ada: Update personality function for CHERI purecap
[official-gcc.git] / gcc / ira-costs.cc
blob8c93ace5094a94c4fb786258e712287be21f7d31
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2023 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
37 #include "print-rtl.h"
39 /* The flags is set up every time when we calculate pseudo register
40 classes through function ira_set_pseudo_classes. */
41 static bool pseudo_classes_defined_p = false;
43 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
44 static bool allocno_p;
46 /* Number of elements in array `costs'. */
47 static int cost_elements_num;
49 /* The `costs' struct records the cost of using hard registers of each
50 class considered for the calculation and of using memory for each
51 allocno or pseudo. */
52 struct costs
54 int mem_cost;
55 /* Costs for register classes start here. We process only some
56 allocno classes. */
57 int cost[1];
60 #define max_struct_costs_size \
61 (this_target_ira_int->x_max_struct_costs_size)
62 #define init_cost \
63 (this_target_ira_int->x_init_cost)
64 #define temp_costs \
65 (this_target_ira_int->x_temp_costs)
66 #define op_costs \
67 (this_target_ira_int->x_op_costs)
68 #define this_op_costs \
69 (this_target_ira_int->x_this_op_costs)
71 /* Costs of each class for each allocno or pseudo. */
72 static struct costs *costs;
74 /* Accumulated costs of each class for each allocno. */
75 static struct costs *total_allocno_costs;
77 /* It is the current size of struct costs. */
78 static size_t struct_costs_size;
80 /* Return pointer to structure containing costs of allocno or pseudo
81 with given NUM in array ARR. */
82 #define COSTS(arr, num) \
83 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
85 /* Return index in COSTS when processing reg with REGNO. */
86 #define COST_INDEX(regno) (allocno_p \
87 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
88 : (int) regno)
90 /* Record register class preferences of each allocno or pseudo. Null
91 value means no preferences. It happens on the 1st iteration of the
92 cost calculation. */
93 static enum reg_class *pref;
95 /* Allocated buffers for pref. */
96 static enum reg_class *pref_buffer;
98 /* Record allocno class of each allocno with the same regno. */
99 static enum reg_class *regno_aclass;
101 /* Record cost gains for not allocating a register with an invariant
102 equivalence. */
103 static int *regno_equiv_gains;
105 /* Execution frequency of the current insn. */
106 static int frequency;
110 /* Info about reg classes whose costs are calculated for a pseudo. */
111 struct cost_classes
113 /* Number of the cost classes in the subsequent array. */
114 int num;
115 /* Container of the cost classes. */
116 enum reg_class classes[N_REG_CLASSES];
117 /* Map reg class -> index of the reg class in the previous array.
118 -1 if it is not a cost class. */
119 int index[N_REG_CLASSES];
120 /* Map hard regno index of first class in array CLASSES containing
121 the hard regno, -1 otherwise. */
122 int hard_regno_index[FIRST_PSEUDO_REGISTER];
125 /* Types of pointers to the structure above. */
126 typedef struct cost_classes *cost_classes_t;
127 typedef const struct cost_classes *const_cost_classes_t;
129 /* Info about cost classes for each pseudo. */
130 static cost_classes_t *regno_cost_classes;
132 /* Helper for cost_classes hashing. */
134 struct cost_classes_hasher : pointer_hash <cost_classes>
136 static inline hashval_t hash (const cost_classes *);
137 static inline bool equal (const cost_classes *, const cost_classes *);
138 static inline void remove (cost_classes *);
141 /* Returns hash value for cost classes info HV. */
142 inline hashval_t
143 cost_classes_hasher::hash (const cost_classes *hv)
145 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
148 /* Compares cost classes info HV1 and HV2. */
149 inline bool
150 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
152 return (hv1->num == hv2->num
153 && memcmp (hv1->classes, hv2->classes,
154 sizeof (enum reg_class) * hv1->num) == 0);
157 /* Delete cost classes info V from the hash table. */
158 inline void
159 cost_classes_hasher::remove (cost_classes *v)
161 ira_free (v);
164 /* Hash table of unique cost classes. */
165 static hash_table<cost_classes_hasher> *cost_classes_htab;
167 /* Map allocno class -> cost classes for pseudo of given allocno
168 class. */
169 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
171 /* Map mode -> cost classes for pseudo of give mode. */
172 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
174 /* Cost classes that include all classes in ira_important_classes. */
175 static cost_classes all_cost_classes;
177 /* Use the array of classes in CLASSES_PTR to fill out the rest of
178 the structure. */
179 static void
180 complete_cost_classes (cost_classes_t classes_ptr)
182 for (int i = 0; i < N_REG_CLASSES; i++)
183 classes_ptr->index[i] = -1;
184 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
185 classes_ptr->hard_regno_index[i] = -1;
186 for (int i = 0; i < classes_ptr->num; i++)
188 enum reg_class cl = classes_ptr->classes[i];
189 classes_ptr->index[cl] = i;
190 for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
192 unsigned int hard_regno = ira_class_hard_regs[cl][j];
193 if (classes_ptr->hard_regno_index[hard_regno] < 0)
194 classes_ptr->hard_regno_index[hard_regno] = i;
199 /* Initialize info about the cost classes for each pseudo. */
200 static void
201 initiate_regno_cost_classes (void)
203 int size = sizeof (cost_classes_t) * max_reg_num ();
205 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
206 memset (regno_cost_classes, 0, size);
207 memset (cost_classes_aclass_cache, 0,
208 sizeof (cost_classes_t) * N_REG_CLASSES);
209 memset (cost_classes_mode_cache, 0,
210 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
211 cost_classes_htab = new hash_table<cost_classes_hasher> (200);
212 all_cost_classes.num = ira_important_classes_num;
213 for (int i = 0; i < ira_important_classes_num; i++)
214 all_cost_classes.classes[i] = ira_important_classes[i];
215 complete_cost_classes (&all_cost_classes);
218 /* Create new cost classes from cost classes FROM and set up members
219 index and hard_regno_index. Return the new classes. The function
220 implements some common code of two functions
221 setup_regno_cost_classes_by_aclass and
222 setup_regno_cost_classes_by_mode. */
223 static cost_classes_t
224 setup_cost_classes (cost_classes_t from)
226 cost_classes_t classes_ptr;
228 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
229 classes_ptr->num = from->num;
230 for (int i = 0; i < from->num; i++)
231 classes_ptr->classes[i] = from->classes[i];
232 complete_cost_classes (classes_ptr);
233 return classes_ptr;
236 /* Return a version of FULL that only considers registers in REGS that are
237 valid for mode MODE. Both FULL and the returned class are globally
238 allocated. */
239 static cost_classes_t
240 restrict_cost_classes (cost_classes_t full, machine_mode mode,
241 const_hard_reg_set regs)
243 static struct cost_classes narrow;
244 int map[N_REG_CLASSES];
245 narrow.num = 0;
246 for (int i = 0; i < full->num; i++)
248 /* Assume that we'll drop the class. */
249 map[i] = -1;
251 /* Ignore classes that are too small for the mode. */
252 enum reg_class cl = full->classes[i];
253 if (!contains_reg_of_mode[cl][mode])
254 continue;
256 /* Calculate the set of registers in CL that belong to REGS and
257 are valid for MODE. */
258 HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
259 valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
260 | ira_no_alloc_regs);
261 if (hard_reg_set_empty_p (valid_for_cl))
262 continue;
264 /* Don't use this class if the set of valid registers is a subset
265 of an existing class. For example, suppose we have two classes
266 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
267 that the mode changes allowed by FR_REGS are not as general as
268 the mode changes allowed by GR_REGS.
270 In this situation, the mode changes for GR_AND_FR_REGS could
271 either be seen as the union or the intersection of the mode
272 changes allowed by the two subclasses. The justification for
273 the union-based definition would be that, if you want a mode
274 change that's only allowed by GR_REGS, you can pick a register
275 from the GR_REGS subclass. The justification for the
276 intersection-based definition would be that every register
277 from the class would allow the mode change.
