of such a SET and CLOBBERs.
1819 If INSN has CLOBBER parallel parts, ignore them for our processing.
1820 By definition, these happen during the execution of the insn. When it
1821 is merged with another insn, all bets are off. If they are, in fact,
1822 needed and aren't also supplied in I3, they may be added by
1823 recog_for_combine. Otherwise, it won't match.
1825 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1826 note.
1828 Get the source and destination of INSN. If more than one, can't
1829 combine. */
1831 if (GET_CODE (PATTERN (insn)) == SET)
1832 set = PATTERN (insn);
1833 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1834 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1836 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1838 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1840 switch (GET_CODE (elt))
1842 /* This is important to combine floating point insns
1843 for the SH4 port. */
1844 case USE:
1845 /* Combining an isolated USE doesn't make sense.
1846 We depend here on combinable_i3pat to reject them. */
1847 /* The code below this loop only verifies that the inputs of
1848 the SET in INSN do not change. We call reg_set_between_p
1849 to verify that the REG in the USE does not change between
1850 I3 and INSN.
1851 If the USE in INSN was for a pseudo register, the matching
1852 insn pattern will likely match any register; combining this
1853 with any other USE would only be safe if we knew that the
1854 used registers have identical values, or if there was
1855 something to tell them apart, e.g. different modes. For
1856 now, we forgo such complicated tests and simply disallow
1857 combining of USES of pseudo registers with any other USE. */
1858 if (REG_P (XEXP (elt, 0))
1859 && GET_CODE (PATTERN (i3)) == PARALLEL)
1861 rtx i3pat = PATTERN (i3);
1862 int i = XVECLEN (i3pat, 0) - 1;
1863 unsigned int regno = REGNO (XEXP (elt, 0));
1867 rtx i3elt = XVECEXP (i3pat, 0, i);
1869 if (GET_CODE (i3elt) == USE
1870 && REG_P (XEXP (i3elt, 0))
1871 && (REGNO (XEXP (i3elt, 0)) == regno
1872 ? reg_set_between_p (XEXP (elt, 0),
1873 PREV_INSN (insn), i3)
1874 : regno >= FIRST_PSEUDO_REGISTER))
1875 return 0;
1877 while (--i >= 0);
1879 break;
1881 /* We can ignore CLOBBERs. */
1882 case CLOBBER:
1883 break;
1885 case SET:
1886 /* Ignore SETs whose result isn't used but not those that
1887 have side-effects. */
1888 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1889 && insn_nothrow_p (insn)
1890 && !side_effects_p (elt))
1891 break;
1893 /* If we have already found a SET, this is a second one and
1894 so we cannot combine with this insn. */
1895 if (set)
1896 return 0;
1898 set = elt;
1899 break;
1901 default:
1902 /* Anything else means we can't combine. */
1903 return 0;
1907 if (set == 0
1908 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1909 so don't do anything with it. */
1910 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1911 return 0;
1913 else
1914 return 0;
1916 if (set == 0)
1917 return 0;
1919 /* The simplification in expand_field_assignment may call back to
1920 get_last_value, so set safe guard here. */
1921 subst_low_luid = DF_INSN_LUID (insn);
1923 set = expand_field_assignment (set);
1924 src = SET_SRC (set), dest = SET_DEST (set);
1926 /* Do not eliminate user-specified register if it is in an
1927 asm input because we may break the register asm usage defined
1928 in GCC manual if allow to do so.
1929 Be aware that this may cover more cases than we expect but this
1930 should be harmless. */
1931 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1932 && extract_asm_operands (PATTERN (i3)))
1933 return 0;
1935 /* Don't eliminate a store in the stack pointer. */
1936 if (dest == stack_pointer_rtx
1937 /* Don't combine with an insn that sets a register to itself if it has
1938 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1939 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1940 /* Can't merge an ASM_OPERANDS. */
1941 || GET_CODE (src) == ASM_OPERANDS
1942 /* Can't merge a function call. */
1943 || GET_CODE (src) == CALL
1944 /* Don't eliminate a function call argument. */
1945 || (CALL_P (i3)
1946 && (find_reg_fusage (i3, USE, dest)
1947 || (REG_P (dest)
1948 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1949 && global_regs[REGNO (dest)])))
1950 /* Don't substitute into an incremented register. */
1951 || FIND_REG_INC_NOTE (i3, dest)
1952 || (succ && FIND_REG_INC_NOTE (succ, dest))
1953 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1954 /* Don't substitute into a non-local goto, this confuses CFG. */
1955 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1956 /* Make sure that DEST is not used after SUCC but before I3. */
1957 || (!all_adjacent
1958 && ((succ2
1959 && (reg_used_between_p (dest, succ2, i3)
1960 || reg_used_between_p (dest, succ, succ2)))
1961 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))))
1962 /* Make sure that the value that is to be substituted for the register
1963 does not use any registers whose values alter in between. However,
1964 If the insns are adjacent, a use can't cross a set even though we
1965 think it might (this can happen for a sequence of insns each setting
1966 the same destination; last_set of that register might point to
1967 a NOTE). If INSN has a REG_EQUIV note, the register is always
1968 equivalent to the memory so the substitution is valid even if there
1969 are intervening stores. Also, don't move a volatile asm or
1970 UNSPEC_VOLATILE across any other insns. */
1971 || (! all_adjacent
1972 && (((!MEM_P (src)
1973 || ! find_reg_note (insn, REG_EQUIV, src))
1974 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1975 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1976 || GET_CODE (src) == UNSPEC_VOLATILE))
1977 /* Don't combine across a CALL_INSN, because that would possibly
1978 change whether the life span of some REGs crosses calls or not,
1979 and it is a pain to update that information.
1980 Exception: if source is a constant, moving it later can't hurt.
1981 Accept that as a special case. */
1982 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1983 return 0;
1985 /* DEST must either be a REG or CC0. */
1986 if (REG_P (dest))
1988 /* If register alignment is being enforced for multi-word items in all
1989 cases except for parameters, it is possible to have a register copy
1990 insn referencing a hard register that is not allowed to contain the
1991 mode being copied and which would not be valid as an operand of most
1992 insns. Eliminate this problem by not combining with such an insn.
1994 Also, on some machines we don't want to extend the life of a hard
1995 register. */
1997 if (REG_P (src)
1998 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1999 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
2000 /* Don't extend the life of a hard register unless it is
2001 user variable (if we have few registers) or it can't
2002 fit into the desired register (meaning something special
2003 is going on).
2004 Also avoid substituting a return register into I3, because
2005 reload can't handle a conflict with constraints of other
2006 inputs. */
2007 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
2009 return 0;
2011 else if (GET_CODE (dest) != CC0)
2012 return 0;
2015 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2016 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2017 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2019 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2021 /* If the clobber represents an earlyclobber operand, we must not
2022 substitute an expression containing the clobbered register.
2023 As we do not analyze the constraint strings here, we have to
2024 make the conservative assumption. However, if the register is
2025 a fixed hard reg, the clobber cannot represent any operand;
2026 we leave it up to the machine description to either accept or
2027 reject use-and-clobber patterns. */
2028 if (!REG_P (reg)
2029 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2030 || !fixed_regs[REGNO (reg)])
2031 if (reg_overlap_mentioned_p (reg, src))
2032 return 0;
2035 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2036 or not), reject, unless nothing volatile comes between it and I3 */
2038 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2040 /* Make sure neither succ nor succ2 contains a volatile reference. */
2041 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2042 return 0;
2043 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2044 return 0;
2045 /* We'll check insns between INSN and I3 below. */
2048 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2049 to be an explicit register variable, and was chosen for a reason. */
2051 if (GET_CODE (src) == ASM_OPERANDS
2052 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2053 return 0;
2055 /* If INSN contains volatile references (specifically volatile MEMs),
2056 we cannot combine across any other volatile references.
2057 Even if INSN doesn't contain volatile references, any intervening
2058 volatile insn might affect machine state. */
2060 is_volatile_p = volatile_refs_p (PATTERN (insn))
2061 ? volatile_refs_p
2062 : volatile_insn_p;
2064 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2065 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2066 return 0;
2068 /* If INSN contains an autoincrement or autodecrement, make sure that
2069 register is not used between there and I3, and not already used in
2070 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2071 Also insist that I3 not be a jump; if it were one
2072 and the incremented register were spilled, we would lose. */
2074 if (AUTO_INC_DEC)
2075 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2076 if (REG_NOTE_KIND (link) == REG_INC
2077 && (JUMP_P (i3)
2078 || reg_used_between_p (XEXP (link, 0), insn, i3)
2079 || (pred != NULL_RTX
2080 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2081 || (pred2 != NULL_RTX
2082 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2083 || (succ != NULL_RTX
2084 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2085 || (succ2 != NULL_RTX
2086 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2087 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2088 return 0;
2090 /* Don't combine an insn that follows a CC0-setting insn.
2091 An insn that uses CC0 must not be separated from the one that sets it.
2092 We do, however, allow I2 to follow a CC0-setting insn if that insn
2093 is passed as I1; in that case it will be deleted also.
2094 We also allow combining in this case if all the insns are adjacent
2095 because that would leave the two CC0 insns adjacent as well.
2096 It would be more logical to test whether CC0 occurs inside I1 or I2,
2097 but that would be much slower, and this ought to be equivalent. */
2099 if (HAVE_cc0)
2101 p = prev_nonnote_insn (insn);
2102 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2103 && ! all_adjacent)
2104 return 0;
2107 /* If we get here, we have passed all the tests and the combination is
2108 to be allowed. */
2110 *pdest = dest;
2111 *psrc = src;
2113 return 1;
2116 /* LOC is the location within I3 that contains its pattern or the component
2117 of a PARALLEL of the pattern. We validate that it is valid for combining.
2119 One problem is if I3 modifies its output, as opposed to replacing it
2120 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2121 doing so would produce an insn that is not equivalent to the original insns.
2123 Consider:
2125 (set (reg:DI 101) (reg:DI 100))
2126 (set (subreg:SI (reg:DI 101) 0) <foo>)
2128 This is NOT equivalent to:
2130 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2131 (set (reg:DI 101) (reg:DI 100))])
2133 Not only does this modify 100 (in which case it might still be valid
2134 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2136 We can also run into a problem if I2 sets a register that I1
2137 uses and I1 gets directly substituted into I3 (not via I2). In that
2138 case, we would be getting the wrong value of I2DEST into I3, so we
2139 must reject the combination. This case occurs when I2 and I1 both
2140 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2141 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2142 of a SET must prevent combination from occurring. The same situation
2143 can occur for I0, in which case I0_NOT_IN_SRC is set.
2145 Before doing the above check, we first try to expand a field assignment
2146 into a set of logical operations.
2148 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2149 we place a register that is both set and used within I3. If more than one
2150 such register is detected, we fail.
2152 Return 1 if the combination is valid, zero otherwise. */
2154 static int
2155 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2156 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2158 rtx x = *loc;
2160 if (GET_CODE (x) == SET)
2162 rtx set = x ;
2163 rtx dest = SET_DEST (set);
2164 rtx src = SET_SRC (set);
2165 rtx inner_dest = dest;
2166 rtx subdest;
2168 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2169 || GET_CODE (inner_dest) == SUBREG
2170 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2171 inner_dest = XEXP (inner_dest, 0);
2173 /* Check for the case where I3 modifies its output, as discussed
2174 above. We don't want to prevent pseudos from being combined
2175 into the address of a MEM, so only prevent the combination if
2176 i1 or i2 set the same MEM. */
2177 if ((inner_dest != dest &&
2178 (!MEM_P (inner_dest)
2179 || rtx_equal_p (i2dest, inner_dest)
2180 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2181 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2182 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2183 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2184 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2186 /* This is the same test done in can_combine_p except we can't test
2187 all_adjacent; we don't have to, since this instruction will stay
2188 in place, thus we are not considering increasing the lifetime of
2189 INNER_DEST.
2191 Also, if this insn sets a function argument, combining it with
2192 something that might need a spill could clobber a previous
2193 function argument; the all_adjacent test in can_combine_p also
2194 checks this; here, we do a more specific test for this case. */
2196 || (REG_P (inner_dest)
2197 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2198 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
2199 GET_MODE (inner_dest))))
2200 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2201 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2202 return 0;
2204 /* If DEST is used in I3, it is being killed in this insn, so
2205 record that for later. We have to consider paradoxical
2206 subregs here, since they kill the whole register, but we
2207 ignore partial subregs, STRICT_LOW_PART, etc.
2208 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2209 STACK_POINTER_REGNUM, since these are always considered to be
2210 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2211 subdest = dest;
2212 if (GET_CODE (subdest) == SUBREG
2213 && (GET_MODE_SIZE (GET_MODE (subdest))
2214 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
2215 subdest = SUBREG_REG (subdest);
2216 if (pi3dest_killed
2217 && REG_P (subdest)
2218 && reg_referenced_p (subdest, PATTERN (i3))
2219 && REGNO (subdest) != FRAME_POINTER_REGNUM
2220 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2221 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2222 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2223 || (REGNO (subdest) != ARG_POINTER_REGNUM
2224 || ! fixed_regs [REGNO (subdest)]))
2225 && REGNO (subdest) != STACK_POINTER_REGNUM)
2227 if (*pi3dest_killed)
2228 return 0;
2230 *pi3dest_killed = subdest;
2234 else if (GET_CODE (x) == PARALLEL)
2236 int i;
2238 for (i = 0; i < XVECLEN (x, 0); i++)
2239 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2240 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2241 return 0;
2244 return 1;
2247 /* Return 1 if X is an arithmetic expression that contains a multiplication
2248 and division. We don't count multiplications by powers of two here. */
2250 static int
2251 contains_muldiv (rtx x)
2253 switch (GET_CODE (x))
2255 case MOD: case DIV: case UMOD: case UDIV:
2256 return 1;
2258 case MULT:
2259 return ! (CONST_INT_P (XEXP (x, 1))
2260 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2261 default:
2262 if (BINARY_P (x))
2263 return contains_muldiv (XEXP (x, 0))
2264 || contains_muldiv (XEXP (x, 1));
2266 if (UNARY_P (x))
2267 return contains_muldiv (XEXP (x, 0));
2269 return 0;
2273 /* Determine whether INSN can be used in a combination. Return nonzero if
2274 not. This is used in try_combine to detect early some cases where we
2275 can't perform combinations. */
2277 static int
2278 cant_combine_insn_p (rtx_insn *insn)
2280 rtx set;
2281 rtx src, dest;
2283 /* If this isn't really an insn, we can't do anything.
2284 This can occur when flow deletes an insn that it has merged into an
2285 auto-increment address. */
2286 if (!NONDEBUG_INSN_P (insn))
2287 return 1;
2289 /* Never combine loads and stores involving hard regs that are likely
2290 to be spilled. The register allocator can usually handle such
2291 reg-reg moves by tying. If we allow the combiner to make
2292 substitutions of likely-spilled regs, reload might die.
2293 As an exception, we allow combinations involving fixed regs; these are
2294 not available to the register allocator so there's no risk involved. */
2296 set = single_set (insn);
2297 if (! set)
2298 return 0;
2299 src = SET_SRC (set);
2300 dest = SET_DEST (set);
2301 if (GET_CODE (src) == SUBREG)
2302 src = SUBREG_REG (src);
2303 if (GET_CODE (dest) == SUBREG)
2304 dest = SUBREG_REG (dest);
2305 if (REG_P (src) && REG_P (dest)
2306 && ((HARD_REGISTER_P (src)
2307 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2308 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2309 || (HARD_REGISTER_P (dest)
2310 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2311 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2312 return 1;
2314 return 0;
2317 struct likely_spilled_retval_info
2319 unsigned regno, nregs;
2320 unsigned mask;
2323 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2324 hard registers that are known to be written to / clobbered in full. */
2325 static void
2326 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2328 struct likely_spilled_retval_info *const info =
2329 (struct likely_spilled_retval_info *) data;
2330 unsigned regno, nregs;
2331 unsigned new_mask;
2333 if (!REG_P (XEXP (set, 0)))
2334 return;
2335 regno = REGNO (x);
2336 if (regno >= info->regno + info->nregs)
2337 return;
2338 nregs = REG_NREGS (x);
2339 if (regno + nregs <= info->regno)
2340 return;
2341 new_mask = (2U << (nregs - 1)) - 1;
2342 if (regno < info->regno)
2343 new_mask >>= info->regno - regno;
2344 else
2345 new_mask <<= regno - info->regno;
2346 info->mask &= ~new_mask;
2349 /* Return nonzero iff part of the return value is live during INSN, and
2350 it is likely spilled. This can happen when more than one insn is needed
2351 to copy the return value, e.g. when we consider to combine into the
2352 second copy insn for a complex value. */
2354 static int
2355 likely_spilled_retval_p (rtx_insn *insn)
2357 rtx_insn *use = BB_END (this_basic_block);
2358 rtx reg;
2359 rtx_insn *p;
2360 unsigned regno, nregs;
2361 /* We assume here that no machine mode needs more than
2362 32 hard registers when the value overlaps with a register
2363 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2364 unsigned mask;
2365 struct likely_spilled_retval_info info;
2367 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2368 return 0;
2369 reg = XEXP (PATTERN (use), 0);
2370 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2371 return 0;
2372 regno = REGNO (reg);
2373 nregs = REG_NREGS (reg);
2374 if (nregs == 1)
2375 return 0;
2376 mask = (2U << (nregs - 1)) - 1;
2378 /* Disregard parts of the return value that are set later. */
2379 info.regno = regno;
2380 info.nregs = nregs;
2381 info.mask = mask;
2382 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2383 if (INSN_P (p))
2384 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2385 mask = info.mask;
2387 /* Check if any of the (probably) live return value registers is
2388 likely spilled. */
2389 nregs --;
2392 if ((mask & 1 << nregs)
2393 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2394 return 1;
2395 } while (nregs--);
2396 return 0;
2399 /* Adjust INSN after we made a change to its destination.
2401 Changing the destination can invalidate notes that say something about
2402 the results of the insn and a LOG_LINK pointing to the insn. */
2404 static void
2405 adjust_for_new_dest (rtx_insn *insn)
2407 /* For notes, be conservative and simply remove them. */
2408 remove_reg_equal_equiv_notes (insn);
2410 /* The new insn will have a destination that was previously the destination
2411 of an insn just above it. Call distribute_links to make a LOG_LINK from
2412 the next use of that destination. */
2414 rtx set = single_set (insn);
2415 gcc_assert (set);
2417 rtx reg = SET_DEST (set);
2419 while (GET_CODE (reg) == ZERO_EXTRACT
2420 || GET_CODE (reg) == STRICT_LOW_PART
2421 || GET_CODE (reg) == SUBREG)
2422 reg = XEXP (reg, 0);
2423 gcc_assert (REG_P (reg));
2425 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2427 df_insn_rescan (insn);
2430 /* Return TRUE if combine can reuse reg X in mode MODE.
2431 ADDED_SETS is nonzero if the original set is still required. */
2432 static bool
2433 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2435 unsigned int regno;
2437 if (!REG_P (x))
2438 return false;
2440 regno = REGNO (x);
2441 /* Allow hard registers if the new mode is legal, and occupies no more
2442 registers than the old mode. */
2443 if (regno < FIRST_PSEUDO_REGISTER)
2444 return (HARD_REGNO_MODE_OK (regno, mode)
2445 && REG_NREGS (x) >= hard_regno_nregs[regno][mode]);
2447 /* Or a pseudo that is only used once. */
2448 return (regno < reg_n_sets_max
2449 && REG_N_SETS (regno) == 1
2450 && !added_sets
2451 && !REG_USERVAR_P (x));
2455 /* Check whether X, the destination of a set, refers to part of
2456 the register specified by REG. */
2458 static bool
2459 reg_subword_p (rtx x, rtx reg)
2461 /* Check that reg is an integer mode register. */
2462 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2463 return false;
2465 if (GET_CODE (x) == STRICT_LOW_PART
2466 || GET_CODE (x) == ZERO_EXTRACT)
2467 x = XEXP (x, 0);
2469 return GET_CODE (x) == SUBREG
2470 && SUBREG_REG (x) == reg
2471 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2474 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2475 Note that the INSN should be deleted *after* removing dead edges, so
2476 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2477 but not for a (set (pc) (label_ref FOO)). */
2479 static void
2480 update_cfg_for_uncondjump (rtx_insn *insn)
2482 basic_block bb = BLOCK_FOR_INSN (insn);
2483 gcc_assert (BB_END (bb) == insn);
2485 purge_dead_edges (bb);
2487 delete_insn (insn);
2488 if (EDGE_COUNT (bb->succs) == 1)
2490 rtx_insn *insn;
2492 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2494 /* Remove barriers from the footer if there are any. */
2495 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2496 if (BARRIER_P (insn))
2498 if (PREV_INSN (insn))
2499 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2500 else
2501 BB_FOOTER (bb) = NEXT_INSN (insn);
2502 if (NEXT_INSN (insn))
2503 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2505 else if (LABEL_P (insn))
2506 break;
2510 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2511 by an arbitrary number of CLOBBERs. */
2512 static bool
2513 is_parallel_of_n_reg_sets (rtx pat, int n)
2515 if (GET_CODE (pat) != PARALLEL)
2516 return false;
2518 int len = XVECLEN (pat, 0);
2519 if (len < n)
2520 return false;
2522 int i;
2523 for (i = 0; i < n; i++)
2524 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2525 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2526 return false;
2527 for ( ; i < len; i++)
2528 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2529 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2530 return false;
2532 return true;
2535 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2536 CLOBBERs), can be split into individual SETs in that order, without
2537 changing semantics. */
2538 static bool
2539 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2541 if (!insn_nothrow_p (insn))
2542 return false;
2544 rtx pat = PATTERN (insn);
2546 int i, j;
2547 for (i = 0; i < n; i++)
2549 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2550 return false;
2552 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2554 for (j = i + 1; j < n; j++)
2555 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2556 return false;
2559 return true;
2562 /* Try to combine the insns I0, I1 and I2 into I3.
2563 Here I0, I1 and I2 appear earlier than I3.
2564 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2567 If we are combining more than two insns and the resulting insn is not
2568 recognized, try splitting it into two insns. If that happens, I2 and I3
2569 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2570 Otherwise, I0, I1 and I2 are pseudo-deleted.
2572 Return 0 if the combination does not work. Then nothing is changed.
2573 If we did the combination, return the insn at which combine should
2574 resume scanning.
2576 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2577 new direct jump instruction.
2579 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2580 been I3 passed to an earlier try_combine within the same basic
2581 block. */
2583 static rtx_insn *
2584 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2585 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2587 /* New patterns for I3 and I2, respectively. */
2588 rtx newpat, newi2pat = 0;
2589 rtvec newpat_vec_with_clobbers = 0;
2590 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2591 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2592 dead. */
2593 int added_sets_0, added_sets_1, added_sets_2;
2594 /* Total number of SETs to put into I3. */
2595 int total_sets;
2596 /* Nonzero if I2's or I1's body now appears in I3. */
2597 int i2_is_used = 0, i1_is_used = 0;
2598 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2599 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2600 /* Contains I3 if the destination of I3 is used in its source, which means
2601 that the old life of I3 is being killed. If that usage is placed into
2602 I2 and not in I3, a REG_DEAD note must be made. */
2603 rtx i3dest_killed = 0;
2604 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2605 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2606 /* Copy of SET_SRC of I1 and I0, if needed. */
2607 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2608 /* Set if I2DEST was reused as a scratch register. */
2609 bool i2scratch = false;
2610 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2611 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2614 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2615 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2616 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2617 /* Notes that must be added to REG_NOTES in I3 and I2. */
2618 rtx new_i3_notes, new_i2_notes;
2619 /* Notes that we substituted I3 into I2 instead of the normal case. */
2620 int i3_subst_into_i2 = 0;
2621 /* Notes that I1, I2 or I3 is a MULT operation. */
2622 int have_mult = 0;
2623 int swap_i2i3 = 0;
2624 int changed_i3_dest = 0;
2626 int maxreg;
2627 rtx_insn *temp_insn;
2628 rtx temp_expr;
2629 struct insn_link *link;
2630 rtx other_pat = 0;
2631 rtx new_other_notes;
2632 int i;
2634 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2635 never be). */
2636 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2637 return 0;
2639 /* Only try four-insn combinations when there's high likelihood of
2640 success. Look for simple insns, such as loads of constants or
2641 binary operations involving a constant. */
2642 if (i0)
2644 int i;
2645 int ngood = 0;
2646 int nshift = 0;
2647 rtx set0, set3;
2649 if (!flag_expensive_optimizations)
2650 return 0;
2652 for (i = 0; i < 4; i++)
2654 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2655 rtx set = single_set (insn);
2656 rtx src;
2657 if (!set)
2658 continue;
2659 src = SET_SRC (set);
2660 if (CONSTANT_P (src))
2662 ngood += 2;
2663 break;
2665 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2666 ngood++;
2667 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2668 || GET_CODE (src) == LSHIFTRT)
2669 nshift++;
2672 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2673 are likely manipulating its value. Ideally we'll be able to combine
2674 all four insns into a bitfield insertion of some kind.
2676 Note the source in I0 might be inside a sign/zero extension and the
2677 memory modes in I0 and I3 might be different. So extract the address
2678 from the destination of I3 and search for it in the source of I0.
2680 In the event that there's a match but the source/dest do not actually
2681 refer to the same memory, the worst that happens is we try some
2682 combinations that we wouldn't have otherwise. */
2683 if ((set0 = single_set (i0))
2684 /* Ensure the source of SET0 is a MEM, possibly buried inside
2685 an extension. */
2686 && (GET_CODE (SET_SRC (set0)) == MEM
2687 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2688 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2689 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2690 && (set3 = single_set (i3))
2691 /* Ensure the destination of SET3 is a MEM. */
2692 && GET_CODE (SET_DEST (set3)) == MEM
2693 /* Would it be better to extract the base address for the MEM
2694 in SET3 and look for that? I don't have cases where it matters
2695 but I could envision such cases. */
2696 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2697 ngood += 2;
2699 if (ngood < 2 && nshift < 2)
2700 return 0;
2703 /* Exit early if one of the insns involved can't be used for
2704 combinations. */
2705 if (CALL_P (i2)
2706 || (i1 && CALL_P (i1))
2707 || (i0 && CALL_P (i0))
2708 || cant_combine_insn_p (i3)
2709 || cant_combine_insn_p (i2)
2710 || (i1 && cant_combine_insn_p (i1))
2711 || (i0 && cant_combine_insn_p (i0))
2712 || likely_spilled_retval_p (i3))
2713 return 0;
2715 combine_attempts++;
2716 undobuf.other_insn = 0;
2718 /* Reset the hard register usage information. */
2719 CLEAR_HARD_REG_SET (newpat_used_regs);
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2723 if (i0)
2724 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2725 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2726 else if (i1)
2727 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2728 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2729 else
2730 fprintf (dump_file, "\nTrying %d -> %d:\n",
2731 INSN_UID (i2), INSN_UID (i3));
2734 /* If multiple insns feed into one of I2 or I3, they can be in any
2735 order. To simplify the code below, reorder them in sequence. */
2736 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2737 std::swap (i0, i2);
2738 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2739 std::swap (i0, i1);
2740 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2741 std::swap (i1, i2);
2743 added_links_insn = 0;
2745 /* First check for one important special case that the code below will
2746 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2747 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2748 we may be able to replace that destination with the destination of I3.
2749 This occurs in the common code where we compute both a quotient and
2750 remainder into a structure, in which case we want to do the computation
2751 directly into the structure to avoid register-register copies.
2753 Note that this case handles both multiple sets in I2 and also cases
2754 where I2 has a number of CLOBBERs inside the PARALLEL.
2756 We make very conservative checks below and only try to handle the
2757 most common cases of this. For example, we only handle the case
2758 where I2 and I3 are adjacent to avoid making difficult register
2759 usage tests. */
2761 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2762 && REG_P (SET_SRC (PATTERN (i3)))
2763 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2764 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2765 && GET_CODE (PATTERN (i2)) == PARALLEL
2766 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2767 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2768 below would need to check what is inside (and reg_overlap_mentioned_p
2769 doesn't support those codes anyway). Don't allow those destinations;
2770 the resulting insn isn't likely to be recognized anyway. */
2771 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2772 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2773 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2774 SET_DEST (PATTERN (i3)))
2775 && next_active_insn (i2) == i3)
2777 rtx p2 = PATTERN (i2);
2779 /* Make sure that the destination of I3,
2780 which we are going to substitute into one output of I2,
2781 is not used within another output of I2. We must avoid making this:
2782 (parallel [(set (mem (reg 69)) ...)
2783 (set (reg 69) ...)])
2784 which is not well-defined as to order of actions.
2785 (Besides, reload can't handle output reloads for this.)
2787 The problem can also happen if the dest of I3 is a memory ref,
2788 if another dest in I2 is an indirect memory ref.
2790 Neither can this PARALLEL be an asm. We do not allow combining
2791 that usually (see can_combine_p), so do not here either. */
2792 bool ok = true;
2793 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2795 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2796 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2797 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2798 SET_DEST (XVECEXP (p2, 0, i))))
2799 ok = false;
2800 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2801 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2802 ok = false;
2805 if (ok)
2806 for (i = 0; i < XVECLEN (p2, 0); i++)
2807 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2808 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2810 combine_merges++;
2812 subst_insn = i3;
2813 subst_low_luid = DF_INSN_LUID (i2);
2815 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2816 i2src = SET_SRC (XVECEXP (p2, 0, i));
2817 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2818 i2dest_killed = dead_or_set_p (i2, i2dest);
2820 /* Replace the dest in I2 with our dest and make the resulting
2821 insn the new pattern for I3. Then skip to where we validate
2822 the pattern. Everything was set up above. */
2823 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2824 newpat = p2;
2825 i3_subst_into_i2 = 1;
2826 goto validate_replacement;
2830 /* If I2 is setting a pseudo to a constant and I3 is setting some
2831 sub-part of it to another constant, merge them by making a new
2832 constant. */
2833 if (i1 == 0
2834 && (temp_expr = single_set (i2)) != 0
2835 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2836 && GET_CODE (PATTERN (i3)) == SET
2837 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2838 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2840 rtx dest = SET_DEST (PATTERN (i3));
2841 int offset = -1;
2842 int width = 0;
2844 if (GET_CODE (dest) == ZERO_EXTRACT)
2846 if (CONST_INT_P (XEXP (dest, 1))
2847 && CONST_INT_P (XEXP (dest, 2)))
2849 width = INTVAL (XEXP (dest, 1));
2850 offset = INTVAL (XEXP (dest, 2));
2851 dest = XEXP (dest, 0);
2852 if (BITS_BIG_ENDIAN)
2853 offset = GET_MODE_PRECISION (GET_MODE (dest)) - width - offset;
2856 else
2858 if (GET_CODE (dest) == STRICT_LOW_PART)
2859 dest = XEXP (dest, 0);
2860 width = GET_MODE_PRECISION (GET_MODE (dest));
2861 offset = 0;
2864 if (offset >= 0)
2866 /* If this is the low part, we're done. */
2867 if (subreg_lowpart_p (dest))
2869 /* Handle the case where inner is twice the size of outer. */
2870 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr)))
2871 == 2 * GET_MODE_PRECISION (GET_MODE (dest)))
2872 offset += GET_MODE_PRECISION (GET_MODE (dest));
2873 /* Otherwise give up for now. */
2874 else
2875 offset = -1;
2878 if (offset >= 0)
2880 rtx inner = SET_SRC (PATTERN (i3));
2881 rtx outer = SET_SRC (temp_expr);
2883 wide_int o
2884 = wi::insert (rtx_mode_t (outer, GET_MODE (SET_DEST (temp_expr))),
2885 rtx_mode_t (inner, GET_MODE (dest)),
2886 offset, width);
2888 combine_merges++;
2889 subst_insn = i3;
2890 subst_low_luid = DF_INSN_LUID (i2);
2891 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2892 i2dest = SET_DEST (temp_expr);
2893 i2dest_killed = dead_or_set_p (i2, i2dest);
2895 /* Replace the source in I2 with the new constant and make the
2896 resulting insn the new pattern for I3. Then skip to where we
2897 validate the pattern. Everything was set up above. */
2898 SUBST (SET_SRC (temp_expr),
2899 immed_wide_int_const (o, GET_MODE (SET_DEST (temp_expr))));
2901 newpat = PATTERN (i2);
2903 /* The dest of I3 has been replaced with the dest of I2. */
2904 changed_i3_dest = 1;
2905 goto validate_replacement;
2909 /* If we have no I1 and I2 looks like:
2910 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2911 (set Y OP)])
2912 make up a dummy I1 that is
2913 (set Y OP)
2914 and change I2 to be
2915 (set (reg:CC X) (compare:CC Y (const_int 0)))
2917 (We can ignore any trailing CLOBBERs.)
2919 This undoes a previous combination and allows us to match a branch-and-
2920 decrement insn. */
2922 if (!HAVE_cc0 && i1 == 0
2923 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2924 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2925 == MODE_CC)
2926 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2927 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2928 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2929 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2930 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2931 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2933 /* We make I1 with the same INSN_UID as I2. This gives it
2934 the same DF_INSN_LUID for value tracking. Our fake I1 will
2935 never appear in the insn stream so giving it the same INSN_UID
2936 as I2 will not cause a problem. */
2938 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2939 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
2940 -1, NULL_RTX);
2941 INSN_UID (i1) = INSN_UID (i2);
2943 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2944 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2945 SET_DEST (PATTERN (i1)));
2946 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2947 SUBST_LINK (LOG_LINKS (i2),
2948 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2951 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2952 make those two SETs separate I1 and I2 insns, and make an I0 that is
2953 the original I1. */
2954 if (!HAVE_cc0 && i0 == 0
2955 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2956 && can_split_parallel_of_n_reg_sets (i2, 2)
2957 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2958 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2960 /* If there is no I1, there is no I0 either. */
2961 i0 = i1;
2963 /* We make I1 with the same INSN_UID as I2. This gives it
2964 the same DF_INSN_LUID for value tracking. Our fake I1 will
2965 never appear in the insn stream so giving it the same INSN_UID
2966 as I2 will not cause a problem. */
2968 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2969 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
2970 -1, NULL_RTX);
2971 INSN_UID (i1) = INSN_UID (i2);
2973 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2976 /* Verify that I2 and I1 are valid for combining. */
2977 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
2978 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
2979 &i1dest, &i1src))
2980 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
2981 &i0dest, &i0src)))
2983 undo_all ();
2984 return 0;
2987 /* Record whether I2DEST is used in I2SRC and similarly for the other
2988 cases. Knowing this will help in register status updating below. */
2989 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2990 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2991 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2992 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2993 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2994 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2995 i2dest_killed = dead_or_set_p (i2, i2dest);
2996 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2997 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2999 /* For the earlier insns, determine which of the subsequent ones they
3000 feed. */
3001 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3002 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3003 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3004 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3005 && reg_overlap_mentioned_p (i0dest, i2src))));
3007 /* Ensure that I3's pattern can be the destination of combines. */
3008 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3009 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3010 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3011 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3012 &i3dest_killed))
3014 undo_all ();
3015 return 0;
3018 /* See if any of the insns is a MULT operation. Unless one is, we will
3019 reject a combination that is, since it must be slower. Be conservative
3020 here. */
3021 if (GET_CODE (i2src) == MULT
3022 || (i1 != 0 && GET_CODE (i1src) == MULT)
3023 || (i0 != 0 && GET_CODE (i0src) == MULT)
3024 || (GET_CODE (PATTERN (i3)) == SET
3025 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3026 have_mult = 1;
3028 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3029 We used to do this EXCEPT in one case: I3 has a post-inc in an
3030 output operand. However, that exception can give rise to insns like
3031 mov r3,(r3)+
3032 which is a famous insn on the PDP-11 where the value of r3 used as the
3033 source was model-dependent. Avoid this sort of thing. */
3035 #if 0
3036 if (!(GET_CODE (PATTERN (i3)) == SET
3037 && REG_P (SET_SRC (PATTERN (i3)))
3038 && MEM_P (SET_DEST (PATTERN (i3)))
3039 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3040 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3041 /* It's not the exception. */
3042 #endif
3043 if (AUTO_INC_DEC)
3045 rtx link;
3046 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3047 if (REG_NOTE_KIND (link) == REG_INC
3048 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3049 || (i1 != 0
3050 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3052 undo_all ();
3053 return 0;
3057 /* See if the SETs in I1 or I2 need to be kept around in the merged
3058 instruction: whenever the value set there is still needed past I3.
3059 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061 For the SET in I1, we have two cases: if I1 and I2 independently feed
3062 into I3, the set in I1 needs to be kept around unless I1DEST dies
3063 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3064 in I1 needs to be kept around unless I1DEST dies or is set in either
3065 I2 or I3. The same considerations apply to I0. */
3067 added_sets_2 = !dead_or_set_p (i3, i2dest);
3069 if (i1)
3070 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3071 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3072 else
3073 added_sets_1 = 0;
3075 if (i0)
3076 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3077 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3078 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3079 && dead_or_set_p (i2, i0dest)));
3080 else
3081 added_sets_0 = 0;
3083 /* We are about to copy insns for the case where they need to be kept
3084 around. Check that they can be copied in the merged instruction. */
3086 if (targetm.cannot_copy_insn_p
3087 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3088 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3089 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3091 undo_all ();
3092 return 0;
3095 /* If the set in I2 needs to be kept around, we must make a copy of
3096 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3097 PATTERN (I2), we are only substituting for the original I1DEST, not into
3098 an already-substituted copy. This also prevents making self-referential
3099 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3100 I2DEST. */
3102 if (added_sets_2)
3104 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3105 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3106 else
3107 i2pat = copy_rtx (PATTERN (i2));
3110 if (added_sets_1)
3112 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3113 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3114 else
3115 i1pat = copy_rtx (PATTERN (i1));
3118 if (added_sets_0)
3120 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3121 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3122 else
3123 i0pat = copy_rtx (PATTERN (i0));
3126 combine_merges++;
3128 /* Substitute in the latest insn for the regs set by the earlier ones. */
3130 maxreg = max_reg_num ();
3132 subst_insn = i3;
3134 /* Many machines that don't use CC0 have insns that can both perform an
3135 arithmetic operation and set the condition code. These operations will
3136 be represented as a PARALLEL with the first element of the vector
3137 being a COMPARE of an arithmetic operation with the constant zero.
3138 The second element of the vector will set some pseudo to the result
3139 of the same arithmetic operation. If we simplify the COMPARE, we won't
3140 match such a pattern and so will generate an extra insn. Here we test
3141 for this case, where both the comparison and the operation result are
3142 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3143 I2SRC. Later we will make the PARALLEL that contains I2. */
3145 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3146 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3147 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3148 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3150 rtx newpat_dest;
3151 rtx *cc_use_loc = NULL;
3152 rtx_insn *cc_use_insn = NULL;
3153 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3154 machine_mode compare_mode, orig_compare_mode;
3155 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3157 newpat = PATTERN (i3);
3158 newpat_dest = SET_DEST (newpat);
3159 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3161 if (undobuf.other_insn == 0
3162 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3163 &cc_use_insn)))
3165 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3166 compare_code = simplify_compare_const (compare_code,
3167 GET_MODE (i2dest), op0, &op1);
3168 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3171 /* Do the rest only if op1 is const0_rtx, which may be the
3172 result of simplification. */
3173 if (op1 == const0_rtx)
3175 /* If a single use of the CC is found, prepare to modify it
3176 when SELECT_CC_MODE returns a new CC-class mode, or when
3177 the above simplify_compare_const() returned a new comparison
3178 operator. undobuf.other_insn is assigned the CC use insn
3179 when modifying it. */
3180 if (cc_use_loc)
3182 #ifdef SELECT_CC_MODE
3183 machine_mode new_mode
3184 = SELECT_CC_MODE (compare_code, op0, op1);
3185 if (new_mode != orig_compare_mode
3186 && can_change_dest_mode (SET_DEST (newpat),
3187 added_sets_2, new_mode))
3189 unsigned int regno = REGNO (newpat_dest);
3190 compare_mode = new_mode;
3191 if (regno < FIRST_PSEUDO_REGISTER)
3192 newpat_dest = gen_rtx_REG (compare_mode, regno);
3193 else
3195 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3196 newpat_dest = regno_reg_rtx[regno];
3199 #endif
3200 /* Cases for modifying the CC-using comparison. */
3201 if (compare_code != orig_compare_code
3202 /* ??? Do we need to verify the zero rtx? */
3203 && XEXP (*cc_use_loc, 1) == const0_rtx)
3205 /* Replace cc_use_loc with entire new RTX. */
3206 SUBST (*cc_use_loc,
3207 gen_rtx_fmt_ee (compare_code, compare_mode,
3208 newpat_dest, const0_rtx));
3209 undobuf.other_insn = cc_use_insn;
3211 else if (compare_mode != orig_compare_mode)
3213 /* Just replace the CC reg with a new mode. */
3214 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3215 undobuf.other_insn = cc_use_insn;
3219 /* Now we modify the current newpat:
3220 First, SET_DEST(newpat) is updated if the CC mode has been
3221 altered. For targets without SELECT_CC_MODE, this should be
3222 optimized away. */
3223 if (compare_mode != orig_compare_mode)
3224 SUBST (SET_DEST (newpat), newpat_dest);
3225 /* This is always done to propagate i2src into newpat. */
3226 SUBST (SET_SRC (newpat),
3227 gen_rtx_COMPARE (compare_mode, op0, op1));
3228 /* Create new version of i2pat if needed; the below PARALLEL
3229 creation needs this to work correctly. */
3230 if (! rtx_equal_p (i2src, op0))
3231 i2pat = gen_rtx_SET (i2dest, op0);
3232 i2_is_used = 1;
3236 if (i2_is_used == 0)
3238 /* It is possible that the source of I2 or I1 may be performing
3239 an unneeded operation, such as a ZERO_EXTEND of something
3240 that is known to have the high part zero. Handle that case
3241 by letting subst look at the inner insns.
3243 Another way to do this would be to have a function that tries
3244 to simplify a single insn instead of merging two or more
3245 insns. We don't do this because of the potential of infinite
3246 loops and because of the potential extra memory required.
3247 However, doing it the way we are is a bit of a kludge and
3248 doesn't catch all cases.
3250 But only do this if -fexpensive-optimizations since it slows
3251 things down and doesn't usually win.
3253 This is not done in the COMPARE case above because the
3254 unmodified I2PAT is used in the PARALLEL and so a pattern
3255 with a modified I2SRC would not match. */
3257 if (flag_expensive_optimizations)
3259 /* Pass pc_rtx so no substitutions are done, just
3260 simplifications. */
3261 if (i1)
3263 subst_low_luid = DF_INSN_LUID (i1);
3264 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3267 subst_low_luid = DF_INSN_LUID (i2);
3268 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3271 n_occurrences = 0; /* `subst' counts here */
3272 subst_low_luid = DF_INSN_LUID (i2);
3274 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3275 copy of I2SRC each time we substitute it, in order to avoid creating
3276 self-referential RTL when we will be substituting I1SRC for I1DEST
3277 later. Likewise if I0 feeds into I2, either directly or indirectly
3278 through I1, and I0DEST is in I0SRC. */
3279 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3280 (i1_feeds_i2_n && i1dest_in_i1src)
3281 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3282 && i0dest_in_i0src));
3283 substed_i2 = 1;
3285 /* Record whether I2's body now appears within I3's body. */
3286 i2_is_used = n_occurrences;
3289 /* If we already got a failure, don't try to do more. Otherwise, try to
3290 substitute I1 if we have it. */
3292 if (i1 && GET_CODE (newpat) != CLOBBER)
3294 /* Check that an autoincrement side-effect on I1 has not been lost.
3295 This happens if I1DEST is mentioned in I2 and dies there, and
3296 has disappeared from the new pattern. */
3297 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3298 && i1_feeds_i2_n
3299 && dead_or_set_p (i2, i1dest)
3300 && !reg_overlap_mentioned_p (i1dest, newpat))
3301 /* Before we can do this substitution, we must redo the test done
3302 above (see detailed comments there) that ensures I1DEST isn't
3303 mentioned in any SETs in NEWPAT that are field assignments. */
3304 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3305 0, 0, 0))
3307 undo_all ();
3308 return 0;
3311 n_occurrences = 0;
3312 subst_low_luid = DF_INSN_LUID (i1);
3314 /* If the following substitution will modify I1SRC, make a copy of it
3315 for the case where it is substituted for I1DEST in I2PAT later. */
3316 if (added_sets_2 && i1_feeds_i2_n)
3317 i1src_copy = copy_rtx (i1src);
3319 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3320 copy of I1SRC each time we substitute it, in order to avoid creating
3321 self-referential RTL when we will be substituting I0SRC for I0DEST
3322 later. */
3323 newpat = subst (newpat, i1dest, i1src, 0, 0,
3324 i0_feeds_i1_n && i0dest_in_i0src);
3325 substed_i1 = 1;
3327 /* Record whether I1's body now appears within I3's body. */
3328 i1_is_used = n_occurrences;
3331 /* Likewise for I0 if we have it. */
3333 if (i0 && GET_CODE (newpat) != CLOBBER)
3335 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3336 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3337 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3338 && !reg_overlap_mentioned_p (i0dest, newpat))
3339 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3340 0, 0, 0))
3342 undo_all ();
3343 return 0;
3346 /* If the following substitution will modify I0SRC, make a copy of it
3347 for the case where it is substituted for I0DEST in I1PAT later. */
3348 if (added_sets_1 && i0_feeds_i1_n)
3349 i0src_copy = copy_rtx (i0src);
3350 /* And a copy for I0DEST in I2PAT substitution. */
3351 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3352 || (i0_feeds_i2_n)))
3353 i0src_copy2 = copy_rtx (i0src);
3355 n_occurrences = 0;
3356 subst_low_luid = DF_INSN_LUID (i0);
3357 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3358 substed_i0 = 1;
3361 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3362 to count all the ways that I2SRC and I1SRC can be used. */
3363 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3364 && i2_is_used + added_sets_2 > 1)
3365 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3366 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3367 > 1))
3368 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3369 && (n_occurrences + added_sets_0
3370 + (added_sets_1 && i0_feeds_i1_n)
3371 + (added_sets_2 && i0_feeds_i2_n)
3372 > 1))
3373 /* Fail if we tried to make a new register. */
3374 || max_reg_num () != maxreg
3375 /* Fail if we couldn't do something and have a CLOBBER. */
3376 || GET_CODE (newpat) == CLOBBER
3377 /* Fail if this new pattern is a MULT and we didn't have one before
3378 at the outer level. */
3379 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3380 && ! have_mult))
3382 undo_all ();
3383 return 0;
3386 /* If the actions of the earlier insns must be kept
3387 in addition to substituting them into the latest one,
3388 we must make a new PARALLEL for the latest insn
3389 to hold additional the SETs. */
3391 if (added_sets_0 || added_sets_1 || added_sets_2)
3393 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3394 combine_extras++;
3396 if (GET_CODE (newpat) == PARALLEL)
3398 rtvec old = XVEC (newpat, 0);
3399 total_sets = XVECLEN (newpat, 0) + extra_sets;
3400 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3401 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3402 sizeof (old->elem[0]) * old->num_elem);
3404 else
3406 rtx old = newpat;
3407 total_sets = 1 + extra_sets;
3408 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3409 XVECEXP (newpat, 0, 0) = old;
3412 if (added_sets_0)
3413 XVECEXP (newpat, 0, --total_sets) = i0pat;
3415 if (added_sets_1)
3417 rtx t = i1pat;
3418 if (i0_feeds_i1_n)
3419 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3421 XVECEXP (newpat, 0, --total_sets) = t;
3423 if (added_sets_2)
3425 rtx t = i2pat;
3426 if (i1_feeds_i2_n)
3427 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3428 i0_feeds_i1_n && i0dest_in_i0src);
3429 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3430 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3432 XVECEXP (newpat, 0, --total_sets) = t;
3436 validate_replacement:
3438 /* Note which hard regs this insn has as inputs. */
3439 mark_used_regs_combine (newpat);
3441 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3442 consider splitting this pattern, we might need these clobbers. */
3443 if (i1 && GET_CODE (newpat) == PARALLEL
3444 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3446 int len = XVECLEN (newpat, 0);
3448 newpat_vec_with_clobbers = rtvec_alloc (len);
3449 for (i = 0; i < len; i++)
3450 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3453 /* We have recognized nothing yet. */
3454 insn_code_number = -1;
3456 /* See if this is a PARALLEL of two SETs where one SET's destination is
3457 a register that is unused and this isn't marked as an instruction that
3458 might trap in an EH region. In that case, we just need the other SET.
