2005-05-11 Paul Brook <paul@codesourcery.com>
[official-gcc.git] / gcc / lambda-code.c
blob940f7470afe2ddc95c99de10ca717f00faf9dba9
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "errors.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "target.h"
30 #include "rtl.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "timevar.h"
36 #include "cfgloop.h"
37 #include "expr.h"
38 #include "optabs.h"
39 #include "tree-chrec.h"
40 #include "tree-data-ref.h"
41 #include "tree-pass.h"
42 #include "tree-scalar-evolution.h"
43 #include "vec.h"
44 #include "lambda.h"
46 /* This loop nest code generation is based on non-singular matrix
47 math.
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
118 DEF_VEC_P(int);
119 DEF_VEC_ALLOC_P(int,heap);
121 static bool perfect_nestify (struct loops *,
122 struct loop *, VEC(tree,heap) *,
123 VEC(tree,heap) *, VEC(int,heap) *,
124 VEC(tree,heap) *);
125 /* Lattice stuff that is internal to the code generation algorithm. */
127 typedef struct
129 /* Lattice base matrix. */
130 lambda_matrix base;
131 /* Lattice dimension. */
132 int dimension;
133 /* Origin vector for the coefficients. */
134 lambda_vector origin;
135 /* Origin matrix for the invariants. */
136 lambda_matrix origin_invariants;
137 /* Number of invariants. */
138 int invariants;
139 } *lambda_lattice;
141 #define LATTICE_BASE(T) ((T)->base)
142 #define LATTICE_DIMENSION(T) ((T)->dimension)
143 #define LATTICE_ORIGIN(T) ((T)->origin)
144 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
145 #define LATTICE_INVARIANTS(T) ((T)->invariants)
147 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
148 int, int);
149 static lambda_lattice lambda_lattice_new (int, int);
150 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
152 static tree find_induction_var_from_exit_cond (struct loop *);
154 /* Create a new lambda body vector. */
156 lambda_body_vector
157 lambda_body_vector_new (int size)
159 lambda_body_vector ret;
161 ret = ggc_alloc (sizeof (*ret));
162 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
163 LBV_SIZE (ret) = size;
164 LBV_DENOMINATOR (ret) = 1;
165 return ret;
168 /* Compute the new coefficients for the vector based on the
169 *inverse* of the transformation matrix. */
171 lambda_body_vector
172 lambda_body_vector_compute_new (lambda_trans_matrix transform,
173 lambda_body_vector vect)
175 lambda_body_vector temp;
176 int depth;
178 /* Make sure the matrix is square. */
179 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
181 depth = LTM_ROWSIZE (transform);
183 temp = lambda_body_vector_new (depth);
184 LBV_DENOMINATOR (temp) =
185 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
186 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
187 LTM_MATRIX (transform), depth,
188 LBV_COEFFICIENTS (temp));
189 LBV_SIZE (temp) = LBV_SIZE (vect);
190 return temp;
193 /* Print out a lambda body vector. */
195 void
196 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
198 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
201 /* Return TRUE if two linear expressions are equal. */
203 static bool
204 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
205 int depth, int invariants)
207 int i;
209 if (lle1 == NULL || lle2 == NULL)
210 return false;
211 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
212 return false;
213 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
214 return false;
215 for (i = 0; i < depth; i++)
216 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
217 return false;
218 for (i = 0; i < invariants; i++)
219 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
220 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
221 return false;
222 return true;
225 /* Create a new linear expression with dimension DIM, and total number
226 of invariants INVARIANTS. */
228 lambda_linear_expression
229 lambda_linear_expression_new (int dim, int invariants)
231 lambda_linear_expression ret;
233 ret = ggc_alloc_cleared (sizeof (*ret));
235 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
236 LLE_CONSTANT (ret) = 0;
237 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
238 LLE_DENOMINATOR (ret) = 1;
239 LLE_NEXT (ret) = NULL;
241 return ret;
244 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
245 The starting letter used for variable names is START. */
247 static void
248 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
249 char start)
251 int i;
252 bool first = true;
253 for (i = 0; i < size; i++)
255 if (expr[i] != 0)
257 if (first)
259 if (expr[i] < 0)
260 fprintf (outfile, "-");
261 first = false;
263 else if (expr[i] > 0)
264 fprintf (outfile, " + ");
265 else
266 fprintf (outfile, " - ");
267 if (abs (expr[i]) == 1)
268 fprintf (outfile, "%c", start + i);
269 else
270 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
275 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
276 depth/number of coefficients is given by DEPTH, the number of invariants is
277 given by INVARIANTS, and the character to start variable names with is given
278 by START. */
280 void
281 print_lambda_linear_expression (FILE * outfile,
282 lambda_linear_expression expr,
283 int depth, int invariants, char start)
285 fprintf (outfile, "\tLinear expression: ");
286 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
287 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
288 fprintf (outfile, " invariants: ");
289 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
290 invariants, 'A');
291 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
294 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
295 coefficients is given by DEPTH, the number of invariants is
296 given by INVARIANTS, and the character to start variable names with is given
297 by START. */
299 void
300 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
301 int invariants, char start)
303 int step;
304 lambda_linear_expression expr;
306 gcc_assert (loop);
308 expr = LL_LINEAR_OFFSET (loop);
309 step = LL_STEP (loop);
310 fprintf (outfile, " step size = %d \n", step);
312 if (expr)
314 fprintf (outfile, " linear offset: \n");
315 print_lambda_linear_expression (outfile, expr, depth, invariants,
316 start);
319 fprintf (outfile, " lower bound: \n");
320 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
322 fprintf (outfile, " upper bound: \n");
323 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
324 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
327 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
328 number of invariants. */
330 lambda_loopnest
331 lambda_loopnest_new (int depth, int invariants)
333 lambda_loopnest ret;
334 ret = ggc_alloc (sizeof (*ret));
336 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
337 LN_DEPTH (ret) = depth;
338 LN_INVARIANTS (ret) = invariants;
340 return ret;
343 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
344 character to use for loop names is given by START. */
346 void
347 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
349 int i;
350 for (i = 0; i < LN_DEPTH (nest); i++)
352 fprintf (outfile, "Loop %c\n", start + i);
353 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
354 LN_INVARIANTS (nest), 'i');
355 fprintf (outfile, "\n");
359 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
360 of invariants. */
362 static lambda_lattice
363 lambda_lattice_new (int depth, int invariants)
365 lambda_lattice ret;
366 ret = ggc_alloc (sizeof (*ret));
367 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
368 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
369 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
370 LATTICE_DIMENSION (ret) = depth;
371 LATTICE_INVARIANTS (ret) = invariants;
372 return ret;
375 /* Compute the lattice base for NEST. The lattice base is essentially a
376 non-singular transform from a dense base space to a sparse iteration space.
377 We use it so that we don't have to specially handle the case of a sparse
378 iteration space in other parts of the algorithm. As a result, this routine
379 only does something interesting (IE produce a matrix that isn't the
380 identity matrix) if NEST is a sparse space. */
382 static lambda_lattice
383 lambda_lattice_compute_base (lambda_loopnest nest)
385 lambda_lattice ret;
386 int depth, invariants;
387 lambda_matrix base;
389 int i, j, step;
390 lambda_loop loop;
391 lambda_linear_expression expression;
393 depth = LN_DEPTH (nest);
394 invariants = LN_INVARIANTS (nest);
396 ret = lambda_lattice_new (depth, invariants);
397 base = LATTICE_BASE (ret);
398 for (i = 0; i < depth; i++)
400 loop = LN_LOOPS (nest)[i];
401 gcc_assert (loop);
402 step = LL_STEP (loop);
403 /* If we have a step of 1, then the base is one, and the
404 origin and invariant coefficients are 0. */
405 if (step == 1)
407 for (j = 0; j < depth; j++)
408 base[i][j] = 0;
409 base[i][i] = 1;
410 LATTICE_ORIGIN (ret)[i] = 0;
411 for (j = 0; j < invariants; j++)
412 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
414 else
416 /* Otherwise, we need the lower bound expression (which must
417 be an affine function) to determine the base. */
418 expression = LL_LOWER_BOUND (loop);
419 gcc_assert (expression && !LLE_NEXT (expression)
420 && LLE_DENOMINATOR (expression) == 1);
422 /* The lower triangular portion of the base is going to be the
423 coefficient times the step */
424 for (j = 0; j < i; j++)
425 base[i][j] = LLE_COEFFICIENTS (expression)[j]
426 * LL_STEP (LN_LOOPS (nest)[j]);
427 base[i][i] = step;
428 for (j = i + 1; j < depth; j++)
429 base[i][j] = 0;
431 /* Origin for this loop is the constant of the lower bound
432 expression. */
433 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
435 /* Coefficient for the invariants are equal to the invariant
436 coefficients in the expression. */
437 for (j = 0; j < invariants; j++)
438 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
439 LLE_INVARIANT_COEFFICIENTS (expression)[j];
442 return ret;
445 /* Compute the greatest common denominator of two numbers (A and B) using
446 Euclid's algorithm. */
448 static int
449 gcd (int a, int b)
452 int x, y, z;
454 x = abs (a);
455 y = abs (b);
457 while (x > 0)
459 z = y % x;
460 y = x;
461 x = z;
464 return (y);
467 /* Compute the greatest common denominator of a VECTOR of SIZE numbers. */
469 static int
470 gcd_vector (lambda_vector vector, int size)
472 int i;
473 int gcd1 = 0;
475 if (size > 0)
477 gcd1 = vector[0];
478 for (i = 1; i < size; i++)
479 gcd1 = gcd (gcd1, vector[i]);
481 return gcd1;
484 /* Compute the least common multiple of two numbers A and B . */
486 static int
487 lcm (int a, int b)
489 return (abs (a) * abs (b) / gcd (a, b));
492 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
493 auxiliary nest.
