[RS6000] PR97107, libgo fails to build for power10
[official-gcc.git] / libsanitizer / tsan / tsan_interceptors_posix.cpp
blob718957c370315c13e5f280dd0f77b9f910dd2398
1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
30 #include "tsan_rtl.h"
31 #include "tsan_mman.h"
32 #include "tsan_fd.h"
34 using namespace __tsan;
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
39 #endif
41 #if SANITIZER_NETBSD
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked(fp) \
44 (((__sanitizer_FILE *)fp)->_file == -1 \
45 ? -1 \
46 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
48 #define stdout ((__sanitizer_FILE*)&__sF[1])
49 #define stderr ((__sanitizer_FILE*)&__sF[2])
51 #define nanosleep __nanosleep50
52 #define vfork __vfork14
53 #endif
55 #if SANITIZER_ANDROID
56 #define mallopt(a, b)
57 #endif
59 #ifdef __mips__
60 const int kSigCount = 129;
61 #else
62 const int kSigCount = 65;
63 #endif
65 #ifdef __mips__
66 struct ucontext_t {
67 u64 opaque[768 / sizeof(u64) + 1];
69 #else
70 struct ucontext_t {
71 // The size is determined by looking at sizeof of real ucontext_t on linux.
72 u64 opaque[936 / sizeof(u64) + 1];
74 #endif
76 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
77 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
78 #elif defined(__aarch64__) || SANITIZER_PPC64V2
79 #define PTHREAD_ABI_BASE "GLIBC_2.17"
80 #endif
82 extern "C" int pthread_attr_init(void *attr);
83 extern "C" int pthread_attr_destroy(void *attr);
84 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
85 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
86 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
87 extern "C" int pthread_setspecific(unsigned key, const void *v);
88 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
89 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
90 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
91 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
92 extern "C" void *pthread_self();
93 extern "C" void _exit(int status);
94 #if !SANITIZER_NETBSD
95 extern "C" int fileno_unlocked(void *stream);
96 extern "C" int dirfd(void *dirp);
97 #endif
98 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
99 extern "C" int mallopt(int param, int value);
100 #endif
101 #if SANITIZER_NETBSD
102 extern __sanitizer_FILE __sF[];
103 #else
104 extern __sanitizer_FILE *stdout, *stderr;
105 #endif
106 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
107 const int PTHREAD_MUTEX_RECURSIVE = 1;
108 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
109 #else
110 const int PTHREAD_MUTEX_RECURSIVE = 2;
111 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
112 #endif
113 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
114 const int EPOLL_CTL_ADD = 1;
115 #endif
116 const int SIGILL = 4;
117 const int SIGTRAP = 5;
118 const int SIGABRT = 6;
119 const int SIGFPE = 8;
120 const int SIGSEGV = 11;
121 const int SIGPIPE = 13;
122 const int SIGTERM = 15;
123 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
124 const int SIGBUS = 10;
125 const int SIGSYS = 12;
126 #else
127 const int SIGBUS = 7;
128 const int SIGSYS = 31;
129 #endif
130 void *const MAP_FAILED = (void*)-1;
131 #if SANITIZER_NETBSD
132 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
133 #elif !SANITIZER_MAC
134 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
135 #endif
136 const int MAP_FIXED = 0x10;
137 typedef long long_t;
139 // From /usr/include/unistd.h
140 # define F_ULOCK 0 /* Unlock a previously locked region. */
141 # define F_LOCK 1 /* Lock a region for exclusive use. */
142 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
143 # define F_TEST 3 /* Test a region for other processes locks. */
145 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
146 const int SA_SIGINFO = 0x40;
147 const int SIG_SETMASK = 3;
148 #elif defined(__mips__)
149 const int SA_SIGINFO = 8;
150 const int SIG_SETMASK = 3;
151 #else
152 const int SA_SIGINFO = 4;
153 const int SIG_SETMASK = 2;
154 #endif
156 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
157 (cur_thread_init(), !cur_thread()->is_inited)
159 namespace __tsan {
160 struct SignalDesc {
161 bool armed;
162 bool sigaction;
163 __sanitizer_siginfo siginfo;
164 ucontext_t ctx;
167 struct ThreadSignalContext {
168 int int_signal_send;
169 atomic_uintptr_t in_blocking_func;
170 atomic_uintptr_t have_pending_signals;
171 SignalDesc pending_signals[kSigCount];
172 // emptyset and oldset are too big for stack.
173 __sanitizer_sigset_t emptyset;
174 __sanitizer_sigset_t oldset;
177 // The sole reason tsan wraps atexit callbacks is to establish synchronization
178 // between callback setup and callback execution.
179 struct AtExitCtx {
180 void (*f)();
181 void *arg;
184 // InterceptorContext holds all global data required for interceptors.
185 // It's explicitly constructed in InitializeInterceptors with placement new
186 // and is never destroyed. This allows usage of members with non-trivial
187 // constructors and destructors.
188 struct InterceptorContext {
189 // The object is 64-byte aligned, because we want hot data to be located
190 // in a single cache line if possible (it's accessed in every interceptor).
191 ALIGNED(64) LibIgnore libignore;
192 __sanitizer_sigaction sigactions[kSigCount];
193 #if !SANITIZER_MAC && !SANITIZER_NETBSD
194 unsigned finalize_key;
195 #endif
197 BlockingMutex atexit_mu;
198 Vector<struct AtExitCtx *> AtExitStack;
200 InterceptorContext()
201 : libignore(LINKER_INITIALIZED), AtExitStack() {
205 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
206 InterceptorContext *interceptor_ctx() {
207 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
210 LibIgnore *libignore() {
211 return &interceptor_ctx()->libignore;
214 void InitializeLibIgnore() {
215 const SuppressionContext &supp = *Suppressions();
216 const uptr n = supp.SuppressionCount();
217 for (uptr i = 0; i < n; i++) {
218 const Suppression *s = supp.SuppressionAt(i);
219 if (0 == internal_strcmp(s->type, kSuppressionLib))
220 libignore()->AddIgnoredLibrary(s->templ);
222 if (flags()->ignore_noninstrumented_modules)
223 libignore()->IgnoreNoninstrumentedModules(true);
224 libignore()->OnLibraryLoaded(0);
227 // The following two hooks can be used by for cooperative scheduling when
228 // locking.
229 #ifdef TSAN_EXTERNAL_HOOKS
230 void OnPotentiallyBlockingRegionBegin();
231 void OnPotentiallyBlockingRegionEnd();
232 #else
233 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
234 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
235 #endif
237 } // namespace __tsan
239 static ThreadSignalContext *SigCtx(ThreadState *thr) {
240 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
241 if (ctx == 0 && !thr->is_dead) {
242 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
243 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
244 thr->signal_ctx = ctx;
246 return ctx;
249 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
250 uptr pc)
251 : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
252 Initialize(thr);
253 if (!thr_->is_inited) return;
254 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
255 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
256 ignoring_ =
257 !thr_->in_ignored_lib && libignore()->IsIgnored(pc, &in_ignored_lib_);
258 EnableIgnores();
261 ScopedInterceptor::~ScopedInterceptor() {
262 if (!thr_->is_inited) return;
263 DisableIgnores();
264 if (!thr_->ignore_interceptors) {
265 ProcessPendingSignals(thr_);
266 FuncExit(thr_);
267 CheckNoLocks(thr_);
271 void ScopedInterceptor::EnableIgnores() {
272 if (ignoring_) {
273 ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
274 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
275 if (in_ignored_lib_) {
276 DCHECK(!thr_->in_ignored_lib);
277 thr_->in_ignored_lib = true;
282 void ScopedInterceptor::DisableIgnores() {
283 if (ignoring_) {
284 ThreadIgnoreEnd(thr_, pc_);
285 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
286 if (in_ignored_lib_) {
287 DCHECK(thr_->in_ignored_lib);
288 thr_->in_ignored_lib = false;
293 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
294 #if SANITIZER_FREEBSD
295 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
296 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
297 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
298 #elif SANITIZER_NETBSD
299 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
300 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
301 INTERCEPT_FUNCTION(__libc_##func)
302 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
303 INTERCEPT_FUNCTION(__libc_thr_##func)
304 #else
305 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
306 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
307 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
308 #endif
310 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
311 MemoryAccessRange((thr), (pc), (uptr)(s), \
312 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
314 #define READ_STRING(thr, pc, s, n) \
315 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
317 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
319 struct BlockingCall {
320 explicit BlockingCall(ThreadState *thr)
321 : thr(thr)
322 , ctx(SigCtx(thr)) {
323 for (;;) {
324 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
325 if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
326 break;
327 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
328 ProcessPendingSignals(thr);
330 // When we are in a "blocking call", we process signals asynchronously
331 // (right when they arrive). In this context we do not expect to be
332 // executing any user/runtime code. The known interceptor sequence when
333 // this is not true is: pthread_join -> munmap(stack). It's fine
334 // to ignore munmap in this case -- we handle stack shadow separately.
335 thr->ignore_interceptors++;
338 ~BlockingCall() {
339 thr->ignore_interceptors--;
340 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
343 ThreadState *thr;
344 ThreadSignalContext *ctx;
347 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
348 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
349 unsigned res = BLOCK_REAL(sleep)(sec);
350 AfterSleep(thr, pc);
351 return res;
354 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
355 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
356 int res = BLOCK_REAL(usleep)(usec);
357 AfterSleep(thr, pc);
358 return res;
361 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
362 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
363 int res = BLOCK_REAL(nanosleep)(req, rem);
364 AfterSleep(thr, pc);
365 return res;
368 TSAN_INTERCEPTOR(int, pause, int fake) {
369 SCOPED_TSAN_INTERCEPTOR(pause, fake);
370 return BLOCK_REAL(pause)(fake);
373 static void at_exit_wrapper() {
374 AtExitCtx *ctx;
376 // Ensure thread-safety.
