2005-05-11 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / tree-ssa-copy.c
blobdd4c5debc5ce4e3157791891a62ec34e12a580a3
1 /* Copy propagation and SSA_NAME replacement support routines.
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "ggc.h"
30 #include "basic-block.h"
31 #include "output.h"
32 #include "errors.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "diagnostic.h"
36 #include "timevar.h"
37 #include "tree-dump.h"
38 #include "tree-flow.h"
39 #include "tree-pass.h"
40 #include "tree-ssa-propagate.h"
41 #include "langhooks.h"
43 /* This file implements the copy propagation pass and provides a
44 handful of interfaces for performing const/copy propagation and
45 simple expression replacement which keep variable annotations
46 up-to-date.
48 We require that for any copy operation where the RHS and LHS have
49 a non-null memory tag the memory tag be the same. It is OK
50 for one or both of the memory tags to be NULL.
52 We also require tracking if a variable is dereferenced in a load or
53 store operation.
55 We enforce these requirements by having all copy propagation and
56 replacements of one SSA_NAME with a different SSA_NAME to use the
57 APIs defined in this file. */
59 /* Return true if we may propagate ORIG into DEST, false otherwise. */
61 bool
62 may_propagate_copy (tree dest, tree orig)
64 tree type_d = TREE_TYPE (dest);
65 tree type_o = TREE_TYPE (orig);
67 /* Do not copy between types for which we *do* need a conversion. */
68 if (!tree_ssa_useless_type_conversion_1 (type_d, type_o))
69 return false;
71 /* FIXME. GIMPLE is allowing pointer assignments and comparisons of
72 pointers that have different alias sets. This means that these
73 pointers will have different memory tags associated to them.
75 If we allow copy propagation in these cases, statements de-referencing
76 the new pointer will now have a reference to a different memory tag
77 with potentially incorrect SSA information.
79 This was showing up in libjava/java/util/zip/ZipFile.java with code
80 like:
82 struct java.io.BufferedInputStream *T.660;
83 struct java.io.BufferedInputStream *T.647;
84 struct java.io.InputStream *is;
85 struct java.io.InputStream *is.662;
86 [ ... ]
87 T.660 = T.647;
88 is = T.660; <-- This ought to be type-casted
89 is.662 = is;
91 Also, f/name.c exposed a similar problem with a COND_EXPR predicate
92 that was causing DOM to generate and equivalence with two pointers of
93 alias-incompatible types:
95 struct _ffename_space *n;
96 struct _ffename *ns;
97 [ ... ]
98 if (n == ns)
99 goto lab;
101 lab:
102 return n;
104 I think that GIMPLE should emit the appropriate type-casts. For the
105 time being, blocking copy-propagation in these cases is the safe thing
106 to do. */
107 if (TREE_CODE (dest) == SSA_NAME
108 && TREE_CODE (orig) == SSA_NAME
109 && POINTER_TYPE_P (type_d)
110 && POINTER_TYPE_P (type_o))
112 tree mt_dest = var_ann (SSA_NAME_VAR (dest))->type_mem_tag;
113 tree mt_orig = var_ann (SSA_NAME_VAR (orig))->type_mem_tag;
114 if (mt_dest && mt_orig && mt_dest != mt_orig)
115 return false;
116 else if (!lang_hooks.types_compatible_p (type_d, type_o))
117 return false;
118 else if (get_alias_set (TREE_TYPE (type_d)) !=
119 get_alias_set (TREE_TYPE (type_o)))
120 return false;
123 /* If the destination is a SSA_NAME for a virtual operand, then we have
124 some special cases to handle. */
125 if (TREE_CODE (dest) == SSA_NAME && !is_gimple_reg (dest))
127 /* If both operands are SSA_NAMEs referring to virtual operands, then
128 we can always propagate. */
129 if (TREE_CODE (orig) == SSA_NAME
130 && !is_gimple_reg (orig))
131 return true;
133 /* We have a "copy" from something like a constant into a virtual
134 operand. Reject these. */
135 return false;
138 /* If ORIG flows in from an abnormal edge, it cannot be propagated. */
139 if (TREE_CODE (orig) == SSA_NAME
140 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (orig))
141 return false;
143 /* If DEST is an SSA_NAME that flows from an abnormal edge, then it
144 cannot be replaced. */
145 if (TREE_CODE (dest) == SSA_NAME
146 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (dest))
147 return false;
149 /* Anything else is OK. */