494 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
495 it is easy to calculate the answer and bounds.
496 A sketch of how it works:
497 Given a system of linear inequalities, ai * xj >= bk, you can always
498 rewrite the constraints so they are all of the form
499 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
500 in b1 ... bk, and some a in a1...ai)
501 You can then eliminate this x from the non-constant inequalities by
502 rewriting these as a <= b, x >= constant, and delete the x variable.
503 You can then repeat this for any remaining x variables, and then we have
504 an easy to use variable <= constant (or no variables at all) form that we
505 can construct our bounds from.
507 In our case, each time we eliminate, we construct part of the bound from
508 the ith variable, then delete the ith variable.
510 Remember the constant are in our vector a, our coefficient matrix is A,
511 and our invariant coefficient matrix is B.
513 SIZE is the size of the matrices being passed.
514 DEPTH is the loop nest depth.
515 INVARIANTS is the number of loop invariants.
516 A, B, and a are the coefficient matrix, invariant coefficient, and a
517 vector of constants, respectively. */
519 static lambda_loopnest
520 compute_nest_using_fourier_motzkin (int size,
521 int depth,
522 int invariants,
523 lambda_matrix A,
524 lambda_matrix B,
525 lambda_vector a)
528 int multiple, f1, f2;
529 int i, j, k;
530 lambda_linear_expression expression;
531 lambda_loop loop;
532 lambda_loopnest auxillary_nest;
533 lambda_matrix swapmatrix, A1, B1;
534 lambda_vector swapvector, a1;
535 int newsize;
537 A1 = lambda_matrix_new (128, depth);
538 B1 = lambda_matrix_new (128, invariants);
539 a1 = lambda_vector_new (128);
541 auxillary_nest = lambda_loopnest_new (depth, invariants);
543 for (i = depth - 1; i >= 0; i--)
545 loop = lambda_loop_new ();
546 LN_LOOPS (auxillary_nest)[i] = loop;
547 LL_STEP (loop) = 1;
549 for (j = 0; j < size; j++)
551 if (A[j][i] < 0)
553 /* Any linear expression in the matrix with a coefficient less
554 than 0 becomes part of the new lower bound. */
555 expression = lambda_linear_expression_new (depth, invariants);
557 for (k = 0; k < i; k++)
558 LLE_COEFFICIENTS (expression)[k] = A[j][k];
560 for (k = 0; k < invariants; k++)
561 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
563 LLE_DENOMINATOR (expression) = -1 * A[j][i];
564 LLE_CONSTANT (expression) = -1 * a[j];
566 /* Ignore if identical to the existing lower bound. */
567 if (!lle_equal (LL_LOWER_BOUND (loop),
568 expression, depth, invariants))
570 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
571 LL_LOWER_BOUND (loop) = expression;
575 else if (A[j][i] > 0)
577 /* Any linear expression with a coefficient greater than 0
578 becomes part of the new upper bound. */
579 expression = lambda_linear_expression_new (depth, invariants);
580 for (k = 0; k < i; k++)
581 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
583 for (k = 0; k < invariants; k++)
584 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
586 LLE_DENOMINATOR (expression) = A[j][i];
587 LLE_CONSTANT (expression) = a[j];
589 /* Ignore if identical to the existing upper bound. */
590 if (!lle_equal (LL_UPPER_BOUND (loop),
591 expression, depth, invariants))
593 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
594 LL_UPPER_BOUND (loop) = expression;
600 /* This portion creates a new system of linear inequalities by deleting
601 the i'th variable, reducing the system by one variable. */
602 newsize = 0;
603 for (j = 0; j < size; j++)
605 /* If the coefficient for the i'th variable is 0, then we can just
606 eliminate the variable straightaway. Otherwise, we have to
607 multiply through by the coefficients we are eliminating. */
608 if (A[j][i] == 0)
610 lambda_vector_copy (A[j], A1[newsize], depth);
611 lambda_vector_copy (B[j], B1[newsize], invariants);
612 a1[newsize] = a[j];
613 newsize++;
615 else if (A[j][i] > 0)
617 for (k = 0; k < size; k++)
619 if (A[k][i] < 0)
621 multiple = lcm (A[j][i], A[k][i]);
622 f1 = multiple / A[j][i];
623 f2 = -1 * multiple / A[k][i];
625 lambda_vector_add_mc (A[j], f1, A[k], f2,
626 A1[newsize], depth);
627 lambda_vector_add_mc (B[j], f1, B[k], f2,
628 B1[newsize], invariants);
629 a1[newsize] = f1 * a[j] + f2 * a[k];
630 newsize++;
636 swapmatrix = A;
637 A = A1;
638 A1 = swapmatrix;
640 swapmatrix = B;
641 B = B1;
642 B1 = swapmatrix;
644 swapvector = a;
645 a = a1;
646 a1 = swapvector;
648 size = newsize;
651 return auxillary_nest;
654 /* Compute the loop bounds for the auxiliary space NEST.
655 Input system used is Ax <= b. TRANS is the unimodular transformation.
656 Given the original nest, this function will
657 1. Convert the nest into matrix form, which consists of a matrix for the
658 coefficients, a matrix for the
659 invariant coefficients, and a vector for the constants.
660 2. Use the matrix form to calculate the lattice base for the nest (which is
661 a dense space)
662 3. Compose the dense space transform with the user specified transform, to
663 get a transform we can easily calculate transformed bounds for.
664 4. Multiply the composed transformation matrix times the matrix form of the
665 loop.
666 5. Transform the newly created matrix (from step 4) back into a loop nest
667 using fourier motzkin elimination to figure out the bounds. */
669 static lambda_loopnest
670 lambda_compute_auxillary_space (lambda_loopnest nest,
671 lambda_trans_matrix trans)
673 lambda_matrix A, B, A1, B1;
674 lambda_vector a, a1;
675 lambda_matrix invertedtrans;
676 int depth, invariants, size;
677 int i, j;
678 lambda_loop loop;
679 lambda_linear_expression expression;
680 lambda_lattice lattice;
682 depth = LN_DEPTH (nest);
683 invariants = LN_INVARIANTS (nest);
685 /* Unfortunately, we can't know the number of constraints we'll have
686 ahead of time, but this should be enough even in ridiculous loop nest
687 cases. We must not go over this limit. */
688 A = lambda_matrix_new (128, depth);
689 B = lambda_matrix_new (128, invariants);
690 a = lambda_vector_new (128);
692 A1 = lambda_matrix_new (128, depth);
693 B1 = lambda_matrix_new (128, invariants);
694 a1 = lambda_vector_new (128);
696 /* Store the bounds in the equation matrix A, constant vector a, and
697 invariant matrix B, so that we have Ax <= a + B.
