[RS6000] PR97107, libgo fails to build for power10
[official-gcc.git] / libsanitizer / tsan / tsan_mman.cpp
blob743e67bf2f7d96f910d46efd888a8b9130d264b8
1 //===-- tsan_mman.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //===----------------------------------------------------------------------===//
12 #include "sanitizer_common/sanitizer_allocator_checks.h"
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_allocator_report.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_placement_new.h"
18 #include "tsan_mman.h"
19 #include "tsan_rtl.h"
20 #include "tsan_report.h"
21 #include "tsan_flags.h"
23 // May be overriden by front-end.
24 SANITIZER_WEAK_DEFAULT_IMPL
25 void __sanitizer_malloc_hook(void *ptr, uptr size) {
26 (void)ptr;
27 (void)size;
30 SANITIZER_WEAK_DEFAULT_IMPL
31 void __sanitizer_free_hook(void *ptr) {
32 (void)ptr;
35 namespace __tsan {
37 struct MapUnmapCallback {
38 void OnMap(uptr p, uptr size) const { }
39 void OnUnmap(uptr p, uptr size) const {
40 // We are about to unmap a chunk of user memory.
41 // Mark the corresponding shadow memory as not needed.
42 DontNeedShadowFor(p, size);
43 // Mark the corresponding meta shadow memory as not needed.
44 // Note the block does not contain any meta info at this point
45 // (this happens after free).
46 const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
47 const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
48 // Block came from LargeMmapAllocator, so must be large.
49 // We rely on this in the calculations below.
50 CHECK_GE(size, 2 * kPageSize);
51 uptr diff = RoundUp(p, kPageSize) - p;
52 if (diff != 0) {
53 p += diff;
54 size -= diff;
56 diff = p + size - RoundDown(p + size, kPageSize);
57 if (diff != 0)
58 size -= diff;
59 uptr p_meta = (uptr)MemToMeta(p);
60 ReleaseMemoryPagesToOS(p_meta, p_meta + size / kMetaRatio);
64 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
65 Allocator *allocator() {
66 return reinterpret_cast<Allocator*>(&allocator_placeholder);
69 struct GlobalProc {
70 Mutex mtx;
71 Processor *proc;
73 GlobalProc()
74 : mtx(MutexTypeGlobalProc, StatMtxGlobalProc)
75 , proc(ProcCreate()) {
79 static char global_proc_placeholder[sizeof(GlobalProc)] ALIGNED(64);
80 GlobalProc *global_proc() {
81 return reinterpret_cast<GlobalProc*>(&global_proc_placeholder);
84 ScopedGlobalProcessor::ScopedGlobalProcessor() {
85 GlobalProc *gp = global_proc();
86 ThreadState *thr = cur_thread();
87 if (thr->proc())
88 return;
89 // If we don't have a proc, use the global one.
90 // There are currently only two known case where this path is triggered:
91 // __interceptor_free
92 // __nptl_deallocate_tsd
93 // start_thread
94 // clone
95 // and:
96 // ResetRange
97 // __interceptor_munmap
98 // __deallocate_stack
99 // start_thread
100 // clone
101 // Ideally, we destroy thread state (and unwire proc) when a thread actually
102 // exits (i.e. when we join/wait it). Then we would not need the global proc
103 gp->mtx.Lock();
104 ProcWire(gp->proc, thr);
107 ScopedGlobalProcessor::~ScopedGlobalProcessor() {
108 GlobalProc *gp = global_proc();
109 ThreadState *thr = cur_thread();
110 if (thr->proc() != gp->proc)
111 return;
112 ProcUnwire(gp->proc, thr);
113 gp->mtx.Unlock();
116 static constexpr uptr kMaxAllowedMallocSize = 1ull << 40;
117 static uptr max_user_defined_malloc_size;
119 void InitializeAllocator() {
120 SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
121 allocator()->Init(common_flags()->allocator_release_to_os_interval_ms);
122 max_user_defined_malloc_size = common_flags()->max_allocation_size_mb
123 ? common_flags()->max_allocation_size_mb
124 << 20
125 : kMaxAllowedMallocSize;
128 void InitializeAllocatorLate() {
129 new(global_proc()) GlobalProc();
132 void AllocatorProcStart(Processor *proc) {
133 allocator()->InitCache(&proc->alloc_cache);
134 internal_allocator()->InitCache(&proc->internal_alloc_cache);
137 void AllocatorProcFinish(Processor *proc) {
138 allocator()->DestroyCache(&proc->alloc_cache);
139 internal_allocator()->DestroyCache(&proc->internal_alloc_cache);
142 void AllocatorPrintStats() {
143 allocator()->PrintStats();
146 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
147 if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