150 return true;
153 /* Similarly, but we know that we're propagating into an ASM_EXPR. */
155 bool
156 may_propagate_copy_into_asm (tree dest)
158 /* Hard register operands of asms are special. Do not bypass. */
159 return !(TREE_CODE (dest) == SSA_NAME
160 && TREE_CODE (SSA_NAME_VAR (dest)) == VAR_DECL
161 && DECL_HARD_REGISTER (SSA_NAME_VAR (dest)));
165 /* Given two SSA_NAMEs pointers ORIG and NEW such that we are copy
166 propagating NEW into ORIG, consolidate aliasing information so that
167 they both share the same memory tags. */
169 static void
170 merge_alias_info (tree orig, tree new)
172 tree new_sym = SSA_NAME_VAR (new);
173 tree orig_sym = SSA_NAME_VAR (orig);
174 var_ann_t new_ann = var_ann (new_sym);
175 var_ann_t orig_ann = var_ann (orig_sym);
177 gcc_assert (POINTER_TYPE_P (TREE_TYPE (orig)));
178 gcc_assert (POINTER_TYPE_P (TREE_TYPE (new)));
180 #if defined ENABLE_CHECKING
181 gcc_assert (lang_hooks.types_compatible_p (TREE_TYPE (orig),
182 TREE_TYPE (new)));
184 /* If the pointed-to alias sets are different, these two pointers
185 would never have the same memory tag. In this case, NEW should
186 not have been propagated into ORIG. */
187 gcc_assert (get_alias_set (TREE_TYPE (TREE_TYPE (new_sym)))
188 == get_alias_set (TREE_TYPE (TREE_TYPE (orig_sym))));
189 #endif
191 /* Synchronize the type tags. If both pointers had a tag and they
192 are different, then something has gone wrong. */
193 if (new_ann->type_mem_tag == NULL_TREE)
194 new_ann->type_mem_tag = orig_ann->type_mem_tag;
195 else if (orig_ann->type_mem_tag == NULL_TREE)
196 orig_ann->type_mem_tag = new_ann->type_mem_tag;
197 else
198 gcc_assert (new_ann->type_mem_tag == orig_ann->type_mem_tag);
200 /* Synchronize the name tags. If NEW did not have a name tag, get
201 it from ORIG. This happens when NEW is a compiler generated
202 temporary which still hasn't had its points-to information filled
203 in. */
204 if (SSA_NAME_PTR_INFO (orig))
206 struct ptr_info_def *orig_ptr_info = SSA_NAME_PTR_INFO (orig);
207 struct ptr_info_def *new_ptr_info = SSA_NAME_PTR_INFO (new);
209 if (new_ptr_info == NULL)
210 duplicate_ssa_name_ptr_info (new, orig_ptr_info);
211 else if (orig_ptr_info->name_mem_tag
212 && new_ptr_info->name_mem_tag
213 && orig_ptr_info->pt_vars
214 && new_ptr_info->pt_vars)
216 /* Note that pointer NEW may actually have a different set
217 of pointed-to variables. However, since NEW is being
218 copy-propagated into ORIG, it must always be true that
219 the pointed-to set for pointer NEW is the same, or a
220 subset, of the pointed-to set for pointer ORIG. If this
221 isn't the case, we shouldn't have been able to do the
222 propagation of NEW into ORIG. */
223 gcc_assert (bitmap_intersect_p (new_ptr_info->pt_vars,
224 orig_ptr_info->pt_vars));
230 /* Common code for propagate_value and replace_exp.
232 Replace use operand OP_P with VAL. FOR_PROPAGATION indicates if the
233 replacement is done to propagate a value or not. */
235 static void
236 replace_exp_1 (use_operand_p op_p, tree val,
237 bool for_propagation ATTRIBUTE_UNUSED)
239 tree op = USE_FROM_PTR (op_p);
241 #if defined ENABLE_CHECKING
242 gcc_assert (!(for_propagation
243 && TREE_CODE (op) == SSA_NAME
244 && TREE_CODE (val) == SSA_NAME
245 && !may_propagate_copy (op, val)));
246 #endif
248 if (TREE_CODE (val) == SSA_NAME)
250 if (TREE_CODE (op) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (op)))
251 merge_alias_info (op, val);
252 SET_USE (op_p, val);
254 else
255 SET_USE (op_p, unsave_expr_now (val));
259 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
260 into the operand pointed by OP_P.
262 Use this version for const/copy propagation as it will perform additional
263 checks to ensure validity of the const/copy propagation. */
265 void
266 propagate_value (use_operand_p op_p, tree val)
268 replace_exp_1 (op_p, val, true);
272 /* Propagate the value VAL (assumed to be a constant or another SSA_NAME)
273 into the tree pointed by OP_P.
275 Use this version for const/copy propagation when SSA operands are not
276 available. It will perform the additional checks to ensure validity of
277 the const/copy propagation, but will not update any operand information.