698 This requires a little equation rearranging so that everything is on the
699 correct side of the inequality. */
700 size = 0;
701 for (i = 0; i < depth; i++)
703 loop = LN_LOOPS (nest)[i];
705 /* First we do the lower bound. */
706 if (LL_STEP (loop) > 0)
707 expression = LL_LOWER_BOUND (loop);
708 else
709 expression = LL_UPPER_BOUND (loop);
711 for (; expression != NULL; expression = LLE_NEXT (expression))
713 /* Fill in the coefficient. */
714 for (j = 0; j < i; j++)
715 A[size][j] = LLE_COEFFICIENTS (expression)[j];
717 /* And the invariant coefficient. */
718 for (j = 0; j < invariants; j++)
719 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
721 /* And the constant. */
722 a[size] = LLE_CONSTANT (expression);
724 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
725 constants and single variables on */
726 A[size][i] = -1 * LLE_DENOMINATOR (expression);
727 a[size] *= -1;
728 for (j = 0; j < invariants; j++)
729 B[size][j] *= -1;
731 size++;
732 /* Need to increase matrix sizes above. */
733 gcc_assert (size <= 127);
737 /* Then do the exact same thing for the upper bounds. */
738 if (LL_STEP (loop) > 0)
739 expression = LL_UPPER_BOUND (loop);
740 else
741 expression = LL_LOWER_BOUND (loop);
743 for (; expression != NULL; expression = LLE_NEXT (expression))
745 /* Fill in the coefficient. */
746 for (j = 0; j < i; j++)
747 A[size][j] = LLE_COEFFICIENTS (expression)[j];
749 /* And the invariant coefficient. */
750 for (j = 0; j < invariants; j++)
751 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
753 /* And the constant. */
754 a[size] = LLE_CONSTANT (expression);
756 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
757 for (j = 0; j < i; j++)
758 A[size][j] *= -1;
759 A[size][i] = LLE_DENOMINATOR (expression);
760 size++;
761 /* Need to increase matrix sizes above. */
762 gcc_assert (size <= 127);
767 /* Compute the lattice base x = base * y + origin, where y is the
768 base space. */
769 lattice = lambda_lattice_compute_base (nest);
771 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
773 /* A1 = A * L */
774 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
776 /* a1 = a - A * origin constant. */
777 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
778 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
780 /* B1 = B - A * origin invariant. */
781 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
782 invariants);
783 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
785 /* Now compute the auxiliary space bounds by first inverting U, multiplying
786 it by A1, then performing fourier motzkin. */
788 invertedtrans = lambda_matrix_new (depth, depth);
790 /* Compute the inverse of U. */
791 lambda_matrix_inverse (LTM_MATRIX (trans),
792 invertedtrans, depth);
794 /* A = A1 inv(U). */
795 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
797 return compute_nest_using_fourier_motzkin (size, depth, invariants,
798 A, B1, a1);
801 /* Compute the loop bounds for the target space, using the bounds of
802 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
803 The target space loop bounds are computed by multiplying the triangular
804 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
805 the loop steps (positive or negative) is then used to swap the bounds if
806 the loop counts downwards.
807 Return the target loopnest. */
809 static lambda_loopnest
810 lambda_compute_target_space (lambda_loopnest auxillary_nest,
811 lambda_trans_matrix H, lambda_vector stepsigns)
813 lambda_matrix inverse, H1;
814 int determinant, i, j;
815 int gcd1, gcd2;
816 int factor;
818 lambda_loopnest target_nest;
819 int depth, invariants;
820 lambda_matrix target;
822 lambda_loop auxillary_loop, target_loop;
823 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
825 depth = LN_DEPTH (auxillary_nest);
826 invariants = LN_INVARIANTS (auxillary_nest);
828 inverse = lambda_matrix_new (depth, depth);
829 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
831 /* H1 is H excluding its diagonal. */
832 H1 = lambda_matrix_new (depth, depth);
833 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
835 for (i = 0; i < depth; i++)
836 H1[i][i] = 0;
838 /* Computes the linear offsets of the loop bounds. */
839 target = lambda_matrix_new (depth, depth);
840 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
842 target_nest = lambda_loopnest_new (depth, invariants);
844 for (i = 0; i < depth; i++)
847 /* Get a new loop structure. */
848 target_loop = lambda_loop_new ();
849 LN_LOOPS (target_nest)[i] = target_loop;
851 /* Computes the gcd of the coefficients of the linear part. */
852 gcd1 = gcd_vector (target[i], i);
854 /* Include the denominator in the GCD. */
855 gcd1 = gcd (gcd1, determinant);
857 /* Now divide through by the gcd. */
858 for (j = 0; j < i; j++)
859 target[i][j] = target[i][j] / gcd1;
861 expression = lambda_linear_expression_new (depth, invariants);
862 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
863 LLE_DENOMINATOR (expression) = determinant / gcd1;
864 LLE_CONSTANT (expression) = 0;
865 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
866 invariants);
867 LL_LINEAR_OFFSET (target_loop) = expression;
870 /* For each loop, compute the new bounds from H. */
871 for (i = 0; i < depth; i++)
873 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
874 target_loop = LN_LOOPS (target_nest)[i];
875 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
876 factor = LTM_MATRIX (H)[i][i];
878 /* First we do the lower bound. */
879 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
881 for (; auxillary_expr != NULL;
882 auxillary_expr = LLE_NEXT (auxillary_expr))
884 target_expr = lambda_linear_expression_new (depth, invariants);
885 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
886 depth, inverse, depth,
887 LLE_COEFFICIENTS (target_expr));
888 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
889 LLE_COEFFICIENTS (target_expr), depth,
890 factor);
892 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
893 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
894 LLE_INVARIANT_COEFFICIENTS (target_expr),
895 invariants);
896 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
897 LLE_INVARIANT_COEFFICIENTS (target_expr),
898 invariants, factor);
899 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
901 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
903 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
904 * determinant;
905 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
906 (target_expr),
907 LLE_INVARIANT_COEFFICIENTS
908 (target_expr), invariants,
909 determinant);
910 LLE_DENOMINATOR (target_expr) =
911 LLE_DENOMINATOR (target_expr) * determinant;
913 /* Find the gcd and divide by it here, rather than doing it
914 at the tree level. */
915 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
916 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
917 invariants);
918 gcd1 = gcd (gcd1, gcd2);
919 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
920 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
921 for (j = 0; j < depth; j++)
922 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
923 for (j = 0; j < invariants; j++)
924 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
925 LLE_CONSTANT (target_expr) /= gcd1;
926 LLE_DENOMINATOR (target_expr) /= gcd1;
927 /* Ignore if identical to existing bound. */
928 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
929 invariants))
931 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
932 LL_LOWER_BOUND (target_loop) = target_expr;
935 /* Now do the upper bound. */
936 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
938 for (; auxillary_expr != NULL;
939 auxillary_expr = LLE_NEXT (auxillary_expr))
941 target_expr = lambda_linear_expression_new (depth, invariants);
942 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
943 depth, inverse, depth,
944 LLE_COEFFICIENTS (target_expr));
945 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
946 LLE_COEFFICIENTS (target_expr), depth,
947 factor);
948 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
949 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
950 LLE_INVARIANT_COEFFICIENTS (target_expr),
951 invariants);
952 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
953 LLE_INVARIANT_COEFFICIENTS (target_expr),
954 invariants, factor);
955 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
957 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
959 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
960 * determinant;
961 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
962 (target_expr),
963 LLE_INVARIANT_COEFFICIENTS
964 (target_expr), invariants,
965 determinant);
966 LLE_DENOMINATOR (target_expr) =
967 LLE_DENOMINATOR (target_expr) * determinant;
969 /* Find the gcd and divide by it here, instead of at the
970 tree level. */
971 gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
972 gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
973 invariants);
974 gcd1 = gcd (gcd1, gcd2);
975 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
976 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
977 for (j = 0; j < depth; j++)
978 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
979 for (j = 0; j < invariants; j++)
980 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
981 LLE_CONSTANT (target_expr) /= gcd1;
982 LLE_DENOMINATOR (target_expr) /= gcd1;
983 /* Ignore if equal to existing bound. */
984 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
985 invariants))
987 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
988 LL_UPPER_BOUND (target_loop) = target_expr;
992 for (i = 0; i < depth; i++)
994 target_loop = LN_LOOPS (target_nest)[i];
995 /* If necessary, exchange the upper and lower bounds and negate
996 the step size. */
997 if (stepsigns[i] < 0)
999 LL_STEP (target_loop) *= -1;
1000 tmp_expr = LL_LOWER_BOUND (target_loop);
1001 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
1002 LL_UPPER_BOUND (target_loop) = tmp_expr;
1005 return target_nest;
1008 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
1009 result. */
1011 static lambda_vector
1012 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
1014 lambda_matrix matrix, H;
1015 int size;
1016 lambda_vector newsteps;
1017 int i, j, factor, minimum_column;
1018 int temp;
1020 matrix = LTM_MATRIX (trans);
1021 size = LTM_ROWSIZE (trans);
1022 H = lambda_matrix_new (size, size);
1024 newsteps = lambda_vector_new (size);
1025 lambda_vector_copy (stepsigns, newsteps, size);
1027 lambda_matrix_copy (matrix, H, size, size);
1029 for (j = 0; j < size; j++)
1031 lambda_vector row;
1032 row = H[j];
1033 for (i = j; i < size; i++)
1034 if (row[i] < 0)
1035 lambda_matrix_col_negate (H, size, i);
1036 while (lambda_vector_first_nz (row, size, j + 1) < size)
1038 minimum_column = lambda_vector_min_nz (row, size, j);
1039 lambda_matrix_col_exchange (H, size, j, minimum_column);
1041 temp = newsteps[j];
1042 newsteps[j] = newsteps[minimum_column];
1043 newsteps[minimum_column] = temp;
1045 for (i = j + 1; i < size; i++)
1047 factor = row[i] / row[j];
1048 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1052 return newsteps;
1055 /* Transform NEST according to TRANS, and return the new loopnest.