3459 We prefer this over the PARALLEL.
3461 This can occur when simplifying a divmod insn. We *must* test for this
3462 case here because the code below that splits two independent SETs doesn't
3463 handle this case correctly when it updates the register status.
3465 It's pointless doing this if we originally had two sets, one from
3466 i3, and one from i2. Combining then splitting the parallel results
3467 in the original i2 again plus an invalid insn (which we delete).
3468 The net effect is only to move instructions around, which makes
3469 debug info less accurate. */
3471 if (!(added_sets_2 && i1 == 0)
3472 && is_parallel_of_n_reg_sets (newpat, 2)
3473 && asm_noperands (newpat) < 0)
3475 rtx set0 = XVECEXP (newpat, 0, 0);
3476 rtx set1 = XVECEXP (newpat, 0, 1);
3477 rtx oldpat = newpat;
3479 if (((REG_P (SET_DEST (set1))
3480 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3481 || (GET_CODE (SET_DEST (set1)) == SUBREG
3482 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3483 && insn_nothrow_p (i3)
3484 && !side_effects_p (SET_SRC (set1)))
3486 newpat = set0;
3487 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3490 else if (((REG_P (SET_DEST (set0))
3491 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3492 || (GET_CODE (SET_DEST (set0)) == SUBREG
3493 && find_reg_note (i3, REG_UNUSED,
3494 SUBREG_REG (SET_DEST (set0)))))
3495 && insn_nothrow_p (i3)
3496 && !side_effects_p (SET_SRC (set0)))
3498 newpat = set1;
3499 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3501 if (insn_code_number >= 0)
3502 changed_i3_dest = 1;
3505 if (insn_code_number < 0)
3506 newpat = oldpat;
3509 /* Is the result of combination a valid instruction? */
3510 if (insn_code_number < 0)
3511 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3513 /* If we were combining three insns and the result is a simple SET
3514 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3515 insns. There are two ways to do this. It can be split using a
3516 machine-specific method (like when you have an addition of a large
3517 constant) or by combine in the function find_split_point. */
3519 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3520 && asm_noperands (newpat) < 0)
3522 rtx parallel, *split;
3523 rtx_insn *m_split_insn;
3525 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3526 use I2DEST as a scratch register will help. In the latter case,
3527 convert I2DEST to the mode of the source of NEWPAT if we can. */
3529 m_split_insn = combine_split_insns (newpat, i3);
3531 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3532 inputs of NEWPAT. */
3534 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3535 possible to try that as a scratch reg. This would require adding
3536 more code to make it work though. */
3538 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3540 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3542 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3543 (temporarily, until we are committed to this instruction
3544 combination) does not work: for example, any call to nonzero_bits
3545 on the register (from a splitter in the MD file, for example)
3546 will get the old information, which is invalid.
3548 Since nowadays we can create registers during combine just fine,
3549 we should just create a new one here, not reuse i2dest. */
3551 /* First try to split using the original register as a
3552 scratch register. */
3553 parallel = gen_rtx_PARALLEL (VOIDmode,
3554 gen_rtvec (2, newpat,
3555 gen_rtx_CLOBBER (VOIDmode,
3556 i2dest)));
3557 m_split_insn = combine_split_insns (parallel, i3);
3559 /* If that didn't work, try changing the mode of I2DEST if
3560 we can. */
3561 if (m_split_insn == 0
3562 && new_mode != GET_MODE (i2dest)
3563 && new_mode != VOIDmode
3564 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3566 machine_mode old_mode = GET_MODE (i2dest);
3567 rtx ni2dest;
3569 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3570 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3571 else
3573 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3574 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3577 parallel = (gen_rtx_PARALLEL
3578 (VOIDmode,
3579 gen_rtvec (2, newpat,
3580 gen_rtx_CLOBBER (VOIDmode,
3581 ni2dest))));
3582 m_split_insn = combine_split_insns (parallel, i3);
3584 if (m_split_insn == 0
3585 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3587 struct undo *buf;
3589 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3590 buf = undobuf.undos;
3591 undobuf.undos = buf->next;
3592 buf->next = undobuf.frees;
3593 undobuf.frees = buf;
3597 i2scratch = m_split_insn != 0;
3600 /* If recog_for_combine has discarded clobbers, try to use them
3601 again for the split. */
3602 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3604 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3605 m_split_insn = combine_split_insns (parallel, i3);
3608 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3610 rtx m_split_pat = PATTERN (m_split_insn);
3611 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3612 if (insn_code_number >= 0)
3613 newpat = m_split_pat;
3615 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3616 && (next_nonnote_nondebug_insn (i2) == i3
3617 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3619 rtx i2set, i3set;
3620 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3621 newi2pat = PATTERN (m_split_insn);
3623 i3set = single_set (NEXT_INSN (m_split_insn));
3624 i2set = single_set (m_split_insn);
3626 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3628 /* If I2 or I3 has multiple SETs, we won't know how to track
3629 register status, so don't use these insns. If I2's destination
3630 is used between I2 and I3, we also can't use these insns. */
3632 if (i2_code_number >= 0 && i2set && i3set
3633 && (next_nonnote_nondebug_insn (i2) == i3
3634 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3635 insn_code_number = recog_for_combine (&newi3pat, i3,
3636 &new_i3_notes);
3637 if (insn_code_number >= 0)
3638 newpat = newi3pat;
3640 /* It is possible that both insns now set the destination of I3.
3641 If so, we must show an extra use of it. */
3643 if (insn_code_number >= 0)
3645 rtx new_i3_dest = SET_DEST (i3set);
3646 rtx new_i2_dest = SET_DEST (i2set);
3648 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3649 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3650 || GET_CODE (new_i3_dest) == SUBREG)
3651 new_i3_dest = XEXP (new_i3_dest, 0);
3653 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3654 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3655 || GET_CODE (new_i2_dest) == SUBREG)
3656 new_i2_dest = XEXP (new_i2_dest, 0);
3658 if (REG_P (new_i3_dest)
3659 && REG_P (new_i2_dest)
3660 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3661 && REGNO (new_i2_dest) < reg_n_sets_max)
3662 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3666 /* If we can split it and use I2DEST, go ahead and see if that
3667 helps things be recognized. Verify that none of the registers
3668 are set between I2 and I3. */
3669 if (insn_code_number < 0
3670 && (split = find_split_point (&newpat, i3, false)) != 0
3671 && (!HAVE_cc0 || REG_P (i2dest))
3672 /* We need I2DEST in the proper mode. If it is a hard register
3673 or the only use of a pseudo, we can change its mode.
3674 Make sure we don't change a hard register to have a mode that
3675 isn't valid for it, or change the number of registers. */
3676 && (GET_MODE (*split) == GET_MODE (i2dest)
3677 || GET_MODE (*split) == VOIDmode
3678 || can_change_dest_mode (i2dest, added_sets_2,
3679 GET_MODE (*split)))
3680 && (next_nonnote_nondebug_insn (i2) == i3
3681 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3682 /* We can't overwrite I2DEST if its value is still used by
3683 NEWPAT. */
3684 && ! reg_referenced_p (i2dest, newpat))
3686 rtx newdest = i2dest;
3687 enum rtx_code split_code = GET_CODE (*split);
3688 machine_mode split_mode = GET_MODE (*split);
3689 bool subst_done = false;
3690 newi2pat = NULL_RTX;
3692 i2scratch = true;
3694 /* *SPLIT may be part of I2SRC, so make sure we have the
3695 original expression around for later debug processing.
3696 We should not need I2SRC any more in other cases. */
3697 if (MAY_HAVE_DEBUG_INSNS)
3698 i2src = copy_rtx (i2src);
3699 else
3700 i2src = NULL;
3702 /* Get NEWDEST as a register in the proper mode. We have already
3703 validated that we can do this. */
3704 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3706 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3707 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3708 else
3710 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3711 newdest = regno_reg_rtx[REGNO (i2dest)];
3715 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3716 an ASHIFT. This can occur if it was inside a PLUS and hence
3717 appeared to be a memory address. This is a kludge. */
3718 if (split_code == MULT
3719 && CONST_INT_P (XEXP (*split, 1))
3720 && INTVAL (XEXP (*split, 1)) > 0
3721 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3723 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3724 XEXP (*split, 0), GEN_INT (i)));
3725 /* Update split_code because we may not have a multiply
3726 anymore. */
3727 split_code = GET_CODE (*split);
3730 /* Similarly for (plus (mult FOO (const_int pow2))). */
3731 if (split_code == PLUS
3732 && GET_CODE (XEXP (*split, 0)) == MULT
3733 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3734 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3735 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3737 rtx nsplit = XEXP (*split, 0);
3738 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3739 XEXP (nsplit, 0), GEN_INT (i)));
3740 /* Update split_code because we may not have a multiply
3741 anymore. */
3742 split_code = GET_CODE (*split);
3745 #ifdef INSN_SCHEDULING
3746 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3747 be written as a ZERO_EXTEND. */
3748 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3750 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3751 what it really is. */
3752 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3753 == SIGN_EXTEND)
3754 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3755 SUBREG_REG (*split)));
3756 else
3757 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3758 SUBREG_REG (*split)));
3760 #endif
3762 /* Attempt to split binary operators using arithmetic identities. */
3763 if (BINARY_P (SET_SRC (newpat))
3764 && split_mode == GET_MODE (SET_SRC (newpat))
3765 && ! side_effects_p (SET_SRC (newpat)))
3767 rtx setsrc = SET_SRC (newpat);
3768 machine_mode mode = GET_MODE (setsrc);
3769 enum rtx_code code = GET_CODE (setsrc);
3770 rtx src_op0 = XEXP (setsrc, 0);
3771 rtx src_op1 = XEXP (setsrc, 1);
3773 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3774 if (rtx_equal_p (src_op0, src_op1))
3776 newi2pat = gen_rtx_SET (newdest, src_op0);
3777 SUBST (XEXP (setsrc, 0), newdest);
3778 SUBST (XEXP (setsrc, 1), newdest);
3779 subst_done = true;
3781 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3782 else if ((code == PLUS || code == MULT)
3783 && GET_CODE (src_op0) == code
3784 && GET_CODE (XEXP (src_op0, 0)) == code
3785 && (INTEGRAL_MODE_P (mode)
3786 || (FLOAT_MODE_P (mode)
3787 && flag_unsafe_math_optimizations)))
3789 rtx p = XEXP (XEXP (src_op0, 0), 0);
3790 rtx q = XEXP (XEXP (src_op0, 0), 1);
3791 rtx r = XEXP (src_op0, 1);
3792 rtx s = src_op1;
3794 /* Split both "((X op Y) op X) op Y" and
3795 "((X op Y) op Y) op X" as "T op T" where T is
3796 "X op Y". */
3797 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3798 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3800 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3801 SUBST (XEXP (setsrc, 0), newdest);
3802 SUBST (XEXP (setsrc, 1), newdest);
3803 subst_done = true;
3805 /* Split "((X op X) op Y) op Y)" as "T op T" where
3806 T is "X op Y". */
3807 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3809 rtx tmp = simplify_gen_binary (code, mode, p, r);
3810 newi2pat = gen_rtx_SET (newdest, tmp);
3811 SUBST (XEXP (setsrc, 0), newdest);
3812 SUBST (XEXP (setsrc, 1), newdest);
3813 subst_done = true;
3818 if (!subst_done)
3820 newi2pat = gen_rtx_SET (newdest, *split);
3821 SUBST (*split, newdest);
3824 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3826 /* recog_for_combine might have added CLOBBERs to newi2pat.
3827 Make sure NEWPAT does not depend on the clobbered regs. */
3828 if (GET_CODE (newi2pat) == PARALLEL)
3829 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3830 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3832 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3833 if (reg_overlap_mentioned_p (reg, newpat))
3835 undo_all ();
3836 return 0;
3840 /* If the split point was a MULT and we didn't have one before,
3841 don't use one now. */
3842 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3847 /* Check for a case where we loaded from memory in a narrow mode and
3848 then sign extended it, but we need both registers. In that case,
3849 we have a PARALLEL with both loads from the same memory location.
3850 We can split this into a load from memory followed by a register-register
3851 copy. This saves at least one insn, more if register allocation can
3852 eliminate the copy.
3854 We cannot do this if the destination of the first assignment is a
3855 condition code register or cc0. We eliminate this case by making sure
3856 the SET_DEST and SET_SRC have the same mode.
3858 We cannot do this if the destination of the second assignment is
3859 a register that we have already assumed is zero-extended. Similarly
3860 for a SUBREG of such a register. */
3862 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3863 && GET_CODE (newpat) == PARALLEL
3864 && XVECLEN (newpat, 0) == 2
3865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3866 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3867 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3868 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3869 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3870 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3871 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3872 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3873 DF_INSN_LUID (i2))
3874 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3875 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3876 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3877 (REG_P (temp_expr)
3878 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3879 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3880 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3881 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3882 != GET_MODE_MASK (word_mode))))
3883 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3884 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3885 (REG_P (temp_expr)
3886 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3887 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3888 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3889 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3890 != GET_MODE_MASK (word_mode)))))
3891 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3892 SET_SRC (XVECEXP (newpat, 0, 1)))
3893 && ! find_reg_note (i3, REG_UNUSED,
3894 SET_DEST (XVECEXP (newpat, 0, 0))))
3896 rtx ni2dest;
3898 newi2pat = XVECEXP (newpat, 0, 0);
3899 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3900 newpat = XVECEXP (newpat, 0, 1);
3901 SUBST (SET_SRC (newpat),
3902 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3903 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3905 if (i2_code_number >= 0)
3906 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3908 if (insn_code_number >= 0)
3909 swap_i2i3 = 1;
3912 /* Similarly, check for a case where we have a PARALLEL of two independent
3913 SETs but we started with three insns. In this case, we can do the sets
3914 as two separate insns. This case occurs when some SET allows two
3915 other insns to combine, but the destination of that SET is still live.
3917 Also do this if we started with two insns and (at least) one of the
3918 resulting sets is a noop; this noop will be deleted later. */
3920 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3921 && GET_CODE (newpat) == PARALLEL
3922 && XVECLEN (newpat, 0) == 2
3923 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3924 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3925 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3926 || set_noop_p (XVECEXP (newpat, 0, 1)))
3927 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3928 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3929 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3930 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3931 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3932 XVECEXP (newpat, 0, 0))
3933 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3934 XVECEXP (newpat, 0, 1))
3935 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3936 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3938 rtx set0 = XVECEXP (newpat, 0, 0);
3939 rtx set1 = XVECEXP (newpat, 0, 1);
3941 /* Normally, it doesn't matter which of the two is done first,
3942 but the one that references cc0 can't be the second, and
3943 one which uses any regs/memory set in between i2 and i3 can't
3944 be first. The PARALLEL might also have been pre-existing in i3,
3945 so we need to make sure that we won't wrongly hoist a SET to i2
3946 that would conflict with a death note present in there. */
3947 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
3948 && !(REG_P (SET_DEST (set1))
3949 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
3950 && !(GET_CODE (SET_DEST (set1)) == SUBREG
3951 && find_reg_note (i2, REG_DEAD,
3952 SUBREG_REG (SET_DEST (set1))))
3953 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
3954 /* If I3 is a jump, ensure that set0 is a jump so that
3955 we do not create invalid RTL. */
3956 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
3959 newi2pat = set1;
3960 newpat = set0;
3962 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
3963 && !(REG_P (SET_DEST (set0))
3964 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
3965 && !(GET_CODE (SET_DEST (set0)) == SUBREG
3966 && find_reg_note (i2, REG_DEAD,
3967 SUBREG_REG (SET_DEST (set0))))
3968 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
3969 /* If I3 is a jump, ensure that set1 is a jump so that
3970 we do not create invalid RTL. */
3971 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
3974 newi2pat = set0;
3975 newpat = set1;
3977 else
3979 undo_all ();
3980 return 0;
3983 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3985 if (i2_code_number >= 0)
3987 /* recog_for_combine might have added CLOBBERs to newi2pat.
3988 Make sure NEWPAT does not depend on the clobbered regs. */
3989 if (GET_CODE (newi2pat) == PARALLEL)
3991 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3992 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3994 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3995 if (reg_overlap_mentioned_p (reg, newpat))
3997 undo_all ();
3998 return 0;
4003 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4007 /* If it still isn't recognized, fail and change things back the way they
4008 were. */
4009 if ((insn_code_number < 0
4010 /* Is the result a reasonable ASM_OPERANDS? */
4011 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4013 undo_all ();
4014 return 0;
4017 /* If we had to change another insn, make sure it is valid also. */
4018 if (undobuf.other_insn)
4020 CLEAR_HARD_REG_SET (newpat_used_regs);
4022 other_pat = PATTERN (undobuf.other_insn);
4023 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4024 &new_other_notes);
4026 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4028 undo_all ();
4029 return 0;
4033 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4034 they are adjacent to each other or not. */
4035 if (HAVE_cc0)
4037 rtx_insn *p = prev_nonnote_insn (i3);
4038 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4039 && sets_cc0_p (newi2pat))
4041 undo_all ();
4042 return 0;
4046 /* Only allow this combination if insn_rtx_costs reports that the
4047 replacement instructions are cheaper than the originals. */
4048 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4050 undo_all ();
4051 return 0;
4054 if (MAY_HAVE_DEBUG_INSNS)
4056 struct undo *undo;
4058 for (undo = undobuf.undos; undo; undo = undo->next)
4059 if (undo->kind == UNDO_MODE)
4061 rtx reg = *undo->where.r;
4062 machine_mode new_mode = GET_MODE (reg);
4063 machine_mode old_mode = undo->old_contents.m;
4065 /* Temporarily revert mode back. */
4066 adjust_reg_mode (reg, old_mode);
4068 if (reg == i2dest && i2scratch)
4070 /* If we used i2dest as a scratch register with a
4071 different mode, substitute it for the original
4072 i2src while its original mode is temporarily
4073 restored, and then clear i2scratch so that we don't
4074 do it again later. */
4075 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4076 this_basic_block);
4077 i2scratch = false;
4078 /* Put back the new mode. */
4079 adjust_reg_mode (reg, new_mode);
4081 else
4083 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4084 rtx_insn *first, *last;
4086 if (reg == i2dest)
4088 first = i2;
4089 last = last_combined_insn;
4091 else
4093 first = i3;
4094 last = undobuf.other_insn;
4095 gcc_assert (last);
4096 if (DF_INSN_LUID (last)
4097 < DF_INSN_LUID (last_combined_insn))
4098 last = last_combined_insn;
4101 /* We're dealing with a reg that changed mode but not
4102 meaning, so we want to turn it into a subreg for
4103 the new mode. However, because of REG sharing and
4104 because its mode had already changed, we have to do
4105 it in two steps. First, replace any debug uses of
4106 reg, with its original mode temporarily restored,
4107 with this copy we have created; then, replace the
4108 copy with the SUBREG of the original shared reg,
4109 once again changed to the new mode. */
4110 propagate_for_debug (first, last, reg, tempreg,
4111 this_basic_block);
4112 adjust_reg_mode (reg, new_mode);
4113 propagate_for_debug (first, last, tempreg,
4114 lowpart_subreg (old_mode, reg, new_mode),
4115 this_basic_block);
4120 /* If we will be able to accept this, we have made a
4121 change to the destination of I3. This requires us to
4122 do a few adjustments. */
4124 if (changed_i3_dest)
4126 PATTERN (i3) = newpat;
4127 adjust_for_new_dest (i3);
4130 /* We now know that we can do this combination. Merge the insns and
4131 update the status of registers and LOG_LINKS. */
4133 if (undobuf.other_insn)
4135 rtx note, next;
4137 PATTERN (undobuf.other_insn) = other_pat;
4139 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4140 ensure that they are still valid. Then add any non-duplicate
4141 notes added by recog_for_combine. */
4142 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4144 next = XEXP (note, 1);
4146 if ((REG_NOTE_KIND (note) == REG_DEAD
4147 && !reg_referenced_p (XEXP (note, 0),
4148 PATTERN (undobuf.other_insn)))
4149 ||(REG_NOTE_KIND (note) == REG_UNUSED
4150 && !reg_set_p (XEXP (note, 0),
4151 PATTERN (undobuf.other_insn)))
4152 /* Simply drop equal note since it may be no longer valid
4153 for other_insn. It may be possible to record that CC
4154 register is changed and only discard those notes, but
4155 in practice it's unnecessary complication and doesn't
4156 give any meaningful improvement.
4158 See PR78559. */
4159 || REG_NOTE_KIND (note) == REG_EQUAL
4160 || REG_NOTE_KIND (note) == REG_EQUIV)
4161 remove_note (undobuf.other_insn, note);
4164 distribute_notes (new_other_notes, undobuf.other_insn,
4165 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4166 NULL_RTX);
4169 if (swap_i2i3)
4171 rtx_insn *insn;
4172 struct insn_link *link;
4173 rtx ni2dest;
4175 /* I3 now uses what used to be its destination and which is now
4176 I2's destination. This requires us to do a few adjustments. */
4177 PATTERN (i3) = newpat;
4178 adjust_for_new_dest (i3);
4180 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4181 so we still will.
4183 However, some later insn might be using I2's dest and have
4184 a LOG_LINK pointing at I3. We must remove this link.
4185 The simplest way to remove the link is to point it at I1,
4186 which we know will be a NOTE. */
4188 /* newi2pat is usually a SET here; however, recog_for_combine might
4189 have added some clobbers. */
4190 if (GET_CODE (newi2pat) == PARALLEL)
4191 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4192 else
4193 ni2dest = SET_DEST (newi2pat);
4195 for (insn = NEXT_INSN (i3);
4196 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4197 || insn != BB_HEAD (this_basic_block->next_bb));
4198 insn = NEXT_INSN (insn))
4200 if (NONDEBUG_INSN_P (insn)
4201 && reg_referenced_p (ni2dest, PATTERN (insn)))
4203 FOR_EACH_LOG_LINK (link, insn)
4204 if (link->insn == i3)
4205 link->insn = i1;
4207 break;
4213 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4214 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4215 rtx midnotes = 0;
4216 int from_luid;
4217 /* Compute which registers we expect to eliminate. newi2pat may be setting
4218 either i3dest or i2dest, so we must check it. */
4219 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4220 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4221 || !i2dest_killed
4222 ? 0 : i2dest);
4223 /* For i1, we need to compute both local elimination and global
4224 elimination information with respect to newi2pat because i1dest
4225 may be the same as i3dest, in which case newi2pat may be setting
4226 i1dest. Global information is used when distributing REG_DEAD
4227 note for i2 and i3, in which case it does matter if newi2pat sets
4228 i1dest or not.
4230 Local information is used when distributing REG_DEAD note for i1,
4231 in which case it doesn't matter if newi2pat sets i1dest or not.
4232 See PR62151, if we have four insns combination:
4233 i0: r0 <- i0src
4234 i1: r1 <- i1src (using r0)
4235 REG_DEAD (r0)
4236 i2: r0 <- i2src (using r1)
4237 i3: r3 <- i3src (using r0)
4238 ix: using r0
4239 From i1's point of view, r0 is eliminated, no matter if it is set
4240 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4241 should be discarded.
4243 Note local information only affects cases in forms like "I1->I2->I3",
4244 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4245 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4246 i0dest anyway. */
4247 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4248 || !i1dest_killed
4249 ? 0 : i1dest);
4250 rtx elim_i1 = (local_elim_i1 == 0
4251 || (newi2pat && reg_set_p (i1dest, newi2pat))
4252 ? 0 : i1dest);
4253 /* Same case as i1. */
4254 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4255 ? 0 : i0dest);
4256 rtx elim_i0 = (local_elim_i0 == 0
4257 || (newi2pat && reg_set_p (i0dest, newi2pat))
4258 ? 0 : i0dest);
4260 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4261 clear them. */
4262 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4263 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4264 if (i1)
4265 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4266 if (i0)
4267 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4269 /* Ensure that we do not have something that should not be shared but
4270 occurs multiple times in the new insns. Check this by first
4271 resetting all the `used' flags and then copying anything is shared. */
4273 reset_used_flags (i3notes);
4274 reset_used_flags (i2notes);
4275 reset_used_flags (i1notes);
4276 reset_used_flags (i0notes);
4277 reset_used_flags (newpat);
4278 reset_used_flags (newi2pat);
4279 if (undobuf.other_insn)
4280 reset_used_flags (PATTERN (undobuf.other_insn));
4282 i3notes = copy_rtx_if_shared (i3notes);
4283 i2notes = copy_rtx_if_shared (i2notes);
4284 i1notes = copy_rtx_if_shared (i1notes);
4285 i0notes = copy_rtx_if_shared (i0notes);
4286 newpat = copy_rtx_if_shared (newpat);
4287 newi2pat = copy_rtx_if_shared (newi2pat);
4288 if (undobuf.other_insn)
4289 reset_used_flags (PATTERN (undobuf.other_insn));
4291 INSN_CODE (i3) = insn_code_number;
4292 PATTERN (i3) = newpat;
4294 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4296 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4297 link = XEXP (link, 1))
4299 if (substed_i2)
4301 /* I2SRC must still be meaningful at this point. Some
4302 splitting operations can invalidate I2SRC, but those
4303 operations do not apply to calls. */
4304 gcc_assert (i2src);
4305 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4306 i2dest, i2src);
4308 if (substed_i1)
4309 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4310 i1dest, i1src);
4311 if (substed_i0)
4312 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4313 i0dest, i0src);
4317 if (undobuf.other_insn)
4318 INSN_CODE (undobuf.other_insn) = other_code_number;
4320 /* We had one special case above where I2 had more than one set and
4321 we replaced a destination of one of those sets with the destination
4322 of I3. In that case, we have to update LOG_LINKS of insns later
4323 in this basic block. Note that this (expensive) case is rare.
4325 Also, in this case, we must pretend that all REG_NOTEs for I2
4326 actually came from I3, so that REG_UNUSED notes from I2 will be
4327 properly handled. */
4329 if (i3_subst_into_i2)
4331 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4332 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4333 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4334 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4335 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4336 && ! find_reg_note (i2, REG_UNUSED,
4337 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4338 for (temp_insn = NEXT_INSN (i2);
4339 temp_insn
4340 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4341 || BB_HEAD (this_basic_block) != temp_insn);
4342 temp_insn = NEXT_INSN (temp_insn))
4343 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4344 FOR_EACH_LOG_LINK (link, temp_insn)
4345 if (link->insn == i2)
4346 link->insn = i3;
4348 if (i3notes)
4350 rtx link = i3notes;
4351 while (XEXP (link, 1))
4352 link = XEXP (link, 1);
4353 XEXP (link, 1) = i2notes;
4355 else
4356 i3notes = i2notes;
4357 i2notes = 0;
4360 LOG_LINKS (i3) = NULL;
4361 REG_NOTES (i3) = 0;
4362 LOG_LINKS (i2) = NULL;
4363 REG_NOTES (i2) = 0;
4365 if (newi2pat)
4367 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4368 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4369 this_basic_block);
4370 INSN_CODE (i2) = i2_code_number;
4371 PATTERN (i2) = newi2pat;
4373 else
4375 if (MAY_HAVE_DEBUG_INSNS && i2src)
4376 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4377 this_basic_block);
4378 SET_INSN_DELETED (i2);
4381 if (i1)
4383 LOG_LINKS (i1) = NULL;
4384 REG_NOTES (i1) = 0;
4385 if (MAY_HAVE_DEBUG_INSNS)
4386 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4387 this_basic_block);
4388 SET_INSN_DELETED (i1);
4391 if (i0)
4393 LOG_LINKS (i0) = NULL;
4394 REG_NOTES (i0) = 0;
4395 if (MAY_HAVE_DEBUG_INSNS)
4396 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4397 this_basic_block);
4398 SET_INSN_DELETED (i0);
4401 /* Get death notes for everything that is now used in either I3 or
4402 I2 and used to die in a previous insn. If we built two new
4403 patterns, move from I1 to I2 then I2 to I3 so that we get the
4404 proper movement on registers that I2 modifies. */
4406 if (i0)
4407 from_luid = DF_INSN_LUID (i0);
4408 else if (i1)
4409 from_luid = DF_INSN_LUID (i1);
4410 else
4411 from_luid = DF_INSN_LUID (i2);
4412 if (newi2pat)
4413 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4414 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4416 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4417 if (i3notes)
4418 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4419 elim_i2, elim_i1, elim_i0);
4420 if (i2notes)
4421 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4422 elim_i2, elim_i1, elim_i0);
4423 if (i1notes)
4424 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4425 elim_i2, local_elim_i1, local_elim_i0);
4426 if (i0notes)
4427 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4428 elim_i2, elim_i1, local_elim_i0);
4429 if (midnotes)
4430 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4431 elim_i2, elim_i1, elim_i0);
4433 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4434 know these are REG_UNUSED and want them to go to the desired insn,
4435 so we always pass it as i3. */
4437 if (newi2pat && new_i2_notes)
4438 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4439 NULL_RTX);
4441 if (new_i3_notes)
4442 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4443 NULL_RTX);
4445 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4446 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4447 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4448 in that case, it might delete I2. Similarly for I2 and I1.
4449 Show an additional death due to the REG_DEAD note we make here. If
4450 we discard it in distribute_notes, we will decrement it again. */
4452 if (i3dest_killed)
4454 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4455 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4456 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4457 elim_i1, elim_i0);
4458 else
4459 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4460 elim_i2, elim_i1, elim_i0);
4463 if (i2dest_in_i2src)
4465 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4466 if (newi2pat && reg_set_p (i2dest, newi2pat))
4467 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4468 NULL_RTX, NULL_RTX);
4469 else
4470 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4471 NULL_RTX, NULL_RTX, NULL_RTX);
4474 if (i1dest_in_i1src)
4476 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4477 if (newi2pat && reg_set_p (i1dest, newi2pat))
4478 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4479 NULL_RTX, NULL_RTX);
4480 else
4481 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4482 NULL_RTX, NULL_RTX, NULL_RTX);
4485 if (i0dest_in_i0src)
4487 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4488 if (newi2pat && reg_set_p (i0dest, newi2pat))
4489 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4490 NULL_RTX, NULL_RTX);
4491 else
4492 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4493 NULL_RTX, NULL_RTX, NULL_RTX);
4496 distribute_links (i3links);
4497 distribute_links (i2links);
4498 distribute_links (i1links);
4499 distribute_links (i0links);
4501 if (REG_P (i2dest))
4503 struct insn_link *link;
4504 rtx_insn *i2_insn = 0;
4505 rtx i2_val = 0, set;
4507 /* The insn that used to set this register doesn't exist, and
4508 this life of the register may not exist either. See if one of
4509 I3's links points to an insn that sets I2DEST. If it does,
4510 that is now the last known value for I2DEST. If we don't update
4511 this and I2 set the register to a value that depended on its old
4512 contents, we will get confused. If this insn is used, thing
4513 will be set correctly in combine_instructions. */
4514 FOR_EACH_LOG_LINK (link, i3)
4515 if ((set = single_set (link->insn)) != 0
4516 && rtx_equal_p (i2dest, SET_DEST (set)))
4517 i2_insn = link->insn, i2_val = SET_SRC (set);
4519 record_value_for_reg (i2dest, i2_insn, i2_val);
4521 /* If the reg formerly set in I2 died only once and that was in I3,
4522 zero its use count so it won't make `reload' do any work. */
4523 if (! added_sets_2
4524 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4525 && ! i2dest_in_i2src
4526 && REGNO (i2dest) < reg_n_sets_max)
4527 INC_REG_N_SETS (REGNO (i2dest), -1);
4530 if (i1 && REG_P (i1dest))
4532 struct insn_link *link;
4533 rtx_insn *i1_insn = 0;
4534 rtx i1_val = 0, set;
4536 FOR_EACH_LOG_LINK (link, i3)
4537 if ((set = single_set (link->insn)) != 0
4538 && rtx_equal_p (i1dest, SET_DEST (set)))
4539 i1_insn = link->insn, i1_val = SET_SRC (set);
4541 record_value_for_reg (i1dest, i1_insn, i1_val);
4543 if (! added_sets_1
4544 && ! i1dest_in_i1src
4545 && REGNO (i1dest) < reg_n_sets_max)
4546 INC_REG_N_SETS (REGNO (i1dest), -1);
4549 if (i0 && REG_P (i0dest))
4551 struct insn_link *link;
4552 rtx_insn *i0_insn = 0;
4553 rtx i0_val = 0, set;
4555 FOR_EACH_LOG_LINK (link, i3)
4556 if ((set = single_set (link->insn)) != 0
4557 && rtx_equal_p (i0dest, SET_DEST (set)))
4558 i0_insn = link->insn, i0_val = SET_SRC (set);
4560 record_value_for_reg (i0dest, i0_insn, i0_val);
4562 if (! added_sets_0
4563 && ! i0dest_in_i0src
4564 && REGNO (i0dest) < reg_n_sets_max)
4565 INC_REG_N_SETS (REGNO (i0dest), -1);
4568 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4569 been made to this insn. The order is important, because newi2pat
4570 can affect nonzero_bits of newpat. */
4571 if (newi2pat)
4572 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4573 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4576 if (undobuf.other_insn != NULL_RTX)
4578 if (dump_file)
4580 fprintf (dump_file, "modifying other_insn ");
4581 dump_insn_slim (dump_file, undobuf.other_insn);
4583 df_insn_rescan (undobuf.other_insn);
4586 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4588 if (dump_file)
4590 fprintf (dump_file, "modifying insn i0 ");
4591 dump_insn_slim (dump_file, i0);
4593 df_insn_rescan (i0);
4596 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4598 if (dump_file)
4600 fprintf (dump_file, "modifying insn i1 ");
4601 dump_insn_slim (dump_file, i1);
4603 df_insn_rescan (i1);
4606 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4608 if (dump_file)
4610 fprintf (dump_file, "modifying insn i2 ");
4611 dump_insn_slim (dump_file, i2);
4613 df_insn_rescan (i2);
4616 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4618 if (dump_file)
4620 fprintf (dump_file, "modifying insn i3 ");
4621 dump_insn_slim (dump_file, i3);
4623 df_insn_rescan (i3);
4626 /* Set new_direct_jump_p if a new return or simple jump instruction
4627 has been created. Adjust the CFG accordingly. */
4628 if (returnjump_p (i3) || any_uncondjump_p (i3))
4630 *new_direct_jump_p = 1;
4631 mark_jump_label (PATTERN (i3), i3, 0);
4632 update_cfg_for_uncondjump (i3);
4635 if (undobuf.other_insn != NULL_RTX
4636 && (returnjump_p (undobuf.other_insn)
4637 || any_uncondjump_p (undobuf.other_insn)))
4639 *new_direct_jump_p = 1;
4640 update_cfg_for_uncondjump (undobuf.other_insn);
4643 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4644 && XEXP (PATTERN (i3), 0) == const1_rtx)
4646 basic_block bb = BLOCK_FOR_INSN (i3);
4647 gcc_assert (bb);
4648 remove_edge (split_block (bb, i3));
4649 emit_barrier_after_bb (bb);
4650 *new_direct_jump_p = 1;
4653 if (undobuf.other_insn
4654 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4655 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4657 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4658 gcc_assert (bb);
4659 remove_edge (split_block (bb, undobuf.other_insn));
4660 emit_barrier_after_bb (bb);
4661 *new_direct_jump_p = 1;
4664 /* A noop might also need cleaning up of CFG, if it comes from the
4665 simplification of a jump. */
4666 if (JUMP_P (i3)
4667 && GET_CODE (newpat) == SET
4668 && SET_SRC (newpat) == pc_rtx
4669 && SET_DEST (newpat) == pc_rtx)
4671 *new_direct_jump_p = 1;
4672 update_cfg_for_uncondjump (i3);
4675 if (undobuf.other_insn != NULL_RTX
4676 && JUMP_P (undobuf.other_insn)
4677 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4678 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4679 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4681 *new_direct_jump_p = 1;
4682 update_cfg_for_uncondjump (undobuf.other_insn);
4685 combine_successes++;
4686 undo_commit ();
4688 if (added_links_insn
4689 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
4690 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
4691 return added_links_insn;
4692 else
4693 return newi2pat ? i2 : i3;
4696 /* Get a marker for undoing to the current state. */
4698 static void *
4699 get_undo_marker (void)
4701 return undobuf.undos;
4704 /* Undo the modifications up to the marker. */
4706 static void
4707 undo_to_marker (void *marker)
4709 struct undo *undo, *next;
4711 for (undo = undobuf.undos; undo != marker; undo = next)
4713 gcc_assert (undo);
4715 next = undo->next;
4716 switch (undo->kind)
4718 case UNDO_RTX:
4719 *undo->where.r = undo->old_contents.r;
4720 break;
4721 case UNDO_INT:
4722 *undo->where.i = undo->old_contents.i;
4723 break;
4724 case UNDO_MODE:
4725 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4726 break;
4727 case UNDO_LINKS:
4728 *undo->where.l = undo->old_contents.l;
4729 break;
4730 default:
4731 gcc_unreachable ();
4734 undo->next = undobuf.frees;
4735 undobuf.frees = undo;
4738 undobuf.undos = (struct undo *) marker;
4741 /* Undo all the modifications recorded in undobuf. */
4743 static void
4744 undo_all (void)
4746 undo_to_marker (0);
4749 /* We've committed to accepting the changes we made. Move all
4750 of the undos to the free list. */
4752 static void
4753 undo_commit (void)
4755 struct undo *undo, *next;
4757 for (undo = undobuf.undos; undo; undo = next)
4759 next = undo->next;
4760 undo->next = undobuf.frees;
4761 undobuf.frees = undo;
4763 undobuf.undos = 0;
4766 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4767 where we have an arithmetic expression and return that point. LOC will
4768 be inside INSN.
4770 try_combine will call this function to see if an insn can be split into
4771 two insns. */
4773 static rtx *
4774 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4776 rtx x = *loc;
4777 enum rtx_code code = GET_CODE (x);
4778 rtx *split;
4779 unsigned HOST_WIDE_INT len = 0;
4780 HOST_WIDE_INT pos = 0;
4781 int unsignedp = 0;
4782 rtx inner = NULL_RTX;
4784 /* First special-case some codes. */
4785 switch (code)
4787 case SUBREG:
4788 #ifdef INSN_SCHEDULING
4789 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4790 point. */
4791 if (MEM_P (SUBREG_REG (x)))
4792 return loc;
4793 #endif
4794 return find_split_point (&SUBREG_REG (x), insn, false);
4796 case MEM:
4797 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4798 using LO_SUM and HIGH. */
4799 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4800 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4802 machine_mode address_mode = get_address_mode (x);
4804 SUBST (XEXP (x, 0),
4805 gen_rtx_LO_SUM (address_mode,
4806 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4807 XEXP (x, 0)));
4808 return &XEXP (XEXP (x, 0), 0);
4811 /* If we have a PLUS whose second operand is a constant and the
4812 address is not valid, perhaps will can split it up using
4813 the machine-specific way to split large constants. We use
4814 the first pseudo-reg (one of the virtual regs) as a placeholder;
4815 it will not remain in the result. */
4816 if (GET_CODE (XEXP (x, 0)) == PLUS
4817 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4818 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4819 MEM_ADDR_SPACE (x)))
4821 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4822 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4823 subst_insn);
4825 /* This should have produced two insns, each of which sets our
4826 placeholder. If the source of the second is a valid address,
4827 we can make put both sources together and make a split point
4828 in the middle. */
4830 if (seq
4831 && NEXT_INSN (seq) != NULL_RTX
4832 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4833 && NONJUMP_INSN_P (seq)
4834 && GET_CODE (PATTERN (seq)) == SET
4835 && SET_DEST (PATTERN (seq)) == reg
4836 && ! reg_mentioned_p (reg,
4837 SET_SRC (PATTERN (seq)))
4838 && NONJUMP_INSN_P (NEXT_INSN (seq))
4839 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4840 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4841 && memory_address_addr_space_p
4842 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4843 MEM_ADDR_SPACE (x)))
4845 rtx src1 = SET_SRC (PATTERN (seq));
4846 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4848 /* Replace the placeholder in SRC2 with SRC1. If we can
4849 find where in SRC2 it was placed, that can become our
4850 split point and we can replace this address with SRC2.
4851 Just try two obvious places. */
4853 src2 = replace_rtx (src2, reg, src1);
4854 split = 0;
4855 if (XEXP (src2, 0) == src1)
4856 split = &XEXP (src2, 0);
4857 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4858 && XEXP (XEXP (src2, 0), 0) == src1)
4859 split = &XEXP (XEXP (src2, 0), 0);
4861 if (split)
4863 SUBST (XEXP (x, 0), src2);
4864 return split;
4868 /* If that didn't work, perhaps the first operand is complex and
4869 needs to be computed separately, so make a split point there.
4870 This will occur on machines that just support REG + CONST
4871 and have a constant moved through some previous computation. */
4873 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4874 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4875 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4876 return &XEXP (XEXP (x, 0), 0);
4879 /* If we have a PLUS whose first operand is complex, try computing it
4880 separately by making a split there. */
4881 if (GET_CODE (XEXP (x, 0)) == PLUS
4882 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4883 MEM_ADDR_SPACE (x))
4884 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4885 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4886 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4887 return &XEXP (XEXP (x, 0), 0);
4888 break;
4890 case SET:
4891 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4892 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4893 we need to put the operand into a register. So split at that
4894 point. */
4896 if (SET_DEST (x) == cc0_rtx
4897 && GET_CODE (SET_SRC (x)) != COMPARE
4898 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4899 && !OBJECT_P (SET_SRC (x))
4900 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4901 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4902 return &SET_SRC (x);
4904 /* See if we can split SET_SRC as it stands. */
4905 split = find_split_point (&SET_SRC (x), insn, true);
4906 if (split && split != &SET_SRC (x))
4907 return split;
4909 /* See if we can split SET_DEST as it stands. */
4910 split = find_split_point (&SET_DEST (x), insn, false);
4911 if (split && split != &SET_DEST (x))
4912 return split;
4914 /* See if this is a bitfield assignment with everything constant. If
4915 so, this is an IOR of an AND, so split it into that. */
4916 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4917 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x), 0)))
4918 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4919 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4920 && CONST_INT_P (SET_SRC (x))
4921 && ((INTVAL (XEXP (SET_DEST (x), 1))
4922 + INTVAL (XEXP (SET_DEST (x), 2)))
4923 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0))))
4924 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4926 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4927 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4928 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4929 rtx dest = XEXP (SET_DEST (x), 0);
4930 machine_mode mode = GET_MODE (dest);
4931 unsigned HOST_WIDE_INT mask
4932 = (HOST_WIDE_INT_1U << len) - 1;
4933 rtx or_mask;
4935 if (BITS_BIG_ENDIAN)
4936 pos = GET_MODE_PRECISION (mode) - len - pos;
4938 or_mask = gen_int_mode (src << pos, mode);
4939 if (src == mask)
4940 SUBST (SET_SRC (x),
4941 simplify_gen_binary (IOR, mode, dest, or_mask));
4942 else
4944 rtx negmask = gen_int_mode (~(mask << pos), mode);
4945 SUBST (SET_SRC (x),
4946 simplify_gen_binary (IOR, mode,
4947 simplify_gen_binary (AND, mode,
4948 dest, negmask),
4949 or_mask));
4952 SUBST (SET_DEST (x), dest);
4954 split = find_split_point (&SET_SRC (x), insn, true);
4955 if (split && split != &SET_SRC (x))
4956 return split;
4959 /* Otherwise, see if this is an operation that we can split into two.