148 !flags()->report_signal_unsafe)
149 return;
150 VarSizeStackTrace stack;
151 ObtainCurrentStack(thr, pc, &stack);
152 if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
153 return;
154 ThreadRegistryLock l(ctx->thread_registry);
155 ScopedReport rep(ReportTypeSignalUnsafe);
156 rep.AddStack(stack, true);
157 OutputReport(thr, rep);
161 void *user_alloc_internal(ThreadState *thr, uptr pc, uptr sz, uptr align,
162 bool signal) {
163 if (sz >= kMaxAllowedMallocSize || align >= kMaxAllowedMallocSize ||
164 sz > max_user_defined_malloc_size) {
165 if (AllocatorMayReturnNull())
166 return nullptr;
167 uptr malloc_limit =
168 Min(kMaxAllowedMallocSize, max_user_defined_malloc_size);
169 GET_STACK_TRACE_FATAL(thr, pc);
170 ReportAllocationSizeTooBig(sz, malloc_limit, &stack);
172 void *p = allocator()->Allocate(&thr->proc()->alloc_cache, sz, align);
173 if (UNLIKELY(!p)) {
174 SetAllocatorOutOfMemory();
175 if (AllocatorMayReturnNull())
176 return nullptr;
177 GET_STACK_TRACE_FATAL(thr, pc);
178 ReportOutOfMemory(sz, &stack);
180 if (ctx && ctx->initialized)
181 OnUserAlloc(thr, pc, (uptr)p, sz, true);
182 if (signal)
183 SignalUnsafeCall(thr, pc);
184 return p;
187 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
188 ScopedGlobalProcessor sgp;
189 if (ctx && ctx->initialized)
190 OnUserFree(thr, pc, (uptr)p, true);
191 allocator()->Deallocate(&thr->proc()->alloc_cache, p);
192 if (signal)
193 SignalUnsafeCall(thr, pc);
196 void *user_alloc(ThreadState *thr, uptr pc, uptr sz) {
197 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, kDefaultAlignment));
200 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
201 if (UNLIKELY(CheckForCallocOverflow(size, n))) {
202 if (AllocatorMayReturnNull())
203 return SetErrnoOnNull(nullptr);
204 GET_STACK_TRACE_FATAL(thr, pc);
205 ReportCallocOverflow(n, size, &stack);
207 void *p = user_alloc_internal(thr, pc, n * size);
208 if (p)
209 internal_memset(p, 0, n * size);
210 return SetErrnoOnNull(p);
213 void *user_reallocarray(ThreadState *thr, uptr pc, void *p, uptr size, uptr n) {
214 if (UNLIKELY(CheckForCallocOverflow(size, n))) {
215 if (AllocatorMayReturnNull())
216 return SetErrnoOnNull(nullptr);
217 GET_STACK_TRACE_FATAL(thr, pc);
218 ReportReallocArrayOverflow(size, n, &stack);
220 return user_realloc(thr, pc, p, size * n);
223 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
224 DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
225 ctx->metamap.AllocBlock(thr, pc, p, sz);
226 if (write && thr->ignore_reads_and_writes == 0)
227 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
228 else
229 MemoryResetRange(thr, pc, (uptr)p, sz);
232 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
233 CHECK_NE(p, (void*)0);
234 uptr sz = ctx->metamap.FreeBlock(thr->proc(), p);
235 DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
236 if (write && thr->ignore_reads_and_writes == 0)
237 MemoryRangeFreed(thr, pc, (uptr)p, sz);
240 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
241 // FIXME: Handle "shrinking" more efficiently,
242 // it seems that some software actually does this.
243 if (!p)
244 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz));
245 if (!sz) {
246 user_free(thr, pc, p);
247 return nullptr;
249 void *new_p = user_alloc_internal(thr, pc, sz);
250 if (new_p) {
251 uptr old_sz = user_alloc_usable_size(p);
252 internal_memcpy(new_p, p, min(old_sz, sz));
253 user_free(thr, pc, p);
255 return SetErrnoOnNull(new_p);
258 void *user_memalign(ThreadState *thr, uptr pc, uptr align, uptr sz) {
259 if (UNLIKELY(!IsPowerOfTwo(align))) {
260 errno = errno_EINVAL;
261 if (AllocatorMayReturnNull())
262 return nullptr;
263 GET_STACK_TRACE_FATAL(thr, pc);
264 ReportInvalidAllocationAlignment(align, &stack);
266 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
269 int user_posix_memalign(ThreadState *thr, uptr pc, void **memptr, uptr align,
270 uptr sz) {
271 if (UNLIKELY(!CheckPosixMemalignAlignment(align))) {
272 if (AllocatorMayReturnNull())
273 return errno_EINVAL;
274 GET_STACK_TRACE_FATAL(thr, pc);
275 ReportInvalidPosixMemalignAlignment(align, &stack);
277 void *ptr = user_alloc_internal(thr, pc, sz, align);
278 if (UNLIKELY(!ptr))
279 // OOM error is already taken care of by user_alloc_internal.