1056 This involves
1057 1. Computing a lattice base for the transformation
1058 2. Composing the dense base with the specified transformation (TRANS)
1059 3. Decomposing the combined transformation into a lower triangular portion,
1060 and a unimodular portion.
1061 4. Computing the auxiliary nest using the unimodular portion.
1062 5. Computing the target nest using the auxiliary nest and the lower
1063 triangular portion. */
1065 lambda_loopnest
1066 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1068 lambda_loopnest auxillary_nest, target_nest;
1070 int depth, invariants;
1071 int i, j;
1072 lambda_lattice lattice;
1073 lambda_trans_matrix trans1, H, U;
1074 lambda_loop loop;
1075 lambda_linear_expression expression;
1076 lambda_vector origin;
1077 lambda_matrix origin_invariants;
1078 lambda_vector stepsigns;
1079 int f;
1081 depth = LN_DEPTH (nest);
1082 invariants = LN_INVARIANTS (nest);
1084 /* Keep track of the signs of the loop steps. */
1085 stepsigns = lambda_vector_new (depth);
1086 for (i = 0; i < depth; i++)
1088 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1089 stepsigns[i] = 1;
1090 else
1091 stepsigns[i] = -1;
1094 /* Compute the lattice base. */
1095 lattice = lambda_lattice_compute_base (nest);
1096 trans1 = lambda_trans_matrix_new (depth, depth);
1098 /* Multiply the transformation matrix by the lattice base. */
1100 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1101 LTM_MATRIX (trans1), depth, depth, depth);
1103 /* Compute the Hermite normal form for the new transformation matrix. */
1104 H = lambda_trans_matrix_new (depth, depth);
1105 U = lambda_trans_matrix_new (depth, depth);
1106 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1107 LTM_MATRIX (U));
1109 /* Compute the auxiliary loop nest's space from the unimodular
1110 portion. */
1111 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1113 /* Compute the loop step signs from the old step signs and the
1114 transformation matrix. */
1115 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1117 /* Compute the target loop nest space from the auxiliary nest and
1118 the lower triangular matrix H. */
1119 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1120 origin = lambda_vector_new (depth);
1121 origin_invariants = lambda_matrix_new (depth, invariants);
1122 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1123 LATTICE_ORIGIN (lattice), origin);
1124 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1125 origin_invariants, depth, depth, invariants);
1127 for (i = 0; i < depth; i++)
1129 loop = LN_LOOPS (target_nest)[i];
1130 expression = LL_LINEAR_OFFSET (loop);
1131 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1132 f = 1;
1133 else
1134 f = LLE_DENOMINATOR (expression);
1136 LLE_CONSTANT (expression) += f * origin[i];
1138 for (j = 0; j < invariants; j++)
1139 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1140 f * origin_invariants[i][j];
1143 return target_nest;
1147 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1148 return the new expression. DEPTH is the depth of the loopnest.
1149 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1150 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1151 is the amount we have to add/subtract from the expression because of the
1152 type of comparison it is used in. */
1154 static lambda_linear_expression
1155 gcc_tree_to_linear_expression (int depth, tree expr,
1156 VEC(tree,heap) *outerinductionvars,
1157 VEC(tree,heap) *invariants, int extra)
1159 lambda_linear_expression lle = NULL;
1160 switch (TREE_CODE (expr))
1162 case INTEGER_CST:
1164 lle = lambda_linear_expression_new (depth, 2 * depth);
1165 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1166 if (extra != 0)
1167 LLE_CONSTANT (lle) += extra;
1169 LLE_DENOMINATOR (lle) = 1;
1171 break;
1172 case SSA_NAME:
1174 tree iv, invar;
1175 size_t i;
1176 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1177 if (iv != NULL)
1179 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1181 lle = lambda_linear_expression_new (depth, 2 * depth);
1182 LLE_COEFFICIENTS (lle)[i] = 1;
1183 if (extra != 0)
1184 LLE_CONSTANT (lle) = extra;
1186 LLE_DENOMINATOR (lle) = 1;
1189 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1190 if (invar != NULL)
1192 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1194 lle = lambda_linear_expression_new (depth, 2 * depth);
1195 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1196 if (extra != 0)
1197 LLE_CONSTANT (lle) = extra;
1198 LLE_DENOMINATOR (lle) = 1;
1202 break;
1203 default:
1204 return NULL;
1207 return lle;
1210 /* Return the depth of the loopnest NEST */
1212 static int
1213 depth_of_nest (struct loop *nest)
1215 size_t depth = 0;
1216 while (nest)
1218 depth++;
1219 nest = nest->inner;
1221 return depth;
1225 /* Return true if OP is invariant in LOOP and all outer loops. */
1227 static bool
1228 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1230 if (is_gimple_min_invariant (op))
1231 return true;
1232 if (loop->depth == 0)
1233 return true;
1234 if (!expr_invariant_in_loop_p (loop, op))
1235 return false;
1236 if (loop->outer
1237 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1238 return false;
1239 return true;
1242 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1243 or NULL if it could not be converted.
1244 DEPTH is the depth of the loop.
1245 INVARIANTS is a pointer to the array of loop invariants.
1246 The induction variable for this loop should be stored in the parameter
1247 OURINDUCTIONVAR.
1248 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1250 static lambda_loop
1251 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1252 VEC(tree,heap) ** invariants,
1253 tree * ourinductionvar,
1254 VEC(tree,heap) * outerinductionvars,
1255 VEC(tree,heap) ** lboundvars,
1256 VEC(tree,heap) ** uboundvars,
1257 VEC(int,heap) ** steps)
1259 tree phi;
1260 tree exit_cond;
1261 tree access_fn, inductionvar;
1262 tree step;
1263 lambda_loop lloop = NULL;
1264 lambda_linear_expression lbound, ubound;
1265 tree test;
1266 int stepint;
1267 int extra = 0;
1268 tree lboundvar, uboundvar, uboundresult;
1270 /* Find out induction var and exit condition. */
1271 inductionvar = find_induction_var_from_exit_cond (loop);
1272 exit_cond = get_loop_exit_condition (loop);
1274 if (inductionvar == NULL || exit_cond == NULL)
1276 if (dump_file && (dump_flags & TDF_DETAILS))
1277 fprintf (dump_file,
1278 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1279 return NULL;
1282 test = TREE_OPERAND (exit_cond, 0);
1284 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1287 if (dump_file && (dump_flags & TDF_DETAILS))
1288 fprintf (dump_file,
1289 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1291 return NULL;
1294 phi = SSA_NAME_DEF_STMT (inductionvar);
1295 if (TREE_CODE (phi) != PHI_NODE)
1297 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1298 if (!phi)
1301 if (dump_file && (dump_flags & TDF_DETAILS))
1302 fprintf (dump_file,
1303 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1305 return NULL;
1308 phi = SSA_NAME_DEF_STMT (phi);
1309 if (TREE_CODE (phi) != PHI_NODE)
1312 if (dump_file && (dump_flags & TDF_DETAILS))
1313 fprintf (dump_file,
1314 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1315 return NULL;
1320 /* The induction variable name/version we want to put in the array is the
1321 result of the induction variable phi node. */
1322 *ourinductionvar = PHI_RESULT (phi);
1323 access_fn = instantiate_parameters
1324 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1325 if (access_fn == chrec_dont_know)
1327 if (dump_file && (dump_flags & TDF_DETAILS))
1328 fprintf (dump_file,
1329 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1331 return NULL;
1334 step = evolution_part_in_loop_num (access_fn, loop->num);
1335 if (!step || step == chrec_dont_know)
1337 if (dump_file && (dump_flags & TDF_DETAILS))
1338 fprintf (dump_file,
1339 "Unable to convert loop: Cannot determine step of loop.\n");
1341 return NULL;
1343 if (TREE_CODE (step) != INTEGER_CST)
1346 if (dump_file && (dump_flags & TDF_DETAILS))
1347 fprintf (dump_file,
1348 "Unable to convert loop: Step of loop is not integer.\n");
1349 return NULL;
1352 stepint = TREE_INT_CST_LOW (step);
1354 /* Only want phis for induction vars, which will have two
1355 arguments. */
1356 if (PHI_NUM_ARGS (phi) != 2)
1358 if (dump_file && (dump_flags & TDF_DETAILS))
1359 fprintf (dump_file,
1360 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1361 return NULL;
1364 /* Another induction variable check. One argument's source should be
1365 in the loop, one outside the loop. */
1366 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1367 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1370 if (dump_file && (dump_flags & TDF_DETAILS))
1371 fprintf (dump_file,
1372 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1374 return NULL;
1377 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1379 lboundvar = PHI_ARG_DEF (phi, 1);
1380 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1381 outerinductionvars, *invariants,
1384 else
1386 lboundvar = PHI_ARG_DEF (phi, 0);
1387 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1388 outerinductionvars, *invariants,
1392 if (!lbound)
1395 if (dump_file && (dump_flags & TDF_DETAILS))
1396 fprintf (dump_file,
1397 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1399 return NULL;
1401 /* One part of the test may be a loop invariant tree. */
1402 VEC_reserve (tree, heap, *invariants, 1);
1403 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1404 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1405 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1406 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1407 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1408 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1410 /* The non-induction variable part of the test is the upper bound variable.