279 However, if we have a register that needs to be in GR_REGS,
280 using GR_AND_FR_REGS with the intersection-based definition
281 would be too pessimistic, since it would bring in restrictions
282 that only apply to FR_REGS. Conversely, if we have a register
283 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
284 union-based definition would lose the extra restrictions
285 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
286 for cases where GR_REGS and FP_REGS are both valid. */
287 int pos;
288 for (pos = 0; pos < narrow.num; ++pos)
290 enum reg_class cl2 = narrow.classes[pos];
291 if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
292 break;
294 map[i] = pos;
295 if (pos == narrow.num)
297 /* If several classes are equivalent, prefer to use the one
298 that was chosen as the allocno class. */
299 enum reg_class cl2 = ira_allocno_class_translate[cl];
300 if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
301 cl = cl2;
302 narrow.classes[narrow.num++] = cl;
305 if (narrow.num == full->num)
306 return full;
308 cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
309 if (*slot == NULL)
311 cost_classes_t classes = setup_cost_classes (&narrow);
312 /* Map equivalent classes to the representative that we chose above. */
313 for (int i = 0; i < ira_important_classes_num; i++)
315 enum reg_class cl = ira_important_classes[i];
316 int index = full->index[cl];
317 if (index >= 0)
318 classes->index[cl] = map[index];
320 *slot = classes;
322 return *slot;
325 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
326 This function is used when we know an initial approximation of
327 allocno class of the pseudo already, e.g. on the second iteration
328 of class cost calculation or after class cost calculation in
329 register-pressure sensitive insn scheduling or register-pressure
330 sensitive loop-invariant motion. */
331 static void
332 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
334 static struct cost_classes classes;
335 cost_classes_t classes_ptr;
336 enum reg_class cl;
337 int i;
338 cost_classes **slot;
339 HARD_REG_SET temp, temp2;
340 bool exclude_p;
342 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
344 temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
345 /* We exclude classes from consideration which are subsets of
346 ACLASS only if ACLASS is an uniform class. */
347 exclude_p = ira_uniform_class_p[aclass];
348 classes.num = 0;
349 for (i = 0; i < ira_important_classes_num; i++)
351 cl = ira_important_classes[i];
352 if (exclude_p)
354 /* Exclude non-uniform classes which are subsets of
355 ACLASS. */
356 temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
357 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
358 continue;
360 classes.classes[classes.num++] = cl;
362 slot = cost_classes_htab->find_slot (&classes, INSERT);
363 if (*slot == NULL)
365 classes_ptr = setup_cost_classes (&classes);
366 *slot = classes_ptr;
368 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
370 if (regno_reg_rtx[regno] != NULL_RTX)
372 /* Restrict the classes to those that are valid for REGNO's mode
373 (which might for example exclude singleton classes if the mode
374 requires two registers). Also restrict the classes to those that
375 are valid for subregs of REGNO. */
376 const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
377 if (!valid_regs)
378 valid_regs = &reg_class_contents[ALL_REGS];
379 classes_ptr = restrict_cost_classes (classes_ptr,
380 PSEUDO_REGNO_MODE (regno),
381 *valid_regs);
383 regno_cost_classes[regno] = classes_ptr;
386 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
387 decrease number of cost classes for the pseudo, if hard registers
388 of some important classes cannot hold a value of MODE. So the
389 pseudo cannot get hard register of some important classes and cost
390 calculation for such important classes is only wasting CPU
391 time. */
392 static void
393 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
395 if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
396 regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
397 mode, *valid_regs);
398 else
400 if (cost_classes_mode_cache[mode] == NULL)
401 cost_classes_mode_cache[mode]
402 = restrict_cost_classes (&all_cost_classes, mode,
403 reg_class_contents[ALL_REGS]);
404 regno_cost_classes[regno] = cost_classes_mode_cache[mode];
408 /* Finalize info about the cost classes for each pseudo. */
409 static void
410 finish_regno_cost_classes (void)
412 ira_free (regno_cost_classes);
413 delete cost_classes_htab;
414 cost_classes_htab = NULL;
419 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
420 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
421 be a pseudo register. */
422 static int
423 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
424 secondary_reload_info *prev_sri)
426 secondary_reload_info sri;
427 reg_class_t secondary_class = NO_REGS;
429 /* If X is a SCRATCH, there is actually nothing to move since we are
430 assuming optimal allocation. */
431 if (GET_CODE (x) == SCRATCH)
432 return 0;
434 /* Get the class we will actually use for a reload. */
435 rclass = targetm.preferred_reload_class (x, rclass);
437 /* If we need a secondary reload for an intermediate, the cost is
438 that to load the input into the intermediate register, then to
439 copy it. */
440 sri.prev_sri = prev_sri;
441 sri.extra_cost = 0;
442 /* PR 68770: Secondary reload might examine the t_icode field. */
443 sri.t_icode = CODE_FOR_nothing;
445 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
447 if (secondary_class != NO_REGS)
449 ira_init_register_move_cost_if_necessary (mode);
450 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
451 + sri.extra_cost
452 + copy_cost (x, mode, secondary_class, to_p, &sri));
455 /* For memory, use the memory move cost, for (hard) registers, use
456 the cost to move between the register classes, and use 2 for
457 everything else (constants). */
458 if (MEM_P (x) || rclass == NO_REGS)
459 return sri.extra_cost
460 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
461 else if (REG_P (x))
463 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
465 ira_init_register_move_cost_if_necessary (mode);
466 return (sri.extra_cost
467 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
469 else
470 /* If this is a constant, we may eventually want to call rtx_cost
471 here. */
472 return sri.extra_cost + COSTS_N_INSNS (1);
477 /* Record the cost of using memory or hard registers of various
478 classes for the operands in INSN.
480 N_ALTS is the number of alternatives.
481 N_OPS is the number of operands.
482 OPS is an array of the operands.
483 MODES are the modes of the operands, in case any are VOIDmode.
484 CONSTRAINTS are the constraints to use for the operands. This array
485 is modified by this procedure.
487 This procedure works alternative by alternative. For each
488 alternative we assume that we will be able to allocate all allocnos
489 to their ideal register class and calculate the cost of using that
490 alternative. Then we compute, for each operand that is a
491 pseudo-register, the cost of having the allocno allocated to each
492 register class and using it in that alternative. To this cost is
493 added the cost of the alternative.
495 The cost of each class for this insn is its lowest cost among all
496 the alternatives. */
497 static void
498 record_reg_classes (int n_alts, int n_ops, rtx *ops,
499 machine_mode *modes, const char **constraints,
500 rtx_insn *insn, enum reg_class *pref)
502 int alt;
503 int i, j, k;
504 int insn_allows_mem[MAX_RECOG_OPERANDS];
505 move_table *move_in_cost, *move_out_cost;
506 short (*mem_cost)[2];
507 const char *p;
509 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
511 fprintf (ira_dump_file, " Processing insn %u", INSN_UID (insn));
512 if (INSN_CODE (insn) >= 0
513 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
514 fprintf (ira_dump_file, " {%s}", p);
515 fprintf (ira_dump_file, " (freq=%d)\n",
516 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
517 dump_insn_slim (ira_dump_file, insn);
520 for (i = 0; i < n_ops; i++)
521 insn_allows_mem[i] = 0;
523 /* Process each alternative, each time minimizing an operand's cost
524 with the cost for each operand in that alternative. */
525 alternative_mask preferred = get_preferred_alternatives (insn);
526 for (alt = 0; alt < n_alts; alt++)
528 enum reg_class classes[MAX_RECOG_OPERANDS];
529 int allows_mem[MAX_RECOG_OPERANDS];
530 enum reg_class rclass;
531 int alt_fail = 0;
532 int alt_cost = 0, op_cost_add;
534 if (!TEST_BIT (preferred, alt))
536 for (i = 0; i < recog_data.n_operands; i++)
537 constraints[i] = skip_alternative (constraints[i]);
539 continue;
542 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
544 fprintf (ira_dump_file, " Alt %d:", alt);
545 for (i = 0; i < n_ops; i++)
547 p = constraints[i];
548 if (*p == '\0')
549 continue;
550 fprintf (ira_dump_file, " (%d) ", i);
551 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
552 fputc (*p, ira_dump_file);
554 fprintf (ira_dump_file, "\n");
557 for (i = 0; i < n_ops; i++)
559 unsigned char c;
560 const char *p = constraints[i];
561 rtx op = ops[i];
562 machine_mode mode = modes[i];
563 int allows_addr = 0;
564 int win = 0;
566 /* Initially show we know nothing about the register class. */
567 classes[i] = NO_REGS;
568 allows_mem[i] = 0;
570 /* If this operand has no constraints at all, we can
571 conclude nothing about it since anything is valid. */
572 if (*p == 0)
574 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
575 memset (this_op_costs[i], 0, struct_costs_size);
576 continue;
579 /* If this alternative is only relevant when this operand
580 matches a previous operand, we do different things
581 depending on whether this operand is a allocno-reg or not.
582 We must process any modifiers for the operand before we
583 can make this test. */
584 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
585 p++;
587 if (p[0] >= '0' && p[0] <= '0' + i)
589 /* Copy class and whether memory is allowed from the
590 matching alternative. Then perform any needed cost
591 computations and/or adjustments. */
592 j = p[0] - '0';
593 classes[i] = classes[j];
594 allows_mem[i] = allows_mem[j];
595 if (allows_mem[i])
596 insn_allows_mem[i] = 1;
598 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
600 /* If this matches the other operand, we have no
601 added cost and we win. */
602 if (rtx_equal_p (ops[j], op))
603 win = 1;
604 /* If we can put the other operand into a register,
605 add to the cost of this alternative the cost to
606 copy this operand to the register used for the
607 other operand. */
608 else if (classes[j] != NO_REGS)
610 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
611 win = 1;
614 else if (! REG_P (ops[j])
615 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
617 /* This op is an allocno but the one it matches is
618 not. */
620 /* If we can't put the other operand into a
621 register, this alternative can't be used. */
623 if (classes[j] == NO_REGS)
625 alt_fail = 1;
627 else
628 /* Otherwise, add to the cost of this alternative the cost
629 to copy the other operand to the hard register used for
630 this operand. */
632 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
635 else
637 /* The costs of this operand are not the same as the
638 other operand since move costs are not symmetric.