377 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
379 // Pop AtExitCtx from the top of the stack of callback functions
380 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
381 ctx = interceptor_ctx()->AtExitStack[element];
382 interceptor_ctx()->AtExitStack.PopBack();
385 Acquire(cur_thread(), (uptr)0, (uptr)ctx);
386 ((void(*)())ctx->f)();
387 InternalFree(ctx);
390 static void cxa_at_exit_wrapper(void *arg) {
391 Acquire(cur_thread(), 0, (uptr)arg);
392 AtExitCtx *ctx = (AtExitCtx*)arg;
393 ((void(*)(void *arg))ctx->f)(ctx->arg);
394 InternalFree(ctx);
397 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
398 void *arg, void *dso);
400 #if !SANITIZER_ANDROID
401 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
402 if (in_symbolizer())
403 return 0;
404 // We want to setup the atexit callback even if we are in ignored lib
405 // or after fork.
406 SCOPED_INTERCEPTOR_RAW(atexit, f);
407 return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
409 #endif
411 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
412 if (in_symbolizer())
413 return 0;
414 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
415 return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
418 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
419 void *arg, void *dso) {
420 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
421 ctx->f = f;
422 ctx->arg = arg;
423 Release(thr, pc, (uptr)ctx);
424 // Memory allocation in __cxa_atexit will race with free during exit,
425 // because we do not see synchronization around atexit callback list.
426 ThreadIgnoreBegin(thr, pc);
427 int res;
428 if (!dso) {
429 // NetBSD does not preserve the 2nd argument if dso is equal to 0
430 // Store ctx in a local stack-like structure
432 // Ensure thread-safety.
433 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
435 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
436 // Push AtExitCtx on the top of the stack of callback functions
437 if (!res) {
438 interceptor_ctx()->AtExitStack.PushBack(ctx);
440 } else {
441 res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
443 ThreadIgnoreEnd(thr, pc);
444 return res;
447 #if !SANITIZER_MAC && !SANITIZER_NETBSD
448 static void on_exit_wrapper(int status, void *arg) {
449 ThreadState *thr = cur_thread();
450 uptr pc = 0;
451 Acquire(thr, pc, (uptr)arg);
452 AtExitCtx *ctx = (AtExitCtx*)arg;
453 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
454 InternalFree(ctx);
457 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
458 if (in_symbolizer())
459 return 0;
460 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
461 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
462 ctx->f = (void(*)())f;
463 ctx->arg = arg;
464 Release(thr, pc, (uptr)ctx);
465 // Memory allocation in __cxa_atexit will race with free during exit,
466 // because we do not see synchronization around atexit callback list.
467 ThreadIgnoreBegin(thr, pc);
468 int res = REAL(on_exit)(on_exit_wrapper, ctx);
469 ThreadIgnoreEnd(thr, pc);
470 return res;
472 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
473 #else
474 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
475 #endif
477 // Cleanup old bufs.
478 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
479 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
480 JmpBuf *buf = &thr->jmp_bufs[i];
481 if (buf->sp <= sp) {
482 uptr sz = thr->jmp_bufs.Size();
483 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
484 thr->jmp_bufs.PopBack();
485 i--;
490 static void SetJmp(ThreadState *thr, uptr sp) {
491 if (!thr->is_inited) // called from libc guts during bootstrap
492 return;
493 // Cleanup old bufs.
494 JmpBufGarbageCollect(thr, sp);
495 // Remember the buf.
496 JmpBuf *buf = thr->jmp_bufs.PushBack();
497 buf->sp = sp;
498 buf->shadow_stack_pos = thr->shadow_stack_pos;
499 ThreadSignalContext *sctx = SigCtx(thr);
500 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
501 buf->in_blocking_func = sctx ?
502 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
503 false;
504 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
505 memory_order_relaxed);
508 static void LongJmp(ThreadState *thr, uptr *env) {
509 uptr sp = ExtractLongJmpSp(env);
510 // Find the saved buf with matching sp.
511 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
512 JmpBuf *buf = &thr->jmp_bufs[i];
513 if (buf->sp == sp) {
514 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
515 // Unwind the stack.
516 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
517 FuncExit(thr);
518 ThreadSignalContext *sctx = SigCtx(thr);
519 if (sctx) {
520 sctx->int_signal_send = buf->int_signal_send;
521 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
522 memory_order_relaxed);
524 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
525 memory_order_relaxed);
526 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
527 return;
530 Printf("ThreadSanitizer: can't find longjmp buf\n");
531 CHECK(0);
534 // FIXME: put everything below into a common extern "C" block?
535 extern "C" void __tsan_setjmp(uptr sp) {
536 cur_thread_init();
537 SetJmp(cur_thread(), sp);
540 #if SANITIZER_MAC
541 TSAN_INTERCEPTOR(int, setjmp, void *env);
542 TSAN_INTERCEPTOR(int, _setjmp, void *env);
543 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
544 #else // SANITIZER_MAC
546 #if SANITIZER_NETBSD
547 #define setjmp_symname __setjmp14
548 #define sigsetjmp_symname __sigsetjmp14
549 #else
550 #define setjmp_symname setjmp
551 #define sigsetjmp_symname sigsetjmp
552 #endif
554 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
555 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
556 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
557 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
559 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
560 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
562 // Not called. Merely to satisfy TSAN_INTERCEPT().
563 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
564 int TSAN_INTERCEPTOR_SETJMP(void *env);
565 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
566 CHECK(0);
567 return 0;
570 // FIXME: any reason to have a separate declaration?
571 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
572 int __interceptor__setjmp(void *env);
573 extern "C" int __interceptor__setjmp(void *env) {
574 CHECK(0);
575 return 0;
578 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
579 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
580 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
581 CHECK(0);
582 return 0;
585 #if !SANITIZER_NETBSD
586 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
587 int __interceptor___sigsetjmp(void *env);
588 extern "C" int __interceptor___sigsetjmp(void *env) {
589 CHECK(0);
590 return 0;
592 #endif
594 extern "C" int setjmp_symname(void *env);
595 extern "C" int _setjmp(void *env);
596 extern "C" int sigsetjmp_symname(void *env);
597 #if !SANITIZER_NETBSD
598 extern "C" int __sigsetjmp(void *env);
599 #endif
600 DEFINE_REAL(int, setjmp_symname, void *env)
601 DEFINE_REAL(int, _setjmp, void *env)
602 DEFINE_REAL(int, sigsetjmp_symname, void *env)
603 #if !SANITIZER_NETBSD
604 DEFINE_REAL(int, __sigsetjmp, void *env)
605 #endif
606 #endif // SANITIZER_MAC
608 #if SANITIZER_NETBSD
609 #define longjmp_symname __longjmp14
610 #define siglongjmp_symname __siglongjmp14
611 #else
612 #define longjmp_symname longjmp
613 #define siglongjmp_symname siglongjmp
614 #endif
616 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
617 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
618 // bad things will happen. We will jump over ScopedInterceptor dtor and can
619 // leave thr->in_ignored_lib set.
621 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
623 LongJmp(cur_thread(), env);
624 REAL(longjmp_symname)(env, val);
627 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
629 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
631 LongJmp(cur_thread(), env);
632 REAL(siglongjmp_symname)(env, val);
635 #if SANITIZER_NETBSD
636 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
638 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
640 LongJmp(cur_thread(), env);
641 REAL(_longjmp)(env, val);
643 #endif
645 #if !SANITIZER_MAC
646 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
647 if (in_symbolizer())
648 return InternalAlloc(size);
649 void *p = 0;
651 SCOPED_INTERCEPTOR_RAW(malloc, size);
652 p = user_alloc(thr, pc, size);
654 invoke_malloc_hook(p, size);
655 return p;
658 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
659 SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
660 return user_memalign(thr, pc, align, sz);
663 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
664 if (in_symbolizer())
665 return InternalCalloc(size, n);
666 void *p = 0;
668 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
669 p = user_calloc(thr, pc, size, n);
671 invoke_malloc_hook(p, n * size);
672 return p;
675 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
676 if (in_symbolizer())
677 return InternalRealloc(p, size);
678 if (p)
679 invoke_free_hook(p);
681 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
682 p = user_realloc(thr, pc, p, size);
684 invoke_malloc_hook(p, size);
685 return p;
688 TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
689 if (in_symbolizer())
690 return InternalReallocArray(p, size, n);
691 if (p)
692 invoke_free_hook(p);
694 SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
695 p = user_reallocarray(thr, pc, p, size, n);
697 invoke_malloc_hook(p, size);
698 return p;
701 TSAN_INTERCEPTOR(void, free, void *p) {
702 if (p == 0)
703 return;
704 if (in_symbolizer())
705 return InternalFree(p);
706 invoke_free_hook(p);
707 SCOPED_INTERCEPTOR_RAW(free, p);
708 user_free(thr, pc, p);
711 TSAN_INTERCEPTOR(void, cfree, void *p) {
712 if (p == 0)
713 return;
714 if (in_symbolizer())
715 return InternalFree(p);
716 invoke_free_hook(p);
717 SCOPED_INTERCEPTOR_RAW(cfree, p);
718 user_free(thr, pc, p);
721 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
722 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
723 return user_alloc_usable_size(p);
725 #endif
727 TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
728 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
729 uptr srclen = internal_strlen(src);
730 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
731 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
732 return REAL(strcpy)(dst, src);
735 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
736 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
737 uptr srclen = internal_strnlen(src, n);
738 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
739 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
740 return REAL(strncpy)(dst, src, n);
743 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
744 SCOPED_TSAN_INTERCEPTOR(strdup, str);
745 // strdup will call malloc, so no instrumentation is required here.