1412 if (TREE_OPERAND (test, 0) == inductionvar)
1413 uboundvar = TREE_OPERAND (test, 1);
1414 else
1415 uboundvar = TREE_OPERAND (test, 0);
1418 /* We only size the vectors assuming we have, at max, 2 times as many
1419 invariants as we do loops (one for each bound).
1420 This is just an arbitrary number, but it has to be matched against the
1421 code below. */
1422 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1425 /* We might have some leftover. */
1426 if (TREE_CODE (test) == LT_EXPR)
1427 extra = -1 * stepint;
1428 else if (TREE_CODE (test) == NE_EXPR)
1429 extra = -1 * stepint;
1430 else if (TREE_CODE (test) == GT_EXPR)
1431 extra = -1 * stepint;
1432 else if (TREE_CODE (test) == EQ_EXPR)
1433 extra = 1 * stepint;
1435 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1436 outerinductionvars,
1437 *invariants, extra);
1438 uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1439 build_int_cst (TREE_TYPE (uboundvar), extra));
1440 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1441 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1442 VEC_safe_push (int, heap, *steps, stepint);
1443 if (!ubound)
1445 if (dump_file && (dump_flags & TDF_DETAILS))
1446 fprintf (dump_file,
1447 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1448 return NULL;
1451 lloop = lambda_loop_new ();
1452 LL_STEP (lloop) = stepint;
1453 LL_LOWER_BOUND (lloop) = lbound;
1454 LL_UPPER_BOUND (lloop) = ubound;
1455 return lloop;
1458 /* Given a LOOP, find the induction variable it is testing against in the exit
1459 condition. Return the induction variable if found, NULL otherwise. */
1461 static tree
1462 find_induction_var_from_exit_cond (struct loop *loop)
1464 tree expr = get_loop_exit_condition (loop);
1465 tree ivarop;
1466 tree test;
1467 if (expr == NULL_TREE)
1468 return NULL_TREE;
1469 if (TREE_CODE (expr) != COND_EXPR)
1470 return NULL_TREE;
1471 test = TREE_OPERAND (expr, 0);
1472 if (!COMPARISON_CLASS_P (test))
1473 return NULL_TREE;
1475 /* Find the side that is invariant in this loop. The ivar must be the other
1476 side. */
1478 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1479 ivarop = TREE_OPERAND (test, 1);
1480 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1481 ivarop = TREE_OPERAND (test, 0);
1482 else
1483 return NULL_TREE;
1485 if (TREE_CODE (ivarop) != SSA_NAME)
1486 return NULL_TREE;
1487 return ivarop;
1490 DEF_VEC_P(lambda_loop);
1491 DEF_VEC_ALLOC_P(lambda_loop,heap);
1493 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1494 Return the new loop nest.
1495 INDUCTIONVARS is a pointer to an array of induction variables for the
1496 loopnest that will be filled in during this process.
1497 INVARIANTS is a pointer to an array of invariants that will be filled in
1498 during this process. */
1500 lambda_loopnest
1501 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1502 struct loop * loop_nest,
1503 VEC(tree,heap) **inductionvars,
1504 VEC(tree,heap) **invariants,
1505 bool need_perfect_nest)
1507 lambda_loopnest ret = NULL;
1508 struct loop *temp;
1509 int depth = 0;
1510 size_t i;
1511 VEC(lambda_loop,heap) *loops = NULL;
1512 VEC(tree,heap) *uboundvars = NULL;
1513 VEC(tree,heap) *lboundvars = NULL;
1514 VEC(int,heap) *steps = NULL;
1515 lambda_loop newloop;
1516 tree inductionvar = NULL;
1518 depth = depth_of_nest (loop_nest);
1519 temp = loop_nest;
1520 while (temp)
1522 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1523 &inductionvar, *inductionvars,
1524 &lboundvars, &uboundvars,
1525 &steps);
1526 if (!newloop)
1527 return NULL;
1528 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1529 VEC_safe_push (lambda_loop, heap, loops, newloop);
1530 temp = temp->inner;
1532 if (need_perfect_nest)
1534 if (!perfect_nestify (currloops, loop_nest,
1535 lboundvars, uboundvars, steps, *inductionvars))
1537 if (dump_file)
1538 fprintf (dump_file,
1539 "Not a perfect loop nest and couldn't convert to one.\n");
1540 goto fail;
1542 else if (dump_file)
1543 fprintf (dump_file,
1544 "Successfully converted loop nest to perfect loop nest.\n");
1546 ret = lambda_loopnest_new (depth, 2 * depth);
1547 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1548 LN_LOOPS (ret)[i] = newloop;
1549 fail:
1550 VEC_free (lambda_loop, heap, loops);
1551 VEC_free (tree, heap, uboundvars);
1552 VEC_free (tree, heap, lboundvars);
1553 VEC_free (int, heap, steps);
1555 return ret;
1558 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1559 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1560 inserted for us are stored. INDUCTION_VARS is the array of induction
1561 variables for the loop this LBV is from. TYPE is the tree type to use for
1562 the variables and trees involved. */
1564 static tree
1565 lbv_to_gcc_expression (lambda_body_vector lbv,
1566 tree type, VEC(tree,heap) *induction_vars,
1567 tree *stmts_to_insert)
1569 tree stmts, stmt, resvar, name;
1570 tree iv;
1571 size_t i;
1572 tree_stmt_iterator tsi;
1574 /* Create a statement list and a linear expression temporary. */
1575 stmts = alloc_stmt_list ();
1576 resvar = create_tmp_var (type, "lbvtmp");
1577 add_referenced_tmp_var (resvar);
1579 /* Start at 0. */
1580 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1581 name = make_ssa_name (resvar, stmt);
1582 TREE_OPERAND (stmt, 0) = name;
1583 tsi = tsi_last (stmts);
1584 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1586 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1588 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1590 tree newname;
1591 tree coeffmult;
1593 /* newname = coefficient * induction_variable */
1594 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1595 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1596 fold (build (MULT_EXPR, type, iv, coeffmult)));
1598 newname = make_ssa_name (resvar, stmt);
1599 TREE_OPERAND (stmt, 0) = newname;
1600 fold_stmt (&stmt);
1601 tsi = tsi_last (stmts);
1602 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1604 /* name = name + newname */
1605 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1606 build (PLUS_EXPR, type, name, newname));
1607 name = make_ssa_name (resvar, stmt);
1608 TREE_OPERAND (stmt, 0) = name;
1609 fold_stmt (&stmt);
1610 tsi = tsi_last (stmts);
1611 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1616 /* Handle any denominator that occurs. */
1617 if (LBV_DENOMINATOR (lbv) != 1)
1619 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1620 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1621 build (CEIL_DIV_EXPR, type, name, denominator));
1622 name = make_ssa_name (resvar, stmt);
1623 TREE_OPERAND (stmt, 0) = name;
1624 fold_stmt (&stmt);
1625 tsi = tsi_last (stmts);
1626 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1628 *stmts_to_insert = stmts;
1629 return name;
1632 /* Convert a linear expression from coefficient and constant form to a
1633 gcc tree.
1634 Return the tree that represents the final value of the expression.
1635 LLE is the linear expression to convert.
1636 OFFSET is the linear offset to apply to the expression.
1637 TYPE is the tree type to use for the variables and math.
1638 INDUCTION_VARS is a vector of induction variables for the loops.
1639 INVARIANTS is a vector of the loop nest invariants.
1640 WRAP specifies what tree code to wrap the results in, if there is more than
1641 one (it is either MAX_EXPR, or MIN_EXPR).