4960 If so, try to split that. */
4961 code = GET_CODE (SET_SRC (x));
4963 switch (code)
4965 case AND:
4966 /* If we are AND'ing with a large constant that is only a single
4967 bit and the result is only being used in a context where we
4968 need to know if it is zero or nonzero, replace it with a bit
4969 extraction. This will avoid the large constant, which might
4970 have taken more than one insn to make. If the constant were
4971 not a valid argument to the AND but took only one insn to make,
4972 this is no worse, but if it took more than one insn, it will
4973 be better. */
4975 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
4976 && REG_P (XEXP (SET_SRC (x), 0))
4977 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4978 && REG_P (SET_DEST (x))
4979 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
4980 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4981 && XEXP (*split, 0) == SET_DEST (x)
4982 && XEXP (*split, 1) == const0_rtx)
4984 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4985 XEXP (SET_SRC (x), 0),
4986 pos, NULL_RTX, 1, 1, 0, 0);
4987 if (extraction != 0)
4989 SUBST (SET_SRC (x), extraction);
4990 return find_split_point (loc, insn, false);
4993 break;
4995 case NE:
4996 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4997 is known to be on, this can be converted into a NEG of a shift. */
4998 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4999 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5000 && 1 <= (pos = exact_log2
5001 (nonzero_bits (XEXP (SET_SRC (x), 0),
5002 GET_MODE (XEXP (SET_SRC (x), 0))))))
5004 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5006 SUBST (SET_SRC (x),
5007 gen_rtx_NEG (mode,
5008 gen_rtx_LSHIFTRT (mode,
5009 XEXP (SET_SRC (x), 0),
5010 GEN_INT (pos))));
5012 split = find_split_point (&SET_SRC (x), insn, true);
5013 if (split && split != &SET_SRC (x))
5014 return split;
5016 break;
5018 case SIGN_EXTEND:
5019 inner = XEXP (SET_SRC (x), 0);
5021 /* We can't optimize if either mode is a partial integer
5022 mode as we don't know how many bits are significant
5023 in those modes. */
5024 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
5025 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5026 break;
5028 pos = 0;
5029 len = GET_MODE_PRECISION (GET_MODE (inner));
5030 unsignedp = 0;
5031 break;
5033 case SIGN_EXTRACT:
5034 case ZERO_EXTRACT:
5035 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5036 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5038 inner = XEXP (SET_SRC (x), 0);
5039 len = INTVAL (XEXP (SET_SRC (x), 1));
5040 pos = INTVAL (XEXP (SET_SRC (x), 2));
5042 if (BITS_BIG_ENDIAN)
5043 pos = GET_MODE_PRECISION (GET_MODE (inner)) - len - pos;
5044 unsignedp = (code == ZERO_EXTRACT);
5046 break;
5048 default:
5049 break;
5052 if (len && pos >= 0
5053 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner)))
5055 machine_mode mode = GET_MODE (SET_SRC (x));
5057 /* For unsigned, we have a choice of a shift followed by an
5058 AND or two shifts. Use two shifts for field sizes where the
5059 constant might be too large. We assume here that we can
5060 always at least get 8-bit constants in an AND insn, which is
5061 true for every current RISC. */
5063 if (unsignedp && len <= 8)
5065 unsigned HOST_WIDE_INT mask
5066 = (HOST_WIDE_INT_1U << len) - 1;
5067 SUBST (SET_SRC (x),
5068 gen_rtx_AND (mode,
5069 gen_rtx_LSHIFTRT
5070 (mode, gen_lowpart (mode, inner),
5071 GEN_INT (pos)),
5072 gen_int_mode (mask, mode)));
5074 split = find_split_point (&SET_SRC (x), insn, true);
5075 if (split && split != &SET_SRC (x))
5076 return split;
5078 else
5080 SUBST (SET_SRC (x),
5081 gen_rtx_fmt_ee
5082 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5083 gen_rtx_ASHIFT (mode,
5084 gen_lowpart (mode, inner),
5085 GEN_INT (GET_MODE_PRECISION (mode)
5086 - len - pos)),
5087 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5089 split = find_split_point (&SET_SRC (x), insn, true);
5090 if (split && split != &SET_SRC (x))
5091 return split;
5095 /* See if this is a simple operation with a constant as the second
5096 operand. It might be that this constant is out of range and hence
5097 could be used as a split point. */
5098 if (BINARY_P (SET_SRC (x))
5099 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5100 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5101 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5102 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5103 return &XEXP (SET_SRC (x), 1);
5105 /* Finally, see if this is a simple operation with its first operand
5106 not in a register. The operation might require this operand in a
5107 register, so return it as a split point. We can always do this
5108 because if the first operand were another operation, we would have
5109 already found it as a split point. */
5110 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5111 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5112 return &XEXP (SET_SRC (x), 0);
5114 return 0;
5116 case AND:
5117 case IOR:
5118 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5119 it is better to write this as (not (ior A B)) so we can split it.
5120 Similarly for IOR. */
5121 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5123 SUBST (*loc,
5124 gen_rtx_NOT (GET_MODE (x),
5125 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5126 GET_MODE (x),
5127 XEXP (XEXP (x, 0), 0),
5128 XEXP (XEXP (x, 1), 0))));
5129 return find_split_point (loc, insn, set_src);
5132 /* Many RISC machines have a large set of logical insns. If the
5133 second operand is a NOT, put it first so we will try to split the
5134 other operand first. */
5135 if (GET_CODE (XEXP (x, 1)) == NOT)
5137 rtx tem = XEXP (x, 0);
5138 SUBST (XEXP (x, 0), XEXP (x, 1));
5139 SUBST (XEXP (x, 1), tem);
5141 break;
5143 case PLUS:
5144 case MINUS:
5145 /* Canonicalization can produce (minus A (mult B C)), where C is a
5146 constant. It may be better to try splitting (plus (mult B -C) A)
5147 instead if this isn't a multiply by a power of two. */
5148 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5149 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5150 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5152 machine_mode mode = GET_MODE (x);
5153 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5154 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5155 SUBST (*loc, gen_rtx_PLUS (mode,
5156 gen_rtx_MULT (mode,
5157 XEXP (XEXP (x, 1), 0),
5158 gen_int_mode (other_int,
5159 mode)),
5160 XEXP (x, 0)));
5161 return find_split_point (loc, insn, set_src);
5164 /* Split at a multiply-accumulate instruction. However if this is
5165 the SET_SRC, we likely do not have such an instruction and it's
5166 worthless to try this split. */
5167 if (!set_src
5168 && (GET_CODE (XEXP (x, 0)) == MULT
5169 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5170 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5171 return loc;
5173 default:
5174 break;
5177 /* Otherwise, select our actions depending on our rtx class. */
5178 switch (GET_RTX_CLASS (code))
5180 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5181 case RTX_TERNARY:
5182 split = find_split_point (&XEXP (x, 2), insn, false);
5183 if (split)
5184 return split;
5185 /* fall through */
5186 case RTX_BIN_ARITH:
5187 case RTX_COMM_ARITH:
5188 case RTX_COMPARE:
5189 case RTX_COMM_COMPARE:
5190 split = find_split_point (&XEXP (x, 1), insn, false);
5191 if (split)
5192 return split;
5193 /* fall through */
5194 case RTX_UNARY:
5195 /* Some machines have (and (shift ...) ...) insns. If X is not
5196 an AND, but XEXP (X, 0) is, use it as our split point. */
5197 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5198 return &XEXP (x, 0);
5200 split = find_split_point (&XEXP (x, 0), insn, false);
5201 if (split)
5202 return split;
5203 return loc;
5205 default:
5206 /* Otherwise, we don't have a split point. */
5207 return 0;
5211 /* Throughout X, replace FROM with TO, and return the result.
5212 The result is TO if X is FROM;
5213 otherwise the result is X, but its contents may have been modified.
5214 If they were modified, a record was made in undobuf so that
5215 undo_all will (among other things) return X to its original state.
5217 If the number of changes necessary is too much to record to undo,
5218 the excess changes are not made, so the result is invalid.
5219 The changes already made can still be undone.
5220 undobuf.num_undo is incremented for such changes, so by testing that
5221 the caller can tell whether the result is valid.
5223 `n_occurrences' is incremented each time FROM is replaced.
5225 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5227 IN_COND is nonzero if we are at the top level of a condition.
5229 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5230 by copying if `n_occurrences' is nonzero. */
5232 static rtx
5233 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5235 enum rtx_code code = GET_CODE (x);
5236 machine_mode op0_mode = VOIDmode;
5237 const char *fmt;
5238 int len, i;
5239 rtx new_rtx;
5241 /* Two expressions are equal if they are identical copies of a shared
5242 RTX or if they are both registers with the same register number
5243 and mode. */
5245 #define COMBINE_RTX_EQUAL_P(X,Y) \
5246 ((X) == (Y) \
5247 || (REG_P (X) && REG_P (Y) \
5248 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5250 /* Do not substitute into clobbers of regs -- this will never result in
5251 valid RTL. */
5252 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5253 return x;
5255 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5257 n_occurrences++;
5258 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5261 /* If X and FROM are the same register but different modes, they
5262 will not have been seen as equal above. However, the log links code
5263 will make a LOG_LINKS entry for that case. If we do nothing, we
5264 will try to rerecognize our original insn and, when it succeeds,
5265 we will delete the feeding insn, which is incorrect.
5267 So force this insn not to match in this (rare) case. */
5268 if (! in_dest && code == REG && REG_P (from)
5269 && reg_overlap_mentioned_p (x, from))
5270 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5272 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5273 of which may contain things that can be combined. */
5274 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5275 return x;
5277 /* It is possible to have a subexpression appear twice in the insn.
5278 Suppose that FROM is a register that appears within TO.
5279 Then, after that subexpression has been scanned once by `subst',
5280 the second time it is scanned, TO may be found. If we were
5281 to scan TO here, we would find FROM within it and create a
5282 self-referent rtl structure which is completely wrong. */
5283 if (COMBINE_RTX_EQUAL_P (x, to))
5284 return to;
5286 /* Parallel asm_operands need special attention because all of the
5287 inputs are shared across the arms. Furthermore, unsharing the
5288 rtl results in recognition failures. Failure to handle this case
5289 specially can result in circular rtl.
5291 Solve this by doing a normal pass across the first entry of the
5292 parallel, and only processing the SET_DESTs of the subsequent
5293 entries. Ug. */
5295 if (code == PARALLEL
5296 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5297 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5299 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5301 /* If this substitution failed, this whole thing fails. */
5302 if (GET_CODE (new_rtx) == CLOBBER
5303 && XEXP (new_rtx, 0) == const0_rtx)
5304 return new_rtx;
5306 SUBST (XVECEXP (x, 0, 0), new_rtx);
5308 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5310 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5312 if (!REG_P (dest)
5313 && GET_CODE (dest) != CC0
5314 && GET_CODE (dest) != PC)
5316 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5318 /* If this substitution failed, this whole thing fails. */
5319 if (GET_CODE (new_rtx) == CLOBBER
5320 && XEXP (new_rtx, 0) == const0_rtx)
5321 return new_rtx;
5323 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5327 else
5329 len = GET_RTX_LENGTH (code);
5330 fmt = GET_RTX_FORMAT (code);
5332 /* We don't need to process a SET_DEST that is a register, CC0,
5333 or PC, so set up to skip this common case. All other cases
5334 where we want to suppress replacing something inside a
5335 SET_SRC are handled via the IN_DEST operand. */
5336 if (code == SET
5337 && (REG_P (SET_DEST (x))
5338 || GET_CODE (SET_DEST (x)) == CC0
5339 || GET_CODE (SET_DEST (x)) == PC))
5340 fmt = "ie";
5342 /* Trying to simplify the operands of a widening MULT is not likely
5343 to create RTL matching a machine insn. */
5344 if (code == MULT
5345 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5346 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5347 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5348 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5349 && REG_P (XEXP (XEXP (x, 0), 0))
5350 && REG_P (XEXP (XEXP (x, 1), 0))
5351 && from == to)
5352 return x;
5355 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5356 constant. */
5357 if (fmt[0] == 'e')
5358 op0_mode = GET_MODE (XEXP (x, 0));
5360 for (i = 0; i < len; i++)
5362 if (fmt[i] == 'E')
5364 int j;
5365 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5367 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5369 new_rtx = (unique_copy && n_occurrences
5370 ? copy_rtx (to) : to);
5371 n_occurrences++;
5373 else
5375 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5376 unique_copy);
5378 /* If this substitution failed, this whole thing
5379 fails. */
5380 if (GET_CODE (new_rtx) == CLOBBER
5381 && XEXP (new_rtx, 0) == const0_rtx)
5382 return new_rtx;
5385 SUBST (XVECEXP (x, i, j), new_rtx);
5388 else if (fmt[i] == 'e')
5390 /* If this is a register being set, ignore it. */
5391 new_rtx = XEXP (x, i);
5392 if (in_dest
5393 && i == 0
5394 && (((code == SUBREG || code == ZERO_EXTRACT)
5395 && REG_P (new_rtx))
5396 || code == STRICT_LOW_PART))
5399 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5401 /* In general, don't install a subreg involving two
5402 modes not tieable. It can worsen register
5403 allocation, and can even make invalid reload
5404 insns, since the reg inside may need to be copied
5405 from in the outside mode, and that may be invalid
5406 if it is an fp reg copied in integer mode.
5408 We allow two exceptions to this: It is valid if
5409 it is inside another SUBREG and the mode of that
5410 SUBREG and the mode of the inside of TO is
5411 tieable and it is valid if X is a SET that copies
5412 FROM to CC0. */
5414 if (GET_CODE (to) == SUBREG
5415 && ! MODES_TIEABLE_P (GET_MODE (to),
5416 GET_MODE (SUBREG_REG (to)))
5417 && ! (code == SUBREG
5418 && MODES_TIEABLE_P (GET_MODE (x),
5419 GET_MODE (SUBREG_REG (to))))
5420 && (!HAVE_cc0
5421 || (! (code == SET
5422 && i == 1
5423 && XEXP (x, 0) == cc0_rtx))))
5424 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5426 if (code == SUBREG
5427 && REG_P (to)
5428 && REGNO (to) < FIRST_PSEUDO_REGISTER
5429 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5430 SUBREG_BYTE (x),
5431 GET_MODE (x)) < 0)
5432 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5434 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5435 n_occurrences++;
5437 else
5438 /* If we are in a SET_DEST, suppress most cases unless we
5439 have gone inside a MEM, in which case we want to
5440 simplify the address. We assume here that things that
5441 are actually part of the destination have their inner
5442 parts in the first expression. This is true for SUBREG,
5443 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5444 things aside from REG and MEM that should appear in a
5445 SET_DEST. */
5446 new_rtx = subst (XEXP (x, i), from, to,
5447 (((in_dest
5448 && (code == SUBREG || code == STRICT_LOW_PART
5449 || code == ZERO_EXTRACT))
5450 || code == SET)
5451 && i == 0),
5452 code == IF_THEN_ELSE && i == 0,
5453 unique_copy);
5455 /* If we found that we will have to reject this combination,
5456 indicate that by returning the CLOBBER ourselves, rather than
5457 an expression containing it. This will speed things up as
5458 well as prevent accidents where two CLOBBERs are considered
5459 to be equal, thus producing an incorrect simplification. */
5461 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5462 return new_rtx;
5464 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5466 machine_mode mode = GET_MODE (x);
5468 x = simplify_subreg (GET_MODE (x), new_rtx,
5469 GET_MODE (SUBREG_REG (x)),
5470 SUBREG_BYTE (x));
5471 if (! x)
5472 x = gen_rtx_CLOBBER (mode, const0_rtx);
5474 else if (CONST_SCALAR_INT_P (new_rtx)
5475 && GET_CODE (x) == ZERO_EXTEND)
5477 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5478 new_rtx, GET_MODE (XEXP (x, 0)));
5479 gcc_assert (x);
5481 else
5482 SUBST (XEXP (x, i), new_rtx);
5487 /* Check if we are loading something from the constant pool via float
5488 extension; in this case we would undo compress_float_constant
5489 optimization and degenerate constant load to an immediate value. */
5490 if (GET_CODE (x) == FLOAT_EXTEND
5491 && MEM_P (XEXP (x, 0))
5492 && MEM_READONLY_P (XEXP (x, 0)))
5494 rtx tmp = avoid_constant_pool_reference (x);
5495 if (x != tmp)
5496 return x;
5499 /* Try to simplify X. If the simplification changed the code, it is likely
5500 that further simplification will help, so loop, but limit the number
5501 of repetitions that will be performed. */
5503 for (i = 0; i < 4; i++)
5505 /* If X is sufficiently simple, don't bother trying to do anything
5506 with it. */
5507 if (code != CONST_INT && code != REG && code != CLOBBER)
5508 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5510 if (GET_CODE (x) == code)
5511 break;
5513 code = GET_CODE (x);
5515 /* We no longer know the original mode of operand 0 since we
5516 have changed the form of X) */
5517 op0_mode = VOIDmode;
5520 return x;
5523 /* If X is a commutative operation whose operands are not in the canonical
5524 order, use substitutions to swap them. */
5526 static void
5527 maybe_swap_commutative_operands (rtx x)
5529 if (COMMUTATIVE_ARITH_P (x)
5530 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5532 rtx temp = XEXP (x, 0);
5533 SUBST (XEXP (x, 0), XEXP (x, 1));
5534 SUBST (XEXP (x, 1), temp);
5538 /* Simplify X, a piece of RTL. We just operate on the expression at the
5539 outer level; call `subst' to simplify recursively. Return the new
5540 expression.
5542 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5543 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5544 of a condition. */
5546 static rtx
5547 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5548 int in_cond)
5550 enum rtx_code code = GET_CODE (x);
5551 machine_mode mode = GET_MODE (x);
5552 rtx temp;
5553 int i;
5555 /* If this is a commutative operation, put a constant last and a complex
5556 expression first. We don't need to do this for comparisons here. */
5557 maybe_swap_commutative_operands (x);
5559 /* Try to fold this expression in case we have constants that weren't
5560 present before. */
5561 temp = 0;
5562 switch (GET_RTX_CLASS (code))
5564 case RTX_UNARY:
5565 if (op0_mode == VOIDmode)
5566 op0_mode = GET_MODE (XEXP (x, 0));
5567 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5568 break;
5569 case RTX_COMPARE:
5570 case RTX_COMM_COMPARE:
5572 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5573 if (cmp_mode == VOIDmode)
5575 cmp_mode = GET_MODE (XEXP (x, 1));
5576 if (cmp_mode == VOIDmode)
5577 cmp_mode = op0_mode;
5579 temp = simplify_relational_operation (code, mode, cmp_mode,
5580 XEXP (x, 0), XEXP (x, 1));
5582 break;
5583 case RTX_COMM_ARITH:
5584 case RTX_BIN_ARITH:
5585 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5586 break;
5587 case RTX_BITFIELD_OPS:
5588 case RTX_TERNARY:
5589 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5590 XEXP (x, 1), XEXP (x, 2));
5591 break;
5592 default:
5593 break;
5596 if (temp)
5598 x = temp;
5599 code = GET_CODE (temp);
5600 op0_mode = VOIDmode;
5601 mode = GET_MODE (temp);
5604 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5605 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5606 things. Check for cases where both arms are testing the same
5607 condition.
5609 Don't do anything if all operands are very simple. */
5611 if ((BINARY_P (x)
5612 && ((!OBJECT_P (XEXP (x, 0))
5613 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5614 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5615 || (!OBJECT_P (XEXP (x, 1))
5616 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5617 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5618 || (UNARY_P (x)
5619 && (!OBJECT_P (XEXP (x, 0))
5620 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5621 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5623 rtx cond, true_rtx, false_rtx;
5625 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5626 if (cond != 0
5627 /* If everything is a comparison, what we have is highly unlikely
5628 to be simpler, so don't use it. */
5629 && ! (COMPARISON_P (x)
5630 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5632 rtx cop1 = const0_rtx;
5633 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5635 if (cond_code == NE && COMPARISON_P (cond))
5636 return x;
5638 /* Simplify the alternative arms; this may collapse the true and
5639 false arms to store-flag values. Be careful to use copy_rtx
5640 here since true_rtx or false_rtx might share RTL with x as a
5641 result of the if_then_else_cond call above. */
5642 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5643 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5645 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5646 is unlikely to be simpler. */
5647 if (general_operand (true_rtx, VOIDmode)
5648 && general_operand (false_rtx, VOIDmode))
5650 enum rtx_code reversed;
5652 /* Restarting if we generate a store-flag expression will cause
5653 us to loop. Just drop through in this case. */
5655 /* If the result values are STORE_FLAG_VALUE and zero, we can
5656 just make the comparison operation. */
5657 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5658 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5659 cond, cop1);
5660 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5661 && ((reversed = reversed_comparison_code_parts
5662 (cond_code, cond, cop1, NULL))
5663 != UNKNOWN))
5664 x = simplify_gen_relational (reversed, mode, VOIDmode,
5665 cond, cop1);
5667 /* Likewise, we can make the negate of a comparison operation
5668 if the result values are - STORE_FLAG_VALUE and zero. */
5669 else if (CONST_INT_P (true_rtx)
5670 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5671 && false_rtx == const0_rtx)
5672 x = simplify_gen_unary (NEG, mode,
5673 simplify_gen_relational (cond_code,
5674 mode, VOIDmode,
5675 cond, cop1),
5676 mode);
5677 else if (CONST_INT_P (false_rtx)
5678 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5679 && true_rtx == const0_rtx
5680 && ((reversed = reversed_comparison_code_parts
5681 (cond_code, cond, cop1, NULL))
5682 != UNKNOWN))
5683 x = simplify_gen_unary (NEG, mode,
5684 simplify_gen_relational (reversed,
5685 mode, VOIDmode,
5686 cond, cop1),
5687 mode);
5688 else
5689 return gen_rtx_IF_THEN_ELSE (mode,
5690 simplify_gen_relational (cond_code,
5691 mode,
5692 VOIDmode,
5693 cond,
5694 cop1),
5695 true_rtx, false_rtx);
5697 code = GET_CODE (x);
5698 op0_mode = VOIDmode;
5703 /* First see if we can apply the inverse distributive law. */
5704 if (code == PLUS || code == MINUS
5705 || code == AND || code == IOR || code == XOR)
5707 x = apply_distributive_law (x);
5708 code = GET_CODE (x);
5709 op0_mode = VOIDmode;
5712 /* If CODE is an associative operation not otherwise handled, see if we
5713 can associate some operands. This can win if they are constants or
5714 if they are logically related (i.e. (a & b) & a). */
5715 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5716 || code == AND || code == IOR || code == XOR
5717 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5718 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5719 || (flag_associative_math && FLOAT_MODE_P (mode))))
5721 if (GET_CODE (XEXP (x, 0)) == code)
5723 rtx other = XEXP (XEXP (x, 0), 0);
5724 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5725 rtx inner_op1 = XEXP (x, 1);
5726 rtx inner;
5728 /* Make sure we pass the constant operand if any as the second
5729 one if this is a commutative operation. */
5730 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5731 std::swap (inner_op0, inner_op1);
5732 inner = simplify_binary_operation (code == MINUS ? PLUS
5733 : code == DIV ? MULT
5734 : code,
5735 mode, inner_op0, inner_op1);
5737 /* For commutative operations, try the other pair if that one
5738 didn't simplify. */
5739 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5741 other = XEXP (XEXP (x, 0), 1);
5742 inner = simplify_binary_operation (code, mode,
5743 XEXP (XEXP (x, 0), 0),
5744 XEXP (x, 1));
5747 if (inner)
5748 return simplify_gen_binary (code, mode, other, inner);
5752 /* A little bit of algebraic simplification here. */
5753 switch (code)
5755 case MEM:
5756 /* Ensure that our address has any ASHIFTs converted to MULT in case
5757 address-recognizing predicates are called later. */
5758 temp = make_compound_operation (XEXP (x, 0), MEM);
5759 SUBST (XEXP (x, 0), temp);
5760 break;
5762 case SUBREG:
5763 if (op0_mode == VOIDmode)
5764 op0_mode = GET_MODE (SUBREG_REG (x));
5766 /* See if this can be moved to simplify_subreg. */
5767 if (CONSTANT_P (SUBREG_REG (x))
5768 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5769 /* Don't call gen_lowpart if the inner mode
5770 is VOIDmode and we cannot simplify it, as SUBREG without
5771 inner mode is invalid. */
5772 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5773 || gen_lowpart_common (mode, SUBREG_REG (x))))
5774 return gen_lowpart (mode, SUBREG_REG (x));
5776 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5777 break;
5779 rtx temp;
5780 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5781 SUBREG_BYTE (x));
5782 if (temp)
5783 return temp;
5785 /* If op is known to have all lower bits zero, the result is zero. */
5786 if (!in_dest
5787 && SCALAR_INT_MODE_P (mode)
5788 && SCALAR_INT_MODE_P (op0_mode)
5789 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (op0_mode)
5790 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5791 && HWI_COMPUTABLE_MODE_P (op0_mode)
5792 && (nonzero_bits (SUBREG_REG (x), op0_mode)
5793 & GET_MODE_MASK (mode)) == 0)
5794 return CONST0_RTX (mode);
5797 /* Don't change the mode of the MEM if that would change the meaning
5798 of the address. */
5799 if (MEM_P (SUBREG_REG (x))
5800 && (MEM_VOLATILE_P (SUBREG_REG (x))
5801 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5802 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5803 return gen_rtx_CLOBBER (mode, const0_rtx);
5805 /* Note that we cannot do any narrowing for non-constants since
5806 we might have been counting on using the fact that some bits were
5807 zero. We now do this in the SET. */
5809 break;
5811 case NEG:
5812 temp = expand_compound_operation (XEXP (x, 0));
5814 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5815 replaced by (lshiftrt X C). This will convert
5816 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5818 if (GET_CODE (temp) == ASHIFTRT
5819 && CONST_INT_P (XEXP (temp, 1))
5820 && INTVAL (XEXP (temp, 1)) == GET_MODE_PRECISION (mode) - 1)
5821 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5822 INTVAL (XEXP (temp, 1)));
5824 /* If X has only a single bit that might be nonzero, say, bit I, convert
5825 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5826 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5827 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5828 or a SUBREG of one since we'd be making the expression more
5829 complex if it was just a register. */
5831 if (!REG_P (temp)
5832 && ! (GET_CODE (temp) == SUBREG
5833 && REG_P (SUBREG_REG (temp)))
5834 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
5836 rtx temp1 = simplify_shift_const
5837 (NULL_RTX, ASHIFTRT, mode,
5838 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
5839 GET_MODE_PRECISION (mode) - 1 - i),
5840 GET_MODE_PRECISION (mode) - 1 - i);
5842 /* If all we did was surround TEMP with the two shifts, we
5843 haven't improved anything, so don't use it. Otherwise,
5844 we are better off with TEMP1. */
5845 if (GET_CODE (temp1) != ASHIFTRT
5846 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5847 || XEXP (XEXP (temp1, 0), 0) != temp)
5848 return temp1;
5850 break;
5852 case TRUNCATE:
5853 /* We can't handle truncation to a partial integer mode here
5854 because we don't know the real bitsize of the partial
5855 integer mode. */
5856 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5857 break;
5859 if (HWI_COMPUTABLE_MODE_P (mode))
5860 SUBST (XEXP (x, 0),
5861 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5862 GET_MODE_MASK (mode), 0));
5864 /* We can truncate a constant value and return it. */
5865 if (CONST_INT_P (XEXP (x, 0)))
5866 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5868 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5869 whose value is a comparison can be replaced with a subreg if
5870 STORE_FLAG_VALUE permits. */
5871 if (HWI_COMPUTABLE_MODE_P (mode)
5872 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5873 && (temp = get_last_value (XEXP (x, 0)))
5874 && COMPARISON_P (temp))
5875 return gen_lowpart (mode, XEXP (x, 0));
5876 break;
5878 case CONST:
5879 /* (const (const X)) can become (const X). Do it this way rather than
5880 returning the inner CONST since CONST can be shared with a
5881 REG_EQUAL note. */
5882 if (GET_CODE (XEXP (x, 0)) == CONST)
5883 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5884 break;
5886 case LO_SUM:
5887 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5888 can add in an offset. find_split_point will split this address up
5889 again if it doesn't match. */
5890 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5891 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5892 return XEXP (x, 1);
5893 break;
5895 case PLUS:
5896 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5897 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5898 bit-field and can be replaced by either a sign_extend or a
5899 sign_extract. The `and' may be a zero_extend and the two
5900 <c>, -<c> constants may be reversed. */
5901 if (GET_CODE (XEXP (x, 0)) == XOR
5902 && CONST_INT_P (XEXP (x, 1))
5903 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5904 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5905 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5906 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5907 && HWI_COMPUTABLE_MODE_P (mode)
5908 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5909 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5910 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5911 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5912 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5913 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5914 == (unsigned int) i + 1))))
5915 return simplify_shift_const
5916 (NULL_RTX, ASHIFTRT, mode,
5917 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5918 XEXP (XEXP (XEXP (x, 0), 0), 0),
5919 GET_MODE_PRECISION (mode) - (i + 1)),
5920 GET_MODE_PRECISION (mode) - (i + 1));
5922 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5923 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5924 the bitsize of the mode - 1. This allows simplification of
5925 "a = (b & 8) == 0;" */
5926 if (XEXP (x, 1) == constm1_rtx
5927 && !REG_P (XEXP (x, 0))
5928 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5929 && REG_P (SUBREG_REG (XEXP (x, 0))))
5930 && nonzero_bits (XEXP (x, 0), mode) == 1)
5931 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
5932 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5933 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
5934 GET_MODE_PRECISION (mode) - 1),
5935 GET_MODE_PRECISION (mode) - 1);
5937 /* If we are adding two things that have no bits in common, convert
5938 the addition into an IOR. This will often be further simplified,
5939 for example in cases like ((a & 1) + (a & 2)), which can
5940 become a & 3. */
5942 if (HWI_COMPUTABLE_MODE_P (mode)
5943 && (nonzero_bits (XEXP (x, 0), mode)
5944 & nonzero_bits (XEXP (x, 1), mode)) == 0)
5946 /* Try to simplify the expression further. */
5947 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
5948 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
5950 /* If we could, great. If not, do not go ahead with the IOR
5951 replacement, since PLUS appears in many special purpose
5952 address arithmetic instructions. */
5953 if (GET_CODE (temp) != CLOBBER
5954 && (GET_CODE (temp) != IOR
5955 || ((XEXP (temp, 0) != XEXP (x, 0)
5956 || XEXP (temp, 1) != XEXP (x, 1))
5957 && (XEXP (temp, 0) != XEXP (x, 1)
5958 || XEXP (temp, 1) != XEXP (x, 0)))))
5959 return temp;
5962 /* Canonicalize x + x into x << 1. */
5963 if (GET_MODE_CLASS (mode) == MODE_INT
5964 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
5965 && !side_effects_p (XEXP (x, 0)))
5966 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
5968 break;
5970 case MINUS:
5971 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5972 (and <foo> (const_int pow2-1)) */
5973 if (GET_CODE (XEXP (x, 1)) == AND
5974 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
5975 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
5976 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
5977 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5978 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5979 break;
5981 case MULT:
5982 /* If we have (mult (plus A B) C), apply the distributive law and then
5983 the inverse distributive law to see if things simplify. This
5984 occurs mostly in addresses, often when unrolling loops. */
5986 if (GET_CODE (XEXP (x, 0)) == PLUS)
5988 rtx result = distribute_and_simplify_rtx (x, 0);
5989 if (result)
5990 return result;
5993 /* Try simplify a*(b/c) as (a*b)/c. */
5994 if (FLOAT_MODE_P (mode) && flag_associative_math
5995 && GET_CODE (XEXP (x, 0)) == DIV)
5997 rtx tem = simplify_binary_operation (MULT, mode,
5998 XEXP (XEXP (x, 0), 0),
5999 XEXP (x, 1));
6000 if (tem)
6001 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6003 break;
6005 case UDIV:
6006 /* If this is a divide by a power of two, treat it as a shift if
6007 its first operand is a shift. */
6008 if (CONST_INT_P (XEXP (x, 1))
6009 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6010 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6011 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6012 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6013 || GET_CODE (XEXP (x, 0)) == ROTATE
6014 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6015 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
6016 break;
6018 case EQ: case NE:
6019 case GT: case GTU: case GE: case GEU:
6020 case LT: case LTU: case LE: case LEU:
6021 case UNEQ: case LTGT:
6022 case UNGT: case UNGE:
6023 case UNLT: case UNLE:
6024 case UNORDERED: case ORDERED:
6025 /* If the first operand is a condition code, we can't do anything
6026 with it. */
6027 if (GET_CODE (XEXP (x, 0)) == COMPARE
6028 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6029 && ! CC0_P (XEXP (x, 0))))
6031 rtx op0 = XEXP (x, 0);
6032 rtx op1 = XEXP (x, 1);
6033 enum rtx_code new_code;
6035 if (GET_CODE (op0) == COMPARE)
6036 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6038 /* Simplify our comparison, if possible. */
6039 new_code = simplify_comparison (code, &op0, &op1);
6041 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6042 if only the low-order bit is possibly nonzero in X (such as when
6043 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6044 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6045 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6046 (plus X 1).
6048 Remove any ZERO_EXTRACT we made when thinking this was a
6049 comparison. It may now be simpler to use, e.g., an AND. If a
6050 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6051 the call to make_compound_operation in the SET case.
6053 Don't apply these optimizations if the caller would
6054 prefer a comparison rather than a value.
6055 E.g., for the condition in an IF_THEN_ELSE most targets need
6056 an explicit comparison. */
6058 if (in_cond)
6061 else if (STORE_FLAG_VALUE == 1
6062 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6063 && op1 == const0_rtx
6064 && mode == GET_MODE (op0)
6065 && nonzero_bits (op0, mode) == 1)
6066 return gen_lowpart (mode,
6067 expand_compound_operation (op0));
6069 else if (STORE_FLAG_VALUE == 1
6070 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6071 && op1 == const0_rtx
6072 && mode == GET_MODE (op0)
6073 && (num_sign_bit_copies (op0, mode)
6074 == GET_MODE_PRECISION (mode)))
6076 op0 = expand_compound_operation (op0);
6077 return simplify_gen_unary (NEG, mode,
6078 gen_lowpart (mode, op0),
6079 mode);
6082 else if (STORE_FLAG_VALUE == 1
6083 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6084 && op1 == const0_rtx
6085 && mode == GET_MODE (op0)
6086 && nonzero_bits (op0, mode) == 1)
6088 op0 = expand_compound_operation (op0);
6089 return simplify_gen_binary (XOR, mode,
6090 gen_lowpart (mode, op0),
6091 const1_rtx);
6094 else if (STORE_FLAG_VALUE == 1
6095 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6096 && op1 == const0_rtx
6097 && mode == GET_MODE (op0)
6098 && (num_sign_bit_copies (op0, mode)
6099 == GET_MODE_PRECISION (mode)))
6101 op0 = expand_compound_operation (op0);
6102 return plus_constant (mode, gen_lowpart (mode, op0), 1);
6105 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6106 those above. */
6107 if (in_cond)
6110 else if (STORE_FLAG_VALUE == -1
6111 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6112 && op1 == const0_rtx
6113 && mode == GET_MODE (op0)
6114 && (num_sign_bit_copies (op0, mode)
6115 == GET_MODE_PRECISION (mode)))
6116 return gen_lowpart (mode,
6117 expand_compound_operation (op0));
6119 else if (STORE_FLAG_VALUE == -1
6120 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6121 && op1 == const0_rtx
6122 && mode == GET_MODE (op0)
6123 && nonzero_bits (op0, mode) == 1)
6125 op0 = expand_compound_operation (op0);
6126 return simplify_gen_unary (NEG, mode,
6127 gen_lowpart (mode, op0),
6128 mode);
6131 else if (STORE_FLAG_VALUE == -1
6132 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6133 && op1 == const0_rtx
6134 && mode == GET_MODE (op0)
6135 && (num_sign_bit_copies (op0, mode)
6136 == GET_MODE_PRECISION (mode)))
6138 op0 = expand_compound_operation (op0);
6139 return simplify_gen_unary (NOT, mode,
6140 gen_lowpart (mode, op0),
6141 mode);
6144 /* If X is 0/1, (eq X 0) is X-1. */
6145 else if (STORE_FLAG_VALUE == -1
6146 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
6147 && op1 == const0_rtx
6148 && mode == GET_MODE (op0)
6149 && nonzero_bits (op0, mode) == 1)
6151 op0 = expand_compound_operation (op0);
6152 return plus_constant (mode, gen_lowpart (mode, op0), -1);
6155 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6156 one bit that might be nonzero, we can convert (ne x 0) to
6157 (ashift x c) where C puts the bit in the sign bit. Remove any
6158 AND with STORE_FLAG_VALUE when we are done, since we are only
6159 going to test the sign bit. */
6160 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
6161 && HWI_COMPUTABLE_MODE_P (mode)
6162 && val_signbit_p (mode, STORE_FLAG_VALUE)
6163 && op1 == const0_rtx
6164 && mode == GET_MODE (op0)
6165 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
6167 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6168 expand_compound_operation (op0),
6169 GET_MODE_PRECISION (mode) - 1 - i);
6170 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6171 return XEXP (x, 0);
6172 else
6173 return x;
6176 /* If the code changed, return a whole new comparison.
6177 We also need to avoid using SUBST in cases where
6178 simplify_comparison has widened a comparison with a CONST_INT,
6179 since in that case the wider CONST_INT may fail the sanity
6180 checks in do_SUBST. */
6181 if (new_code != code
6182 || (CONST_INT_P (op1)
6183 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6184 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6185 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6187 /* Otherwise, keep this operation, but maybe change its operands.
6188 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6189 SUBST (XEXP (x, 0), op0);
6190 SUBST (XEXP (x, 1), op1);
6192 break;
6194 case IF_THEN_ELSE:
6195 return simplify_if_then_else (x);
6197 case ZERO_EXTRACT:
6198 case SIGN_EXTRACT:
6199 case ZERO_EXTEND:
6200 case SIGN_EXTEND:
6201 /* If we are processing SET_DEST, we are done. */
6202 if (in_dest)
6203 return x;
6205 return expand_compound_operation (x);
6207 case SET:
6208 return simplify_set (x);
6210 case AND:
6211 case IOR:
6212 return simplify_logical (x);
6214 case ASHIFT:
6215 case LSHIFTRT:
6216 case ASHIFTRT:
6217 case ROTATE:
6218 case ROTATERT:
6219 /* If this is a shift by a constant amount, simplify it. */
6220 if (CONST_INT_P (XEXP (x, 1)))
6221 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6222 INTVAL (XEXP (x, 1)));
6224 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6225 SUBST (XEXP (x, 1),
6226 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6227 (HOST_WIDE_INT_1U
6228 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
6229 - 1,
6230 0));
6231 break;
6233 default:
6234 break;
6237 return x;
6240 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6242 static rtx
6243 simplify_if_then_else (rtx x)
6245 machine_mode mode = GET_MODE (x);
6246 rtx cond = XEXP (x, 0);
6247 rtx true_rtx = XEXP (x, 1);
6248 rtx false_rtx = XEXP (x, 2);
6249 enum rtx_code true_code = GET_CODE (cond);
6250 int comparison_p = COMPARISON_P (cond);
6251 rtx temp;
6252 int i;
6253 enum rtx_code false_code;
6254 rtx reversed;
6256 /* Simplify storing of the truth value. */
6257 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6258 return simplify_gen_relational (true_code, mode, VOIDmode,
6259 XEXP (cond, 0), XEXP (cond, 1));
6261 /* Also when the truth value has to be reversed. */
6262 if (comparison_p
6263 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6264 && (reversed = reversed_comparison (cond, mode)))
6265 return reversed;
6267 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6268 in it is being compared against certain values. Get the true and false
6269 comparisons and see if that says anything about the value of each arm. */
6271 if (comparison_p
6272 && ((false_code = reversed_comparison_code (cond, NULL))
6273 != UNKNOWN)
6274 && REG_P (XEXP (cond, 0)))
6276 HOST_WIDE_INT nzb;
6277 rtx from = XEXP (cond, 0);
6278 rtx true_val = XEXP (cond, 1);
6279 rtx false_val = true_val;
6280 int swapped = 0;
6282 /* If FALSE_CODE is EQ, swap the codes and arms. */
6284 if (false_code == EQ)
6286 swapped = 1, true_code = EQ, false_code = NE;
6287 std::swap (true_rtx, false_rtx);
6290 /* If we are comparing against zero and the expression being tested has
6291 only a single bit that might be nonzero, that is its value when it is
6292 not equal to zero. Similarly if it is known to be -1 or 0. */
6294 if (true_code == EQ && true_val == const0_rtx
6295 && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from))))
6297 false_code = EQ;
6298 false_val = gen_int_mode (nzb, GET_MODE (from));
6300 else if (true_code == EQ && true_val == const0_rtx
6301 && (num_sign_bit_copies (from, GET_MODE (from))
6302 == GET_MODE_PRECISION (GET_MODE (from))))
6304 false_code = EQ;
6305 false_val = constm1_rtx;
6308 /* Now simplify an arm if we know the value of the register in the
6309 branch and it is used in the arm. Be careful due to the potential
6310 of locally-shared RTL. */
6312 if (reg_mentioned_p (from, true_rtx))
6313 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6314 from, true_val),
6315 pc_rtx, pc_rtx, 0, 0, 0);
6316 if (reg_mentioned_p (from, false_rtx))
6317 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6318 from, false_val),
6319 pc_rtx, pc_rtx, 0, 0, 0);
6321 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6322 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6324 true_rtx = XEXP (x, 1);
6325 false_rtx = XEXP (x, 2);
6326 true_code = GET_CODE (cond);
6329 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6330 reversed, do so to avoid needing two sets of patterns for
6331 subtract-and-branch insns. Similarly if we have a constant in the true
6332 arm, the false arm is the same as the first operand of the comparison, or
6333 the false arm is more complicated than the true arm. */
6335 if (comparison_p
6336 && reversed_comparison_code (cond, NULL) != UNKNOWN
6337 && (true_rtx == pc_rtx
6338 || (CONSTANT_P (true_rtx)
6339 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6340 || true_rtx == const0_rtx
6341 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6342 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6343 && !OBJECT_P (false_rtx))
6344 || reg_mentioned_p (true_rtx, false_rtx)
6345 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6347 true_code = reversed_comparison_code (cond, NULL);
6348 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6349 SUBST (XEXP (x, 1), false_rtx);
6350 SUBST (XEXP (x, 2), true_rtx);
6352 std::swap (true_rtx, false_rtx);
6353 cond = XEXP (x, 0);
6355 /* It is possible that the conditional has been simplified out. */
6356 true_code = GET_CODE (cond);
6357 comparison_p = COMPARISON_P (cond);
6360 /* If the two arms are identical, we don't need the comparison. */
6362 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6363 return true_rtx;
6365 /* Convert a == b ? b : a to "a". */
6366 if (true_code == EQ && ! side_effects_p (cond)
6367 && !HONOR_NANS (mode)
6368 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6369 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6370 return false_rtx;
6371 else if (true_code == NE && ! side_effects_p (cond)
6372 && !HONOR_NANS (mode)
6373 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6374 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6375 return true_rtx;
6377 /* Look for cases where we have (abs x) or (neg (abs X)). */
6379 if (GET_MODE_CLASS (mode) == MODE_INT
6380 && comparison_p
6381 && XEXP (cond, 1) == const0_rtx
6382 && GET_CODE (false_rtx) == NEG
6383 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6384 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6385 && ! side_effects_p (true_rtx))
6386 switch (true_code)
6388 case GT:
6389 case GE:
6390 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6391 case LT:
6392 case LE:
6393 return
6394 simplify_gen_unary (NEG, mode,
6395 simplify_gen_unary (ABS, mode, true_rtx, mode),
6396 mode);
6397 default:
6398 break;
6401 /* Look for MIN or MAX. */
6403 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6404 && comparison_p
6405 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6406 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6407 && ! side_effects_p (cond))
6408 switch (true_code)
6410 case GE:
6411 case GT:
6412 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6413 case LE:
6414 case LT:
6415 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6416 case GEU:
6417 case GTU:
6418 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6419 case LEU:
6420 case LTU:
6421 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6422 default:
6423 break;
6426 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6427 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6428 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6429 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6430 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6431 neither 1 or -1, but it isn't worth checking for. */
6433 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6434 && comparison_p
6435 && GET_MODE_CLASS (mode) == MODE_INT
6436 && ! side_effects_p (x))
6438 rtx t = make_compound_operation (true_rtx, SET);
6439 rtx f = make_compound_operation (false_rtx, SET);
6440 rtx cond_op0 = XEXP (cond, 0);
6441 rtx cond_op1 = XEXP (cond, 1);
6442 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6443 machine_mode m = mode;
6444 rtx z = 0, c1 = NULL_RTX;
6446 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6447 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6448 || GET_CODE (t) == ASHIFT
6449 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6450 && rtx_equal_p (XEXP (t, 0), f))
6451 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6453 /* If an identity-zero op is commutative, check whether there
6454 would be a match if we swapped the operands. */
6455 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6456 || GET_CODE (t) == XOR)
6457 && rtx_equal_p (XEXP (t, 1), f))
6458 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6459 else if (GET_CODE (t) == SIGN_EXTEND
6460 && (GET_CODE (XEXP (t, 0)) == PLUS
6461 || GET_CODE (XEXP (t, 0)) == MINUS
6462 || GET_CODE (XEXP (t, 0)) == IOR
6463 || GET_CODE (XEXP (t, 0)) == XOR
6464 || GET_CODE (XEXP (t, 0)) == ASHIFT
6465 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6466 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6467 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6468 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6469 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6470 && (num_sign_bit_copies (f, GET_MODE (f))
6471 > (unsigned int)
6472 (GET_MODE_PRECISION (mode)
6473 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 0))))))
6475 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6476 extend_op = SIGN_EXTEND;
6477 m = GET_MODE (XEXP (t, 0));
6479 else if (GET_CODE (t) == SIGN_EXTEND
6480 && (GET_CODE (XEXP (t, 0)) == PLUS
6481 || GET_CODE (XEXP (t, 0)) == IOR
6482 || GET_CODE (XEXP (t, 0)) == XOR)
6483 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6484 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6485 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6486 && (num_sign_bit_copies (f, GET_MODE (f))
6487 > (unsigned int)
6488 (GET_MODE_PRECISION (mode)
6489 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t, 0), 1))))))
6491 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6492 extend_op = SIGN_EXTEND;
6493 m = GET_MODE (XEXP (t, 0));
6495 else if (GET_CODE (t) == ZERO_EXTEND
6496 && (GET_CODE (XEXP (t, 0)) == PLUS
6497 || GET_CODE (XEXP (t, 0)) == MINUS
6498 || GET_CODE (XEXP (t, 0)) == IOR
6499 || GET_CODE (XEXP (t, 0)) == XOR
6500 || GET_CODE (XEXP (t, 0)) == ASHIFT
6501 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6502 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6503 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6504 && HWI_COMPUTABLE_MODE_P (mode)
6505 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6506 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6507 && ((nonzero_bits (f, GET_MODE (f))
6508 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
6509 == 0))
6511 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6512 extend_op = ZERO_EXTEND;
6513 m = GET_MODE (XEXP (t, 0));
6515 else if (GET_CODE (t) == ZERO_EXTEND
6516 && (GET_CODE (XEXP (t, 0)) == PLUS
6517 || GET_CODE (XEXP (t, 0)) == IOR
6518 || GET_CODE (XEXP (t, 0)) == XOR)
6519 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6520 && HWI_COMPUTABLE_MODE_P (mode)
6521 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6522 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6523 && ((nonzero_bits (f, GET_MODE (f))
6524 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
6525 == 0))
6527 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6528 extend_op = ZERO_EXTEND;
6529 m = GET_MODE (XEXP (t, 0));
6532 if (z)
6534 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
6535 cond_op0, cond_op1),
6536 pc_rtx, pc_rtx, 0, 0, 0);
6537 temp = simplify_gen_binary (MULT, m, temp,
6538 simplify_gen_binary (MULT, m, c1,
6539 const_true_rtx));
6540 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6541 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6543 if (extend_op != UNKNOWN)
6544 temp = simplify_gen_unary (extend_op, mode, temp, m);
6546 return temp;
6550 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6551 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6552 negation of a single bit, we can convert this operation to a shift. We
6553 can actually do this more generally, but it doesn't seem worth it. */
6555 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6556 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6557 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
6558 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6559 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
6560 == GET_MODE_PRECISION (mode))
6561 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6562 return
6563 simplify_shift_const (NULL_RTX, ASHIFT, mode,
6564 gen_lowpart (mode, XEXP (cond, 0)), i);
6566 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6567 non-zero bit in A is C1. */
6568 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6569 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6570 && INTEGRAL_MODE_P (GET_MODE (XEXP (cond, 0)))
6571 && (UINTVAL (true_rtx) & GET_MODE_MASK (mode))
6572 == nonzero_bits (XEXP (cond, 0), GET_MODE (XEXP (cond, 0)))
6573 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
6575 rtx val = XEXP (cond, 0);
6576 enum machine_mode val_mode = GET_MODE (val);
6577 if (val_mode == mode)
6578 return val;
6579 else if (GET_MODE_PRECISION (val_mode) < GET_MODE_PRECISION (mode))
6580 return simplify_gen_unary (ZERO_EXTEND, mode, val, val_mode);
6583 return x;
6586 /* Simplify X, a SET expression. Return the new expression. */
6588 static rtx
6589 simplify_set (rtx x)
6591 rtx src = SET_SRC (x);
6592 rtx dest = SET_DEST (x);
6593 machine_mode mode
6594 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6595 rtx_insn *other_insn;
6596 rtx *cc_use;
6598 /* (set (pc) (return)) gets written as (return). */
6599 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6600 return src;
6602 /* Now that we know for sure which bits of SRC we are using, see if we can
6603 simplify the expression for the object knowing that we only need the
6604 low-order bits. */
6606 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6608 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6609 SUBST (SET_SRC (x), src);
6612 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6613 the comparison result and try to simplify it unless we already have used
6614 undobuf.other_insn. */
6615 if ((GET_MODE_CLASS (mode) == MODE_CC
6616 || GET_CODE (src) == COMPARE
6617 || CC0_P (dest))
6618 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6619 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6620 && COMPARISON_P (*cc_use)
6621 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6623 enum rtx_code old_code = GET_CODE (*cc_use);
6624 enum rtx_code new_code;
6625 rtx op0, op1, tmp;
6626 int other_changed = 0;
6627 rtx inner_compare = NULL_RTX;
6628 machine_mode compare_mode = GET_MODE (dest);
6630 if (GET_CODE (src) == COMPARE)
6632 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6633 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6635 inner_compare = op0;
6636 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6639 else
6640 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6642 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6643 op0, op1);
6644 if (!tmp)
6645 new_code = old_code;
6646 else if (!CONSTANT_P (tmp))
6648 new_code = GET_CODE (tmp);
6649 op0 = XEXP (tmp, 0);
6650 op1 = XEXP (tmp, 1);
6652 else
6654 rtx pat = PATTERN (other_insn);
6655 undobuf.other_insn = other_insn;
6656 SUBST (*cc_use, tmp);
6658 /* Attempt to simplify CC user. */
6659 if (GET_CODE (pat) == SET)
6661 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6662 if (new_rtx != NULL_RTX)
6663 SUBST (SET_SRC (pat), new_rtx);
6666 /* Convert X into a no-op move. */
6667 SUBST (SET_DEST (x), pc_rtx);
6668 SUBST (SET_SRC (x), pc_rtx);
6669 return x;
6672 /* Simplify our comparison, if possible. */
6673 new_code = simplify_comparison (new_code, &op0, &op1);
6675 #ifdef SELECT_CC_MODE
6676 /* If this machine has CC modes other than CCmode, check to see if we
6677 need to use a different CC mode here. */
6678 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6679 compare_mode = GET_MODE (op0);
6680 else if (inner_compare
6681 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6682 && new_code == old_code
6683 && op0 == XEXP (inner_compare, 0)
6684 && op1 == XEXP (inner_compare, 1))
6685 compare_mode = GET_MODE (inner_compare);
6686 else
6687 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6689 /* If the mode changed, we have to change SET_DEST, the mode in the
6690 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6691 a hard register, just build new versions with the proper mode. If it
6692 is a pseudo, we lose unless it is only time we set the pseudo, in
6693 which case we can safely change its mode. */
6694 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6696 if (can_change_dest_mode (dest, 0, compare_mode))
6698 unsigned int regno = REGNO (dest);
6699 rtx new_dest;
6701 if (regno < FIRST_PSEUDO_REGISTER)
6702 new_dest = gen_rtx_REG (compare_mode, regno);
6703 else
6705 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6706 new_dest = regno_reg_rtx[regno];
6709 SUBST (SET_DEST (x), new_dest);
6710 SUBST (XEXP (*cc_use, 0), new_dest);
6711 other_changed = 1;
6713 dest = new_dest;
6716 #endif /* SELECT_CC_MODE */
6718 /* If the code changed, we have to build a new comparison in
6719 undobuf.other_insn. */
6720 if (new_code != old_code)
6722 int other_changed_previously = other_changed;
6723 unsigned HOST_WIDE_INT mask;
6724 rtx old_cc_use = *cc_use;
6726 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6727 dest, const0_rtx));
6728 other_changed = 1;
6730 /* If the only change we made was to change an EQ into an NE or
6731 vice versa, OP0 has only one bit that might be nonzero, and OP1
6732 is zero, check if changing the user of the condition code will
6733 produce a valid insn. If it won't, we can keep the original code
6734 in that insn by surrounding our operation with an XOR. */
6736 if (((old_code == NE && new_code == EQ)
6737 || (old_code == EQ && new_code == NE))
6738 && ! other_changed_previously && op1 == const0_rtx
6739 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6740 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6742 rtx pat = PATTERN (other_insn), note = 0;
6744 if ((recog_for_combine (&pat, other_insn, &note) < 0
6745 && ! check_asm_operands (pat)))
6747 *cc_use = old_cc_use;
6748 other_changed = 0;
6750 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6751 gen_int_mode (mask,
6752 GET_MODE (op0)));
6757 if (other_changed)
6758 undobuf.other_insn = other_insn;
6760 /* Don't generate a compare of a CC with 0, just use that CC. */
6761 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6763 SUBST (SET_SRC (x), op0);
6764 src = SET_SRC (x);
6766 /* Otherwise, if we didn't previously have the same COMPARE we
6767 want, create it from scratch. */
6768 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6769 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6771 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6772 src = SET_SRC (x);
6775 else
6777 /* Get SET_SRC in a form where we have placed back any
6778 compound expressions. Then do the checks below. */
6779 src = make_compound_operation (src, SET);
6780 SUBST (SET_SRC (x), src);
6783 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6784 and X being a REG or (subreg (reg)), we may be able to convert this to
6785 (set (subreg:m2 x) (op)).