746 return REAL(strdup)(str);
749 // Zero out addr if it points into shadow memory and was provided as a hint
750 // only, i.e., MAP_FIXED is not set.
751 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
752 if (*addr) {
753 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
754 if (flags & MAP_FIXED) {
755 errno = errno_EINVAL;
756 return false;
757 } else {
758 *addr = 0;
762 return true;
765 template <class Mmap>
766 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
767 void *addr, SIZE_T sz, int prot, int flags,
768 int fd, OFF64_T off) {
769 if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
770 void *res = real_mmap(addr, sz, prot, flags, fd, off);
771 if (res != MAP_FAILED) {
772 if (fd > 0) FdAccess(thr, pc, fd);
773 MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
775 return res;
778 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
779 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
780 UnmapShadow(thr, (uptr)addr, sz);
781 int res = REAL(munmap)(addr, sz);
782 return res;
785 #if SANITIZER_LINUX
786 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
787 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
788 return user_memalign(thr, pc, align, sz);
790 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
791 #else
792 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
793 #endif
795 #if !SANITIZER_MAC
796 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
797 if (in_symbolizer())
798 return InternalAlloc(sz, nullptr, align);
799 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
800 return user_aligned_alloc(thr, pc, align, sz);
803 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
804 if (in_symbolizer())
805 return InternalAlloc(sz, nullptr, GetPageSizeCached());
806 SCOPED_INTERCEPTOR_RAW(valloc, sz);
807 return user_valloc(thr, pc, sz);
809 #endif
811 #if SANITIZER_LINUX
812 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
813 if (in_symbolizer()) {
814 uptr PageSize = GetPageSizeCached();
815 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
816 return InternalAlloc(sz, nullptr, PageSize);
818 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
819 return user_pvalloc(thr, pc, sz);
821 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
822 #else
823 #define TSAN_MAYBE_INTERCEPT_PVALLOC
824 #endif
826 #if !SANITIZER_MAC
827 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
828 if (in_symbolizer()) {
829 void *p = InternalAlloc(sz, nullptr, align);
830 if (!p)
831 return errno_ENOMEM;
832 *memptr = p;
833 return 0;
835 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
836 return user_posix_memalign(thr, pc, memptr, align, sz);
838 #endif
840 // __cxa_guard_acquire and friends need to be intercepted in a special way -
841 // regular interceptors will break statically-linked libstdc++. Linux
842 // interceptors are especially defined as weak functions (so that they don't
843 // cause link errors when user defines them as well). So they silently
844 // auto-disable themselves when such symbol is already present in the binary. If
845 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
846 // will silently replace our interceptor. That's why on Linux we simply export
847 // these interceptors with INTERFACE_ATTRIBUTE.
848 // On OS X, we don't support statically linking, so we just use a regular
849 // interceptor.
850 #if SANITIZER_MAC
851 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
852 #else
853 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
854 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
855 #endif
857 // Used in thread-safe function static initialization.
858 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
859 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
860 OnPotentiallyBlockingRegionBegin();
861 auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
862 for (;;) {
863 u32 cmp = atomic_load(g, memory_order_acquire);
864 if (cmp == 0) {
865 if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
866 return 1;
867 } else if (cmp == 1) {
868 Acquire(thr, pc, (uptr)g);
869 return 0;
870 } else {
871 internal_sched_yield();
876 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
877 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
878 Release(thr, pc, (uptr)g);
879 atomic_store(g, 1, memory_order_release);
882 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
883 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
884 atomic_store(g, 0, memory_order_relaxed);
887 namespace __tsan {
888 void DestroyThreadState() {
889 ThreadState *thr = cur_thread();
890 Processor *proc = thr->proc();
891 ThreadFinish(thr);
892 ProcUnwire(proc, thr);
893 ProcDestroy(proc);
894 DTLS_Destroy();
895 cur_thread_finalize();
898 void PlatformCleanUpThreadState(ThreadState *thr) {
899 ThreadSignalContext *sctx = thr->signal_ctx;
900 if (sctx) {
901 thr->signal_ctx = 0;
902 UnmapOrDie(sctx, sizeof(*sctx));
905 } // namespace __tsan
907 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
908 static void thread_finalize(void *v) {
909 uptr iter = (uptr)v;
910 if (iter > 1) {
911 if (pthread_setspecific(interceptor_ctx()->finalize_key,
912 (void*)(iter - 1))) {
913 Printf("ThreadSanitizer: failed to set thread key\n");
914 Die();
916 return;
918 DestroyThreadState();
920 #endif
923 struct ThreadParam {
924 void* (*callback)(void *arg);
925 void *param;
926 atomic_uintptr_t tid;
929 extern "C" void *__tsan_thread_start_func(void *arg) {
930 ThreadParam *p = (ThreadParam*)arg;
931 void* (*callback)(void *arg) = p->callback;
932 void *param = p->param;
933 int tid = 0;
935 cur_thread_init();
936 ThreadState *thr = cur_thread();
937 // Thread-local state is not initialized yet.
938 ScopedIgnoreInterceptors ignore;
939 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
940 ThreadIgnoreBegin(thr, 0);
941 if (pthread_setspecific(interceptor_ctx()->finalize_key,
942 (void *)GetPthreadDestructorIterations())) {
943 Printf("ThreadSanitizer: failed to set thread key\n");
944 Die();
946 ThreadIgnoreEnd(thr, 0);
947 #endif
948 while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
949 internal_sched_yield();
950 Processor *proc = ProcCreate();
951 ProcWire(proc, thr);
952 ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
953 atomic_store(&p->tid, 0, memory_order_release);
955 void *res = callback(param);
956 // Prevent the callback from being tail called,
957 // it mixes up stack traces.
958 volatile int foo = 42;
959 foo++;
960 return res;
963 TSAN_INTERCEPTOR(int, pthread_create,
964 void *th, void *attr, void *(*callback)(void*), void * param) {
965 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
967 MaybeSpawnBackgroundThread();
969 if (ctx->after_multithreaded_fork) {
970 if (flags()->die_after_fork) {
971 Report("ThreadSanitizer: starting new threads after multi-threaded "
972 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
973 Die();
974 } else {
975 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
976 "fork is not supported (pid %d). Continuing because of "
977 "die_after_fork=0, but you are on your own\n", internal_getpid());
980 __sanitizer_pthread_attr_t myattr;
981 if (attr == 0) {
982 pthread_attr_init(&myattr);
983 attr = &myattr;
985 int detached = 0;
986 REAL(pthread_attr_getdetachstate)(attr, &detached);
987 AdjustStackSize(attr);
989 ThreadParam p;
990 p.callback = callback;
991 p.param = param;
992 atomic_store(&p.tid, 0, memory_order_relaxed);
993 int res = -1;
995 // Otherwise we see false positives in pthread stack manipulation.
996 ScopedIgnoreInterceptors ignore;
997 ThreadIgnoreBegin(thr, pc);
998 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
999 ThreadIgnoreEnd(thr, pc);
1001 if (res == 0) {
1002 int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1003 CHECK_NE(tid, 0);
1004 // Synchronization on p.tid serves two purposes:
1005 // 1. ThreadCreate must finish before the new thread starts.
1006 // Otherwise the new thread can call pthread_detach, but the pthread_t
1007 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1008 // 2. ThreadStart must finish before this thread continues.
1009 // Otherwise, this thread can call pthread_detach and reset thr->sync
1010 // before the new thread got a chance to acquire from it in ThreadStart.
1011 atomic_store(&p.tid, tid, memory_order_release);
1012 while (atomic_load(&p.tid, memory_order_acquire) != 0)
1013 internal_sched_yield();
1015 if (attr == &myattr)
1016 pthread_attr_destroy(&myattr);
1017 return res;
1020 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1021 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1022 int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1023 ThreadIgnoreBegin(thr, pc);
1024 int res = BLOCK_REAL(pthread_join)(th, ret);
1025 ThreadIgnoreEnd(thr, pc);
1026 if (res == 0) {
1027 ThreadJoin(thr, pc, tid);
1029 return res;
1032 DEFINE_REAL_PTHREAD_FUNCTIONS
1034 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1035 SCOPED_INTERCEPTOR_RAW(pthread_detach, th);
1036 int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1037 int res = REAL(pthread_detach)(th);
1038 if (res == 0) {
1039 ThreadDetach(thr, pc, tid);
1041 return res;
1044 TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1046 SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1047 #if !SANITIZER_MAC && !SANITIZER_ANDROID
1048 CHECK_EQ(thr, &cur_thread_placeholder);
1049 #endif
1051 REAL(pthread_exit)(retval);
1054 #if SANITIZER_LINUX
1055 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1056 SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret);
1057 int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1058 ThreadIgnoreBegin(thr, pc);
1059 int res = REAL(pthread_tryjoin_np)(th, ret);
1060 ThreadIgnoreEnd(thr, pc);
1061 if (res == 0)
1062 ThreadJoin(thr, pc, tid);
1063 else
1064 ThreadNotJoined(thr, pc, tid, (uptr)th);
1065 return res;
1068 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1069 const struct timespec *abstime) {
1070 SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime);
1071 int tid = ThreadConsumeTid(thr, pc, (uptr)th);
1072 ThreadIgnoreBegin(thr, pc);
1073 int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1074 ThreadIgnoreEnd(thr, pc);
1075 if (res == 0)
1076 ThreadJoin(thr, pc, tid);
1077 else
1078 ThreadNotJoined(thr, pc, tid, (uptr)th);
1079 return res;
1081 #endif
1083 // Problem:
1084 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1085 // pthread_cond_t has different size in the different versions.
