2014-01-17 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-cfg.c
blob32110a7fafac268a5e69a015edb7c8785eadc601
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "trans-mem.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tm_p.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "gimple-pretty-print.h"
35 #include "pointer-set.h"
36 #include "tree-ssa-alias.h"
37 #include "internal-fn.h"
38 #include "gimple-fold.h"
39 #include "tree-eh.h"
40 #include "gimple-expr.h"
41 #include "is-a.h"
42 #include "gimple.h"
43 #include "gimple-iterator.h"
44 #include "gimplify-me.h"
45 #include "gimple-walk.h"
46 #include "gimple-ssa.h"
47 #include "cgraph.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-into-ssa.h"
56 #include "expr.h"
57 #include "tree-dfa.h"
58 #include "tree-ssa.h"
59 #include "tree-dump.h"
60 #include "tree-pass.h"
61 #include "diagnostic-core.h"
62 #include "except.h"
63 #include "cfgloop.h"
64 #include "tree-ssa-propagate.h"
65 #include "value-prof.h"
66 #include "tree-inline.h"
67 #include "target.h"
68 #include "tree-ssa-live.h"
69 #include "omp-low.h"
70 #include "tree-cfgcleanup.h"
72 /* This file contains functions for building the Control Flow Graph (CFG)
73 for a function tree. */
75 /* Local declarations. */
77 /* Initial capacity for the basic block array. */
78 static const int initial_cfg_capacity = 20;
80 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
81 which use a particular edge. The CASE_LABEL_EXPRs are chained together
82 via their CASE_CHAIN field, which we clear after we're done with the
83 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
85 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
86 update the case vector in response to edge redirections.
88 Right now this table is set up and torn down at key points in the
89 compilation process. It would be nice if we could make the table
90 more persistent. The key is getting notification of changes to
91 the CFG (particularly edge removal, creation and redirection). */
93 static struct pointer_map_t *edge_to_cases;
95 /* If we record edge_to_cases, this bitmap will hold indexes
96 of basic blocks that end in a GIMPLE_SWITCH which we touched
97 due to edge manipulations. */
99 static bitmap touched_switch_bbs;
101 /* CFG statistics. */
102 struct cfg_stats_d
104 long num_merged_labels;
107 static struct cfg_stats_d cfg_stats;
109 /* Nonzero if we found a computed goto while building basic blocks. */
110 static bool found_computed_goto;
112 /* Hash table to store last discriminator assigned for each locus. */
113 struct locus_discrim_map
115 location_t locus;
116 int discriminator;
119 /* Hashtable helpers. */
121 struct locus_discrim_hasher : typed_free_remove <locus_discrim_map>
123 typedef locus_discrim_map value_type;
124 typedef locus_discrim_map compare_type;
125 static inline hashval_t hash (const value_type *);
126 static inline bool equal (const value_type *, const compare_type *);
129 /* Trivial hash function for a location_t. ITEM is a pointer to
130 a hash table entry that maps a location_t to a discriminator. */
132 inline hashval_t
133 locus_discrim_hasher::hash (const value_type *item)
135 return LOCATION_LINE (item->locus);
138 /* Equality function for the locus-to-discriminator map. A and B
139 point to the two hash table entries to compare. */
141 inline bool
142 locus_discrim_hasher::equal (const value_type *a, const compare_type *b)
144 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
147 static hash_table <locus_discrim_hasher> discriminator_per_locus;
149 /* Basic blocks and flowgraphs. */
150 static void make_blocks (gimple_seq);
151 static void factor_computed_gotos (void);
153 /* Edges. */
154 static void make_edges (void);
155 static void assign_discriminators (void);
156 static void make_cond_expr_edges (basic_block);
157 static void make_gimple_switch_edges (basic_block);
158 static void make_goto_expr_edges (basic_block);
159 static void make_gimple_asm_edges (basic_block);
160 static edge gimple_redirect_edge_and_branch (edge, basic_block);
161 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
163 /* Various helpers. */
164 static inline bool stmt_starts_bb_p (gimple, gimple);
165 static int gimple_verify_flow_info (void);
166 static void gimple_make_forwarder_block (edge);
167 static gimple first_non_label_stmt (basic_block);
168 static bool verify_gimple_transaction (gimple);
170 /* Flowgraph optimization and cleanup. */
171 static void gimple_merge_blocks (basic_block, basic_block);
172 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
173 static void remove_bb (basic_block);
174 static edge find_taken_edge_computed_goto (basic_block, tree);
175 static edge find_taken_edge_cond_expr (basic_block, tree);
176 static edge find_taken_edge_switch_expr (basic_block, tree);
177 static tree find_case_label_for_value (gimple, tree);
179 void
180 init_empty_tree_cfg_for_function (struct function *fn)
182 /* Initialize the basic block array. */
183 init_flow (fn);
184 profile_status_for_fn (fn) = PROFILE_ABSENT;
185 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
186 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
187 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
188 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
189 initial_cfg_capacity);
191 /* Build a mapping of labels to their associated blocks. */
192 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
193 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
194 initial_cfg_capacity);
196 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
197 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
199 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
200 = EXIT_BLOCK_PTR_FOR_FN (fn);
201 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
202 = ENTRY_BLOCK_PTR_FOR_FN (fn);
205 void
206 init_empty_tree_cfg (void)
208 init_empty_tree_cfg_for_function (cfun);
211 /*---------------------------------------------------------------------------
212 Create basic blocks
213 ---------------------------------------------------------------------------*/
215 /* Entry point to the CFG builder for trees. SEQ is the sequence of
216 statements to be added to the flowgraph. */
218 static void
219 build_gimple_cfg (gimple_seq seq)
221 /* Register specific gimple functions. */
222 gimple_register_cfg_hooks ();
224 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
226 init_empty_tree_cfg ();
228 found_computed_goto = 0;
229 make_blocks (seq);
231 /* Computed gotos are hell to deal with, especially if there are
232 lots of them with a large number of destinations. So we factor
233 them to a common computed goto location before we build the
234 edge list. After we convert back to normal form, we will un-factor
235 the computed gotos since factoring introduces an unwanted jump. */
236 if (found_computed_goto)
237 factor_computed_gotos ();
239 /* Make sure there is always at least one block, even if it's empty. */
240 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
241 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
243 /* Adjust the size of the array. */
244 if (basic_block_info_for_fn (cfun)->length ()
245 < (size_t) n_basic_blocks_for_fn (cfun))
246 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
247 n_basic_blocks_for_fn (cfun));
249 /* To speed up statement iterator walks, we first purge dead labels. */
250 cleanup_dead_labels ();
252 /* Group case nodes to reduce the number of edges.
253 We do this after cleaning up dead labels because otherwise we miss
254 a lot of obvious case merging opportunities. */
255 group_case_labels ();
257 /* Create the edges of the flowgraph. */
258 discriminator_per_locus.create (13);
259 make_edges ();
260 assign_discriminators ();
261 cleanup_dead_labels ();
262 discriminator_per_locus.dispose ();
266 /* Search for ANNOTATE call with annot_expr_ivdep_kind; if found, remove
267 it and set loop->safelen to INT_MAX. We assume that the annotation
268 comes immediately before the condition. */
270 static void
271 replace_loop_annotate ()
273 struct loop *loop;
274 basic_block bb;
275 gimple_stmt_iterator gsi;
276 gimple stmt;
278 FOR_EACH_LOOP (loop, 0)
280 gsi = gsi_last_bb (loop->header);
281 stmt = gsi_stmt (gsi);
282 if (stmt && gimple_code (stmt) == GIMPLE_COND)
284 gsi_prev_nondebug (&gsi);
285 if (gsi_end_p (gsi))
286 continue;
287 stmt = gsi_stmt (gsi);
288 if (gimple_code (stmt) != GIMPLE_CALL)
289 continue;
290 if (!gimple_call_internal_p (stmt)
291 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
292 continue;
293 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
294 != annot_expr_ivdep_kind)
295 continue;
296 stmt = gimple_build_assign (gimple_call_lhs (stmt),
297 gimple_call_arg (stmt, 0));
298 gsi_replace (&gsi, stmt, true);
299 loop->safelen = INT_MAX;
303 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
304 FOR_EACH_BB_FN (bb, cfun)
306 gsi = gsi_last_bb (bb);
307 stmt = gsi_stmt (gsi);
308 if (stmt && gimple_code (stmt) == GIMPLE_COND)
309 gsi_prev_nondebug (&gsi);
310 if (gsi_end_p (gsi))
311 continue;
312 stmt = gsi_stmt (gsi);
313 if (gimple_code (stmt) != GIMPLE_CALL)
314 continue;
315 if (!gimple_call_internal_p (stmt)
316 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
317 continue;
318 if ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1))
319 != annot_expr_ivdep_kind)
320 continue;
321 warning_at (gimple_location (stmt), 0, "ignoring %<GCC ivdep%> "
322 "annotation");
323 stmt = gimple_build_assign (gimple_call_lhs (stmt),
324 gimple_call_arg (stmt, 0));
325 gsi_replace (&gsi, stmt, true);
330 static unsigned int
331 execute_build_cfg (void)
333 gimple_seq body = gimple_body (current_function_decl);
335 build_gimple_cfg (body);
336 gimple_set_body (current_function_decl, NULL);
337 if (dump_file && (dump_flags & TDF_DETAILS))
339 fprintf (dump_file, "Scope blocks:\n");
340 dump_scope_blocks (dump_file, dump_flags);
342 cleanup_tree_cfg ();
343 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
344 replace_loop_annotate ();
345 return 0;
348 namespace {
350 const pass_data pass_data_build_cfg =
352 GIMPLE_PASS, /* type */
353 "cfg", /* name */
354 OPTGROUP_NONE, /* optinfo_flags */
355 false, /* has_gate */
356 true, /* has_execute */
357 TV_TREE_CFG, /* tv_id */
358 PROP_gimple_leh, /* properties_required */
359 ( PROP_cfg | PROP_loops ), /* properties_provided */
360 0, /* properties_destroyed */
361 0, /* todo_flags_start */
362 TODO_verify_stmts, /* todo_flags_finish */
365 class pass_build_cfg : public gimple_opt_pass
367 public:
368 pass_build_cfg (gcc::context *ctxt)
369 : gimple_opt_pass (pass_data_build_cfg, ctxt)
372 /* opt_pass methods: */
373 unsigned int execute () { return execute_build_cfg (); }
375 }; // class pass_build_cfg
377 } // anon namespace
379 gimple_opt_pass *
380 make_pass_build_cfg (gcc::context *ctxt)
382 return new pass_build_cfg (ctxt);
386 /* Return true if T is a computed goto. */
388 static bool
389 computed_goto_p (gimple t)
391 return (gimple_code (t) == GIMPLE_GOTO
392 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
395 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
396 the other edge points to a bb with just __builtin_unreachable ().
397 I.e. return true for C->M edge in:
398 <bb C>:
400 if (something)
401 goto <bb N>;
402 else
403 goto <bb M>;
404 <bb N>:
405 __builtin_unreachable ();
406 <bb M>: */
408 bool
409 assert_unreachable_fallthru_edge_p (edge e)
411 basic_block pred_bb = e->src;
412 gimple last = last_stmt (pred_bb);
413 if (last && gimple_code (last) == GIMPLE_COND)
415 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
416 if (other_bb == e->dest)
417 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
418 if (EDGE_COUNT (other_bb->succs) == 0)
420 gimple_stmt_iterator gsi = gsi_after_labels (other_bb);
421 gimple stmt;
423 if (gsi_end_p (gsi))
424 return false;
425 stmt = gsi_stmt (gsi);
426 if (is_gimple_debug (stmt))
428 gsi_next_nondebug (&gsi);
429 if (gsi_end_p (gsi))
430 return false;
431 stmt = gsi_stmt (gsi);
433 return gimple_call_builtin_p (stmt, BUILT_IN_UNREACHABLE);
436 return false;
440 /* Search the CFG for any computed gotos. If found, factor them to a
441 common computed goto site. Also record the location of that site so
442 that we can un-factor the gotos after we have converted back to
443 normal form. */
445 static void
446 factor_computed_gotos (void)
448 basic_block bb;
449 tree factored_label_decl = NULL;
450 tree var = NULL;
451 gimple factored_computed_goto_label = NULL;
452 gimple factored_computed_goto = NULL;
454 /* We know there are one or more computed gotos in this function.
455 Examine the last statement in each basic block to see if the block
456 ends with a computed goto. */
458 FOR_EACH_BB_FN (bb, cfun)
460 gimple_stmt_iterator gsi = gsi_last_bb (bb);
461 gimple last;
463 if (gsi_end_p (gsi))
464 continue;
466 last = gsi_stmt (gsi);
468 /* Ignore the computed goto we create when we factor the original
469 computed gotos. */
470 if (last == factored_computed_goto)
471 continue;
473 /* If the last statement is a computed goto, factor it. */
474 if (computed_goto_p (last))
476 gimple assignment;
478 /* The first time we find a computed goto we need to create
479 the factored goto block and the variable each original
480 computed goto will use for their goto destination. */
481 if (!factored_computed_goto)
483 basic_block new_bb = create_empty_bb (bb);
484 gimple_stmt_iterator new_gsi = gsi_start_bb (new_bb);
486 /* Create the destination of the factored goto. Each original
487 computed goto will put its desired destination into this
488 variable and jump to the label we create immediately
489 below. */
490 var = create_tmp_var (ptr_type_node, "gotovar");
492 /* Build a label for the new block which will contain the
493 factored computed goto. */
494 factored_label_decl = create_artificial_label (UNKNOWN_LOCATION);
495 factored_computed_goto_label
496 = gimple_build_label (factored_label_decl);
497 gsi_insert_after (&new_gsi, factored_computed_goto_label,
498 GSI_NEW_STMT);
500 /* Build our new computed goto. */
501 factored_computed_goto = gimple_build_goto (var);
502 gsi_insert_after (&new_gsi, factored_computed_goto, GSI_NEW_STMT);
505 /* Copy the original computed goto's destination into VAR. */
506 assignment = gimple_build_assign (var, gimple_goto_dest (last));
507 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
509 /* And re-vector the computed goto to the new destination. */
510 gimple_goto_set_dest (last, factored_label_decl);
516 /* Build a flowgraph for the sequence of stmts SEQ. */
518 static void
519 make_blocks (gimple_seq seq)
521 gimple_stmt_iterator i = gsi_start (seq);
522 gimple stmt = NULL;
523 bool start_new_block = true;
524 bool first_stmt_of_seq = true;
525 basic_block bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
527 while (!gsi_end_p (i))
529 gimple prev_stmt;
531 prev_stmt = stmt;
532 stmt = gsi_stmt (i);
534 /* If the statement starts a new basic block or if we have determined
535 in a previous pass that we need to create a new block for STMT, do
536 so now. */
537 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
539 if (!first_stmt_of_seq)
540 gsi_split_seq_before (&i, &seq);
541 bb = create_basic_block (seq, NULL, bb);
542 start_new_block = false;
545 /* Now add STMT to BB and create the subgraphs for special statement
546 codes. */
547 gimple_set_bb (stmt, bb);
549 if (computed_goto_p (stmt))
550 found_computed_goto = true;
552 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
553 next iteration. */
554 if (stmt_ends_bb_p (stmt))
556 /* If the stmt can make abnormal goto use a new temporary
557 for the assignment to the LHS. This makes sure the old value
558 of the LHS is available on the abnormal edge. Otherwise
559 we will end up with overlapping life-ranges for abnormal
560 SSA names. */
561 if (gimple_has_lhs (stmt)
562 && stmt_can_make_abnormal_goto (stmt)
563 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
565 tree lhs = gimple_get_lhs (stmt);
566 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
567 gimple s = gimple_build_assign (lhs, tmp);
568 gimple_set_location (s, gimple_location (stmt));
569 gimple_set_block (s, gimple_block (stmt));
570 gimple_set_lhs (stmt, tmp);
571 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
572 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
573 DECL_GIMPLE_REG_P (tmp) = 1;
574 gsi_insert_after (&i, s, GSI_SAME_STMT);
576 start_new_block = true;
579 gsi_next (&i);
580 first_stmt_of_seq = false;
585 /* Create and return a new empty basic block after bb AFTER. */
587 static basic_block
588 create_bb (void *h, void *e, basic_block after)
590 basic_block bb;
592 gcc_assert (!e);
594 /* Create and initialize a new basic block. Since alloc_block uses
595 GC allocation that clears memory to allocate a basic block, we do
596 not have to clear the newly allocated basic block here. */
597 bb = alloc_block ();
599 bb->index = last_basic_block_for_fn (cfun);
600 bb->flags = BB_NEW;
601 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
603 /* Add the new block to the linked list of blocks. */
604 link_block (bb, after);
606 /* Grow the basic block array if needed. */
607 if ((size_t) last_basic_block_for_fn (cfun)
608 == basic_block_info_for_fn (cfun)->length ())
610 size_t new_size =
611 (last_basic_block_for_fn (cfun)
612 + (last_basic_block_for_fn (cfun) + 3) / 4);
613 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
616 /* Add the newly created block to the array. */
617 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
619 n_basic_blocks_for_fn (cfun)++;
620 last_basic_block_for_fn (cfun)++;
622 return bb;
626 /*---------------------------------------------------------------------------
627 Edge creation
628 ---------------------------------------------------------------------------*/
630 /* Fold COND_EXPR_COND of each COND_EXPR. */
632 void
633 fold_cond_expr_cond (void)
635 basic_block bb;
637 FOR_EACH_BB_FN (bb, cfun)
639 gimple stmt = last_stmt (bb);
641 if (stmt && gimple_code (stmt) == GIMPLE_COND)
643 location_t loc = gimple_location (stmt);
644 tree cond;
645 bool zerop, onep;
647 fold_defer_overflow_warnings ();
648 cond = fold_binary_loc (loc, gimple_cond_code (stmt), boolean_type_node,
649 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
650 if (cond)
652 zerop = integer_zerop (cond);
653 onep = integer_onep (cond);
655 else
656 zerop = onep = false;
658 fold_undefer_overflow_warnings (zerop || onep,
659 stmt,
660 WARN_STRICT_OVERFLOW_CONDITIONAL);
661 if (zerop)
662 gimple_cond_make_false (stmt);