6787 We can always do this if M1 is narrower than M2 because that means that
6788 we only care about the low bits of the result.
6790 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6791 perform a narrower operation than requested since the high-order bits will
6792 be undefined. On machine where it is defined, this transformation is safe
6793 as long as M1 and M2 have the same number of words. */
6795 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6796 && !OBJECT_P (SUBREG_REG (src))
6797 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6798 / UNITS_PER_WORD)
6799 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6800 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6801 && (WORD_REGISTER_OPERATIONS
6802 || (GET_MODE_SIZE (GET_MODE (src))
6803 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6804 #ifdef CANNOT_CHANGE_MODE_CLASS
6805 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6806 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
6807 GET_MODE (SUBREG_REG (src)),
6808 GET_MODE (src)))
6809 #endif
6810 && (REG_P (dest)
6811 || (GET_CODE (dest) == SUBREG
6812 && REG_P (SUBREG_REG (dest)))))
6814 SUBST (SET_DEST (x),
6815 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6816 dest));
6817 SUBST (SET_SRC (x), SUBREG_REG (src));
6819 src = SET_SRC (x), dest = SET_DEST (x);
6822 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6823 in SRC. */
6824 if (dest == cc0_rtx
6825 && GET_CODE (src) == SUBREG
6826 && subreg_lowpart_p (src)
6827 && (GET_MODE_PRECISION (GET_MODE (src))
6828 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src)))))
6830 rtx inner = SUBREG_REG (src);
6831 machine_mode inner_mode = GET_MODE (inner);
6833 /* Here we make sure that we don't have a sign bit on. */
6834 if (val_signbit_known_clear_p (GET_MODE (src),
6835 nonzero_bits (inner, inner_mode)))
6837 SUBST (SET_SRC (x), inner);
6838 src = SET_SRC (x);
6842 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6843 would require a paradoxical subreg. Replace the subreg with a
6844 zero_extend to avoid the reload that would otherwise be required. */
6846 enum rtx_code extend_op;
6847 if (paradoxical_subreg_p (src)
6848 && MEM_P (SUBREG_REG (src))
6849 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6851 SUBST (SET_SRC (x),
6852 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6854 src = SET_SRC (x);
6857 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6858 are comparing an item known to be 0 or -1 against 0, use a logical
6859 operation instead. Check for one of the arms being an IOR of the other
6860 arm with some value. We compute three terms to be IOR'ed together. In
6861 practice, at most two will be nonzero. Then we do the IOR's. */
6863 if (GET_CODE (dest) != PC
6864 && GET_CODE (src) == IF_THEN_ELSE
6865 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
6866 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6867 && XEXP (XEXP (src, 0), 1) == const0_rtx
6868 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
6869 && (!HAVE_conditional_move
6870 || ! can_conditionally_move_p (GET_MODE (src)))
6871 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
6872 GET_MODE (XEXP (XEXP (src, 0), 0)))
6873 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src, 0), 0))))
6874 && ! side_effects_p (src))
6876 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6877 ? XEXP (src, 1) : XEXP (src, 2));
6878 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6879 ? XEXP (src, 2) : XEXP (src, 1));
6880 rtx term1 = const0_rtx, term2, term3;
6882 if (GET_CODE (true_rtx) == IOR
6883 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6884 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6885 else if (GET_CODE (true_rtx) == IOR
6886 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6887 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6888 else if (GET_CODE (false_rtx) == IOR
6889 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6890 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
6891 else if (GET_CODE (false_rtx) == IOR
6892 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
6893 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
6895 term2 = simplify_gen_binary (AND, GET_MODE (src),
6896 XEXP (XEXP (src, 0), 0), true_rtx);
6897 term3 = simplify_gen_binary (AND, GET_MODE (src),
6898 simplify_gen_unary (NOT, GET_MODE (src),
6899 XEXP (XEXP (src, 0), 0),
6900 GET_MODE (src)),
6901 false_rtx);
6903 SUBST (SET_SRC (x),
6904 simplify_gen_binary (IOR, GET_MODE (src),
6905 simplify_gen_binary (IOR, GET_MODE (src),
6906 term1, term2),
6907 term3));
6909 src = SET_SRC (x);
6912 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6913 whole thing fail. */
6914 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
6915 return src;
6916 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
6917 return dest;
6918 else
6919 /* Convert this into a field assignment operation, if possible. */
6920 return make_field_assignment (x);
6923 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6924 result. */
6926 static rtx
6927 simplify_logical (rtx x)
6929 machine_mode mode = GET_MODE (x);
6930 rtx op0 = XEXP (x, 0);
6931 rtx op1 = XEXP (x, 1);
6933 switch (GET_CODE (x))
6935 case AND:
6936 /* We can call simplify_and_const_int only if we don't lose
6937 any (sign) bits when converting INTVAL (op1) to
6938 "unsigned HOST_WIDE_INT". */
6939 if (CONST_INT_P (op1)
6940 && (HWI_COMPUTABLE_MODE_P (mode)
6941 || INTVAL (op1) > 0))
6943 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
6944 if (GET_CODE (x) != AND)
6945 return x;
6947 op0 = XEXP (x, 0);
6948 op1 = XEXP (x, 1);
6951 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6952 apply the distributive law and then the inverse distributive
6953 law to see if things simplify. */
6954 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
6956 rtx result = distribute_and_simplify_rtx (x, 0);
6957 if (result)
6958 return result;
6960 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
6962 rtx result = distribute_and_simplify_rtx (x, 1);
6963 if (result)
6964 return result;
6966 break;
6968 case IOR:
6969 /* If we have (ior (and A B) C), apply the distributive law and then
6970 the inverse distributive law to see if things simplify. */
6972 if (GET_CODE (op0) == AND)
6974 rtx result = distribute_and_simplify_rtx (x, 0);
6975 if (result)
6976 return result;
6979 if (GET_CODE (op1) == AND)
6981 rtx result = distribute_and_simplify_rtx (x, 1);
6982 if (result)
6983 return result;
6985 break;
6987 default:
6988 gcc_unreachable ();
6991 return x;
6994 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6995 operations" because they can be replaced with two more basic operations.
6996 ZERO_EXTEND is also considered "compound" because it can be replaced with
6997 an AND operation, which is simpler, though only one operation.
6999 The function expand_compound_operation is called with an rtx expression
7000 and will convert it to the appropriate shifts and AND operations,
7001 simplifying at each stage.
7003 The function make_compound_operation is called to convert an expression
7004 consisting of shifts and ANDs into the equivalent compound expression.
7005 It is the inverse of this function, loosely speaking. */
7007 static rtx
7008 expand_compound_operation (rtx x)
7010 unsigned HOST_WIDE_INT pos = 0, len;
7011 int unsignedp = 0;
7012 unsigned int modewidth;
7013 rtx tem;
7015 switch (GET_CODE (x))
7017 case ZERO_EXTEND:
7018 unsignedp = 1;
7019 /* FALLTHRU */
7020 case SIGN_EXTEND:
7021 /* We can't necessarily use a const_int for a multiword mode;
7022 it depends on implicitly extending the value.
7023 Since we don't know the right way to extend it,
7024 we can't tell whether the implicit way is right.
7026 Even for a mode that is no wider than a const_int,
7027 we can't win, because we need to sign extend one of its bits through
7028 the rest of it, and we don't know which bit. */
7029 if (CONST_INT_P (XEXP (x, 0)))
7030 return x;
7032 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7033 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7034 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7035 reloaded. If not for that, MEM's would very rarely be safe.
7037 Reject MODEs bigger than a word, because we might not be able
7038 to reference a two-register group starting with an arbitrary register
7039 (and currently gen_lowpart might crash for a SUBREG). */
7041 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
7042 return x;
7044 /* Reject MODEs that aren't scalar integers because turning vector
7045 or complex modes into shifts causes problems. */
7047 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7048 return x;
7050 len = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
7051 /* If the inner object has VOIDmode (the only way this can happen
7052 is if it is an ASM_OPERANDS), we can't do anything since we don't
7053 know how much masking to do. */
7054 if (len == 0)
7055 return x;
7057 break;
7059 case ZERO_EXTRACT:
7060 unsignedp = 1;
7062 /* fall through */
7064 case SIGN_EXTRACT:
7065 /* If the operand is a CLOBBER, just return it. */
7066 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7067 return XEXP (x, 0);
7069 if (!CONST_INT_P (XEXP (x, 1))
7070 || !CONST_INT_P (XEXP (x, 2))
7071 || GET_MODE (XEXP (x, 0)) == VOIDmode)
7072 return x;
7074 /* Reject MODEs that aren't scalar integers because turning vector
7075 or complex modes into shifts causes problems. */
7077 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
7078 return x;
7080 len = INTVAL (XEXP (x, 1));
7081 pos = INTVAL (XEXP (x, 2));
7083 /* This should stay within the object being extracted, fail otherwise. */
7084 if (len + pos > GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))))
7085 return x;
7087 if (BITS_BIG_ENDIAN)
7088 pos = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0))) - len - pos;
7090 break;
7092 default:
7093 return x;
7095 /* Convert sign extension to zero extension, if we know that the high
7096 bit is not set, as this is easier to optimize. It will be converted
7097 back to cheaper alternative in make_extraction. */
7098 if (GET_CODE (x) == SIGN_EXTEND
7099 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7100 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7101 & ~(((unsigned HOST_WIDE_INT)
7102 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
7103 >> 1))
7104 == 0)))
7106 machine_mode mode = GET_MODE (x);
7107 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7108 rtx temp2 = expand_compound_operation (temp);
7110 /* Make sure this is a profitable operation. */
7111 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7112 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7113 return temp2;
7114 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7115 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7116 return temp;
7117 else
7118 return x;
7121 /* We can optimize some special cases of ZERO_EXTEND. */
7122 if (GET_CODE (x) == ZERO_EXTEND)
7124 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7125 know that the last value didn't have any inappropriate bits
7126 set. */
7127 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7128 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7129 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7130 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
7131 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7132 return XEXP (XEXP (x, 0), 0);
7134 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7135 if (GET_CODE (XEXP (x, 0)) == SUBREG
7136 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7137 && subreg_lowpart_p (XEXP (x, 0))
7138 && HWI_COMPUTABLE_MODE_P (GET_MODE (x))
7139 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
7140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7141 return SUBREG_REG (XEXP (x, 0));
7143 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7144 is a comparison and STORE_FLAG_VALUE permits. This is like
7145 the first case, but it works even when GET_MODE (x) is larger
7146 than HOST_WIDE_INT. */
7147 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7148 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
7149 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7150 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7151 <= HOST_BITS_PER_WIDE_INT)
7152 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7153 return XEXP (XEXP (x, 0), 0);
7155 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7156 if (GET_CODE (XEXP (x, 0)) == SUBREG
7157 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
7158 && subreg_lowpart_p (XEXP (x, 0))
7159 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7160 && (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
7161 <= HOST_BITS_PER_WIDE_INT)
7162 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
7163 return SUBREG_REG (XEXP (x, 0));
7167 /* If we reach here, we want to return a pair of shifts. The inner
7168 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7169 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7170 logical depending on the value of UNSIGNEDP.
7172 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7173 converted into an AND of a shift.
7175 We must check for the case where the left shift would have a negative
7176 count. This can happen in a case like (x >> 31) & 255 on machines
7177 that can't shift by a constant. On those machines, we would first
7178 combine the shift with the AND to produce a variable-position
7179 extraction. Then the constant of 31 would be substituted in
7180 to produce such a position. */
7182 modewidth = GET_MODE_PRECISION (GET_MODE (x));
7183 if (modewidth >= pos + len)
7185 machine_mode mode = GET_MODE (x);
7186 tem = gen_lowpart (mode, XEXP (x, 0));
7187 if (!tem || GET_CODE (tem) == CLOBBER)
7188 return x;
7189 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7190 tem, modewidth - pos - len);
7191 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7192 mode, tem, modewidth - len);
7194 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7195 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
7196 simplify_shift_const (NULL_RTX, LSHIFTRT,
7197 GET_MODE (x),
7198 XEXP (x, 0), pos),
7199 (HOST_WIDE_INT_1U << len) - 1);
7200 else
7201 /* Any other cases we can't handle. */
7202 return x;
7204 /* If we couldn't do this for some reason, return the original
7205 expression. */
7206 if (GET_CODE (tem) == CLOBBER)
7207 return x;
7209 return tem;
7212 /* X is a SET which contains an assignment of one object into
7213 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7214 or certain SUBREGS). If possible, convert it into a series of
7215 logical operations.
7217 We half-heartedly support variable positions, but do not at all
7218 support variable lengths. */
7220 static const_rtx
7221 expand_field_assignment (const_rtx x)
7223 rtx inner;
7224 rtx pos; /* Always counts from low bit. */
7225 int len;
7226 rtx mask, cleared, masked;
7227 machine_mode compute_mode;
7229 /* Loop until we find something we can't simplify. */
7230 while (1)
7232 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7233 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7235 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7236 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7237 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7239 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7240 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7242 inner = XEXP (SET_DEST (x), 0);
7243 len = INTVAL (XEXP (SET_DEST (x), 1));
7244 pos = XEXP (SET_DEST (x), 2);
7246 /* A constant position should stay within the width of INNER. */
7247 if (CONST_INT_P (pos)
7248 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7249 break;
7251 if (BITS_BIG_ENDIAN)
7253 if (CONST_INT_P (pos))
7254 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7255 - INTVAL (pos));
7256 else if (GET_CODE (pos) == MINUS
7257 && CONST_INT_P (XEXP (pos, 1))
7258 && (INTVAL (XEXP (pos, 1))
7259 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7260 /* If position is ADJUST - X, new position is X. */
7261 pos = XEXP (pos, 0);
7262 else
7264 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7265 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7266 gen_int_mode (prec - len,
7267 GET_MODE (pos)),
7268 pos);
7273 /* A SUBREG between two modes that occupy the same numbers of words
7274 can be done by moving the SUBREG to the source. */
7275 else if (GET_CODE (SET_DEST (x)) == SUBREG
7276 /* We need SUBREGs to compute nonzero_bits properly. */
7277 && nonzero_sign_valid
7278 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
7279 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
7280 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
7281 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
7283 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7284 gen_lowpart
7285 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7286 SET_SRC (x)));
7287 continue;
7289 else
7290 break;
7292 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7293 inner = SUBREG_REG (inner);
7295 compute_mode = GET_MODE (inner);
7297 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7298 if (! SCALAR_INT_MODE_P (compute_mode))
7300 machine_mode imode;
7302 /* Don't do anything for vector or complex integral types. */
7303 if (! FLOAT_MODE_P (compute_mode))
7304 break;
7306 /* Try to find an integral mode to pun with. */
7307 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
7308 if (imode == BLKmode)
7309 break;
7311 compute_mode = imode;
7312 inner = gen_lowpart (imode, inner);
7315 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7316 if (len >= HOST_BITS_PER_WIDE_INT)
7317 break;
7319 /* Don't try to compute in too wide unsupported modes. */
7320 if (!targetm.scalar_mode_supported_p (compute_mode))
7321 break;
7323 /* Now compute the equivalent expression. Make a copy of INNER
7324 for the SET_DEST in case it is a MEM into which we will substitute;
7325 we don't want shared RTL in that case. */
7326 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7327 compute_mode);
7328 cleared = simplify_gen_binary (AND, compute_mode,
7329 simplify_gen_unary (NOT, compute_mode,
7330 simplify_gen_binary (ASHIFT,
7331 compute_mode,
7332 mask, pos),
7333 compute_mode),
7334 inner);
7335 masked = simplify_gen_binary (ASHIFT, compute_mode,
7336 simplify_gen_binary (
7337 AND, compute_mode,
7338 gen_lowpart (compute_mode, SET_SRC (x)),
7339 mask),
7340 pos);
7342 x = gen_rtx_SET (copy_rtx (inner),
7343 simplify_gen_binary (IOR, compute_mode,
7344 cleared, masked));
7347 return x;
7350 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7351 it is an RTX that represents the (variable) starting position; otherwise,
7352 POS is the (constant) starting bit position. Both are counted from the LSB.
7354 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7356 IN_DEST is nonzero if this is a reference in the destination of a SET.
7357 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7358 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7359 be used.
7361 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7362 ZERO_EXTRACT should be built even for bits starting at bit 0.
7364 MODE is the desired mode of the result (if IN_DEST == 0).
7366 The result is an RTX for the extraction or NULL_RTX if the target
7367 can't handle it. */
7369 static rtx
7370 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7371 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7372 int in_dest, int in_compare)
7374 /* This mode describes the size of the storage area
7375 to fetch the overall value from. Within that, we
7376 ignore the POS lowest bits, etc. */
7377 machine_mode is_mode = GET_MODE (inner);
7378 machine_mode inner_mode;
7379 machine_mode wanted_inner_mode;
7380 machine_mode wanted_inner_reg_mode = word_mode;
7381 machine_mode pos_mode = word_mode;
7382 machine_mode extraction_mode = word_mode;
7383 machine_mode tmode = mode_for_size (len, MODE_INT, 1);
7384 rtx new_rtx = 0;
7385 rtx orig_pos_rtx = pos_rtx;
7386 HOST_WIDE_INT orig_pos;
7388 if (pos_rtx && CONST_INT_P (pos_rtx))
7389 pos = INTVAL (pos_rtx), pos_rtx = 0;
7391 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7393 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7394 consider just the QI as the memory to extract from.
7395 The subreg adds or removes high bits; its mode is
7396 irrelevant to the meaning of this extraction,
7397 since POS and LEN count from the lsb. */
7398 if (MEM_P (SUBREG_REG (inner)))
7399 is_mode = GET_MODE (SUBREG_REG (inner));
7400 inner = SUBREG_REG (inner);
7402 else if (GET_CODE (inner) == ASHIFT
7403 && CONST_INT_P (XEXP (inner, 1))
7404 && pos_rtx == 0 && pos == 0
7405 && len > UINTVAL (XEXP (inner, 1)))
7407 /* We're extracting the least significant bits of an rtx
7408 (ashift X (const_int C)), where LEN > C. Extract the
7409 least significant (LEN - C) bits of X, giving an rtx
7410 whose mode is MODE, then shift it left C times. */
7411 new_rtx = make_extraction (mode, XEXP (inner, 0),
7412 0, 0, len - INTVAL (XEXP (inner, 1)),
7413 unsignedp, in_dest, in_compare);
7414 if (new_rtx != 0)
7415 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7417 else if (GET_CODE (inner) == TRUNCATE)
7418 inner = XEXP (inner, 0);
7420 inner_mode = GET_MODE (inner);
7422 /* See if this can be done without an extraction. We never can if the
7423 width of the field is not the same as that of some integer mode. For
7424 registers, we can only avoid the extraction if the position is at the
7425 low-order bit and this is either not in the destination or we have the
7426 appropriate STRICT_LOW_PART operation available.
7428 For MEM, we can avoid an extract if the field starts on an appropriate
7429 boundary and we can change the mode of the memory reference. */
7431 if (tmode != BLKmode
7432 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7433 && !MEM_P (inner)
7434 && (pos == 0 || REG_P (inner))
7435 && (inner_mode == tmode
7436 || !REG_P (inner)
7437 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7438 || reg_truncated_to_mode (tmode, inner))
7439 && (! in_dest
7440 || (REG_P (inner)
7441 && have_insn_for (STRICT_LOW_PART, tmode))))
7442 || (MEM_P (inner) && pos_rtx == 0
7443 && (pos
7444 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7445 : BITS_PER_UNIT)) == 0
7446 /* We can't do this if we are widening INNER_MODE (it
7447 may not be aligned, for one thing). */
7448 && GET_MODE_PRECISION (inner_mode) >= GET_MODE_PRECISION (tmode)
7449 && (inner_mode == tmode
7450 || (! mode_dependent_address_p (XEXP (inner, 0),
7451 MEM_ADDR_SPACE (inner))
7452 && ! MEM_VOLATILE_P (inner))))))
7454 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7455 field. If the original and current mode are the same, we need not
7456 adjust the offset. Otherwise, we do if bytes big endian.
7458 If INNER is not a MEM, get a piece consisting of just the field
7459 of interest (in this case POS % BITS_PER_WORD must be 0). */
7461 if (MEM_P (inner))
7463 HOST_WIDE_INT offset;
7465 /* POS counts from lsb, but make OFFSET count in memory order. */
7466 if (BYTES_BIG_ENDIAN)
7467 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7468 else
7469 offset = pos / BITS_PER_UNIT;
7471 new_rtx = adjust_address_nv (inner, tmode, offset);
7473 else if (REG_P (inner))
7475 if (tmode != inner_mode)
7477 /* We can't call gen_lowpart in a DEST since we
7478 always want a SUBREG (see below) and it would sometimes
7479 return a new hard register. */
7480 if (pos || in_dest)
7482 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
7484 if (WORDS_BIG_ENDIAN
7485 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7486 final_word = ((GET_MODE_SIZE (inner_mode)
7487 - GET_MODE_SIZE (tmode))
7488 / UNITS_PER_WORD) - final_word;
7490 final_word *= UNITS_PER_WORD;
7491 if (BYTES_BIG_ENDIAN &&
7492 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
7493 final_word += (GET_MODE_SIZE (inner_mode)
7494 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
7496 /* Avoid creating invalid subregs, for example when
7497 simplifying (x>>32)&255. */
7498 if (!validate_subreg (tmode, inner_mode, inner, final_word))
7499 return NULL_RTX;
7501 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
7503 else
7504 new_rtx = gen_lowpart (tmode, inner);
7506 else
7507 new_rtx = inner;
7509 else
7510 new_rtx = force_to_mode (inner, tmode,
7511 len >= HOST_BITS_PER_WIDE_INT
7512 ? HOST_WIDE_INT_M1U
7513 : (HOST_WIDE_INT_1U << len) - 1, 0);
7515 /* If this extraction is going into the destination of a SET,
7516 make a STRICT_LOW_PART unless we made a MEM. */
7518 if (in_dest)
7519 return (MEM_P (new_rtx) ? new_rtx
7520 : (GET_CODE (new_rtx) != SUBREG
7521 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7522 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7524 if (mode == tmode)
7525 return new_rtx;
7527 if (CONST_SCALAR_INT_P (new_rtx))
7528 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7529 mode, new_rtx, tmode);
7531 /* If we know that no extraneous bits are set, and that the high
7532 bit is not set, convert the extraction to the cheaper of
7533 sign and zero extension, that are equivalent in these cases. */
7534 if (flag_expensive_optimizations
7535 && (HWI_COMPUTABLE_MODE_P (tmode)
7536 && ((nonzero_bits (new_rtx, tmode)
7537 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7538 == 0)))
7540 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7541 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7543 /* Prefer ZERO_EXTENSION, since it gives more information to
7544 backends. */
7545 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7546 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7547 return temp;
7548 return temp1;
7551 /* Otherwise, sign- or zero-extend unless we already are in the
7552 proper mode. */
7554 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7555 mode, new_rtx));
7558 /* Unless this is a COMPARE or we have a funny memory reference,
7559 don't do anything with zero-extending field extracts starting at
7560 the low-order bit since they are simple AND operations. */
7561 if (pos_rtx == 0 && pos == 0 && ! in_dest
7562 && ! in_compare && unsignedp)
7563 return 0;
7565 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7566 if the position is not a constant and the length is not 1. In all
7567 other cases, we would only be going outside our object in cases when
7568 an original shift would have been undefined. */
7569 if (MEM_P (inner)
7570 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7571 || (pos_rtx != 0 && len != 1)))
7572 return 0;
7574 enum extraction_pattern pattern = (in_dest ? EP_insv
7575 : unsignedp ? EP_extzv : EP_extv);
7577 /* If INNER is not from memory, we want it to have the mode of a register
7578 extraction pattern's structure operand, or word_mode if there is no
7579 such pattern. The same applies to extraction_mode and pos_mode
7580 and their respective operands.
7582 For memory, assume that the desired extraction_mode and pos_mode
7583 are the same as for a register operation, since at present we don't
7584 have named patterns for aligned memory structures. */
7585 struct extraction_insn insn;
7586 if (get_best_reg_extraction_insn (&insn, pattern,
7587 GET_MODE_BITSIZE (inner_mode), mode))
7589 wanted_inner_reg_mode = insn.struct_mode;
7590 pos_mode = insn.pos_mode;
7591 extraction_mode = insn.field_mode;
7594 /* Never narrow an object, since that might not be safe. */
7596 if (mode != VOIDmode
7597 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
7598 extraction_mode = mode;
7600 if (!MEM_P (inner))
7601 wanted_inner_mode = wanted_inner_reg_mode;
7602 else
7604 /* Be careful not to go beyond the extracted object and maintain the
7605 natural alignment of the memory. */
7606 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
7607 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7608 > GET_MODE_BITSIZE (wanted_inner_mode))
7610 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
7611 gcc_assert (wanted_inner_mode != VOIDmode);
7615 orig_pos = pos;
7617 if (BITS_BIG_ENDIAN)
7619 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7620 BITS_BIG_ENDIAN style. If position is constant, compute new
7621 position. Otherwise, build subtraction.
7622 Note that POS is relative to the mode of the original argument.
7623 If it's a MEM we need to recompute POS relative to that.
7624 However, if we're extracting from (or inserting into) a register,
7625 we want to recompute POS relative to wanted_inner_mode. */
7626 int width = (MEM_P (inner)
7627 ? GET_MODE_BITSIZE (is_mode)
7628 : GET_MODE_BITSIZE (wanted_inner_mode));
7630 if (pos_rtx == 0)
7631 pos = width - len - pos;
7632 else
7633 pos_rtx
7634 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7635 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7636 pos_rtx);
7637 /* POS may be less than 0 now, but we check for that below.
7638 Note that it can only be less than 0 if !MEM_P (inner). */
7641 /* If INNER has a wider mode, and this is a constant extraction, try to
7642 make it smaller and adjust the byte to point to the byte containing
7643 the value. */
7644 if (wanted_inner_mode != VOIDmode
7645 && inner_mode != wanted_inner_mode
7646 && ! pos_rtx
7647 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
7648 && MEM_P (inner)
7649 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7650 && ! MEM_VOLATILE_P (inner))
7652 int offset = 0;
7654 /* The computations below will be correct if the machine is big
7655 endian in both bits and bytes or little endian in bits and bytes.
7656 If it is mixed, we must adjust. */
7658 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7659 adjust OFFSET to compensate. */
7660 if (BYTES_BIG_ENDIAN
7661 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
7662 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7664 /* We can now move to the desired byte. */
7665 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7666 * GET_MODE_SIZE (wanted_inner_mode);
7667 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7669 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7670 && is_mode != wanted_inner_mode)
7671 offset = (GET_MODE_SIZE (is_mode)
7672 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7674 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7677 /* If INNER is not memory, get it into the proper mode. If we are changing
7678 its mode, POS must be a constant and smaller than the size of the new
7679 mode. */
7680 else if (!MEM_P (inner))
7682 /* On the LHS, don't create paradoxical subregs implicitely truncating
7683 the register unless TRULY_NOOP_TRUNCATION. */
7684 if (in_dest
7685 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7686 wanted_inner_mode))
7687 return NULL_RTX;
7689 if (GET_MODE (inner) != wanted_inner_mode
7690 && (pos_rtx != 0
7691 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7692 return NULL_RTX;
7694 if (orig_pos < 0)
7695 return NULL_RTX;
7697 inner = force_to_mode (inner, wanted_inner_mode,
7698 pos_rtx
7699 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7700 ? HOST_WIDE_INT_M1U
7701 : (((HOST_WIDE_INT_1U << len) - 1)
7702 << orig_pos),
7706 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7707 have to zero extend. Otherwise, we can just use a SUBREG. */
7708 if (pos_rtx != 0
7709 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
7711 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7712 GET_MODE (pos_rtx));
7714 /* If we know that no extraneous bits are set, and that the high
7715 bit is not set, convert extraction to cheaper one - either
7716 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7717 cases. */
7718 if (flag_expensive_optimizations
7719 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7720 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7721 & ~(((unsigned HOST_WIDE_INT)
7722 GET_MODE_MASK (GET_MODE (pos_rtx)))
7723 >> 1))
7724 == 0)))
7726 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7727 GET_MODE (pos_rtx));
7729 /* Prefer ZERO_EXTENSION, since it gives more information to
7730 backends. */
7731 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7732 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7733 temp = temp1;
7735 pos_rtx = temp;
7738 /* Make POS_RTX unless we already have it and it is correct. If we don't
7739 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7740 be a CONST_INT. */
7741 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7742 pos_rtx = orig_pos_rtx;
7744 else if (pos_rtx == 0)
7745 pos_rtx = GEN_INT (pos);
7747 /* Make the required operation. See if we can use existing rtx. */
7748 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7749 extraction_mode, inner, GEN_INT (len), pos_rtx);
7750 if (! in_dest)
7751 new_rtx = gen_lowpart (mode, new_rtx);
7753 return new_rtx;
7756 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7757 with any other operations in X. Return X without that shift if so. */
7759 static rtx
7760 extract_left_shift (rtx x, int count)
7762 enum rtx_code code = GET_CODE (x);
7763 machine_mode mode = GET_MODE (x);
7764 rtx tem;
7766 switch (code)
7768 case ASHIFT:
7769 /* This is the shift itself. If it is wide enough, we will return
7770 either the value being shifted if the shift count is equal to
7771 COUNT or a shift for the difference. */
7772 if (CONST_INT_P (XEXP (x, 1))
7773 && INTVAL (XEXP (x, 1)) >= count)
7774 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7775 INTVAL (XEXP (x, 1)) - count);
7776 break;
7778 case NEG: case NOT:
7779 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7780 return simplify_gen_unary (code, mode, tem, mode);
7782 break;
7784 case PLUS: case IOR: case XOR: case AND:
7785 /* If we can safely shift this constant and we find the inner shift,
7786 make a new operation. */
7787 if (CONST_INT_P (XEXP (x, 1))
7788 && (UINTVAL (XEXP (x, 1))
7789 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7790 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
7792 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7793 return simplify_gen_binary (code, mode, tem,
7794 gen_int_mode (val, mode));
7796 break;
7798 default:
7799 break;
7802 return 0;
7805 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7806 level of the expression and MODE is its mode. IN_CODE is as for
7807 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7808 that should be used when recursing on operands of *X_PTR.
7810 There are two possible actions:
7812 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7813 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7815 - Return a new rtx, which the caller returns directly. */
7817 static rtx
7818 make_compound_operation_int (machine_mode mode, rtx *x_ptr,
7819 enum rtx_code in_code,
7820 enum rtx_code *next_code_ptr)
7822 rtx x = *x_ptr;
7823 enum rtx_code next_code = *next_code_ptr;
7824 enum rtx_code code = GET_CODE (x);
7825 int mode_width = GET_MODE_PRECISION (mode);
7826 rtx rhs, lhs;
7827 rtx new_rtx = 0;
7828 int i;
7829 rtx tem;
7830 bool equality_comparison = false;
7832 if (in_code == EQ)
7834 equality_comparison = true;
7835 in_code = COMPARE;
7838 /* Process depending on the code of this operation. If NEW is set
7839 nonzero, it will be returned. */
7841 switch (code)
7843 case ASHIFT:
7844 /* Convert shifts by constants into multiplications if inside
7845 an address. */
7846 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7847 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7848 && INTVAL (XEXP (x, 1)) >= 0)
7850 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7851 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7853 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7854 if (GET_CODE (new_rtx) == NEG)
7856 new_rtx = XEXP (new_rtx, 0);
7857 multval = -multval;
7859 multval = trunc_int_for_mode (multval, mode);
7860 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7862 break;
7864 case PLUS:
7865 lhs = XEXP (x, 0);
7866 rhs = XEXP (x, 1);
7867 lhs = make_compound_operation (lhs, next_code);
7868 rhs = make_compound_operation (rhs, next_code);
7869 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7871 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7872 XEXP (lhs, 1));
7873 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7875 else if (GET_CODE (lhs) == MULT
7876 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7878 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7879 simplify_gen_unary (NEG, mode,
7880 XEXP (lhs, 1),
7881 mode));
7882 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7884 else
7886 SUBST (XEXP (x, 0), lhs);
7887 SUBST (XEXP (x, 1), rhs);
7889 maybe_swap_commutative_operands (x);
7890 return x;
7892 case MINUS:
7893 lhs = XEXP (x, 0);
7894 rhs = XEXP (x, 1);
7895 lhs = make_compound_operation (lhs, next_code);
7896 rhs = make_compound_operation (rhs, next_code);
7897 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
7899 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
7900 XEXP (rhs, 1));
7901 return simplify_gen_binary (PLUS, mode, tem, lhs);
7903 else if (GET_CODE (rhs) == MULT
7904 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
7906 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
7907 simplify_gen_unary (NEG, mode,
7908 XEXP (rhs, 1),
7909 mode));
7910 return simplify_gen_binary (PLUS, mode, tem, lhs);
7912 else
7914 SUBST (XEXP (x, 0), lhs);
7915 SUBST (XEXP (x, 1), rhs);
7916 return x;
7919 case AND:
7920 /* If the second operand is not a constant, we can't do anything
7921 with it. */
7922 if (!CONST_INT_P (XEXP (x, 1)))
7923 break;
7925 /* If the constant is a power of two minus one and the first operand
7926 is a logical right shift, make an extraction. */
7927 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7928 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7930 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7931 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
7932 0, in_code == COMPARE);
7935 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7936 else if (GET_CODE (XEXP (x, 0)) == SUBREG
7937 && subreg_lowpart_p (XEXP (x, 0))
7938 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
7939 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7941 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
7942 machine_mode inner_mode = GET_MODE (inner_x0);
7943 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
7944 new_rtx = make_extraction (inner_mode, new_rtx, 0,
7945 XEXP (inner_x0, 1),
7946 i, 1, 0, in_code == COMPARE);
7948 if (new_rtx)
7950 /* If we narrowed the mode when dropping the subreg, then
7951 we must zero-extend to keep the semantics of the AND. */
7952 if (GET_MODE_SIZE (inner_mode) >= GET_MODE_SIZE (mode))
7954 else if (SCALAR_INT_MODE_P (inner_mode))
7955 new_rtx = simplify_gen_unary (ZERO_EXTEND, mode,
7956 new_rtx, inner_mode);
7957 else
7958 new_rtx = NULL;
7961 /* If that didn't give anything, see if the AND simplifies on
7962 its own. */
7963 if (!new_rtx && i >= 0)
7965 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7966 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
7967 0, in_code == COMPARE);
7970 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7971 else if ((GET_CODE (XEXP (x, 0)) == XOR
7972 || GET_CODE (XEXP (x, 0)) == IOR)
7973 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
7974 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
7975 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
7977 /* Apply the distributive law, and then try to make extractions. */
7978 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
7979 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
7980 XEXP (x, 1)),
7981 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
7982 XEXP (x, 1)));
7983 new_rtx = make_compound_operation (new_rtx, in_code);
7986 /* If we are have (and (rotate X C) M) and C is larger than the number
7987 of bits in M, this is an extraction. */
7989 else if (GET_CODE (XEXP (x, 0)) == ROTATE
7990 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
7991 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
7992 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
7994 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
7995 new_rtx = make_extraction (mode, new_rtx,
7996 (GET_MODE_PRECISION (mode)
7997 - INTVAL (XEXP (XEXP (x, 0), 1))),
7998 NULL_RTX, i, 1, 0, in_code == COMPARE);
8001 /* On machines without logical shifts, if the operand of the AND is
8002 a logical shift and our mask turns off all the propagated sign
8003 bits, we can replace the logical shift with an arithmetic shift. */
8004 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8005 && !have_insn_for (LSHIFTRT, mode)
8006 && have_insn_for (ASHIFTRT, mode)
8007 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8008 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8009 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8010 && mode_width <= HOST_BITS_PER_WIDE_INT)
8012 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8014 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8015 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8016 SUBST (XEXP (x, 0),
8017 gen_rtx_ASHIFTRT (mode,
8018 make_compound_operation
8019 (XEXP (XEXP (x, 0), 0), next_code),
8020 XEXP (XEXP (x, 0), 1)));
8023 /* If the constant is one less than a power of two, this might be
8024 representable by an extraction even if no shift is present.
8025 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8026 we are in a COMPARE. */
8027 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8028 new_rtx = make_extraction (mode,
8029 make_compound_operation (XEXP (x, 0),
8030 next_code),
8031 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8033 /* If we are in a comparison and this is an AND with a power of two,
8034 convert this into the appropriate bit extract. */
8035 else if (in_code == COMPARE
8036 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8037 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8038 new_rtx = make_extraction (mode,
8039 make_compound_operation (XEXP (x, 0),
8040 next_code),
8041 i, NULL_RTX, 1, 1, 0, 1);
8043 /* If the one operand is a paradoxical subreg of a register or memory and
8044 the constant (limited to the smaller mode) has only zero bits where
8045 the sub expression has known zero bits, this can be expressed as
8046 a zero_extend. */
8047 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8049 rtx sub;
8051 sub = XEXP (XEXP (x, 0), 0);
8052 machine_mode sub_mode = GET_MODE (sub);
8053 if ((REG_P (sub) || MEM_P (sub))
8054 && GET_MODE_PRECISION (sub_mode) < mode_width)
8056 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8057 unsigned HOST_WIDE_INT mask;
8059 /* original AND constant with all the known zero bits set */
8060 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8061 if ((mask & mode_mask) == mode_mask)
8063 new_rtx = make_compound_operation (sub, next_code);
8064 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8065 GET_MODE_PRECISION (sub_mode),
8066 1, 0, in_code == COMPARE);
8071 break;
8073 case LSHIFTRT:
8074 /* If the sign bit is known to be zero, replace this with an
8075 arithmetic shift. */
8076 if (have_insn_for (ASHIFTRT, mode)
8077 && ! have_insn_for (LSHIFTRT, mode)
8078 && mode_width <= HOST_BITS_PER_WIDE_INT
8079 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8081 new_rtx = gen_rtx_ASHIFTRT (mode,
8082 make_compound_operation (XEXP (x, 0),
8083 next_code),
8084 XEXP (x, 1));
8085 break;
8088 /* fall through */
8090 case ASHIFTRT:
8091 lhs = XEXP (x, 0);
8092 rhs = XEXP (x, 1);
8094 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8095 this is a SIGN_EXTRACT. */
8096 if (CONST_INT_P (rhs)
8097 && GET_CODE (lhs) == ASHIFT
8098 && CONST_INT_P (XEXP (lhs, 1))
8099 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8100 && INTVAL (XEXP (lhs, 1)) >= 0
8101 && INTVAL (rhs) < mode_width)
8103 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8104 new_rtx = make_extraction (mode, new_rtx,
8105 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8106 NULL_RTX, mode_width - INTVAL (rhs),
8107 code == LSHIFTRT, 0, in_code == COMPARE);
8108 break;
8111 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8112 If so, try to merge the shifts into a SIGN_EXTEND. We could
8113 also do this for some cases of SIGN_EXTRACT, but it doesn't
8114 seem worth the effort; the case checked for occurs on Alpha. */
8116 if (!OBJECT_P (lhs)
8117 && ! (GET_CODE (lhs) == SUBREG
8118 && (OBJECT_P (SUBREG_REG (lhs))))
8119 && CONST_INT_P (rhs)
8120 && INTVAL (rhs) >= 0
8121 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8122 && INTVAL (rhs) < mode_width
8123 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
8124 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
8125 0, NULL_RTX, mode_width - INTVAL (rhs),
8126 code == LSHIFTRT, 0, in_code == COMPARE);
8128 break;
8130 case SUBREG:
8131 /* Call ourselves recursively on the inner expression. If we are
8132 narrowing the object and it has a different RTL code from
8133 what it originally did, do this SUBREG as a force_to_mode. */
8135 rtx inner = SUBREG_REG (x), simplified;
8136 enum rtx_code subreg_code = in_code;
8138 /* If the SUBREG is masking of a logical right shift,
8139 make an extraction. */
8140 if (GET_CODE (inner) == LSHIFTRT
8141 && CONST_INT_P (XEXP (inner, 1))
8142 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8143 && (UINTVAL (XEXP (inner, 1))
8144 < GET_MODE_PRECISION (GET_MODE (inner)))
8145 && subreg_lowpart_p (x))
8147 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8148 int width = GET_MODE_PRECISION (GET_MODE (inner))
8149 - INTVAL (XEXP (inner, 1));
8150 if (width > mode_width)
8151 width = mode_width;
8152 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8153 width, 1, 0, in_code == COMPARE);
8154 break;
8157 /* If in_code is COMPARE, it isn't always safe to pass it through
8158 to the recursive make_compound_operation call. */
8159 if (subreg_code == COMPARE
8160 && (!subreg_lowpart_p (x)
8161 || GET_CODE (inner) == SUBREG
8162 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8163 is (const_int 0), rather than
8164 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
8165 || (GET_CODE (inner) == AND
8166 && CONST_INT_P (XEXP (inner, 1))
8167 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8168 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8169 >= GET_MODE_BITSIZE (mode))))
8170 subreg_code = SET;
8172 tem = make_compound_operation (inner, subreg_code);
8174 simplified
8175 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8176 if (simplified)
8177 tem = simplified;
8179 if (GET_CODE (tem) != GET_CODE (inner)
8180 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (inner))
8181 && subreg_lowpart_p (x))
8183 rtx newer
8184 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8186 /* If we have something other than a SUBREG, we might have
8187 done an expansion, so rerun ourselves. */
8188 if (GET_CODE (newer) != SUBREG)
8189 newer = make_compound_operation (newer, in_code);
8191 /* force_to_mode can expand compounds. If it just re-expanded the
8192 compound, use gen_lowpart to convert to the desired mode. */
8193 if (rtx_equal_p (newer, x)
8194 /* Likewise if it re-expanded the compound only partially.