639 Moreover, if we cannot tie them, this alternative
640 needs to do a copy, which is one insn. */
641 struct costs *pp = this_op_costs[i];
642 int *pp_costs = pp->cost;
643 cost_classes_t cost_classes_ptr
644 = regno_cost_classes[REGNO (op)];
645 enum reg_class *cost_classes = cost_classes_ptr->classes;
646 bool in_p = recog_data.operand_type[i] != OP_OUT;
647 bool out_p = recog_data.operand_type[i] != OP_IN;
648 enum reg_class op_class = classes[i];
650 ira_init_register_move_cost_if_necessary (mode);
651 if (! in_p)
653 ira_assert (out_p);
654 if (op_class == NO_REGS)
656 mem_cost = ira_memory_move_cost[mode];
657 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
659 rclass = cost_classes[k];
660 pp_costs[k] = mem_cost[rclass][0] * frequency;
663 else
665 move_out_cost = ira_may_move_out_cost[mode];
666 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
668 rclass = cost_classes[k];
669 pp_costs[k]
670 = move_out_cost[op_class][rclass] * frequency;
674 else if (! out_p)
676 ira_assert (in_p);
677 if (op_class == NO_REGS)
679 mem_cost = ira_memory_move_cost[mode];
680 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
682 rclass = cost_classes[k];
683 pp_costs[k] = mem_cost[rclass][1] * frequency;
686 else
688 move_in_cost = ira_may_move_in_cost[mode];
689 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
691 rclass = cost_classes[k];
692 pp_costs[k]
693 = move_in_cost[rclass][op_class] * frequency;
697 else
699 if (op_class == NO_REGS)
701 mem_cost = ira_memory_move_cost[mode];
702 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
704 rclass = cost_classes[k];
705 pp_costs[k] = ((mem_cost[rclass][0]
706 + mem_cost[rclass][1])
707 * frequency);
710 else
712 move_in_cost = ira_may_move_in_cost[mode];
713 move_out_cost = ira_may_move_out_cost[mode];
714 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
716 rclass = cost_classes[k];
717 pp_costs[k] = ((move_in_cost[rclass][op_class]
718 + move_out_cost[op_class][rclass])
719 * frequency);
724 /* If the alternative actually allows memory, make
725 things a bit cheaper since we won't need an extra
726 insn to load it. */
727 pp->mem_cost
728 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
729 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
730 - allows_mem[i]) * frequency;
732 /* If we have assigned a class to this allocno in
733 our first pass, add a cost to this alternative
734 corresponding to what we would add if this
735 allocno were not in the appropriate class. */
736 if (pref)
738 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
740 if (pref_class == NO_REGS)
741 alt_cost
742 += ((out_p
743 ? ira_memory_move_cost[mode][op_class][0] : 0)
744 + (in_p
745 ? ira_memory_move_cost[mode][op_class][1]
746 : 0));
747 else if (ira_reg_class_intersect
748 [pref_class][op_class] == NO_REGS)
749 alt_cost
750 += ira_register_move_cost[mode][pref_class][op_class];
752 if (REGNO (ops[i]) != REGNO (ops[j])
753 && ! find_reg_note (insn, REG_DEAD, op))
754 alt_cost += 2;
756 p++;
760 /* Scan all the constraint letters. See if the operand
761 matches any of the constraints. Collect the valid
762 register classes and see if this operand accepts
763 memory. */
764 while ((c = *p))
766 switch (c)
768 case '*':
769 /* Ignore the next letter for this pass. */
770 c = *++p;
771 break;
773 case '^':
774 alt_cost += 2;
775 break;
777 case '?':
778 alt_cost += 2;
779 break;
781 case 'g':
782 if (MEM_P (op)
783 || (CONSTANT_P (op)
784 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
785 win = 1;
786 insn_allows_mem[i] = allows_mem[i] = 1;
787 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
788 break;
790 default:
791 enum constraint_num cn = lookup_constraint (p);
792 enum reg_class cl;
793 switch (get_constraint_type (cn))
795 case CT_REGISTER:
796 cl = reg_class_for_constraint (cn);
797 if (cl != NO_REGS)
798 classes[i] = ira_reg_class_subunion[classes[i]][cl];
799 break;
801 case CT_CONST_INT:
802 if (CONST_INT_P (op)
803 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
804 win = 1;
805 break;
807 case CT_MEMORY:
808 case CT_RELAXED_MEMORY:
809 /* Every MEM can be reloaded to fit. */
810 insn_allows_mem[i] = allows_mem[i] = 1;
811 if (MEM_P (op))
812 win = 1;
813 break;
815 case CT_SPECIAL_MEMORY:
816 insn_allows_mem[i] = allows_mem[i] = 1;
817 if (MEM_P (extract_mem_from_operand (op))
818 && constraint_satisfied_p (op, cn))
819 win = 1;
820 break;
822 case CT_ADDRESS:
823 /* Every address can be reloaded to fit. */
824 allows_addr = 1;
825 if (address_operand (op, GET_MODE (op))
826 || constraint_satisfied_p (op, cn))
827 win = 1;
828 /* We know this operand is an address, so we
829 want it to be allocated to a hard register
830 that can be the base of an address,
831 i.e. BASE_REG_CLASS. */
832 classes[i]
833 = ira_reg_class_subunion[classes[i]]
834 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
835 ADDRESS, SCRATCH)];
836 break;
838 case CT_FIXED_FORM:
839 if (constraint_satisfied_p (op, cn))
840 win = 1;
841 break;
843 break;
845 p += CONSTRAINT_LEN (c, p);
846 if (c == ',')
847 break;
850 constraints[i] = p;
852 if (alt_fail)
853 break;
855 /* How we account for this operand now depends on whether it
856 is a pseudo register or not. If it is, we first check if
857 any register classes are valid. If not, we ignore this
858 alternative, since we want to assume that all allocnos get
859 allocated for register preferencing. If some register
860 class is valid, compute the costs of moving the allocno
861 into that class. */
862 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
864 if (classes[i] == NO_REGS && ! allows_mem[i])
866 /* We must always fail if the operand is a REG, but
867 we did not find a suitable class and memory is
868 not allowed.
870 Otherwise we may perform an uninitialized read
871 from this_op_costs after the `continue' statement
872 below. */
873 alt_fail = 1;
875 else
877 unsigned int regno = REGNO (op);
878 struct costs *pp = this_op_costs[i];
879 int *pp_costs = pp->cost;
880 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
881 enum reg_class *cost_classes = cost_classes_ptr->classes;
882 bool in_p = recog_data.operand_type[i] != OP_OUT;
883 bool out_p = recog_data.operand_type[i] != OP_IN;
884 enum reg_class op_class = classes[i];
886 ira_init_register_move_cost_if_necessary (mode);
887 if (! in_p)
889 ira_assert (out_p);
890 if (op_class == NO_REGS)
892 mem_cost = ira_memory_move_cost[mode];
893 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
895 rclass = cost_classes[k];
896 pp_costs[k] = mem_cost[rclass][0] * frequency;
899 else
901 move_out_cost = ira_may_move_out_cost[mode];
902 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
904 rclass = cost_classes[k];
905 pp_costs[k]
906 = move_out_cost[op_class][rclass] * frequency;
910 else if (! out_p)
912 ira_assert (in_p);
913 if (op_class == NO_REGS)
915 mem_cost = ira_memory_move_cost[mode];
916 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
918 rclass = cost_classes[k];
919 pp_costs[k] = mem_cost[rclass][1] * frequency;
922 else
924 move_in_cost = ira_may_move_in_cost[mode];
925 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
927 rclass = cost_classes[k];
928 pp_costs[k]
929 = move_in_cost[rclass][op_class] * frequency;
933 else
935 if (op_class == NO_REGS)
937 mem_cost = ira_memory_move_cost[mode];
938 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
940 rclass = cost_classes[k];
941 pp_costs[k] = ((mem_cost[rclass][0]
942 + mem_cost[rclass][1])
943 * frequency);
946 else
948 move_in_cost = ira_may_move_in_cost[mode];
949 move_out_cost = ira_may_move_out_cost[mode];
950 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
952 rclass = cost_classes[k];
953 pp_costs[k] = ((move_in_cost[rclass][op_class]
954 + move_out_cost[op_class][rclass])
955 * frequency);
960 if (op_class == NO_REGS)
961 /* Although we don't need insn to reload from
962 memory, still accessing memory is usually more
963 expensive than a register. */
964 pp->mem_cost = frequency;
965 else
966 /* If the alternative actually allows memory, make
967 things a bit cheaper since we won't need an
968 extra insn to load it. */
969 pp->mem_cost
970 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
971 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
972 - allows_mem[i]) * frequency;
973 /* If we have assigned a class to this allocno in
974 our first pass, add a cost to this alternative
975 corresponding to what we would add if this
976 allocno were not in the appropriate class. */
977 if (pref)
979 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
981 if (pref_class == NO_REGS)
983 if (op_class != NO_REGS)
984 alt_cost
985 += ((out_p
986 ? ira_memory_move_cost[mode][op_class][0]
987 : 0)
988 + (in_p
989 ? ira_memory_move_cost[mode][op_class][1]
990 : 0));
992 else if (op_class == NO_REGS)
993 alt_cost
994 += ((out_p
995 ? ira_memory_move_cost[mode][pref_class][1]
996 : 0)
997 + (in_p
998 ? ira_memory_move_cost[mode][pref_class][0]
999 : 0));
1000 else if (ira_reg_class_intersect[pref_class][op_class]
1001 == NO_REGS)
1002 alt_cost += (ira_register_move_cost
1003 [mode][pref_class][op_class]);
1008 /* Otherwise, if this alternative wins, either because we
1009 have already determined that or if we have a hard
1010 register of the proper class, there is no cost for this