663 else if (onep)
664 gimple_cond_make_true (stmt);
669 /* Join all the blocks in the flowgraph. */
671 static void
672 make_edges (void)
674 basic_block bb;
675 struct omp_region *cur_region = NULL;
677 /* Create an edge from entry to the first block with executable
678 statements in it. */
679 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
680 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
681 EDGE_FALLTHRU);
683 /* Traverse the basic block array placing edges. */
684 FOR_EACH_BB_FN (bb, cfun)
686 gimple last = last_stmt (bb);
687 bool fallthru;
689 if (last)
691 enum gimple_code code = gimple_code (last);
692 switch (code)
694 case GIMPLE_GOTO:
695 make_goto_expr_edges (bb);
696 fallthru = false;
697 break;
698 case GIMPLE_RETURN:
699 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
700 fallthru = false;
701 break;
702 case GIMPLE_COND:
703 make_cond_expr_edges (bb);
704 fallthru = false;
705 break;
706 case GIMPLE_SWITCH:
707 make_gimple_switch_edges (bb);
708 fallthru = false;
709 break;
710 case GIMPLE_RESX:
711 make_eh_edges (last);
712 fallthru = false;
713 break;
714 case GIMPLE_EH_DISPATCH:
715 fallthru = make_eh_dispatch_edges (last);
716 break;
718 case GIMPLE_CALL:
719 /* If this function receives a nonlocal goto, then we need to
720 make edges from this call site to all the nonlocal goto
721 handlers. */
722 if (stmt_can_make_abnormal_goto (last))
723 make_abnormal_goto_edges (bb, true);
725 /* If this statement has reachable exception handlers, then
726 create abnormal edges to them. */
727 make_eh_edges (last);
729 /* BUILTIN_RETURN is really a return statement. */
730 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
731 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0), fallthru =
732 false;
733 /* Some calls are known not to return. */
734 else
735 fallthru = !(gimple_call_flags (last) & ECF_NORETURN);
736 break;
738 case GIMPLE_ASSIGN:
739 /* A GIMPLE_ASSIGN may throw internally and thus be considered
740 control-altering. */
741 if (is_ctrl_altering_stmt (last))
742 make_eh_edges (last);
743 fallthru = true;
744 break;
746 case GIMPLE_ASM:
747 make_gimple_asm_edges (bb);
748 fallthru = true;
749 break;
751 CASE_GIMPLE_OMP:
752 fallthru = make_gimple_omp_edges (bb, &cur_region);
753 break;
755 case GIMPLE_TRANSACTION:
757 tree abort_label = gimple_transaction_label (last);
758 if (abort_label)
759 make_edge (bb, label_to_block (abort_label), EDGE_TM_ABORT);
760 fallthru = true;
762 break;
764 default:
765 gcc_assert (!stmt_ends_bb_p (last));
766 fallthru = true;
769 else
770 fallthru = true;
772 if (fallthru)
773 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
776 free_omp_regions ();
778 /* Fold COND_EXPR_COND of each COND_EXPR. */
779 fold_cond_expr_cond ();
782 /* Find the next available discriminator value for LOCUS. The
783 discriminator distinguishes among several basic blocks that
784 share a common locus, allowing for more accurate sample-based
785 profiling. */
787 static int
788 next_discriminator_for_locus (location_t locus)
790 struct locus_discrim_map item;
791 struct locus_discrim_map **slot;
793 item.locus = locus;
794 item.discriminator = 0;
795 slot = discriminator_per_locus.find_slot_with_hash (
796 &item, LOCATION_LINE (locus), INSERT);
797 gcc_assert (slot);
798 if (*slot == HTAB_EMPTY_ENTRY)
800 *slot = XNEW (struct locus_discrim_map);
801 gcc_assert (*slot);
802 (*slot)->locus = locus;
803 (*slot)->discriminator = 0;
805 (*slot)->discriminator++;
806 return (*slot)->discriminator;
809 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
811 static bool
812 same_line_p (location_t locus1, location_t locus2)
814 expanded_location from, to;
816 if (locus1 == locus2)
817 return true;
819 from = expand_location (locus1);
820 to = expand_location (locus2);
822 if (from.line != to.line)
823 return false;
824 if (from.file == to.file)
825 return true;
826 return (from.file != NULL
827 && to.file != NULL
828 && filename_cmp (from.file, to.file) == 0);
831 /* Assign discriminators to each basic block. */
833 static void
834 assign_discriminators (void)
836 basic_block bb;
838 FOR_EACH_BB_FN (bb, cfun)
840 edge e;
841 edge_iterator ei;
842 gimple last = last_stmt (bb);
843 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
845 if (locus == UNKNOWN_LOCATION)
846 continue;
848 FOR_EACH_EDGE (e, ei, bb->succs)
850 gimple first = first_non_label_stmt (e->dest);
851 gimple last = last_stmt (e->dest);
852 if ((first && same_line_p (locus, gimple_location (first)))
853 || (last && same_line_p (locus, gimple_location (last))))
855 if (e->dest->discriminator != 0 && bb->discriminator == 0)
856 bb->discriminator = next_discriminator_for_locus (locus);
857 else
858 e->dest->discriminator = next_discriminator_for_locus (locus);
864 /* Create the edges for a GIMPLE_COND starting at block BB. */
866 static void
867 make_cond_expr_edges (basic_block bb)
869 gimple entry = last_stmt (bb);
870 gimple then_stmt, else_stmt;
871 basic_block then_bb, else_bb;
872 tree then_label, else_label;
873 edge e;
875 gcc_assert (entry);
876 gcc_assert (gimple_code (entry) == GIMPLE_COND);
878 /* Entry basic blocks for each component. */
879 then_label = gimple_cond_true_label (entry);
880 else_label = gimple_cond_false_label (entry);
881 then_bb = label_to_block (then_label);
882 else_bb = label_to_block (else_label);
883 then_stmt = first_stmt (then_bb);
884 else_stmt = first_stmt (else_bb);
886 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
887 e->goto_locus = gimple_location (then_stmt);
888 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
889 if (e)
890 e->goto_locus = gimple_location (else_stmt);
892 /* We do not need the labels anymore. */
893 gimple_cond_set_true_label (entry, NULL_TREE);
894 gimple_cond_set_false_label (entry, NULL_TREE);
898 /* Called for each element in the hash table (P) as we delete the
899 edge to cases hash table.
901 Clear all the TREE_CHAINs to prevent problems with copying of
902 SWITCH_EXPRs and structure sharing rules, then free the hash table
903 element. */
905 static bool
906 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED, void **value,
907 void *data ATTRIBUTE_UNUSED)
909 tree t, next;
911 for (t = (tree) *value; t; t = next)
913 next = CASE_CHAIN (t);
914 CASE_CHAIN (t) = NULL;
917 *value = NULL;
918 return true;
921 /* Start recording information mapping edges to case labels. */
923 void
924 start_recording_case_labels (void)
926 gcc_assert (edge_to_cases == NULL);
927 edge_to_cases = pointer_map_create ();
928 touched_switch_bbs = BITMAP_ALLOC (NULL);
931 /* Return nonzero if we are recording information for case labels. */
933 static bool
934 recording_case_labels_p (void)
936 return (edge_to_cases != NULL);
939 /* Stop recording information mapping edges to case labels and
940 remove any information we have recorded. */
941 void
942 end_recording_case_labels (void)
944 bitmap_iterator bi;
945 unsigned i;
946 pointer_map_traverse (edge_to_cases, edge_to_cases_cleanup, NULL);
947 pointer_map_destroy (edge_to_cases);
948 edge_to_cases = NULL;
949 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
951 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
952 if (bb)
954 gimple stmt = last_stmt (bb);
955 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
956 group_case_labels_stmt (stmt);
959 BITMAP_FREE (touched_switch_bbs);
962 /* If we are inside a {start,end}_recording_cases block, then return
963 a chain of CASE_LABEL_EXPRs from T which reference E.
965 Otherwise return NULL. */
967 static tree
968 get_cases_for_edge (edge e, gimple t)
970 void **slot;
971 size_t i, n;
973 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
974 chains available. Return NULL so the caller can detect this case. */
975 if (!recording_case_labels_p ())
976 return NULL;
978 slot = pointer_map_contains (edge_to_cases, e);
979 if (slot)
980 return (tree) *slot;
982 /* If we did not find E in the hash table, then this must be the first
983 time we have been queried for information about E & T. Add all the
984 elements from T to the hash table then perform the query again. */
986 n = gimple_switch_num_labels (t);
987 for (i = 0; i < n; i++)
989 tree elt = gimple_switch_label (t, i);
990 tree lab = CASE_LABEL (elt);
991 basic_block label_bb = label_to_block (lab);
992 edge this_edge = find_edge (e->src, label_bb);
994 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
995 a new chain. */
996 slot = pointer_map_insert (edge_to_cases, this_edge);
997 CASE_CHAIN (elt) = (tree) *slot;
998 *slot = elt;
1001 return (tree) *pointer_map_contains (edge_to_cases, e);
1004 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1006 static void
1007 make_gimple_switch_edges (basic_block bb)
1009 gimple entry = last_stmt (bb);
1010 size_t i, n;
1012 n = gimple_switch_num_labels (entry);
1014 for (i = 0; i < n; ++i)
1016 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1017 basic_block label_bb = label_to_block (lab);
1018 make_edge (bb, label_bb, 0);
1023 /* Return the basic block holding label DEST. */
1025 basic_block
1026 label_to_block_fn (struct function *ifun, tree dest)
1028 int uid = LABEL_DECL_UID (dest);
1030 /* We would die hard when faced by an undefined label. Emit a label to
1031 the very first basic block. This will hopefully make even the dataflow
1032 and undefined variable warnings quite right. */
1033 if (seen_error () && uid < 0)
1035 gimple_stmt_iterator gsi =
1036 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1037 gimple stmt;
1039 stmt = gimple_build_label (dest);
1040 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1041 uid = LABEL_DECL_UID (dest);
1043 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1044 return NULL;
1045 return (*ifun->cfg->x_label_to_block_map)[uid];
1048 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
1049 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
1051 void
1052 make_abnormal_goto_edges (basic_block bb, bool for_call)
1054 basic_block target_bb;
1055 gimple_stmt_iterator gsi;
1057 FOR_EACH_BB_FN (target_bb, cfun)
1059 for (gsi = gsi_start_bb (target_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1061 gimple label_stmt = gsi_stmt (gsi);
1062 tree target;
1064 if (gimple_code (label_stmt) != GIMPLE_LABEL)
1065 break;
1067 target = gimple_label_label (label_stmt);
1069 /* Make an edge to every label block that has been marked as a
1070 potential target for a computed goto or a non-local goto. */
1071 if ((FORCED_LABEL (target) && !for_call)
1072 || (DECL_NONLOCAL (target) && for_call))
1074 make_edge (bb, target_bb, EDGE_ABNORMAL);
1075 break;
1078 if (!gsi_end_p (gsi)
1079 && is_gimple_debug (gsi_stmt (gsi)))
1080 gsi_next_nondebug (&gsi);
1081 if (!gsi_end_p (gsi))
1083 /* Make an edge to every setjmp-like call. */
1084 gimple call_stmt = gsi_stmt (gsi);
1085 if (is_gimple_call (call_stmt)
1086 && (gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE))
1087 make_edge (bb, target_bb, EDGE_ABNORMAL);
1092 /* Create edges for a goto statement at block BB. */
1094 static void
1095 make_goto_expr_edges (basic_block bb)
1097 gimple_stmt_iterator last = gsi_last_bb (bb);
1098 gimple goto_t = gsi_stmt (last);
1100 /* A simple GOTO creates normal edges. */
1101 if (simple_goto_p (goto_t))
1103 tree dest = gimple_goto_dest (goto_t);
1104 basic_block label_bb = label_to_block (dest);
1105 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1106 e->goto_locus = gimple_location (goto_t);
1107 gsi_remove (&last, true);
1108 return;
1111 /* A computed GOTO creates abnormal edges. */
1112 make_abnormal_goto_edges (bb, false);
1115 /* Create edges for an asm statement with labels at block BB. */
1117 static void
1118 make_gimple_asm_edges (basic_block bb)
1120 gimple stmt = last_stmt (bb);
1121 int i, n = gimple_asm_nlabels (stmt);
1123 for (i = 0; i < n; ++i)
1125 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1126 basic_block label_bb = label_to_block (label);
1127 make_edge (bb, label_bb, 0);
1131 /*---------------------------------------------------------------------------
1132 Flowgraph analysis
1133 ---------------------------------------------------------------------------*/
1135 /* Cleanup useless labels in basic blocks. This is something we wish
1136 to do early because it allows us to group case labels before creating
1137 the edges for the CFG, and it speeds up block statement iterators in
1138 all passes later on.
1139 We rerun this pass after CFG is created, to get rid of the labels that
1140 are no longer referenced. After then we do not run it any more, since
1141 (almost) no new labels should be created. */
1143 /* A map from basic block index to the leading label of that block. */
1144 static struct label_record
1146 /* The label. */
1147 tree label;
1149 /* True if the label is referenced from somewhere. */
1150 bool used;
1151 } *label_for_bb;
1153 /* Given LABEL return the first label in the same basic block. */
1155 static tree
1156 main_block_label (tree label)
1158 basic_block bb = label_to_block (label);
1159 tree main_label = label_for_bb[bb->index].label;
1161 /* label_to_block possibly inserted undefined label into the chain. */
1162 if (!main_label)
1164 label_for_bb[bb->index].label = label;
1165 main_label = label;
1168 label_for_bb[bb->index].used = true;
1169 return main_label;
1172 /* Clean up redundant labels within the exception tree. */
1174 static void
1175 cleanup_dead_labels_eh (void)
1177 eh_landing_pad lp;
1178 eh_region r;
1179 tree lab;
1180 int i;
1182 if (cfun->eh == NULL)
1183 return;
1185 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1186 if (lp && lp->post_landing_pad)
1188 lab = main_block_label (lp->post_landing_pad);
1189 if (lab != lp->post_landing_pad)
1191 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1192 EH_LANDING_PAD_NR (lab) = lp->index;
1196 FOR_ALL_EH_REGION (r)
1197 switch (r->type)
1199 case ERT_CLEANUP:
1200 case ERT_MUST_NOT_THROW:
1201 break;
1203 case ERT_TRY:
1205 eh_catch c;
1206 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1208 lab = c->label;
1209 if (lab)
1210 c->label = main_block_label (lab);
1213 break;
1215 case ERT_ALLOWED_EXCEPTIONS:
1216 lab = r->u.allowed.label;
1217 if (lab)
1218 r->u.allowed.label = main_block_label (lab);
1219 break;
1224 /* Cleanup redundant labels. This is a three-step process:
1225 1) Find the leading label for each block.
1226 2) Redirect all references to labels to the leading labels.
1227 3) Cleanup all useless labels. */
1229 void
1230 cleanup_dead_labels (void)
1232 basic_block bb;
1233 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1235 /* Find a suitable label for each block. We use the first user-defined
1236 label if there is one, or otherwise just the first label we see. */
1237 FOR_EACH_BB_FN (bb, cfun)
1239 gimple_stmt_iterator i;
1241 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1243 tree label;
1244 gimple stmt = gsi_stmt (i);
1246 if (gimple_code (stmt) != GIMPLE_LABEL)
1247 break;
1249 label = gimple_label_label (stmt);
1251 /* If we have not yet seen a label for the current block,
1252 remember this one and see if there are more labels. */
1253 if (!label_for_bb[bb->index].label)
1255 label_for_bb[bb->index].label = label;
1256 continue;
1259 /* If we did see a label for the current block already, but it
1260 is an artificially created label, replace it if the current
1261 label is a user defined label. */
1262 if (!DECL_ARTIFICIAL (label)
1263 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1265 label_for_bb[bb->index].label = label;
1266 break;
1271 /* Now redirect all jumps/branches to the selected label.
1272 First do so for each block ending in a control statement. */
1273 FOR_EACH_BB_FN (bb, cfun)
1275 gimple stmt = last_stmt (bb);
1276 tree label, new_label;
1278 if (!stmt)
1279 continue;
1281 switch (gimple_code (stmt))
1283 case GIMPLE_COND:
1284 label = gimple_cond_true_label (stmt);
1285 if (label)
1287 new_label = main_block_label (label);
1288 if (new_label != label)
1289 gimple_cond_set_true_label (stmt, new_label);
1292 label = gimple_cond_false_label (stmt);
1293 if (label)
1295 new_label = main_block_label (label);
1296 if (new_label != label)
1297 gimple_cond_set_false_label (stmt, new_label);
1299 break;
1301 case GIMPLE_SWITCH:
1303 size_t i, n = gimple_switch_num_labels (stmt);
1305 /* Replace all destination labels. */
1306 for (i = 0; i < n; ++i)
1308 tree case_label = gimple_switch_label (stmt, i);
1309 label = CASE_LABEL (case_label);
1310 new_label = main_block_label (label);
1311 if (new_label != label)
1312 CASE_LABEL (case_label) = new_label;
1314 break;
1317 case GIMPLE_ASM:
1319 int i, n = gimple_asm_nlabels (stmt);
1321 for (i = 0; i < n; ++i)
1323 tree cons = gimple_asm_label_op (stmt, i);
1324 tree label = main_block_label (TREE_VALUE (cons));
1325 TREE_VALUE (cons) = label;
1327 break;
1330 /* We have to handle gotos until they're removed, and we don't
1331 remove them until after we've created the CFG edges. */
1332 case GIMPLE_GOTO:
1333 if (!computed_goto_p (stmt))
1335 label = gimple_goto_dest (stmt);
1336 new_label = main_block_label (label);
1337 if (new_label != label)
1338 gimple_goto_set_dest (stmt, new_label);
1340 break;
1342 case GIMPLE_TRANSACTION:
1344 tree label = gimple_transaction_label (stmt);
1345 if (label)
1347 tree new_label = main_block_label (label);
1348 if (new_label != label)
1349 gimple_transaction_set_label (stmt, new_label);
1352 break;
1354 default:
1355 break;
1359 /* Do the same for the exception region tree labels. */
1360 cleanup_dead_labels_eh ();
1362 /* Finally, purge dead labels. All user-defined labels and labels that
1363 can be the target of non-local gotos and labels which have their
1364 address taken are preserved. */
1365 FOR_EACH_BB_FN (bb, cfun)
1367 gimple_stmt_iterator i;
1368 tree label_for_this_bb = label_for_bb[bb->index].label;
1370 if (!label_for_this_bb)
1371 continue;
1373 /* If the main label of the block is unused, we may still remove it. */
1374 if (!label_for_bb[bb->index].used)
1375 label_for_this_bb = NULL;
1377 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1379 tree label;
1380 gimple stmt = gsi_stmt (i);
1382 if (gimple_code (stmt) != GIMPLE_LABEL)
1383 break;
1385 label = gimple_label_label (stmt);
1387 if (label == label_for_this_bb
1388 || !DECL_ARTIFICIAL (label)
1389 || DECL_NONLOCAL (label)
1390 || FORCED_LABEL (label))
1391 gsi_next (&i);
1392 else
1393 gsi_remove (&i, true);
1397 free (label_for_bb);
1400 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1401 the ones jumping to the same label.