8195 This happens for SUBREG of ZERO_EXTRACT if they extract
8196 the same number of bits. */
8197 || (GET_CODE (newer) == SUBREG
8198 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8199 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8200 && GET_CODE (inner) == AND
8201 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8202 return gen_lowpart (GET_MODE (x), tem);
8204 return newer;
8207 if (simplified)
8208 return tem;
8210 break;
8212 default:
8213 break;
8216 if (new_rtx)
8217 *x_ptr = gen_lowpart (mode, new_rtx);
8218 *next_code_ptr = next_code;
8219 return NULL_RTX;
8222 /* Look at the expression rooted at X. Look for expressions
8223 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8224 Form these expressions.
8226 Return the new rtx, usually just X.
8228 Also, for machines like the VAX that don't have logical shift insns,
8229 try to convert logical to arithmetic shift operations in cases where
8230 they are equivalent. This undoes the canonicalizations to logical
8231 shifts done elsewhere.
8233 We try, as much as possible, to re-use rtl expressions to save memory.
8235 IN_CODE says what kind of expression we are processing. Normally, it is
8236 SET. In a memory address it is MEM. When processing the arguments of
8237 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8238 precisely it is an equality comparison against zero. */
8241 make_compound_operation (rtx x, enum rtx_code in_code)
8243 enum rtx_code code = GET_CODE (x);
8244 const char *fmt;
8245 int i, j;
8246 enum rtx_code next_code;
8247 rtx new_rtx, tem;
8249 /* Select the code to be used in recursive calls. Once we are inside an
8250 address, we stay there. If we have a comparison, set to COMPARE,
8251 but once inside, go back to our default of SET. */
8253 next_code = (code == MEM ? MEM
8254 : ((code == COMPARE || COMPARISON_P (x))
8255 && XEXP (x, 1) == const0_rtx) ? COMPARE
8256 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8258 if (SCALAR_INT_MODE_P (GET_MODE (x)))
8260 rtx new_rtx = make_compound_operation_int (GET_MODE (x), &x,
8261 in_code, &next_code);
8262 if (new_rtx)
8263 return new_rtx;
8264 code = GET_CODE (x);
8267 /* Now recursively process each operand of this operation. We need to
8268 handle ZERO_EXTEND specially so that we don't lose track of the
8269 inner mode. */
8270 if (code == ZERO_EXTEND)
8272 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8273 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8274 new_rtx, GET_MODE (XEXP (x, 0)));
8275 if (tem)
8276 return tem;
8277 SUBST (XEXP (x, 0), new_rtx);
8278 return x;
8281 fmt = GET_RTX_FORMAT (code);
8282 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8283 if (fmt[i] == 'e')
8285 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8286 SUBST (XEXP (x, i), new_rtx);
8288 else if (fmt[i] == 'E')
8289 for (j = 0; j < XVECLEN (x, i); j++)
8291 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8292 SUBST (XVECEXP (x, i, j), new_rtx);
8295 maybe_swap_commutative_operands (x);
8296 return x;
8299 /* Given M see if it is a value that would select a field of bits
8300 within an item, but not the entire word. Return -1 if not.
8301 Otherwise, return the starting position of the field, where 0 is the
8302 low-order bit.
8304 *PLEN is set to the length of the field. */
8306 static int
8307 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8309 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8310 int pos = m ? ctz_hwi (m) : -1;
8311 int len = 0;
8313 if (pos >= 0)
8314 /* Now shift off the low-order zero bits and see if we have a
8315 power of two minus 1. */
8316 len = exact_log2 ((m >> pos) + 1);
8318 if (len <= 0)
8319 pos = -1;
8321 *plen = len;
8322 return pos;
8325 /* If X refers to a register that equals REG in value, replace these
8326 references with REG. */
8327 static rtx
8328 canon_reg_for_combine (rtx x, rtx reg)
8330 rtx op0, op1, op2;
8331 const char *fmt;
8332 int i;
8333 bool copied;
8335 enum rtx_code code = GET_CODE (x);
8336 switch (GET_RTX_CLASS (code))
8338 case RTX_UNARY:
8339 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8340 if (op0 != XEXP (x, 0))
8341 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8342 GET_MODE (reg));
8343 break;
8345 case RTX_BIN_ARITH:
8346 case RTX_COMM_ARITH:
8347 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8348 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8349 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8350 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8351 break;
8353 case RTX_COMPARE:
8354 case RTX_COMM_COMPARE:
8355 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8356 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8357 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8358 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8359 GET_MODE (op0), op0, op1);
8360 break;
8362 case RTX_TERNARY:
8363 case RTX_BITFIELD_OPS:
8364 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8365 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8366 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8367 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8368 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8369 GET_MODE (op0), op0, op1, op2);
8370 /* FALLTHRU */
8372 case RTX_OBJ:
8373 if (REG_P (x))
8375 if (rtx_equal_p (get_last_value (reg), x)
8376 || rtx_equal_p (reg, get_last_value (x)))
8377 return reg;
8378 else
8379 break;
8382 /* fall through */
8384 default:
8385 fmt = GET_RTX_FORMAT (code);
8386 copied = false;
8387 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8388 if (fmt[i] == 'e')
8390 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8391 if (op != XEXP (x, i))
8393 if (!copied)
8395 copied = true;
8396 x = copy_rtx (x);
8398 XEXP (x, i) = op;
8401 else if (fmt[i] == 'E')
8403 int j;
8404 for (j = 0; j < XVECLEN (x, i); j++)
8406 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8407 if (op != XVECEXP (x, i, j))
8409 if (!copied)
8411 copied = true;
8412 x = copy_rtx (x);
8414 XVECEXP (x, i, j) = op;
8419 break;
8422 return x;
8425 /* Return X converted to MODE. If the value is already truncated to
8426 MODE we can just return a subreg even though in the general case we
8427 would need an explicit truncation. */
8429 static rtx
8430 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8432 if (!CONST_INT_P (x)
8433 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x))
8434 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8435 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8437 /* Bit-cast X into an integer mode. */
8438 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8439 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)), x);
8440 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode),
8441 x, GET_MODE (x));
8444 return gen_lowpart (mode, x);
8447 /* See if X can be simplified knowing that we will only refer to it in
8448 MODE and will only refer to those bits that are nonzero in MASK.
8449 If other bits are being computed or if masking operations are done
8450 that select a superset of the bits in MASK, they can sometimes be
8451 ignored.
8453 Return a possibly simplified expression, but always convert X to
8454 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8456 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8457 are all off in X. This is used when X will be complemented, by either
8458 NOT, NEG, or XOR. */
8460 static rtx
8461 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8462 int just_select)
8464 enum rtx_code code = GET_CODE (x);
8465 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8466 machine_mode op_mode;
8467 unsigned HOST_WIDE_INT fuller_mask, nonzero;
8468 rtx op0, op1, temp;
8470 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8471 code below will do the wrong thing since the mode of such an
8472 expression is VOIDmode.
8474 Also do nothing if X is a CLOBBER; this can happen if X was
8475 the return value from a call to gen_lowpart. */
8476 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8477 return x;
8479 /* We want to perform the operation in its present mode unless we know
8480 that the operation is valid in MODE, in which case we do the operation
8481 in MODE. */
8482 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8483 && have_insn_for (code, mode))
8484 ? mode : GET_MODE (x));
8486 /* It is not valid to do a right-shift in a narrower mode
8487 than the one it came in with. */
8488 if ((code == LSHIFTRT || code == ASHIFTRT)
8489 && GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (x)))
8490 op_mode = GET_MODE (x);
8492 /* Truncate MASK to fit OP_MODE. */
8493 if (op_mode)
8494 mask &= GET_MODE_MASK (op_mode);
8496 /* When we have an arithmetic operation, or a shift whose count we
8497 do not know, we need to assume that all bits up to the highest-order
8498 bit in MASK will be needed. This is how we form such a mask. */
8499 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8500 fuller_mask = HOST_WIDE_INT_M1U;
8501 else
8502 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8503 - 1);
8505 /* Determine what bits of X are guaranteed to be (non)zero. */
8506 nonzero = nonzero_bits (x, mode);
8508 /* If none of the bits in X are needed, return a zero. */
8509 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8510 x = const0_rtx;
8512 /* If X is a CONST_INT, return a new one. Do this here since the
8513 test below will fail. */
8514 if (CONST_INT_P (x))
8516 if (SCALAR_INT_MODE_P (mode))
8517 return gen_int_mode (INTVAL (x) & mask, mode);
8518 else
8520 x = GEN_INT (INTVAL (x) & mask);
8521 return gen_lowpart_common (mode, x);
8525 /* If X is narrower than MODE and we want all the bits in X's mode, just
8526 get X in the proper mode. */
8527 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
8528 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8529 return gen_lowpart (mode, x);
8531 /* We can ignore the effect of a SUBREG if it narrows the mode or
8532 if the constant masks to zero all the bits the mode doesn't have. */
8533 if (GET_CODE (x) == SUBREG
8534 && subreg_lowpart_p (x)
8535 && ((GET_MODE_SIZE (GET_MODE (x))
8536 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
8537 || (0 == (mask
8538 & GET_MODE_MASK (GET_MODE (x))
8539 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8540 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8542 /* The arithmetic simplifications here only work for scalar integer modes. */
8543 if (!SCALAR_INT_MODE_P (mode) || !SCALAR_INT_MODE_P (GET_MODE (x)))
8544 return gen_lowpart_or_truncate (mode, x);
8546 switch (code)
8548 case CLOBBER:
8549 /* If X is a (clobber (const_int)), return it since we know we are
8550 generating something that won't match. */
8551 return x;
8553 case SIGN_EXTEND:
8554 case ZERO_EXTEND:
8555 case ZERO_EXTRACT:
8556 case SIGN_EXTRACT:
8557 x = expand_compound_operation (x);
8558 if (GET_CODE (x) != code)
8559 return force_to_mode (x, mode, mask, next_select);
8560 break;
8562 case TRUNCATE:
8563 /* Similarly for a truncate. */
8564 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8566 case AND:
8567 /* If this is an AND with a constant, convert it into an AND
8568 whose constant is the AND of that constant with MASK. If it
8569 remains an AND of MASK, delete it since it is redundant. */
8571 if (CONST_INT_P (XEXP (x, 1)))
8573 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8574 mask & INTVAL (XEXP (x, 1)));
8576 /* If X is still an AND, see if it is an AND with a mask that
8577 is just some low-order bits. If so, and it is MASK, we don't
8578 need it. */
8580 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8581 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
8582 == mask))
8583 x = XEXP (x, 0);
8585 /* If it remains an AND, try making another AND with the bits
8586 in the mode mask that aren't in MASK turned on. If the
8587 constant in the AND is wide enough, this might make a
8588 cheaper constant. */
8590 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8591 && GET_MODE_MASK (GET_MODE (x)) != mask
8592 && HWI_COMPUTABLE_MODE_P (GET_MODE (x)))
8594 unsigned HOST_WIDE_INT cval
8595 = UINTVAL (XEXP (x, 1))
8596 | (GET_MODE_MASK (GET_MODE (x)) & ~mask);
8597 rtx y;
8599 y = simplify_gen_binary (AND, GET_MODE (x), XEXP (x, 0),
8600 gen_int_mode (cval, GET_MODE (x)));
8601 if (set_src_cost (y, GET_MODE (x), optimize_this_for_speed_p)
8602 < set_src_cost (x, GET_MODE (x), optimize_this_for_speed_p))
8603 x = y;
8606 break;
8609 goto binop;
8611 case PLUS:
8612 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8613 low-order bits (as in an alignment operation) and FOO is already
8614 aligned to that boundary, mask C1 to that boundary as well.
8615 This may eliminate that PLUS and, later, the AND. */
8618 unsigned int width = GET_MODE_PRECISION (mode);
8619 unsigned HOST_WIDE_INT smask = mask;
8621 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8622 number, sign extend it. */
8624 if (width < HOST_BITS_PER_WIDE_INT
8625 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8626 smask |= HOST_WIDE_INT_M1U << width;
8628 if (CONST_INT_P (XEXP (x, 1))
8629 && pow2p_hwi (- smask)
8630 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8631 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8632 return force_to_mode (plus_constant (GET_MODE (x), XEXP (x, 0),
8633 (INTVAL (XEXP (x, 1)) & smask)),
8634 mode, smask, next_select);
8637 /* fall through */
8639 case MULT:
8640 /* Substituting into the operands of a widening MULT is not likely to
8641 create RTL matching a machine insn. */
8642 if (code == MULT
8643 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8644 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8645 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8646 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8647 && REG_P (XEXP (XEXP (x, 0), 0))
8648 && REG_P (XEXP (XEXP (x, 1), 0)))
8649 return gen_lowpart_or_truncate (mode, x);
8651 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8652 most significant bit in MASK since carries from those bits will
8653 affect the bits we are interested in. */
8654 mask = fuller_mask;
8655 goto binop;
8657 case MINUS:
8658 /* If X is (minus C Y) where C's least set bit is larger than any bit
8659 in the mask, then we may replace with (neg Y). */
8660 if (CONST_INT_P (XEXP (x, 0))
8661 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8663 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
8664 GET_MODE (x));
8665 return force_to_mode (x, mode, mask, next_select);
8668 /* Similarly, if C contains every bit in the fuller_mask, then we may
8669 replace with (not Y). */
8670 if (CONST_INT_P (XEXP (x, 0))
8671 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8673 x = simplify_gen_unary (NOT, GET_MODE (x),
8674 XEXP (x, 1), GET_MODE (x));
8675 return force_to_mode (x, mode, mask, next_select);
8678 mask = fuller_mask;
8679 goto binop;
8681 case IOR:
8682 case XOR:
8683 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8684 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8685 operation which may be a bitfield extraction. Ensure that the
8686 constant we form is not wider than the mode of X. */
8688 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8689 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8690 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8691 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8692 && CONST_INT_P (XEXP (x, 1))
8693 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8694 + floor_log2 (INTVAL (XEXP (x, 1))))
8695 < GET_MODE_PRECISION (GET_MODE (x)))
8696 && (UINTVAL (XEXP (x, 1))
8697 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
8699 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8700 << INTVAL (XEXP (XEXP (x, 0), 1)),
8701 GET_MODE (x));
8702 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
8703 XEXP (XEXP (x, 0), 0), temp);
8704 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
8705 XEXP (XEXP (x, 0), 1));
8706 return force_to_mode (x, mode, mask, next_select);
8709 binop:
8710 /* For most binary operations, just propagate into the operation and
8711 change the mode if we have an operation of that mode. */
8713 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8714 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8716 /* If we ended up truncating both operands, truncate the result of the
8717 operation instead. */
8718 if (GET_CODE (op0) == TRUNCATE
8719 && GET_CODE (op1) == TRUNCATE)
8721 op0 = XEXP (op0, 0);
8722 op1 = XEXP (op1, 0);
8725 op0 = gen_lowpart_or_truncate (op_mode, op0);
8726 op1 = gen_lowpart_or_truncate (op_mode, op1);
8728 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8729 x = simplify_gen_binary (code, op_mode, op0, op1);
8730 break;
8732 case ASHIFT:
8733 /* For left shifts, do the same, but just for the first operand.
8734 However, we cannot do anything with shifts where we cannot
8735 guarantee that the counts are smaller than the size of the mode
8736 because such a count will have a different meaning in a
8737 wider mode. */
8739 if (! (CONST_INT_P (XEXP (x, 1))
8740 && INTVAL (XEXP (x, 1)) >= 0
8741 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8742 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8743 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8744 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8745 break;
8747 /* If the shift count is a constant and we can do arithmetic in
8748 the mode of the shift, refine which bits we need. Otherwise, use the
8749 conservative form of the mask. */
8750 if (CONST_INT_P (XEXP (x, 1))
8751 && INTVAL (XEXP (x, 1)) >= 0
8752 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8753 && HWI_COMPUTABLE_MODE_P (op_mode))
8754 mask >>= INTVAL (XEXP (x, 1));
8755 else
8756 mask = fuller_mask;
8758 op0 = gen_lowpart_or_truncate (op_mode,
8759 force_to_mode (XEXP (x, 0), op_mode,
8760 mask, next_select));
8762 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8763 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8764 break;
8766 case LSHIFTRT:
8767 /* Here we can only do something if the shift count is a constant,
8768 this shift constant is valid for the host, and we can do arithmetic
8769 in OP_MODE. */
8771 if (CONST_INT_P (XEXP (x, 1))
8772 && INTVAL (XEXP (x, 1)) >= 0
8773 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8774 && HWI_COMPUTABLE_MODE_P (op_mode))
8776 rtx inner = XEXP (x, 0);
8777 unsigned HOST_WIDE_INT inner_mask;
8779 /* Select the mask of the bits we need for the shift operand. */
8780 inner_mask = mask << INTVAL (XEXP (x, 1));
8782 /* We can only change the mode of the shift if we can do arithmetic
8783 in the mode of the shift and INNER_MASK is no wider than the
8784 width of X's mode. */
8785 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
8786 op_mode = GET_MODE (x);
8788 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8790 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
8791 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8794 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8795 shift and AND produces only copies of the sign bit (C2 is one less
8796 than a power of two), we can do this with just a shift. */
8798 if (GET_CODE (x) == LSHIFTRT
8799 && CONST_INT_P (XEXP (x, 1))
8800 /* The shift puts one of the sign bit copies in the least significant
8801 bit. */
8802 && ((INTVAL (XEXP (x, 1))
8803 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8804 >= GET_MODE_PRECISION (GET_MODE (x)))
8805 && pow2p_hwi (mask + 1)
8806 /* Number of bits left after the shift must be more than the mask
8807 needs. */
8808 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8809 <= GET_MODE_PRECISION (GET_MODE (x)))
8810 /* Must be more sign bit copies than the mask needs. */
8811 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8812 >= exact_log2 (mask + 1)))
8813 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8814 GEN_INT (GET_MODE_PRECISION (GET_MODE (x))
8815 - exact_log2 (mask + 1)));
8817 goto shiftrt;
8819 case ASHIFTRT:
8820 /* If we are just looking for the sign bit, we don't need this shift at
8821 all, even if it has a variable count. */
8822 if (val_signbit_p (GET_MODE (x), mask))
8823 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8825 /* If this is a shift by a constant, get a mask that contains those bits
8826 that are not copies of the sign bit. We then have two cases: If
8827 MASK only includes those bits, this can be a logical shift, which may
8828 allow simplifications. If MASK is a single-bit field not within
8829 those bits, we are requesting a copy of the sign bit and hence can
8830 shift the sign bit to the appropriate location. */
8832 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8833 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8835 int i;
8837 /* If the considered data is wider than HOST_WIDE_INT, we can't
8838 represent a mask for all its bits in a single scalar.
8839 But we only care about the lower bits, so calculate these. */
8841 if (GET_MODE_PRECISION (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
8843 nonzero = HOST_WIDE_INT_M1U;
8845 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8846 is the number of bits a full-width mask would have set.
8847 We need only shift if these are fewer than nonzero can
8848 hold. If not, we must keep all bits set in nonzero. */
8850 if (GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8851 < HOST_BITS_PER_WIDE_INT)
8852 nonzero >>= INTVAL (XEXP (x, 1))
8853 + HOST_BITS_PER_WIDE_INT
8854 - GET_MODE_PRECISION (GET_MODE (x)) ;
8856 else
8858 nonzero = GET_MODE_MASK (GET_MODE (x));
8859 nonzero >>= INTVAL (XEXP (x, 1));
8862 if ((mask & ~nonzero) == 0)
8864 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
8865 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8866 if (GET_CODE (x) != ASHIFTRT)
8867 return force_to_mode (x, mode, mask, next_select);
8870 else if ((i = exact_log2 (mask)) >= 0)
8872 x = simplify_shift_const
8873 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
8874 GET_MODE_PRECISION (GET_MODE (x)) - 1 - i);
8876 if (GET_CODE (x) != ASHIFTRT)
8877 return force_to_mode (x, mode, mask, next_select);
8881 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8882 even if the shift count isn't a constant. */
8883 if (mask == 1)
8884 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8885 XEXP (x, 0), XEXP (x, 1));
8887 shiftrt:
8889 /* If this is a zero- or sign-extension operation that just affects bits
8890 we don't care about, remove it. Be sure the call above returned
8891 something that is still a shift. */
8893 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
8894 && CONST_INT_P (XEXP (x, 1))
8895 && INTVAL (XEXP (x, 1)) >= 0
8896 && (INTVAL (XEXP (x, 1))
8897 <= GET_MODE_PRECISION (GET_MODE (x)) - (floor_log2 (mask) + 1))
8898 && GET_CODE (XEXP (x, 0)) == ASHIFT
8899 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
8900 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
8901 next_select);
8903 break;
8905 case ROTATE:
8906 case ROTATERT:
8907 /* If the shift count is constant and we can do computations
8908 in the mode of X, compute where the bits we care about are.
8909 Otherwise, we can't do anything. Don't change the mode of
8910 the shift or propagate MODE into the shift, though. */
8911 if (CONST_INT_P (XEXP (x, 1))
8912 && INTVAL (XEXP (x, 1)) >= 0)
8914 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
8915 GET_MODE (x),
8916 gen_int_mode (mask, GET_MODE (x)),
8917 XEXP (x, 1));
8918 if (temp && CONST_INT_P (temp))
8919 x = simplify_gen_binary (code, GET_MODE (x),
8920 force_to_mode (XEXP (x, 0), GET_MODE (x),
8921 INTVAL (temp), next_select),
8922 XEXP (x, 1));
8924 break;
8926 case NEG:
8927 /* If we just want the low-order bit, the NEG isn't needed since it
8928 won't change the low-order bit. */
8929 if (mask == 1)
8930 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
8932 /* We need any bits less significant than the most significant bit in
8933 MASK since carries from those bits will affect the bits we are
8934 interested in. */
8935 mask = fuller_mask;
8936 goto unop;
8938 case NOT:
8939 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8940 same as the XOR case above. Ensure that the constant we form is not
8941 wider than the mode of X. */
8943 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8944 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8945 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8946 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
8947 < GET_MODE_PRECISION (GET_MODE (x)))
8948 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
8950 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
8951 GET_MODE (x));
8952 temp = simplify_gen_binary (XOR, GET_MODE (x),
8953 XEXP (XEXP (x, 0), 0), temp);
8954 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
8955 temp, XEXP (XEXP (x, 0), 1));
8957 return force_to_mode (x, mode, mask, next_select);
8960 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8961 use the full mask inside the NOT. */
8962 mask = fuller_mask;
8964 unop:
8965 op0 = gen_lowpart_or_truncate (op_mode,
8966 force_to_mode (XEXP (x, 0), mode, mask,
8967 next_select));
8968 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
8969 x = simplify_gen_unary (code, op_mode, op0, op_mode);
8970 break;
8972 case NE:
8973 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8974 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8975 which is equal to STORE_FLAG_VALUE. */
8976 if ((mask & ~STORE_FLAG_VALUE) == 0
8977 && XEXP (x, 1) == const0_rtx
8978 && GET_MODE (XEXP (x, 0)) == mode
8979 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
8980 && (nonzero_bits (XEXP (x, 0), mode)
8981 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
8982 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8984 break;
8986 case IF_THEN_ELSE:
8987 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8988 written in a narrower mode. We play it safe and do not do so. */
8990 op0 = gen_lowpart_or_truncate (GET_MODE (x),
8991 force_to_mode (XEXP (x, 1), mode,
8992 mask, next_select));
8993 op1 = gen_lowpart_or_truncate (GET_MODE (x),
8994 force_to_mode (XEXP (x, 2), mode,
8995 mask, next_select));
8996 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
8997 x = simplify_gen_ternary (IF_THEN_ELSE, GET_MODE (x),
8998 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
8999 op0, op1);
9000 break;
9002 default:
9003 break;
9006 /* Ensure we return a value of the proper mode. */
9007 return gen_lowpart_or_truncate (mode, x);
9010 /* Return nonzero if X is an expression that has one of two values depending on
9011 whether some other value is zero or nonzero. In that case, we return the
9012 value that is being tested, *PTRUE is set to the value if the rtx being
9013 returned has a nonzero value, and *PFALSE is set to the other alternative.
9015 If we return zero, we set *PTRUE and *PFALSE to X. */
9017 static rtx
9018 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9020 machine_mode mode = GET_MODE (x);
9021 enum rtx_code code = GET_CODE (x);
9022 rtx cond0, cond1, true0, true1, false0, false1;
9023 unsigned HOST_WIDE_INT nz;
9025 /* If we are comparing a value against zero, we are done. */
9026 if ((code == NE || code == EQ)
9027 && XEXP (x, 1) == const0_rtx)
9029 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9030 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9031 return XEXP (x, 0);
9034 /* If this is a unary operation whose operand has one of two values, apply
9035 our opcode to compute those values. */
9036 else if (UNARY_P (x)
9037 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9039 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9040 *pfalse = simplify_gen_unary (code, mode, false0,
9041 GET_MODE (XEXP (x, 0)));
9042 return cond0;
9045 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9046 make can't possibly match and would suppress other optimizations. */
9047 else if (code == COMPARE)
9050 /* If this is a binary operation, see if either side has only one of two
9051 values. If either one does or if both do and they are conditional on
9052 the same value, compute the new true and false values. */
9053 else if (BINARY_P (x))
9055 rtx op0 = XEXP (x, 0);
9056 rtx op1 = XEXP (x, 1);
9057 cond0 = if_then_else_cond (op0, &true0, &false0);
9058 cond1 = if_then_else_cond (op1, &true1, &false1);
9060 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9061 && (REG_P (op0) || REG_P (op1)))
9063 /* Try to enable a simplification by undoing work done by
9064 if_then_else_cond if it converted a REG into something more
9065 complex. */
9066 if (REG_P (op0))
9068 cond0 = 0;
9069 true0 = false0 = op0;
9071 else
9073 cond1 = 0;
9074 true1 = false1 = op1;
9078 if ((cond0 != 0 || cond1 != 0)
9079 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9081 /* If if_then_else_cond returned zero, then true/false are the
9082 same rtl. We must copy one of them to prevent invalid rtl
9083 sharing. */
9084 if (cond0 == 0)
9085 true0 = copy_rtx (true0);
9086 else if (cond1 == 0)
9087 true1 = copy_rtx (true1);
9089 if (COMPARISON_P (x))
9091 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9092 true0, true1);
9093 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9094 false0, false1);
9096 else
9098 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9099 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9102 return cond0 ? cond0 : cond1;
9105 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9106 operands is zero when the other is nonzero, and vice-versa,
9107 and STORE_FLAG_VALUE is 1 or -1. */
9109 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9110 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9111 || code == UMAX)
9112 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9114 rtx op0 = XEXP (XEXP (x, 0), 1);
9115 rtx op1 = XEXP (XEXP (x, 1), 1);
9117 cond0 = XEXP (XEXP (x, 0), 0);
9118 cond1 = XEXP (XEXP (x, 1), 0);
9120 if (COMPARISON_P (cond0)
9121 && COMPARISON_P (cond1)
9122 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9123 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9124 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9125 || ((swap_condition (GET_CODE (cond0))
9126 == reversed_comparison_code (cond1, NULL))
9127 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9128 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9129 && ! side_effects_p (x))
9131 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9132 *pfalse = simplify_gen_binary (MULT, mode,
9133 (code == MINUS
9134 ? simplify_gen_unary (NEG, mode,
9135 op1, mode)
9136 : op1),
9137 const_true_rtx);
9138 return cond0;
9142 /* Similarly for MULT, AND and UMIN, except that for these the result
9143 is always zero. */
9144 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9145 && (code == MULT || code == AND || code == UMIN)
9146 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9148 cond0 = XEXP (XEXP (x, 0), 0);
9149 cond1 = XEXP (XEXP (x, 1), 0);
9151 if (COMPARISON_P (cond0)
9152 && COMPARISON_P (cond1)
9153 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9154 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9155 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9156 || ((swap_condition (GET_CODE (cond0))
9157 == reversed_comparison_code (cond1, NULL))
9158 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9159 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9160 && ! side_effects_p (x))
9162 *ptrue = *pfalse = const0_rtx;
9163 return cond0;
9168 else if (code == IF_THEN_ELSE)
9170 /* If we have IF_THEN_ELSE already, extract the condition and
9171 canonicalize it if it is NE or EQ. */
9172 cond0 = XEXP (x, 0);
9173 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9174 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9175 return XEXP (cond0, 0);
9176 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9178 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9179 return XEXP (cond0, 0);
9181 else
9182 return cond0;
9185 /* If X is a SUBREG, we can narrow both the true and false values
9186 if the inner expression, if there is a condition. */
9187 else if (code == SUBREG
9188 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9189 &true0, &false0)))
9191 true0 = simplify_gen_subreg (mode, true0,
9192 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9193 false0 = simplify_gen_subreg (mode, false0,
9194 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9195 if (true0 && false0)
9197 *ptrue = true0;
9198 *pfalse = false0;
9199 return cond0;
9203 /* If X is a constant, this isn't special and will cause confusions
9204 if we treat it as such. Likewise if it is equivalent to a constant. */
9205 else if (CONSTANT_P (x)
9206 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9209 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9210 will be least confusing to the rest of the compiler. */
9211 else if (mode == BImode)
9213 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9214 return x;
9217 /* If X is known to be either 0 or -1, those are the true and
9218 false values when testing X. */
9219 else if (x == constm1_rtx || x == const0_rtx
9220 || (mode != VOIDmode && mode != BLKmode
9221 && num_sign_bit_copies (x, mode) == GET_MODE_PRECISION (mode)))
9223 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9224 return x;
9227 /* Likewise for 0 or a single bit. */
9228 else if (HWI_COMPUTABLE_MODE_P (mode)
9229 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9231 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9232 return x;
9235 /* Otherwise fail; show no condition with true and false values the same. */
9236 *ptrue = *pfalse = x;
9237 return 0;
9240 /* Return the value of expression X given the fact that condition COND
9241 is known to be true when applied to REG as its first operand and VAL
9242 as its second. X is known to not be shared and so can be modified in
9243 place.
9245 We only handle the simplest cases, and specifically those cases that
9246 arise with IF_THEN_ELSE expressions. */
9248 static rtx
9249 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9251 enum rtx_code code = GET_CODE (x);
9252 const char *fmt;
9253 int i, j;
9255 if (side_effects_p (x))
9256 return x;
9258 /* If either operand of the condition is a floating point value,
9259 then we have to avoid collapsing an EQ comparison. */
9260 if (cond == EQ
9261 && rtx_equal_p (x, reg)
9262 && ! FLOAT_MODE_P (GET_MODE (x))
9263 && ! FLOAT_MODE_P (GET_MODE (val)))
9264 return val;
9266 if (cond == UNEQ && rtx_equal_p (x, reg))
9267 return val;
9269 /* If X is (abs REG) and we know something about REG's relationship
9270 with zero, we may be able to simplify this. */
9272 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9273 switch (cond)
9275 case GE: case GT: case EQ:
9276 return XEXP (x, 0);
9277 case LT: case LE:
9278 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9279 XEXP (x, 0),
9280 GET_MODE (XEXP (x, 0)));
9281 default:
9282 break;
9285 /* The only other cases we handle are MIN, MAX, and comparisons if the
9286 operands are the same as REG and VAL. */
9288 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9290 if (rtx_equal_p (XEXP (x, 0), val))
9292 std::swap (val, reg);
9293 cond = swap_condition (cond);
9296 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9298 if (COMPARISON_P (x))
9300 if (comparison_dominates_p (cond, code))
9301 return const_true_rtx;
9303 code = reversed_comparison_code (x, NULL);
9304 if (code != UNKNOWN
9305 && comparison_dominates_p (cond, code))
9306 return const0_rtx;
9307 else
9308 return x;
9310 else if (code == SMAX || code == SMIN
9311 || code == UMIN || code == UMAX)
9313 int unsignedp = (code == UMIN || code == UMAX);
9315 /* Do not reverse the condition when it is NE or EQ.
9316 This is because we cannot conclude anything about
9317 the value of 'SMAX (x, y)' when x is not equal to y,
9318 but we can when x equals y. */
9319 if ((code == SMAX || code == UMAX)
9320 && ! (cond == EQ || cond == NE))
9321 cond = reverse_condition (cond);
9323 switch (cond)
9325 case GE: case GT:
9326 return unsignedp ? x : XEXP (x, 1);
9327 case LE: case LT:
9328 return unsignedp ? x : XEXP (x, 0);
9329 case GEU: case GTU:
9330 return unsignedp ? XEXP (x, 1) : x;
9331 case LEU: case LTU:
9332 return unsignedp ? XEXP (x, 0) : x;
9333 default:
9334 break;
9339 else if (code == SUBREG)
9341 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9342 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9344 if (SUBREG_REG (x) != r)
9346 /* We must simplify subreg here, before we lose track of the
9347 original inner_mode. */
9348 new_rtx = simplify_subreg (GET_MODE (x), r,
9349 inner_mode, SUBREG_BYTE (x));
9350 if (new_rtx)
9351 return new_rtx;
9352 else
9353 SUBST (SUBREG_REG (x), r);
9356 return x;
9358 /* We don't have to handle SIGN_EXTEND here, because even in the
9359 case of replacing something with a modeless CONST_INT, a
9360 CONST_INT is already (supposed to be) a valid sign extension for
9361 its narrower mode, which implies it's already properly
9362 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9363 story is different. */
9364 else if (code == ZERO_EXTEND)
9366 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9367 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9369 if (XEXP (x, 0) != r)
9371 /* We must simplify the zero_extend here, before we lose
9372 track of the original inner_mode. */
9373 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9374 r, inner_mode);
9375 if (new_rtx)
9376 return new_rtx;
9377 else
9378 SUBST (XEXP (x, 0), r);
9381 return x;
9384 fmt = GET_RTX_FORMAT (code);
9385 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9387 if (fmt[i] == 'e')
9388 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9389 else if (fmt[i] == 'E')
9390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9391 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9392 cond, reg, val));
9395 return x;
9398 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9399 assignment as a field assignment. */
9401 static int
9402 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9404 if (widen_x && GET_MODE (x) != GET_MODE (y))
9406 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (y)))
9407 return 0;
9408 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9409 return 0;
9410 /* For big endian, adjust the memory offset. */
9411 if (BYTES_BIG_ENDIAN)
9412 x = adjust_address_nv (x, GET_MODE (y),
9413 -subreg_lowpart_offset (GET_MODE (x),
9414 GET_MODE (y)));
9415 else
9416 x = adjust_address_nv (x, GET_MODE (y), 0);
9419 if (x == y || rtx_equal_p (x, y))
9420 return 1;
9422 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9423 return 0;
9425 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9426 Note that all SUBREGs of MEM are paradoxical; otherwise they
9427 would have been rewritten. */
9428 if (MEM_P (x) && GET_CODE (y) == SUBREG
9429 && MEM_P (SUBREG_REG (y))
9430 && rtx_equal_p (SUBREG_REG (y),
9431 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9432 return 1;
9434 if (MEM_P (y) && GET_CODE (x) == SUBREG
9435 && MEM_P (SUBREG_REG (x))
9436 && rtx_equal_p (SUBREG_REG (x),
9437 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9438 return 1;
9440 /* We used to see if get_last_value of X and Y were the same but that's
9441 not correct. In one direction, we'll cause the assignment to have
9442 the wrong destination and in the case, we'll import a register into this
9443 insn that might have already have been dead. So fail if none of the
9444 above cases are true. */
9445 return 0;
9448 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9449 Return that assignment if so.
9451 We only handle the most common cases. */
9453 static rtx
9454 make_field_assignment (rtx x)
9456 rtx dest = SET_DEST (x);
9457 rtx src = SET_SRC (x);
9458 rtx assign;
9459 rtx rhs, lhs;
9460 HOST_WIDE_INT c1;
9461 HOST_WIDE_INT pos;
9462 unsigned HOST_WIDE_INT len;
9463 rtx other;
9464 machine_mode mode;
9466 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9467 a clear of a one-bit field. We will have changed it to
9468 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9469 for a SUBREG. */
9471 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9472 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9473 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9474 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9476 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9477 1, 1, 1, 0);
9478 if (assign != 0)
9479 return gen_rtx_SET (assign, const0_rtx);
9480 return x;
9483 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9484 && subreg_lowpart_p (XEXP (src, 0))
9485 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
9486 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
9487 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9488 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9489 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9490 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9492 assign = make_extraction (VOIDmode, dest, 0,
9493 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9494 1, 1, 1, 0);
9495 if (assign != 0)
9496 return gen_rtx_SET (assign, const0_rtx);
9497 return x;
9500 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9501 one-bit field. */
9502 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9503 && XEXP (XEXP (src, 0), 0) == const1_rtx
9504 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9506 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9507 1, 1, 1, 0);
9508 if (assign != 0)
9509 return gen_rtx_SET (assign, const1_rtx);
9510 return x;
9513 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9514 SRC is an AND with all bits of that field set, then we can discard
9515 the AND. */
9516 if (GET_CODE (dest) == ZERO_EXTRACT
9517 && CONST_INT_P (XEXP (dest, 1))
9518 && GET_CODE (src) == AND
9519 && CONST_INT_P (XEXP (src, 1)))
9521 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9522 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9523 unsigned HOST_WIDE_INT ze_mask;
9525 if (width >= HOST_BITS_PER_WIDE_INT)
9526 ze_mask = -1;
9527 else
9528 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9530 /* Complete overlap. We can remove the source AND. */
9531 if ((and_mask & ze_mask) == ze_mask)
9532 return gen_rtx_SET (dest, XEXP (src, 0));
9534 /* Partial overlap. We can reduce the source AND. */
9535 if ((and_mask & ze_mask) != and_mask)
9537 mode = GET_MODE (src);
9538 src = gen_rtx_AND (mode, XEXP (src, 0),
9539 gen_int_mode (and_mask & ze_mask, mode));
9540 return gen_rtx_SET (dest, src);
9544 /* The other case we handle is assignments into a constant-position
9545 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9546 a mask that has all one bits except for a group of zero bits and
9547 OTHER is known to have zeros where C1 has ones, this is such an
9548 assignment. Compute the position and length from C1. Shift OTHER
9549 to the appropriate position, force it to the required mode, and
9550 make the extraction. Check for the AND in both operands. */
9552 /* One or more SUBREGs might obscure the constant-position field
9553 assignment. The first one we are likely to encounter is an outer
9554 narrowing SUBREG, which we can just strip for the purposes of
9555 identifying the constant-field assignment. */
9556 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src))
9557 src = SUBREG_REG (src);
9559 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9560 return x;
9562 rhs = expand_compound_operation (XEXP (src, 0));
9563 lhs = expand_compound_operation (XEXP (src, 1));
9565 if (GET_CODE (rhs) == AND
9566 && CONST_INT_P (XEXP (rhs, 1))
9567 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9568 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9569 /* The second SUBREG that might get in the way is a paradoxical
9570 SUBREG around the first operand of the AND. We want to
9571 pretend the operand is as wide as the destination here. We
9572 do this by adjusting the MEM to wider mode for the sole
9573 purpose of the call to rtx_equal_for_field_assignment_p. Also
9574 note this trick only works for MEMs. */
9575 else if (GET_CODE (rhs) == AND
9576 && paradoxical_subreg_p (XEXP (rhs, 0))
9577 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9578 && CONST_INT_P (XEXP (rhs, 1))
9579 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9580 dest, true))
9581 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9582 else if (GET_CODE (lhs) == AND
9583 && CONST_INT_P (XEXP (lhs, 1))
9584 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9585 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9586 /* The second SUBREG that might get in the way is a paradoxical
9587 SUBREG around the first operand of the AND. We want to
9588 pretend the operand is as wide as the destination here. We
9589 do this by adjusting the MEM to wider mode for the sole
9590 purpose of the call to rtx_equal_for_field_assignment_p. Also
9591 note this trick only works for MEMs. */
9592 else if (GET_CODE (lhs) == AND
9593 && paradoxical_subreg_p (XEXP (lhs, 0))
9594 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9595 && CONST_INT_P (XEXP (lhs, 1))
9596 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9597 dest, true))
9598 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9599 else
9600 return x;
9602 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
9603 if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest))
9604 || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
9605 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
9606 return x;
9608 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9609 if (assign == 0)
9610 return x;
9612 /* The mode to use for the source is the mode of the assignment, or of
9613 what is inside a possible STRICT_LOW_PART. */
9614 mode = (GET_CODE (assign) == STRICT_LOW_PART
9615 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9617 /* Shift OTHER right POS places and make it the source, restricting it
9618 to the proper length and mode. */
9620 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9621 GET_MODE (src),
9622 other, pos),
9623 dest);
9624 src = force_to_mode (src, mode,
9625 GET_MODE_PRECISION (mode) >= HOST_BITS_PER_WIDE_INT
9626 ? HOST_WIDE_INT_M1U
9627 : (HOST_WIDE_INT_1U << len) - 1,
9630 /* If SRC is masked by an AND that does not make a difference in
9631 the value being stored, strip it. */
9632 if (GET_CODE (assign) == ZERO_EXTRACT
9633 && CONST_INT_P (XEXP (assign, 1))
9634 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9635 && GET_CODE (src) == AND
9636 && CONST_INT_P (XEXP (src, 1))
9637 && UINTVAL (XEXP (src, 1))
9638 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9639 src = XEXP (src, 0);
9641 return gen_rtx_SET (assign, src);
9644 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9645 if so. */
9647 static rtx
9648 apply_distributive_law (rtx x)
9650 enum rtx_code code = GET_CODE (x);
9651 enum rtx_code inner_code;
9652 rtx lhs, rhs, other;
9653 rtx tem;
9655 /* Distributivity is not true for floating point as it can change the
9656 value. So we don't do it unless -funsafe-math-optimizations. */
9657 if (FLOAT_MODE_P (GET_MODE (x))
9658 && ! flag_unsafe_math_optimizations)
9659 return x;
9661 /* The outer operation can only be one of the following: */
9662 if (code != IOR && code != AND && code != XOR
9663 && code != PLUS && code != MINUS)
9664 return x;
9666 lhs = XEXP (x, 0);
9667 rhs = XEXP (x, 1);
9669 /* If either operand is a primitive we can't do anything, so get out
9670 fast. */
9671 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9672 return x;
9674 lhs = expand_compound_operation (lhs);
9675 rhs = expand_compound_operation (rhs);
9676 inner_code = GET_CODE (lhs);
9677 if (inner_code != GET_CODE (rhs))
9678 return x;
9680 /* See if the inner and outer operations distribute. */
9681 switch (inner_code)
9683 case LSHIFTRT:
9684 case ASHIFTRT:
9685 case AND:
9686 case IOR:
9687 /* These all distribute except over PLUS. */
9688 if (code == PLUS || code == MINUS)
9689 return x;
9690 break;
9692 case MULT:
9693 if (code != PLUS && code != MINUS)
9694 return x;
9695 break;
9697 case ASHIFT:
9698 /* This is also a multiply, so it distributes over everything. */
9699 break;
9701 /* This used to handle SUBREG, but this turned out to be counter-
9702 productive, since (subreg (op ...)) usually is not handled by
9703 insn patterns, and this "optimization" therefore transformed
9704 recognizable patterns into unrecognizable ones. Therefore the
9705 SUBREG case was removed from here.
9707 It is possible that distributing SUBREG over arithmetic operations
9708 leads to an intermediate result than can then be optimized further,
9709 e.g. by moving the outer SUBREG to the other side of a SET as done
9710 in simplify_set. This seems to have been the original intent of
9711 handling SUBREGs here.
9713 However, with current GCC this does not appear to actually happen,
9714 at least on major platforms. If some case is found where removing
9715 the SUBREG case here prevents follow-on optimizations, distributing
9716 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9718 default:
9719 return x;
9722 /* Set LHS and RHS to the inner operands (A and B in the example
9723 above) and set OTHER to the common operand (C in the example).
9724 There is only one way to do this unless the inner operation is
9725 commutative. */
9726 if (COMMUTATIVE_ARITH_P (lhs)
9727 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9728 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9729 else if (COMMUTATIVE_ARITH_P (lhs)
9730 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9731 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9732 else if (COMMUTATIVE_ARITH_P (lhs)
9733 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9734 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9735 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9736 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9737 else
9738 return x;
9740 /* Form the new inner operation, seeing if it simplifies first. */
9741 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9743 /* There is one exception to the general way of distributing:
9744 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9745 if (code == XOR && inner_code == IOR)
9747 inner_code = AND;
9748 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9751 /* We may be able to continuing distributing the result, so call
9752 ourselves recursively on the inner operation before forming the
9753 outer operation, which we return. */
9754 return simplify_gen_binary (inner_code, GET_MODE (x),
9755 apply_distributive_law (tem), other);
9758 /* See if X is of the form (* (+ A B) C), and if so convert to
9759 (+ (* A C) (* B C)) and try to simplify.
9761 Most of the time, this results in no change. However, if some of
9762 the operands are the same or inverses of each other, simplifications
9763 will result.
9765 For example, (and (ior A B) (not B)) can occur as the result of
9766 expanding a bit field assignment. When we apply the distributive
9767 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9768 which then simplifies to (and (A (not B))).
9770 Note that no checks happen on the validity of applying the inverse
9771 distributive law. This is pointless since we can do it in the
9772 few places where this routine is called.