1011 alternative. */
1012 else if (win || (REG_P (op)
1013 && reg_fits_class_p (op, classes[i],
1014 0, GET_MODE (op))))
1017 /* If registers are valid, the cost of this alternative
1018 includes copying the object to and/or from a
1019 register. */
1020 else if (classes[i] != NO_REGS)
1022 if (recog_data.operand_type[i] != OP_OUT)
1023 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
1025 if (recog_data.operand_type[i] != OP_IN)
1026 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
1028 /* The only other way this alternative can be used is if
1029 this is a constant that could be placed into memory. */
1030 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
1031 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
1032 else
1033 alt_fail = 1;
1035 if (alt_fail)
1036 break;
1039 if (alt_fail)
1041 /* The loop above might have exited early once the failure
1042 was seen. Skip over the constraints for the remaining
1043 operands. */
1044 i += 1;
1045 for (; i < n_ops; ++i)
1046 constraints[i] = skip_alternative (constraints[i]);
1047 continue;
1050 op_cost_add = alt_cost * frequency;
1051 /* Finally, update the costs with the information we've
1052 calculated about this alternative. */
1053 for (i = 0; i < n_ops; i++)
1054 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1056 int old_cost;
1057 bool cost_change_p = false;
1058 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1059 int *pp_costs = pp->cost, *qq_costs = qq->cost;
1060 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1061 cost_classes_t cost_classes_ptr
1062 = regno_cost_classes[REGNO (ops[i])];
1064 old_cost = pp->mem_cost;
1065 pp->mem_cost = MIN (old_cost,
1066 (qq->mem_cost + op_cost_add) * scale);
1068 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1069 && pp->mem_cost < old_cost)
1071 cost_change_p = true;
1072 fprintf (ira_dump_file, " op %d(r=%u) new costs MEM:%d",
1073 i, REGNO(ops[i]), pp->mem_cost);
1075 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1077 old_cost = pp_costs[k];
1078 pp_costs[k]
1079 = MIN (old_cost, (qq_costs[k] + op_cost_add) * scale);
1080 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1081 && pp_costs[k] < old_cost)
1083 if (!cost_change_p)
1084 fprintf (ira_dump_file, " op %d(r=%u) new costs",
1085 i, REGNO(ops[i]));
1086 cost_change_p = true;
1087 fprintf (ira_dump_file, " %s:%d",
1088 reg_class_names[cost_classes_ptr->classes[k]],
1089 pp_costs[k]);
1092 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5
1093 && cost_change_p)
1094 fprintf (ira_dump_file, "\n");
1098 if (allocno_p)
1099 for (i = 0; i < n_ops; i++)
1101 ira_allocno_t a;
1102 rtx op = ops[i];
1104 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1105 continue;
1106 a = ira_curr_regno_allocno_map [REGNO (op)];
1107 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1108 ALLOCNO_BAD_SPILL_P (a) = true;
1115 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1116 static inline bool
1117 ok_for_index_p_nonstrict (rtx reg)
1119 unsigned regno = REGNO (reg);
1121 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1124 /* A version of regno_ok_for_base_p for use here, when all
1125 pseudo-registers should count as OK. Arguments as for
1126 regno_ok_for_base_p. */
1127 static inline bool
1128 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1129 enum rtx_code outer_code, enum rtx_code index_code)
1131 unsigned regno = REGNO (reg);
1133 if (regno >= FIRST_PSEUDO_REGISTER)
1134 return true;
1135 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1138 /* Record the pseudo registers we must reload into hard registers in a
1139 subexpression of a memory address, X.
1141 If CONTEXT is 0, we are looking at the base part of an address,
1142 otherwise we are looking at the index part.
1144 MODE and AS are the mode and address space of the memory reference;
1145 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1146 These four arguments are passed down to base_reg_class.
1148 SCALE is twice the amount to multiply the cost by (it is twice so
1149 we can represent half-cost adjustments). */
1150 static void
1151 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1152 int context, enum rtx_code outer_code,
1153 enum rtx_code index_code, int scale)
1155 enum rtx_code code = GET_CODE (x);
1156 enum reg_class rclass;
1158 if (context == 1)
1159 rclass = INDEX_REG_CLASS;
1160 else
1161 rclass = base_reg_class (mode, as, outer_code, index_code);
1163 switch (code)
1165 case CONST_INT:
1166 case CONST:
1167 case PC:
1168 case SYMBOL_REF:
1169 case LABEL_REF:
1170 return;
1172 case PLUS:
1173 /* When we have an address that is a sum, we must determine
1174 whether registers are "base" or "index" regs. If there is a
1175 sum of two registers, we must choose one to be the "base".
1176 Luckily, we can use the REG_POINTER to make a good choice
1177 most of the time. We only need to do this on machines that
1178 can have two registers in an address and where the base and
1179 index register classes are different.
1181 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1182 but that seems bogus since it should only be set when we are
1183 sure the register is being used as a pointer. */
1185 rtx arg0 = XEXP (x, 0);
1186 rtx arg1 = XEXP (x, 1);
1187 enum rtx_code code0 = GET_CODE (arg0);
1188 enum rtx_code code1 = GET_CODE (arg1);
1190 /* Look inside subregs. */
1191 if (code0 == SUBREG)
1192 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1193 if (code1 == SUBREG)
1194 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1196 /* If index registers do not appear, or coincide with base registers,
1197 just record registers in any non-constant operands. We
1198 assume here, as well as in the tests below, that all
1199 addresses are in canonical form. */
1200 if (MAX_REGS_PER_ADDRESS == 1
1201 || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1203 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1204 if (! CONSTANT_P (arg1))
1205 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1208 /* If the second operand is a constant integer, it doesn't
1209 change what class the first operand must be. */
1210 else if (CONST_SCALAR_INT_P (arg1))
1211 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1212 /* If the second operand is a symbolic constant, the first
1213 operand must be an index register. */
1214 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1215 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1216 /* If both operands are registers but one is already a hard
1217 register of index or reg-base class, give the other the
1218 class that the hard register is not. */
1219 else if (code0 == REG && code1 == REG
1220 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1221 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1222 || ok_for_index_p_nonstrict (arg0)))
1223 record_address_regs (mode, as, arg1,
1224 ok_for_base_p_nonstrict (arg0, mode, as,
1225 PLUS, REG) ? 1 : 0,
1226 PLUS, REG, scale);
1227 else if (code0 == REG && code1 == REG
1228 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1229 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1230 || ok_for_index_p_nonstrict (arg1)))
1231 record_address_regs (mode, as, arg0,
1232 ok_for_base_p_nonstrict (arg1, mode, as,
1233 PLUS, REG) ? 1 : 0,
1234 PLUS, REG, scale);
1235 /* If one operand is known to be a pointer, it must be the
1236 base with the other operand the index. Likewise if the
1237 other operand is a MULT. */
1238 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1240 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1241 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1243 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1245 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1246 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1248 /* Otherwise, count equal chances that each might be a base or
1249 index register. This case should be rare. */
1250 else
1252 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1253 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1254 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1255 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1258 break;
1260 /* Double the importance of an allocno that is incremented or
1261 decremented, since it would take two extra insns if it ends
1262 up in the wrong place. */
1263 case POST_MODIFY:
1264 case PRE_MODIFY:
1265 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1266 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1267 if (REG_P (XEXP (XEXP (x, 1), 1)))
1268 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1269 2 * scale);
1270 break;
1272 case POST_INC:
1273 case PRE_INC:
1274 case POST_DEC:
1275 case PRE_DEC:
1276 /* Double the importance of an allocno that is incremented or
1277 decremented, since it would take two extra insns if it ends
1278 up in the wrong place. */
1279 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1280 break;
1282 case REG:
1284 struct costs *pp;
1285 int *pp_costs;
1286 enum reg_class i;
1287 int k, regno, add_cost;
1288 cost_classes_t cost_classes_ptr;
1289 enum reg_class *cost_classes;
1290 move_table *move_in_cost;
1292 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1293 break;
1295 regno = REGNO (x);
1296 if (allocno_p)