1086 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1087 // after pthread_cond_t (old cond is smaller).
1088 // If we call old REAL functions for new pthread_cond_t, we will lose some
1089 // functionality (e.g. old functions do not support waiting against
1090 // CLOCK_REALTIME).
1091 // Proper handling would require to have 2 versions of interceptors as well.
1092 // But this is messy, in particular requires linker scripts when sanitizer
1093 // runtime is linked into a shared library.
1094 // Instead we assume we don't have dynamic libraries built against old
1095 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1096 // that allows to work with old libraries (but this mode does not support
1097 // some features, e.g. pthread_condattr_getpshared).
1098 static void *init_cond(void *c, bool force = false) {
1099 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1100 // So we allocate additional memory on the side large enough to hold
1101 // any pthread_cond_t object. Always call new REAL functions, but pass
1102 // the aux object to them.
1103 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1104 // first word of pthread_cond_t to zero.
1105 // It's all relevant only for linux.
1106 if (!common_flags()->legacy_pthread_cond)
1107 return c;
1108 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1109 uptr cond = atomic_load(p, memory_order_acquire);
1110 if (!force && cond != 0)
1111 return (void*)cond;
1112 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1113 internal_memset(newcond, 0, pthread_cond_t_sz);
1114 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1115 memory_order_acq_rel))
1116 return newcond;
1117 WRAP(free)(newcond);
1118 return (void*)cond;
1121 struct CondMutexUnlockCtx {
1122 ScopedInterceptor *si;
1123 ThreadState *thr;
1124 uptr pc;
1125 void *m;
1128 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1129 // pthread_cond_wait interceptor has enabled async signal delivery
1130 // (see BlockingCall below). Disable async signals since we are running
1131 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1132 // since the thread is cancelled, so we have to manually execute them
1133 // (the thread still can run some user code due to pthread_cleanup_push).
1134 ThreadSignalContext *ctx = SigCtx(arg->thr);
1135 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1136 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1137 MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1138 // Undo BlockingCall ctor effects.
1139 arg->thr->ignore_interceptors--;
1140 arg->si->~ScopedInterceptor();
1143 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1144 void *cond = init_cond(c, true);
1145 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1146 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1147 return REAL(pthread_cond_init)(cond, a);
1150 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1151 int (*fn)(void *c, void *m, void *abstime), void *c,
1152 void *m, void *t) {
1153 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1154 MutexUnlock(thr, pc, (uptr)m);
1155 CondMutexUnlockCtx arg = {si, thr, pc, m};
1156 int res = 0;
1157 // This ensures that we handle mutex lock even in case of pthread_cancel.
1158 // See test/tsan/cond_cancel.cpp.
1160 // Enable signal delivery while the thread is blocked.
1161 BlockingCall bc(thr);
1162 res = call_pthread_cancel_with_cleanup(
1163 fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1165 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1166 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1167 return res;
1170 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1171 void *cond = init_cond(c);
1172 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1173 return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1174 pthread_cond_wait),
1175 cond, m, 0);
1178 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1179 void *cond = init_cond(c);
1180 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1181 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1182 abstime);
1185 #if SANITIZER_MAC
1186 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1187 void *reltime) {
1188 void *cond = init_cond(c);
1189 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1190 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1191 m, reltime);
1193 #endif
1195 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1196 void *cond = init_cond(c);
1197 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1198 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1199 return REAL(pthread_cond_signal)(cond);
1202 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1203 void *cond = init_cond(c);
1204 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1205 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1206 return REAL(pthread_cond_broadcast)(cond);
1209 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1210 void *cond = init_cond(c);
1211 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1212 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1213 int res = REAL(pthread_cond_destroy)(cond);
1214 if (common_flags()->legacy_pthread_cond) {
1215 // Free our aux cond and zero the pointer to not leave dangling pointers.
1216 WRAP(free)(cond);
1217 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1219 return res;
1222 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1223 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1224 int res = REAL(pthread_mutex_init)(m, a);
1225 if (res == 0) {
1226 u32 flagz = 0;
1227 if (a) {
1228 int type = 0;
1229 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1230 if (type == PTHREAD_MUTEX_RECURSIVE ||
1231 type == PTHREAD_MUTEX_RECURSIVE_NP)
1232 flagz |= MutexFlagWriteReentrant;
1234 MutexCreate(thr, pc, (uptr)m, flagz);
1236 return res;
1239 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1240 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1241 int res = REAL(pthread_mutex_destroy)(m);
1242 if (res == 0 || res == errno_EBUSY) {
1243 MutexDestroy(thr, pc, (uptr)m);
1245 return res;
1248 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1249 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1250 int res = REAL(pthread_mutex_trylock)(m);
1251 if (res == errno_EOWNERDEAD)
1252 MutexRepair(thr, pc, (uptr)m);
1253 if (res == 0 || res == errno_EOWNERDEAD)
1254 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1255 return res;
1258 #if !SANITIZER_MAC
1259 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1260 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1261 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1262 if (res == 0) {
1263 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1265 return res;
1267 #endif
1269 #if !SANITIZER_MAC
1270 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1271 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1272 int res = REAL(pthread_spin_init)(m, pshared);
1273 if (res == 0) {
1274 MutexCreate(thr, pc, (uptr)m);
1276 return res;
1279 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1280 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1281 int res = REAL(pthread_spin_destroy)(m);
1282 if (res == 0) {
1283 MutexDestroy(thr, pc, (uptr)m);
1285 return res;
1288 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1289 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1290 MutexPreLock(thr, pc, (uptr)m);
1291 int res = REAL(pthread_spin_lock)(m);
1292 if (res == 0) {
1293 MutexPostLock(thr, pc, (uptr)m);
1295 return res;
1298 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1299 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1300 int res = REAL(pthread_spin_trylock)(m);
1301 if (res == 0) {
1302 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1304 return res;
1307 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1308 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1309 MutexUnlock(thr, pc, (uptr)m);
1310 int res = REAL(pthread_spin_unlock)(m);
1311 return res;
1313 #endif
1315 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1316 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1317 int res = REAL(pthread_rwlock_init)(m, a);
1318 if (res == 0) {
1319 MutexCreate(thr, pc, (uptr)m);
1321 return res;
1324 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1325 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1326 int res = REAL(pthread_rwlock_destroy)(m);
1327 if (res == 0) {
1328 MutexDestroy(thr, pc, (uptr)m);
1330 return res;
1333 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1334 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1335 MutexPreReadLock(thr, pc, (uptr)m);
1336 int res = REAL(pthread_rwlock_rdlock)(m);
1337 if (res == 0) {
1338 MutexPostReadLock(thr, pc, (uptr)m);
1340 return res;
1343 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1344 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1345 int res = REAL(pthread_rwlock_tryrdlock)(m);
1346 if (res == 0) {
1347 MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1349 return res;
1352 #if !SANITIZER_MAC
1353 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1354 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1355 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1356 if (res == 0) {
1357 MutexPostReadLock(thr, pc, (uptr)m);
1359 return res;
1361 #endif
1363 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1364 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1365 MutexPreLock(thr, pc, (uptr)m);
1366 int res = REAL(pthread_rwlock_wrlock)(m);
1367 if (res == 0) {
1368 MutexPostLock(thr, pc, (uptr)m);
1370 return res;
1373 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1374 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1375 int res = REAL(pthread_rwlock_trywrlock)(m);
1376 if (res == 0) {
1377 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1379 return res;
1382 #if !SANITIZER_MAC
1383 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1384 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1385 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1386 if (res == 0) {
1387 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1389 return res;
1391 #endif
1393 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1394 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1395 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1396 int res = REAL(pthread_rwlock_unlock)(m);
1397 return res;
1400 #if !SANITIZER_MAC
1401 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1402 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1403 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1404 int res = REAL(pthread_barrier_init)(b, a, count);
1405 return res;
1408 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1409 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1410 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1411 int res = REAL(pthread_barrier_destroy)(b);
1412 return res;
1415 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1416 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1417 Release(thr, pc, (uptr)b);
1418 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1419 int res = REAL(pthread_barrier_wait)(b);
1420 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1421 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1422 Acquire(thr, pc, (uptr)b);
1424 return res;
1426 #endif
1428 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1429 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1430 if (o == 0 || f == 0)
1431 return errno_EINVAL;
1432 atomic_uint32_t *a;
1434 if (SANITIZER_MAC)
1435 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1436 else if (SANITIZER_NETBSD)
1437 a = static_cast<atomic_uint32_t*>
1438 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1439 else
1440 a = static_cast<atomic_uint32_t*>(o);
1442 u32 v = atomic_load(a, memory_order_acquire);
1443 if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1444 memory_order_relaxed)) {
1445 (*f)();
1446 if (!thr->in_ignored_lib)
1447 Release(thr, pc, (uptr)o);
1448 atomic_store(a, 2, memory_order_release);
1449 } else {
1450 while (v != 2) {