1402 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1404 void
1405 group_case_labels_stmt (gimple stmt)
1407 int old_size = gimple_switch_num_labels (stmt);
1408 int i, j, new_size = old_size;
1409 basic_block default_bb = NULL;
1411 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1413 /* Look for possible opportunities to merge cases. */
1414 i = 1;
1415 while (i < old_size)
1417 tree base_case, base_high;
1418 basic_block base_bb;
1420 base_case = gimple_switch_label (stmt, i);
1422 gcc_assert (base_case);
1423 base_bb = label_to_block (CASE_LABEL (base_case));
1425 /* Discard cases that have the same destination as the
1426 default case. */
1427 if (base_bb == default_bb)
1429 gimple_switch_set_label (stmt, i, NULL_TREE);
1430 i++;
1431 new_size--;
1432 continue;
1435 base_high = CASE_HIGH (base_case)
1436 ? CASE_HIGH (base_case)
1437 : CASE_LOW (base_case);
1438 i++;
1440 /* Try to merge case labels. Break out when we reach the end
1441 of the label vector or when we cannot merge the next case
1442 label with the current one. */
1443 while (i < old_size)
1445 tree merge_case = gimple_switch_label (stmt, i);
1446 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1447 double_int bhp1 = tree_to_double_int (base_high) + double_int_one;
1449 /* Merge the cases if they jump to the same place,
1450 and their ranges are consecutive. */
1451 if (merge_bb == base_bb
1452 && tree_to_double_int (CASE_LOW (merge_case)) == bhp1)
1454 base_high = CASE_HIGH (merge_case) ?
1455 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1456 CASE_HIGH (base_case) = base_high;
1457 gimple_switch_set_label (stmt, i, NULL_TREE);
1458 new_size--;
1459 i++;
1461 else
1462 break;
1466 /* Compress the case labels in the label vector, and adjust the
1467 length of the vector. */
1468 for (i = 0, j = 0; i < new_size; i++)
1470 while (! gimple_switch_label (stmt, j))
1471 j++;
1472 gimple_switch_set_label (stmt, i,
1473 gimple_switch_label (stmt, j++));
1476 gcc_assert (new_size <= old_size);
1477 gimple_switch_set_num_labels (stmt, new_size);
1480 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1481 and scan the sorted vector of cases. Combine the ones jumping to the
1482 same label. */
1484 void
1485 group_case_labels (void)
1487 basic_block bb;
1489 FOR_EACH_BB_FN (bb, cfun)
1491 gimple stmt = last_stmt (bb);
1492 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1493 group_case_labels_stmt (stmt);
1497 /* Checks whether we can merge block B into block A. */
1499 static bool
1500 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1502 gimple stmt;
1503 gimple_stmt_iterator gsi;
1505 if (!single_succ_p (a))
1506 return false;
1508 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1509 return false;
1511 if (single_succ (a) != b)
1512 return false;
1514 if (!single_pred_p (b))
1515 return false;
1517 if (b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1518 return false;
1520 /* If A ends by a statement causing exceptions or something similar, we
1521 cannot merge the blocks. */
1522 stmt = last_stmt (a);
1523 if (stmt && stmt_ends_bb_p (stmt))
1524 return false;
1526 /* Do not allow a block with only a non-local label to be merged. */
1527 if (stmt
1528 && gimple_code (stmt) == GIMPLE_LABEL
1529 && DECL_NONLOCAL (gimple_label_label (stmt)))
1530 return false;
1532 /* Examine the labels at the beginning of B. */
1533 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi); gsi_next (&gsi))
1535 tree lab;
1536 stmt = gsi_stmt (gsi);
1537 if (gimple_code (stmt) != GIMPLE_LABEL)
1538 break;
1539 lab = gimple_label_label (stmt);
1541 /* Do not remove user forced labels or for -O0 any user labels. */
1542 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1543 return false;
1546 /* Protect the loop latches. */
1547 if (current_loops && b->loop_father->latch == b)
1548 return false;
1550 /* It must be possible to eliminate all phi nodes in B. If ssa form
1551 is not up-to-date and a name-mapping is registered, we cannot eliminate
1552 any phis. Symbols marked for renaming are never a problem though. */
1553 for (gsi = gsi_start_phis (b); !gsi_end_p (gsi); gsi_next (&gsi))
1555 gimple phi = gsi_stmt (gsi);
1556 /* Technically only new names matter. */
1557 if (name_registered_for_update_p (PHI_RESULT (phi)))
1558 return false;
1561 /* When not optimizing, don't merge if we'd lose goto_locus. */
1562 if (!optimize
1563 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1565 location_t goto_locus = single_succ_edge (a)->goto_locus;
1566 gimple_stmt_iterator prev, next;
1567 prev = gsi_last_nondebug_bb (a);
1568 next = gsi_after_labels (b);
1569 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1570 gsi_next_nondebug (&next);
1571 if ((gsi_end_p (prev)
1572 || gimple_location (gsi_stmt (prev)) != goto_locus)
1573 && (gsi_end_p (next)
1574 || gimple_location (gsi_stmt (next)) != goto_locus))
1575 return false;
1578 return true;
1581 /* Replaces all uses of NAME by VAL. */
1583 void
1584 replace_uses_by (tree name, tree val)
1586 imm_use_iterator imm_iter;
1587 use_operand_p use;
1588 gimple stmt;
1589 edge e;
1591 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1593 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1595 replace_exp (use, val);
1597 if (gimple_code (stmt) == GIMPLE_PHI)
1599 e = gimple_phi_arg_edge (stmt, PHI_ARG_INDEX_FROM_USE (use));
1600 if (e->flags & EDGE_ABNORMAL)
1602 /* This can only occur for virtual operands, since
1603 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1604 would prevent replacement. */
1605 gcc_checking_assert (virtual_operand_p (name));
1606 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1611 if (gimple_code (stmt) != GIMPLE_PHI)
1613 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1614 gimple orig_stmt = stmt;
1615 size_t i;
1617 /* Mark the block if we changed the last stmt in it. */
1618 if (cfgcleanup_altered_bbs
1619 && stmt_ends_bb_p (stmt))
1620 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1622 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1623 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1624 only change sth from non-invariant to invariant, and only
1625 when propagating constants. */
1626 if (is_gimple_min_invariant (val))
1627 for (i = 0; i < gimple_num_ops (stmt); i++)
1629 tree op = gimple_op (stmt, i);
1630 /* Operands may be empty here. For example, the labels
1631 of a GIMPLE_COND are nulled out following the creation
1632 of the corresponding CFG edges. */
1633 if (op && TREE_CODE (op) == ADDR_EXPR)
1634 recompute_tree_invariant_for_addr_expr (op);
1637 if (fold_stmt (&gsi))
1638 stmt = gsi_stmt (gsi);
1640 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1641 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1643 update_stmt (stmt);
1647 gcc_checking_assert (has_zero_uses (name));
1649 /* Also update the trees stored in loop structures. */
1650 if (current_loops)
1652 struct loop *loop;
1654 FOR_EACH_LOOP (loop, 0)
1656 substitute_in_loop_info (loop, name, val);
1661 /* Merge block B into block A. */
1663 static void
1664 gimple_merge_blocks (basic_block a, basic_block b)
1666 gimple_stmt_iterator last, gsi, psi;
1668 if (dump_file)
1669 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
1671 /* Remove all single-valued PHI nodes from block B of the form
1672 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1673 gsi = gsi_last_bb (a);
1674 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
1676 gimple phi = gsi_stmt (psi);
1677 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
1678 gimple copy;
1679 bool may_replace_uses = (virtual_operand_p (def)
1680 || may_propagate_copy (def, use));
1682 /* In case we maintain loop closed ssa form, do not propagate arguments
1683 of loop exit phi nodes. */
1684 if (current_loops
1685 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
1686 && !virtual_operand_p (def)
1687 && TREE_CODE (use) == SSA_NAME
1688 && a->loop_father != b->loop_father)
1689 may_replace_uses = false;
1691 if (!may_replace_uses)
1693 gcc_assert (!virtual_operand_p (def));
1695 /* Note that just emitting the copies is fine -- there is no problem
1696 with ordering of phi nodes. This is because A is the single
1697 predecessor of B, therefore results of the phi nodes cannot
1698 appear as arguments of the phi nodes. */
1699 copy = gimple_build_assign (def, use);
1700 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
1701 remove_phi_node (&psi, false);
1703 else
1705 /* If we deal with a PHI for virtual operands, we can simply
1706 propagate these without fussing with folding or updating
1707 the stmt. */
1708 if (virtual_operand_p (def))
1710 imm_use_iterator iter;
1711 use_operand_p use_p;
1712 gimple stmt;
1714 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
1715 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1716 SET_USE (use_p, use);
1718 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
1719 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
1721 else
1722 replace_uses_by (def, use);
1724 remove_phi_node (&psi, true);
1728 /* Ensure that B follows A. */
1729 move_block_after (b, a);
1731 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
1732 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
1734 /* Remove labels from B and set gimple_bb to A for other statements. */
1735 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
1737 gimple stmt = gsi_stmt (gsi);
1738 if (gimple_code (stmt) == GIMPLE_LABEL)
1740 tree label = gimple_label_label (stmt);
1741 int lp_nr;
1743 gsi_remove (&gsi, false);
1745 /* Now that we can thread computed gotos, we might have
1746 a situation where we have a forced label in block B
1747 However, the label at the start of block B might still be
1748 used in other ways (think about the runtime checking for
1749 Fortran assigned gotos). So we can not just delete the
1750 label. Instead we move the label to the start of block A. */
1751 if (FORCED_LABEL (label))
1753 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
1754 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
1756 /* Other user labels keep around in a form of a debug stmt. */
1757 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_STMTS)
1759 gimple dbg = gimple_build_debug_bind (label,
1760 integer_zero_node,
1761 stmt);
1762 gimple_debug_bind_reset_value (dbg);
1763 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
1766 lp_nr = EH_LANDING_PAD_NR (label);
1767 if (lp_nr)
1769 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
1770 lp->post_landing_pad = NULL;
1773 else
1775 gimple_set_bb (stmt, a);
1776 gsi_next (&gsi);
1780 /* Merge the sequences. */
1781 last = gsi_last_bb (a);
1782 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
1783 set_bb_seq (b, NULL);
1785 if (cfgcleanup_altered_bbs)
1786 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
1790 /* Return the one of two successors of BB that is not reachable by a
1791 complex edge, if there is one. Else, return BB. We use
1792 this in optimizations that use post-dominators for their heuristics,
1793 to catch the cases in C++ where function calls are involved. */
1795 basic_block
1796 single_noncomplex_succ (basic_block bb)
1798 edge e0, e1;
1799 if (EDGE_COUNT (bb->succs) != 2)
1800 return bb;
1802 e0 = EDGE_SUCC (bb, 0);
1803 e1 = EDGE_SUCC (bb, 1);
1804 if (e0->flags & EDGE_COMPLEX)
1805 return e1->dest;
1806 if (e1->flags & EDGE_COMPLEX)
1807 return e0->dest;
1809 return bb;
1812 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1814 void
1815 notice_special_calls (gimple call)
1817 int flags = gimple_call_flags (call);
1819 if (flags & ECF_MAY_BE_ALLOCA)
1820 cfun->calls_alloca = true;
1821 if (flags & ECF_RETURNS_TWICE)
1822 cfun->calls_setjmp = true;
1826 /* Clear flags set by notice_special_calls. Used by dead code removal
1827 to update the flags. */
1829 void
1830 clear_special_calls (void)
1832 cfun->calls_alloca = false;
1833 cfun->calls_setjmp = false;
1836 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1838 static void
1839 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
1841 /* Since this block is no longer reachable, we can just delete all
1842 of its PHI nodes. */
1843 remove_phi_nodes (bb);
1845 /* Remove edges to BB's successors. */
1846 while (EDGE_COUNT (bb->succs) > 0)
1847 remove_edge (EDGE_SUCC (bb, 0));
1851 /* Remove statements of basic block BB. */
1853 static void
1854 remove_bb (basic_block bb)
1856 gimple_stmt_iterator i;
1858 if (dump_file)
1860 fprintf (dump_file, "Removing basic block %d\n", bb->index);
1861 if (dump_flags & TDF_DETAILS)
1863 dump_bb (dump_file, bb, 0, dump_flags);
1864 fprintf (dump_file, "\n");
1868 if (current_loops)
1870 struct loop *loop = bb->loop_father;
1872 /* If a loop gets removed, clean up the information associated
1873 with it. */
1874 if (loop->latch == bb
1875 || loop->header == bb)
1876 free_numbers_of_iterations_estimates_loop (loop);
1879 /* Remove all the instructions in the block. */
1880 if (bb_seq (bb) != NULL)
1882 /* Walk backwards so as to get a chance to substitute all
1883 released DEFs into debug stmts. See
1884 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1885 details. */
1886 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
1888 gimple stmt = gsi_stmt (i);
1889 if (gimple_code (stmt) == GIMPLE_LABEL
1890 && (FORCED_LABEL (gimple_label_label (stmt))
1891 || DECL_NONLOCAL (gimple_label_label (stmt))))
1893 basic_block new_bb;
1894 gimple_stmt_iterator new_gsi;
1896 /* A non-reachable non-local label may still be referenced.
1897 But it no longer needs to carry the extra semantics of
1898 non-locality. */
1899 if (DECL_NONLOCAL (gimple_label_label (stmt)))
1901 DECL_NONLOCAL (gimple_label_label (stmt)) = 0;
1902 FORCED_LABEL (gimple_label_label (stmt)) = 1;
1905 new_bb = bb->prev_bb;
1906 new_gsi = gsi_start_bb (new_bb);
1907 gsi_remove (&i, false);
1908 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
1910 else
1912 /* Release SSA definitions if we are in SSA. Note that we
1913 may be called when not in SSA. For example,
1914 final_cleanup calls this function via
1915 cleanup_tree_cfg. */
1916 if (gimple_in_ssa_p (cfun))
1917 release_defs (stmt);
1919 gsi_remove (&i, true);
1922 if (gsi_end_p (i))
1923 i = gsi_last_bb (bb);
1924 else
1925 gsi_prev (&i);
1929 remove_phi_nodes_and_edges_for_unreachable_block (bb);
1930 bb->il.gimple.seq = NULL;
1931 bb->il.gimple.phi_nodes = NULL;
1935 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1936 predicate VAL, return the edge that will be taken out of the block.
1937 If VAL does not match a unique edge, NULL is returned. */
1939 edge
1940 find_taken_edge (basic_block bb, tree val)
1942 gimple stmt;
1944 stmt = last_stmt (bb);
1946 gcc_assert (stmt);
1947 gcc_assert (is_ctrl_stmt (stmt));
1949 if (val == NULL)
1950 return NULL;
1952 if (!is_gimple_min_invariant (val))
1953 return NULL;
1955 if (gimple_code (stmt) == GIMPLE_COND)
1956 return find_taken_edge_cond_expr (bb, val);
1958 if (gimple_code (stmt) == GIMPLE_SWITCH)
1959 return find_taken_edge_switch_expr (bb, val);
1961 if (computed_goto_p (stmt))
1963 /* Only optimize if the argument is a label, if the argument is
1964 not a label then we can not construct a proper CFG.
1966 It may be the case that we only need to allow the LABEL_REF to
1967 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1968 appear inside a LABEL_EXPR just to be safe. */
1969 if ((TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
1970 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
1971 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
1972 return NULL;
1975 gcc_unreachable ();
1978 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1979 statement, determine which of the outgoing edges will be taken out of the
1980 block. Return NULL if either edge may be taken. */
1982 static edge
1983 find_taken_edge_computed_goto (basic_block bb, tree val)
1985 basic_block dest;
1986 edge e = NULL;
1988 dest = label_to_block (val);
1989 if (dest)
1991 e = find_edge (bb, dest);
1992 gcc_assert (e != NULL);
1995 return e;
1998 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1999 statement, determine which of the two edges will be taken out of the
2000 block. Return NULL if either edge may be taken. */
2002 static edge
2003 find_taken_edge_cond_expr (basic_block bb, tree val)
2005 edge true_edge, false_edge;
2007 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2009 gcc_assert (TREE_CODE (val) == INTEGER_CST);
2010 return (integer_zerop (val) ? false_edge : true_edge);
2013 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2014 statement, determine which edge will be taken out of the block. Return
2015 NULL if any edge may be taken. */
2017 static edge
2018 find_taken_edge_switch_expr (basic_block bb, tree val)
2020 basic_block dest_bb;
2021 edge e;
2022 gimple switch_stmt;
2023 tree taken_case;
2025 switch_stmt = last_stmt (bb);
2026 taken_case = find_case_label_for_value (switch_stmt, val);
2027 dest_bb = label_to_block (CASE_LABEL (taken_case));
2029 e = find_edge (bb, dest_bb);
2030 gcc_assert (e);
2031 return e;
2035 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2036 We can make optimal use here of the fact that the case labels are
2037 sorted: We can do a binary search for a case matching VAL. */
2039 static tree
2040 find_case_label_for_value (gimple switch_stmt, tree val)
2042 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2043 tree default_case = gimple_switch_default_label (switch_stmt);
2045 for (low = 0, high = n; high - low > 1; )
2047 size_t i = (high + low) / 2;
2048 tree t = gimple_switch_label (switch_stmt, i);
2049 int cmp;
2051 /* Cache the result of comparing CASE_LOW and val. */
2052 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2054 if (cmp > 0)
2055 high = i;
2056 else
2057 low = i;
2059 if (CASE_HIGH (t) == NULL)
2061 /* A singe-valued case label. */
2062 if (cmp == 0)
2063 return t;
2065 else
2067 /* A case range. We can only handle integer ranges. */
2068 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2069 return t;
2073 return default_case;
2077 /* Dump a basic block on stderr. */
2079 void
2080 gimple_debug_bb (basic_block bb)
2082 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2086 /* Dump basic block with index N on stderr. */
2088 basic_block
2089 gimple_debug_bb_n (int n)
2091 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2092 return BASIC_BLOCK_FOR_FN (cfun, n);
2096 /* Dump the CFG on stderr.
2098 FLAGS are the same used by the tree dumping functions
2099 (see TDF_* in dumpfile.h). */
2101 void
2102 gimple_debug_cfg (int flags)
2104 gimple_dump_cfg (stderr, flags);
2108 /* Dump the program showing basic block boundaries on the given FILE.