1297 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1298 pp = COSTS (costs, COST_INDEX (regno));
1299 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1300 if (INT_MAX - add_cost < pp->mem_cost)
1301 pp->mem_cost = INT_MAX;
1302 else
1303 pp->mem_cost += add_cost;
1304 cost_classes_ptr = regno_cost_classes[regno];
1305 cost_classes = cost_classes_ptr->classes;
1306 pp_costs = pp->cost;
1307 ira_init_register_move_cost_if_necessary (Pmode);
1308 move_in_cost = ira_may_move_in_cost[Pmode];
1309 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1311 i = cost_classes[k];
1312 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1313 if (INT_MAX - add_cost < pp_costs[k])
1314 pp_costs[k] = INT_MAX;
1315 else
1316 pp_costs[k] += add_cost;
1319 break;
1321 default:
1323 const char *fmt = GET_RTX_FORMAT (code);
1324 int i;
1325 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1326 if (fmt[i] == 'e')
1327 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1328 scale);
1335 /* Calculate the costs of insn operands. */
1336 static void
1337 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1339 const char *constraints[MAX_RECOG_OPERANDS];
1340 machine_mode modes[MAX_RECOG_OPERANDS];
1341 rtx set;
1342 int i;
1344 if ((set = single_set (insn)) != NULL_RTX
1345 /* In rare cases the single set insn might have less 2 operands
1346 as the source can be a fixed special reg. */
1347 && recog_data.n_operands > 1
1348 && recog_data.operand[0] == SET_DEST (set)
1349 && recog_data.operand[1] == SET_SRC (set))
1351 int regno, other_regno;
1352 rtx dest = SET_DEST (set);
1353 rtx src = SET_SRC (set);
1355 if (GET_CODE (dest) == SUBREG
1356 && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1357 GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1358 dest = SUBREG_REG (dest);
1359 if (GET_CODE (src) == SUBREG
1360 && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1361 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1362 src = SUBREG_REG (src);
1363 if (REG_P (src) && REG_P (dest)
1364 && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1365 && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1366 || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1367 && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1369 machine_mode mode = GET_MODE (SET_SRC (set)), cost_mode = mode;
1370 machine_mode hard_reg_mode = GET_MODE(regno_reg_rtx[other_regno]);
1371 poly_int64 pmode_size = GET_MODE_SIZE (mode);
1372 poly_int64 phard_reg_mode_size = GET_MODE_SIZE (hard_reg_mode);
1373 HOST_WIDE_INT mode_size, hard_reg_mode_size;
1374 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1375 enum reg_class *cost_classes = cost_classes_ptr->classes;
1376 reg_class_t rclass, hard_reg_class, bigger_hard_reg_class;
1377 int cost_factor = 1, cost, k;
1378 move_table *move_costs;
1379 bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1381 hard_reg_class = REGNO_REG_CLASS (other_regno);
1382 bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1383 /* Target code may return any cost for mode which does not fit the
1384 hard reg class (e.g. DImode for AREG on i386). Check this and use
1385 a bigger class to get the right cost. */
1386 if (bigger_hard_reg_class != NO_REGS
1387 && ! ira_hard_reg_in_set_p (other_regno, mode,
1388 reg_class_contents[hard_reg_class]))
1389 hard_reg_class = bigger_hard_reg_class;
1390 ira_init_register_move_cost_if_necessary (mode);
1391 ira_init_register_move_cost_if_necessary (hard_reg_mode);
1392 /* Use smaller movement cost for natural hard reg mode or its mode as
1393 operand. */
1394 if (pmode_size.is_constant (&mode_size)
1395 && phard_reg_mode_size.is_constant (&hard_reg_mode_size))
1397 /* Assume we are moving in the natural modes: */
1398 cost_factor = mode_size / hard_reg_mode_size;
1399 if (mode_size % hard_reg_mode_size != 0)
1400 cost_factor++;
1401 if (cost_factor
1402 * (ira_register_move_cost
1403 [hard_reg_mode][hard_reg_class][hard_reg_class])
1404 < (ira_register_move_cost
1405 [mode][hard_reg_class][hard_reg_class]))
1406 cost_mode = hard_reg_mode;
1407 else
1408 cost_factor = 1;
1410 move_costs = ira_register_move_cost[cost_mode];
1411 i = regno == (int) REGNO (src) ? 1 : 0;
1412 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1414 rclass = cost_classes[k];
1415 cost = (i == 0
1416 ? move_costs[hard_reg_class][rclass]
1417 : move_costs[rclass][hard_reg_class]);
1418 cost *= cost_factor;
1419 op_costs[i]->cost[k] = cost * frequency;
1420 /* If this insn is a single set copying operand 1 to
1421 operand 0 and one operand is an allocno with the
1422 other a hard reg or an allocno that prefers a hard
1423 register that is in its own register class then we
1424 may want to adjust the cost of that register class to
1427 Avoid the adjustment if the source does not die to
1428 avoid stressing of register allocator by preferencing
1429 two colliding registers into single class. */
1430 if (dead_p
1431 && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1432 && (reg_class_size[(int) rclass]
1433 == (ira_reg_class_max_nregs
1434 [(int) rclass][(int) GET_MODE(src)])))
1436 if (reg_class_size[rclass] == 1)
1437 op_costs[i]->cost[k] = -frequency;
1438 else if (in_hard_reg_set_p (reg_class_contents[rclass],
1439 GET_MODE(src), other_regno))
1440 op_costs[i]->cost[k] = -frequency;
1443 op_costs[i]->mem_cost
1444 = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1445 return;
1449 for (i = 0; i < recog_data.n_operands; i++)
1451 constraints[i] = recog_data.constraints[i];
1452 modes[i] = recog_data.operand_mode[i];
1455 /* If we get here, we are set up to record the costs of all the
1456 operands for this insn. Start by initializing the costs. Then
1457 handle any address registers. Finally record the desired classes
1458 for any allocnos, doing it twice if some pair of operands are
1459 commutative. */
1460 for (i = 0; i < recog_data.n_operands; i++)
1462 rtx op_mem = extract_mem_from_operand (recog_data.operand[i]);
1463 memcpy (op_costs[i], init_cost, struct_costs_size);
1465 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1466 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1468 if (MEM_P (op_mem))
1469 record_address_regs (GET_MODE (op_mem),
1470 MEM_ADDR_SPACE (op_mem),
1471 XEXP (op_mem, 0),
1472 0, MEM, SCRATCH, frequency * 2);
1473 else if (constraints[i][0] == 'p'
1474 || (insn_extra_address_constraint
1475 (lookup_constraint (constraints[i]))))
1476 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1477 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1478 frequency * 2);
1481 /* Check for commutative in a separate loop so everything will have
1482 been initialized. We must do this even if one operand is a
1483 constant--see addsi3 in m68k.md. */
1484 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1485 if (constraints[i][0] == '%')
1487 const char *xconstraints[MAX_RECOG_OPERANDS];
1488 int j;
1490 /* Handle commutative operands by swapping the
1491 constraints. We assume the modes are the same. */
1492 for (j = 0; j < recog_data.n_operands; j++)
1493 xconstraints[j] = constraints[j];
1495 xconstraints[i] = constraints[i+1];
1496 xconstraints[i+1] = constraints[i];
1497 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1498 recog_data.operand, modes,
1499 xconstraints, insn, pref);
1501 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1502 recog_data.operand, modes,
1503 constraints, insn, pref);
1508 /* Process one insn INSN. Scan it and record each time it would save
1509 code to put a certain allocnos in a certain class. Return the last
1510 insn processed, so that the scan can be continued from there. */
1511 static rtx_insn *
1512 scan_one_insn (rtx_insn *insn)
1514 enum rtx_code pat_code;
1515 rtx set, note;
1516 int i, k;
1517 bool counted_mem;
1519 if (!NONDEBUG_INSN_P (insn))
1520 return insn;
1522 pat_code = GET_CODE (PATTERN (insn));
1523 if (pat_code == ASM_INPUT)
1524 return insn;
1526 /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1527 and initialize the register move costs of mode M.
1529 The pseudo may be related to another pseudo via a copy (implicit or
1530 explicit) and if there are no mode M uses/sets of the original
1531 pseudo, then we may leave the register move costs uninitialized for
1532 mode M. */
1533 if (pat_code == USE || pat_code == CLOBBER)
1535 rtx x = XEXP (PATTERN (insn), 0);
1536 if (GET_CODE (x) == REG
1537 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1538 && have_regs_of_mode[GET_MODE (x)])
1539 ira_init_register_move_cost_if_necessary (GET_MODE (x));
1540 return insn;
1543 counted_mem = false;
1544 set = single_set (insn);
1545 extract_insn (insn);
1547 /* If this insn loads a parameter from its stack slot, then it
1548 represents a savings, rather than a cost, if the parameter is
1549 stored in memory. Record this fact.
1551 Similarly if we're loading other constants from memory (constant
1552 pool, TOC references, small data areas, etc) and this is the only
1553 assignment to the destination pseudo.
1555 Don't do this if SET_SRC (set) isn't a general operand, if it is
1556 a memory requiring special instructions to load it, decreasing
1557 mem_cost might result in it being loaded using the specialized
1558 instruction into a register, then stored into stack and loaded
1559 again from the stack. See PR52208.