1451 internal_sched_yield();
1452 v = atomic_load(a, memory_order_acquire);
1454 if (!thr->in_ignored_lib)
1455 Acquire(thr, pc, (uptr)o);
1457 return 0;
1460 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1461 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1462 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1463 if (fd > 0)
1464 FdAccess(thr, pc, fd);
1465 return REAL(__fxstat)(version, fd, buf);
1467 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1468 #else
1469 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1470 #endif
1472 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1473 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1474 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1475 if (fd > 0)
1476 FdAccess(thr, pc, fd);
1477 return REAL(fstat)(fd, buf);
1478 #else
1479 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1480 if (fd > 0)
1481 FdAccess(thr, pc, fd);
1482 return REAL(__fxstat)(0, fd, buf);
1483 #endif
1486 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1487 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1488 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1489 if (fd > 0)
1490 FdAccess(thr, pc, fd);
1491 return REAL(__fxstat64)(version, fd, buf);
1493 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1494 #else
1495 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1496 #endif
1498 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1499 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1500 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1501 if (fd > 0)
1502 FdAccess(thr, pc, fd);
1503 return REAL(__fxstat64)(0, fd, buf);
1505 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1506 #else
1507 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1508 #endif
1510 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1511 SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1512 READ_STRING(thr, pc, name, 0);
1513 int fd = REAL(open)(name, flags, mode);
1514 if (fd >= 0)
1515 FdFileCreate(thr, pc, fd);
1516 return fd;
1519 #if SANITIZER_LINUX
1520 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1521 SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1522 READ_STRING(thr, pc, name, 0);
1523 int fd = REAL(open64)(name, flags, mode);
1524 if (fd >= 0)
1525 FdFileCreate(thr, pc, fd);
1526 return fd;
1528 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1529 #else
1530 #define TSAN_MAYBE_INTERCEPT_OPEN64
1531 #endif
1533 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1534 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1535 READ_STRING(thr, pc, name, 0);
1536 int fd = REAL(creat)(name, mode);
1537 if (fd >= 0)
1538 FdFileCreate(thr, pc, fd);
1539 return fd;
1542 #if SANITIZER_LINUX
1543 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1544 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1545 READ_STRING(thr, pc, name, 0);
1546 int fd = REAL(creat64)(name, mode);
1547 if (fd >= 0)
1548 FdFileCreate(thr, pc, fd);
1549 return fd;
1551 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1552 #else
1553 #define TSAN_MAYBE_INTERCEPT_CREAT64
1554 #endif
1556 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1557 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1558 int newfd = REAL(dup)(oldfd);
1559 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1560 FdDup(thr, pc, oldfd, newfd, true);
1561 return newfd;
1564 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1565 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1566 int newfd2 = REAL(dup2)(oldfd, newfd);
1567 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1568 FdDup(thr, pc, oldfd, newfd2, false);
1569 return newfd2;
1572 #if !SANITIZER_MAC
1573 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1574 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1575 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1576 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1577 FdDup(thr, pc, oldfd, newfd2, false);
1578 return newfd2;
1580 #endif
1582 #if SANITIZER_LINUX
1583 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1584 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1585 int fd = REAL(eventfd)(initval, flags);
1586 if (fd >= 0)
1587 FdEventCreate(thr, pc, fd);
1588 return fd;
1590 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1591 #else
1592 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1593 #endif
1595 #if SANITIZER_LINUX
1596 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1597 SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1598 if (fd >= 0)
1599 FdClose(thr, pc, fd);
1600 fd = REAL(signalfd)(fd, mask, flags);
1601 if (fd >= 0)
1602 FdSignalCreate(thr, pc, fd);
1603 return fd;
1605 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1606 #else
1607 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1608 #endif
1610 #if SANITIZER_LINUX
1611 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1612 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1613 int fd = REAL(inotify_init)(fake);
1614 if (fd >= 0)
1615 FdInotifyCreate(thr, pc, fd);
1616 return fd;
1618 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1619 #else
1620 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1621 #endif
1623 #if SANITIZER_LINUX
1624 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1625 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1626 int fd = REAL(inotify_init1)(flags);
1627 if (fd >= 0)
1628 FdInotifyCreate(thr, pc, fd);
1629 return fd;
1631 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1632 #else
1633 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1634 #endif
1636 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1637 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1638 int fd = REAL(socket)(domain, type, protocol);
1639 if (fd >= 0)
1640 FdSocketCreate(thr, pc, fd);
1641 return fd;
1644 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1645 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1646 int res = REAL(socketpair)(domain, type, protocol, fd);
1647 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1648 FdPipeCreate(thr, pc, fd[0], fd[1]);
1649 return res;
1652 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1653 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1654 FdSocketConnecting(thr, pc, fd);
1655 int res = REAL(connect)(fd, addr, addrlen);
1656 if (res == 0 && fd >= 0)
1657 FdSocketConnect(thr, pc, fd);
1658 return res;
1661 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1662 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1663 int res = REAL(bind)(fd, addr, addrlen);
1664 if (fd > 0 && res == 0)
1665 FdAccess(thr, pc, fd);
1666 return res;
1669 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1670 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1671 int res = REAL(listen)(fd, backlog);
1672 if (fd > 0 && res == 0)
1673 FdAccess(thr, pc, fd);
1674 return res;
1677 TSAN_INTERCEPTOR(int, close, int fd) {
1678 SCOPED_TSAN_INTERCEPTOR(close, fd);
1679 if (fd >= 0)
1680 FdClose(thr, pc, fd);
1681 return REAL(close)(fd);
1684 #if SANITIZER_LINUX
1685 TSAN_INTERCEPTOR(int, __close, int fd) {
1686 SCOPED_TSAN_INTERCEPTOR(__close, fd);
1687 if (fd >= 0)
1688 FdClose(thr, pc, fd);
1689 return REAL(__close)(fd);
1691 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1692 #else
1693 #define TSAN_MAYBE_INTERCEPT___CLOSE
1694 #endif
1696 // glibc guts
1697 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1698 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1699 SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1700 int fds[64];
1701 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1702 for (int i = 0; i < cnt; i++) {
1703 if (fds[i] > 0)
1704 FdClose(thr, pc, fds[i]);
1706 REAL(__res_iclose)(state, free_addr);
1708 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1709 #else
1710 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1711 #endif
1713 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1714 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1715 int res = REAL(pipe)(pipefd);
1716 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1717 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1718 return res;
1721 #if !SANITIZER_MAC
1722 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1723 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1724 int res = REAL(pipe2)(pipefd, flags);
1725 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1726 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1727 return res;
1729 #endif
1731 TSAN_INTERCEPTOR(int, unlink, char *path) {
1732 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1733 Release(thr, pc, File2addr(path));
1734 int res = REAL(unlink)(path);
1735 return res;
1738 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1739 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1740 void *res = REAL(tmpfile)(fake);
1741 if (res) {
1742 int fd = fileno_unlocked(res);
1743 if (fd >= 0)
1744 FdFileCreate(thr, pc, fd);
1746 return res;
1749 #if SANITIZER_LINUX
1750 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1751 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1752 void *res = REAL(tmpfile64)(fake);
1753 if (res) {
1754 int fd = fileno_unlocked(res);
1755 if (fd >= 0)
1756 FdFileCreate(thr, pc, fd);
1758 return res;
1760 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1761 #else
1762 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1763 #endif
1765 static void FlushStreams() {
1766 // Flushing all the streams here may freeze the process if a child thread is
1767 // performing file stream operations at the same time.
1768 REAL(fflush)(stdout);
1769 REAL(fflush)(stderr);
1772 TSAN_INTERCEPTOR(void, abort, int fake) {
1773 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1774 FlushStreams();
1775 REAL(abort)(fake);
1778 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1779 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1780 Release(thr, pc, Dir2addr(path));
1781 int res = REAL(rmdir)(path);
1782 return res;
1785 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1786 SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1787 if (dirp) {
1788 int fd = dirfd(dirp);
1789 FdClose(thr, pc, fd);
1791 return REAL(closedir)(dirp);
1794 #if SANITIZER_LINUX
1795 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1796 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1797 int fd = REAL(epoll_create)(size);
1798 if (fd >= 0)
1799 FdPollCreate(thr, pc, fd);
1800 return fd;
1803 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1804 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1805 int fd = REAL(epoll_create1)(flags);
1806 if (fd >= 0)
1807 FdPollCreate(thr, pc, fd);
1808 return fd;
1811 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1812 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1813 if (epfd >= 0)
1814 FdAccess(thr, pc, epfd);
1815 if (epfd >= 0 && fd >= 0)
1816 FdAccess(thr, pc, fd);
1817 if (op == EPOLL_CTL_ADD && epfd >= 0)
1818 FdRelease(thr, pc, epfd);
1819 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1820 return res;
1823 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1824 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1825 if (epfd >= 0)
1826 FdAccess(thr, pc, epfd);
1827 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1828 if (res > 0 && epfd >= 0)
1829 FdAcquire(thr, pc, epfd);
1830 return res;
1833 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1834 void *sigmask) {
1835 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1836 if (epfd >= 0)
1837 FdAccess(thr, pc, epfd);
1838 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1839 if (res > 0 && epfd >= 0)
1840 FdAcquire(thr, pc, epfd);
1841 return res;
1844 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1845 TSAN_INTERCEPT(epoll_create); \
1846 TSAN_INTERCEPT(epoll_create1); \
1847 TSAN_INTERCEPT(epoll_ctl); \
1848 TSAN_INTERCEPT(epoll_wait); \
1849 TSAN_INTERCEPT(epoll_pwait)
1850 #else
1851 #define TSAN_MAYBE_INTERCEPT_EPOLL
1852 #endif
1854 // The following functions are intercepted merely to process pending signals.