1642 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1643 statements that need to be inserted for the linear expression. */
1645 static tree
1646 lle_to_gcc_expression (lambda_linear_expression lle,
1647 lambda_linear_expression offset,
1648 tree type,
1649 VEC(tree,heap) *induction_vars,
1650 VEC(tree,heap) *invariants,
1651 enum tree_code wrap, tree *stmts_to_insert)
1653 tree stmts, stmt, resvar, name;
1654 size_t i;
1655 tree_stmt_iterator tsi;
1656 tree iv, invar;
1657 VEC(tree,heap) *results = NULL;
1659 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1660 name = NULL_TREE;
1661 /* Create a statement list and a linear expression temporary. */
1662 stmts = alloc_stmt_list ();
1663 resvar = create_tmp_var (type, "lletmp");
1664 add_referenced_tmp_var (resvar);
1666 /* Build up the linear expressions, and put the variable representing the
1667 result in the results array. */
1668 for (; lle != NULL; lle = LLE_NEXT (lle))
1670 /* Start at name = 0. */
1671 stmt = build (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1672 name = make_ssa_name (resvar, stmt);
1673 TREE_OPERAND (stmt, 0) = name;
1674 fold_stmt (&stmt);
1675 tsi = tsi_last (stmts);
1676 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1678 /* First do the induction variables.
1679 at the end, name = name + all the induction variables added
1680 together. */
1681 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1683 if (LLE_COEFFICIENTS (lle)[i] != 0)
1685 tree newname;
1686 tree mult;
1687 tree coeff;
1689 /* mult = induction variable * coefficient. */
1690 if (LLE_COEFFICIENTS (lle)[i] == 1)
1692 mult = VEC_index (tree, induction_vars, i);
1694 else
1696 coeff = build_int_cst (type,
1697 LLE_COEFFICIENTS (lle)[i]);
1698 mult = fold (build (MULT_EXPR, type, iv, coeff));
1701 /* newname = mult */
1702 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1703 newname = make_ssa_name (resvar, stmt);
1704 TREE_OPERAND (stmt, 0) = newname;
1705 fold_stmt (&stmt);
1706 tsi = tsi_last (stmts);
1707 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1709 /* name = name + newname */
1710 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1711 build (PLUS_EXPR, type, name, newname));
1712 name = make_ssa_name (resvar, stmt);
1713 TREE_OPERAND (stmt, 0) = name;
1714 fold_stmt (&stmt);
1715 tsi = tsi_last (stmts);
1716 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1720 /* Handle our invariants.
1721 At the end, we have name = name + result of adding all multiplied
1722 invariants. */
1723 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1725 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1727 tree newname;
1728 tree mult;
1729 tree coeff;
1730 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1731 /* mult = invariant * coefficient */
1732 if (invcoeff == 1)
1734 mult = invar;
1736 else
1738 coeff = build_int_cst (type, invcoeff);
1739 mult = fold (build (MULT_EXPR, type, invar, coeff));
1742 /* newname = mult */
1743 stmt = build (MODIFY_EXPR, void_type_node, resvar, mult);
1744 newname = make_ssa_name (resvar, stmt);
1745 TREE_OPERAND (stmt, 0) = newname;
1746 fold_stmt (&stmt);
1747 tsi = tsi_last (stmts);
1748 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1750 /* name = name + newname */
1751 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1752 build (PLUS_EXPR, type, name, newname));
1753 name = make_ssa_name (resvar, stmt);
1754 TREE_OPERAND (stmt, 0) = name;
1755 fold_stmt (&stmt);
1756 tsi = tsi_last (stmts);
1757 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1761 /* Now handle the constant.
1762 name = name + constant. */
1763 if (LLE_CONSTANT (lle) != 0)
1765 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1766 build (PLUS_EXPR, type, name,
1767 build_int_cst (type, LLE_CONSTANT (lle))));
1768 name = make_ssa_name (resvar, stmt);
1769 TREE_OPERAND (stmt, 0) = name;
1770 fold_stmt (&stmt);
1771 tsi = tsi_last (stmts);
1772 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1775 /* Now handle the offset.
1776 name = name + linear offset. */
1777 if (LLE_CONSTANT (offset) != 0)
1779 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1780 build (PLUS_EXPR, type, name,
1781 build_int_cst (type, LLE_CONSTANT (offset))));
1782 name = make_ssa_name (resvar, stmt);
1783 TREE_OPERAND (stmt, 0) = name;
1784 fold_stmt (&stmt);
1785 tsi = tsi_last (stmts);
1786 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1789 /* Handle any denominator that occurs. */
1790 if (LLE_DENOMINATOR (lle) != 1)
1792 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1793 stmt = build (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1794 type, name, stmt);
1795 stmt = build (MODIFY_EXPR, void_type_node, resvar, stmt);
1797 /* name = {ceil, floor}(name/denominator) */
1798 name = make_ssa_name (resvar, stmt);
1799 TREE_OPERAND (stmt, 0) = name;
1800 tsi = tsi_last (stmts);
1801 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1803 VEC_safe_push (tree, heap, results, name);
1806 /* Again, out of laziness, we don't handle this case yet. It's not
1807 hard, it just hasn't occurred. */
1808 gcc_assert (VEC_length (tree, results) <= 2);
1810 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1811 if (VEC_length (tree, results) > 1)
1813 tree op1 = VEC_index (tree, results, 0);
1814 tree op2 = VEC_index (tree, results, 1);
1815 stmt = build (MODIFY_EXPR, void_type_node, resvar,
1816 build (wrap, type, op1, op2));
1817 name = make_ssa_name (resvar, stmt);
1818 TREE_OPERAND (stmt, 0) = name;
1819 tsi = tsi_last (stmts);
1820 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1823 VEC_free (tree, heap, results);
1825 *stmts_to_insert = stmts;
1826 return name;
1829 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1830 it, back into gcc code. This changes the
1831 loops, their induction variables, and their bodies, so that they
1832 match the transformed loopnest.
1833 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1834 loopnest.
1835 OLD_IVS is a vector of induction variables from the old loopnest.
1836 INVARIANTS is a vector of loop invariants from the old loopnest.
1837 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1838 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1839 NEW_LOOPNEST. */
1841 void
1842 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1843 VEC(tree,heap) *old_ivs,
1844 VEC(tree,heap) *invariants,
1845 lambda_loopnest new_loopnest,
1846 lambda_trans_matrix transform)
1848 struct loop *temp;
1849 size_t i = 0;
1850 size_t depth = 0;
1851 VEC(tree,heap) *new_ivs = NULL;
1852 tree oldiv;
1854 block_stmt_iterator bsi;
1856 if (dump_file)
1858 transform = lambda_trans_matrix_inverse (transform);
1859 fprintf (dump_file, "Inverse of transformation matrix:\n");
1860 print_lambda_trans_matrix (dump_file, transform);
1862 depth = depth_of_nest (old_loopnest);
1863 temp = old_loopnest;
1865 while (temp)
1867 lambda_loop newloop;
1868 basic_block bb;
1869 edge exit;
1870 tree ivvar, ivvarinced, exitcond, stmts;
1871 enum tree_code testtype;
1872 tree newupperbound, newlowerbound;
1873 lambda_linear_expression offset;
1874 tree type;
1875 bool insert_after;
1876 tree inc_stmt;
1878 oldiv = VEC_index (tree, old_ivs, i);
1879 type = TREE_TYPE (oldiv);
1881 /* First, build the new induction variable temporary */
1883 ivvar = create_tmp_var (type, "lnivtmp");
1884 add_referenced_tmp_var (ivvar);
1886 VEC_safe_push (tree, heap, new_ivs, ivvar);
1888 newloop = LN_LOOPS (new_loopnest)[i];
1890 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1891 cases for now. */
1892 offset = LL_LINEAR_OFFSET (newloop);
1894 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1895 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1897 /* Now build the new lower bounds, and insert the statements
1898 necessary to generate it on the loop preheader. */
1899 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1900 LL_LINEAR_OFFSET (newloop),
1901 type,
1902 new_ivs,
1903 invariants, MAX_EXPR, &stmts);
1904 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1905 bsi_commit_edge_inserts ();
1906 /* Build the new upper bound and insert its statements in the
1907 basic block of the exit condition */
1908 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1909 LL_LINEAR_OFFSET (newloop),
1910 type,
1911 new_ivs,
1912 invariants, MIN_EXPR, &stmts);
1913 exit = temp->single_exit;
1914 exitcond = get_loop_exit_condition (temp);
1915 bb = bb_for_stmt (exitcond);
1916 bsi = bsi_start (bb);
1917 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1919 /* Create the new iv. */
1921 standard_iv_increment_position (temp, &bsi, &insert_after);
1922 create_iv (newlowerbound,
1923 build_int_cst (type, LL_STEP (newloop)),
1924 ivvar, temp, &bsi, insert_after, &ivvar,
1925 NULL);
1927 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1928 dominate the block containing the exit condition.