1561 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1562 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1563 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1564 && ((MEM_P (XEXP (note, 0))
1565 && !side_effects_p (SET_SRC (set)))
1566 || (CONSTANT_P (XEXP (note, 0))
1567 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1568 XEXP (note, 0))
1569 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1570 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1571 /* LRA does not use equiv with a symbol for PIC code. */
1572 && (! ira_use_lra_p || ! pic_offset_table_rtx
1573 || ! contains_symbol_ref_p (XEXP (note, 0))))
1575 enum reg_class cl = GENERAL_REGS;
1576 rtx reg = SET_DEST (set);
1577 int num = COST_INDEX (REGNO (reg));
1578 /* Costs for NO_REGS are used in cost calculation on the
1579 1st pass when the preferred register classes are not
1580 known yet. In this case we take the best scenario when
1581 mode can't be put into GENERAL_REGS. */
1582 if (!targetm.hard_regno_mode_ok (ira_class_hard_regs[cl][0],
1583 GET_MODE (reg)))
1584 cl = NO_REGS;
1586 COSTS (costs, num)->mem_cost
1587 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1588 record_address_regs (GET_MODE (SET_SRC (set)),
1589 MEM_ADDR_SPACE (SET_SRC (set)),
1590 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1591 frequency * 2);
1592 counted_mem = true;
1595 record_operand_costs (insn, pref);
1597 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1599 const char *p;
1600 fprintf (ira_dump_file, " Final costs after insn %u", INSN_UID (insn));
1601 if (INSN_CODE (insn) >= 0
1602 && (p = get_insn_name (INSN_CODE (insn))) != NULL)
1603 fprintf (ira_dump_file, " {%s}", p);
1604 fprintf (ira_dump_file, " (freq=%d)\n",
1605 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)));
1606 dump_insn_slim (ira_dump_file, insn);
1609 /* Now add the cost for each operand to the total costs for its
1610 allocno. */
1611 for (i = 0; i < recog_data.n_operands; i++)
1613 rtx op = recog_data.operand[i];
1615 if (GET_CODE (op) == SUBREG)
1616 op = SUBREG_REG (op);
1617 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1619 int regno = REGNO (op);
1620 struct costs *p = COSTS (costs, COST_INDEX (regno));
1621 struct costs *q = op_costs[i];
1622 int *p_costs = p->cost, *q_costs = q->cost;
1623 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1624 int add_cost = 0;
1626 /* If the already accounted for the memory "cost" above, don't
1627 do so again. */
1628 if (!counted_mem)
1630 add_cost = q->mem_cost;
1631 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1632 p->mem_cost = INT_MAX;
1633 else
1634 p->mem_cost += add_cost;
1636 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1638 fprintf (ira_dump_file, " op %d(r=%u) MEM:%d(+%d)",
1639 i, REGNO(op), p->mem_cost, add_cost);
1641 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1643 add_cost = q_costs[k];
1644 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1645 p_costs[k] = INT_MAX;
1646 else
1647 p_costs[k] += add_cost;
1648 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1650 fprintf (ira_dump_file, " %s:%d(+%d)",
1651 reg_class_names[cost_classes_ptr->classes[k]],
1652 p_costs[k], add_cost);
1655 if (ira_dump_file != NULL && internal_flag_ira_verbose > 5)
1656 fprintf (ira_dump_file, "\n");
1659 return insn;
1664 /* Print allocnos costs to file F. */
1665 static void
1666 print_allocno_costs (FILE *f)
1668 int k;
1669 ira_allocno_t a;
1670 ira_allocno_iterator ai;
1672 ira_assert (allocno_p);
1673 fprintf (f, "\n");
1674 FOR_EACH_ALLOCNO (a, ai)
1676 int i, rclass;
1677 basic_block bb;
1678 int regno = ALLOCNO_REGNO (a);
1679 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1680 enum reg_class *cost_classes = cost_classes_ptr->classes;
1682 i = ALLOCNO_NUM (a);
1683 fprintf (f, " a%d(r%d,", i, regno);
1684 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1685 fprintf (f, "b%d", bb->index);
1686 else
1687 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1688 fprintf (f, ") costs:");
1689 for (k = 0; k < cost_classes_ptr->num; k++)
1691 rclass = cost_classes[k];
1692 fprintf (f, " %s:%d", reg_class_names[rclass],
1693 COSTS (costs, i)->cost[k]);
1694 if (flag_ira_region == IRA_REGION_ALL
1695 || flag_ira_region == IRA_REGION_MIXED)
1696 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1698 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1699 if (flag_ira_region == IRA_REGION_ALL
1700 || flag_ira_region == IRA_REGION_MIXED)
1701 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1702 fprintf (f, "\n");
1706 /* Print pseudo costs to file F. */
1707 static void
1708 print_pseudo_costs (FILE *f)
1710 int regno, k;
1711 int rclass;
1712 cost_classes_t cost_classes_ptr;
1713 enum reg_class *cost_classes;
1715 ira_assert (! allocno_p);
1716 fprintf (f, "\n");
1717 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1719 if (REG_N_REFS (regno) <= 0)
1720 continue;
1721 cost_classes_ptr = regno_cost_classes[regno];
1722 cost_classes = cost_classes_ptr->classes;
1723 fprintf (f, " r%d costs:", regno);
1724 for (k = 0; k < cost_classes_ptr->num; k++)
1726 rclass = cost_classes[k];
1727 fprintf (f, " %s:%d", reg_class_names[rclass],
1728 COSTS (costs, regno)->cost[k]);
1730 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1734 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1735 costs. */
1736 static void
1737 process_bb_for_costs (basic_block bb)
1739 rtx_insn *insn;
1741 frequency = REG_FREQ_FROM_BB (bb);
1742 if (frequency == 0)
1743 frequency = 1;
1744 FOR_BB_INSNS (bb, insn)
1745 insn = scan_one_insn (insn);
1748 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1749 costs. */
1750 static void
1751 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1753 basic_block bb;
1755 bb = loop_tree_node->bb;
1756 if (bb != NULL)
1757 process_bb_for_costs (bb);
1760 /* Find costs of register classes and memory for allocnos or pseudos
1761 and their best costs. Set up preferred, alternative and allocno
1762 classes for pseudos. */
1763 static void
1764 find_costs_and_classes (FILE *dump_file)
1766 int i, k, start, max_cost_classes_num;
1767 int pass;
1768 basic_block bb;
1769 enum reg_class *regno_best_class, new_class;
1771 init_recog ();
1772 regno_best_class
1773 = (enum reg_class *) ira_allocate (max_reg_num ()
1774 * sizeof (enum reg_class));
1775 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1776 regno_best_class[i] = NO_REGS;
1777 if (!resize_reg_info () && allocno_p
1778 && pseudo_classes_defined_p && flag_expensive_optimizations)
1780 ira_allocno_t a;
1781 ira_allocno_iterator ai;
1783 pref = pref_buffer;
1784 max_cost_classes_num = 1;
1785 FOR_EACH_ALLOCNO (a, ai)
1787 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1788 setup_regno_cost_classes_by_aclass
1789 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1790 max_cost_classes_num
1791 = MAX (max_cost_classes_num,
1792 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1794 start = 1;
1796 else
1798 pref = NULL;
1799 max_cost_classes_num = ira_important_classes_num;
1800 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1801 if (regno_reg_rtx[i] != NULL_RTX)
1802 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1803 else
1804 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1805 start = 0;
1807 if (allocno_p)
1808 /* Clear the flag for the next compiled function. */
1809 pseudo_classes_defined_p = false;
1810 /* Normally we scan the insns once and determine the best class to
1811 use for each allocno. However, if -fexpensive-optimizations are
1812 on, we do so twice, the second time using the tentative best
1813 classes to guide the selection. */
1814 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1816 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1817 fprintf (dump_file,
1818 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1820 if (pass != start)
1822 max_cost_classes_num = 1;
1823 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1825 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1826 max_cost_classes_num
1827 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1831 struct_costs_size
1832 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1833 /* Zero out our accumulation of the cost of each class for each
1834 allocno. */
1835 memset (costs, 0, cost_elements_num * struct_costs_size);
1837 if (allocno_p)
1839 /* Scan the instructions and record each time it would save code
1840 to put a certain allocno in a certain class. */
1841 ira_traverse_loop_tree (true, ira_loop_tree_root,
1842 process_bb_node_for_costs, NULL);
1844 memcpy (total_allocno_costs, costs,
1845 max_struct_costs_size * ira_allocnos_num);
1847 else
1849 basic_block bb;
1851 FOR_EACH_BB_FN (bb, cfun)
1852 process_bb_for_costs (bb);
1855 if (pass == 0)
1856 pref = pref_buffer;
1858 /* Now for each allocno look at how desirable each class is and
1859 find which class is preferred. */
1860 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1862 ira_allocno_t a, parent_a;
1863 int rclass, a_num, parent_a_num, add_cost;
1864 ira_loop_tree_node_t parent;
1865 int best_cost, allocno_cost;
1866 enum reg_class best, alt_class;
1867 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1868 enum reg_class *cost_classes;
1869 int *i_costs = temp_costs->cost;
1870 int i_mem_cost;
1871 int equiv_savings = regno_equiv_gains[i];
1873 if (! allocno_p)
1875 if (regno_reg_rtx[i] == NULL_RTX)
1876 continue;
1877 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1878 i_mem_cost = temp_costs->mem_cost;
1879 cost_classes = cost_classes_ptr->classes;
1881 else
1883 if (ira_regno_allocno_map[i] == NULL)
1884 continue;
1885 memset (temp_costs, 0, struct_costs_size);
1886 i_mem_cost = 0;
1887 cost_classes = cost_classes_ptr->classes;
1888 /* Find cost of all allocnos with the same regno. */
1889 for (a = ira_regno_allocno_map[i];
1890 a != NULL;
1891 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1893 int *a_costs, *p_costs;
1895 a_num = ALLOCNO_NUM (a);
1896 if ((flag_ira_region == IRA_REGION_ALL
1897 || flag_ira_region == IRA_REGION_MIXED)
1898 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1899 && (parent_a = parent->regno_allocno_map[i]) != NULL
1900 /* There are no caps yet. */
1901 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1902 (a)->border_allocnos,
1903 ALLOCNO_NUM (a)))
1905 /* Propagate costs to upper levels in the region
1906 tree. */
1907 parent_a_num = ALLOCNO_NUM (parent_a);
1908 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1909 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1910 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1912 add_cost = a_costs[k];
1913 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1914 p_costs[k] = INT_MAX;
1915 else
1916 p_costs[k] += add_cost;
1918 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1919 if (add_cost > 0
1920 && (INT_MAX - add_cost
1921 < COSTS (total_allocno_costs,
1922 parent_a_num)->mem_cost))
1923 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1924 = INT_MAX;
1925 else
1926 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1927 += add_cost;
1929 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1930 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1932 a_costs = COSTS (costs, a_num)->cost;
1933 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1935 add_cost = a_costs[k];
1936 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1937 i_costs[k] = INT_MAX;
1938 else
1939 i_costs[k] += add_cost;
1941 add_cost = COSTS (costs, a_num)->mem_cost;
1942 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1943 i_mem_cost = INT_MAX;
1944 else
1945 i_mem_cost += add_cost;
1948 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1949 i_mem_cost = 0;
1950 else
1951 i_mem_cost -= equiv_savings;
1952 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1953 best = ALL_REGS;
1954 alt_class = NO_REGS;
1955 /* Find best common class for all allocnos with the same
1956 regno. */
1957 for (k = 0; k < cost_classes_ptr->num; k++)
1959 rclass = cost_classes[k];
1960 if (i_costs[k] < best_cost)
1962 best_cost = i_costs[k];
1963 best = (enum reg_class) rclass;
1965 else if (i_costs[k] == best_cost)
1966 best = ira_reg_class_subunion[best][rclass];
1967 if (pass == flag_expensive_optimizations
1968 /* We still prefer registers to memory even at this
1969 stage if their costs are the same. We will make
1970 a final decision during assigning hard registers
1971 when we have all info including more accurate
1972 costs which might be affected by assigning hard
1973 registers to other pseudos because the pseudos
1974 involved in moves can be coalesced. */
1975 && i_costs[k] <= i_mem_cost
1976 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1977 > reg_class_size[alt_class]))
1978 alt_class = reg_class_subunion[alt_class][rclass];
1980 alt_class = ira_allocno_class_translate[alt_class];
1981 if (best_cost > i_mem_cost
1982 && ! non_spilled_static_chain_regno_p (i))
1983 regno_aclass[i] = NO_REGS;
1984 else if (!optimize && !targetm.class_likely_spilled_p (best))
1985 /* Registers in the alternative class are likely to need
1986 longer or slower sequences than registers in the best class.