1855 // If program blocks signal X, we must deliver the signal before the function
1856 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1857 // it's better to deliver the signal straight away.
1858 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1859 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1860 return REAL(sigsuspend)(mask);
1863 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1864 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1865 return REAL(sigblock)(mask);
1868 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1869 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1870 return REAL(sigsetmask)(mask);
1873 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1874 __sanitizer_sigset_t *oldset) {
1875 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1876 return REAL(pthread_sigmask)(how, set, oldset);
1879 namespace __tsan {
1881 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1882 bool sigact, int sig,
1883 __sanitizer_siginfo *info, void *uctx) {
1884 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1885 if (acquire)
1886 Acquire(thr, 0, (uptr)&sigactions[sig]);
1887 // Signals are generally asynchronous, so if we receive a signals when
1888 // ignores are enabled we should disable ignores. This is critical for sync
1889 // and interceptors, because otherwise we can miss syncronization and report
1890 // false races.
1891 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1892 int ignore_interceptors = thr->ignore_interceptors;
1893 int ignore_sync = thr->ignore_sync;
1894 if (!ctx->after_multithreaded_fork) {
1895 thr->ignore_reads_and_writes = 0;
1896 thr->fast_state.ClearIgnoreBit();
1897 thr->ignore_interceptors = 0;
1898 thr->ignore_sync = 0;
1900 // Ensure that the handler does not spoil errno.
1901 const int saved_errno = errno;
1902 errno = 99;
1903 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1904 // Also need to remember pc for reporting before the call,
1905 // because the handler can reset it.
1906 volatile uptr pc =
1907 sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1908 if (pc != sig_dfl && pc != sig_ign) {
1909 if (sigact)
1910 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1911 else
1912 ((__sanitizer_sighandler_ptr)pc)(sig);
1914 if (!ctx->after_multithreaded_fork) {
1915 thr->ignore_reads_and_writes = ignore_reads_and_writes;
1916 if (ignore_reads_and_writes)
1917 thr->fast_state.SetIgnoreBit();
1918 thr->ignore_interceptors = ignore_interceptors;
1919 thr->ignore_sync = ignore_sync;
1921 // We do not detect errno spoiling for SIGTERM,
1922 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1923 // tsan reports false positive in such case.
1924 // It's difficult to properly detect this situation (reraise),
1925 // because in async signal processing case (when handler is called directly
1926 // from rtl_generic_sighandler) we have not yet received the reraised
1927 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1928 if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1929 VarSizeStackTrace stack;
1930 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1931 // expected, OutputReport() will undo this.
1932 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1933 ThreadRegistryLock l(ctx->thread_registry);
1934 ScopedReport rep(ReportTypeErrnoInSignal);
1935 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1936 rep.AddStack(stack, true);
1937 OutputReport(thr, rep);
1940 errno = saved_errno;
1943 void ProcessPendingSignals(ThreadState *thr) {
1944 ThreadSignalContext *sctx = SigCtx(thr);
1945 if (sctx == 0 ||
1946 atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1947 return;
1948 atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1949 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1950 internal_sigfillset(&sctx->emptyset);
1951 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1952 CHECK_EQ(res, 0);
1953 for (int sig = 0; sig < kSigCount; sig++) {
1954 SignalDesc *signal = &sctx->pending_signals[sig];
1955 if (signal->armed) {
1956 signal->armed = false;
1957 CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1958 &signal->siginfo, &signal->ctx);
1961 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1962 CHECK_EQ(res, 0);
1963 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1966 } // namespace __tsan
1968 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1969 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
1970 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1971 // If we are sending signal to ourselves, we must process it now.
1972 (sctx && sig == sctx->int_signal_send);
1975 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1976 __sanitizer_siginfo *info,
1977 void *ctx) {
1978 cur_thread_init();
1979 ThreadState *thr = cur_thread();
1980 ThreadSignalContext *sctx = SigCtx(thr);
1981 if (sig < 0 || sig >= kSigCount) {
1982 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1983 return;
1985 // Don't mess with synchronous signals.
1986 const bool sync = is_sync_signal(sctx, sig);
1987 if (sync ||
1988 // If we are in blocking function, we can safely process it now
1989 // (but check if we are in a recursive interceptor,
1990 // i.e. pthread_join()->munmap()).
1991 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1992 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1993 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1994 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1995 CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1996 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1997 } else {
1998 // Be very conservative with when we do acquire in this case.
1999 // It's unsafe to do acquire in async handlers, because ThreadState
2000 // can be in inconsistent state.
2001 // SIGSYS looks relatively safe -- it's synchronous and can actually
2002 // need some global state.
2003 bool acq = (sig == SIGSYS);
2004 CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2006 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2007 return;
2010 if (sctx == 0)
2011 return;
2012 SignalDesc *signal = &sctx->pending_signals[sig];
2013 if (signal->armed == false) {
2014 signal->armed = true;
2015 signal->sigaction = sigact;
2016 if (info)
2017 internal_memcpy(&signal->siginfo, info, sizeof(*info));
2018 if (ctx)
2019 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2020 atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2024 static void rtl_sighandler(int sig) {
2025 rtl_generic_sighandler(false, sig, 0, 0);
2028 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
2029 rtl_generic_sighandler(true, sig, info, ctx);
2032 TSAN_INTERCEPTOR(int, raise, int sig) {
2033 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2034 ThreadSignalContext *sctx = SigCtx(thr);
2035 CHECK_NE(sctx, 0);
2036 int prev = sctx->int_signal_send;
2037 sctx->int_signal_send = sig;
2038 int res = REAL(raise)(sig);
2039 CHECK_EQ(sctx->int_signal_send, sig);
2040 sctx->int_signal_send = prev;
2041 return res;
2044 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2045 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2046 ThreadSignalContext *sctx = SigCtx(thr);
2047 CHECK_NE(sctx, 0);
2048 int prev = sctx->int_signal_send;
2049 if (pid == (int)internal_getpid()) {
2050 sctx->int_signal_send = sig;
2052 int res = REAL(kill)(pid, sig);
2053 if (pid == (int)internal_getpid()) {
2054 CHECK_EQ(sctx->int_signal_send, sig);
2055 sctx->int_signal_send = prev;
2057 return res;
2060 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2061 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2062 ThreadSignalContext *sctx = SigCtx(thr);
2063 CHECK_NE(sctx, 0);
2064 int prev = sctx->int_signal_send;
2065 if (tid == pthread_self()) {
2066 sctx->int_signal_send = sig;
2068 int res = REAL(pthread_kill)(tid, sig);
2069 if (tid == pthread_self()) {
2070 CHECK_EQ(sctx->int_signal_send, sig);
2071 sctx->int_signal_send = prev;
2073 return res;
2076 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2077 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2078 // It's intercepted merely to process pending signals.
2079 return REAL(gettimeofday)(tv, tz);
2082 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2083 void *hints, void *rv) {
2084 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2085 // We miss atomic synchronization in getaddrinfo,
2086 // and can report false race between malloc and free
2087 // inside of getaddrinfo. So ignore memory accesses.
2088 ThreadIgnoreBegin(thr, pc);
2089 int res = REAL(getaddrinfo)(node, service, hints, rv);
2090 ThreadIgnoreEnd(thr, pc);
2091 return res;
2094 TSAN_INTERCEPTOR(int, fork, int fake) {
2095 if (in_symbolizer())
2096 return REAL(fork)(fake);
2097 SCOPED_INTERCEPTOR_RAW(fork, fake);
2098 ForkBefore(thr, pc);
2099 int pid;
2101 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2102 // we'll assert in CheckNoLocks() unless we ignore interceptors.
2103 ScopedIgnoreInterceptors ignore;
2104 pid = REAL(fork)(fake);
2106 if (pid == 0) {
2107 // child
2108 ForkChildAfter(thr, pc);
2109 FdOnFork(thr, pc);
2110 } else if (pid > 0) {
2111 // parent
2112 ForkParentAfter(thr, pc);
2113 } else {
2114 // error
2115 ForkParentAfter(thr, pc);
2117 return pid;
2120 TSAN_INTERCEPTOR(int, vfork, int fake) {
2121 // Some programs (e.g. openjdk) call close for all file descriptors
2122 // in the child process. Under tsan it leads to false positives, because
2123 // address space is shared, so the parent process also thinks that
2124 // the descriptors are closed (while they are actually not).
2125 // This leads to false positives due to missed synchronization.
2126 // Strictly saying this is undefined behavior, because vfork child is not
2127 // allowed to call any functions other than exec/exit. But this is what
2128 // openjdk does, so we want to handle it.
2129 // We could disable interceptors in the child process. But it's not possible
2130 // to simply intercept and wrap vfork, because vfork child is not allowed
2131 // to return from the function that calls vfork, and that's exactly what
2132 // we would do. So this would require some assembly trickery as well.
2133 // Instead we simply turn vfork into fork.
2134 return WRAP(fork)(fake);
2137 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2138 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2139 void *data);
2140 struct dl_iterate_phdr_data {
2141 ThreadState *thr;
2142 uptr pc;
2143 dl_iterate_phdr_cb_t cb;
2144 void *data;
2147 static bool IsAppNotRodata(uptr addr) {
2148 return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2151 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2152 void *data) {
2153 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2154 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2155 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2156 // inside of dynamic linker, so we "unpoison" it here in order to not
2157 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2158 // because some libc functions call __libc_dlopen.