1929 So we simply create our own incremented iv to use in the new exit
1930 test, and let redundancy elimination sort it out. */
1931 inc_stmt = build (PLUS_EXPR, type,
1932 ivvar, build_int_cst (type, LL_STEP (newloop)));
1933 inc_stmt = build (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1934 inc_stmt);
1935 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1936 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1937 bsi = bsi_for_stmt (exitcond);
1938 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1940 /* Replace the exit condition with the new upper bound
1941 comparison. */
1943 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1945 /* We want to build a conditional where true means exit the loop, and
1946 false means continue the loop.
1947 So swap the testtype if this isn't the way things are.*/
1949 if (exit->flags & EDGE_FALSE_VALUE)
1950 testtype = swap_tree_comparison (testtype);
1952 COND_EXPR_COND (exitcond) = build (testtype,
1953 boolean_type_node,
1954 newupperbound, ivvarinced);
1955 update_stmt (exitcond);
1956 VEC_replace (tree, new_ivs, i, ivvar);
1958 i++;
1959 temp = temp->inner;
1962 /* Rewrite uses of the old ivs so that they are now specified in terms of
1963 the new ivs. */
1965 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1967 imm_use_iterator imm_iter;
1968 use_operand_p imm_use;
1969 tree oldiv_def;
1970 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1972 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1973 oldiv_def = PHI_RESULT (oldiv_stmt);
1974 else
1975 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1976 gcc_assert (oldiv_def != NULL_TREE);
1978 FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
1980 tree stmt = USE_STMT (imm_use);
1981 use_operand_p use_p;
1982 ssa_op_iter iter;
1983 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1984 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1986 if (USE_FROM_PTR (use_p) == oldiv)
1988 tree newiv, stmts;
1989 lambda_body_vector lbv, newlbv;
1990 /* Compute the new expression for the induction
1991 variable. */
1992 depth = VEC_length (tree, new_ivs);
1993 lbv = lambda_body_vector_new (depth);
1994 LBV_COEFFICIENTS (lbv)[i] = 1;
1996 newlbv = lambda_body_vector_compute_new (transform, lbv);
1998 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1999 new_ivs, &stmts);
2000 bsi = bsi_for_stmt (stmt);
2001 /* Insert the statements to build that
2002 expression. */
2003 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
2004 propagate_value (use_p, newiv);
2005 update_stmt (stmt);
2011 VEC_free (tree, heap, new_ivs);
2014 /* Returns true when the vector V is lexicographically positive, in
2015 other words, when the first nonzero element is positive. */
2017 static bool
2018 lambda_vector_lexico_pos (lambda_vector v,
2019 unsigned n)
2021 unsigned i;
2022 for (i = 0; i < n; i++)
2024 if (v[i] == 0)
2025 continue;
2026 if (v[i] < 0)
2027 return false;
2028 if (v[i] > 0)
2029 return true;
2031 return true;
2035 /* Return TRUE if this is not interesting statement from the perspective of
2036 determining if we have a perfect loop nest. */
2038 static bool
2039 not_interesting_stmt (tree stmt)
2041 /* Note that COND_EXPR's aren't interesting because if they were exiting the
2042 loop, we would have already failed the number of exits tests. */
2043 if (TREE_CODE (stmt) == LABEL_EXPR
2044 || TREE_CODE (stmt) == GOTO_EXPR
2045 || TREE_CODE (stmt) == COND_EXPR)
2046 return true;
2047 return false;
2050 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
2052 static bool
2053 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
2055 int i;
2056 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
2057 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
2058 if (PHI_ARG_DEF (phi, i) == def)
2059 return true;
2060 return false;
2063 /* Return TRUE if STMT is a use of PHI_RESULT. */
2065 static bool
2066 stmt_uses_phi_result (tree stmt, tree phi_result)
2068 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2070 /* This is conservatively true, because we only want SIMPLE bumpers
2071 of the form x +- constant for our pass. */
2072 return (use == phi_result);
2075 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2076 in-loop-edge in a phi node, and the operand it uses is the result of that
2077 phi node.
2078 I.E. i_29 = i_3 + 1
2079 i_3 = PHI (0, i_29); */
2081 static bool
2082 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2084 tree use;
2085 tree def;
2086 imm_use_iterator iter;
2087 use_operand_p use_p;
2089 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2090 if (!def)
2091 return false;
2093 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2095 use = USE_STMT (use_p);
2096 if (TREE_CODE (use) == PHI_NODE)
2098 if (phi_loop_edge_uses_def (loop, use, def))
2099 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2100 return true;
2103 return false;
2107 /* Return true if LOOP is a perfect loop nest.
2108 Perfect loop nests are those loop nests where all code occurs in the
2109 innermost loop body.
2110 If S is a program statement, then
2112 i.e.
2113 DO I = 1, 20
2115 DO J = 1, 20
2117 END DO
2118 END DO
2119 is not a perfect loop nest because of S1.
2121 DO I = 1, 20
2122 DO J = 1, 20
2125 END DO
2126 END DO
2127 is a perfect loop nest.
2129 Since we don't have high level loops anymore, we basically have to walk our
2130 statements and ignore those that are there because the loop needs them (IE
2131 the induction variable increment, and jump back to the top of the loop). */
2133 bool
2134 perfect_nest_p (struct loop *loop)
2136 basic_block *bbs;
2137 size_t i;
2138 tree exit_cond;
2140 if (!loop->inner)
2141 return true;
2142 bbs = get_loop_body (loop);
2143 exit_cond = get_loop_exit_condition (loop);
2144 for (i = 0; i < loop->num_nodes; i++)
2146 if (bbs[i]->loop_father == loop)
2148 block_stmt_iterator bsi;
2149 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2151 tree stmt = bsi_stmt (bsi);
2152 if (stmt == exit_cond
2153 || not_interesting_stmt (stmt)
2154 || stmt_is_bumper_for_loop (loop, stmt))
2155 continue;
2156 free (bbs);
2157 return false;
2161 free (bbs);
2162 /* See if the inner loops are perfectly nested as well. */
2163 if (loop->inner)
2164 return perfect_nest_p (loop->inner);
2165 return true;
2168 /* Replace the USES of tree X in STMT with tree Y */
2170 static void
2171 replace_uses_of_x_with_y (tree stmt, tree x, tree y)
2173 ssa_op_iter iter;
2174 use_operand_p use_p;
2176 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2178 if (USE_FROM_PTR (use_p) == x)
2179 SET_USE (use_p, y);
2183 /* Return TRUE if STMT uses tree OP in it's uses. */
2185 static bool
2186 stmt_uses_op (tree stmt, tree op)
2188 ssa_op_iter iter;
2189 tree use;
2191 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2193 if (use == op)
2194 return true;
2196 return false;
2199 /* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
2200 one. LOOPIVS is a vector of induction variables, one per loop.
2201 ATM, we only handle imperfect nests of depth 2, where all of the statements
2202 occur after the inner loop. */
2204 static bool
2205 can_convert_to_perfect_nest (struct loop *loop,
2206 VEC(tree,heap) *loopivs)
2208 basic_block *bbs;
2209 tree exit_condition, phi;
2210 size_t i;
2211 block_stmt_iterator bsi;
2212 basic_block exitdest;
2214 /* Can't handle triply nested+ loops yet. */
2215 if (!loop->inner || loop->inner->inner)
2216 return false;
2218 /* We only handle moving the after-inner-body statements right now, so make
2219 sure all the statements we need to move are located in that position. */
2220 bbs = get_loop_body (loop);
2221 exit_condition = get_loop_exit_condition (loop);
2222 for (i = 0; i < loop->num_nodes; i++)
2224 if (bbs[i]->loop_father == loop)
2226 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2228 size_t j;
2229 tree stmt = bsi_stmt (bsi);
2230 tree iv;
2232 if (stmt == exit_condition
2233 || not_interesting_stmt (stmt)
2234 || stmt_is_bumper_for_loop (loop, stmt))
2235 continue;
2236 /* If the statement uses inner loop ivs, we == screwed. */
2237 for (j = 1; VEC_iterate (tree, loopivs, j, iv); j++)
2238 if (stmt_uses_op (stmt, iv))
2239 goto fail;
2241 /* If the bb of a statement we care about isn't dominated by
2242 the header of the inner loop, then we are also screwed. */
2243 if (!dominated_by_p (CDI_DOMINATORS,
2244 bb_for_stmt (stmt),
2245 loop->inner->header))
2246 goto fail;
2251 /* We also need to make sure the loop exit only has simple copy phis in it,
2252 otherwise we don't know how to transform it into a perfect nest right
2253 now. */
2254 exitdest = loop->single_exit->dest;
2256 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2257 if (PHI_NUM_ARGS (phi) != 1)
2258 goto fail;
2260 free (bbs);
2261 return true;
2263 fail:
2264 free (bbs);
2265 return false;
2268 /* Transform the loop nest into a perfect nest, if possible.