2110 FLAGS are the same used by the tree dumping functions (see TDF_* in
2111 tree.h). */
2113 void
2114 gimple_dump_cfg (FILE *file, int flags)
2116 if (flags & TDF_DETAILS)
2118 dump_function_header (file, current_function_decl, flags);
2119 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2120 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2121 last_basic_block_for_fn (cfun));
2123 brief_dump_cfg (file, flags | TDF_COMMENT);
2124 fprintf (file, "\n");
2127 if (flags & TDF_STATS)
2128 dump_cfg_stats (file);
2130 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2134 /* Dump CFG statistics on FILE. */
2136 void
2137 dump_cfg_stats (FILE *file)
2139 static long max_num_merged_labels = 0;
2140 unsigned long size, total = 0;
2141 long num_edges;
2142 basic_block bb;
2143 const char * const fmt_str = "%-30s%-13s%12s\n";
2144 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2145 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2146 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2147 const char *funcname = current_function_name ();
2149 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2151 fprintf (file, "---------------------------------------------------------\n");
2152 fprintf (file, fmt_str, "", " Number of ", "Memory");
2153 fprintf (file, fmt_str, "", " instances ", "used ");
2154 fprintf (file, "---------------------------------------------------------\n");
2156 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2157 total += size;
2158 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2159 SCALE (size), LABEL (size));
2161 num_edges = 0;
2162 FOR_EACH_BB_FN (bb, cfun)
2163 num_edges += EDGE_COUNT (bb->succs);
2164 size = num_edges * sizeof (struct edge_def);
2165 total += size;
2166 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2168 fprintf (file, "---------------------------------------------------------\n");
2169 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2170 LABEL (total));
2171 fprintf (file, "---------------------------------------------------------\n");
2172 fprintf (file, "\n");
2174 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2175 max_num_merged_labels = cfg_stats.num_merged_labels;
2177 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2178 cfg_stats.num_merged_labels, max_num_merged_labels);
2180 fprintf (file, "\n");
2184 /* Dump CFG statistics on stderr. Keep extern so that it's always
2185 linked in the final executable. */
2187 DEBUG_FUNCTION void
2188 debug_cfg_stats (void)
2190 dump_cfg_stats (stderr);
2193 /*---------------------------------------------------------------------------
2194 Miscellaneous helpers
2195 ---------------------------------------------------------------------------*/
2197 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2198 flow. Transfers of control flow associated with EH are excluded. */
2200 static bool
2201 call_can_make_abnormal_goto (gimple t)
2203 /* If the function has no non-local labels, then a call cannot make an
2204 abnormal transfer of control. */
2205 if (!cfun->has_nonlocal_label
2206 && !cfun->calls_setjmp)
2207 return false;
2209 /* Likewise if the call has no side effects. */
2210 if (!gimple_has_side_effects (t))
2211 return false;
2213 /* Likewise if the called function is leaf. */
2214 if (gimple_call_flags (t) & ECF_LEAF)
2215 return false;
2217 return true;
2221 /* Return true if T can make an abnormal transfer of control flow.
2222 Transfers of control flow associated with EH are excluded. */
2224 bool
2225 stmt_can_make_abnormal_goto (gimple t)
2227 if (computed_goto_p (t))
2228 return true;
2229 if (is_gimple_call (t))
2230 return call_can_make_abnormal_goto (t);
2231 return false;
2235 /* Return true if T represents a stmt that always transfers control. */
2237 bool
2238 is_ctrl_stmt (gimple t)
2240 switch (gimple_code (t))
2242 case GIMPLE_COND:
2243 case GIMPLE_SWITCH:
2244 case GIMPLE_GOTO:
2245 case GIMPLE_RETURN:
2246 case GIMPLE_RESX:
2247 return true;
2248 default:
2249 return false;
2254 /* Return true if T is a statement that may alter the flow of control
2255 (e.g., a call to a non-returning function). */
2257 bool
2258 is_ctrl_altering_stmt (gimple t)
2260 gcc_assert (t);
2262 switch (gimple_code (t))
2264 case GIMPLE_CALL:
2266 int flags = gimple_call_flags (t);
2268 /* A call alters control flow if it can make an abnormal goto. */
2269 if (call_can_make_abnormal_goto (t))
2270 return true;
2272 /* A call also alters control flow if it does not return. */
2273 if (flags & ECF_NORETURN)
2274 return true;
2276 /* TM ending statements have backedges out of the transaction.
2277 Return true so we split the basic block containing them.
2278 Note that the TM_BUILTIN test is merely an optimization. */
2279 if ((flags & ECF_TM_BUILTIN)
2280 && is_tm_ending_fndecl (gimple_call_fndecl (t)))
2281 return true;
2283 /* BUILT_IN_RETURN call is same as return statement. */
2284 if (gimple_call_builtin_p (t, BUILT_IN_RETURN))
2285 return true;
2287 break;
2289 case GIMPLE_EH_DISPATCH:
2290 /* EH_DISPATCH branches to the individual catch handlers at
2291 this level of a try or allowed-exceptions region. It can
2292 fallthru to the next statement as well. */
2293 return true;
2295 case GIMPLE_ASM:
2296 if (gimple_asm_nlabels (t) > 0)
2297 return true;
2298 break;
2300 CASE_GIMPLE_OMP:
2301 /* OpenMP directives alter control flow. */
2302 return true;
2304 case GIMPLE_TRANSACTION:
2305 /* A transaction start alters control flow. */
2306 return true;
2308 default:
2309 break;
2312 /* If a statement can throw, it alters control flow. */
2313 return stmt_can_throw_internal (t);
2317 /* Return true if T is a simple local goto. */
2319 bool
2320 simple_goto_p (gimple t)
2322 return (gimple_code (t) == GIMPLE_GOTO
2323 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2327 /* Return true if STMT should start a new basic block. PREV_STMT is
2328 the statement preceding STMT. It is used when STMT is a label or a
2329 case label. Labels should only start a new basic block if their
2330 previous statement wasn't a label. Otherwise, sequence of labels
2331 would generate unnecessary basic blocks that only contain a single
2332 label. */
2334 static inline bool
2335 stmt_starts_bb_p (gimple stmt, gimple prev_stmt)
2337 if (stmt == NULL)
2338 return false;
2340 /* Labels start a new basic block only if the preceding statement
2341 wasn't a label of the same type. This prevents the creation of
2342 consecutive blocks that have nothing but a single label. */
2343 if (gimple_code (stmt) == GIMPLE_LABEL)
2345 /* Nonlocal and computed GOTO targets always start a new block. */
2346 if (DECL_NONLOCAL (gimple_label_label (stmt))
2347 || FORCED_LABEL (gimple_label_label (stmt)))
2348 return true;
2350 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2352 if (DECL_NONLOCAL (gimple_label_label (prev_stmt)))
2353 return true;
2355 cfg_stats.num_merged_labels++;
2356 return false;
2358 else
2359 return true;
2361 else if (gimple_code (stmt) == GIMPLE_CALL
2362 && gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2363 /* setjmp acts similar to a nonlocal GOTO target and thus should
2364 start a new block. */
2365 return true;
2367 return false;
2371 /* Return true if T should end a basic block. */
2373 bool
2374 stmt_ends_bb_p (gimple t)
2376 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2379 /* Remove block annotations and other data structures. */
2381 void
2382 delete_tree_cfg_annotations (void)
2384 vec_free (label_to_block_map_for_fn (cfun));
2388 /* Return the first statement in basic block BB. */
2390 gimple
2391 first_stmt (basic_block bb)
2393 gimple_stmt_iterator i = gsi_start_bb (bb);
2394 gimple stmt = NULL;
2396 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2398 gsi_next (&i);
2399 stmt = NULL;
2401 return stmt;
2404 /* Return the first non-label statement in basic block BB. */
2406 static gimple
2407 first_non_label_stmt (basic_block bb)
2409 gimple_stmt_iterator i = gsi_start_bb (bb);
2410 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2411 gsi_next (&i);
2412 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2415 /* Return the last statement in basic block BB. */
2417 gimple
2418 last_stmt (basic_block bb)
2420 gimple_stmt_iterator i = gsi_last_bb (bb);
2421 gimple stmt = NULL;
2423 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2425 gsi_prev (&i);
2426 stmt = NULL;
2428 return stmt;
2431 /* Return the last statement of an otherwise empty block. Return NULL
2432 if the block is totally empty, or if it contains more than one
2433 statement. */
2435 gimple
2436 last_and_only_stmt (basic_block bb)
2438 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2439 gimple last, prev;
2441 if (gsi_end_p (i))
2442 return NULL;
2444 last = gsi_stmt (i);
2445 gsi_prev_nondebug (&i);
2446 if (gsi_end_p (i))
2447 return last;
2449 /* Empty statements should no longer appear in the instruction stream.
2450 Everything that might have appeared before should be deleted by
2451 remove_useless_stmts, and the optimizers should just gsi_remove
2452 instead of smashing with build_empty_stmt.
2454 Thus the only thing that should appear here in a block containing
2455 one executable statement is a label. */
2456 prev = gsi_stmt (i);
2457 if (gimple_code (prev) == GIMPLE_LABEL)
2458 return last;
2459 else
2460 return NULL;
2463 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2465 static void
2466 reinstall_phi_args (edge new_edge, edge old_edge)
2468 edge_var_map_vector *v;
2469 edge_var_map *vm;
2470 int i;
2471 gimple_stmt_iterator phis;
2473 v = redirect_edge_var_map_vector (old_edge);
2474 if (!v)
2475 return;
2477 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2478 v->iterate (i, &vm) && !gsi_end_p (phis);
2479 i++, gsi_next (&phis))
2481 gimple phi = gsi_stmt (phis);
2482 tree result = redirect_edge_var_map_result (vm);
2483 tree arg = redirect_edge_var_map_def (vm);
2485 gcc_assert (result == gimple_phi_result (phi));
2487 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2490 redirect_edge_var_map_clear (old_edge);
2493 /* Returns the basic block after which the new basic block created
2494 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2495 near its "logical" location. This is of most help to humans looking
2496 at debugging dumps. */
2498 static basic_block
2499 split_edge_bb_loc (edge edge_in)
2501 basic_block dest = edge_in->dest;
2502 basic_block dest_prev = dest->prev_bb;
2504 if (dest_prev)
2506 edge e = find_edge (dest_prev, dest);
2507 if (e && !(e->flags & EDGE_COMPLEX))
2508 return edge_in->src;
2510 return dest_prev;
2513 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2514 Abort on abnormal edges. */
2516 static basic_block
2517 gimple_split_edge (edge edge_in)
2519 basic_block new_bb, after_bb, dest;
2520 edge new_edge, e;
2522 /* Abnormal edges cannot be split. */
2523 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2525 dest = edge_in->dest;
2527 after_bb = split_edge_bb_loc (edge_in);
2529 new_bb = create_empty_bb (after_bb);
2530 new_bb->frequency = EDGE_FREQUENCY (edge_in);
2531 new_bb->count = edge_in->count;
2532 new_edge = make_edge (new_bb, dest, EDGE_FALLTHRU);
2533 new_edge->probability = REG_BR_PROB_BASE;
2534 new_edge->count = edge_in->count;
2536 e = redirect_edge_and_branch (edge_in, new_bb);
2537 gcc_assert (e == edge_in);
2538 reinstall_phi_args (new_edge, e);
2540 return new_bb;
2544 /* Verify properties of the address expression T with base object BASE. */
2546 static tree
2547 verify_address (tree t, tree base)
2549 bool old_constant;
2550 bool old_side_effects;
2551 bool new_constant;
2552 bool new_side_effects;
2554 old_constant = TREE_CONSTANT (t);
2555 old_side_effects = TREE_SIDE_EFFECTS (t);
2557 recompute_tree_invariant_for_addr_expr (t);
2558 new_side_effects = TREE_SIDE_EFFECTS (t);
2559 new_constant = TREE_CONSTANT (t);
2561 if (old_constant != new_constant)
2563 error ("constant not recomputed when ADDR_EXPR changed");
2564 return t;
2566 if (old_side_effects != new_side_effects)
2568 error ("side effects not recomputed when ADDR_EXPR changed");
2569 return t;
2572 if (!(TREE_CODE (base) == VAR_DECL
2573 || TREE_CODE (base) == PARM_DECL
2574 || TREE_CODE (base) == RESULT_DECL))
2575 return NULL_TREE;
2577 if (DECL_GIMPLE_REG_P (base))
2579 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2580 return base;
2583 return NULL_TREE;
2586 /* Callback for walk_tree, check that all elements with address taken are
2587 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2588 inside a PHI node. */
2590 static tree
2591 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2593 tree t = *tp, x;
2595 if (TYPE_P (t))
2596 *walk_subtrees = 0;
2598 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2599 #define CHECK_OP(N, MSG) \
2600 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2601 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2603 switch (TREE_CODE (t))
2605 case SSA_NAME:
2606 if (SSA_NAME_IN_FREE_LIST (t))
2608 error ("SSA name in freelist but still referenced");
2609 return *tp;
2611 break;
2613 case INDIRECT_REF:
2614 error ("INDIRECT_REF in gimple IL");
2615 return t;
2617 case MEM_REF:
2618 x = TREE_OPERAND (t, 0);
2619 if (!POINTER_TYPE_P (TREE_TYPE (x))
2620 || !is_gimple_mem_ref_addr (x))
2622 error ("invalid first operand of MEM_REF");
2623 return x;
2625 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
2626 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
2628 error ("invalid offset operand of MEM_REF");
2629 return TREE_OPERAND (t, 1);
2631 if (TREE_CODE (x) == ADDR_EXPR
2632 && (x = verify_address (x, TREE_OPERAND (x, 0))))
2633 return x;
2634 *walk_subtrees = 0;
2635 break;
2637 case ASSERT_EXPR:
2638 x = fold (ASSERT_EXPR_COND (t));
2639 if (x == boolean_false_node)
2641 error ("ASSERT_EXPR with an always-false condition");
2642 return *tp;
2644 break;
2646 case MODIFY_EXPR:
2647 error ("MODIFY_EXPR not expected while having tuples");
2648 return *tp;
2650 case ADDR_EXPR:
2652 tree tem;
2654 gcc_assert (is_gimple_address (t));
2656 /* Skip any references (they will be checked when we recurse down the
2657 tree) and ensure that any variable used as a prefix is marked
2658 addressable. */
2659 for (x = TREE_OPERAND (t, 0);
2660 handled_component_p (x);
2661 x = TREE_OPERAND (x, 0))
2664 if ((tem = verify_address (t, x)))
2665 return tem;
2667 if (!(TREE_CODE (x) == VAR_DECL
2668 || TREE_CODE (x) == PARM_DECL
2669 || TREE_CODE (x) == RESULT_DECL))
2670 return NULL;
2672 if (!TREE_ADDRESSABLE (x))
2674 error ("address taken, but ADDRESSABLE bit not set");
2675 return x;
2678 break;
2681 case COND_EXPR:
2682 x = COND_EXPR_COND (t);
2683 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
2685 error ("non-integral used in condition");
2686 return x;
2688 if (!is_gimple_condexpr (x))
2690 error ("invalid conditional operand");
2691 return x;
2693 break;
2695 case NON_LVALUE_EXPR:
2696 case TRUTH_NOT_EXPR:
2697 gcc_unreachable ();
2699 CASE_CONVERT:
2700 case FIX_TRUNC_EXPR:
2701 case FLOAT_EXPR:
2702 case NEGATE_EXPR:
2703 case ABS_EXPR:
2704 case BIT_NOT_EXPR:
2705 CHECK_OP (0, "invalid operand to unary operator");
2706 break;
2708 case REALPART_EXPR:
2709 case IMAGPART_EXPR:
2710 case BIT_FIELD_REF:
2711 if (!is_gimple_reg_type (TREE_TYPE (t)))
2713 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
2714 return t;
2717 if (TREE_CODE (t) == BIT_FIELD_REF)
2719 tree t0 = TREE_OPERAND (t, 0);
2720 tree t1 = TREE_OPERAND (t, 1);
2721 tree t2 = TREE_OPERAND (t, 2);
2722 if (!tree_fits_uhwi_p (t1)
2723 || !tree_fits_uhwi_p (t2))
2725 error ("invalid position or size operand to BIT_FIELD_REF");
2726 return t;
2728 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
2729 && (TYPE_PRECISION (TREE_TYPE (t))
2730 != tree_to_uhwi (t1)))
2732 error ("integral result type precision does not match "
2733 "field size of BIT_FIELD_REF");
2734 return t;
2736 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
2737 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
2738 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t)))
2739 != tree_to_uhwi (t1)))
2741 error ("mode precision of non-integral result does not "
2742 "match field size of BIT_FIELD_REF");
2743 return t;
2745 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
2746 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
2747 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
2749 error ("position plus size exceeds size of referenced object in "
2750 "BIT_FIELD_REF");
2751 return t;
2754 t = TREE_OPERAND (t, 0);
2756 /* Fall-through. */
2757 case COMPONENT_REF:
2758 case ARRAY_REF:
2759 case ARRAY_RANGE_REF:
2760 case VIEW_CONVERT_EXPR:
2761 /* We have a nest of references. Verify that each of the operands
2762 that determine where to reference is either a constant or a variable,
2763 verify that the base is valid, and then show we've already checked
2764 the subtrees. */
2765 while (handled_component_p (t))
2767 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
2768 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2769 else if (TREE_CODE (t) == ARRAY_REF
2770 || TREE_CODE (t) == ARRAY_RANGE_REF)
2772 CHECK_OP (1, "invalid array index");
2773 if (TREE_OPERAND (t, 2))
2774 CHECK_OP (2, "invalid array lower bound");
2775 if (TREE_OPERAND (t, 3))
2776 CHECK_OP (3, "invalid array stride");
2778 else if (TREE_CODE (t) == BIT_FIELD_REF
2779 || TREE_CODE (t) == REALPART_EXPR
2780 || TREE_CODE (t) == IMAGPART_EXPR)
2782 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
2783 "REALPART_EXPR");
2784 return t;
2787 t = TREE_OPERAND (t, 0);
2790 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
2792 error ("invalid reference prefix");