2159 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2160 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2161 internal_strlen(info->dlpi_name));
2162 int res = cbdata->cb(info, size, cbdata->data);
2163 // Perform the check one more time in case info->dlpi_name was overwritten
2164 // by user callback.
2165 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2166 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2167 internal_strlen(info->dlpi_name));
2168 return res;
2171 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2172 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2173 dl_iterate_phdr_data cbdata;
2174 cbdata.thr = thr;
2175 cbdata.pc = pc;
2176 cbdata.cb = cb;
2177 cbdata.data = data;
2178 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2179 return res;
2181 #endif
2183 static int OnExit(ThreadState *thr) {
2184 int status = Finalize(thr);
2185 FlushStreams();
2186 return status;
2189 struct TsanInterceptorContext {
2190 ThreadState *thr;
2191 const uptr caller_pc;
2192 const uptr pc;
2195 #if !SANITIZER_MAC
2196 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2197 __sanitizer_msghdr *msg) {
2198 int fds[64];
2199 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2200 for (int i = 0; i < cnt; i++)
2201 FdEventCreate(thr, pc, fds[i]);
2203 #endif
2205 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2206 // Causes interceptor recursion (getaddrinfo() and fopen())
2207 #undef SANITIZER_INTERCEPT_GETADDRINFO
2208 // We define our own.
2209 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2210 #define NEED_TLS_GET_ADDR
2211 #endif
2212 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2213 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2215 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2216 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2217 INTERCEPT_FUNCTION_VER(name, ver)
2219 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2220 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2221 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2222 true)
2224 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2225 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2226 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2227 false)
2229 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2230 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2231 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2232 ctx = (void *)&_ctx; \
2233 (void) ctx;
2235 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2236 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2237 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2238 ctx = (void *)&_ctx; \
2239 (void) ctx;
2241 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2242 if (path) \
2243 Acquire(thr, pc, File2addr(path)); \
2244 if (file) { \
2245 int fd = fileno_unlocked(file); \
2246 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2249 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2250 if (file) { \
2251 int fd = fileno_unlocked(file); \
2252 if (fd >= 0) FdClose(thr, pc, fd); \
2255 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2256 libignore()->OnLibraryLoaded(filename)
2258 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2259 libignore()->OnLibraryUnloaded()
2261 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2262 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2264 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2265 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2267 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2268 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2270 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2271 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2273 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2274 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2276 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2277 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2279 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2280 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2282 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2283 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2285 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2286 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2288 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2290 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2291 OnExit(((TsanInterceptorContext *) ctx)->thr)
2293 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2294 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2295 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2297 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2298 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2299 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2301 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2302 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2303 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2305 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2306 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2307 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2309 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2310 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2311 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2313 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2314 off) \
2315 do { \
2316 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2317 off); \
2318 } while (false)
2320 #if !SANITIZER_MAC
2321 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2322 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2323 ((TsanInterceptorContext *)ctx)->pc, msg)
2324 #endif
2326 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2327 if (TsanThread *t = GetCurrentThread()) { \
2328 *begin = t->tls_begin(); \
2329 *end = t->tls_end(); \
2330 } else { \
2331 *begin = *end = 0; \
2334 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2335 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2337 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2338 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2340 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2342 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2343 __sanitizer_sigaction *old);
2344 static __sanitizer_sighandler_ptr signal_impl(int sig,
2345 __sanitizer_sighandler_ptr h);
2347 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2348 { return sigaction_impl(signo, act, oldact); }
2350 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2351 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2353 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2355 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2356 __sanitizer_sigaction *old) {
2357 // Note: if we call REAL(sigaction) directly for any reason without proxying
2358 // the signal handler through rtl_sigaction, very bad things will happen.
2359 // The handler will run synchronously and corrupt tsan per-thread state.
2360 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2361 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2362 __sanitizer_sigaction old_stored;
2363 if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2364 __sanitizer_sigaction newact;
2365 if (act) {
2366 // Copy act into sigactions[sig].
2367 // Can't use struct copy, because compiler can emit call to memcpy.
2368 // Can't use internal_memcpy, because it copies byte-by-byte,
2369 // and signal handler reads the handler concurrently. It it can read
2370 // some bytes from old value and some bytes from new value.
2371 // Use volatile to prevent insertion of memcpy.
2372 sigactions[sig].handler =
2373 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2374 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2375 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2376 sizeof(sigactions[sig].sa_mask));
2377 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2378 sigactions[sig].sa_restorer = act->sa_restorer;
2379 #endif
2380 internal_memcpy(&newact, act, sizeof(newact));
2381 internal_sigfillset(&newact.sa_mask);
2382 if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2383 if (newact.sa_flags & SA_SIGINFO)
2384 newact.sigaction = rtl_sigaction;
2385 else
2386 newact.handler = rtl_sighandler;
2388 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2389 act = &newact;
2391 int res = REAL(sigaction)(sig, act, old);
2392 if (res == 0 && old) {
2393 uptr cb = (uptr)old->sigaction;
2394 if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2395 internal_memcpy(old, &old_stored, sizeof(*old));
2398 return res;
2401 static __sanitizer_sighandler_ptr signal_impl(int sig,
2402 __sanitizer_sighandler_ptr h) {
2403 __sanitizer_sigaction act;
2404 act.handler = h;
2405 internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2406 act.sa_flags = 0;
2407 __sanitizer_sigaction old;
2408 int res = sigaction_symname(sig, &act, &old);
2409 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2410 return old.handler;
2413 #define TSAN_SYSCALL() \
2414 ThreadState *thr = cur_thread(); \
2415 if (thr->ignore_interceptors) \
2416 return; \
2417 ScopedSyscall scoped_syscall(thr) \
2418 /**/
2420 struct ScopedSyscall {
2421 ThreadState *thr;
2423 explicit ScopedSyscall(ThreadState *thr)
2424 : thr(thr) {
2425 Initialize(thr);
2428 ~ScopedSyscall() {
2429 ProcessPendingSignals(thr);
2433 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2434 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2435 TSAN_SYSCALL();
2436 MemoryAccessRange(thr, pc, p, s, write);
2439 static void syscall_acquire(uptr pc, uptr addr) {
2440 TSAN_SYSCALL();
2441 Acquire(thr, pc, addr);
2442 DPrintf("syscall_acquire(%p)\n", addr);
2445 static void syscall_release(uptr pc, uptr addr) {
2446 TSAN_SYSCALL();
2447 DPrintf("syscall_release(%p)\n", addr);
2448 Release(thr, pc, addr);
2451 static void syscall_fd_close(uptr pc, int fd) {
2452 TSAN_SYSCALL();
2453 FdClose(thr, pc, fd);
2456 static USED void syscall_fd_acquire(uptr pc, int fd) {
2457 TSAN_SYSCALL();
2458 FdAcquire(thr, pc, fd);
2459 DPrintf("syscall_fd_acquire(%p)\n", fd);
2462 static USED void syscall_fd_release(uptr pc, int fd) {
2463 TSAN_SYSCALL();
2464 DPrintf("syscall_fd_release(%p)\n", fd);
2465 FdRelease(thr, pc, fd);
2468 static void syscall_pre_fork(uptr pc) {
2469 TSAN_SYSCALL();
2470 ForkBefore(thr, pc);
2473 static void syscall_post_fork(uptr pc, int pid) {
2474 TSAN_SYSCALL();
2475 if (pid == 0) {
2476 // child
2477 ForkChildAfter(thr, pc);
2478 FdOnFork(thr, pc);
2479 } else if (pid > 0) {
2480 // parent
2481 ForkParentAfter(thr, pc);
2482 } else {
2483 // error
2484 ForkParentAfter(thr, pc);
2487 #endif
2489 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2490 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2492 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2493 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2495 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2496 do { \
2497 (void)(p); \
2498 (void)(s); \
2499 } while (false)
2501 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2502 do { \
2503 (void)(p); \
2504 (void)(s); \
2505 } while (false)
2507 #define COMMON_SYSCALL_ACQUIRE(addr) \
2508 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2510 #define COMMON_SYSCALL_RELEASE(addr) \
2511 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2513 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2515 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2517 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2519 #define COMMON_SYSCALL_PRE_FORK() \
2520 syscall_pre_fork(GET_CALLER_PC())
2522 #define COMMON_SYSCALL_POST_FORK(res) \
2523 syscall_post_fork(GET_CALLER_PC(), res)
2525 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2526 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2528 #ifdef NEED_TLS_GET_ADDR
2529 // Define own interceptor instead of sanitizer_common's for three reasons:
2530 // 1. It must not process pending signals.
2531 // Signal handlers may contain MOVDQA instruction (see below).
2532 // 2. It must be as simple as possible to not contain MOVDQA.
2533 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2534 // is empty for tsan (meant only for msan).
2535 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2536 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2537 // So the interceptor must work with mis-aligned stack, in particular, does not
2538 // execute MOVDQA with stack addresses.
2539 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2540 void *res = REAL(__tls_get_addr)(arg);
2541 ThreadState *thr = cur_thread();
2542 if (!thr)
2543 return res;
2544 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2545 thr->tls_addr + thr->tls_size);
2546 if (!dtv)
2547 return res;
2548 // New DTLS block has been allocated.