2269 LOOPS is the current struct loops *
2270 LOOP is the loop nest to transform into a perfect nest
2271 LBOUNDS are the lower bounds for the loops to transform
2272 UBOUNDS are the upper bounds for the loops to transform
2273 STEPS is the STEPS for the loops to transform.
2274 LOOPIVS is the induction variables for the loops to transform.
2276 Basically, for the case of
2278 FOR (i = 0; i < 50; i++)
2280 FOR (j =0; j < 50; j++)
2282 <whatever>
2284 <some code>
2287 This function will transform it into a perfect loop nest by splitting the
2288 outer loop into two loops, like so:
2290 FOR (i = 0; i < 50; i++)
2292 FOR (j = 0; j < 50; j++)
2294 <whatever>
2298 FOR (i = 0; i < 50; i ++)
2300 <some code>
2303 Return FALSE if we can't make this loop into a perfect nest. */
2304 static bool
2305 perfect_nestify (struct loops *loops,
2306 struct loop *loop,
2307 VEC(tree,heap) *lbounds,
2308 VEC(tree,heap) *ubounds,
2309 VEC(int,heap) *steps,
2310 VEC(tree,heap) *loopivs)
2312 basic_block *bbs;
2313 tree exit_condition;
2314 tree then_label, else_label, cond_stmt;
2315 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2316 size_t i;
2317 block_stmt_iterator bsi;
2318 bool insert_after;
2319 edge e;
2320 struct loop *newloop;
2321 tree phi;
2322 tree uboundvar;
2323 tree stmt;
2324 tree oldivvar, ivvar, ivvarinced;
2325 VEC(tree,heap) *phis = NULL;
2327 if (!can_convert_to_perfect_nest (loop, loopivs))
2328 return false;
2330 /* Create the new loop */
2332 olddest = loop->single_exit->dest;
2333 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2334 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2336 /* Push the exit phi nodes that we are moving. */
2337 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2339 VEC_reserve (tree, heap, phis, 2);
2340 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2341 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2343 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2345 /* Remove the exit phis from the old basic block. Make sure to set
2346 PHI_RESULT to null so it doesn't get released. */
2347 while (phi_nodes (olddest) != NULL)
2349 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2350 remove_phi_node (phi_nodes (olddest), NULL);
2353 /* and add them back to the new basic block. */
2354 while (VEC_length (tree, phis) != 0)
2356 tree def;
2357 tree phiname;
2358 def = VEC_pop (tree, phis);
2359 phiname = VEC_pop (tree, phis);
2360 phi = create_phi_node (phiname, preheaderbb);
2361 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2363 flush_pending_stmts (e);
2364 VEC_free (tree, heap, phis);
2366 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2367 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2368 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2369 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2370 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2371 cond_stmt = build (COND_EXPR, void_type_node,
2372 build (NE_EXPR, boolean_type_node,
2373 integer_one_node,
2374 integer_zero_node),
2375 then_label, else_label);
2376 bsi = bsi_start (bodybb);
2377 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2378 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2379 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2380 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2382 /* Update the loop structures. */
2383 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2384 newloop->header = headerbb;
2385 newloop->latch = latchbb;
2386 newloop->single_exit = e;
2387 add_bb_to_loop (latchbb, newloop);
2388 add_bb_to_loop (bodybb, newloop);
2389 add_bb_to_loop (headerbb, newloop);
2390 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2391 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2392 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2393 loop->single_exit->src);
2394 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2395 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2396 /* Create the new iv. */
2397 ivvar = create_tmp_var (integer_type_node, "perfectiv");
2398 add_referenced_tmp_var (ivvar);
2399 standard_iv_increment_position (newloop, &bsi, &insert_after);
2400 create_iv (VEC_index (tree, lbounds, 0),
2401 build_int_cst (integer_type_node, VEC_index (int, steps, 0)),
2402 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2404 /* Create the new upper bound. This may be not just a variable, so we copy
2405 it to one just in case. */
2407 exit_condition = get_loop_exit_condition (newloop);
2408 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2409 add_referenced_tmp_var (uboundvar);
2410 stmt = build (MODIFY_EXPR, void_type_node, uboundvar,
2411 VEC_index (tree, ubounds, 0));
2412 uboundvar = make_ssa_name (uboundvar, stmt);
2413 TREE_OPERAND (stmt, 0) = uboundvar;
2415 if (insert_after)
2416 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2417 else
2418 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2420 COND_EXPR_COND (exit_condition) = build (GE_EXPR,
2421 boolean_type_node,
2422 uboundvar,
2423 ivvarinced);
2425 bbs = get_loop_body (loop);
2426 /* Now replace the induction variable in the moved statements with the
2427 correct loop induction variable. */
2428 oldivvar = VEC_index (tree, loopivs, 0);
2429 for (i = 0; i < loop->num_nodes; i++)
2431 block_stmt_iterator tobsi = bsi_last (bodybb);
2432 if (bbs[i]->loop_father == loop)
2434 /* Note that the bsi only needs to be explicitly incremented
2435 when we don't move something, since it is automatically
2436 incremented when we do. */
2437 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2439 ssa_op_iter i;
2440 tree n, stmt = bsi_stmt (bsi);
2442 if (stmt == exit_condition
2443 || not_interesting_stmt (stmt)
2444 || stmt_is_bumper_for_loop (loop, stmt))
2446 bsi_next (&bsi);
2447 continue;
2450 replace_uses_of_x_with_y (stmt, oldivvar, ivvar);
2451 bsi_move_before (&bsi, &tobsi);
2453 /* If the statement has any virtual operands, they may
2454 need to be rewired because the original loop may
2455 still reference them. */
2456 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2457 mark_sym_for_renaming (SSA_NAME_VAR (n));
2462 free (bbs);
2463 return perfect_nest_p (loop);
2466 /* Return true if TRANS is a legal transformation matrix that respects
2467 the dependence vectors in DISTS and DIRS. The conservative answer
2468 is false.
2470 "Wolfe proves that a unimodular transformation represented by the
2471 matrix T is legal when applied to a loop nest with a set of
2472 lexicographically non-negative distance vectors RDG if and only if
2473 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2474 i.e.: if and only if it transforms the lexicographically positive
2475 distance vectors to lexicographically positive vectors. Note that
2476 a unimodular matrix must transform the zero vector (and only it) to
2477 the zero vector." S.Muchnick. */
2479 bool
2480 lambda_transform_legal_p (lambda_trans_matrix trans,
2481 int nb_loops,
2482 varray_type dependence_relations)
2484 unsigned int i;
2485 lambda_vector distres;
2486 struct data_dependence_relation *ddr;
2488 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2489 && LTM_ROWSIZE (trans) == nb_loops);
2491 /* When there is an unknown relation in the dependence_relations, we
2492 know that it is no worth looking at this loop nest: give up. */
2493 ddr = (struct data_dependence_relation *)
2494 VARRAY_GENERIC_PTR (dependence_relations, 0);
2495 if (ddr == NULL)
2496 return true;
2497 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2498 return false;
2500 distres = lambda_vector_new (nb_loops);
2502 /* For each distance vector in the dependence graph. */
2503 for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
2505 ddr = (struct data_dependence_relation *)
2506 VARRAY_GENERIC_PTR (dependence_relations, i);
2508 /* Don't care about relations for which we know that there is no
2509 dependence, nor about read-read (aka. output-dependences):
2510 these data accesses can happen in any order. */
2511 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2512 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2513 continue;
2515 /* Conservatively answer: "this transformation is not valid". */
2516 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2517 return false;
2519 /* If the dependence could not be captured by a distance vector,
2520 conservatively answer that the transform is not valid. */
2521 if (DDR_DIST_VECT (ddr) == NULL)
2522 return false;
2524 /* Compute trans.dist_vect */
2525 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2526 DDR_DIST_VECT (ddr), distres);
2528 if (!lambda_vector_lexico_pos (distres, nb_loops))
2529 return false;
2531 return true;