278 Be sure to mark the stmt as modified. */
280 void
281 propagate_tree_value (tree *op_p, tree val)
283 #if defined ENABLE_CHECKING
284 gcc_assert (!(TREE_CODE (val) == SSA_NAME
285 && TREE_CODE (*op_p) == SSA_NAME
286 && !may_propagate_copy (*op_p, val)));
287 #endif
289 if (TREE_CODE (val) == SSA_NAME)
291 if (TREE_CODE (*op_p) == SSA_NAME && POINTER_TYPE_P (TREE_TYPE (*op_p)))
292 merge_alias_info (*op_p, val);
293 *op_p = val;
295 else
296 *op_p = unsave_expr_now (val);
300 /* Replace *OP_P with value VAL (assumed to be a constant or another SSA_NAME).
302 Use this version when not const/copy propagating values. For example,
303 PRE uses this version when building expressions as they would appear
304 in specific blocks taking into account actions of PHI nodes. */
306 void
307 replace_exp (use_operand_p op_p, tree val)
309 replace_exp_1 (op_p, val, false);
313 /*---------------------------------------------------------------------------
314 Copy propagation
315 ---------------------------------------------------------------------------*/
316 /* During propagation, we keep chains of variables that are copies of
317 one another. If variable X_i is a copy of X_j and X_j is a copy of
318 X_k, COPY_OF will contain:
320 COPY_OF[i].VALUE = X_j
321 COPY_OF[j].VALUE = X_k
322 COPY_OF[k].VALUE = X_k
324 After propagation, the copy-of value for each variable X_i is
325 converted into the final value by walking the copy-of chains and
326 updating COPY_OF[i].VALUE to be the last element of the chain. */
327 static prop_value_t *copy_of;
329 /* Used in set_copy_of_val to determine if the last link of a copy-of
330 chain has changed. */
331 static tree *cached_last_copy_of;
333 /* True if we are doing copy propagation on loads and stores. */
334 static bool do_store_copy_prop;
337 /* Return true if this statement may generate a useful copy. */
339 static bool
340 stmt_may_generate_copy (tree stmt)
342 tree lhs, rhs;
343 stmt_ann_t ann;
345 if (TREE_CODE (stmt) == PHI_NODE)
346 return !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (stmt));
348 if (TREE_CODE (stmt) != MODIFY_EXPR)
349 return false;
351 lhs = TREE_OPERAND (stmt, 0);
352 rhs = TREE_OPERAND (stmt, 1);
353 ann = stmt_ann (stmt);
355 /* If the statement has volatile operands, it won't generate a
356 useful copy. */
357 if (ann->has_volatile_ops)
358 return false;
360 /* If we are not doing store copy-prop, statements with loads and/or
361 stores will never generate a useful copy. */
362 if (!do_store_copy_prop
363 && !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
364 return false;
366 /* Otherwise, the only statements that generate useful copies are
367 assignments whose RHS is just an SSA name that doesn't flow
368 through abnormal edges. */
369 return TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs);
373 /* Return the copy-of value for VAR. */
375 static inline prop_value_t *
376 get_copy_of_val (tree var)
378 prop_value_t *val = &copy_of[SSA_NAME_VERSION (var)];
380 if (val->value == NULL_TREE
381 && !stmt_may_generate_copy (SSA_NAME_DEF_STMT (var)))
383 /* If the variable will never generate a useful copy relation,
384 make it its own copy. */
385 val->value = var;
386 val->mem_ref = NULL_TREE;
389 return val;
393 /* Return last link in the copy-of chain for VAR. */
395 static tree
396 get_last_copy_of (tree var)
398 tree last;
399 int i;
401 /* Traverse COPY_OF starting at VAR until we get to the last
402 link in the chain. Since it is possible to have cycles in PHI
403 nodes, the copy-of chain may also contain cycles.
405 To avoid infinite loops and to avoid traversing lengthy copy-of
406 chains, we artificially limit the maximum number of chains we are
407 willing to traverse.
409 The value 5 was taken from a compiler and runtime library
410 bootstrap and a mixture of C and C++ code from various sources.
411 More than 82% of all copy-of chains were shorter than 5 links. */
412 #define LIMIT 5
414 last = var;
415 for (i = 0; i < LIMIT; i++)
417 tree copy = copy_of[SSA_NAME_VERSION (last)].value;
418 if (copy == NULL_TREE || copy == last)
419 break;
420 last = copy;
423 /* If we have reached the limit, then we are either in a copy-of
424 cycle or the copy-of chain is too long. In this case, just
425 return VAR so that it is not considered a copy of anything. */
426 return (i < LIMIT ? last : var);
430 /* Set FIRST to be the first variable in the copy-of chain for DEST.