2793 return t;
2795 *walk_subtrees = 0;
2796 break;
2797 case PLUS_EXPR:
2798 case MINUS_EXPR:
2799 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2800 POINTER_PLUS_EXPR. */
2801 if (POINTER_TYPE_P (TREE_TYPE (t)))
2803 error ("invalid operand to plus/minus, type is a pointer");
2804 return t;
2806 CHECK_OP (0, "invalid operand to binary operator");
2807 CHECK_OP (1, "invalid operand to binary operator");
2808 break;
2810 case POINTER_PLUS_EXPR:
2811 /* Check to make sure the first operand is a pointer or reference type. */
2812 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
2814 error ("invalid operand to pointer plus, first operand is not a pointer");
2815 return t;
2817 /* Check to make sure the second operand is a ptrofftype. */
2818 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
2820 error ("invalid operand to pointer plus, second operand is not an "
2821 "integer type of appropriate width");
2822 return t;
2824 /* FALLTHROUGH */
2825 case LT_EXPR:
2826 case LE_EXPR:
2827 case GT_EXPR:
2828 case GE_EXPR:
2829 case EQ_EXPR:
2830 case NE_EXPR:
2831 case UNORDERED_EXPR:
2832 case ORDERED_EXPR:
2833 case UNLT_EXPR:
2834 case UNLE_EXPR:
2835 case UNGT_EXPR:
2836 case UNGE_EXPR:
2837 case UNEQ_EXPR:
2838 case LTGT_EXPR:
2839 case MULT_EXPR:
2840 case TRUNC_DIV_EXPR:
2841 case CEIL_DIV_EXPR:
2842 case FLOOR_DIV_EXPR:
2843 case ROUND_DIV_EXPR:
2844 case TRUNC_MOD_EXPR:
2845 case CEIL_MOD_EXPR:
2846 case FLOOR_MOD_EXPR:
2847 case ROUND_MOD_EXPR:
2848 case RDIV_EXPR:
2849 case EXACT_DIV_EXPR:
2850 case MIN_EXPR:
2851 case MAX_EXPR:
2852 case LSHIFT_EXPR:
2853 case RSHIFT_EXPR:
2854 case LROTATE_EXPR:
2855 case RROTATE_EXPR:
2856 case BIT_IOR_EXPR:
2857 case BIT_XOR_EXPR:
2858 case BIT_AND_EXPR:
2859 CHECK_OP (0, "invalid operand to binary operator");
2860 CHECK_OP (1, "invalid operand to binary operator");
2861 break;
2863 case CONSTRUCTOR:
2864 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2865 *walk_subtrees = 0;
2866 break;
2868 case CASE_LABEL_EXPR:
2869 if (CASE_CHAIN (t))
2871 error ("invalid CASE_CHAIN");
2872 return t;
2874 break;
2876 default:
2877 break;
2879 return NULL;
2881 #undef CHECK_OP
2885 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2886 Returns true if there is an error, otherwise false. */
2888 static bool
2889 verify_types_in_gimple_min_lval (tree expr)
2891 tree op;
2893 if (is_gimple_id (expr))
2894 return false;
2896 if (TREE_CODE (expr) != TARGET_MEM_REF
2897 && TREE_CODE (expr) != MEM_REF)
2899 error ("invalid expression for min lvalue");
2900 return true;
2903 /* TARGET_MEM_REFs are strange beasts. */
2904 if (TREE_CODE (expr) == TARGET_MEM_REF)
2905 return false;
2907 op = TREE_OPERAND (expr, 0);
2908 if (!is_gimple_val (op))
2910 error ("invalid operand in indirect reference");
2911 debug_generic_stmt (op);
2912 return true;
2914 /* Memory references now generally can involve a value conversion. */
2916 return false;
2919 /* Verify if EXPR is a valid GIMPLE reference expression. If
2920 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2921 if there is an error, otherwise false. */
2923 static bool
2924 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
2926 while (handled_component_p (expr))
2928 tree op = TREE_OPERAND (expr, 0);
2930 if (TREE_CODE (expr) == ARRAY_REF
2931 || TREE_CODE (expr) == ARRAY_RANGE_REF)
2933 if (!is_gimple_val (TREE_OPERAND (expr, 1))
2934 || (TREE_OPERAND (expr, 2)
2935 && !is_gimple_val (TREE_OPERAND (expr, 2)))
2936 || (TREE_OPERAND (expr, 3)
2937 && !is_gimple_val (TREE_OPERAND (expr, 3))))
2939 error ("invalid operands to array reference");
2940 debug_generic_stmt (expr);
2941 return true;
2945 /* Verify if the reference array element types are compatible. */
2946 if (TREE_CODE (expr) == ARRAY_REF
2947 && !useless_type_conversion_p (TREE_TYPE (expr),
2948 TREE_TYPE (TREE_TYPE (op))))
2950 error ("type mismatch in array reference");
2951 debug_generic_stmt (TREE_TYPE (expr));
2952 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2953 return true;
2955 if (TREE_CODE (expr) == ARRAY_RANGE_REF
2956 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
2957 TREE_TYPE (TREE_TYPE (op))))
2959 error ("type mismatch in array range reference");
2960 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
2961 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2962 return true;
2965 if ((TREE_CODE (expr) == REALPART_EXPR
2966 || TREE_CODE (expr) == IMAGPART_EXPR)
2967 && !useless_type_conversion_p (TREE_TYPE (expr),
2968 TREE_TYPE (TREE_TYPE (op))))
2970 error ("type mismatch in real/imagpart reference");
2971 debug_generic_stmt (TREE_TYPE (expr));
2972 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
2973 return true;
2976 if (TREE_CODE (expr) == COMPONENT_REF
2977 && !useless_type_conversion_p (TREE_TYPE (expr),
2978 TREE_TYPE (TREE_OPERAND (expr, 1))))
2980 error ("type mismatch in component reference");
2981 debug_generic_stmt (TREE_TYPE (expr));
2982 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
2983 return true;
2986 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2988 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2989 that their operand is not an SSA name or an invariant when
2990 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2991 bug). Otherwise there is nothing to verify, gross mismatches at
2992 most invoke undefined behavior. */
2993 if (require_lvalue
2994 && (TREE_CODE (op) == SSA_NAME
2995 || is_gimple_min_invariant (op)))
2997 error ("conversion of an SSA_NAME on the left hand side");
2998 debug_generic_stmt (expr);
2999 return true;
3001 else if (TREE_CODE (op) == SSA_NAME
3002 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3004 error ("conversion of register to a different size");
3005 debug_generic_stmt (expr);
3006 return true;
3008 else if (!handled_component_p (op))
3009 return false;
3012 expr = op;
3015 if (TREE_CODE (expr) == MEM_REF)
3017 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3019 error ("invalid address operand in MEM_REF");
3020 debug_generic_stmt (expr);
3021 return true;
3023 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3024 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3026 error ("invalid offset operand in MEM_REF");
3027 debug_generic_stmt (expr);
3028 return true;
3031 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3033 if (!TMR_BASE (expr)
3034 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3036 error ("invalid address operand in TARGET_MEM_REF");
3037 return true;
3039 if (!TMR_OFFSET (expr)
3040 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3041 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3043 error ("invalid offset operand in TARGET_MEM_REF");
3044 debug_generic_stmt (expr);
3045 return true;
3049 return ((require_lvalue || !is_gimple_min_invariant (expr))
3050 && verify_types_in_gimple_min_lval (expr));
3053 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3054 list of pointer-to types that is trivially convertible to DEST. */
3056 static bool
3057 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3059 tree src;
3061 if (!TYPE_POINTER_TO (src_obj))
3062 return true;
3064 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3065 if (useless_type_conversion_p (dest, src))
3066 return true;
3068 return false;
3071 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3072 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3074 static bool
3075 valid_fixed_convert_types_p (tree type1, tree type2)
3077 return (FIXED_POINT_TYPE_P (type1)
3078 && (INTEGRAL_TYPE_P (type2)
3079 || SCALAR_FLOAT_TYPE_P (type2)
3080 || FIXED_POINT_TYPE_P (type2)));
3083 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3084 is a problem, otherwise false. */
3086 static bool
3087 verify_gimple_call (gimple stmt)
3089 tree fn = gimple_call_fn (stmt);
3090 tree fntype, fndecl;
3091 unsigned i;
3093 if (gimple_call_internal_p (stmt))
3095 if (fn)
3097 error ("gimple call has two targets");
3098 debug_generic_stmt (fn);
3099 return true;
3102 else
3104 if (!fn)
3106 error ("gimple call has no target");
3107 return true;
3111 if (fn && !is_gimple_call_addr (fn))
3113 error ("invalid function in gimple call");
3114 debug_generic_stmt (fn);
3115 return true;
3118 if (fn
3119 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3120 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3121 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3123 error ("non-function in gimple call");
3124 return true;
3127 fndecl = gimple_call_fndecl (stmt);
3128 if (fndecl
3129 && TREE_CODE (fndecl) == FUNCTION_DECL
3130 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3131 && !DECL_PURE_P (fndecl)
3132 && !TREE_READONLY (fndecl))
3134 error ("invalid pure const state for function");
3135 return true;
3138 if (gimple_call_lhs (stmt)
3139 && (!is_gimple_lvalue (gimple_call_lhs (stmt))
3140 || verify_types_in_gimple_reference (gimple_call_lhs (stmt), true)))
3142 error ("invalid LHS in gimple call");
3143 return true;
3146 if (gimple_call_lhs (stmt) && gimple_call_noreturn_p (stmt))
3148 error ("LHS in noreturn call");
3149 return true;
3152 fntype = gimple_call_fntype (stmt);
3153 if (fntype
3154 && gimple_call_lhs (stmt)
3155 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt)),
3156 TREE_TYPE (fntype))
3157 /* ??? At least C++ misses conversions at assignments from
3158 void * call results.
3159 ??? Java is completely off. Especially with functions
3160 returning java.lang.Object.
3161 For now simply allow arbitrary pointer type conversions. */
3162 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt)))
3163 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3165 error ("invalid conversion in gimple call");
3166 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt)));
3167 debug_generic_stmt (TREE_TYPE (fntype));
3168 return true;
3171 if (gimple_call_chain (stmt)
3172 && !is_gimple_val (gimple_call_chain (stmt)))
3174 error ("invalid static chain in gimple call");
3175 debug_generic_stmt (gimple_call_chain (stmt));
3176 return true;
3179 /* If there is a static chain argument, this should not be an indirect
3180 call, and the decl should have DECL_STATIC_CHAIN set. */
3181 if (gimple_call_chain (stmt))
3183 if (!gimple_call_fndecl (stmt))
3185 error ("static chain in indirect gimple call");
3186 return true;
3188 fn = TREE_OPERAND (fn, 0);
3190 if (!DECL_STATIC_CHAIN (fn))
3192 error ("static chain with function that doesn%'t use one");
3193 return true;
3197 /* ??? The C frontend passes unpromoted arguments in case it
3198 didn't see a function declaration before the call. So for now
3199 leave the call arguments mostly unverified. Once we gimplify
3200 unit-at-a-time we have a chance to fix this. */
3202 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3204 tree arg = gimple_call_arg (stmt, i);
3205 if ((is_gimple_reg_type (TREE_TYPE (arg))
3206 && !is_gimple_val (arg))
3207 || (!is_gimple_reg_type (TREE_TYPE (arg))
3208 && !is_gimple_lvalue (arg)))
3210 error ("invalid argument to gimple call");
3211 debug_generic_expr (arg);
3212 return true;
3216 return false;
3219 /* Verifies the gimple comparison with the result type TYPE and
3220 the operands OP0 and OP1. */
3222 static bool
3223 verify_gimple_comparison (tree type, tree op0, tree op1)
3225 tree op0_type = TREE_TYPE (op0);
3226 tree op1_type = TREE_TYPE (op1);
3228 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3230 error ("invalid operands in gimple comparison");
3231 return true;
3234 /* For comparisons we do not have the operations type as the
3235 effective type the comparison is carried out in. Instead
3236 we require that either the first operand is trivially
3237 convertible into the second, or the other way around.
3238 Because we special-case pointers to void we allow
3239 comparisons of pointers with the same mode as well. */
3240 if (!useless_type_conversion_p (op0_type, op1_type)
3241 && !useless_type_conversion_p (op1_type, op0_type)
3242 && (!POINTER_TYPE_P (op0_type)
3243 || !POINTER_TYPE_P (op1_type)
3244 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3246 error ("mismatching comparison operand types");
3247 debug_generic_expr (op0_type);
3248 debug_generic_expr (op1_type);
3249 return true;
3252 /* The resulting type of a comparison may be an effective boolean type. */
3253 if (INTEGRAL_TYPE_P (type)
3254 && (TREE_CODE (type) == BOOLEAN_TYPE
3255 || TYPE_PRECISION (type) == 1))
3257 if (TREE_CODE (op0_type) == VECTOR_TYPE
3258 || TREE_CODE (op1_type) == VECTOR_TYPE)
3260 error ("vector comparison returning a boolean");
3261 debug_generic_expr (op0_type);
3262 debug_generic_expr (op1_type);
3263 return true;
3266 /* Or an integer vector type with the same size and element count
3267 as the comparison operand types. */
3268 else if (TREE_CODE (type) == VECTOR_TYPE
3269 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE)
3271 if (TREE_CODE (op0_type) != VECTOR_TYPE
3272 || TREE_CODE (op1_type) != VECTOR_TYPE)
3274 error ("non-vector operands in vector comparison");
3275 debug_generic_expr (op0_type);
3276 debug_generic_expr (op1_type);
3277 return true;
3280 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type)
3281 || (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (type)))
3282 != GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0_type))))
3283 /* The result of a vector comparison is of signed
3284 integral type. */
3285 || TYPE_UNSIGNED (TREE_TYPE (type)))
3287 error ("invalid vector comparison resulting type");
3288 debug_generic_expr (type);
3289 return true;
3292 else
3294 error ("bogus comparison result type");
3295 debug_generic_expr (type);
3296 return true;
3299 return false;
3302 /* Verify a gimple assignment statement STMT with an unary rhs.
3303 Returns true if anything is wrong. */
3305 static bool
3306 verify_gimple_assign_unary (gimple stmt)
3308 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3309 tree lhs = gimple_assign_lhs (stmt);
3310 tree lhs_type = TREE_TYPE (lhs);
3311 tree rhs1 = gimple_assign_rhs1 (stmt);
3312 tree rhs1_type = TREE_TYPE (rhs1);
3314 if (!is_gimple_reg (lhs))
3316 error ("non-register as LHS of unary operation");
3317 return true;
3320 if (!is_gimple_val (rhs1))
3322 error ("invalid operand in unary operation");
3323 return true;
3326 /* First handle conversions. */
3327 switch (rhs_code)
3329 CASE_CONVERT:
3331 /* Allow conversions from pointer type to integral type only if
3332 there is no sign or zero extension involved.
3333 For targets were the precision of ptrofftype doesn't match that
3334 of pointers we need to allow arbitrary conversions to ptrofftype. */
3335 if ((POINTER_TYPE_P (lhs_type)
3336 && INTEGRAL_TYPE_P (rhs1_type))
3337 || (POINTER_TYPE_P (rhs1_type)
3338 && INTEGRAL_TYPE_P (lhs_type)
3339 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3340 || ptrofftype_p (sizetype))))
3341 return false;
3343 /* Allow conversion from integral to offset type and vice versa. */
3344 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3345 && INTEGRAL_TYPE_P (rhs1_type))
3346 || (INTEGRAL_TYPE_P (lhs_type)
3347 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3348 return false;
3350 /* Otherwise assert we are converting between types of the
3351 same kind. */
3352 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3354 error ("invalid types in nop conversion");
3355 debug_generic_expr (lhs_type);
3356 debug_generic_expr (rhs1_type);
3357 return true;
3360 return false;
3363 case ADDR_SPACE_CONVERT_EXPR:
3365 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3366 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3367 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3369 error ("invalid types in address space conversion");
3370 debug_generic_expr (lhs_type);
3371 debug_generic_expr (rhs1_type);
3372 return true;
3375 return false;
3378 case FIXED_CONVERT_EXPR:
3380 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3381 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3383 error ("invalid types in fixed-point conversion");
3384 debug_generic_expr (lhs_type);
3385 debug_generic_expr (rhs1_type);
3386 return true;
3389 return false;
3392 case FLOAT_EXPR:
3394 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3395 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3396 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3398 error ("invalid types in conversion to floating point");
3399 debug_generic_expr (lhs_type);
3400 debug_generic_expr (rhs1_type);
3401 return true;
3404 return false;
3407 case FIX_TRUNC_EXPR:
3409 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3410 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3411 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3413 error ("invalid types in conversion to integer");
3414 debug_generic_expr (lhs_type);
3415 debug_generic_expr (rhs1_type);
3416 return true;
3419 return false;
3422 case VEC_UNPACK_HI_EXPR:
3423 case VEC_UNPACK_LO_EXPR:
3424 case REDUC_MAX_EXPR:
3425 case REDUC_MIN_EXPR:
3426 case REDUC_PLUS_EXPR:
3427 case VEC_UNPACK_FLOAT_HI_EXPR:
3428 case VEC_UNPACK_FLOAT_LO_EXPR:
3429 /* FIXME. */
3430 return false;
3432 case NEGATE_EXPR:
3433 case ABS_EXPR:
3434 case BIT_NOT_EXPR:
3435 case PAREN_EXPR:
3436 case NON_LVALUE_EXPR:
3437 case CONJ_EXPR:
3438 break;
3440 default:
3441 gcc_unreachable ();
3444 /* For the remaining codes assert there is no conversion involved. */
3445 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3447 error ("non-trivial conversion in unary operation");
3448 debug_generic_expr (lhs_type);
3449 debug_generic_expr (rhs1_type);
3450 return true;
3453 return false;
3456 /* Verify a gimple assignment statement STMT with a binary rhs.