1987 When optimizing we make some effort to use the best class
1988 over the alternative class where possible, but at -O0 we
1989 effectively give the alternative class equal weight.
1990 We then run the risk of using slower alternative registers
1991 when plenty of registers from the best class are still free.
1992 This is especially true because live ranges tend to be very
1993 short in -O0 code and so register pressure tends to be low.
1995 Avoid that by ignoring the alternative class if the best
1996 class has plenty of registers.
1998 The union class arrays give important classes and only
1999 part of it are allocno classes. So translate them into
2000 allocno classes. */
2001 regno_aclass[i] = ira_allocno_class_translate[best];
2002 else
2004 /* Make the common class the biggest class of best and
2005 alt_class. Translate the common class into an
2006 allocno class too. */
2007 regno_aclass[i] = (ira_allocno_class_translate
2008 [ira_reg_class_superunion[best][alt_class]]);
2009 ira_assert (regno_aclass[i] != NO_REGS
2010 && ira_reg_allocno_class_p[regno_aclass[i]]);
2012 if (pic_offset_table_rtx != NULL
2013 && i == (int) REGNO (pic_offset_table_rtx))
2015 /* For some targets, integer pseudos can be assigned to fp
2016 regs. As we don't want reload pic offset table pseudo, we
2017 should avoid using non-integer regs. */
2018 regno_aclass[i]
2019 = ira_reg_class_intersect[regno_aclass[i]][GENERAL_REGS];
2020 alt_class = ira_reg_class_intersect[alt_class][GENERAL_REGS];
2022 if ((new_class
2023 = (reg_class) (targetm.ira_change_pseudo_allocno_class
2024 (i, regno_aclass[i], best))) != regno_aclass[i])
2026 regno_aclass[i] = new_class;
2027 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2028 reg_class_contents[best]))
2029 best = new_class;
2030 if (hard_reg_set_subset_p (reg_class_contents[new_class],
2031 reg_class_contents[alt_class]))
2032 alt_class = new_class;
2034 if (pass == flag_expensive_optimizations)
2036 if (best_cost > i_mem_cost
2037 /* Do not assign NO_REGS to static chain pointer
2038 pseudo when non-local goto is used. */
2039 && ! non_spilled_static_chain_regno_p (i))
2040 best = alt_class = NO_REGS;
2041 else if (best == alt_class)
2042 alt_class = NO_REGS;
2043 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
2044 if ((!allocno_p || internal_flag_ira_verbose > 2)
2045 && dump_file != NULL)
2046 fprintf (dump_file,
2047 " r%d: preferred %s, alternative %s, allocno %s\n",
2048 i, reg_class_names[best], reg_class_names[alt_class],
2049 reg_class_names[regno_aclass[i]]);
2051 regno_best_class[i] = best;
2052 if (! allocno_p)
2054 pref[i] = (best_cost > i_mem_cost
2055 && ! non_spilled_static_chain_regno_p (i)
2056 ? NO_REGS : best);
2057 continue;
2059 for (a = ira_regno_allocno_map[i];
2060 a != NULL;
2061 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2063 enum reg_class aclass = regno_aclass[i];
2064 int a_num = ALLOCNO_NUM (a);
2065 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
2066 int *a_costs = COSTS (costs, a_num)->cost;
2068 if (aclass == NO_REGS)
2069 best = NO_REGS;
2070 else
2072 /* Finding best class which is subset of the common
2073 class. */
2074 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
2075 allocno_cost = best_cost;
2076 best = ALL_REGS;
2077 for (k = 0; k < cost_classes_ptr->num; k++)
2079 rclass = cost_classes[k];
2080 if (! ira_class_subset_p[rclass][aclass])
2081 continue;
2082 if (total_a_costs[k] < best_cost)
2084 best_cost = total_a_costs[k];
2085 allocno_cost = a_costs[k];
2086 best = (enum reg_class) rclass;
2088 else if (total_a_costs[k] == best_cost)
2090 best = ira_reg_class_subunion[best][rclass];
2091 allocno_cost = MAX (allocno_cost, a_costs[k]);
2094 ALLOCNO_CLASS_COST (a) = allocno_cost;
2096 if (internal_flag_ira_verbose > 2 && dump_file != NULL
2097 && (pass == 0 || pref[a_num] != best))
2099 fprintf (dump_file, " a%d (r%d,", a_num, i);
2100 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2101 fprintf (dump_file, "b%d", bb->index);
2102 else
2103 fprintf (dump_file, "l%d",
2104 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2105 fprintf (dump_file, ") best %s, allocno %s\n",
2106 reg_class_names[best],
2107 reg_class_names[aclass]);
2109 pref[a_num] = best;
2110 if (pass == flag_expensive_optimizations && best != aclass
2111 && ira_class_hard_regs_num[best] > 0
2112 && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2113 >= ira_class_hard_regs_num[best]))
2115 int ind = cost_classes_ptr->index[aclass];
2117 ira_assert (ind >= 0);
2118 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2119 ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2120 (a_costs[ind] - ALLOCNO_CLASS_COST (a))
2121 / (ira_register_move_cost
2122 [ALLOCNO_MODE (a)][best][aclass]));
2123 for (k = 0; k < cost_classes_ptr->num; k++)
2124 if (ira_class_subset_p[cost_classes[k]][best])
2125 a_costs[k] = a_costs[ind];
2130 if (internal_flag_ira_verbose > 4 && dump_file)
2132 if (allocno_p)
2133 print_allocno_costs (dump_file);
2134 else
2135 print_pseudo_costs (dump_file);
2136 fprintf (dump_file,"\n");
2139 ira_free (regno_best_class);
2144 /* Process moves involving hard regs to modify allocno hard register
2145 costs. We can do this only after determining allocno class. If a
2146 hard register forms a register class, then moves with the hard
2147 register are already taken into account in class costs for the
2148 allocno. */
2149 static void
2150 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2152 int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2153 bool to_p;
2154 ira_allocno_t a, curr_a;
2155 ira_loop_tree_node_t curr_loop_tree_node;
2156 enum reg_class rclass;
2157 basic_block bb;
2158 rtx_insn *insn;
2159 rtx set, src, dst;
2161 bb = loop_tree_node->bb;
2162 if (bb == NULL)
2163 return;
2164 freq = REG_FREQ_FROM_BB (bb);
2165 if (freq == 0)
2166 freq = 1;
2167 FOR_BB_INSNS (bb, insn)
2169 if (!NONDEBUG_INSN_P (insn))
2170 continue;
2171 set = single_set (insn);
2172 if (set == NULL_RTX)
2173 continue;
2174 dst = SET_DEST (set);
2175 src = SET_SRC (set);
2176 if (! REG_P (dst) || ! REG_P (src))
2177 continue;
2178 dst_regno = REGNO (dst);
2179 src_regno = REGNO (src);
2180 if (dst_regno >= FIRST_PSEUDO_REGISTER
2181 && src_regno < FIRST_PSEUDO_REGISTER)
2183 hard_regno = src_regno;
2184 a = ira_curr_regno_allocno_map[dst_regno];
2185 to_p = true;
2187 else if (src_regno >= FIRST_PSEUDO_REGISTER
2188 && dst_regno < FIRST_PSEUDO_REGISTER)
2190 hard_regno = dst_regno;
2191 a = ira_curr_regno_allocno_map[src_regno];
2192 to_p = false;
2194 else
2195 continue;
2196 if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2197 == (ira_reg_class_max_nregs
2198 [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2199 /* If the class can provide only one hard reg to the allocno,
2200 we processed the insn record_operand_costs already and we
2201 actually updated the hard reg cost there. */
2202 continue;
2203 rclass = ALLOCNO_CLASS (a);
2204 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2205 continue;
2206 i = ira_class_hard_reg_index[rclass][hard_regno];
2207 if (i < 0)
2208 continue;
2209 a_regno = ALLOCNO_REGNO (a);
2210 for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2211 curr_loop_tree_node != NULL;
2212 curr_loop_tree_node = curr_loop_tree_node->parent)
2213 if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2214 ira_add_allocno_pref (curr_a, hard_regno, freq);
2216 int cost;
2217 enum reg_class hard_reg_class;
2218 machine_mode mode;
2220 mode = ALLOCNO_MODE (a);
2221 hard_reg_class = REGNO_REG_CLASS (hard_regno);
2222 ira_init_register_move_cost_if_necessary (mode);
2223 cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2224 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2225 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2226 ALLOCNO_CLASS_COST (a));
2227 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2228 rclass, 0);
2229 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2230 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2231 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2232 ALLOCNO_HARD_REG_COSTS (a)[i]);