431 If DEST's copy-of value or its copy-of chain has changed, return
432 true.
434 MEM_REF is the memory reference where FIRST is stored. This is
435 used when DEST is a non-register and we are copy propagating loads
436 and stores. */
438 static inline bool
439 set_copy_of_val (tree dest, tree first, tree mem_ref)
441 unsigned int dest_ver = SSA_NAME_VERSION (dest);
442 tree old_first, old_last, new_last;
444 /* Set FIRST to be the first link in COPY_OF[DEST]. If that
445 changed, return true. */
446 old_first = copy_of[dest_ver].value;
447 copy_of[dest_ver].value = first;
448 copy_of[dest_ver].mem_ref = mem_ref;
450 if (old_first != first)
451 return true;
453 /* If FIRST and OLD_FIRST are the same, we need to check whether the
454 copy-of chain starting at FIRST ends in a different variable. If
455 the copy-of chain starting at FIRST ends up in a different
456 variable than the last cached value we had for DEST, then return
457 true because DEST is now a copy of a different variable.
459 This test is necessary because even though the first link in the
460 copy-of chain may not have changed, if any of the variables in
461 the copy-of chain changed its final value, DEST will now be the
462 copy of a different variable, so we have to do another round of
463 propagation for everything that depends on DEST. */
464 old_last = cached_last_copy_of[dest_ver];
465 new_last = get_last_copy_of (dest);
466 cached_last_copy_of[dest_ver] = new_last;
468 return (old_last != new_last);
472 /* Dump the copy-of value for variable VAR to DUMP_FILE. */
474 static void
475 dump_copy_of (FILE *dump_file, tree var)
477 tree val;
479 print_generic_expr (dump_file, var, dump_flags);
481 if (TREE_CODE (var) != SSA_NAME)
482 return;
484 fprintf (dump_file, " copy-of chain: ");
486 val = var;
487 print_generic_expr (dump_file, val, 0);
488 fprintf (dump_file, " ");
489 while (copy_of[SSA_NAME_VERSION (val)].value
490 && copy_of[SSA_NAME_VERSION (val)].value != val)
492 fprintf (dump_file, "-> ");
493 val = copy_of[SSA_NAME_VERSION (val)].value;
494 print_generic_expr (dump_file, val, 0);
495 fprintf (dump_file, " ");
498 val = get_copy_of_val (var)->value;
499 if (val == NULL_TREE)
500 fprintf (dump_file, "[UNDEFINED]");
501 else if (val != var)
502 fprintf (dump_file, "[COPY]");
503 else
504 fprintf (dump_file, "[NOT A COPY]");
508 /* Evaluate the RHS of STMT. If it produces a valid copy, set the LHS
509 value and store the LHS into *RESULT_P. If STMT generates more
510 than one name (i.e., STMT is an aliased store), it is enough to
511 store the first name in the V_MAY_DEF list into *RESULT_P. After
512 all, the names generated will be VUSEd in the same statements. */
514 static enum ssa_prop_result
515 copy_prop_visit_assignment (tree stmt, tree *result_p)
517 tree lhs, rhs;
518 prop_value_t *rhs_val;
520 lhs = TREE_OPERAND (stmt, 0);
521 rhs = TREE_OPERAND (stmt, 1);
523 gcc_assert (TREE_CODE (rhs) == SSA_NAME);
525 rhs_val = get_copy_of_val (rhs);
527 if (TREE_CODE (lhs) == SSA_NAME)
529 /* Straight copy between two SSA names. First, make sure that
530 we can propagate the RHS into uses of LHS. */
531 if (!may_propagate_copy (lhs, rhs))
532 return SSA_PROP_VARYING;
534 /* Avoid copy propagation from an inner into an outer loop.
535 Otherwise, this may move loop variant variables outside of
536 their loops and prevent coalescing opportunities. If the
537 value was loop invariant, it will be hoisted by LICM and
538 exposed for copy propagation. */
539 if (loop_depth_of_name (rhs) > loop_depth_of_name (lhs))
540 return SSA_PROP_VARYING;
542 /* Notice that in the case of assignments, we make the LHS be a
543 copy of RHS's value, not of RHS itself. This avoids keeping
544 unnecessary copy-of chains (assignments cannot be in a cycle
545 like PHI nodes), speeding up the propagation process.