3457 Returns true if anything is wrong. */
3459 static bool
3460 verify_gimple_assign_binary (gimple stmt)
3462 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3463 tree lhs = gimple_assign_lhs (stmt);
3464 tree lhs_type = TREE_TYPE (lhs);
3465 tree rhs1 = gimple_assign_rhs1 (stmt);
3466 tree rhs1_type = TREE_TYPE (rhs1);
3467 tree rhs2 = gimple_assign_rhs2 (stmt);
3468 tree rhs2_type = TREE_TYPE (rhs2);
3470 if (!is_gimple_reg (lhs))
3472 error ("non-register as LHS of binary operation");
3473 return true;
3476 if (!is_gimple_val (rhs1)
3477 || !is_gimple_val (rhs2))
3479 error ("invalid operands in binary operation");
3480 return true;
3483 /* First handle operations that involve different types. */
3484 switch (rhs_code)
3486 case COMPLEX_EXPR:
3488 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3489 || !(INTEGRAL_TYPE_P (rhs1_type)
3490 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3491 || !(INTEGRAL_TYPE_P (rhs2_type)
3492 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3494 error ("type mismatch in complex expression");
3495 debug_generic_expr (lhs_type);
3496 debug_generic_expr (rhs1_type);
3497 debug_generic_expr (rhs2_type);
3498 return true;
3501 return false;
3504 case LSHIFT_EXPR:
3505 case RSHIFT_EXPR:
3506 case LROTATE_EXPR:
3507 case RROTATE_EXPR:
3509 /* Shifts and rotates are ok on integral types, fixed point
3510 types and integer vector types. */
3511 if ((!INTEGRAL_TYPE_P (rhs1_type)
3512 && !FIXED_POINT_TYPE_P (rhs1_type)
3513 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3514 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3515 || (!INTEGRAL_TYPE_P (rhs2_type)
3516 /* Vector shifts of vectors are also ok. */
3517 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3518 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3519 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3520 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3521 || !useless_type_conversion_p (lhs_type, rhs1_type))
3523 error ("type mismatch in shift expression");
3524 debug_generic_expr (lhs_type);
3525 debug_generic_expr (rhs1_type);
3526 debug_generic_expr (rhs2_type);
3527 return true;
3530 return false;
3533 case VEC_LSHIFT_EXPR:
3534 case VEC_RSHIFT_EXPR:
3536 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3537 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3538 || POINTER_TYPE_P (TREE_TYPE (rhs1_type))
3539 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type))
3540 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type)))
3541 || (!INTEGRAL_TYPE_P (rhs2_type)
3542 && (TREE_CODE (rhs2_type) != VECTOR_TYPE
3543 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3544 || !useless_type_conversion_p (lhs_type, rhs1_type))
3546 error ("type mismatch in vector shift expression");
3547 debug_generic_expr (lhs_type);
3548 debug_generic_expr (rhs1_type);
3549 debug_generic_expr (rhs2_type);
3550 return true;
3552 /* For shifting a vector of non-integral components we
3553 only allow shifting by a constant multiple of the element size. */
3554 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3555 && (TREE_CODE (rhs2) != INTEGER_CST
3556 || !div_if_zero_remainder (EXACT_DIV_EXPR, rhs2,
3557 TYPE_SIZE (TREE_TYPE (rhs1_type)))))
3559 error ("non-element sized vector shift of floating point vector");
3560 return true;
3563 return false;
3566 case WIDEN_LSHIFT_EXPR:
3568 if (!INTEGRAL_TYPE_P (lhs_type)
3569 || !INTEGRAL_TYPE_P (rhs1_type)
3570 || TREE_CODE (rhs2) != INTEGER_CST
3571 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3573 error ("type mismatch in widening vector shift expression");
3574 debug_generic_expr (lhs_type);
3575 debug_generic_expr (rhs1_type);
3576 debug_generic_expr (rhs2_type);
3577 return true;
3580 return false;
3583 case VEC_WIDEN_LSHIFT_HI_EXPR:
3584 case VEC_WIDEN_LSHIFT_LO_EXPR:
3586 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3587 || TREE_CODE (lhs_type) != VECTOR_TYPE
3588 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3589 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3590 || TREE_CODE (rhs2) != INTEGER_CST
3591 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3592 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3594 error ("type mismatch in widening vector shift expression");
3595 debug_generic_expr (lhs_type);
3596 debug_generic_expr (rhs1_type);
3597 debug_generic_expr (rhs2_type);
3598 return true;
3601 return false;
3604 case PLUS_EXPR:
3605 case MINUS_EXPR:
3607 tree lhs_etype = lhs_type;
3608 tree rhs1_etype = rhs1_type;
3609 tree rhs2_etype = rhs2_type;
3610 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3612 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3613 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
3615 error ("invalid non-vector operands to vector valued plus");
3616 return true;
3618 lhs_etype = TREE_TYPE (lhs_type);
3619 rhs1_etype = TREE_TYPE (rhs1_type);
3620 rhs2_etype = TREE_TYPE (rhs2_type);
3622 if (POINTER_TYPE_P (lhs_etype)
3623 || POINTER_TYPE_P (rhs1_etype)
3624 || POINTER_TYPE_P (rhs2_etype))
3626 error ("invalid (pointer) operands to plus/minus");
3627 return true;
3630 /* Continue with generic binary expression handling. */
3631 break;
3634 case POINTER_PLUS_EXPR:
3636 if (!POINTER_TYPE_P (rhs1_type)
3637 || !useless_type_conversion_p (lhs_type, rhs1_type)
3638 || !ptrofftype_p (rhs2_type))
3640 error ("type mismatch in pointer plus expression");
3641 debug_generic_stmt (lhs_type);
3642 debug_generic_stmt (rhs1_type);
3643 debug_generic_stmt (rhs2_type);
3644 return true;
3647 return false;
3650 case TRUTH_ANDIF_EXPR:
3651 case TRUTH_ORIF_EXPR:
3652 case TRUTH_AND_EXPR:
3653 case TRUTH_OR_EXPR:
3654 case TRUTH_XOR_EXPR:
3656 gcc_unreachable ();
3658 case LT_EXPR:
3659 case LE_EXPR:
3660 case GT_EXPR:
3661 case GE_EXPR:
3662 case EQ_EXPR:
3663 case NE_EXPR:
3664 case UNORDERED_EXPR:
3665 case ORDERED_EXPR:
3666 case UNLT_EXPR:
3667 case UNLE_EXPR:
3668 case UNGT_EXPR:
3669 case UNGE_EXPR:
3670 case UNEQ_EXPR:
3671 case LTGT_EXPR:
3672 /* Comparisons are also binary, but the result type is not
3673 connected to the operand types. */
3674 return verify_gimple_comparison (lhs_type, rhs1, rhs2);
3676 case WIDEN_MULT_EXPR:
3677 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
3678 return true;
3679 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
3680 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
3682 case WIDEN_SUM_EXPR:
3683 case VEC_WIDEN_MULT_HI_EXPR:
3684 case VEC_WIDEN_MULT_LO_EXPR:
3685 case VEC_WIDEN_MULT_EVEN_EXPR:
3686 case VEC_WIDEN_MULT_ODD_EXPR:
3687 case VEC_PACK_TRUNC_EXPR:
3688 case VEC_PACK_SAT_EXPR:
3689 case VEC_PACK_FIX_TRUNC_EXPR:
3690 /* FIXME. */
3691 return false;
3693 case MULT_EXPR:
3694 case MULT_HIGHPART_EXPR:
3695 case TRUNC_DIV_EXPR:
3696 case CEIL_DIV_EXPR:
3697 case FLOOR_DIV_EXPR:
3698 case ROUND_DIV_EXPR:
3699 case TRUNC_MOD_EXPR:
3700 case CEIL_MOD_EXPR:
3701 case FLOOR_MOD_EXPR:
3702 case ROUND_MOD_EXPR:
3703 case RDIV_EXPR:
3704 case EXACT_DIV_EXPR:
3705 case MIN_EXPR:
3706 case MAX_EXPR:
3707 case BIT_IOR_EXPR:
3708 case BIT_XOR_EXPR:
3709 case BIT_AND_EXPR:
3710 /* Continue with generic binary expression handling. */
3711 break;
3713 default:
3714 gcc_unreachable ();
3717 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3718 || !useless_type_conversion_p (lhs_type, rhs2_type))
3720 error ("type mismatch in binary expression");
3721 debug_generic_stmt (lhs_type);
3722 debug_generic_stmt (rhs1_type);
3723 debug_generic_stmt (rhs2_type);
3724 return true;
3727 return false;
3730 /* Verify a gimple assignment statement STMT with a ternary rhs.
3731 Returns true if anything is wrong. */
3733 static bool
3734 verify_gimple_assign_ternary (gimple stmt)
3736 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3737 tree lhs = gimple_assign_lhs (stmt);
3738 tree lhs_type = TREE_TYPE (lhs);
3739 tree rhs1 = gimple_assign_rhs1 (stmt);
3740 tree rhs1_type = TREE_TYPE (rhs1);
3741 tree rhs2 = gimple_assign_rhs2 (stmt);
3742 tree rhs2_type = TREE_TYPE (rhs2);
3743 tree rhs3 = gimple_assign_rhs3 (stmt);
3744 tree rhs3_type = TREE_TYPE (rhs3);
3746 if (!is_gimple_reg (lhs))
3748 error ("non-register as LHS of ternary operation");
3749 return true;
3752 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
3753 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
3754 || !is_gimple_val (rhs2)
3755 || !is_gimple_val (rhs3))
3757 error ("invalid operands in ternary operation");
3758 return true;
3761 /* First handle operations that involve different types. */
3762 switch (rhs_code)
3764 case WIDEN_MULT_PLUS_EXPR:
3765 case WIDEN_MULT_MINUS_EXPR:
3766 if ((!INTEGRAL_TYPE_P (rhs1_type)
3767 && !FIXED_POINT_TYPE_P (rhs1_type))
3768 || !useless_type_conversion_p (rhs1_type, rhs2_type)
3769 || !useless_type_conversion_p (lhs_type, rhs3_type)
3770 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
3771 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
3773 error ("type mismatch in widening multiply-accumulate expression");
3774 debug_generic_expr (lhs_type);
3775 debug_generic_expr (rhs1_type);
3776 debug_generic_expr (rhs2_type);
3777 debug_generic_expr (rhs3_type);
3778 return true;
3780 break;
3782 case FMA_EXPR:
3783 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3784 || !useless_type_conversion_p (lhs_type, rhs2_type)
3785 || !useless_type_conversion_p (lhs_type, rhs3_type))
3787 error ("type mismatch in fused multiply-add expression");
3788 debug_generic_expr (lhs_type);
3789 debug_generic_expr (rhs1_type);
3790 debug_generic_expr (rhs2_type);
3791 debug_generic_expr (rhs3_type);
3792 return true;
3794 break;
3796 case COND_EXPR:
3797 case VEC_COND_EXPR:
3798 if (!useless_type_conversion_p (lhs_type, rhs2_type)
3799 || !useless_type_conversion_p (lhs_type, rhs3_type))
3801 error ("type mismatch in conditional expression");
3802 debug_generic_expr (lhs_type);
3803 debug_generic_expr (rhs2_type);
3804 debug_generic_expr (rhs3_type);
3805 return true;
3807 break;
3809 case VEC_PERM_EXPR:
3810 if (!useless_type_conversion_p (lhs_type, rhs1_type)
3811 || !useless_type_conversion_p (lhs_type, rhs2_type))
3813 error ("type mismatch in vector permute expression");
3814 debug_generic_expr (lhs_type);
3815 debug_generic_expr (rhs1_type);
3816 debug_generic_expr (rhs2_type);
3817 debug_generic_expr (rhs3_type);
3818 return true;
3821 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3822 || TREE_CODE (rhs2_type) != VECTOR_TYPE
3823 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
3825 error ("vector types expected in vector permute expression");
3826 debug_generic_expr (lhs_type);
3827 debug_generic_expr (rhs1_type);
3828 debug_generic_expr (rhs2_type);
3829 debug_generic_expr (rhs3_type);
3830 return true;
3833 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
3834 || TYPE_VECTOR_SUBPARTS (rhs2_type)
3835 != TYPE_VECTOR_SUBPARTS (rhs3_type)
3836 || TYPE_VECTOR_SUBPARTS (rhs3_type)
3837 != TYPE_VECTOR_SUBPARTS (lhs_type))
3839 error ("vectors with different element number found "
3840 "in vector permute expression");
3841 debug_generic_expr (lhs_type);
3842 debug_generic_expr (rhs1_type);
3843 debug_generic_expr (rhs2_type);
3844 debug_generic_expr (rhs3_type);
3845 return true;
3848 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
3849 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs3_type)))
3850 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type))))
3852 error ("invalid mask type in vector permute expression");
3853 debug_generic_expr (lhs_type);
3854 debug_generic_expr (rhs1_type);
3855 debug_generic_expr (rhs2_type);
3856 debug_generic_expr (rhs3_type);
3857 return true;
3860 return false;
3862 case DOT_PROD_EXPR:
3863 case REALIGN_LOAD_EXPR:
3864 /* FIXME. */
3865 return false;
3867 default:
3868 gcc_unreachable ();
3870 return false;
3873 /* Verify a gimple assignment statement STMT with a single rhs.
3874 Returns true if anything is wrong. */
3876 static bool
3877 verify_gimple_assign_single (gimple stmt)
3879 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3880 tree lhs = gimple_assign_lhs (stmt);
3881 tree lhs_type = TREE_TYPE (lhs);
3882 tree rhs1 = gimple_assign_rhs1 (stmt);
3883 tree rhs1_type = TREE_TYPE (rhs1);
3884 bool res = false;
3886 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3888 error ("non-trivial conversion at assignment");
3889 debug_generic_expr (lhs_type);
3890 debug_generic_expr (rhs1_type);
3891 return true;
3894 if (gimple_clobber_p (stmt)
3895 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
3897 error ("non-decl/MEM_REF LHS in clobber statement");
3898 debug_generic_expr (lhs);
3899 return true;
3902 if (handled_component_p (lhs))
3903 res |= verify_types_in_gimple_reference (lhs, true);
3905 /* Special codes we cannot handle via their class. */
3906 switch (rhs_code)
3908 case ADDR_EXPR:
3910 tree op = TREE_OPERAND (rhs1, 0);
3911 if (!is_gimple_addressable (op))
3913 error ("invalid operand in unary expression");
3914 return true;
3917 /* Technically there is no longer a need for matching types, but
3918 gimple hygiene asks for this check. In LTO we can end up
3919 combining incompatible units and thus end up with addresses
3920 of globals that change their type to a common one. */
3921 if (!in_lto_p
3922 && !types_compatible_p (TREE_TYPE (op),
3923 TREE_TYPE (TREE_TYPE (rhs1)))
3924 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
3925 TREE_TYPE (op)))
3927 error ("type mismatch in address expression");
3928 debug_generic_stmt (TREE_TYPE (rhs1));
3929 debug_generic_stmt (TREE_TYPE (op));
3930 return true;
3933 return verify_types_in_gimple_reference (op, true);
3936 /* tcc_reference */
3937 case INDIRECT_REF:
3938 error ("INDIRECT_REF in gimple IL");
3939 return true;
3941 case COMPONENT_REF:
3942 case BIT_FIELD_REF:
3943 case ARRAY_REF:
3944 case ARRAY_RANGE_REF:
3945 case VIEW_CONVERT_EXPR:
3946 case REALPART_EXPR:
3947 case IMAGPART_EXPR:
3948 case TARGET_MEM_REF:
3949 case MEM_REF:
3950 if (!is_gimple_reg (lhs)
3951 && is_gimple_reg_type (TREE_TYPE (lhs)))
3953 error ("invalid rhs for gimple memory store");
3954 debug_generic_stmt (lhs);
3955 debug_generic_stmt (rhs1);
3956 return true;
3958 return res || verify_types_in_gimple_reference (rhs1, false);
3960 /* tcc_constant */
3961 case SSA_NAME:
3962 case INTEGER_CST:
3963 case REAL_CST:
3964 case FIXED_CST:
3965 case COMPLEX_CST:
3966 case VECTOR_CST:
3967 case STRING_CST:
3968 return res;
3970 /* tcc_declaration */
3971 case CONST_DECL:
3972 return res;
3973 case VAR_DECL:
3974 case PARM_DECL:
3975 if (!is_gimple_reg (lhs)
3976 && !is_gimple_reg (rhs1)
3977 && is_gimple_reg_type (TREE_TYPE (lhs)))
3979 error ("invalid rhs for gimple memory store");
3980 debug_generic_stmt (lhs);
3981 debug_generic_stmt (rhs1);
3982 return true;
3984 return res;
3986 case CONSTRUCTOR:
3987 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
3989 unsigned int i;
3990 tree elt_i, elt_v, elt_t = NULL_TREE;
3992 if (CONSTRUCTOR_NELTS (rhs1) == 0)
3993 return res;
3994 /* For vector CONSTRUCTORs we require that either it is empty
3995 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
3996 (then the element count must be correct to cover the whole
3997 outer vector and index must be NULL on all elements, or it is
3998 a CONSTRUCTOR of scalar elements, where we as an exception allow
3999 smaller number of elements (assuming zero filling) and
4000 consecutive indexes as compared to NULL indexes (such
4001 CONSTRUCTORs can appear in the IL from FEs). */
4002 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4004 if (elt_t == NULL_TREE)
4006 elt_t = TREE_TYPE (elt_v);
4007 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4009 tree elt_t = TREE_TYPE (elt_v);
4010 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4011 TREE_TYPE (elt_t)))
4013 error ("incorrect type of vector CONSTRUCTOR"
4014 " elements");
4015 debug_generic_stmt (rhs1);
4016 return true;
4018 else if (CONSTRUCTOR_NELTS (rhs1)
4019 * TYPE_VECTOR_SUBPARTS (elt_t)
4020 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4022 error ("incorrect number of vector CONSTRUCTOR"
4023 " elements");
4024 debug_generic_stmt (rhs1);
4025 return true;
4028 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4029 elt_t))
4031 error ("incorrect type of vector CONSTRUCTOR elements");
4032 debug_generic_stmt (rhs1);
4033 return true;
4035 else if (CONSTRUCTOR_NELTS (rhs1)
4036 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4038 error ("incorrect number of vector CONSTRUCTOR elements");
4039 debug_generic_stmt (rhs1);
4040 return true;
4043 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4045 error ("incorrect type of vector CONSTRUCTOR elements");
4046 debug_generic_stmt (rhs1);
4047 return true;
4049 if (elt_i != NULL_TREE
4050 && (TREE_CODE (elt_t) == VECTOR_TYPE
4051 || TREE_CODE (elt_i) != INTEGER_CST
4052 || compare_tree_int (elt_i, i) != 0))
4054 error ("vector CONSTRUCTOR with non-NULL element index");
4055 debug_generic_stmt (rhs1);
4056 return true;
4060 return res;
4061 case OBJ_TYPE_REF:
4062 case ASSERT_EXPR:
4063 case WITH_SIZE_EXPR:
4064 /* FIXME. */
4065 return res;
4067 default:;
4070 return res;
4073 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4074 is a problem, otherwise false. */
4076 static bool
4077 verify_gimple_assign (gimple stmt)
4079 switch (gimple_assign_rhs_class (stmt))
4081 case GIMPLE_SINGLE_RHS:
4082 return verify_gimple_assign_single (stmt);
4084 case GIMPLE_UNARY_RHS:
4085 return verify_gimple_assign_unary (stmt);
4087 case GIMPLE_BINARY_RHS:
4088 return verify_gimple_assign_binary (stmt);
4090 case GIMPLE_TERNARY_RHS:
4091 return verify_gimple_assign_ternary (stmt);
4093 default:
4094 gcc_unreachable ();
4098 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4099 is a problem, otherwise false. */
4101 static bool
4102 verify_gimple_return (gimple stmt)
4104 tree op = gimple_return_retval (stmt);
4105 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4107 /* We cannot test for present return values as we do not fix up missing
4108 return values from the original source. */
4109 if (op == NULL)
4110 return false;
4112 if (!is_gimple_val (op)
4113 && TREE_CODE (op) != RESULT_DECL)
4115 error ("invalid operand in return statement");
4116 debug_generic_stmt (op);
4117 return true;
4120 if ((TREE_CODE (op) == RESULT_DECL
4121 && DECL_BY_REFERENCE (op))
4122 || (TREE_CODE (op) == SSA_NAME
4123 && SSA_NAME_VAR (op)
4124 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4125 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4126 op = TREE_TYPE (op);
4128 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4130 error ("invalid conversion in return statement");
4131 debug_generic_stmt (restype);
4132 debug_generic_stmt (TREE_TYPE (op));
4133 return true;
4136 return false;
4140 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4141 is a problem, otherwise false. */
4143 static bool
4144 verify_gimple_goto (gimple stmt)
4146 tree dest = gimple_goto_dest (stmt);
4148 /* ??? We have two canonical forms of direct goto destinations, a
4149 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4150 if (TREE_CODE (dest) != LABEL_DECL
4151 && (!is_gimple_val (dest)
4152 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4154 error ("goto destination is neither a label nor a pointer");
4155 return true;
4158 return false;
4161 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4162 is a problem, otherwise false. */
4164 static bool
4165 verify_gimple_switch (gimple stmt)
4167 unsigned int i, n;
4168 tree elt, prev_upper_bound = NULL_TREE;
4169 tree index_type, elt_type = NULL_TREE;
4171 if (!is_gimple_val (gimple_switch_index (stmt)))
4173 error ("invalid operand to switch statement");
4174 debug_generic_stmt (gimple_switch_index (stmt));
4175 return true;
4178 index_type = TREE_TYPE (gimple_switch_index (stmt));
4179 if (! INTEGRAL_TYPE_P (index_type))
4181 error ("non-integral type switch statement");
4182 debug_generic_expr (index_type);
4183 return true;
4186 elt = gimple_switch_label (stmt, 0);
4187 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4189 error ("invalid default case label in switch statement");
4190 debug_generic_expr (elt);
4191 return true;
4194 n = gimple_switch_num_labels (stmt);
4195 for (i = 1; i < n; i++)
4197 elt = gimple_switch_label (stmt, i);
4199 if (! CASE_LOW (elt))
4201 error ("invalid case label in switch statement");
4202 debug_generic_expr (elt);
4203 return true;
4205 if (CASE_HIGH (elt)
4206 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4208 error ("invalid case range in switch statement");
4209 debug_generic_expr (elt);
4210 return true;
4213 if (elt_type)
4215 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4216 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4218 error ("type mismatch for case label in switch statement");
4219 debug_generic_expr (elt);
4220 return true;
4223 else
4225 elt_type = TREE_TYPE (CASE_LOW (elt));
4226 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4228 error ("type precision mismatch in switch statement");
4229 return true;
4233 if (prev_upper_bound)
4235 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4237 error ("case labels not sorted in switch statement");
4238 return true;
4242 prev_upper_bound = CASE_HIGH (elt);
4243 if (! prev_upper_bound)
4244 prev_upper_bound = CASE_LOW (elt);
4247 return false;
4250 /* Verify a gimple debug statement STMT.