2237 /* After we find hard register and memory costs for allocnos, define
2238 its class and modify hard register cost because insns moving
2239 allocno to/from hard registers. */
2240 static void
2241 setup_allocno_class_and_costs (void)
2243 int i, j, n, regno, hard_regno, num;
2244 int *reg_costs;
2245 enum reg_class aclass, rclass;
2246 ira_allocno_t a;
2247 ira_allocno_iterator ai;
2248 cost_classes_t cost_classes_ptr;
2250 ira_assert (allocno_p);
2251 FOR_EACH_ALLOCNO (a, ai)
2253 i = ALLOCNO_NUM (a);
2254 regno = ALLOCNO_REGNO (a);
2255 aclass = regno_aclass[regno];
2256 cost_classes_ptr = regno_cost_classes[regno];
2257 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2258 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2259 ira_set_allocno_class (a, aclass);
2260 if (aclass == NO_REGS)
2261 continue;
2262 if (optimize && ALLOCNO_CLASS (a) != pref[i])
2264 n = ira_class_hard_regs_num[aclass];
2265 ALLOCNO_HARD_REG_COSTS (a)
2266 = reg_costs = ira_allocate_cost_vector (aclass);
2267 for (j = n - 1; j >= 0; j--)
2269 hard_regno = ira_class_hard_regs[aclass][j];
2270 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2271 reg_costs[j] = ALLOCNO_CLASS_COST (a);
2272 else
2274 rclass = REGNO_REG_CLASS (hard_regno);
2275 num = cost_classes_ptr->index[rclass];
2276 if (num < 0)
2278 num = cost_classes_ptr->hard_regno_index[hard_regno];
2279 ira_assert (num >= 0);
2281 reg_costs[j] = COSTS (costs, i)->cost[num];
2286 if (optimize)
2287 ira_traverse_loop_tree (true, ira_loop_tree_root,
2288 process_bb_node_for_hard_reg_moves, NULL);
2293 /* Function called once during compiler work. */
2294 void
2295 ira_init_costs_once (void)
2297 int i;
2299 init_cost = NULL;
2300 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2302 op_costs[i] = NULL;
2303 this_op_costs[i] = NULL;
2305 temp_costs = NULL;
2308 /* Free allocated temporary cost vectors. */
2309 void
2310 target_ira_int::free_ira_costs ()
2312 int i;
2314 free (x_init_cost);
2315 x_init_cost = NULL;
2316 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2318 free (x_op_costs[i]);
2319 free (x_this_op_costs[i]);
2320 x_op_costs[i] = x_this_op_costs[i] = NULL;
2322 free (x_temp_costs);
2323 x_temp_costs = NULL;
2326 /* This is called each time register related information is
2327 changed. */
2328 void
2329 ira_init_costs (void)
2331 int i;
2333 this_target_ira_int->free_ira_costs ();
2334 max_struct_costs_size
2335 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2336 /* Don't use ira_allocate because vectors live through several IRA
2337 calls. */
2338 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2339 init_cost->mem_cost = 1000000;
2340 for (i = 0; i < ira_important_classes_num; i++)
2341 init_cost->cost[i] = 1000000;
2342 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2344 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2345 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2347 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2352 /* Common initialization function for ira_costs and
2353 ira_set_pseudo_classes. */
2354 static void
2355 init_costs (void)
2357 init_subregs_of_mode ();
2358 costs = (struct costs *) ira_allocate (max_struct_costs_size
2359 * cost_elements_num);
2360 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2361 * cost_elements_num);
2362 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2363 * max_reg_num ());
2364 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2365 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2368 /* Common finalization function for ira_costs and
2369 ira_set_pseudo_classes. */
2370 static void
2371 finish_costs (void)
2373 finish_subregs_of_mode ();
2374 ira_free (regno_equiv_gains);
2375 ira_free (regno_aclass);
2376 ira_free (pref_buffer);
2377 ira_free (costs);
2380 /* Entry function which defines register class, memory and hard
2381 register costs for each allocno. */
2382 void
2383 ira_costs (void)
2385 allocno_p = true;
2386 cost_elements_num = ira_allocnos_num;
2387 init_costs ();
2388 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2389 * ira_allocnos_num);
2390 initiate_regno_cost_classes ();
2391 calculate_elim_costs_all_insns ();
2392 find_costs_and_classes (ira_dump_file);
2393 setup_allocno_class_and_costs ();
2394 finish_regno_cost_classes ();
2395 finish_costs ();
2396 ira_free (total_allocno_costs);
2399 /* Entry function which defines classes for pseudos.
2400 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2401 void
2402 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2404 allocno_p = false;
2405 internal_flag_ira_verbose = flag_ira_verbose;
2406 cost_elements_num = max_reg_num ();
2407 init_costs ();
2408 initiate_regno_cost_classes ();
2409 find_costs_and_classes (dump_file);
2410 finish_regno_cost_classes ();
2411 if (define_pseudo_classes)
2412 pseudo_classes_defined_p = true;
2414 finish_costs ();
2419 /* Change hard register costs for allocnos which lives through
2420 function calls. This is called only when we found all intersected
2421 calls during building allocno live ranges. */
2422 void
2423 ira_tune_allocno_costs (void)
2425 int j, n, regno;
2426 int cost, min_cost, *reg_costs;
2427 enum reg_class aclass;
2428 machine_mode mode;
2429 ira_allocno_t a;
2430 ira_allocno_iterator ai;
2431 ira_allocno_object_iterator oi;
2432 ira_object_t obj;
2433 bool skip_p;
2435 FOR_EACH_ALLOCNO (a, ai)
2437 aclass = ALLOCNO_CLASS (a);
2438 if (aclass == NO_REGS)
2439 continue;
2440 mode = ALLOCNO_MODE (a);
2441 n = ira_class_hard_regs_num[aclass];
2442 min_cost = INT_MAX;
2443 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2444 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2446 ira_allocate_and_set_costs
2447 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2448 ALLOCNO_CLASS_COST (a));
2449 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2450 for (j = n - 1; j >= 0; j--)
2452 regno = ira_class_hard_regs[aclass][j];
2453 skip_p = false;
2454 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2456 if (ira_hard_reg_set_intersection_p (regno, mode,
2457 OBJECT_CONFLICT_HARD_REGS
2458 (obj)))
2460 skip_p = true;
2461 break;
2464 if (skip_p)
2465 continue;
2466 cost = 0;
2467 if (ira_need_caller_save_p (a, regno))
2468 cost += ira_caller_save_cost (a);
2469 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2471 auto rclass = REGNO_REG_CLASS (regno);
2472 cost += ((ira_memory_move_cost[mode][rclass][0]
2473 + ira_memory_move_cost[mode][rclass][1])
2474 * ALLOCNO_FREQ (a)
2475 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2477 #endif
2478 if (INT_MAX - cost < reg_costs[j])
2479 reg_costs[j] = INT_MAX;
2480 else
2481 reg_costs[j] += cost;
2482 if (min_cost > reg_costs[j])
2483 min_cost = reg_costs[j];
2486 if (min_cost != INT_MAX)
2487 ALLOCNO_CLASS_COST (a) = min_cost;
2489 /* Some targets allow pseudos to be allocated to unaligned sequences
2490 of hard registers. However, selecting an unaligned sequence can
2491 unnecessarily restrict later allocations. So increase the cost of
2492 unaligned hard regs to encourage the use of aligned hard regs. */
2494 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2496 if (nregs > 1)
2498 ira_allocate_and_set_costs
2499 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2500 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2501 for (j = n - 1; j >= 0; j--)
2503 regno = ira_non_ordered_class_hard_regs[aclass][j];
2504 if ((regno % nregs) != 0)
2506 int index = ira_class_hard_reg_index[aclass][regno];
2507 ira_assert (index != -1);
2508 reg_costs[index] += ALLOCNO_FREQ (a);
2516 /* Add COST to the estimated gain for eliminating REGNO with its
2517 equivalence. If COST is zero, record that no such elimination is
2518 possible. */
2520 void
2521 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2523 if (cost == 0)
2524 regno_equiv_gains[regno] = 0;
2525 else
2526 regno_equiv_gains[regno] += cost;
2529 void
2530 ira_costs_cc_finalize (void)
2532 this_target_ira_int->free_ira_costs ();