546 This is different from what we do in copy_prop_visit_phi_node.
547 In those cases, we are interested in the copy-of chains. */
548 *result_p = lhs;
549 if (set_copy_of_val (*result_p, rhs_val->value, rhs_val->mem_ref))
550 return SSA_PROP_INTERESTING;
551 else
552 return SSA_PROP_NOT_INTERESTING;
554 else if (stmt_makes_single_store (stmt))
556 /* Otherwise, set the names in V_MAY_DEF/V_MUST_DEF operands
557 to be a copy of RHS. */
558 ssa_op_iter i;
559 tree vdef;
560 bool changed;
562 /* This should only be executed when doing store copy-prop. */
563 gcc_assert (do_store_copy_prop);
565 /* Set the value of every VDEF to RHS_VAL. */
566 changed = false;
567 FOR_EACH_SSA_TREE_OPERAND (vdef, stmt, i, SSA_OP_VIRTUAL_DEFS)
568 changed |= set_copy_of_val (vdef, rhs_val->value, lhs);
570 /* Note that for propagation purposes, we are only interested in
571 visiting statements that load the exact same memory reference
572 stored here. Those statements will have the exact same list
573 of virtual uses, so it is enough to set the output of this
574 statement to be its first virtual definition. */
575 *result_p = first_vdef (stmt);
577 if (changed)
578 return SSA_PROP_INTERESTING;
579 else
580 return SSA_PROP_NOT_INTERESTING;
584 return SSA_PROP_VARYING;
588 /* Visit the COND_EXPR STMT. Return SSA_PROP_INTERESTING
589 if it can determine which edge will be taken. Otherwise, return
590 SSA_PROP_VARYING. */
592 static enum ssa_prop_result
593 copy_prop_visit_cond_stmt (tree stmt, edge *taken_edge_p)
595 enum ssa_prop_result retval;
596 tree cond;
597 use_operand_p use_p;
598 ssa_op_iter iter;
599 unsigned num;
602 cond = COND_EXPR_COND (stmt);
603 retval = SSA_PROP_VARYING;
604 num = NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
606 /* The only conditionals that we may be able to compute statically
607 are predicates involving at least one SSA_NAME. */
608 if (COMPARISON_CLASS_P (cond)
609 && num >= 1)
611 unsigned i;
612 tree *orig;
614 /* Save the original operands. */
615 orig = xmalloc (sizeof (tree) * num);
616 i = 0;
617 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
619 tree use = USE_FROM_PTR (use_p);
620 orig[i++] = use;
621 SET_USE (use_p, get_last_copy_of (use));
624 /* See if we can determine the predicate's value. */
625 if (dump_file && (dump_flags & TDF_DETAILS))
627 fprintf (dump_file, "Trying to determine truth value of ");
628 fprintf (dump_file, "predicate ");
629 print_generic_stmt (dump_file, cond, 0);
632 /* We can fold COND only and get a useful result only when we
633 have the same SSA_NAME on both sides of a comparison
634 operator. */
635 if (TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
636 && TREE_OPERAND (cond, 0) == TREE_OPERAND (cond, 1))
638 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), fold (cond));
639 if (*taken_edge_p)
640 retval = SSA_PROP_INTERESTING;
643 /* Restore the original operands. */
644 i = 0;
645 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
646 SET_USE (use_p, orig[i++]);
647 free (orig);
650 if (dump_file && (dump_flags & TDF_DETAILS) && *taken_edge_p)
651 fprintf (dump_file, "\nConditional will always take edge %d->%d\n",
652 (*taken_edge_p)->src->index, (*taken_edge_p)->dest->index);
654 return retval;
658 /* Evaluate statement STMT. If the statement produces a new output
659 value, return SSA_PROP_INTERESTING and store the SSA_NAME holding
660 the new value in *RESULT_P.
662 If STMT is a conditional branch and we can determine its truth
663 value, set *TAKEN_EDGE_P accordingly.