2549 MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2550 return res;
2552 #endif
2554 #if SANITIZER_NETBSD
2555 TSAN_INTERCEPTOR(void, _lwp_exit) {
2556 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2557 DestroyThreadState();
2558 REAL(_lwp_exit)();
2560 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2561 #else
2562 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2563 #endif
2565 #if SANITIZER_FREEBSD
2566 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2567 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2568 DestroyThreadState();
2569 REAL(thr_exit(state));
2571 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2572 #else
2573 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2574 #endif
2576 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2577 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2578 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2579 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2580 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2581 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2582 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2583 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2584 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2585 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2586 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2587 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2588 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2589 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2590 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2591 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2592 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2593 void *c)
2595 namespace __tsan {
2597 static void finalize(void *arg) {
2598 ThreadState *thr = cur_thread();
2599 int status = Finalize(thr);
2600 // Make sure the output is not lost.
2601 FlushStreams();
2602 if (status)
2603 Die();
2606 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2607 static void unreachable() {
2608 Report("FATAL: ThreadSanitizer: unreachable called\n");
2609 Die();
2611 #endif
2613 // Define default implementation since interception of libdispatch is optional.
2614 SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2616 void InitializeInterceptors() {
2617 #if !SANITIZER_MAC
2618 // We need to setup it early, because functions like dlsym() can call it.
2619 REAL(memset) = internal_memset;
2620 REAL(memcpy) = internal_memcpy;
2621 #endif
2623 // Instruct libc malloc to consume less memory.
2624 #if SANITIZER_LINUX
2625 mallopt(1, 0); // M_MXFAST
2626 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2627 #endif
2629 new(interceptor_ctx()) InterceptorContext();
2631 InitializeCommonInterceptors();
2632 InitializeSignalInterceptors();
2633 InitializeLibdispatchInterceptors();
2635 #if !SANITIZER_MAC
2636 // We can not use TSAN_INTERCEPT to get setjmp addr,
2637 // because it does &setjmp and setjmp is not present in some versions of libc.
2638 using __interception::InterceptFunction;
2639 InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
2640 InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2641 InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
2643 #if !SANITIZER_NETBSD
2644 InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2645 #endif
2646 #endif
2648 TSAN_INTERCEPT(longjmp_symname);
2649 TSAN_INTERCEPT(siglongjmp_symname);
2650 #if SANITIZER_NETBSD
2651 TSAN_INTERCEPT(_longjmp);
2652 #endif
2654 TSAN_INTERCEPT(malloc);
2655 TSAN_INTERCEPT(__libc_memalign);
2656 TSAN_INTERCEPT(calloc);
2657 TSAN_INTERCEPT(realloc);
2658 TSAN_INTERCEPT(reallocarray);
2659 TSAN_INTERCEPT(free);
2660 TSAN_INTERCEPT(cfree);
2661 TSAN_INTERCEPT(munmap);
2662 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2663 TSAN_INTERCEPT(valloc);
2664 TSAN_MAYBE_INTERCEPT_PVALLOC;
2665 TSAN_INTERCEPT(posix_memalign);
2667 TSAN_INTERCEPT(strcpy);
2668 TSAN_INTERCEPT(strncpy);
2669 TSAN_INTERCEPT(strdup);
2671 TSAN_INTERCEPT(pthread_create);
2672 TSAN_INTERCEPT(pthread_join);
2673 TSAN_INTERCEPT(pthread_detach);
2674 TSAN_INTERCEPT(pthread_exit);
2675 #if SANITIZER_LINUX
2676 TSAN_INTERCEPT(pthread_tryjoin_np);
2677 TSAN_INTERCEPT(pthread_timedjoin_np);
2678 #endif
2680 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2681 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2682 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2683 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2684 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2685 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2687 TSAN_INTERCEPT(pthread_mutex_init);
2688 TSAN_INTERCEPT(pthread_mutex_destroy);
2689 TSAN_INTERCEPT(pthread_mutex_trylock);
2690 TSAN_INTERCEPT(pthread_mutex_timedlock);
2692 TSAN_INTERCEPT(pthread_spin_init);
2693 TSAN_INTERCEPT(pthread_spin_destroy);
2694 TSAN_INTERCEPT(pthread_spin_lock);
2695 TSAN_INTERCEPT(pthread_spin_trylock);
2696 TSAN_INTERCEPT(pthread_spin_unlock);
2698 TSAN_INTERCEPT(pthread_rwlock_init);
2699 TSAN_INTERCEPT(pthread_rwlock_destroy);
2700 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2701 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2702 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2703 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2704 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2705 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2706 TSAN_INTERCEPT(pthread_rwlock_unlock);
2708 TSAN_INTERCEPT(pthread_barrier_init);
2709 TSAN_INTERCEPT(pthread_barrier_destroy);
2710 TSAN_INTERCEPT(pthread_barrier_wait);
2712 TSAN_INTERCEPT(pthread_once);
2714 TSAN_INTERCEPT(fstat);
2715 TSAN_MAYBE_INTERCEPT___FXSTAT;
2716 TSAN_MAYBE_INTERCEPT_FSTAT64;
2717 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2718 TSAN_INTERCEPT(open);
2719 TSAN_MAYBE_INTERCEPT_OPEN64;
2720 TSAN_INTERCEPT(creat);
2721 TSAN_MAYBE_INTERCEPT_CREAT64;
2722 TSAN_INTERCEPT(dup);
2723 TSAN_INTERCEPT(dup2);
2724 TSAN_INTERCEPT(dup3);
2725 TSAN_MAYBE_INTERCEPT_EVENTFD;
2726 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2727 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2728 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2729 TSAN_INTERCEPT(socket);
2730 TSAN_INTERCEPT(socketpair);
2731 TSAN_INTERCEPT(connect);
2732 TSAN_INTERCEPT(bind);
2733 TSAN_INTERCEPT(listen);
2734 TSAN_MAYBE_INTERCEPT_EPOLL;
2735 TSAN_INTERCEPT(close);
2736 TSAN_MAYBE_INTERCEPT___CLOSE;
2737 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2738 TSAN_INTERCEPT(pipe);
2739 TSAN_INTERCEPT(pipe2);
2741 TSAN_INTERCEPT(unlink);
2742 TSAN_INTERCEPT(tmpfile);
2743 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2744 TSAN_INTERCEPT(abort);
2745 TSAN_INTERCEPT(rmdir);
2746 TSAN_INTERCEPT(closedir);
2748 TSAN_INTERCEPT(sigsuspend);
2749 TSAN_INTERCEPT(sigblock);
2750 TSAN_INTERCEPT(sigsetmask);
2751 TSAN_INTERCEPT(pthread_sigmask);
2752 TSAN_INTERCEPT(raise);
2753 TSAN_INTERCEPT(kill);
2754 TSAN_INTERCEPT(pthread_kill);
2755 TSAN_INTERCEPT(sleep);
2756 TSAN_INTERCEPT(usleep);
2757 TSAN_INTERCEPT(nanosleep);
2758 TSAN_INTERCEPT(pause);
2759 TSAN_INTERCEPT(gettimeofday);
2760 TSAN_INTERCEPT(getaddrinfo);
2762 TSAN_INTERCEPT(fork);
2763 TSAN_INTERCEPT(vfork);
2764 #if !SANITIZER_ANDROID
2765 TSAN_INTERCEPT(dl_iterate_phdr);
2766 #endif
2767 TSAN_MAYBE_INTERCEPT_ON_EXIT;
2768 TSAN_INTERCEPT(__cxa_atexit);
2769 TSAN_INTERCEPT(_exit);
2771 #ifdef NEED_TLS_GET_ADDR
2772 TSAN_INTERCEPT(__tls_get_addr);
2773 #endif
2775 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2776 TSAN_MAYBE_INTERCEPT_THR_EXIT;
2778 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2779 // Need to setup it, because interceptors check that the function is resolved.
2780 // But atexit is emitted directly into the module, so can't be resolved.
2781 REAL(atexit) = (int(*)(void(*)()))unreachable;
2782 #endif
2784 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2785 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2786 Die();
2789 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2790 if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2791 Printf("ThreadSanitizer: failed to create thread key\n");
2792 Die();
2794 #endif
2796 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2797 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2798 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2799 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2800 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2801 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2802 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2803 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2804 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2805 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2806 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2807 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2808 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2809 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2810 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2811 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2812 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
2814 FdInit();
2817 } // namespace __tsan
2819 // Invisible barrier for tests.
2820 // There were several unsuccessful iterations for this functionality:
2821 // 1. Initially it was implemented in user code using
2822 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2823 // MacOS. Futexes are linux-specific for this matter.
2824 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2825 // "as-if synchronized via sleep" messages in reports which failed some
2826 // output tests.
2827 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2828 // visible events, which lead to "failed to restore stack trace" failures.
2829 // Note that no_sanitize_thread attribute does not turn off atomic interception
2830 // so attaching it to the function defined in user code does not help.
2831 // That's why we now have what we have.
2832 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2833 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2834 if (count >= (1 << 8)) {
2835 Printf("barrier_init: count is too large (%d)\n", count);
2836 Die();
2838 // 8 lsb is thread count, the remaining are count of entered threads.
2839 *barrier = count;
2842 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2843 void __tsan_testonly_barrier_wait(u64 *barrier) {
2844 unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2845 unsigned old_epoch = (old >> 8) / (old & 0xff);
2846 for (;;) {
2847 unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2848 unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2849 if (cur_epoch != old_epoch)
2850 return;
2851 internal_sched_yield();