280 return errno_ENOMEM;
281 CHECK(IsAligned((uptr)ptr, align));
282 *memptr = ptr;
283 return 0;
286 void *user_aligned_alloc(ThreadState *thr, uptr pc, uptr align, uptr sz) {
287 if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(align, sz))) {
288 errno = errno_EINVAL;
289 if (AllocatorMayReturnNull())
290 return nullptr;
291 GET_STACK_TRACE_FATAL(thr, pc);
292 ReportInvalidAlignedAllocAlignment(sz, align, &stack);
294 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, align));
297 void *user_valloc(ThreadState *thr, uptr pc, uptr sz) {
298 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, GetPageSizeCached()));
301 void *user_pvalloc(ThreadState *thr, uptr pc, uptr sz) {
302 uptr PageSize = GetPageSizeCached();
303 if (UNLIKELY(CheckForPvallocOverflow(sz, PageSize))) {
304 errno = errno_ENOMEM;
305 if (AllocatorMayReturnNull())
306 return nullptr;
307 GET_STACK_TRACE_FATAL(thr, pc);
308 ReportPvallocOverflow(sz, &stack);
310 // pvalloc(0) should allocate one page.
311 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
312 return SetErrnoOnNull(user_alloc_internal(thr, pc, sz, PageSize));
315 uptr user_alloc_usable_size(const void *p) {
316 if (p == 0)
317 return 0;
318 MBlock *b = ctx->metamap.GetBlock((uptr)p);
319 if (!b)
320 return 0; // Not a valid pointer.
321 if (b->siz == 0)
322 return 1; // Zero-sized allocations are actually 1 byte.
323 return b->siz;
326 void invoke_malloc_hook(void *ptr, uptr size) {
327 ThreadState *thr = cur_thread();
328 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
329 return;
330 __sanitizer_malloc_hook(ptr, size);
331 RunMallocHooks(ptr, size);
334 void invoke_free_hook(void *ptr) {
335 ThreadState *thr = cur_thread();
336 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
337 return;
338 __sanitizer_free_hook(ptr);
339 RunFreeHooks(ptr);
342 void *internal_alloc(MBlockType typ, uptr sz) {
343 ThreadState *thr = cur_thread();
344 if (thr->nomalloc) {
345 thr->nomalloc = 0; // CHECK calls internal_malloc().
346 CHECK(0);
348 return InternalAlloc(sz, &thr->proc()->internal_alloc_cache);
351 void internal_free(void *p) {
352 ThreadState *thr = cur_thread();
353 if (thr->nomalloc) {
354 thr->nomalloc = 0; // CHECK calls internal_malloc().
355 CHECK(0);
357 InternalFree(p, &thr->proc()->internal_alloc_cache);
360 } // namespace __tsan
362 using namespace __tsan;
364 extern "C" {
365 uptr __sanitizer_get_current_allocated_bytes() {
366 uptr stats[AllocatorStatCount];
367 allocator()->GetStats(stats);
368 return stats[AllocatorStatAllocated];
371 uptr __sanitizer_get_heap_size() {
372 uptr stats[AllocatorStatCount];
373 allocator()->GetStats(stats);
374 return stats[AllocatorStatMapped];
377 uptr __sanitizer_get_free_bytes() {
378 return 1;
381 uptr __sanitizer_get_unmapped_bytes() {
382 return 1;
385 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
386 return size;
389 int __sanitizer_get_ownership(const void *p) {
390 return allocator()->GetBlockBegin(p) != 0;
393 uptr __sanitizer_get_allocated_size(const void *p) {
394 return user_alloc_usable_size(p);
397 void __tsan_on_thread_idle() {
398 ThreadState *thr = cur_thread();
399 thr->clock.ResetCached(&thr->proc()->clock_cache);
400 thr->last_sleep_clock.ResetCached(&thr->proc()->clock_cache);
401 allocator()->SwallowCache(&thr->proc()->alloc_cache);
402 internal_allocator()->SwallowCache(&thr->proc()->internal_alloc_cache);
403 ctx->metamap.OnProcIdle(thr->proc());
405 } // extern "C"