665 If the new value produced by STMT is varying, return
666 SSA_PROP_VARYING. */
668 static enum ssa_prop_result
669 copy_prop_visit_stmt (tree stmt, edge *taken_edge_p, tree *result_p)
671 stmt_ann_t ann;
672 enum ssa_prop_result retval;
674 if (dump_file && (dump_flags & TDF_DETAILS))
676 fprintf (dump_file, "\nVisiting statement:\n");
677 print_generic_stmt (dump_file, stmt, dump_flags);
678 fprintf (dump_file, "\n");
681 ann = stmt_ann (stmt);
683 if (TREE_CODE (stmt) == MODIFY_EXPR
684 && TREE_CODE (TREE_OPERAND (stmt, 1)) == SSA_NAME
685 && (do_store_copy_prop
686 || TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME))
688 /* If the statement is a copy assignment, evaluate its RHS to
689 see if the lattice value of its output has changed. */
690 retval = copy_prop_visit_assignment (stmt, result_p);
692 else if (TREE_CODE (stmt) == COND_EXPR)
694 /* See if we can determine which edge goes out of a conditional
695 jump. */
696 retval = copy_prop_visit_cond_stmt (stmt, taken_edge_p);
698 else
699 retval = SSA_PROP_VARYING;
701 if (retval == SSA_PROP_VARYING)
703 tree def;
704 ssa_op_iter i;
706 /* Any other kind of statement is not interesting for constant
707 propagation and, therefore, not worth simulating. */
708 if (dump_file && (dump_flags & TDF_DETAILS))
709 fprintf (dump_file, "No interesting values produced.\n");
711 /* The assignment is not a copy operation. Don't visit this
712 statement again and mark all the definitions in the statement
713 to be copies of nothing. */
714 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_ALL_DEFS)
715 set_copy_of_val (def, def, NULL_TREE);
718 return retval;
722 /* Visit PHI node PHI. If all the arguments produce the same value,
723 set it to be the value of the LHS of PHI. */
725 static enum ssa_prop_result
726 copy_prop_visit_phi_node (tree phi)
728 enum ssa_prop_result retval;
729 int i;
730 tree lhs;
731 prop_value_t phi_val = { 0, NULL_TREE, NULL_TREE };
733 lhs = PHI_RESULT (phi);
735 if (dump_file && (dump_flags & TDF_DETAILS))
737 fprintf (dump_file, "\nVisiting PHI node: ");
738 print_generic_expr (dump_file, phi, dump_flags);
739 fprintf (dump_file, "\n\n");
742 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
744 prop_value_t *arg_val;
745 tree arg = PHI_ARG_DEF (phi, i);
746 edge e = PHI_ARG_EDGE (phi, i);
748 /* We don't care about values flowing through non-executable
749 edges. */
750 if (!(e->flags & EDGE_EXECUTABLE))
751 continue;
753 /* Constants in the argument list never generate a useful copy.
754 Similarly, names that flow through abnormal edges cannot be
755 used to derive copies. */
756 if (TREE_CODE (arg) != SSA_NAME || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (arg))
758 phi_val.value = lhs;
759 break;
762 /* Avoid copy propagation from an inner into an outer loop.
763 Otherwise, this may move loop variant variables outside of
764 their loops and prevent coalescing opportunities. If the
765 value was loop invariant, it will be hoisted by LICM and
766 exposed for copy propagation. */
767 if (loop_depth_of_name (arg) > loop_depth_of_name (lhs))
769 phi_val.value = lhs;
770 break;
773 /* If the LHS appears in the argument list, ignore it. It is
774 irrelevant as a copy. */
775 if (arg == lhs || get_last_copy_of (arg) == lhs)
776 continue;
778 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "\tArgument #%d: ", i);
781 dump_copy_of (dump_file, arg);
782 fprintf (dump_file, "\n");
785 arg_val = get_copy_of_val (arg);
787 /* If the LHS didn't have a value yet, make it a copy of the
788 first argument we find. Notice that while we make the LHS be
789 a copy of the argument itself, we take the memory reference
790 from the argument's value so that we can compare it to the
791 memory reference of all the other arguments. */
792 if (phi_val.value == NULL_TREE)
794 phi_val.value = arg;
795 phi_val.mem_ref = arg_val->mem_ref;
796 continue;
799 /* If PHI_VAL and ARG don't have a common copy-of chain, then
800 this PHI node cannot be a copy operation. Also, if we are
801 copy propagating stores and these two arguments came from
802 different memory references, they cannot be considered
803 copies. */
804 if (get_last_copy_of (phi_val.value) != get_last_copy_of (arg)
805 || (do_store_copy_prop
806 && phi_val.mem_ref
807 && arg_val->mem_ref
808 && simple_cst_equal (phi_val.mem_ref, arg_val->mem_ref) != 1))
810 phi_val.value = lhs;
811 break;
815 if (phi_val.value && set_copy_of_val (lhs, phi_val.value, phi_val.mem_ref))
816 retval = (phi_val.value != lhs) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
817 else
818 retval = SSA_PROP_NOT_INTERESTING;
820 if (dump_file && (dump_flags & TDF_DETAILS))
822 fprintf (dump_file, "\nPHI node ");
823 dump_copy_of (dump_file, lhs);