9774 N is the index of the term that is decomposed (the arithmetic operation,
9775 i.e. (+ A B) in the first example above). !N is the index of the term that
9776 is distributed, i.e. of C in the first example above. */
9777 static rtx
9778 distribute_and_simplify_rtx (rtx x, int n)
9780 machine_mode mode;
9781 enum rtx_code outer_code, inner_code;
9782 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9784 /* Distributivity is not true for floating point as it can change the
9785 value. So we don't do it unless -funsafe-math-optimizations. */
9786 if (FLOAT_MODE_P (GET_MODE (x))
9787 && ! flag_unsafe_math_optimizations)
9788 return NULL_RTX;
9790 decomposed = XEXP (x, n);
9791 if (!ARITHMETIC_P (decomposed))
9792 return NULL_RTX;
9794 mode = GET_MODE (x);
9795 outer_code = GET_CODE (x);
9796 distributed = XEXP (x, !n);
9798 inner_code = GET_CODE (decomposed);
9799 inner_op0 = XEXP (decomposed, 0);
9800 inner_op1 = XEXP (decomposed, 1);
9802 /* Special case (and (xor B C) (not A)), which is equivalent to
9803 (xor (ior A B) (ior A C)) */
9804 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9806 distributed = XEXP (distributed, 0);
9807 outer_code = IOR;
9810 if (n == 0)
9812 /* Distribute the second term. */
9813 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9814 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9816 else
9818 /* Distribute the first term. */
9819 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9820 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9823 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9824 new_op0, new_op1));
9825 if (GET_CODE (tmp) != outer_code
9826 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9827 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9828 return tmp;
9830 return NULL_RTX;
9833 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9834 in MODE. Return an equivalent form, if different from (and VAROP
9835 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9837 static rtx
9838 simplify_and_const_int_1 (machine_mode mode, rtx varop,
9839 unsigned HOST_WIDE_INT constop)
9841 unsigned HOST_WIDE_INT nonzero;
9842 unsigned HOST_WIDE_INT orig_constop;
9843 rtx orig_varop;
9844 int i;
9846 orig_varop = varop;
9847 orig_constop = constop;
9848 if (GET_CODE (varop) == CLOBBER)
9849 return NULL_RTX;
9851 /* Simplify VAROP knowing that we will be only looking at some of the
9852 bits in it.
9854 Note by passing in CONSTOP, we guarantee that the bits not set in
9855 CONSTOP are not significant and will never be examined. We must
9856 ensure that is the case by explicitly masking out those bits
9857 before returning. */
9858 varop = force_to_mode (varop, mode, constop, 0);
9860 /* If VAROP is a CLOBBER, we will fail so return it. */
9861 if (GET_CODE (varop) == CLOBBER)
9862 return varop;
9864 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9865 to VAROP and return the new constant. */
9866 if (CONST_INT_P (varop))
9867 return gen_int_mode (INTVAL (varop) & constop, mode);
9869 /* See what bits may be nonzero in VAROP. Unlike the general case of
9870 a call to nonzero_bits, here we don't care about bits outside
9871 MODE. */
9873 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
9875 /* Turn off all bits in the constant that are known to already be zero.
9876 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9877 which is tested below. */
9879 constop &= nonzero;
9881 /* If we don't have any bits left, return zero. */
9882 if (constop == 0)
9883 return const0_rtx;
9885 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9886 a power of two, we can replace this with an ASHIFT. */
9887 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
9888 && (i = exact_log2 (constop)) >= 0)
9889 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
9891 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9892 or XOR, then try to apply the distributive law. This may eliminate
9893 operations if either branch can be simplified because of the AND.
9894 It may also make some cases more complex, but those cases probably
9895 won't match a pattern either with or without this. */
9897 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
9898 return
9899 gen_lowpart
9900 (mode,
9901 apply_distributive_law
9902 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
9903 simplify_and_const_int (NULL_RTX,
9904 GET_MODE (varop),
9905 XEXP (varop, 0),
9906 constop),
9907 simplify_and_const_int (NULL_RTX,
9908 GET_MODE (varop),
9909 XEXP (varop, 1),
9910 constop))));
9912 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9913 the AND and see if one of the operands simplifies to zero. If so, we
9914 may eliminate it. */
9916 if (GET_CODE (varop) == PLUS
9917 && pow2p_hwi (constop + 1))
9919 rtx o0, o1;
9921 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
9922 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
9923 if (o0 == const0_rtx)
9924 return o1;
9925 if (o1 == const0_rtx)
9926 return o0;
9929 /* Make a SUBREG if necessary. If we can't make it, fail. */
9930 varop = gen_lowpart (mode, varop);
9931 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9932 return NULL_RTX;
9934 /* If we are only masking insignificant bits, return VAROP. */
9935 if (constop == nonzero)
9936 return varop;
9938 if (varop == orig_varop && constop == orig_constop)
9939 return NULL_RTX;
9941 /* Otherwise, return an AND. */
9942 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
9946 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9947 in MODE.
9949 Return an equivalent form, if different from X. Otherwise, return X. If
9950 X is zero, we are to always construct the equivalent form. */
9952 static rtx
9953 simplify_and_const_int (rtx x, machine_mode mode, rtx varop,
9954 unsigned HOST_WIDE_INT constop)
9956 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
9957 if (tem)
9958 return tem;
9960 if (!x)
9961 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
9962 gen_int_mode (constop, mode));
9963 if (GET_MODE (x) != mode)
9964 x = gen_lowpart (mode, x);
9965 return x;
9968 /* Given a REG, X, compute which bits in X can be nonzero.
9969 We don't care about bits outside of those defined in MODE.
9971 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9972 a shift, AND, or zero_extract, we can do better. */
9974 static rtx
9975 reg_nonzero_bits_for_combine (const_rtx x, machine_mode mode,
9976 const_rtx known_x ATTRIBUTE_UNUSED,
9977 machine_mode known_mode ATTRIBUTE_UNUSED,
9978 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
9979 unsigned HOST_WIDE_INT *nonzero)
9981 rtx tem;
9982 reg_stat_type *rsp;
9984 /* If X is a register whose nonzero bits value is current, use it.
9985 Otherwise, if X is a register whose value we can find, use that
9986 value. Otherwise, use the previously-computed global nonzero bits
9987 for this register. */
9989 rsp = &reg_stat[REGNO (x)];
9990 if (rsp->last_set_value != 0
9991 && (rsp->last_set_mode == mode
9992 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
9993 && GET_MODE_CLASS (mode) == MODE_INT))
9994 && ((rsp->last_set_label >= label_tick_ebb_start
9995 && rsp->last_set_label < label_tick)
9996 || (rsp->last_set_label == label_tick
9997 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
9998 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
9999 && REGNO (x) < reg_n_sets_max
10000 && REG_N_SETS (REGNO (x)) == 1
10001 && !REGNO_REG_SET_P
10002 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10003 REGNO (x)))))
10005 /* Note that, even if the precision of last_set_mode is lower than that
10006 of mode, record_value_for_reg invoked nonzero_bits on the register
10007 with nonzero_bits_mode (because last_set_mode is necessarily integral
10008 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10009 are all valid, hence in mode too since nonzero_bits_mode is defined
10010 to the largest HWI_COMPUTABLE_MODE_P mode. */
10011 *nonzero &= rsp->last_set_nonzero_bits;
10012 return NULL;
10015 tem = get_last_value (x);
10016 if (tem)
10018 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10019 tem = sign_extend_short_imm (tem, GET_MODE (x),
10020 GET_MODE_PRECISION (mode));
10022 return tem;
10025 if (nonzero_sign_valid && rsp->nonzero_bits)
10027 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10029 if (GET_MODE_PRECISION (GET_MODE (x)) < GET_MODE_PRECISION (mode))
10030 /* We don't know anything about the upper bits. */
10031 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
10033 *nonzero &= mask;
10036 return NULL;
10039 /* Return the number of bits at the high-order end of X that are known to
10040 be equal to the sign bit. X will be used in mode MODE; if MODE is
10041 VOIDmode, X will be used in its own mode. The returned value will always
10042 be between 1 and the number of bits in MODE. */
10044 static rtx
10045 reg_num_sign_bit_copies_for_combine (const_rtx x, machine_mode mode,
10046 const_rtx known_x ATTRIBUTE_UNUSED,
10047 machine_mode known_mode
10048 ATTRIBUTE_UNUSED,
10049 unsigned int known_ret ATTRIBUTE_UNUSED,
10050 unsigned int *result)
10052 rtx tem;
10053 reg_stat_type *rsp;
10055 rsp = &reg_stat[REGNO (x)];
10056 if (rsp->last_set_value != 0
10057 && rsp->last_set_mode == mode
10058 && ((rsp->last_set_label >= label_tick_ebb_start
10059 && rsp->last_set_label < label_tick)
10060 || (rsp->last_set_label == label_tick
10061 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10062 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10063 && REGNO (x) < reg_n_sets_max
10064 && REG_N_SETS (REGNO (x)) == 1
10065 && !REGNO_REG_SET_P
10066 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10067 REGNO (x)))))
10069 *result = rsp->last_set_sign_bit_copies;
10070 return NULL;
10073 tem = get_last_value (x);
10074 if (tem != 0)
10075 return tem;
10077 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10078 && GET_MODE_PRECISION (GET_MODE (x)) == GET_MODE_PRECISION (mode))
10079 *result = rsp->sign_bit_copies;
10081 return NULL;
10084 /* Return the number of "extended" bits there are in X, when interpreted
10085 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10086 unsigned quantities, this is the number of high-order zero bits.
10087 For signed quantities, this is the number of copies of the sign bit
10088 minus 1. In both case, this function returns the number of "spare"
10089 bits. For example, if two quantities for which this function returns
10090 at least 1 are added, the addition is known not to overflow.
10092 This function will always return 0 unless called during combine, which
10093 implies that it must be called from a define_split. */
10095 unsigned int
10096 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10098 if (nonzero_sign_valid == 0)
10099 return 0;
10101 return (unsignedp
10102 ? (HWI_COMPUTABLE_MODE_P (mode)
10103 ? (unsigned int) (GET_MODE_PRECISION (mode) - 1
10104 - floor_log2 (nonzero_bits (x, mode)))
10105 : 0)
10106 : num_sign_bit_copies (x, mode) - 1);
10109 /* This function is called from `simplify_shift_const' to merge two
10110 outer operations. Specifically, we have already found that we need
10111 to perform operation *POP0 with constant *PCONST0 at the outermost
10112 position. We would now like to also perform OP1 with constant CONST1
10113 (with *POP0 being done last).
10115 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10116 the resulting operation. *PCOMP_P is set to 1 if we would need to
10117 complement the innermost operand, otherwise it is unchanged.
10119 MODE is the mode in which the operation will be done. No bits outside
10120 the width of this mode matter. It is assumed that the width of this mode
10121 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10123 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10124 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10125 result is simply *PCONST0.
10127 If the resulting operation cannot be expressed as one operation, we
10128 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10130 static int
10131 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10133 enum rtx_code op0 = *pop0;
10134 HOST_WIDE_INT const0 = *pconst0;
10136 const0 &= GET_MODE_MASK (mode);
10137 const1 &= GET_MODE_MASK (mode);
10139 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10140 if (op0 == AND)
10141 const1 &= const0;
10143 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10144 if OP0 is SET. */
10146 if (op1 == UNKNOWN || op0 == SET)
10147 return 1;
10149 else if (op0 == UNKNOWN)
10150 op0 = op1, const0 = const1;
10152 else if (op0 == op1)
10154 switch (op0)
10156 case AND:
10157 const0 &= const1;
10158 break;
10159 case IOR:
10160 const0 |= const1;
10161 break;
10162 case XOR:
10163 const0 ^= const1;
10164 break;
10165 case PLUS:
10166 const0 += const1;
10167 break;
10168 case NEG:
10169 op0 = UNKNOWN;
10170 break;
10171 default:
10172 break;
10176 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10177 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10178 return 0;
10180 /* If the two constants aren't the same, we can't do anything. The
10181 remaining six cases can all be done. */
10182 else if (const0 != const1)
10183 return 0;
10185 else
10186 switch (op0)
10188 case IOR:
10189 if (op1 == AND)
10190 /* (a & b) | b == b */
10191 op0 = SET;
10192 else /* op1 == XOR */
10193 /* (a ^ b) | b == a | b */
10195 break;
10197 case XOR:
10198 if (op1 == AND)
10199 /* (a & b) ^ b == (~a) & b */
10200 op0 = AND, *pcomp_p = 1;
10201 else /* op1 == IOR */
10202 /* (a | b) ^ b == a & ~b */
10203 op0 = AND, const0 = ~const0;
10204 break;
10206 case AND:
10207 if (op1 == IOR)
10208 /* (a | b) & b == b */
10209 op0 = SET;
10210 else /* op1 == XOR */
10211 /* (a ^ b) & b) == (~a) & b */
10212 *pcomp_p = 1;
10213 break;
10214 default:
10215 break;
10218 /* Check for NO-OP cases. */
10219 const0 &= GET_MODE_MASK (mode);
10220 if (const0 == 0
10221 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10222 op0 = UNKNOWN;
10223 else if (const0 == 0 && op0 == AND)
10224 op0 = SET;
10225 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10226 && op0 == AND)
10227 op0 = UNKNOWN;
10229 *pop0 = op0;
10231 /* ??? Slightly redundant with the above mask, but not entirely.
10232 Moving this above means we'd have to sign-extend the mode mask
10233 for the final test. */
10234 if (op0 != UNKNOWN && op0 != NEG)
10235 *pconst0 = trunc_int_for_mode (const0, mode);
10237 return 1;
10240 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10241 the shift in. The original shift operation CODE is performed on OP in
10242 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10243 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10244 result of the shift is subject to operation OUTER_CODE with operand
10245 OUTER_CONST. */
10247 static machine_mode
10248 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10249 machine_mode orig_mode, machine_mode mode,
10250 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10252 if (orig_mode == mode)
10253 return mode;
10254 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10256 /* In general we can't perform in wider mode for right shift and rotate. */
10257 switch (code)
10259 case ASHIFTRT:
10260 /* We can still widen if the bits brought in from the left are identical
10261 to the sign bit of ORIG_MODE. */
10262 if (num_sign_bit_copies (op, mode)
10263 > (unsigned) (GET_MODE_PRECISION (mode)
10264 - GET_MODE_PRECISION (orig_mode)))
10265 return mode;
10266 return orig_mode;
10268 case LSHIFTRT:
10269 /* Similarly here but with zero bits. */
10270 if (HWI_COMPUTABLE_MODE_P (mode)
10271 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10272 return mode;
10274 /* We can also widen if the bits brought in will be masked off. This
10275 operation is performed in ORIG_MODE. */
10276 if (outer_code == AND)
10278 int care_bits = low_bitmask_len (orig_mode, outer_const);
10280 if (care_bits >= 0
10281 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10282 return mode;
10284 /* fall through */
10286 case ROTATE:
10287 return orig_mode;
10289 case ROTATERT:
10290 gcc_unreachable ();
10292 default:
10293 return mode;
10297 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10298 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10299 if we cannot simplify it. Otherwise, return a simplified value.
10301 The shift is normally computed in the widest mode we find in VAROP, as
10302 long as it isn't a different number of words than RESULT_MODE. Exceptions
10303 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10305 static rtx
10306 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10307 rtx varop, int orig_count)
10309 enum rtx_code orig_code = code;
10310 rtx orig_varop = varop;
10311 int count;
10312 machine_mode mode = result_mode;
10313 machine_mode shift_mode, tmode;
10314 unsigned int mode_words
10315 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10316 /* We form (outer_op (code varop count) (outer_const)). */
10317 enum rtx_code outer_op = UNKNOWN;
10318 HOST_WIDE_INT outer_const = 0;
10319 int complement_p = 0;
10320 rtx new_rtx, x;
10322 /* Make sure and truncate the "natural" shift on the way in. We don't
10323 want to do this inside the loop as it makes it more difficult to
10324 combine shifts. */
10325 if (SHIFT_COUNT_TRUNCATED)
10326 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10328 /* If we were given an invalid count, don't do anything except exactly
10329 what was requested. */
10331 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10332 return NULL_RTX;
10334 count = orig_count;
10336 /* Unless one of the branches of the `if' in this loop does a `continue',
10337 we will `break' the loop after the `if'. */
10339 while (count != 0)
10341 /* If we have an operand of (clobber (const_int 0)), fail. */
10342 if (GET_CODE (varop) == CLOBBER)
10343 return NULL_RTX;
10345 /* Convert ROTATERT to ROTATE. */
10346 if (code == ROTATERT)
10348 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10349 code = ROTATE;
10350 count = bitsize - count;
10353 shift_mode = try_widen_shift_mode (code, varop, count, result_mode,
10354 mode, outer_op, outer_const);
10355 machine_mode shift_unit_mode = GET_MODE_INNER (shift_mode);
10357 /* Handle cases where the count is greater than the size of the mode
10358 minus 1. For ASHIFT, use the size minus one as the count (this can
10359 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10360 take the count modulo the size. For other shifts, the result is
10361 zero.
10363 Since these shifts are being produced by the compiler by combining
10364 multiple operations, each of which are defined, we know what the
10365 result is supposed to be. */
10367 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10369 if (code == ASHIFTRT)
10370 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10371 else if (code == ROTATE || code == ROTATERT)
10372 count %= GET_MODE_PRECISION (shift_unit_mode);
10373 else
10375 /* We can't simply return zero because there may be an
10376 outer op. */
10377 varop = const0_rtx;
10378 count = 0;
10379 break;
10383 /* If we discovered we had to complement VAROP, leave. Making a NOT
10384 here would cause an infinite loop. */
10385 if (complement_p)
10386 break;
10388 if (shift_mode == shift_unit_mode)
10390 /* An arithmetic right shift of a quantity known to be -1 or 0
10391 is a no-op. */
10392 if (code == ASHIFTRT
10393 && (num_sign_bit_copies (varop, shift_unit_mode)
10394 == GET_MODE_PRECISION (shift_unit_mode)))
10396 count = 0;
10397 break;
10400 /* If we are doing an arithmetic right shift and discarding all but
10401 the sign bit copies, this is equivalent to doing a shift by the
10402 bitsize minus one. Convert it into that shift because it will
10403 often allow other simplifications. */
10405 if (code == ASHIFTRT
10406 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10407 >= GET_MODE_PRECISION (shift_unit_mode)))
10408 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10410 /* We simplify the tests below and elsewhere by converting
10411 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10412 `make_compound_operation' will convert it to an ASHIFTRT for
10413 those machines (such as VAX) that don't have an LSHIFTRT. */
10414 if (code == ASHIFTRT
10415 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10416 && val_signbit_known_clear_p (shift_unit_mode,
10417 nonzero_bits (varop,
10418 shift_unit_mode)))
10419 code = LSHIFTRT;
10421 if (((code == LSHIFTRT
10422 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10423 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10424 || (code == ASHIFT
10425 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10426 && !((nonzero_bits (varop, shift_unit_mode) << count)
10427 & GET_MODE_MASK (shift_unit_mode))))
10428 && !side_effects_p (varop))
10429 varop = const0_rtx;
10432 switch (GET_CODE (varop))
10434 case SIGN_EXTEND:
10435 case ZERO_EXTEND:
10436 case SIGN_EXTRACT:
10437 case ZERO_EXTRACT:
10438 new_rtx = expand_compound_operation (varop);
10439 if (new_rtx != varop)
10441 varop = new_rtx;
10442 continue;
10444 break;
10446 case MEM:
10447 /* The following rules apply only to scalars. */
10448 if (shift_mode != shift_unit_mode)
10449 break;
10451 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10452 minus the width of a smaller mode, we can do this with a
10453 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10454 if ((code == ASHIFTRT || code == LSHIFTRT)
10455 && ! mode_dependent_address_p (XEXP (varop, 0),
10456 MEM_ADDR_SPACE (varop))
10457 && ! MEM_VOLATILE_P (varop)
10458 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
10459 MODE_INT, 1)) != BLKmode)
10461 new_rtx = adjust_address_nv (varop, tmode,
10462 BYTES_BIG_ENDIAN ? 0
10463 : count / BITS_PER_UNIT);
10465 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10466 : ZERO_EXTEND, mode, new_rtx);
10467 count = 0;
10468 continue;
10470 break;
10472 case SUBREG:
10473 /* The following rules apply only to scalars. */
10474 if (shift_mode != shift_unit_mode)
10475 break;
10477 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10478 the same number of words as what we've seen so far. Then store
10479 the widest mode in MODE. */
10480 if (subreg_lowpart_p (varop)
10481 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10482 > GET_MODE_SIZE (GET_MODE (varop)))
10483 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
10484 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10485 == mode_words
10486 && GET_MODE_CLASS (GET_MODE (varop)) == MODE_INT
10487 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop))) == MODE_INT)
10489 varop = SUBREG_REG (varop);
10490 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
10491 mode = GET_MODE (varop);
10492 continue;
10494 break;
10496 case MULT:
10497 /* Some machines use MULT instead of ASHIFT because MULT
10498 is cheaper. But it is still better on those machines to
10499 merge two shifts into one. */
10500 if (CONST_INT_P (XEXP (varop, 1))
10501 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10503 varop
10504 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10505 XEXP (varop, 0),
10506 GEN_INT (exact_log2 (
10507 UINTVAL (XEXP (varop, 1)))));
10508 continue;
10510 break;
10512 case UDIV:
10513 /* Similar, for when divides are cheaper. */
10514 if (CONST_INT_P (XEXP (varop, 1))
10515 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10517 varop
10518 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10519 XEXP (varop, 0),
10520 GEN_INT (exact_log2 (
10521 UINTVAL (XEXP (varop, 1)))));
10522 continue;
10524 break;
10526 case ASHIFTRT:
10527 /* If we are extracting just the sign bit of an arithmetic
10528 right shift, that shift is not needed. However, the sign
10529 bit of a wider mode may be different from what would be
10530 interpreted as the sign bit in a narrower mode, so, if
10531 the result is narrower, don't discard the shift. */
10532 if (code == LSHIFTRT
10533 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10534 && (GET_MODE_UNIT_BITSIZE (result_mode)
10535 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10537 varop = XEXP (varop, 0);
10538 continue;
10541 /* fall through */
10543 case LSHIFTRT:
10544 case ASHIFT:
10545 case ROTATE:
10546 /* The following rules apply only to scalars. */
10547 if (shift_mode != shift_unit_mode)
10548 break;
10550 /* Here we have two nested shifts. The result is usually the
10551 AND of a new shift with a mask. We compute the result below. */
10552 if (CONST_INT_P (XEXP (varop, 1))
10553 && INTVAL (XEXP (varop, 1)) >= 0
10554 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (GET_MODE (varop))
10555 && HWI_COMPUTABLE_MODE_P (result_mode)
10556 && HWI_COMPUTABLE_MODE_P (mode))
10558 enum rtx_code first_code = GET_CODE (varop);
10559 unsigned int first_count = INTVAL (XEXP (varop, 1));
10560 unsigned HOST_WIDE_INT mask;
10561 rtx mask_rtx;
10563 /* We have one common special case. We can't do any merging if
10564 the inner code is an ASHIFTRT of a smaller mode. However, if
10565 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10566 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10567 we can convert it to
10568 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10569 This simplifies certain SIGN_EXTEND operations. */
10570 if (code == ASHIFT && first_code == ASHIFTRT
10571 && count == (GET_MODE_PRECISION (result_mode)
10572 - GET_MODE_PRECISION (GET_MODE (varop))))
10574 /* C3 has the low-order C1 bits zero. */
10576 mask = GET_MODE_MASK (mode)
10577 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10579 varop = simplify_and_const_int (NULL_RTX, result_mode,
10580 XEXP (varop, 0), mask);
10581 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
10582 varop, count);
10583 count = first_count;
10584 code = ASHIFTRT;
10585 continue;
10588 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10589 than C1 high-order bits equal to the sign bit, we can convert
10590 this to either an ASHIFT or an ASHIFTRT depending on the
10591 two counts.
10593 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10595 if (code == ASHIFTRT && first_code == ASHIFT
10596 && GET_MODE (varop) == shift_mode
10597 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
10598 > first_count))
10600 varop = XEXP (varop, 0);
10601 count -= first_count;
10602 if (count < 0)
10604 count = -count;
10605 code = ASHIFT;
10608 continue;
10611 /* There are some cases we can't do. If CODE is ASHIFTRT,
10612 we can only do this if FIRST_CODE is also ASHIFTRT.
10614 We can't do the case when CODE is ROTATE and FIRST_CODE is
10615 ASHIFTRT.
10617 If the mode of this shift is not the mode of the outer shift,
10618 we can't do this if either shift is a right shift or ROTATE.
10620 Finally, we can't do any of these if the mode is too wide
10621 unless the codes are the same.
10623 Handle the case where the shift codes are the same
10624 first. */
10626 if (code == first_code)
10628 if (GET_MODE (varop) != result_mode
10629 && (code == ASHIFTRT || code == LSHIFTRT
10630 || code == ROTATE))
10631 break;
10633 count += first_count;
10634 varop = XEXP (varop, 0);
10635 continue;
10638 if (code == ASHIFTRT
10639 || (code == ROTATE && first_code == ASHIFTRT)
10640 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
10641 || (GET_MODE (varop) != result_mode
10642 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10643 || first_code == ROTATE
10644 || code == ROTATE)))
10645 break;
10647 /* To compute the mask to apply after the shift, shift the
10648 nonzero bits of the inner shift the same way the
10649 outer shift will. */
10651 mask_rtx = gen_int_mode (nonzero_bits (varop, GET_MODE (varop)),
10652 result_mode);
10654 mask_rtx
10655 = simplify_const_binary_operation (code, result_mode, mask_rtx,
10656 GEN_INT (count));
10658 /* Give up if we can't compute an outer operation to use. */
10659 if (mask_rtx == 0
10660 || !CONST_INT_P (mask_rtx)
10661 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10662 INTVAL (mask_rtx),
10663 result_mode, &complement_p))
10664 break;
10666 /* If the shifts are in the same direction, we add the
10667 counts. Otherwise, we subtract them. */
10668 if ((code == ASHIFTRT || code == LSHIFTRT)
10669 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10670 count += first_count;
10671 else
10672 count -= first_count;
10674 /* If COUNT is positive, the new shift is usually CODE,
10675 except for the two exceptions below, in which case it is
10676 FIRST_CODE. If the count is negative, FIRST_CODE should
10677 always be used */
10678 if (count > 0
10679 && ((first_code == ROTATE && code == ASHIFT)
10680 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10681 code = first_code;
10682 else if (count < 0)
10683 code = first_code, count = -count;
10685 varop = XEXP (varop, 0);
10686 continue;
10689 /* If we have (A << B << C) for any shift, we can convert this to
10690 (A << C << B). This wins if A is a constant. Only try this if
10691 B is not a constant. */
10693 else if (GET_CODE (varop) == code
10694 && CONST_INT_P (XEXP (varop, 0))
10695 && !CONST_INT_P (XEXP (varop, 1)))
10697 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10698 sure the result will be masked. See PR70222. */
10699 if (code == LSHIFTRT
10700 && mode != result_mode
10701 && !merge_outer_ops (&outer_op, &outer_const, AND,
10702 GET_MODE_MASK (result_mode)
10703 >> orig_count, result_mode,
10704 &complement_p))
10705 break;
10706 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10707 up outer sign extension (often left and right shift) is
10708 hardly more efficient than the original. See PR70429. */
10709 if (code == ASHIFTRT && mode != result_mode)
10710 break;
10712 rtx new_rtx = simplify_const_binary_operation (code, mode,
10713 XEXP (varop, 0),
10714 GEN_INT (count));
10715 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
10716 count = 0;
10717 continue;
10719 break;
10721 case NOT:
10722 /* The following rules apply only to scalars. */
10723 if (shift_mode != shift_unit_mode)
10724 break;
10726 /* Make this fit the case below. */
10727 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10728 continue;
10730 case IOR:
10731 case AND:
10732 case XOR:
10733 /* The following rules apply only to scalars. */
10734 if (shift_mode != shift_unit_mode)
10735 break;
10737 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10738 with C the size of VAROP - 1 and the shift is logical if
10739 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10740 we have an (le X 0) operation. If we have an arithmetic shift
10741 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10742 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10744 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10745 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10746 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10747 && (code == LSHIFTRT || code == ASHIFTRT)
10748 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10749 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10751 count = 0;
10752 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
10753 const0_rtx);
10755 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10756 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10758 continue;
10761 /* If we have (shift (logical)), move the logical to the outside
10762 to allow it to possibly combine with another logical and the
10763 shift to combine with another shift. This also canonicalizes to
10764 what a ZERO_EXTRACT looks like. Also, some machines have
10765 (and (shift)) insns. */
10767 if (CONST_INT_P (XEXP (varop, 1))
10768 /* We can't do this if we have (ashiftrt (xor)) and the
10769 constant has its sign bit set in shift_mode with shift_mode
10770 wider than result_mode. */
10771 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10772 && result_mode != shift_mode
10773 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10774 shift_mode))
10775 && (new_rtx = simplify_const_binary_operation
10776 (code, result_mode,
10777 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10778 GEN_INT (count))) != 0
10779 && CONST_INT_P (new_rtx)
10780 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10781 INTVAL (new_rtx), result_mode, &complement_p))
10783 varop = XEXP (varop, 0);
10784 continue;
10787 /* If we can't do that, try to simplify the shift in each arm of the
10788 logical expression, make a new logical expression, and apply
10789 the inverse distributive law. This also can't be done for
10790 (ashiftrt (xor)) where we've widened the shift and the constant
10791 changes the sign bit. */
10792 if (CONST_INT_P (XEXP (varop, 1))
10793 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10794 && result_mode != shift_mode
10795 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10796 shift_mode)))
10798 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10799 XEXP (varop, 0), count);
10800 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
10801 XEXP (varop, 1), count);
10803 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
10804 lhs, rhs);
10805 varop = apply_distributive_law (varop);
10807 count = 0;
10808 continue;
10810 break;
10812 case EQ:
10813 /* The following rules apply only to scalars. */
10814 if (shift_mode != shift_unit_mode)
10815 break;
10817 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10818 says that the sign bit can be tested, FOO has mode MODE, C is
10819 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10820 that may be nonzero. */
10821 if (code == LSHIFTRT
10822 && XEXP (varop, 1) == const0_rtx
10823 && GET_MODE (XEXP (varop, 0)) == result_mode
10824 && count == (GET_MODE_PRECISION (result_mode) - 1)
10825 && HWI_COMPUTABLE_MODE_P (result_mode)
10826 && STORE_FLAG_VALUE == -1
10827 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10828 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10829 &complement_p))
10831 varop = XEXP (varop, 0);
10832 count = 0;
10833 continue;
10835 break;
10837 case NEG:
10838 /* The following rules apply only to scalars. */
10839 if (shift_mode != shift_unit_mode)
10840 break;
10842 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10843 than the number of bits in the mode is equivalent to A. */
10844 if (code == LSHIFTRT
10845 && count == (GET_MODE_PRECISION (result_mode) - 1)
10846 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
10848 varop = XEXP (varop, 0);
10849 count = 0;
10850 continue;
10853 /* NEG commutes with ASHIFT since it is multiplication. Move the
10854 NEG outside to allow shifts to combine. */
10855 if (code == ASHIFT
10856 && merge_outer_ops (&outer_op, &outer_const, NEG, 0, result_mode,
10857 &complement_p))
10859 varop = XEXP (varop, 0);
10860 continue;
10862 break;
10864 case PLUS:
10865 /* The following rules apply only to scalars. */
10866 if (shift_mode != shift_unit_mode)
10867 break;
10869 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10870 is one less than the number of bits in the mode is
10871 equivalent to (xor A 1). */
10872 if (code == LSHIFTRT
10873 && count == (GET_MODE_PRECISION (result_mode) - 1)
10874 && XEXP (varop, 1) == constm1_rtx
10875 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
10876 && merge_outer_ops (&outer_op, &outer_const, XOR, 1, result_mode,
10877 &complement_p))
10879 count = 0;
10880 varop = XEXP (varop, 0);
10881 continue;
10884 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10885 that might be nonzero in BAR are those being shifted out and those
10886 bits are known zero in FOO, we can replace the PLUS with FOO.
10887 Similarly in the other operand order. This code occurs when
10888 we are computing the size of a variable-size array. */
10890 if ((code == ASHIFTRT || code == LSHIFTRT)
10891 && count < HOST_BITS_PER_WIDE_INT
10892 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
10893 && (nonzero_bits (XEXP (varop, 1), result_mode)
10894 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
10896 varop = XEXP (varop, 0);
10897 continue;
10899 else if ((code == ASHIFTRT || code == LSHIFTRT)
10900 && count < HOST_BITS_PER_WIDE_INT
10901 && HWI_COMPUTABLE_MODE_P (result_mode)
10902 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10903 >> count)
10904 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
10905 & nonzero_bits (XEXP (varop, 1),
10906 result_mode)))
10908 varop = XEXP (varop, 1);
10909 continue;
10912 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10913 if (code == ASHIFT
10914 && CONST_INT_P (XEXP (varop, 1))
10915 && (new_rtx = simplify_const_binary_operation
10916 (ASHIFT, result_mode,
10917 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10918 GEN_INT (count))) != 0
10919 && CONST_INT_P (new_rtx)
10920 && merge_outer_ops (&outer_op, &outer_const, PLUS,
10921 INTVAL (new_rtx), result_mode, &complement_p))
10923 varop = XEXP (varop, 0);
10924 continue;
10927 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10928 signbit', and attempt to change the PLUS to an XOR and move it to
10929 the outer operation as is done above in the AND/IOR/XOR case
10930 leg for shift(logical). See details in logical handling above
10931 for reasoning in doing so. */
10932 if (code == LSHIFTRT
10933 && CONST_INT_P (XEXP (varop, 1))
10934 && mode_signbit_p (result_mode, XEXP (varop, 1))
10935 && (new_rtx = simplify_const_binary_operation
10936 (code, result_mode,
10937 gen_int_mode (INTVAL (XEXP (varop, 1)), result_mode),
10938 GEN_INT (count))) != 0
10939 && CONST_INT_P (new_rtx)
10940 && merge_outer_ops (&outer_op, &outer_const, XOR,
10941 INTVAL (new_rtx), result_mode, &complement_p))
10943 varop = XEXP (varop, 0);
10944 continue;
10947 break;
10949 case MINUS:
10950 /* The following rules apply only to scalars. */
10951 if (shift_mode != shift_unit_mode)
10952 break;
10954 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10955 with C the size of VAROP - 1 and the shift is logical if
10956 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10957 we have a (gt X 0) operation. If the shift is arithmetic with
10958 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10959 we have a (neg (gt X 0)) operation. */
10961 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10962 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
10963 && count == (GET_MODE_PRECISION (GET_MODE (varop)) - 1)
10964 && (code == LSHIFTRT || code == ASHIFTRT)
10965 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10966 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
10967 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10969 count = 0;
10970 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
10971 const0_rtx);
10973 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10974 varop = gen_rtx_NEG (GET_MODE (varop), varop);
10976 continue;
10978 break;
10980 case TRUNCATE:
10981 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10982 if the truncate does not affect the value. */
10983 if (code == LSHIFTRT
10984 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
10985 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
10986 && (INTVAL (XEXP (XEXP (varop, 0), 1))
10987 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
10988 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
10990 rtx varop_inner = XEXP (varop, 0);
10992 varop_inner
10993 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
10994 XEXP (varop_inner, 0),
10995 GEN_INT
10996 (count + INTVAL (XEXP (varop_inner, 1))));
10997 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
10998 count = 0;
10999 continue;
11001 break;
11003 default:
11004 break;
11007 break;
11010 shift_mode = try_widen_shift_mode (code, varop, count, result_mode, mode,
11011 outer_op, outer_const);
11013 /* We have now finished analyzing the shift. The result should be
11014 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11015 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11016 to the result of the shift. OUTER_CONST is the relevant constant,
11017 but we must turn off all bits turned off in the shift. */
11019 if (outer_op == UNKNOWN
11020 && orig_code == code && orig_count == count
11021 && varop == orig_varop
11022 && shift_mode == GET_MODE (varop))
11023 return NULL_RTX;
11025 /* Make a SUBREG if necessary. If we can't make it, fail. */
11026 varop = gen_lowpart (shift_mode, varop);
11027 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11028 return NULL_RTX;
11030 /* If we have an outer operation and we just made a shift, it is
11031 possible that we could have simplified the shift were it not
11032 for the outer operation. So try to do the simplification
11033 recursively. */
11035 if (outer_op != UNKNOWN)
11036 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11037 else
11038 x = NULL_RTX;
11040 if (x == NULL_RTX)
11041 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11043 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11044 turn off all the bits that the shift would have turned off. */
11045 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11046 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
11047 GET_MODE_MASK (result_mode) >> orig_count);
11049 /* Do the remainder of the processing in RESULT_MODE. */
11050 x = gen_lowpart_or_truncate (result_mode, x);
11052 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11053 operation. */
11054 if (complement_p)
11055 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11057 if (outer_op != UNKNOWN)
11059 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11060 && GET_MODE_PRECISION (result_mode) < HOST_BITS_PER_WIDE_INT)
11061 outer_const = trunc_int_for_mode (outer_const, result_mode);
11063 if (outer_op == AND)
11064 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
11065 else if (outer_op == SET)
11067 /* This means that we have determined that the result is
11068 equivalent to a constant. This should be rare. */
11069 if (!side_effects_p (x))
11070 x = GEN_INT (outer_const);
11072 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11073 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
11074 else
11075 x = simplify_gen_binary (outer_op, result_mode, x,
11076 GEN_INT (outer_const));
11079 return x;
11082 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11083 The result of the shift is RESULT_MODE. If we cannot simplify it,
11084 return X or, if it is NULL, synthesize the expression with
11085 simplify_gen_binary. Otherwise, return a simplified value.
11087 The shift is normally computed in the widest mode we find in VAROP, as
11088 long as it isn't a different number of words than RESULT_MODE. Exceptions
11089 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11091 static rtx
11092 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11093 rtx varop, int count)
11095 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11096 if (tem)
11097 return tem;
11099 if (!x)
11100 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11101 if (GET_MODE (x) != result_mode)
11102 x = gen_lowpart (result_mode, x);
11103 return x;
11107 /* A subroutine of recog_for_combine. See there for arguments and
11108 return value. */
11110 static int
11111 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11113 rtx pat = *pnewpat;
11114 rtx pat_without_clobbers;
11115 int insn_code_number;
11116 int num_clobbers_to_add = 0;
11117 int i;
11118 rtx notes = NULL_RTX;
11119 rtx old_notes, old_pat;
11120 int old_icode;
11122 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11123 we use to indicate that something didn't match. If we find such a
11124 thing, force rejection. */
11125 if (GET_CODE (pat) == PARALLEL)
11126 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11127 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11128 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11129 return -1;
11131 old_pat = PATTERN (insn);
11132 old_notes = REG_NOTES (insn);
11133 PATTERN (insn) = pat;
11134 REG_NOTES (insn) = NULL_RTX;
11136 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11137 if (dump_file && (dump_flags & TDF_DETAILS))
11139 if (insn_code_number < 0)
11140 fputs ("Failed to match this instruction:\n", dump_file);
11141 else
11142 fputs ("Successfully matched this instruction:\n", dump_file);
11143 print_rtl_single (dump_file, pat);
11146 /* If it isn't, there is the possibility that we previously had an insn
11147 that clobbered some register as a side effect, but the combined
11148 insn doesn't need to do that. So try once more without the clobbers
11149 unless this represents an ASM insn. */
11151 if (insn_code_number < 0 && ! check_asm_operands (pat)
11152 && GET_CODE (pat) == PARALLEL)
11154 int pos;
11156 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11157 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11159 if (i != pos)
11160 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11161 pos++;
11164 SUBST_INT (XVECLEN (pat, 0), pos);
11166 if (pos == 1)
11167 pat = XVECEXP (pat, 0, 0);
11169 PATTERN (insn) = pat;
11170 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11171 if (dump_file && (dump_flags & TDF_DETAILS))
11173 if (insn_code_number < 0)
11174 fputs ("Failed to match this instruction:\n", dump_file);
11175 else
11176 fputs ("Successfully matched this instruction:\n", dump_file);
11177 print_rtl_single (dump_file, pat);
11181 pat_without_clobbers = pat;
11183 PATTERN (insn) = old_pat;
11184 REG_NOTES (insn) = old_notes;
11186 /* Recognize all noop sets, these will be killed by followup pass. */
11187 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11188 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11190 /* If we had any clobbers to add, make a new pattern than contains
11191 them. Then check to make sure that all of them are dead. */
11192 if (num_clobbers_to_add)
11194 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11195 rtvec_alloc (GET_CODE (pat) == PARALLEL
11196 ? (XVECLEN (pat, 0)
11197 + num_clobbers_to_add)
11198 : num_clobbers_to_add + 1));
11200 if (GET_CODE (pat) == PARALLEL)
11201 for (i = 0; i < XVECLEN (pat, 0); i++)
11202 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11203 else
11204 XVECEXP (newpat, 0, 0) = pat;
11206 add_clobbers (newpat, insn_code_number);
11208 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11209 i < XVECLEN (newpat, 0); i++)
11211 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11212 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11213 return -1;
11214 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11216 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11217 notes = alloc_reg_note (REG_UNUSED,
11218 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11221 pat = newpat;
11224 if (insn_code_number >= 0
11225 && insn_code_number != NOOP_MOVE_INSN_CODE)
11227 old_pat = PATTERN (insn);
11228 old_notes = REG_NOTES (insn);
11229 old_icode = INSN_CODE (insn);
11230 PATTERN (insn) = pat;
11231 REG_NOTES (insn) = notes;
11232 INSN_CODE (insn) = insn_code_number;
11234 /* Allow targets to reject combined insn. */
11235 if (!targetm.legitimate_combined_insn (insn))
11237 if (dump_file && (dump_flags & TDF_DETAILS))
11238 fputs ("Instruction not appropriate for target.",
11239 dump_file);
11241 /* Callers expect recog_for_combine to strip
11242 clobbers from the pattern on failure. */
11243 pat = pat_without_clobbers;
11244 notes = NULL_RTX;
11246 insn_code_number = -1;
11249 PATTERN (insn) = old_pat;
11250 REG_NOTES (insn) = old_notes;
11251 INSN_CODE (insn) = old_icode;
11254 *pnewpat = pat;
11255 *pnotes = notes;
11257 return insn_code_number;
11260 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11261 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11262 Return whether anything was so changed. */
11264 static bool
11265 change_zero_ext (rtx pat)
11267 bool changed = false;
11268 rtx *src = &SET_SRC (pat);
11270 subrtx_ptr_iterator::array_type array;
11271 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11273 rtx x = **iter;
11274 machine_mode mode = GET_MODE (x);
11275 int size;
11277 if (GET_CODE (x) == ZERO_EXTRACT
11278 && CONST_INT_P (XEXP (x, 1))
11279 && CONST_INT_P (XEXP (x, 2))
11280 && GET_MODE (XEXP (x, 0)) != VOIDmode
11281 && GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
11282 <= GET_MODE_PRECISION (mode))
11284 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
11286 size = INTVAL (XEXP (x, 1));
11288 int start = INTVAL (XEXP (x, 2));
11289 if (BITS_BIG_ENDIAN)
11290 start = GET_MODE_PRECISION (inner_mode) - size - start;
11292 if (start)
11293 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11294 else
11295 x = XEXP (x, 0);
11296 if (mode != inner_mode)
11297 x = gen_lowpart_SUBREG (mode, x);
11299 else if (GET_CODE (x) == ZERO_EXTEND
11300 && SCALAR_INT_MODE_P (mode)
11301 && GET_CODE (XEXP (x, 0)) == SUBREG
11302 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11303 && !paradoxical_subreg_p (XEXP (x, 0))
11304 && subreg_lowpart_p (XEXP (x, 0)))
11306 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11307 x = SUBREG_REG (XEXP (x, 0));
11308 if (GET_MODE (x) != mode)
11309 x = gen_lowpart_SUBREG (mode, x);
11311 else if (GET_CODE (x) == ZERO_EXTEND
11312 && SCALAR_INT_MODE_P (mode)
11313 && REG_P (XEXP (x, 0))
11314 && HARD_REGISTER_P (XEXP (x, 0))
11315 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11317 size = GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)));
11318 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11320 else
11321 continue;
11323 if (!(GET_CODE (x) == LSHIFTRT
11324 && CONST_INT_P (XEXP (x, 1))
11325 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11327 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11328 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11331 SUBST (**iter, x);
11332 changed = true;
11335 if (changed)
11336 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11337 maybe_swap_commutative_operands (**iter);
11339 rtx *dst = &SET_DEST (pat);
11340 if (GET_CODE (*dst) == ZERO_EXTRACT
11341 && REG_P (XEXP (*dst, 0))
11342 && CONST_INT_P (XEXP (*dst, 1))
11343 && CONST_INT_P (XEXP (*dst, 2)))
11345 rtx reg = XEXP (*dst, 0);
11346 int width = INTVAL (XEXP (*dst, 1));
11347 int offset = INTVAL (XEXP (*dst, 2));
11348 machine_mode mode = GET_MODE (reg);
11349 int reg_width = GET_MODE_PRECISION (mode);
11350 if (BITS_BIG_ENDIAN)
11351 offset = reg_width - width - offset;
11353 rtx x, y, z, w;
11354 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11355 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11356 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11357 if (offset)
11358 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11359 else
11360 y = SET_SRC (pat);
11361 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11362 w = gen_rtx_IOR (mode, x, z);
11363 SUBST (SET_DEST (pat), reg);
11364 SUBST (SET_SRC (pat), w);
11366 changed = true;
11369 return changed;
11372 /* Like recog, but we receive the address of a pointer to a new pattern.
11373 We try to match the rtx that the pointer points to.
11374 If that fails, we may try to modify or replace the pattern,
11375 storing the replacement into the same pointer object.
11377 Modifications include deletion or addition of CLOBBERs. If the
11378 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11379 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11380 (and undo if that fails).
11382 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11383 the CLOBBERs are placed.
11385 The value is the final insn code from the pattern ultimately matched,
11386 or -1. */
11388 static int
11389 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11391 rtx pat = *pnewpat;
11392 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11393 if (insn_code_number >= 0 || check_asm_operands (pat))
11394 return insn_code_number;
11396 void *marker = get_undo_marker ();
11397 bool changed = false;
11399 if (GET_CODE (pat) == SET)
11400 changed = change_zero_ext (pat);
11401 else if (GET_CODE (pat) == PARALLEL)
11403 int i;
11404 for (i = 0; i < XVECLEN (pat, 0); i++)
11406 rtx set = XVECEXP (pat, 0, i);
11407 if (GET_CODE (set) == SET)
11408 changed |= change_zero_ext (set);
11412 if (changed)
11414 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11416 if (insn_code_number < 0)
11417 undo_to_marker (marker);
11420 return insn_code_number;
11423 /* Like gen_lowpart_general but for use by combine. In combine it
11424 is not possible to create any new pseudoregs. However, it is
11425 safe to create invalid memory addresses, because combine will
11426 try to recognize them and all they will do is make the combine
11427 attempt fail.