4251 Returns true if anything is wrong. */
4253 static bool
4254 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED)
4256 /* There isn't much that could be wrong in a gimple debug stmt. A
4257 gimple debug bind stmt, for example, maps a tree, that's usually
4258 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4259 component or member of an aggregate type, to another tree, that
4260 can be an arbitrary expression. These stmts expand into debug
4261 insns, and are converted to debug notes by var-tracking.c. */
4262 return false;
4265 /* Verify a gimple label statement STMT.
4266 Returns true if anything is wrong. */
4268 static bool
4269 verify_gimple_label (gimple stmt)
4271 tree decl = gimple_label_label (stmt);
4272 int uid;
4273 bool err = false;
4275 if (TREE_CODE (decl) != LABEL_DECL)
4276 return true;
4277 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4278 && DECL_CONTEXT (decl) != current_function_decl)
4280 error ("label's context is not the current function decl");
4281 err |= true;
4284 uid = LABEL_DECL_UID (decl);
4285 if (cfun->cfg
4286 && (uid == -1
4287 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4289 error ("incorrect entry in label_to_block_map");
4290 err |= true;
4293 uid = EH_LANDING_PAD_NR (decl);
4294 if (uid)
4296 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4297 if (decl != lp->post_landing_pad)
4299 error ("incorrect setting of landing pad number");
4300 err |= true;
4304 return err;
4307 /* Verify the GIMPLE statement STMT. Returns true if there is an
4308 error, otherwise false. */
4310 static bool
4311 verify_gimple_stmt (gimple stmt)
4313 switch (gimple_code (stmt))
4315 case GIMPLE_ASSIGN:
4316 return verify_gimple_assign (stmt);
4318 case GIMPLE_LABEL:
4319 return verify_gimple_label (stmt);
4321 case GIMPLE_CALL:
4322 return verify_gimple_call (stmt);
4324 case GIMPLE_COND:
4325 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4327 error ("invalid comparison code in gimple cond");
4328 return true;
4330 if (!(!gimple_cond_true_label (stmt)
4331 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4332 || !(!gimple_cond_false_label (stmt)
4333 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4335 error ("invalid labels in gimple cond");
4336 return true;
4339 return verify_gimple_comparison (boolean_type_node,
4340 gimple_cond_lhs (stmt),
4341 gimple_cond_rhs (stmt));
4343 case GIMPLE_GOTO:
4344 return verify_gimple_goto (stmt);
4346 case GIMPLE_SWITCH:
4347 return verify_gimple_switch (stmt);
4349 case GIMPLE_RETURN:
4350 return verify_gimple_return (stmt);
4352 case GIMPLE_ASM:
4353 return false;
4355 case GIMPLE_TRANSACTION:
4356 return verify_gimple_transaction (stmt);
4358 /* Tuples that do not have tree operands. */
4359 case GIMPLE_NOP:
4360 case GIMPLE_PREDICT:
4361 case GIMPLE_RESX:
4362 case GIMPLE_EH_DISPATCH:
4363 case GIMPLE_EH_MUST_NOT_THROW:
4364 return false;
4366 CASE_GIMPLE_OMP:
4367 /* OpenMP directives are validated by the FE and never operated
4368 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4369 non-gimple expressions when the main index variable has had
4370 its address taken. This does not affect the loop itself
4371 because the header of an GIMPLE_OMP_FOR is merely used to determine
4372 how to setup the parallel iteration. */
4373 return false;
4375 case GIMPLE_DEBUG:
4376 return verify_gimple_debug (stmt);
4378 default:
4379 gcc_unreachable ();
4383 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4384 and false otherwise. */
4386 static bool
4387 verify_gimple_phi (gimple phi)
4389 bool err = false;
4390 unsigned i;
4391 tree phi_result = gimple_phi_result (phi);
4392 bool virtual_p;
4394 if (!phi_result)
4396 error ("invalid PHI result");
4397 return true;
4400 virtual_p = virtual_operand_p (phi_result);
4401 if (TREE_CODE (phi_result) != SSA_NAME
4402 || (virtual_p
4403 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
4405 error ("invalid PHI result");
4406 err = true;
4409 for (i = 0; i < gimple_phi_num_args (phi); i++)
4411 tree t = gimple_phi_arg_def (phi, i);
4413 if (!t)
4415 error ("missing PHI def");
4416 err |= true;
4417 continue;
4419 /* Addressable variables do have SSA_NAMEs but they
4420 are not considered gimple values. */
4421 else if ((TREE_CODE (t) == SSA_NAME
4422 && virtual_p != virtual_operand_p (t))
4423 || (virtual_p
4424 && (TREE_CODE (t) != SSA_NAME
4425 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
4426 || (!virtual_p
4427 && !is_gimple_val (t)))
4429 error ("invalid PHI argument");
4430 debug_generic_expr (t);
4431 err |= true;
4433 #ifdef ENABLE_TYPES_CHECKING
4434 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
4436 error ("incompatible types in PHI argument %u", i);
4437 debug_generic_stmt (TREE_TYPE (phi_result));
4438 debug_generic_stmt (TREE_TYPE (t));
4439 err |= true;
4441 #endif
4444 return err;
4447 /* Verify the GIMPLE statements inside the sequence STMTS. */
4449 static bool
4450 verify_gimple_in_seq_2 (gimple_seq stmts)
4452 gimple_stmt_iterator ittr;
4453 bool err = false;
4455 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
4457 gimple stmt = gsi_stmt (ittr);
4459 switch (gimple_code (stmt))
4461 case GIMPLE_BIND:
4462 err |= verify_gimple_in_seq_2 (gimple_bind_body (stmt));
4463 break;
4465 case GIMPLE_TRY:
4466 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
4467 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
4468 break;
4470 case GIMPLE_EH_FILTER:
4471 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
4472 break;
4474 case GIMPLE_EH_ELSE:
4475 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (stmt));
4476 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (stmt));
4477 break;
4479 case GIMPLE_CATCH:
4480 err |= verify_gimple_in_seq_2 (gimple_catch_handler (stmt));
4481 break;
4483 case GIMPLE_TRANSACTION:
4484 err |= verify_gimple_transaction (stmt);
4485 break;
4487 default:
4489 bool err2 = verify_gimple_stmt (stmt);
4490 if (err2)
4491 debug_gimple_stmt (stmt);
4492 err |= err2;
4497 return err;
4500 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
4501 is a problem, otherwise false. */
4503 static bool
4504 verify_gimple_transaction (gimple stmt)
4506 tree lab = gimple_transaction_label (stmt);
4507 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
4508 return true;
4509 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
4513 /* Verify the GIMPLE statements inside the statement list STMTS. */
4515 DEBUG_FUNCTION void
4516 verify_gimple_in_seq (gimple_seq stmts)
4518 timevar_push (TV_TREE_STMT_VERIFY);
4519 if (verify_gimple_in_seq_2 (stmts))
4520 internal_error ("verify_gimple failed");
4521 timevar_pop (TV_TREE_STMT_VERIFY);
4524 /* Return true when the T can be shared. */
4526 static bool
4527 tree_node_can_be_shared (tree t)
4529 if (IS_TYPE_OR_DECL_P (t)
4530 || is_gimple_min_invariant (t)
4531 || TREE_CODE (t) == SSA_NAME
4532 || t == error_mark_node
4533 || TREE_CODE (t) == IDENTIFIER_NODE)
4534 return true;
4536 if (TREE_CODE (t) == CASE_LABEL_EXPR)
4537 return true;
4539 if (DECL_P (t))
4540 return true;
4542 return false;
4545 /* Called via walk_tree. Verify tree sharing. */
4547 static tree
4548 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
4550 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4552 if (tree_node_can_be_shared (*tp))
4554 *walk_subtrees = false;
4555 return NULL;
4558 if (pointer_set_insert (visited, *tp))
4559 return *tp;
4561 return NULL;
4564 /* Called via walk_gimple_stmt. Verify tree sharing. */
4566 static tree
4567 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
4569 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4570 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
4573 static bool eh_error_found;
4574 static int
4575 verify_eh_throw_stmt_node (void **slot, void *data)
4577 struct throw_stmt_node *node = (struct throw_stmt_node *)*slot;
4578 struct pointer_set_t *visited = (struct pointer_set_t *) data;
4580 if (!pointer_set_contains (visited, node->stmt))
4582 error ("dead STMT in EH table");
4583 debug_gimple_stmt (node->stmt);
4584 eh_error_found = true;
4586 return 1;
4589 /* Verify if the location LOCs block is in BLOCKS. */
4591 static bool
4592 verify_location (pointer_set_t *blocks, location_t loc)
4594 tree block = LOCATION_BLOCK (loc);
4595 if (block != NULL_TREE
4596 && !pointer_set_contains (blocks, block))
4598 error ("location references block not in block tree");
4599 return true;
4601 if (block != NULL_TREE)
4602 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
4603 return false;
4606 /* Called via walk_tree. Verify that expressions have no blocks. */
4608 static tree
4609 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
4611 if (!EXPR_P (*tp))
4613 *walk_subtrees = false;
4614 return NULL;
4617 location_t loc = EXPR_LOCATION (*tp);
4618 if (LOCATION_BLOCK (loc) != NULL)
4619 return *tp;
4621 return NULL;
4624 /* Called via walk_tree. Verify locations of expressions. */
4626 static tree
4627 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
4629 struct pointer_set_t *blocks = (struct pointer_set_t *) data;
4631 if (TREE_CODE (*tp) == VAR_DECL
4632 && DECL_HAS_DEBUG_EXPR_P (*tp))
4634 tree t = DECL_DEBUG_EXPR (*tp);
4635 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4636 if (addr)
4637 return addr;
4639 if ((TREE_CODE (*tp) == VAR_DECL
4640 || TREE_CODE (*tp) == PARM_DECL
4641 || TREE_CODE (*tp) == RESULT_DECL)
4642 && DECL_HAS_VALUE_EXPR_P (*tp))
4644 tree t = DECL_VALUE_EXPR (*tp);
4645 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
4646 if (addr)
4647 return addr;
4650 if (!EXPR_P (*tp))
4652 *walk_subtrees = false;
4653 return NULL;
4656 location_t loc = EXPR_LOCATION (*tp);
4657 if (verify_location (blocks, loc))
4658 return *tp;
4660 return NULL;
4663 /* Called via walk_gimple_op. Verify locations of expressions. */
4665 static tree
4666 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
4668 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4669 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
4672 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
4674 static void
4675 collect_subblocks (pointer_set_t *blocks, tree block)
4677 tree t;
4678 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4680 pointer_set_insert (blocks, t);
4681 collect_subblocks (blocks, t);
4685 /* Verify the GIMPLE statements in the CFG of FN. */
4687 DEBUG_FUNCTION void
4688 verify_gimple_in_cfg (struct function *fn)
4690 basic_block bb;
4691 bool err = false;
4692 struct pointer_set_t *visited, *visited_stmts, *blocks;
4694 timevar_push (TV_TREE_STMT_VERIFY);
4695 visited = pointer_set_create ();
4696 visited_stmts = pointer_set_create ();
4698 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
4699 blocks = pointer_set_create ();
4700 if (DECL_INITIAL (fn->decl))
4702 pointer_set_insert (blocks, DECL_INITIAL (fn->decl));
4703 collect_subblocks (blocks, DECL_INITIAL (fn->decl));
4706 FOR_EACH_BB_FN (bb, fn)
4708 gimple_stmt_iterator gsi;
4710 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4712 gimple phi = gsi_stmt (gsi);
4713 bool err2 = false;
4714 unsigned i;
4716 pointer_set_insert (visited_stmts, phi);
4718 if (gimple_bb (phi) != bb)
4720 error ("gimple_bb (phi) is set to a wrong basic block");
4721 err2 = true;
4724 err2 |= verify_gimple_phi (phi);
4726 /* Only PHI arguments have locations. */
4727 if (gimple_location (phi) != UNKNOWN_LOCATION)
4729 error ("PHI node with location");
4730 err2 = true;
4733 for (i = 0; i < gimple_phi_num_args (phi); i++)
4735 tree arg = gimple_phi_arg_def (phi, i);
4736 tree addr = walk_tree (&arg, verify_node_sharing_1,
4737 visited, NULL);
4738 if (addr)
4740 error ("incorrect sharing of tree nodes");
4741 debug_generic_expr (addr);
4742 err2 |= true;
4744 location_t loc = gimple_phi_arg_location (phi, i);
4745 if (virtual_operand_p (gimple_phi_result (phi))
4746 && loc != UNKNOWN_LOCATION)
4748 error ("virtual PHI with argument locations");
4749 err2 = true;
4751 addr = walk_tree (&arg, verify_expr_location_1, blocks, NULL);
4752 if (addr)
4754 debug_generic_expr (addr);
4755 err2 = true;
4757 err2 |= verify_location (blocks, loc);
4760 if (err2)
4761 debug_gimple_stmt (phi);
4762 err |= err2;
4765 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4767 gimple stmt = gsi_stmt (gsi);
4768 bool err2 = false;
4769 struct walk_stmt_info wi;
4770 tree addr;
4771 int lp_nr;
4773 pointer_set_insert (visited_stmts, stmt);
4775 if (gimple_bb (stmt) != bb)
4777 error ("gimple_bb (stmt) is set to a wrong basic block");
4778 err2 = true;
4781 err2 |= verify_gimple_stmt (stmt);
4782 err2 |= verify_location (blocks, gimple_location (stmt));
4784 memset (&wi, 0, sizeof (wi));
4785 wi.info = (void *) visited;
4786 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
4787 if (addr)
4789 error ("incorrect sharing of tree nodes");
4790 debug_generic_expr (addr);
4791 err2 |= true;
4794 memset (&wi, 0, sizeof (wi));
4795 wi.info = (void *) blocks;
4796 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
4797 if (addr)
4799 debug_generic_expr (addr);
4800 err2 |= true;
4803 /* ??? Instead of not checking these stmts at all the walker
4804 should know its context via wi. */
4805 if (!is_gimple_debug (stmt)
4806 && !is_gimple_omp (stmt))
4808 memset (&wi, 0, sizeof (wi));
4809 addr = walk_gimple_op (stmt, verify_expr, &wi);
4810 if (addr)
4812 debug_generic_expr (addr);
4813 inform (gimple_location (stmt), "in statement");
4814 err2 |= true;
4818 /* If the statement is marked as part of an EH region, then it is
4819 expected that the statement could throw. Verify that when we
4820 have optimizations that simplify statements such that we prove
4821 that they cannot throw, that we update other data structures
4822 to match. */
4823 lp_nr = lookup_stmt_eh_lp (stmt);
4824 if (lp_nr != 0)
4826 if (!stmt_could_throw_p (stmt))
4828 error ("statement marked for throw, but doesn%'t");
4829 err2 |= true;
4831 else if (lp_nr > 0
4832 && !gsi_one_before_end_p (gsi)
4833 && stmt_can_throw_internal (stmt))
4835 error ("statement marked for throw in middle of block");
4836 err2 |= true;
4840 if (err2)
4841 debug_gimple_stmt (stmt);
4842 err |= err2;
4846 eh_error_found = false;
4847 if (get_eh_throw_stmt_table (cfun))
4848 htab_traverse (get_eh_throw_stmt_table (cfun),
4849 verify_eh_throw_stmt_node,
4850 visited_stmts);
4852 if (err || eh_error_found)
4853 internal_error ("verify_gimple failed");
4855 pointer_set_destroy (visited);
4856 pointer_set_destroy (visited_stmts);
4857 pointer_set_destroy (blocks);
4858 verify_histograms ();
4859 timevar_pop (TV_TREE_STMT_VERIFY);
4863 /* Verifies that the flow information is OK. */
4865 static int
4866 gimple_verify_flow_info (void)
4868 int err = 0;
4869 basic_block bb;
4870 gimple_stmt_iterator gsi;
4871 gimple stmt;
4872 edge e;
4873 edge_iterator ei;
4875 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4876 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4878 error ("ENTRY_BLOCK has IL associated with it");
4879 err = 1;
4882 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
4883 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
4885 error ("EXIT_BLOCK has IL associated with it");
4886 err = 1;
4889 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
4890 if (e->flags & EDGE_FALLTHRU)
4892 error ("fallthru to exit from bb %d", e->src->index);
4893 err = 1;
4896 FOR_EACH_BB_FN (bb, cfun)
4898 bool found_ctrl_stmt = false;
4900 stmt = NULL;
4902 /* Skip labels on the start of basic block. */
4903 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4905 tree label;
4906 gimple prev_stmt = stmt;
4908 stmt = gsi_stmt (gsi);
4910 if (gimple_code (stmt) != GIMPLE_LABEL)
4911 break;
4913 label = gimple_label_label (stmt);
4914 if (prev_stmt && DECL_NONLOCAL (label))
4916 error ("nonlocal label ");
4917 print_generic_expr (stderr, label, 0);
4918 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4919 bb->index);
4920 err = 1;
4923 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
4925 error ("EH landing pad label ");
4926 print_generic_expr (stderr, label, 0);
4927 fprintf (stderr, " is not first in a sequence of labels in bb %d",
4928 bb->index);