824 fprintf (dump_file, "\nTelling the propagator to ");
825 if (retval == SSA_PROP_INTERESTING)
826 fprintf (dump_file, "add SSA edges out of this PHI and continue.");
827 else if (retval == SSA_PROP_VARYING)
828 fprintf (dump_file, "add SSA edges out of this PHI and never visit again.");
829 else
830 fprintf (dump_file, "do nothing with SSA edges and keep iterating.");
831 fprintf (dump_file, "\n\n");
834 return retval;
838 /* Initialize structures used for copy propagation. */
840 static void
841 init_copy_prop (void)
843 basic_block bb;
845 copy_of = xmalloc (num_ssa_names * sizeof (*copy_of));
846 memset (copy_of, 0, num_ssa_names * sizeof (*copy_of));
848 cached_last_copy_of = xmalloc (num_ssa_names * sizeof (*cached_last_copy_of));
849 memset (cached_last_copy_of, 0, num_ssa_names * sizeof (*cached_last_copy_of));
851 FOR_EACH_BB (bb)
853 block_stmt_iterator si;
854 tree phi;
856 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
858 tree stmt = bsi_stmt (si);
860 /* The only statements that we care about are those that may
861 generate useful copies. We also need to mark conditional
862 jumps so that their outgoing edges are added to the work
863 lists of the propagator. */
864 if (stmt_ends_bb_p (stmt))
865 DONT_SIMULATE_AGAIN (stmt) = false;
866 else if (stmt_may_generate_copy (stmt))
867 DONT_SIMULATE_AGAIN (stmt) = false;
868 else
870 tree def;
871 ssa_op_iter iter;
873 /* No need to simulate this statement anymore. */
874 DONT_SIMULATE_AGAIN (stmt) = true;
876 /* Mark all the outputs of this statement as not being
877 the copy of anything. */
878 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
879 set_copy_of_val (def, def, NULL_TREE);
883 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
884 DONT_SIMULATE_AGAIN (phi) = false;
889 /* Deallocate memory used in copy propagation and do final
890 substitution. */
892 static void
893 fini_copy_prop (void)
895 size_t i;
897 /* Set the final copy-of value for each variable by traversing the
898 copy-of chains. */
899 for (i = 1; i < num_ssa_names; i++)
901 tree var = ssa_name (i);
902 if (var && copy_of[i].value && copy_of[i].value != var)
903 copy_of[i].value = get_last_copy_of (var);
906 substitute_and_fold (copy_of);
908 free (cached_last_copy_of);
909 free (copy_of);
913 /* Main entry point to the copy propagator. The algorithm propagates
914 the value COPY-OF using ssa_propagate. For every variable X_i,
915 COPY-OF(X_i) indicates which variable is X_i created from. The
916 following example shows how the algorithm proceeds at a high level:
918 1 a_24 = x_1
919 2 a_2 = PHI <a_24, x_1>
920 3 a_5 = PHI <a_2>
921 4 x_1 = PHI <x_298, a_5, a_2>
923 The end result should be that a_2, a_5, a_24 and x_1 are a copy of
924 x_298. Propagation proceeds as follows.
926 Visit #1: a_24 is copy-of x_1. Value changed.
927 Visit #2: a_2 is copy-of x_1. Value changed.
928 Visit #3: a_5 is copy-of x_1. Value changed.
929 Visit #4: x_1 is copy-of x_298. Value changed.
930 Visit #1: a_24 is copy-of x_298. Value changed.
931 Visit #2: a_2 is copy-of x_298. Value changed.
932 Visit #3: a_5 is copy-of x_298. Value changed.
933 Visit #4: x_1 is copy-of x_298. Stable state reached.
935 When visiting PHI nodes, we only consider arguments that flow
936 through edges marked executable by the propagation engine. So,
937 when visiting statement #2 for the first time, we will only look at
938 the first argument (a_24) and optimistically assume that its value
939 is the copy of a_24 (x_1).
941 The problem with this approach is that it may fail to discover copy
942 relations in PHI cycles. Instead of propagating copy-of
943 values, we actually propagate copy-of chains. For instance:
945 A_3 = B_1;
946 C_9 = A_3;
947 D_4 = C_9;
948 X_i = D_4;
950 In this code fragment, COPY-OF (X_i) = { D_4, C_9, A_3, B_1 }.
951 Obviously, we are only really interested in the last value of the
952 chain, however the propagator needs to access the copy-of chain
953 when visiting PHI nodes.
955 To represent the copy-of chain, we use the array COPY_CHAINS, which
956 holds the first link in the copy-of chain for every variable.
957 If variable X_i is a copy of X_j, which in turn is a copy of X_k,
958 the array will contain:
960 COPY_CHAINS[i] = X_j
961 COPY_CHAINS[j] = X_k
962 COPY_CHAINS[k] = X_k
964 Keeping copy-of chains instead of copy-of values directly becomes
965 important when visiting PHI nodes. Suppose that we had the
966 following PHI cycle, such that x_52 is already considered a copy of
967 x_53:
969 1 x_54 = PHI <x_53, x_52>
970 2 x_53 = PHI <x_898, x_54>
972 Visit #1: x_54 is copy-of x_53 (because x_52 is copy-of x_53)
973 Visit #2: x_53 is copy-of x_898 (because x_54 is a copy of x_53,
974 so it is considered irrelevant
975 as a copy).