11429 If for some reason this cannot do its job, an rtx
11430 (clobber (const_int 0)) is returned.
11431 An insn containing that will not be recognized. */
11433 static rtx
11434 gen_lowpart_for_combine (machine_mode omode, rtx x)
11436 machine_mode imode = GET_MODE (x);
11437 unsigned int osize = GET_MODE_SIZE (omode);
11438 unsigned int isize = GET_MODE_SIZE (imode);
11439 rtx result;
11441 if (omode == imode)
11442 return x;
11444 /* We can only support MODE being wider than a word if X is a
11445 constant integer or has a mode the same size. */
11446 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11447 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11448 goto fail;
11450 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11451 won't know what to do. So we will strip off the SUBREG here and
11452 process normally. */
11453 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11455 x = SUBREG_REG (x);
11457 /* For use in case we fall down into the address adjustments
11458 further below, we need to adjust the known mode and size of
11459 x; imode and isize, since we just adjusted x. */
11460 imode = GET_MODE (x);
11462 if (imode == omode)
11463 return x;
11465 isize = GET_MODE_SIZE (imode);
11468 result = gen_lowpart_common (omode, x);
11470 if (result)
11471 return result;
11473 if (MEM_P (x))
11475 int offset = 0;
11477 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11478 address. */
11479 if (MEM_VOLATILE_P (x)
11480 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11481 goto fail;
11483 /* If we want to refer to something bigger than the original memref,
11484 generate a paradoxical subreg instead. That will force a reload
11485 of the original memref X. */
11486 if (isize < osize)
11487 return gen_rtx_SUBREG (omode, x, 0);
11489 if (WORDS_BIG_ENDIAN)
11490 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
11492 /* Adjust the address so that the address-after-the-data is
11493 unchanged. */
11494 if (BYTES_BIG_ENDIAN)
11495 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
11497 return adjust_address_nv (x, omode, offset);
11500 /* If X is a comparison operator, rewrite it in a new mode. This
11501 probably won't match, but may allow further simplifications. */
11502 else if (COMPARISON_P (x))
11503 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11505 /* If we couldn't simplify X any other way, just enclose it in a
11506 SUBREG. Normally, this SUBREG won't match, but some patterns may
11507 include an explicit SUBREG or we may simplify it further in combine. */
11508 else
11510 rtx res;
11512 if (imode == VOIDmode)
11514 imode = int_mode_for_mode (omode);
11515 x = gen_lowpart_common (imode, x);
11516 if (x == NULL)
11517 goto fail;
11519 res = lowpart_subreg (omode, x, imode);
11520 if (res)
11521 return res;
11524 fail:
11525 return gen_rtx_CLOBBER (omode, const0_rtx);
11528 /* Try to simplify a comparison between OP0 and a constant OP1,
11529 where CODE is the comparison code that will be tested, into a
11530 (CODE OP0 const0_rtx) form.
11532 The result is a possibly different comparison code to use.
11533 *POP1 may be updated. */
11535 static enum rtx_code
11536 simplify_compare_const (enum rtx_code code, machine_mode mode,
11537 rtx op0, rtx *pop1)
11539 unsigned int mode_width = GET_MODE_PRECISION (mode);
11540 HOST_WIDE_INT const_op = INTVAL (*pop1);
11542 /* Get the constant we are comparing against and turn off all bits
11543 not on in our mode. */
11544 if (mode != VOIDmode)
11545 const_op = trunc_int_for_mode (const_op, mode);
11547 /* If we are comparing against a constant power of two and the value
11548 being compared can only have that single bit nonzero (e.g., it was
11549 `and'ed with that bit), we can replace this with a comparison
11550 with zero. */
11551 if (const_op
11552 && (code == EQ || code == NE || code == GE || code == GEU
11553 || code == LT || code == LTU)
11554 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11555 && pow2p_hwi (const_op & GET_MODE_MASK (mode))
11556 && (nonzero_bits (op0, mode)
11557 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (mode))))
11559 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11560 const_op = 0;
11563 /* Similarly, if we are comparing a value known to be either -1 or
11564 0 with -1, change it to the opposite comparison against zero. */
11565 if (const_op == -1
11566 && (code == EQ || code == NE || code == GT || code == LE
11567 || code == GEU || code == LTU)
11568 && num_sign_bit_copies (op0, mode) == mode_width)
11570 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11571 const_op = 0;
11574 /* Do some canonicalizations based on the comparison code. We prefer
11575 comparisons against zero and then prefer equality comparisons.
11576 If we can reduce the size of a constant, we will do that too. */
11577 switch (code)
11579 case LT:
11580 /* < C is equivalent to <= (C - 1) */
11581 if (const_op > 0)
11583 const_op -= 1;
11584 code = LE;
11585 /* ... fall through to LE case below. */
11586 gcc_fallthrough ();
11588 else
11589 break;
11591 case LE:
11592 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11593 if (const_op < 0)
11595 const_op += 1;
11596 code = LT;
11599 /* If we are doing a <= 0 comparison on a value known to have
11600 a zero sign bit, we can replace this with == 0. */
11601 else if (const_op == 0
11602 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11603 && (nonzero_bits (op0, mode)
11604 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11605 == 0)
11606 code = EQ;
11607 break;
11609 case GE:
11610 /* >= C is equivalent to > (C - 1). */
11611 if (const_op > 0)
11613 const_op -= 1;
11614 code = GT;
11615 /* ... fall through to GT below. */
11616 gcc_fallthrough ();
11618 else
11619 break;
11621 case GT:
11622 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11623 if (const_op < 0)
11625 const_op += 1;
11626 code = GE;
11629 /* If we are doing a > 0 comparison on a value known to have
11630 a zero sign bit, we can replace this with != 0. */
11631 else if (const_op == 0
11632 && mode_width - 1 < HOST_BITS_PER_WIDE_INT
11633 && (nonzero_bits (op0, mode)
11634 & (HOST_WIDE_INT_1U << (mode_width - 1)))
11635 == 0)
11636 code = NE;
11637 break;
11639 case LTU:
11640 /* < C is equivalent to <= (C - 1). */
11641 if (const_op > 0)
11643 const_op -= 1;
11644 code = LEU;
11645 /* ... fall through ... */
11647 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11648 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11649 && (unsigned HOST_WIDE_INT) const_op
11650 == HOST_WIDE_INT_1U << (mode_width - 1))
11652 const_op = 0;
11653 code = GE;
11654 break;
11656 else
11657 break;
11659 case LEU:
11660 /* unsigned <= 0 is equivalent to == 0 */
11661 if (const_op == 0)
11662 code = EQ;
11663 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11664 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11665 && (unsigned HOST_WIDE_INT) const_op
11666 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11668 const_op = 0;
11669 code = GE;
11671 break;
11673 case GEU:
11674 /* >= C is equivalent to > (C - 1). */
11675 if (const_op > 1)
11677 const_op -= 1;
11678 code = GTU;
11679 /* ... fall through ... */
11682 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11683 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11684 && (unsigned HOST_WIDE_INT) const_op
11685 == HOST_WIDE_INT_1U << (mode_width - 1))
11687 const_op = 0;
11688 code = LT;
11689 break;
11691 else
11692 break;
11694 case GTU:
11695 /* unsigned > 0 is equivalent to != 0 */
11696 if (const_op == 0)
11697 code = NE;
11698 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11699 else if (mode_width - 1 < HOST_BITS_PER_WIDE_INT
11700 && (unsigned HOST_WIDE_INT) const_op
11701 == (HOST_WIDE_INT_1U << (mode_width - 1)) - 1)
11703 const_op = 0;
11704 code = LT;
11706 break;
11708 default:
11709 break;
11712 *pop1 = GEN_INT (const_op);
11713 return code;
11716 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11717 comparison code that will be tested.
11719 The result is a possibly different comparison code to use. *POP0 and
11720 *POP1 may be updated.
11722 It is possible that we might detect that a comparison is either always
11723 true or always false. However, we do not perform general constant
11724 folding in combine, so this knowledge isn't useful. Such tautologies
11725 should have been detected earlier. Hence we ignore all such cases. */
11727 static enum rtx_code
11728 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11730 rtx op0 = *pop0;
11731 rtx op1 = *pop1;
11732 rtx tem, tem1;
11733 int i;
11734 machine_mode mode, tmode;
11736 /* Try a few ways of applying the same transformation to both operands. */
11737 while (1)
11739 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11740 so check specially. */
11741 if (!WORD_REGISTER_OPERATIONS
11742 && code != GTU && code != GEU && code != LTU && code != LEU
11743 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11744 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11745 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11746 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11747 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11748 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
11749 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
11750 && CONST_INT_P (XEXP (op0, 1))
11751 && XEXP (op0, 1) == XEXP (op1, 1)
11752 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11753 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11754 && (INTVAL (XEXP (op0, 1))
11755 == (GET_MODE_PRECISION (GET_MODE (op0))
11756 - (GET_MODE_PRECISION
11757 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
11759 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11760 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11763 /* If both operands are the same constant shift, see if we can ignore the
11764 shift. We can if the shift is a rotate or if the bits shifted out of
11765 this shift are known to be zero for both inputs and if the type of
11766 comparison is compatible with the shift. */
11767 if (GET_CODE (op0) == GET_CODE (op1)
11768 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11769 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11770 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11771 && (code != GT && code != LT && code != GE && code != LE))
11772 || (GET_CODE (op0) == ASHIFTRT
11773 && (code != GTU && code != LTU
11774 && code != GEU && code != LEU)))
11775 && CONST_INT_P (XEXP (op0, 1))
11776 && INTVAL (XEXP (op0, 1)) >= 0
11777 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11778 && XEXP (op0, 1) == XEXP (op1, 1))
11780 machine_mode mode = GET_MODE (op0);
11781 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11782 int shift_count = INTVAL (XEXP (op0, 1));
11784 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11785 mask &= (mask >> shift_count) << shift_count;
11786 else if (GET_CODE (op0) == ASHIFT)
11787 mask = (mask & (mask << shift_count)) >> shift_count;
11789 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11790 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11791 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11792 else
11793 break;
11796 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11797 SUBREGs are of the same mode, and, in both cases, the AND would
11798 be redundant if the comparison was done in the narrower mode,
11799 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11800 and the operand's possibly nonzero bits are 0xffffff01; in that case
11801 if we only care about QImode, we don't need the AND). This case
11802 occurs if the output mode of an scc insn is not SImode and
11803 STORE_FLAG_VALUE == 1 (e.g., the 386).
11805 Similarly, check for a case where the AND's are ZERO_EXTEND
11806 operations from some narrower mode even though a SUBREG is not
11807 present. */
11809 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11810 && CONST_INT_P (XEXP (op0, 1))
11811 && CONST_INT_P (XEXP (op1, 1)))
11813 rtx inner_op0 = XEXP (op0, 0);
11814 rtx inner_op1 = XEXP (op1, 0);
11815 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11816 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11817 int changed = 0;
11819 if (paradoxical_subreg_p (inner_op0)
11820 && GET_CODE (inner_op1) == SUBREG
11821 && (GET_MODE (SUBREG_REG (inner_op0))
11822 == GET_MODE (SUBREG_REG (inner_op1)))
11823 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0)))
11824 <= HOST_BITS_PER_WIDE_INT)
11825 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11826 GET_MODE (SUBREG_REG (inner_op0)))))
11827 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11828 GET_MODE (SUBREG_REG (inner_op1))))))
11830 op0 = SUBREG_REG (inner_op0);
11831 op1 = SUBREG_REG (inner_op1);
11833 /* The resulting comparison is always unsigned since we masked
11834 off the original sign bit. */
11835 code = unsigned_condition (code);
11837 changed = 1;
11840 else if (c0 == c1)
11841 for (tmode = GET_CLASS_NARROWEST_MODE
11842 (GET_MODE_CLASS (GET_MODE (op0)));
11843 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
11844 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
11846 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
11847 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
11848 code = unsigned_condition (code);
11849 changed = 1;
11850 break;
11853 if (! changed)
11854 break;
11857 /* If both operands are NOT, we can strip off the outer operation
11858 and adjust the comparison code for swapped operands; similarly for
11859 NEG, except that this must be an equality comparison. */
11860 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
11861 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
11862 && (code == EQ || code == NE)))
11863 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
11865 else
11866 break;
11869 /* If the first operand is a constant, swap the operands and adjust the
11870 comparison code appropriately, but don't do this if the second operand
11871 is already a constant integer. */
11872 if (swap_commutative_operands_p (op0, op1))
11874 std::swap (op0, op1);
11875 code = swap_condition (code);
11878 /* We now enter a loop during which we will try to simplify the comparison.
11879 For the most part, we only are concerned with comparisons with zero,
11880 but some things may really be comparisons with zero but not start
11881 out looking that way. */
11883 while (CONST_INT_P (op1))
11885 machine_mode mode = GET_MODE (op0);
11886 unsigned int mode_width = GET_MODE_PRECISION (mode);
11887 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11888 int equality_comparison_p;
11889 int sign_bit_comparison_p;
11890 int unsigned_comparison_p;
11891 HOST_WIDE_INT const_op;
11893 /* We only want to handle integral modes. This catches VOIDmode,
11894 CCmode, and the floating-point modes. An exception is that we
11895 can handle VOIDmode if OP0 is a COMPARE or a comparison
11896 operation. */
11898 if (GET_MODE_CLASS (mode) != MODE_INT
11899 && ! (mode == VOIDmode
11900 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
11901 break;
11903 /* Try to simplify the compare to constant, possibly changing the
11904 comparison op, and/or changing op1 to zero. */
11905 code = simplify_compare_const (code, mode, op0, &op1);
11906 const_op = INTVAL (op1);
11908 /* Compute some predicates to simplify code below. */
11910 equality_comparison_p = (code == EQ || code == NE);
11911 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
11912 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
11913 || code == GEU);
11915 /* If this is a sign bit comparison and we can do arithmetic in
11916 MODE, say that we will only be needing the sign bit of OP0. */
11917 if (sign_bit_comparison_p && HWI_COMPUTABLE_MODE_P (mode))
11918 op0 = force_to_mode (op0, mode,
11919 HOST_WIDE_INT_1U
11920 << (GET_MODE_PRECISION (mode) - 1),
11923 /* Now try cases based on the opcode of OP0. If none of the cases
11924 does a "continue", we exit this loop immediately after the
11925 switch. */
11927 switch (GET_CODE (op0))
11929 case ZERO_EXTRACT:
11930 /* If we are extracting a single bit from a variable position in
11931 a constant that has only a single bit set and are comparing it
11932 with zero, we can convert this into an equality comparison
11933 between the position and the location of the single bit. */
11934 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11935 have already reduced the shift count modulo the word size. */
11936 if (!SHIFT_COUNT_TRUNCATED
11937 && CONST_INT_P (XEXP (op0, 0))
11938 && XEXP (op0, 1) == const1_rtx
11939 && equality_comparison_p && const_op == 0
11940 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
11942 if (BITS_BIG_ENDIAN)
11943 i = BITS_PER_WORD - 1 - i;
11945 op0 = XEXP (op0, 2);
11946 op1 = GEN_INT (i);
11947 const_op = i;
11949 /* Result is nonzero iff shift count is equal to I. */
11950 code = reverse_condition (code);
11951 continue;
11954 /* fall through */
11956 case SIGN_EXTRACT:
11957 tem = expand_compound_operation (op0);
11958 if (tem != op0)
11960 op0 = tem;
11961 continue;
11963 break;
11965 case NOT:
11966 /* If testing for equality, we can take the NOT of the constant. */
11967 if (equality_comparison_p
11968 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
11970 op0 = XEXP (op0, 0);
11971 op1 = tem;
11972 continue;
11975 /* If just looking at the sign bit, reverse the sense of the
11976 comparison. */
11977 if (sign_bit_comparison_p)
11979 op0 = XEXP (op0, 0);
11980 code = (code == GE ? LT : GE);
11981 continue;
11983 break;
11985 case NEG:
11986 /* If testing for equality, we can take the NEG of the constant. */
11987 if (equality_comparison_p
11988 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
11990 op0 = XEXP (op0, 0);
11991 op1 = tem;
11992 continue;
11995 /* The remaining cases only apply to comparisons with zero. */
11996 if (const_op != 0)
11997 break;
11999 /* When X is ABS or is known positive,
12000 (neg X) is < 0 if and only if X != 0. */
12002 if (sign_bit_comparison_p
12003 && (GET_CODE (XEXP (op0, 0)) == ABS
12004 || (mode_width <= HOST_BITS_PER_WIDE_INT
12005 && (nonzero_bits (XEXP (op0, 0), mode)
12006 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12007 == 0)))
12009 op0 = XEXP (op0, 0);
12010 code = (code == LT ? NE : EQ);
12011 continue;
12014 /* If we have NEG of something whose two high-order bits are the
12015 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12016 if (num_sign_bit_copies (op0, mode) >= 2)
12018 op0 = XEXP (op0, 0);
12019 code = swap_condition (code);
12020 continue;
12022 break;
12024 case ROTATE:
12025 /* If we are testing equality and our count is a constant, we
12026 can perform the inverse operation on our RHS. */
12027 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12028 && (tem = simplify_binary_operation (ROTATERT, mode,
12029 op1, XEXP (op0, 1))) != 0)
12031 op0 = XEXP (op0, 0);
12032 op1 = tem;
12033 continue;
12036 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12037 a particular bit. Convert it to an AND of a constant of that
12038 bit. This will be converted into a ZERO_EXTRACT. */
12039 if (const_op == 0 && sign_bit_comparison_p
12040 && CONST_INT_P (XEXP (op0, 1))
12041 && mode_width <= HOST_BITS_PER_WIDE_INT)
12043 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12044 (HOST_WIDE_INT_1U
12045 << (mode_width - 1
12046 - INTVAL (XEXP (op0, 1)))));
12047 code = (code == LT ? NE : EQ);
12048 continue;
12051 /* Fall through. */
12053 case ABS:
12054 /* ABS is ignorable inside an equality comparison with zero. */
12055 if (const_op == 0 && equality_comparison_p)
12057 op0 = XEXP (op0, 0);
12058 continue;
12060 break;
12062 case SIGN_EXTEND:
12063 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12064 (compare FOO CONST) if CONST fits in FOO's mode and we
12065 are either testing inequality or have an unsigned
12066 comparison with ZERO_EXTEND or a signed comparison with
12067 SIGN_EXTEND. But don't do it if we don't have a compare
12068 insn of the given mode, since we'd have to revert it
12069 later on, and then we wouldn't know whether to sign- or
12070 zero-extend. */
12071 mode = GET_MODE (XEXP (op0, 0));
12072 if (GET_MODE_CLASS (mode) == MODE_INT
12073 && ! unsigned_comparison_p
12074 && HWI_COMPUTABLE_MODE_P (mode)
12075 && trunc_int_for_mode (const_op, mode) == const_op
12076 && have_insn_for (COMPARE, mode))
12078 op0 = XEXP (op0, 0);
12079 continue;
12081 break;
12083 case SUBREG:
12084 /* Check for the case where we are comparing A - C1 with C2, that is
12086 (subreg:MODE (plus (A) (-C1))) op (C2)
12088 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12089 comparison in the wider mode. One of the following two conditions
12090 must be true in order for this to be valid:
12092 1. The mode extension results in the same bit pattern being added
12093 on both sides and the comparison is equality or unsigned. As
12094 C2 has been truncated to fit in MODE, the pattern can only be
12095 all 0s or all 1s.
12097 2. The mode extension results in the sign bit being copied on
12098 each side.
12100 The difficulty here is that we have predicates for A but not for
12101 (A - C1) so we need to check that C1 is within proper bounds so
12102 as to perturbate A as little as possible. */
12104 if (mode_width <= HOST_BITS_PER_WIDE_INT
12105 && subreg_lowpart_p (op0)
12106 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) > mode_width
12107 && GET_CODE (SUBREG_REG (op0)) == PLUS
12108 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12110 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
12111 rtx a = XEXP (SUBREG_REG (op0), 0);
12112 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12114 if ((c1 > 0
12115 && (unsigned HOST_WIDE_INT) c1
12116 < HOST_WIDE_INT_1U << (mode_width - 1)
12117 && (equality_comparison_p || unsigned_comparison_p)
12118 /* (A - C1) zero-extends if it is positive and sign-extends
12119 if it is negative, C2 both zero- and sign-extends. */
12120 && ((0 == (nonzero_bits (a, inner_mode)
12121 & ~GET_MODE_MASK (mode))
12122 && const_op >= 0)
12123 /* (A - C1) sign-extends if it is positive and 1-extends
12124 if it is negative, C2 both sign- and 1-extends. */
12125 || (num_sign_bit_copies (a, inner_mode)
12126 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12127 - mode_width)
12128 && const_op < 0)))
12129 || ((unsigned HOST_WIDE_INT) c1
12130 < HOST_WIDE_INT_1U << (mode_width - 2)
12131 /* (A - C1) always sign-extends, like C2. */
12132 && num_sign_bit_copies (a, inner_mode)
12133 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12134 - (mode_width - 1))))
12136 op0 = SUBREG_REG (op0);
12137 continue;
12141 /* If the inner mode is narrower and we are extracting the low part,
12142 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12143 if (subreg_lowpart_p (op0)
12144 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0))) < mode_width)
12146 else if (subreg_lowpart_p (op0)
12147 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12148 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12149 && (code == NE || code == EQ)
12150 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12151 <= HOST_BITS_PER_WIDE_INT)
12152 && !paradoxical_subreg_p (op0)
12153 && (nonzero_bits (SUBREG_REG (op0),
12154 GET_MODE (SUBREG_REG (op0)))
12155 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12157 /* Remove outer subregs that don't do anything. */
12158 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12160 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12161 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12163 op0 = SUBREG_REG (op0);
12164 op1 = tem;
12165 continue;
12167 break;
12169 else
12170 break;
12172 /* FALLTHROUGH */
12174 case ZERO_EXTEND:
12175 mode = GET_MODE (XEXP (op0, 0));
12176 if (GET_MODE_CLASS (mode) == MODE_INT
12177 && (unsigned_comparison_p || equality_comparison_p)
12178 && HWI_COMPUTABLE_MODE_P (mode)
12179 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12180 && const_op >= 0
12181 && have_insn_for (COMPARE, mode))
12183 op0 = XEXP (op0, 0);
12184 continue;
12186 break;
12188 case PLUS:
12189 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12190 this for equality comparisons due to pathological cases involving
12191 overflows. */
12192 if (equality_comparison_p
12193 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12194 op1, XEXP (op0, 1))))
12196 op0 = XEXP (op0, 0);
12197 op1 = tem;
12198 continue;
12201 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12202 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12203 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12205 op0 = XEXP (XEXP (op0, 0), 0);
12206 code = (code == LT ? EQ : NE);
12207 continue;
12209 break;
12211 case MINUS:
12212 /* We used to optimize signed comparisons against zero, but that
12213 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12214 arrive here as equality comparisons, or (GEU, LTU) are
12215 optimized away. No need to special-case them. */
12217 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12218 (eq B (minus A C)), whichever simplifies. We can only do
12219 this for equality comparisons due to pathological cases involving
12220 overflows. */
12221 if (equality_comparison_p
12222 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12223 XEXP (op0, 1), op1)))
12225 op0 = XEXP (op0, 0);
12226 op1 = tem;
12227 continue;
12230 if (equality_comparison_p
12231 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12232 XEXP (op0, 0), op1)))
12234 op0 = XEXP (op0, 1);
12235 op1 = tem;
12236 continue;
12239 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12240 of bits in X minus 1, is one iff X > 0. */
12241 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12242 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12243 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12244 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12246 op0 = XEXP (op0, 1);
12247 code = (code == GE ? LE : GT);
12248 continue;
12250 break;
12252 case XOR:
12253 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12254 if C is zero or B is a constant. */
12255 if (equality_comparison_p
12256 && 0 != (tem = simplify_binary_operation (XOR, mode,
12257 XEXP (op0, 1), op1)))
12259 op0 = XEXP (op0, 0);
12260 op1 = tem;
12261 continue;
12263 break;
12265 case EQ: case NE:
12266 case UNEQ: case LTGT:
12267 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
12268 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
12269 case UNORDERED: case ORDERED:
12270 /* We can't do anything if OP0 is a condition code value, rather
12271 than an actual data value. */
12272 if (const_op != 0
12273 || CC0_P (XEXP (op0, 0))
12274 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12275 break;
12277 /* Get the two operands being compared. */
12278 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12279 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12280 else
12281 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12283 /* Check for the cases where we simply want the result of the
12284 earlier test or the opposite of that result. */
12285 if (code == NE || code == EQ
12286 || (val_signbit_known_set_p (GET_MODE (op0), STORE_FLAG_VALUE)
12287 && (code == LT || code == GE)))
12289 enum rtx_code new_code;
12290 if (code == LT || code == NE)
12291 new_code = GET_CODE (op0);
12292 else
12293 new_code = reversed_comparison_code (op0, NULL);
12295 if (new_code != UNKNOWN)
12297 code = new_code;
12298 op0 = tem;
12299 op1 = tem1;
12300 continue;
12303 break;
12305 case IOR:
12306 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12307 iff X <= 0. */
12308 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12309 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12310 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12312 op0 = XEXP (op0, 1);
12313 code = (code == GE ? GT : LE);
12314 continue;
12316 break;
12318 case AND:
12319 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12320 will be converted to a ZERO_EXTRACT later. */
12321 if (const_op == 0 && equality_comparison_p
12322 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12323 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12325 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12326 XEXP (XEXP (op0, 0), 1));
12327 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12328 continue;
12331 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12332 zero and X is a comparison and C1 and C2 describe only bits set
12333 in STORE_FLAG_VALUE, we can compare with X. */
12334 if (const_op == 0 && equality_comparison_p
12335 && mode_width <= HOST_BITS_PER_WIDE_INT
12336 && CONST_INT_P (XEXP (op0, 1))
12337 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12338 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12339 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12340 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12342 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12343 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12344 if ((~STORE_FLAG_VALUE & mask) == 0
12345 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12346 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12347 && COMPARISON_P (tem))))
12349 op0 = XEXP (XEXP (op0, 0), 0);
12350 continue;
12354 /* If we are doing an equality comparison of an AND of a bit equal
12355 to the sign bit, replace this with a LT or GE comparison of
12356 the underlying value. */
12357 if (equality_comparison_p
12358 && const_op == 0
12359 && CONST_INT_P (XEXP (op0, 1))
12360 && mode_width <= HOST_BITS_PER_WIDE_INT
12361 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12362 == HOST_WIDE_INT_1U << (mode_width - 1)))
12364 op0 = XEXP (op0, 0);
12365 code = (code == EQ ? GE : LT);
12366 continue;
12369 /* If this AND operation is really a ZERO_EXTEND from a narrower
12370 mode, the constant fits within that mode, and this is either an
12371 equality or unsigned comparison, try to do this comparison in
12372 the narrower mode.
12374 Note that in:
12376 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12377 -> (ne:DI (reg:SI 4) (const_int 0))
12379 unless TRULY_NOOP_TRUNCATION allows it or the register is
12380 known to hold a value of the required mode the
12381 transformation is invalid. */
12382 if ((equality_comparison_p || unsigned_comparison_p)
12383 && CONST_INT_P (XEXP (op0, 1))
12384 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12385 & GET_MODE_MASK (mode))
12386 + 1)) >= 0
12387 && const_op >> i == 0
12388 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
12390 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12391 continue;
12394 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12395 fits in both M1 and M2 and the SUBREG is either paradoxical
12396 or represents the low part, permute the SUBREG and the AND
12397 and try again. */
12398 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12399 && CONST_INT_P (XEXP (op0, 1)))
12401 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
12402 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12403 /* Require an integral mode, to avoid creating something like
12404 (AND:SF ...). */
12405 if (SCALAR_INT_MODE_P (tmode)
12406 /* It is unsafe to commute the AND into the SUBREG if the
12407 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12408 not defined. As originally written the upper bits
12409 have a defined value due to the AND operation.
12410 However, if we commute the AND inside the SUBREG then
12411 they no longer have defined values and the meaning of
12412 the code has been changed.
12413 Also C1 should not change value in the smaller mode,
12414 see PR67028 (a positive C1 can become negative in the
12415 smaller mode, so that the AND does no longer mask the
12416 upper bits). */
12417 && ((WORD_REGISTER_OPERATIONS
12418 && mode_width > GET_MODE_PRECISION (tmode)
12419 && mode_width <= BITS_PER_WORD
12420 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12421 || (mode_width <= GET_MODE_PRECISION (tmode)
12422 && subreg_lowpart_p (XEXP (op0, 0))))
12423 && mode_width <= HOST_BITS_PER_WIDE_INT
12424 && HWI_COMPUTABLE_MODE_P (tmode)
12425 && (c1 & ~mask) == 0
12426 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12427 && c1 != mask
12428 && c1 != GET_MODE_MASK (tmode))
12430 op0 = simplify_gen_binary (AND, tmode,
12431 SUBREG_REG (XEXP (op0, 0)),
12432 gen_int_mode (c1, tmode));
12433 op0 = gen_lowpart (mode, op0);
12434 continue;
12438 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12439 if (const_op == 0 && equality_comparison_p
12440 && XEXP (op0, 1) == const1_rtx
12441 && GET_CODE (XEXP (op0, 0)) == NOT)
12443 op0 = simplify_and_const_int (NULL_RTX, mode,
12444 XEXP (XEXP (op0, 0), 0), 1);
12445 code = (code == NE ? EQ : NE);
12446 continue;
12449 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12450 (eq (and (lshiftrt X) 1) 0).
12451 Also handle the case where (not X) is expressed using xor. */
12452 if (const_op == 0 && equality_comparison_p
12453 && XEXP (op0, 1) == const1_rtx
12454 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12456 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12457 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12459 if (GET_CODE (shift_op) == NOT
12460 || (GET_CODE (shift_op) == XOR
12461 && CONST_INT_P (XEXP (shift_op, 1))
12462 && CONST_INT_P (shift_count)
12463 && HWI_COMPUTABLE_MODE_P (mode)
12464 && (UINTVAL (XEXP (shift_op, 1))
12465 == HOST_WIDE_INT_1U
12466 << INTVAL (shift_count))))
12469 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12470 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12471 code = (code == NE ? EQ : NE);
12472 continue;
12475 break;
12477 case ASHIFT:
12478 /* If we have (compare (ashift FOO N) (const_int C)) and
12479 the high order N bits of FOO (N+1 if an inequality comparison)
12480 are known to be zero, we can do this by comparing FOO with C
12481 shifted right N bits so long as the low-order N bits of C are
12482 zero. */
12483 if (CONST_INT_P (XEXP (op0, 1))
12484 && INTVAL (XEXP (op0, 1)) >= 0
12485 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12486 < HOST_BITS_PER_WIDE_INT)
12487 && (((unsigned HOST_WIDE_INT) const_op
12488 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12489 - 1)) == 0)
12490 && mode_width <= HOST_BITS_PER_WIDE_INT
12491 && (nonzero_bits (XEXP (op0, 0), mode)
12492 & ~(mask >> (INTVAL (XEXP (op0, 1))
12493 + ! equality_comparison_p))) == 0)
12495 /* We must perform a logical shift, not an arithmetic one,
12496 as we want the top N bits of C to be zero. */
12497 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12499 temp >>= INTVAL (XEXP (op0, 1));
12500 op1 = gen_int_mode (temp, mode);
12501 op0 = XEXP (op0, 0);
12502 continue;
12505 /* If we are doing a sign bit comparison, it means we are testing
12506 a particular bit. Convert it to the appropriate AND. */
12507 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12508 && mode_width <= HOST_BITS_PER_WIDE_INT)
12510 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12511 (HOST_WIDE_INT_1U
12512 << (mode_width - 1
12513 - INTVAL (XEXP (op0, 1)))));
12514 code = (code == LT ? NE : EQ);
12515 continue;
12518 /* If this an equality comparison with zero and we are shifting
12519 the low bit to the sign bit, we can convert this to an AND of the
12520 low-order bit. */
12521 if (const_op == 0 && equality_comparison_p
12522 && CONST_INT_P (XEXP (op0, 1))
12523 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12525 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12526 continue;
12528 break;
12530 case ASHIFTRT:
12531 /* If this is an equality comparison with zero, we can do this
12532 as a logical shift, which might be much simpler. */
12533 if (equality_comparison_p && const_op == 0
12534 && CONST_INT_P (XEXP (op0, 1)))
12536 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12537 XEXP (op0, 0),
12538 INTVAL (XEXP (op0, 1)));
12539 continue;
12542 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12543 do the comparison in a narrower mode. */
12544 if (! unsigned_comparison_p
12545 && CONST_INT_P (XEXP (op0, 1))
12546 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12547 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12548 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12549 MODE_INT, 1)) != BLKmode
12550 && (((unsigned HOST_WIDE_INT) const_op
12551 + (GET_MODE_MASK (tmode) >> 1) + 1)
12552 <= GET_MODE_MASK (tmode)))
12554 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12555 continue;
12558 /* Likewise if OP0 is a PLUS of a sign extension with a
12559 constant, which is usually represented with the PLUS
12560 between the shifts. */
12561 if (! unsigned_comparison_p
12562 && CONST_INT_P (XEXP (op0, 1))
12563 && GET_CODE (XEXP (op0, 0)) == PLUS
12564 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12565 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12566 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12567 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
12568 MODE_INT, 1)) != BLKmode
12569 && (((unsigned HOST_WIDE_INT) const_op
12570 + (GET_MODE_MASK (tmode) >> 1) + 1)
12571 <= GET_MODE_MASK (tmode)))
12573 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12574 rtx add_const = XEXP (XEXP (op0, 0), 1);
12575 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
12576 add_const, XEXP (op0, 1));
12578 op0 = simplify_gen_binary (PLUS, tmode,
12579 gen_lowpart (tmode, inner),
12580 new_const);
12581 continue;
12584 /* FALLTHROUGH */
12585 case LSHIFTRT:
12586 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12587 the low order N bits of FOO are known to be zero, we can do this
12588 by comparing FOO with C shifted left N bits so long as no
12589 overflow occurs. Even if the low order N bits of FOO aren't known
12590 to be zero, if the comparison is >= or < we can use the same
12591 optimization and for > or <= by setting all the low
12592 order N bits in the comparison constant. */
12593 if (CONST_INT_P (XEXP (op0, 1))
12594 && INTVAL (XEXP (op0, 1)) > 0
12595 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12596 && mode_width <= HOST_BITS_PER_WIDE_INT
12597 && (((unsigned HOST_WIDE_INT) const_op
12598 + (GET_CODE (op0) != LSHIFTRT
12599 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12600 + 1)
12601 : 0))
12602 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12604 unsigned HOST_WIDE_INT low_bits
12605 = (nonzero_bits (XEXP (op0, 0), mode)
12606 & ((HOST_WIDE_INT_1U
12607 << INTVAL (XEXP (op0, 1))) - 1));
12608 if (low_bits == 0 || !equality_comparison_p)
12610 /* If the shift was logical, then we must make the condition
12611 unsigned. */
12612 if (GET_CODE (op0) == LSHIFTRT)
12613 code = unsigned_condition (code);
12615 const_op = (unsigned HOST_WIDE_INT) const_op
12616 << INTVAL (XEXP (op0, 1));
12617 if (low_bits != 0
12618 && (code == GT || code == GTU
12619 || code == LE || code == LEU))
12620 const_op
12621 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12622 op1 = GEN_INT (const_op);
12623 op0 = XEXP (op0, 0);
12624 continue;
12628 /* If we are using this shift to extract just the sign bit, we
12629 can replace this with an LT or GE comparison. */
12630 if (const_op == 0
12631 && (equality_comparison_p || sign_bit_comparison_p)
12632 && CONST_INT_P (XEXP (op0, 1))
12633 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12635 op0 = XEXP (op0, 0);
12636 code = (code == NE || code == GT ? LT : GE);
12637 continue;
12639 break;
12641 default:
12642 break;
12645 break;
12648 /* Now make any compound operations involved in this comparison. Then,
12649 check for an outmost SUBREG on OP0 that is not doing anything or is
12650 paradoxical. The latter transformation must only be performed when
12651 it is known that the "extra" bits will be the same in op0 and op1 or
12652 that they don't matter. There are three cases to consider:
12654 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12655 care bits and we can assume they have any convenient value. So
12656 making the transformation is safe.
12658 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12659 In this case the upper bits of op0 are undefined. We should not make
12660 the simplification in that case as we do not know the contents of
12661 those bits.
12663 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12664 In that case we know those bits are zeros or ones. We must also be
12665 sure that they are the same as the upper bits of op1.
12667 We can never remove a SUBREG for a non-equality comparison because
12668 the sign bit is in a different place in the underlying object. */
12670 rtx_code op0_mco_code = SET;
12671 if (op1 == const0_rtx)
12672 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12674 op0 = make_compound_operation (op0, op0_mco_code);
12675 op1 = make_compound_operation (op1, SET);
12677 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12678 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
12679 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
12680 && (code == NE || code == EQ))
12682 if (paradoxical_subreg_p (op0))
12684 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12685 implemented. */
12686 if (REG_P (SUBREG_REG (op0)))
12688 op0 = SUBREG_REG (op0);
12689 op1 = gen_lowpart (GET_MODE (op0), op1);
12692 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0)))
12693 <= HOST_BITS_PER_WIDE_INT)
12694 && (nonzero_bits (SUBREG_REG (op0),
12695 GET_MODE (SUBREG_REG (op0)))
12696 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12698 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
12700 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
12701 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
12702 op0 = SUBREG_REG (op0), op1 = tem;
12706 /* We now do the opposite procedure: Some machines don't have compare
12707 insns in all modes. If OP0's mode is an integer mode smaller than a
12708 word and we can't do a compare in that mode, see if there is a larger
12709 mode for which we can do the compare. There are a number of cases in
12710 which we can use the wider mode. */
12712 mode = GET_MODE (op0);
12713 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
12714 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12715 && ! have_insn_for (COMPARE, mode))
12716 for (tmode = GET_MODE_WIDER_MODE (mode);
12717 (tmode != VOIDmode && HWI_COMPUTABLE_MODE_P (tmode));
12718 tmode = GET_MODE_WIDER_MODE (tmode))
12719 if (have_insn_for (COMPARE, tmode))
12721 int zero_extended;
12723 /* If this is a test for negative, we can make an explicit
12724 test of the sign bit. Test this first so we can use
12725 a paradoxical subreg to extend OP0. */
12727 if (op1 == const0_rtx && (code == LT || code == GE)
12728 && HWI_COMPUTABLE_MODE_P (mode))
12730 unsigned HOST_WIDE_INT sign
12731 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12732 op0 = simplify_gen_binary (AND, tmode,
12733 gen_lowpart (tmode, op0),
12734 gen_int_mode (sign, tmode));
12735 code = (code == LT) ? NE : EQ;
12736 break;
12739 /* If the only nonzero bits in OP0 and OP1 are those in the
12740 narrower mode and this is an equality or unsigned comparison,
12741 we can use the wider mode. Similarly for sign-extended
12742 values, in which case it is true for all comparisons. */
12743 zero_extended = ((code == EQ || code == NE
12744 || code == GEU || code == GTU
12745 || code == LEU || code == LTU)
12746 && (nonzero_bits (op0, tmode)
12747 & ~GET_MODE_MASK (mode)) == 0
12748 && ((CONST_INT_P (op1)
12749 || (nonzero_bits (op1, tmode)
12750 & ~GET_MODE_MASK (mode)) == 0)));
12752 if (zero_extended
12753 || ((num_sign_bit_copies (op0, tmode)
12754 > (unsigned int) (GET_MODE_PRECISION (tmode)
12755 - GET_MODE_PRECISION (mode)))
12756 && (num_sign_bit_copies (op1, tmode)
12757 > (unsigned int) (GET_MODE_PRECISION (tmode)
12758 - GET_MODE_PRECISION (mode)))))
12760 /* If OP0 is an AND and we don't have an AND in MODE either,
12761 make a new AND in the proper mode. */
12762 if (GET_CODE (op0) == AND
12763 && !have_insn_for (AND, mode))
12764 op0 = simplify_gen_binary (AND, tmode,
12765 gen_lowpart (tmode,
12766 XEXP (op0, 0)),
12767 gen_lowpart (tmode,
12768 XEXP (op0, 1)));
12769 else
12771 if (zero_extended)
12773 op0 = simplify_gen_unary (ZERO_EXTEND, tmode, op0, mode);
12774 op1 = simplify_gen_unary (ZERO_EXTEND, tmode, op1, mode);
12776 else
12778 op0 = simplify_gen_unary (SIGN_EXTEND, tmode, op0, mode);
12779 op1 = simplify_gen_unary (SIGN_EXTEND, tmode, op1, mode);
12781 break;
12786 /* We may have changed the comparison operands. Re-canonicalize. */
12787 if (swap_commutative_operands_p (op0, op1))
12789 std::swap (op0, op1);
12790 code = swap_condition (code);
12793 /* If this machine only supports a subset of valid comparisons, see if we
12794 can convert an unsupported one into a supported one. */
12795 target_canonicalize_comparison (&code, &op0, &op1, 0);
12797 *pop0 = op0;
12798 *pop1 = op1;
12800 return code;
12803 /* Utility function for record_value_for_reg. Count number of
12804 rtxs in X. */
12805 static int
12806 count_rtxs (rtx x)
12808 enum rtx_code code = GET_CODE (x);
12809 const char *fmt;
12810 int i, j, ret = 1;
12812 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12813 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12815 rtx x0 = XEXP (x, 0);
12816 rtx x1 = XEXP (x, 1);
12818 if (x0 == x1)
12819 return 1 + 2 * count_rtxs (x0);
12821 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12822 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12823 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12824 return 2 + 2 * count_rtxs (x0)
12825 + count_rtxs (x == XEXP (x1, 0)
12826 ? XEXP (x1, 1) : XEXP (x1, 0));
12828 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12829 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12830 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12831 return 2 + 2 * count_rtxs (x1)
12832 + count_rtxs (x == XEXP (x0, 0)
12833 ? XEXP (x0, 1) : XEXP (x0, 0));
12836 fmt = GET_RTX_FORMAT (code);
12837 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12838 if (fmt[i] == 'e')
12839 ret += count_rtxs (XEXP (x, i));
12840 else if (fmt[i] == 'E')
12841 for (j = 0; j < XVECLEN (x, i); j++)
12842 ret += count_rtxs (XVECEXP (x, i, j));
12844 return ret;
12847 /* Utility function for following routine. Called when X is part of a value
12848 being stored into last_set_value. Sets last_set_table_tick
12849 for each register mentioned. Similar to mention_regs in cse.c */
12851 static void
12852 update_table_tick (rtx x)
12854 enum rtx_code code = GET_CODE (x);
12855 const char *fmt = GET_RTX_FORMAT (code);
12856 int i, j;
12858 if (code == REG)
12860 unsigned int regno = REGNO (x);
12861 unsigned int endregno = END_REGNO (x);
12862 unsigned int r;
12864 for (r = regno; r < endregno; r++)
12866 reg_stat_type *rsp = &reg_stat[r];
12867 rsp->last_set_table_tick = label_tick;
12870 return;
12873 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12874 if (fmt[i] == 'e')
12876 /* Check for identical subexpressions. If x contains
12877 identical subexpression we only have to traverse one of
12878 them. */
12879 if (i == 0 && ARITHMETIC_P (x))
12881 /* Note that at this point x1 has already been
12882 processed. */
12883 rtx x0 = XEXP (x, 0);
12884 rtx x1 = XEXP (x, 1);
12886 /* If x0 and x1 are identical then there is no need to
12887 process x0. */
12888 if (x0 == x1)
12889 break;
12891 /* If x0 is identical to a subexpression of x1 then while
12892 processing x1, x0 has already been processed. Thus we
12893 are done with x. */
12894 if (ARITHMETIC_P (x1)
12895 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12896 break;
12898 /* If x1 is identical to a subexpression of x0 then we
12899 still have to process the rest of x0. */
12900 if (ARITHMETIC_P (x0)
12901 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
12903 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
12904 break;
12908 update_table_tick (XEXP (x, i));
12910 else if (fmt[i] == 'E')
12911 for (j = 0; j < XVECLEN (x, i); j++)
12912 update_table_tick (XVECEXP (x, i, j));
12915 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12916 are saying that the register is clobbered and we no longer know its
12917 value. If INSN is zero, don't update reg_stat[].last_set; this is
12918 only permitted with VALUE also zero and is used to invalidate the
12919 register. */
12921 static void
12922 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
12924 unsigned int regno = REGNO (reg);
12925 unsigned int endregno = END_REGNO (reg);
12926 unsigned int i;
12927 reg_stat_type *rsp;
12929 /* If VALUE contains REG and we have a previous value for REG, substitute
12930 the previous value. */
12931 if (value && insn && reg_overlap_mentioned_p (reg, value))
12933 rtx tem;
12935 /* Set things up so get_last_value is allowed to see anything set up to
12936 our insn. */
12937 subst_low_luid = DF_INSN_LUID (insn);
12938 tem = get_last_value (reg);
12940 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12941 it isn't going to be useful and will take a lot of time to process,
12942 so just use the CLOBBER. */
12944 if (tem)
12946 if (ARITHMETIC_P (tem)
12947 && GET_CODE (XEXP (tem, 0)) == CLOBBER
12948 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
12949 tem = XEXP (tem, 0);
12950 else if (count_occurrences (value, reg, 1) >= 2)
12952 /* If there are two or more occurrences of REG in VALUE,
12953 prevent the value from growing too much. */
12954 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
12955 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
12958 value = replace_rtx (copy_rtx (value), reg, tem);
12962 /* For each register modified, show we don't know its value, that
12963 we don't know about its bitwise content, that its value has been
12964 updated, and that we don't know the location of the death of the
12965 register. */
12966 for (i = regno; i < endregno; i++)
12968 rsp = &reg_stat[i];
12970 if (insn)
12971 rsp->last_set = insn;
12973 rsp->last_set_value = 0;
12974 rsp->last_set_mode = VOIDmode;
12975 rsp->last_set_nonzero_bits = 0;
12976 rsp->last_set_sign_bit_copies = 0;
12977 rsp->last_death = 0;
12978 rsp->truncated_to_mode = VOIDmode;
12981 /* Mark registers that are being referenced in this value. */
12982 if (value)
12983 update_table_tick (value);
12985 /* Now update the status of each register being set.
12986 If someone is using this register in this block, set this register
12987 to invalid since we will get confused between the two lives in this
12988 basic block. This makes using this register always invalid. In cse, we
12989 scan the table to invalidate all entries using this register, but this
12990 is too much work for us. */
12992 for (i = regno; i < endregno; i++)
12994 rsp = &reg_stat[i];
12995 rsp->last_set_label = label_tick;
12996 if (!insn
12997 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
12998 rsp->last_set_invalid = 1;
12999 else
13000 rsp->last_set_invalid = 0;
13003 /* The value being assigned might refer to X (like in "x++;"). In that
13004 case, we must replace it with (clobber (const_int 0)) to prevent
13005 infinite loops. */
13006 rsp = &reg_stat[regno];
13007 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13009 value = copy_rtx (value);
13010 if (!get_last_value_validate (&value, insn, label_tick, 1))
13011 value = 0;
13014 /* For the main register being modified, update the value, the mode, the
13015 nonzero bits, and the number of sign bit copies. */
13017 rsp->last_set_value = value;
13019 if (value)
13021 machine_mode mode = GET_MODE (reg);
13022 subst_low_luid = DF_INSN_LUID (insn);
13023 rsp->last_set_mode = mode;
13024 if (GET_MODE_CLASS (mode) == MODE_INT
13025 && HWI_COMPUTABLE_MODE_P (mode))
13026 mode = nonzero_bits_mode;
13027 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13028 rsp->last_set_sign_bit_copies
13029 = num_sign_bit_copies (value, GET_MODE (reg));
13033 /* Called via note_stores from record_dead_and_set_regs to handle one
13034 SET or CLOBBER in an insn. DATA is the instruction in which the
13035 set is occurring. */
13037 static void
13038 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13040 rtx_insn *record_dead_insn = (rtx_insn *) data;
13042 if (GET_CODE (dest) == SUBREG)
13043 dest = SUBREG_REG (dest);
13045 if (!record_dead_insn)
13047 if (REG_P (dest))
13048 record_value_for_reg (dest, NULL, NULL_RTX);
13049 return;
13052 if (REG_P (dest))
13054 /* If we are setting the whole register, we know its value. Otherwise
13055 show that we don't know the value. We can handle SUBREG in
13056 some cases. */
13057 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13058 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13059 else if (GET_CODE (setter) == SET
13060 && GET_CODE (SET_DEST (setter)) == SUBREG
13061 && SUBREG_REG (SET_DEST (setter)) == dest
13062 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13063 && subreg_lowpart_p (SET_DEST (setter)))
13064 record_value_for_reg (dest, record_dead_insn,
13065 gen_lowpart (GET_MODE (dest),
13066 SET_SRC (setter)));
13067 else
13068 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13070 else if (MEM_P (dest)
13071 /* Ignore pushes, they clobber nothing. */
13072 && ! push_operand (dest, GET_MODE (dest)))
13073 mem_last_set = DF_INSN_LUID (record_dead_insn);
13076 /* Update the records of when each REG was most recently set or killed
13077 for the things done by INSN. This is the last thing done in processing
13078 INSN in the combiner loop.
13080 We update reg_stat[], in particular fields last_set, last_set_value,
13081 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13082 last_death, and also the similar information mem_last_set (which insn
13083 most recently modified memory) and last_call_luid (which insn was the
13084 most recent subroutine call). */
13086 static void
13087 record_dead_and_set_regs (rtx_insn *insn)
13089 rtx link;
13090 unsigned int i;
13092 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13094 if (REG_NOTE_KIND (link) == REG_DEAD
13095 && REG_P (XEXP (link, 0)))
13097 unsigned int regno = REGNO (XEXP (link, 0));
13098 unsigned int endregno = END_REGNO (XEXP (link, 0));
13100 for (i = regno; i < endregno; i++)
13102 reg_stat_type *rsp;
13104 rsp = &reg_stat[i];
13105 rsp->last_death = insn;
13108 else if (REG_NOTE_KIND (link) == REG_INC)
13109 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13112 if (CALL_P (insn))
13114 hard_reg_set_iterator hrsi;
13115 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13117 reg_stat_type *rsp;
13119 rsp = &reg_stat[i];
13120 rsp->last_set_invalid = 1;
13121 rsp->last_set = insn;
13122 rsp->last_set_value = 0;
13123 rsp->last_set_mode = VOIDmode;
13124 rsp->last_set_nonzero_bits = 0;
13125 rsp->last_set_sign_bit_copies = 0;
13126 rsp->last_death = 0;
13127 rsp->truncated_to_mode = VOIDmode;
13130 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13132 /* We can't combine into a call pattern. Remember, though, that
13133 the return value register is set at this LUID. We could
13134 still replace a register with the return value from the
13135 wrong subroutine call! */
13136 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13138 else
13139 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13142 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13143 register present in the SUBREG, so for each such SUBREG go back and
13144 adjust nonzero and sign bit information of the registers that are
13145 known to have some zero/sign bits set.
13147 This is needed because when combine blows the SUBREGs away, the
13148 information on zero/sign bits is lost and further combines can be
13149 missed because of that. */
13151 static void
13152 record_promoted_value (rtx_insn *insn, rtx subreg)
13154 struct insn_link *links;
13155 rtx set;
13156 unsigned int regno = REGNO (SUBREG_REG (subreg));
13157 machine_mode mode = GET_MODE (subreg);
13159 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
13160 return;
13162 for (links = LOG_LINKS (insn); links;)
13164 reg_stat_type *rsp;
13166 insn = links->insn;
13167 set = single_set (insn);
13169 if (! set || !REG_P (SET_DEST (set))
13170 || REGNO (SET_DEST (set)) != regno
13171 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13173 links = links->next;
13174 continue;
13177 rsp = &reg_stat[regno];
13178 if (rsp->last_set == insn)
13180 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13181 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13184 if (REG_P (SET_SRC (set)))
13186 regno = REGNO (SET_SRC (set));
13187 links = LOG_LINKS (insn);
13189 else
13190 break;
13194 /* Check if X, a register, is known to contain a value already
13195 truncated to MODE. In this case we can use a subreg to refer to
13196 the truncated value even though in the generic case we would need
13197 an explicit truncation. */
13199 static bool
13200 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13202 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13203 machine_mode truncated = rsp->truncated_to_mode;
13205 if (truncated == 0
13206 || rsp->truncation_label < label_tick_ebb_start)
13207 return false;
13208 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
13209 return true;
13210 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13211 return true;
13212 return false;
13215 /* If X is a hard reg or a subreg record the mode that the register is
13216 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
13217 to turn a truncate into a subreg using this information. Return true
13218 if traversing X is complete. */
13220 static bool
13221 record_truncated_value (rtx x)
13223 machine_mode truncated_mode;
13224 reg_stat_type *rsp;
13226 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13228 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13229 truncated_mode = GET_MODE (x);
13231 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
13232 return true;
13234 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13235 return true;
13237 x = SUBREG_REG (x);
13239 /* ??? For hard-regs we now record everything. We might be able to
13240 optimize this using last_set_mode. */
13241 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13242 truncated_mode = GET_MODE (x);
13243 else
13244 return false;
13246 rsp = &reg_stat[REGNO (x)];
13247 if (rsp->truncated_to_mode == 0
13248 || rsp->truncation_label < label_tick_ebb_start
13249 || (GET_MODE_SIZE (truncated_mode)
13250 < GET_MODE_SIZE (rsp->truncated_to_mode)))
13252 rsp->truncated_to_mode = truncated_mode;
13253 rsp->truncation_label = label_tick;
13256 return true;
13259 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13260 the modes they are used in. This can help truning TRUNCATEs into
13261 SUBREGs. */
13263 static void
13264 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13266 subrtx_var_iterator::array_type array;
13267 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13268 if (record_truncated_value (*iter))
13269 iter.skip_subrtxes ();
13272 /* Scan X for promoted SUBREGs. For each one found,
13273 note what it implies to the registers used in it. */
13275 static void
13276 check_promoted_subreg (rtx_insn *insn, rtx x)
13278 if (GET_CODE (x) == SUBREG
13279 && SUBREG_PROMOTED_VAR_P (x)
13280 && REG_P (SUBREG_REG (x)))
13281 record_promoted_value (insn, x);
13282 else
13284 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13285 int i, j;
13287 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13288 switch (format[i])
13290 case 'e':
13291 check_promoted_subreg (insn, XEXP (x, i));
13292 break;
13293 case 'V':
13294 case 'E':
13295 if (XVEC (x, i) != 0)
13296 for (j = 0; j < XVECLEN (x, i); j++)
13297 check_promoted_subreg (insn, XVECEXP (x, i, j));
13298 break;
13303 /* Verify that all the registers and memory references mentioned in *LOC are
13304 still valid. *LOC was part of a value set in INSN when label_tick was
13305 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13306 the invalid references with (clobber (const_int 0)) and return 1. This
13307 replacement is useful because we often can get useful information about
13308 the form of a value (e.g., if it was produced by a shift that always
13309 produces -1 or 0) even though we don't know exactly what registers it
13310 was produced from. */
13312 static int
13313 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13315 rtx x = *loc;
13316 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13317 int len = GET_RTX_LENGTH (GET_CODE (x));
13318 int i, j;
13320 if (REG_P (x))
13322 unsigned int regno = REGNO (x);
13323 unsigned int endregno = END_REGNO (x);
13324 unsigned int j;
13326 for (j = regno; j < endregno; j++)
13328 reg_stat_type *rsp = &reg_stat[j];
13329 if (rsp->last_set_invalid
13330 /* If this is a pseudo-register that was only set once and not
13331 live at the beginning of the function, it is always valid. */
13332 || (! (regno >= FIRST_PSEUDO_REGISTER
13333 && regno < reg_n_sets_max
13334 && REG_N_SETS (regno) == 1
13335 && (!REGNO_REG_SET_P
13336 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13337 regno)))
13338 && rsp->last_set_label > tick))
13340 if (replace)
13341 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13342 return replace;
13346 return 1;
13348 /* If this is a memory reference, make sure that there were no stores after
13349 it that might have clobbered the value. We don't have alias info, so we
13350 assume any store invalidates it. Moreover, we only have local UIDs, so
13351 we also assume that there were stores in the intervening basic blocks. */
13352 else if (MEM_P (x) && !MEM_READONLY_P (x)
13353 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13355 if (replace)
13356 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13357 return replace;
13360 for (i = 0; i < len; i++)
13362 if (fmt[i] == 'e')
13364 /* Check for identical subexpressions. If x contains
13365 identical subexpression we only have to traverse one of
13366 them. */
13367 if (i == 1 && ARITHMETIC_P (x))
13369 /* Note that at this point x0 has already been checked
13370 and found valid. */
13371 rtx x0 = XEXP (x, 0);
13372 rtx x1 = XEXP (x, 1);
13374 /* If x0 and x1 are identical then x is also valid. */
13375 if (x0 == x1)
13376 return 1;
13378 /* If x1 is identical to a subexpression of x0 then
13379 while checking x0, x1 has already been checked. Thus
13380 it is valid and so as x. */
13381 if (ARITHMETIC_P (x0)
13382 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13383 return 1;
13385 /* If x0 is identical to a subexpression of x1 then x is
13386 valid iff the rest of x1 is valid. */
13387 if (ARITHMETIC_P (x1)
13388 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13389 return
13390 get_last_value_validate (&XEXP (x1,
13391 x0 == XEXP (x1, 0) ? 1 : 0),
13392 insn, tick, replace);
13395 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13396 replace) == 0)
13397 return 0;
13399 else if (fmt[i] == 'E')
13400 for (j = 0; j < XVECLEN (x, i); j++)
13401 if (get_last_value_validate (&XVECEXP (x, i, j),
13402 insn, tick, replace) == 0)
13403 return 0;
13406 /* If we haven't found a reason for it to be invalid, it is valid. */
13407 return 1;
13410 /* Get the last value assigned to X, if known. Some registers
13411 in the value may be replaced with (clobber (const_int 0)) if their value
13412 is known longer known reliably. */
13414 static rtx
13415 get_last_value (const_rtx x)
13417 unsigned int regno;
13418 rtx value;
13419 reg_stat_type *rsp;
13421 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13422 then convert it to the desired mode. If this is a paradoxical SUBREG,
13423 we cannot predict what values the "extra" bits might have. */
13424 if (GET_CODE (x) == SUBREG
13425 && subreg_lowpart_p (x)
13426 && !paradoxical_subreg_p (x)
13427 && (value = get_last_value (SUBREG_REG (x))) != 0)
13428 return gen_lowpart (GET_MODE (x), value);
13430 if (!REG_P (x))
13431 return 0;
13433 regno = REGNO (x);
13434 rsp = &reg_stat[regno];
13435 value = rsp->last_set_value;
13437 /* If we don't have a value, or if it isn't for this basic block and
13438 it's either a hard register, set more than once, or it's a live
13439 at the beginning of the function, return 0.
13441 Because if it's not live at the beginning of the function then the reg
13442 is always set before being used (is never used without being set).
13443 And, if it's set only once, and it's always set before use, then all
13444 uses must have the same last value, even if it's not from this basic
13445 block. */
13447 if (value == 0
13448 || (rsp->last_set_label < label_tick_ebb_start
13449 && (regno < FIRST_PSEUDO_REGISTER
13450 || regno >= reg_n_sets_max
13451 || REG_N_SETS (regno) != 1
13452 || REGNO_REG_SET_P
13453 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13454 return 0;
13456 /* If the value was set in a later insn than the ones we are processing,
13457 we can't use it even if the register was only set once. */
13458 if (rsp->last_set_label == label_tick
13459 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13460 return 0;
13462 /* If fewer bits were set than what we are asked for now, we cannot use
13463 the value. */
13464 if (GET_MODE_PRECISION (rsp->last_set_mode)
13465 < GET_MODE_PRECISION (GET_MODE (x)))
13466 return 0;
13468 /* If the value has all its registers valid, return it. */
13469 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13470 return value;
13472 /* Otherwise, make a copy and replace any invalid register with
13473 (clobber (const_int 0)). If that fails for some reason, return 0. */
13475 value = copy_rtx (value);
13476 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13477 return value;
13479 return 0;
13482 /* Return nonzero if expression X refers to a REG or to memory
13483 that is set in an instruction more recent than FROM_LUID. */
13485 static int
13486 use_crosses_set_p (const_rtx x, int from_luid)
13488 const char *fmt;
13489 int i;
13490 enum rtx_code code = GET_CODE (x);
13492 if (code == REG)
13494 unsigned int regno = REGNO (x);
13495 unsigned endreg = END_REGNO (x);
13497 #ifdef PUSH_ROUNDING
13498 /* Don't allow uses of the stack pointer to be moved,
13499 because we don't know whether the move crosses a push insn. */
13500 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13501 return 1;
13502 #endif
13503 for (; regno < endreg; regno++)
13505 reg_stat_type *rsp = &reg_stat[regno];
13506 if (rsp->last_set
13507 && rsp->last_set_label == label_tick
13508 && DF_INSN_LUID (rsp->last_set) > from_luid)
13509 return 1;
13511 return 0;
13514 if (code == MEM && mem_last_set > from_luid)
13515 return 1;
13517 fmt = GET_RTX_FORMAT (code);
13519 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13521 if (fmt[i] == 'E')
13523 int j;
13524 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13525 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13526 return 1;
13528 else if (fmt[i] == 'e'
13529 && use_crosses_set_p (XEXP (x, i), from_luid))
13530 return 1;
13532 return 0;
13535 /* Define three variables used for communication between the following
13536 routines. */
13538 static unsigned int reg_dead_regno, reg_dead_endregno;
13539 static int reg_dead_flag;
13541 /* Function called via note_stores from reg_dead_at_p.
13543 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13544 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13546 static void
13547 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13549 unsigned int regno, endregno;
13551 if (!REG_P (dest))
13552 return;
13554 regno = REGNO (dest);
13555 endregno = END_REGNO (dest);
13556 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13557 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13560 /* Return nonzero if REG is known to be dead at INSN.
13562 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13563 referencing REG, it is dead. If we hit a SET referencing REG, it is
13564 live. Otherwise, see if it is live or dead at the start of the basic
13565 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13566 must be assumed to be always live. */
13568 static int
13569 reg_dead_at_p (rtx reg, rtx_insn *insn)
13571 basic_block block;
13572 unsigned int i;
13574 /* Set variables for reg_dead_at_p_1. */
13575 reg_dead_regno = REGNO (reg);
13576 reg_dead_endregno = END_REGNO (reg);
13578 reg_dead_flag = 0;
13580 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13581 we allow the machine description to decide whether use-and-clobber
13582 patterns are OK. */
13583 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13585 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13586 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13587 return 0;
13590 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13591 beginning of basic block. */
13592 block = BLOCK_FOR_INSN (insn);
13593 for (;;)
13595 if (INSN_P (insn))
13597 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13598 return 1;
13600 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13601 if (reg_dead_flag)
13602 return reg_dead_flag == 1 ? 1 : 0;
13604 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13605 return 1;
13608 if (insn == BB_HEAD (block))
13609 break;
13611 insn = PREV_INSN (insn);
13614 /* Look at live-in sets for the basic block that we were in. */
13615 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13616 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13617 return 0;
13619 return 1;
13622 /* Note hard registers in X that are used. */
13624 static void
13625 mark_used_regs_combine (rtx x)
13627 RTX_CODE code = GET_CODE (x);
13628 unsigned int regno;
13629 int i;
13631 switch (code)
13633 case LABEL_REF:
13634 case SYMBOL_REF:
13635 case CONST:
13636 CASE_CONST_ANY:
13637 case PC:
13638 case ADDR_VEC:
13639 case ADDR_DIFF_VEC:
13640 case ASM_INPUT:
13641 /* CC0 must die in the insn after it is set, so we don't need to take
13642 special note of it here. */
13643 case CC0:
13644 return;
13646 case CLOBBER:
13647 /* If we are clobbering a MEM, mark any hard registers inside the
13648 address as used. */
13649 if (MEM_P (XEXP (x, 0)))
13650 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13651 return;
13653 case REG:
13654 regno = REGNO (x);
13655 /* A hard reg in a wide mode may really be multiple registers.
13656 If so, mark all of them just like the first. */
13657 if (regno < FIRST_PSEUDO_REGISTER)
13659 /* None of this applies to the stack, frame or arg pointers. */
13660 if (regno == STACK_POINTER_REGNUM
13661 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13662 && regno == HARD_FRAME_POINTER_REGNUM)
13663 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13664 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13665 || regno == FRAME_POINTER_REGNUM)
13666 return;
13668 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13670 return;
13672 case SET:
13674 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13675 the address. */
13676 rtx testreg = SET_DEST (x);
13678 while (GET_CODE (testreg) == SUBREG
13679 || GET_CODE (testreg) == ZERO_EXTRACT
13680 || GET_CODE (testreg) == STRICT_LOW_PART)
13681 testreg = XEXP (testreg, 0);
13683 if (MEM_P (testreg))
13684 mark_used_regs_combine (XEXP (testreg, 0));
13686 mark_used_regs_combine (SET_SRC (x));
13688 return;
13690 default:
13691 break;
13694 /* Recursively scan the operands of this expression. */
13697 const char *fmt = GET_RTX_FORMAT (code);
13699 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13701 if (fmt[i] == 'e')
13702 mark_used_regs_combine (XEXP (x, i));
13703 else if (fmt[i] == 'E')
13705 int j;
13707 for (j = 0; j < XVECLEN (x, i); j++)
13708 mark_used_regs_combine (XVECEXP (x, i, j));
13714 /* Remove register number REGNO from the dead registers list of INSN.
13716 Return the note used to record the death, if there was one. */
13719 remove_death (unsigned int regno, rtx_insn *insn)
13721 rtx note = find_regno_note (insn, REG_DEAD, regno);
13723 if (note)
13724 remove_note (insn, note);
13726 return note;
13729 /* For each register (hardware or pseudo) used within expression X, if its
13730 death is in an instruction with luid between FROM_LUID (inclusive) and
13731 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13732 list headed by PNOTES.
13734 That said, don't move registers killed by maybe_kill_insn.
13736 This is done when X is being merged by combination into TO_INSN. These
13737 notes will then be distributed as needed. */
13739 static void
13740 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13741 rtx *pnotes)
13743 const char *fmt;
13744 int len, i;
13745 enum rtx_code code = GET_CODE (x);
13747 if (code == REG)
13749 unsigned int regno = REGNO (x);
13750 rtx_insn *where_dead = reg_stat[regno].last_death;
13752 /* Don't move the register if it gets killed in between from and to. */
13753 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13754 && ! reg_referenced_p (x, maybe_kill_insn))
13755 return;
13757 if (where_dead
13758 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13759 && DF_INSN_LUID (where_dead) >= from_luid
13760 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13762 rtx note = remove_death (regno, where_dead);
13764 /* It is possible for the call above to return 0. This can occur
13765 when last_death points to I2 or I1 that we combined with.
13766 In that case make a new note.
13768 We must also check for the case where X is a hard register
13769 and NOTE is a death note for a range of hard registers
13770 including X. In that case, we must put REG_DEAD notes for
13771 the remaining registers in place of NOTE. */
13773 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13774 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13775 > GET_MODE_SIZE (GET_MODE (x))))
13777 unsigned int deadregno = REGNO (XEXP (note, 0));
13778 unsigned int deadend = END_REGNO (XEXP (note, 0));
13779 unsigned int ourend = END_REGNO (x);
13780 unsigned int i;
13782 for (i = deadregno; i < deadend; i++)
13783 if (i < regno || i >= ourend)
13784 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13787 /* If we didn't find any note, or if we found a REG_DEAD note that
13788 covers only part of the given reg, and we have a multi-reg hard
13789 register, then to be safe we must check for REG_DEAD notes
13790 for each register other than the first. They could have
13791 their own REG_DEAD notes lying around. */
13792 else if ((note == 0
13793 || (note != 0
13794 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
13795 < GET_MODE_SIZE (GET_MODE (x)))))
13796 && regno < FIRST_PSEUDO_REGISTER
13797 && REG_NREGS (x) > 1)
13799 unsigned int ourend = END_REGNO (x);
13800 unsigned int i, offset;
13801 rtx oldnotes = 0;
13803 if (note)
13804 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
13805 else
13806 offset = 1;
13808 for (i = regno + offset; i < ourend; i++)
13809 move_deaths (regno_reg_rtx[i],
13810 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13813 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13815 XEXP (note, 1) = *pnotes;
13816 *pnotes = note;
13818 else
13819 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13822 return;
13825 else if (GET_CODE (x) == SET)
13827 rtx dest = SET_DEST (x);
13829 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13831 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13832 that accesses one word of a multi-word item, some
13833 piece of everything register in the expression is used by
13834 this insn, so remove any old death. */
13835 /* ??? So why do we test for equality of the sizes? */
13837 if (GET_CODE (dest) == ZERO_EXTRACT
13838 || GET_CODE (dest) == STRICT_LOW_PART
13839 || (GET_CODE (dest) == SUBREG
13840 && (((GET_MODE_SIZE (GET_MODE (dest))
13841 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
13842 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
13843 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
13845 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
13846 return;
13849 /* If this is some other SUBREG, we know it replaces the entire
13850 value, so use that as the destination. */
13851 if (GET_CODE (dest) == SUBREG)
13852 dest = SUBREG_REG (dest);
13854 /* If this is a MEM, adjust deaths of anything used in the address.
13855 For a REG (the only other possibility), the entire value is
13856 being replaced so the old value is not used in this insn. */
13858 if (MEM_P (dest))
13859 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
13860 to_insn, pnotes);
13861 return;
13864 else if (GET_CODE (x) == CLOBBER)
13865 return;
13867 len = GET_RTX_LENGTH (code);
13868 fmt = GET_RTX_FORMAT (code);
13870 for (i = 0; i < len; i++)
13872 if (fmt[i] == 'E')
13874 int j;
13875 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13876 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
13877 to_insn, pnotes);
13879 else if (fmt[i] == 'e')
13880 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
13884 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13885 pattern of an insn. X must be a REG. */
13887 static int
13888 reg_bitfield_target_p (rtx x, rtx body)
13890 int i;
13892 if (GET_CODE (body) == SET)
13894 rtx dest = SET_DEST (body);
13895 rtx target;
13896 unsigned int regno, tregno, endregno, endtregno;
13898 if (GET_CODE (dest) == ZERO_EXTRACT)
13899 target = XEXP (dest, 0);
13900 else if (GET_CODE (dest) == STRICT_LOW_PART)
13901 target = SUBREG_REG (XEXP (dest, 0));
13902 else
13903 return 0;
13905 if (GET_CODE (target) == SUBREG)
13906 target = SUBREG_REG (target);
13908 if (!REG_P (target))
13909 return 0;
13911 tregno = REGNO (target), regno = REGNO (x);
13912 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
13913 return target == x;
13915 endtregno = end_hard_regno (GET_MODE (target), tregno);
13916 endregno = end_hard_regno (GET_MODE (x), regno);
13918 return endregno > tregno && regno < endtregno;
13921 else if (GET_CODE (body) == PARALLEL)
13922 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
13923 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
13924 return 1;
13926 return 0;
13929 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13930 as appropriate. I3 and I2 are the insns resulting from the combination
13931 insns including FROM (I2 may be zero).
13933 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13934 not need REG_DEAD notes because they are being substituted for. This
13935 saves searching in the most common cases.
13937 Each note in the list is either ignored or placed on some insns, depending
13938 on the type of note. */
13940 static void
13941 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
13942 rtx elim_i2, rtx elim_i1, rtx elim_i0)
13944 rtx note, next_note;
13945 rtx tem_note;
13946 rtx_insn *tem_insn;
13948 for (note = notes; note; note = next_note)
13950 rtx_insn *place = 0, *place2 = 0;
13952 next_note = XEXP (note, 1);
13953 switch (REG_NOTE_KIND (note))
13955 case REG_BR_PROB:
13956 case REG_BR_PRED:
13957 /* Doesn't matter much where we put this, as long as it's somewhere.
13958 It is preferable to keep these notes on branches, which is most
13959 likely to be i3. */
13960 place = i3;
13961 break;
13963 case REG_NON_LOCAL_GOTO:
13964 if (JUMP_P (i3))
13965 place = i3;
13966 else
13968 gcc_assert (i2 && JUMP_P (i2));
13969 place = i2;
13971 break;
13973 case REG_EH_REGION:
13974 /* These notes must remain with the call or trapping instruction. */
13975 if (CALL_P (i3))
13976 place = i3;
13977 else if (i2 && CALL_P (i2))
13978 place = i2;
13979 else
13981 gcc_assert (cfun->can_throw_non_call_exceptions);
13982 if (may_trap_p (i3))
13983 place = i3;
13984 else if (i2 && may_trap_p (i2))
13985 place = i2;
13986 /* ??? Otherwise assume we've combined things such that we
13987 can now prove that the instructions can't trap. Drop the
13988 note in this case. */
13990 break;
13992 case REG_ARGS_SIZE:
13993 /* ??? How to distribute between i3-i1. Assume i3 contains the
13994 entire adjustment. Assert i3 contains at least some adjust. */
13995 if (!noop_move_p (i3))
13997 int old_size, args_size = INTVAL (XEXP (note, 0));
13998 /* fixup_args_size_notes looks at REG_NORETURN note,
13999 so ensure the note is placed there first. */
14000 if (CALL_P (i3))
14002 rtx *np;
14003 for (np = &next_note; *np; np = &XEXP (*np, 1))
14004 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14006 rtx n = *np;
14007 *np = XEXP (n, 1);
14008 XEXP (n, 1) = REG_NOTES (i3);
14009 REG_NOTES (i3) = n;
14010 break;
14013 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14014 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14015 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14016 gcc_assert (old_size != args_size
14017 || (CALL_P (i3)
14018 && !ACCUMULATE_OUTGOING_ARGS
14019 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14021 break;
14023 case REG_NORETURN:
14024 case REG_SETJMP:
14025 case REG_TM:
14026 case REG_CALL_DECL:
14027 /* These notes must remain with the call. It should not be
14028 possible for both I2 and I3 to be a call. */
14029 if (CALL_P (i3))
14030 place = i3;
14031 else
14033 gcc_assert (i2 && CALL_P (i2));
14034 place = i2;
14036 break;
14038 case REG_UNUSED:
14039 /* Any clobbers for i3 may still exist, and so we must process
14040 REG_UNUSED notes from that insn.
14042 Any clobbers from i2 or i1 can only exist if they were added by
14043 recog_for_combine. In that case, recog_for_combine created the
14044 necessary REG_UNUSED notes. Trying to keep any original
14045 REG_UNUSED notes from these insns can cause incorrect output
14046 if it is for the same register as the original i3 dest.
14047 In that case, we will notice that the register is set in i3,
14048 and then add a REG_UNUSED note for the destination of i3, which
14049 is wrong. However, it is possible to have REG_UNUSED notes from
14050 i2 or i1 for register which were both used and clobbered, so
14051 we keep notes from i2 or i1 if they will turn into REG_DEAD
14052 notes. */
14054 /* If this register is set or clobbered in I3, put the note there
14055 unless there is one already. */
14056 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14058 if (from_insn != i3)
14059 break;
14061 if (! (REG_P (XEXP (note, 0))
14062 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14063 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14064 place = i3;
14066 /* Otherwise, if this register is used by I3, then this register
14067 now dies here, so we must put a REG_DEAD note here unless there
14068 is one already. */
14069 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14070 && ! (REG_P (XEXP (note, 0))
14071 ? find_regno_note (i3, REG_DEAD,
14072 REGNO (XEXP (note, 0)))
14073 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14075 PUT_REG_NOTE_KIND (note, REG_DEAD);
14076 place = i3;
14078 break;
14080 case REG_EQUAL:
14081 case REG_EQUIV:
14082 case REG_NOALIAS:
14083 /* These notes say something about results of an insn. We can
14084 only support them if they used to be on I3 in which case they
14085 remain on I3. Otherwise they are ignored.
14087 If the note refers to an expression that is not a constant, we
14088 must also ignore the note since we cannot tell whether the
14089 equivalence is still true. It might be possible to do
14090 slightly better than this (we only have a problem if I2DEST
14091 or I1DEST is present in the expression), but it doesn't
14092 seem worth the trouble. */
14094 if (from_insn == i3
14095 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14096 place = i3;
14097 break;
14099 case REG_INC:
14100 /* These notes say something about how a register is used. They must
14101 be present on any use of the register in I2 or I3. */
14102 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14103 place = i3;
14105 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14107 if (place)
14108 place2 = i2;
14109 else
14110 place = i2;
14112 break;
14114 case REG_LABEL_TARGET:
14115 case REG_LABEL_OPERAND:
14116 /* This can show up in several ways -- either directly in the
14117 pattern, or hidden off in the constant pool with (or without?)
14118 a REG_EQUAL note. */
14119 /* ??? Ignore the without-reg_equal-note problem for now. */
14120 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14121 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14122 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14123 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14124 place = i3;
14126 if (i2
14127 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14128 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14129 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14130 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14132 if (place)
14133 place2 = i2;
14134 else
14135 place = i2;
14138 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14139 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14140 there. */
14141 if (place && JUMP_P (place)
14142 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14143 && (JUMP_LABEL (place) == NULL
14144 || JUMP_LABEL (place) == XEXP (note, 0)))
14146 rtx label = JUMP_LABEL (place);
14148 if (!label)
14149 JUMP_LABEL (place) = XEXP (note, 0);
14150 else if (LABEL_P (label))
14151 LABEL_NUSES (label)--;
14154 if (place2 && JUMP_P (place2)
14155 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14156 && (JUMP_LABEL (place2) == NULL
14157 || JUMP_LABEL (place2) == XEXP (note, 0)))
14159 rtx label = JUMP_LABEL (place2);
14161 if (!label)
14162 JUMP_LABEL (place2) = XEXP (note, 0);
14163 else if (LABEL_P (label))
14164 LABEL_NUSES (label)--;
14165 place2 = 0;
14167 break;
14169 case REG_NONNEG:
14170 /* This note says something about the value of a register prior
14171 to the execution of an insn. It is too much trouble to see
14172 if the note is still correct in all situations. It is better
14173 to simply delete it. */
14174 break;
14176 case REG_DEAD:
14177 /* If we replaced the right hand side of FROM_INSN with a
14178 REG_EQUAL note, the original use of the dying register
14179 will not have been combined into I3 and I2. In such cases,
14180 FROM_INSN is guaranteed to be the first of the combined
14181 instructions, so we simply need to search back before
14182 FROM_INSN for the previous use or set of this register,
14183 then alter the notes there appropriately.
14185 If the register is used as an input in I3, it dies there.
14186 Similarly for I2, if it is nonzero and adjacent to I3.
14188 If the register is not used as an input in either I3 or I2
14189 and it is not one of the registers we were supposed to eliminate,
14190 there are two possibilities. We might have a non-adjacent I2
14191 or we might have somehow eliminated an additional register
14192 from a computation. For example, we might have had A & B where
14193 we discover that B will always be zero. In this case we will
14194 eliminate the reference to A.
14196 In both cases, we must search to see if we can find a previous
14197 use of A and put the death note there. */
14199 if (from_insn
14200 && from_insn == i2mod
14201 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14202 tem_insn = from_insn;
14203 else
14205 if (from_insn
14206 && CALL_P (from_insn)
14207 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14208 place = from_insn;
14209 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14210 place = i3;
14211 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14212 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14213 place = i2;
14214 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14215 && !(i2mod
14216 && reg_overlap_mentioned_p (XEXP (note, 0),
14217 i2mod_old_rhs)))
14218 || rtx_equal_p (XEXP (note, 0), elim_i1)
14219 || rtx_equal_p (XEXP (note, 0), elim_i0))
14220 break;
14221 tem_insn = i3;
14222 /* If the new I2 sets the same register that is marked dead
14223 in the note, we do not know where to put the note.
14224 Give up. */
14225 if (i2 != 0 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14226 break;
14229 if (place == 0)
14231 basic_block bb = this_basic_block;
14233 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14235 if (!NONDEBUG_INSN_P (tem_insn))
14237 if (tem_insn == BB_HEAD (bb))
14238 break;
14239 continue;
14242 /* If the register is being set at TEM_INSN, see if that is all
14243 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14244 into a REG_UNUSED note instead. Don't delete sets to
14245 global register vars. */
14246 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14247 || !global_regs[REGNO (XEXP (note, 0))])
14248 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14250 rtx set = single_set (tem_insn);
14251 rtx inner_dest = 0;
14252 rtx_insn *cc0_setter = NULL;
14254 if (set != 0)
14255 for (inner_dest = SET_DEST (set);
14256 (GET_CODE (inner_dest) == STRICT_LOW_PART
14257 || GET_CODE (inner_dest) == SUBREG
14258 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14259 inner_dest = XEXP (inner_dest, 0))
14262 /* Verify that it was the set, and not a clobber that
14263 modified the register.
14265 CC0 targets must be careful to maintain setter/user
14266 pairs. If we cannot delete the setter due to side
14267 effects, mark the user with an UNUSED note instead
14268 of deleting it. */
14270 if (set != 0 && ! side_effects_p (SET_SRC (set))
14271 && rtx_equal_p (XEXP (note, 0), inner_dest)
14272 && (!HAVE_cc0
14273 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14274 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14275 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14277 /* Move the notes and links of TEM_INSN elsewhere.
14278 This might delete other dead insns recursively.
14279 First set the pattern to something that won't use
14280 any register. */
14281 rtx old_notes = REG_NOTES (tem_insn);
14283 PATTERN (tem_insn) = pc_rtx;
14284 REG_NOTES (tem_insn) = NULL;
14286 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14287 NULL_RTX, NULL_RTX, NULL_RTX);
14288 distribute_links (LOG_LINKS (tem_insn));
14290 unsigned int regno = REGNO (XEXP (note, 0));
14291 reg_stat_type *rsp = &reg_stat[regno];
14292 if (rsp->last_set == tem_insn)
14293 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14295 SET_INSN_DELETED (tem_insn);
14296 if (tem_insn == i2)
14297 i2 = NULL;
14299 /* Delete the setter too. */
14300 if (cc0_setter)
14302 PATTERN (cc0_setter) = pc_rtx;
14303 old_notes = REG_NOTES (cc0_setter);
14304 REG_NOTES (cc0_setter) = NULL;
14306 distribute_notes (old_notes, cc0_setter,
14307 cc0_setter, NULL,
14308 NULL_RTX, NULL_RTX, NULL_RTX);
14309 distribute_links (LOG_LINKS (cc0_setter));
14311 SET_INSN_DELETED (cc0_setter);
14312 if (cc0_setter == i2)
14313 i2 = NULL;
14316 else
14318 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14320 /* If there isn't already a REG_UNUSED note, put one
14321 here. Do not place a REG_DEAD note, even if
14322 the register is also used here; that would not
14323 match the algorithm used in lifetime analysis
14324 and can cause the consistency check in the
14325 scheduler to fail. */
14326 if (! find_regno_note (tem_insn, REG_UNUSED,
14327 REGNO (XEXP (note, 0))))
14328 place = tem_insn;
14329 break;
14332 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14333 || (CALL_P (tem_insn)
14334 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14336 place = tem_insn;
14338 /* If we are doing a 3->2 combination, and we have a
14339 register which formerly died in i3 and was not used
14340 by i2, which now no longer dies in i3 and is used in
14341 i2 but does not die in i2, and place is between i2
14342 and i3, then we may need to move a link from place to
14343 i2. */
14344 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14345 && from_insn
14346 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14347 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14349 struct insn_link *links = LOG_LINKS (place);
14350 LOG_LINKS (place) = NULL;
14351 distribute_links (links);
14353 break;
14356 if (tem_insn == BB_HEAD (bb))
14357 break;
14362 /* If the register is set or already dead at PLACE, we needn't do
14363 anything with this note if it is still a REG_DEAD note.
14364 We check here if it is set at all, not if is it totally replaced,
14365 which is what `dead_or_set_p' checks, so also check for it being
14366 set partially. */
14368 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14370 unsigned int regno = REGNO (XEXP (note, 0));
14371 reg_stat_type *rsp = &reg_stat[regno];
14373 if (dead_or_set_p (place, XEXP (note, 0))
14374 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14376 /* Unless the register previously died in PLACE, clear
14377 last_death. [I no longer understand why this is
14378 being done.] */
14379 if (rsp->last_death != place)
14380 rsp->last_death = 0;
14381 place = 0;
14383 else
14384 rsp->last_death = place;
14386 /* If this is a death note for a hard reg that is occupying
14387 multiple registers, ensure that we are still using all
14388 parts of the object. If we find a piece of the object
14389 that is unused, we must arrange for an appropriate REG_DEAD
14390 note to be added for it. However, we can't just emit a USE
14391 and tag the note to it, since the register might actually
14392 be dead; so we recourse, and the recursive call then finds
14393 the previous insn that used this register. */
14395 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14397 unsigned int endregno = END_REGNO (XEXP (note, 0));
14398 bool all_used = true;
14399 unsigned int i;
14401 for (i = regno; i < endregno; i++)
14402 if ((! refers_to_regno_p (i, PATTERN (place))
14403 && ! find_regno_fusage (place, USE, i))
14404 || dead_or_set_regno_p (place, i))
14406 all_used = false;
14407 break;
14410 if (! all_used)
14412 /* Put only REG_DEAD notes for pieces that are
14413 not already dead or set. */
14415 for (i = regno; i < endregno;
14416 i += hard_regno_nregs[i][reg_raw_mode[i]])
14418 rtx piece = regno_reg_rtx[i];
14419 basic_block bb = this_basic_block;
14421 if (! dead_or_set_p (place, piece)
14422 && ! reg_bitfield_target_p (piece,
14423 PATTERN (place)))
14425 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14426 NULL_RTX);
14428 distribute_notes (new_note, place, place,
14429 NULL, NULL_RTX, NULL_RTX,
14430 NULL_RTX);
14432 else if (! refers_to_regno_p (i, PATTERN (place))
14433 && ! find_regno_fusage (place, USE, i))
14434 for (tem_insn = PREV_INSN (place); ;
14435 tem_insn = PREV_INSN (tem_insn))
14437 if (!NONDEBUG_INSN_P (tem_insn))
14439 if (tem_insn == BB_HEAD (bb))
14440 break;
14441 continue;
14443 if (dead_or_set_p (tem_insn, piece)
14444 || reg_bitfield_target_p (piece,
14445 PATTERN (tem_insn)))
14447 add_reg_note (tem_insn, REG_UNUSED, piece);
14448 break;
14453 place = 0;
14457 break;
14459 default:
14460 /* Any other notes should not be present at this point in the
14461 compilation. */
14462 gcc_unreachable ();
14465 if (place)
14467 XEXP (note, 1) = REG_NOTES (place);
14468 REG_NOTES (place) = note;
14471 if (place2)
14472 add_shallow_copy_of_reg_note (place2, note);
14476 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14477 I3, I2, and I1 to new locations. This is also called to add a link
14478 pointing at I3 when I3's destination is changed. */
14480 static void
14481 distribute_links (struct insn_link *links)
14483 struct insn_link *link, *next_link;
14485 for (link = links; link; link = next_link)
14487 rtx_insn *place = 0;
14488 rtx_insn *insn;
14489 rtx set, reg;
14491 next_link = link->next;
14493 /* If the insn that this link points to is a NOTE, ignore it. */
14494 if (NOTE_P (link->insn))
14495 continue;
14497 set = 0;
14498 rtx pat = PATTERN (link->insn);
14499 if (GET_CODE (pat) == SET)
14500 set = pat;
14501 else if (GET_CODE (pat) == PARALLEL)
14503 int i;
14504 for (i = 0; i < XVECLEN (pat, 0); i++)
14506 set = XVECEXP (pat, 0, i);
14507 if (GET_CODE (set) != SET)
14508 continue;
14510 reg = SET_DEST (set);
14511 while (GET_CODE (reg) == ZERO_EXTRACT
14512 || GET_CODE (reg) == STRICT_LOW_PART
14513 || GET_CODE (reg) == SUBREG)
14514 reg = XEXP (reg, 0);
14516 if (!REG_P (reg))
14517 continue;
14519 if (REGNO (reg) == link->regno)
14520 break;
14522 if (i == XVECLEN (pat, 0))
14523 continue;
14525 else
14526 continue;
14528 reg = SET_DEST (set);
14530 while (GET_CODE (reg) == ZERO_EXTRACT
14531 || GET_CODE (reg) == STRICT_LOW_PART
14532 || GET_CODE (reg) == SUBREG)
14533 reg = XEXP (reg, 0);
14535 /* A LOG_LINK is defined as being placed on the first insn that uses
14536 a register and points to the insn that sets the register. Start
14537 searching at the next insn after the target of the link and stop
14538 when we reach a set of the register or the end of the basic block.
14540 Note that this correctly handles the link that used to point from
14541 I3 to I2. Also note that not much searching is typically done here
14542 since most links don't point very far away. */
14544 for (insn = NEXT_INSN (link->insn);
14545 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14546 || BB_HEAD (this_basic_block->next_bb) != insn));
14547 insn = NEXT_INSN (insn))
14548 if (DEBUG_INSN_P (insn))
14549 continue;
14550 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14552 if (reg_referenced_p (reg, PATTERN (insn)))
14553 place = insn;
14554 break;
14556 else if (CALL_P (insn)
14557 && find_reg_fusage (insn, USE, reg))
14559 place = insn;
14560 break;
14562 else if (INSN_P (insn) && reg_set_p (reg, insn))
14563 break;
14565 /* If we found a place to put the link, place it there unless there
14566 is already a link to the same insn as LINK at that point. */
14568 if (place)
14570 struct insn_link *link2;
14572 FOR_EACH_LOG_LINK (link2, place)
14573 if (link2->insn == link->insn && link2->regno == link->regno)
14574 break;
14576 if (link2 == NULL)
14578 link->next = LOG_LINKS (place);
14579 LOG_LINKS (place) = link;
14581 /* Set added_links_insn to the earliest insn we added a
14582 link to. */
14583 if (added_links_insn == 0
14584 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14585 added_links_insn = place;
14591 /* Check for any register or memory mentioned in EQUIV that is not
14592 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14593 of EXPR where some registers may have been replaced by constants. */
14595 static bool
14596 unmentioned_reg_p (rtx equiv, rtx expr)
14598 subrtx_iterator::array_type array;
14599 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14601 const_rtx x = *iter;
14602 if ((REG_P (x) || MEM_P (x))
14603 && !reg_mentioned_p (x, expr))
14604 return true;
14606 return false;
14609 DEBUG_FUNCTION void
14610 dump_combine_stats (FILE *file)
14612 fprintf
14613 (file,
14614 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14615 combine_attempts, combine_merges, combine_extras, combine_successes);
14618 void
14619 dump_combine_total_stats (FILE *file)
14621 fprintf
14622 (file,
14623 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14624 total_attempts, total_merges, total_extras, total_successes);
14627 /* Try combining insns through substitution. */
14628 static unsigned int
14629 rest_of_handle_combine (void)
14631 int rebuild_jump_labels_after_combine;
14633 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14634 df_note_add_problem ();
14635 df_analyze ();
14637 regstat_init_n_sets_and_refs ();
14638 reg_n_sets_max = max_reg_num ();
14640 rebuild_jump_labels_after_combine
14641 = combine_instructions (get_insns (), max_reg_num ());
14643 /* Combining insns may have turned an indirect jump into a
14644 direct jump. Rebuild the JUMP_LABEL fields of jumping
14645 instructions. */
14646 if (rebuild_jump_labels_after_combine)
14648 if (dom_info_available_p (CDI_DOMINATORS))
14649 free_dominance_info (CDI_DOMINATORS);
14650 timevar_push (TV_JUMP);
14651 rebuild_jump_labels (get_insns ());
14652 cleanup_cfg (0);
14653 timevar_pop (TV_JUMP);
14656 regstat_free_n_sets_and_refs ();
14657 return 0;
14660 namespace {
14662 const pass_data pass_data_combine =
14664 RTL_PASS, /* type */
14665 "combine", /* name */
14666 OPTGROUP_NONE, /* optinfo_flags */
14667 TV_COMBINE, /* tv_id */
14668 PROP_cfglayout, /* properties_required */
14669 0, /* properties_provided */
14670 0, /* properties_destroyed */
14671 0, /* todo_flags_start */
14672 TODO_df_finish, /* todo_flags_finish */
14675 class pass_combine : public rtl_opt_pass
14677 public:
14678 pass_combine (gcc::context *ctxt)
14679 : rtl_opt_pass (pass_data_combine, ctxt)
14682 /* opt_pass methods: */
14683 virtual bool gate (function *) { return (optimize > 0); }
14684 virtual unsigned int execute (function *)
14686 return rest_of_handle_combine ();
14689 }; // class pass_combine
14691 } // anon namespace
14693 rtl_opt_pass *
14694 make_pass_combine (gcc::context *ctxt)
14696 return new pass_combine (ctxt);