976 Visit #1: x_54 is copy-of nothing (x_53 is a copy-of x_898 and
977 x_52 is a copy of x_53, so
978 they don't match)
979 Visit #2: x_53 is copy-of nothing
981 This problem is avoided by keeping a chain of copies, instead of
982 the final copy-of value. Propagation will now only keep the first
983 element of a variable's copy-of chain. When visiting PHI nodes,
984 arguments are considered equal if their copy-of chains end in the
985 same variable. So, as long as their copy-of chains overlap, we
986 know that they will be a copy of the same variable, regardless of
987 which variable that may be).
989 Propagation would then proceed as follows (the notation a -> b
990 means that a is a copy-of b):
992 Visit #1: x_54 = PHI <x_53, x_52>
993 x_53 -> x_53
994 x_52 -> x_53
995 Result: x_54 -> x_53. Value changed. Add SSA edges.
997 Visit #1: x_53 = PHI <x_898, x_54>
998 x_898 -> x_898
999 x_54 -> x_53
1000 Result: x_53 -> x_898. Value changed. Add SSA edges.
1002 Visit #2: x_54 = PHI <x_53, x_52>
1003 x_53 -> x_898
1004 x_52 -> x_53 -> x_898
1005 Result: x_54 -> x_898. Value changed. Add SSA edges.
1007 Visit #2: x_53 = PHI <x_898, x_54>
1008 x_898 -> x_898
1009 x_54 -> x_898
1010 Result: x_53 -> x_898. Value didn't change. Stable state
1012 Once the propagator stabilizes, we end up with the desired result
1013 x_53 and x_54 are both copies of x_898. */
1015 static void
1016 execute_copy_prop (bool store_copy_prop)
1018 do_store_copy_prop = store_copy_prop;
1019 init_copy_prop ();
1020 ssa_propagate (copy_prop_visit_stmt, copy_prop_visit_phi_node);
1021 fini_copy_prop ();
1025 static bool
1026 gate_copy_prop (void)
1028 return flag_tree_copy_prop != 0;
1031 static void
1032 do_copy_prop (void)
1034 execute_copy_prop (false);
1037 struct tree_opt_pass pass_copy_prop =
1039 "copyprop", /* name */
1040 gate_copy_prop, /* gate */
1041 do_copy_prop, /* execute */
1042 NULL, /* sub */
1043 NULL, /* next */
1044 0, /* static_pass_number */
1045 TV_TREE_COPY_PROP, /* tv_id */
1046 PROP_ssa | PROP_alias | PROP_cfg, /* properties_required */
1047 0, /* properties_provided */
1048 0, /* properties_destroyed */
1049 0, /* todo_flags_start */
1050 TODO_cleanup_cfg
1051 | TODO_dump_func
1052 | TODO_ggc_collect
1053 | TODO_verify_ssa
1054 | TODO_update_ssa, /* todo_flags_finish */
1055 0 /* letter */
1059 static bool
1060 gate_store_copy_prop (void)
1062 /* STORE-COPY-PROP is enabled only with -ftree-store-copy-prop, but
1063 when -fno-tree-store-copy-prop is specified, we should run
1064 regular COPY-PROP. That's why the pass is enabled with either
1065 flag. */
1066 return flag_tree_store_copy_prop != 0 || flag_tree_copy_prop != 0;
1069 static void
1070 store_copy_prop (void)
1072 /* If STORE-COPY-PROP is not enabled, we just run regular COPY-PROP. */
1073 execute_copy_prop (flag_tree_store_copy_prop != 0);
1076 struct tree_opt_pass pass_store_copy_prop =
1078 "store_copyprop", /* name */
1079 gate_store_copy_prop, /* gate */
1080 store_copy_prop, /* execute */
1081 NULL, /* sub */
1082 NULL, /* next */
1083 0, /* static_pass_number */
1084 TV_TREE_STORE_COPY_PROP, /* tv_id */
1085 PROP_ssa | PROP_alias | PROP_cfg, /* properties_required */
1086 0, /* properties_provided */
1087 0, /* properties_destroyed */
1088 0, /* todo_flags_start */
1089 TODO_dump_func
1090 | TODO_cleanup_cfg
1091 | TODO_ggc_collect
1092 | TODO_verify_ssa
1093 | TODO_update_ssa, /* todo_flags_finish */
1094 0 /* letter */