4929 err = 1;
4932 if (label_to_block (label) != bb)
4934 error ("label ");
4935 print_generic_expr (stderr, label, 0);
4936 fprintf (stderr, " to block does not match in bb %d",
4937 bb->index);
4938 err = 1;
4941 if (decl_function_context (label) != current_function_decl)
4943 error ("label ");
4944 print_generic_expr (stderr, label, 0);
4945 fprintf (stderr, " has incorrect context in bb %d",
4946 bb->index);
4947 err = 1;
4951 /* Verify that body of basic block BB is free of control flow. */
4952 for (; !gsi_end_p (gsi); gsi_next (&gsi))
4954 gimple stmt = gsi_stmt (gsi);
4956 if (found_ctrl_stmt)
4958 error ("control flow in the middle of basic block %d",
4959 bb->index);
4960 err = 1;
4963 if (stmt_ends_bb_p (stmt))
4964 found_ctrl_stmt = true;
4966 if (gimple_code (stmt) == GIMPLE_LABEL)
4968 error ("label ");
4969 print_generic_expr (stderr, gimple_label_label (stmt), 0);
4970 fprintf (stderr, " in the middle of basic block %d", bb->index);
4971 err = 1;
4975 gsi = gsi_last_bb (bb);
4976 if (gsi_end_p (gsi))
4977 continue;
4979 stmt = gsi_stmt (gsi);
4981 if (gimple_code (stmt) == GIMPLE_LABEL)
4982 continue;
4984 err |= verify_eh_edges (stmt);
4986 if (is_ctrl_stmt (stmt))
4988 FOR_EACH_EDGE (e, ei, bb->succs)
4989 if (e->flags & EDGE_FALLTHRU)
4991 error ("fallthru edge after a control statement in bb %d",
4992 bb->index);
4993 err = 1;
4997 if (gimple_code (stmt) != GIMPLE_COND)
4999 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5000 after anything else but if statement. */
5001 FOR_EACH_EDGE (e, ei, bb->succs)
5002 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5004 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5005 bb->index);
5006 err = 1;
5010 switch (gimple_code (stmt))
5012 case GIMPLE_COND:
5014 edge true_edge;
5015 edge false_edge;
5017 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5019 if (!true_edge
5020 || !false_edge
5021 || !(true_edge->flags & EDGE_TRUE_VALUE)
5022 || !(false_edge->flags & EDGE_FALSE_VALUE)
5023 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5024 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5025 || EDGE_COUNT (bb->succs) >= 3)
5027 error ("wrong outgoing edge flags at end of bb %d",
5028 bb->index);
5029 err = 1;
5032 break;
5034 case GIMPLE_GOTO:
5035 if (simple_goto_p (stmt))
5037 error ("explicit goto at end of bb %d", bb->index);
5038 err = 1;
5040 else
5042 /* FIXME. We should double check that the labels in the
5043 destination blocks have their address taken. */
5044 FOR_EACH_EDGE (e, ei, bb->succs)
5045 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5046 | EDGE_FALSE_VALUE))
5047 || !(e->flags & EDGE_ABNORMAL))
5049 error ("wrong outgoing edge flags at end of bb %d",
5050 bb->index);
5051 err = 1;
5054 break;
5056 case GIMPLE_CALL:
5057 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5058 break;
5059 /* ... fallthru ... */
5060 case GIMPLE_RETURN:
5061 if (!single_succ_p (bb)
5062 || (single_succ_edge (bb)->flags
5063 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5064 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5066 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5067 err = 1;
5069 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5071 error ("return edge does not point to exit in bb %d",
5072 bb->index);
5073 err = 1;
5075 break;
5077 case GIMPLE_SWITCH:
5079 tree prev;
5080 edge e;
5081 size_t i, n;
5083 n = gimple_switch_num_labels (stmt);
5085 /* Mark all the destination basic blocks. */
5086 for (i = 0; i < n; ++i)
5088 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5089 basic_block label_bb = label_to_block (lab);
5090 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5091 label_bb->aux = (void *)1;
5094 /* Verify that the case labels are sorted. */
5095 prev = gimple_switch_label (stmt, 0);
5096 for (i = 1; i < n; ++i)
5098 tree c = gimple_switch_label (stmt, i);
5099 if (!CASE_LOW (c))
5101 error ("found default case not at the start of "
5102 "case vector");
5103 err = 1;
5104 continue;
5106 if (CASE_LOW (prev)
5107 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5109 error ("case labels not sorted: ");
5110 print_generic_expr (stderr, prev, 0);
5111 fprintf (stderr," is greater than ");
5112 print_generic_expr (stderr, c, 0);
5113 fprintf (stderr," but comes before it.\n");
5114 err = 1;
5116 prev = c;
5118 /* VRP will remove the default case if it can prove it will
5119 never be executed. So do not verify there always exists
5120 a default case here. */
5122 FOR_EACH_EDGE (e, ei, bb->succs)
5124 if (!e->dest->aux)
5126 error ("extra outgoing edge %d->%d",
5127 bb->index, e->dest->index);
5128 err = 1;
5131 e->dest->aux = (void *)2;
5132 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5133 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5135 error ("wrong outgoing edge flags at end of bb %d",
5136 bb->index);
5137 err = 1;
5141 /* Check that we have all of them. */
5142 for (i = 0; i < n; ++i)
5144 tree lab = CASE_LABEL (gimple_switch_label (stmt, i));
5145 basic_block label_bb = label_to_block (lab);
5147 if (label_bb->aux != (void *)2)
5149 error ("missing edge %i->%i", bb->index, label_bb->index);
5150 err = 1;
5154 FOR_EACH_EDGE (e, ei, bb->succs)
5155 e->dest->aux = (void *)0;
5157 break;
5159 case GIMPLE_EH_DISPATCH:
5160 err |= verify_eh_dispatch_edge (stmt);
5161 break;
5163 default:
5164 break;
5168 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5169 verify_dominators (CDI_DOMINATORS);
5171 return err;
5175 /* Updates phi nodes after creating a forwarder block joined
5176 by edge FALLTHRU. */
5178 static void
5179 gimple_make_forwarder_block (edge fallthru)
5181 edge e;
5182 edge_iterator ei;
5183 basic_block dummy, bb;
5184 tree var;
5185 gimple_stmt_iterator gsi;
5187 dummy = fallthru->src;
5188 bb = fallthru->dest;
5190 if (single_pred_p (bb))
5191 return;
5193 /* If we redirected a branch we must create new PHI nodes at the
5194 start of BB. */
5195 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5197 gimple phi, new_phi;
5199 phi = gsi_stmt (gsi);
5200 var = gimple_phi_result (phi);
5201 new_phi = create_phi_node (var, bb);
5202 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5203 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5204 UNKNOWN_LOCATION);
5207 /* Add the arguments we have stored on edges. */
5208 FOR_EACH_EDGE (e, ei, bb->preds)
5210 if (e == fallthru)
5211 continue;
5213 flush_pending_stmts (e);
5218 /* Return a non-special label in the head of basic block BLOCK.
5219 Create one if it doesn't exist. */
5221 tree
5222 gimple_block_label (basic_block bb)
5224 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5225 bool first = true;
5226 tree label;
5227 gimple stmt;
5229 for (i = s; !gsi_end_p (i); first = false, gsi_next (&i))
5231 stmt = gsi_stmt (i);
5232 if (gimple_code (stmt) != GIMPLE_LABEL)
5233 break;
5234 label = gimple_label_label (stmt);
5235 if (!DECL_NONLOCAL (label))
5237 if (!first)
5238 gsi_move_before (&i, &s);
5239 return label;
5243 label = create_artificial_label (UNKNOWN_LOCATION);
5244 stmt = gimple_build_label (label);
5245 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5246 return label;
5250 /* Attempt to perform edge redirection by replacing a possibly complex
5251 jump instruction by a goto or by removing the jump completely.
5252 This can apply only if all edges now point to the same block. The
5253 parameters and return values are equivalent to
5254 redirect_edge_and_branch. */
5256 static edge
5257 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5259 basic_block src = e->src;
5260 gimple_stmt_iterator i;
5261 gimple stmt;
5263 /* We can replace or remove a complex jump only when we have exactly
5264 two edges. */
5265 if (EDGE_COUNT (src->succs) != 2
5266 /* Verify that all targets will be TARGET. Specifically, the
5267 edge that is not E must also go to TARGET. */
5268 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5269 return NULL;
5271 i = gsi_last_bb (src);
5272 if (gsi_end_p (i))
5273 return NULL;
5275 stmt = gsi_stmt (i);
5277 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5279 gsi_remove (&i, true);
5280 e = ssa_redirect_edge (e, target);
5281 e->flags = EDGE_FALLTHRU;
5282 return e;
5285 return NULL;
5289 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5290 edge representing the redirected branch. */
5292 static edge
5293 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5295 basic_block bb = e->src;
5296 gimple_stmt_iterator gsi;
5297 edge ret;
5298 gimple stmt;
5300 if (e->flags & EDGE_ABNORMAL)
5301 return NULL;
5303 if (e->dest == dest)
5304 return NULL;
5306 if (e->flags & EDGE_EH)
5307 return redirect_eh_edge (e, dest);
5309 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5311 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5312 if (ret)
5313 return ret;
5316 gsi = gsi_last_bb (bb);
5317 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5319 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5321 case GIMPLE_COND:
5322 /* For COND_EXPR, we only need to redirect the edge. */
5323 break;
5325 case GIMPLE_GOTO:
5326 /* No non-abnormal edges should lead from a non-simple goto, and
5327 simple ones should be represented implicitly. */
5328 gcc_unreachable ();
5330 case GIMPLE_SWITCH:
5332 tree label = gimple_block_label (dest);
5333 tree cases = get_cases_for_edge (e, stmt);
5335 /* If we have a list of cases associated with E, then use it
5336 as it's a lot faster than walking the entire case vector. */
5337 if (cases)
5339 edge e2 = find_edge (e->src, dest);
5340 tree last, first;
5342 first = cases;
5343 while (cases)
5345 last = cases;
5346 CASE_LABEL (cases) = label;
5347 cases = CASE_CHAIN (cases);
5350 /* If there was already an edge in the CFG, then we need
5351 to move all the cases associated with E to E2. */
5352 if (e2)
5354 tree cases2 = get_cases_for_edge (e2, stmt);
5356 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5357 CASE_CHAIN (cases2) = first;
5359 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5361 else
5363 size_t i, n = gimple_switch_num_labels (stmt);
5365 for (i = 0; i < n; i++)
5367 tree elt = gimple_switch_label (stmt, i);
5368 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5369 CASE_LABEL (elt) = label;
5373 break;
5375 case GIMPLE_ASM:
5377 int i, n = gimple_asm_nlabels (stmt);
5378 tree label = NULL;
5380 for (i = 0; i < n; ++i)
5382 tree cons = gimple_asm_label_op (stmt, i);
5383 if (label_to_block (TREE_VALUE (cons)) == e->dest)
5385 if (!label)
5386 label = gimple_block_label (dest);
5387 TREE_VALUE (cons) = label;
5391 /* If we didn't find any label matching the former edge in the
5392 asm labels, we must be redirecting the fallthrough
5393 edge. */
5394 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
5396 break;
5398 case GIMPLE_RETURN:
5399 gsi_remove (&gsi, true);
5400 e->flags |= EDGE_FALLTHRU;
5401 break;
5403 case GIMPLE_OMP_RETURN:
5404 case GIMPLE_OMP_CONTINUE:
5405 case GIMPLE_OMP_SECTIONS_SWITCH:
5406 case GIMPLE_OMP_FOR:
5407 /* The edges from OMP constructs can be simply redirected. */
5408 break;
5410 case GIMPLE_EH_DISPATCH:
5411 if (!(e->flags & EDGE_FALLTHRU))
5412 redirect_eh_dispatch_edge (stmt, e, dest);
5413 break;
5415 case GIMPLE_TRANSACTION:
5416 /* The ABORT edge has a stored label associated with it, otherwise
5417 the edges are simply redirectable. */
5418 if (e->flags == 0)
5419 gimple_transaction_set_label (stmt, gimple_block_label (dest));
5420 break;
5422 default:
5423 /* Otherwise it must be a fallthru edge, and we don't need to
5424 do anything besides redirecting it. */
5425 gcc_assert (e->flags & EDGE_FALLTHRU);
5426 break;
5429 /* Update/insert PHI nodes as necessary. */
5431 /* Now update the edges in the CFG. */
5432 e = ssa_redirect_edge (e, dest);
5434 return e;
5437 /* Returns true if it is possible to remove edge E by redirecting
5438 it to the destination of the other edge from E->src. */
5440 static bool
5441 gimple_can_remove_branch_p (const_edge e)
5443 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
5444 return false;
5446 return true;
5449 /* Simple wrapper, as we can always redirect fallthru edges. */
5451 static basic_block
5452 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
5454 e = gimple_redirect_edge_and_branch (e, dest);
5455 gcc_assert (e);
5457 return NULL;
5461 /* Splits basic block BB after statement STMT (but at least after the
5462 labels). If STMT is NULL, BB is split just after the labels. */
5464 static basic_block
5465 gimple_split_block (basic_block bb, void *stmt)
5467 gimple_stmt_iterator gsi;
5468 gimple_stmt_iterator gsi_tgt;
5469 gimple act;
5470 gimple_seq list;
5471 basic_block new_bb;
5472 edge e;
5473 edge_iterator ei;
5475 new_bb = create_empty_bb (bb);
5477 /* Redirect the outgoing edges. */
5478 new_bb->succs = bb->succs;
5479 bb->succs = NULL;
5480 FOR_EACH_EDGE (e, ei, new_bb->succs)
5481 e->src = new_bb;
5483 if (stmt && gimple_code ((gimple) stmt) == GIMPLE_LABEL)
5484 stmt = NULL;
5486 /* Move everything from GSI to the new basic block. */
5487 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5489 act = gsi_stmt (gsi);
5490 if (gimple_code (act) == GIMPLE_LABEL)
5491 continue;
5493 if (!stmt)
5494 break;
5496 if (stmt == act)
5498 gsi_next (&gsi);
5499 break;
5503 if (gsi_end_p (gsi))
5504 return new_bb;
5506 /* Split the statement list - avoid re-creating new containers as this
5507 brings ugly quadratic memory consumption in the inliner.
5508 (We are still quadratic since we need to update stmt BB pointers,
5509 sadly.) */
5510 gsi_split_seq_before (&gsi, &list);
5511 set_bb_seq (new_bb, list);
5512 for (gsi_tgt = gsi_start (list);
5513 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
5514 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
5516 return new_bb;
5520 /* Moves basic block BB after block AFTER. */
5522 static bool
5523 gimple_move_block_after (basic_block bb, basic_block after)
5525 if (bb->prev_bb == after)
5526 return true;
5528 unlink_block (bb);
5529 link_block (bb, after);
5531 return true;
5535 /* Return TRUE if block BB has no executable statements, otherwise return
5536 FALSE. */
5538 static bool
5539 gimple_empty_block_p (basic_block bb)
5541 /* BB must have no executable statements. */
5542 gimple_stmt_iterator gsi = gsi_after_labels (bb);
5543 if (phi_nodes (bb))
5544 return false;
5545 if (gsi_end_p (gsi))
5546 return true;
5547 if (is_gimple_debug (gsi_stmt (gsi)))
5548 gsi_next_nondebug (&gsi);
5549 return gsi_end_p (gsi);
5553 /* Split a basic block if it ends with a conditional branch and if the
5554 other part of the block is not empty. */
5556 static basic_block
5557 gimple_split_block_before_cond_jump (basic_block bb)
5559 gimple last, split_point;
5560 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
5561 if (gsi_end_p (gsi))
5562 return NULL;
5563 last = gsi_stmt (gsi);
5564 if (gimple_code (last) != GIMPLE_COND
5565 && gimple_code (last) != GIMPLE_SWITCH)
5566 return NULL;
5567 gsi_prev_nondebug (&gsi);
5568 split_point = gsi_stmt (gsi);
5569 return split_block (bb, split_point)->dest;
5573 /* Return true if basic_block can be duplicated. */
5575 static bool
5576 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
5578 return true;
5581 /* Create a duplicate of the basic block BB. NOTE: This does not
5582 preserve SSA form. */
5584 static basic_block
5585 gimple_duplicate_bb (basic_block bb)
5587 basic_block new_bb;
5588 gimple_stmt_iterator gsi, gsi_tgt;
5589 gimple_seq phis = phi_nodes (bb);
5590 gimple phi, stmt, copy;
5592 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
5594 /* Copy the PHI nodes. We ignore PHI node arguments here because
5595 the incoming edges have not been setup yet. */
5596 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
5598 phi = gsi_stmt (gsi);
5599 copy = create_phi_node (NULL_TREE, new_bb);
5600 create_new_def_for (gimple_phi_result (phi), copy,
5601 gimple_phi_result_ptr (copy));
5602 gimple_set_uid (copy, gimple_uid (phi));
5605 gsi_tgt = gsi_start_bb (new_bb);
5606 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5608 def_operand_p def_p;
5609 ssa_op_iter op_iter;
5610 tree lhs;
5612 stmt = gsi_stmt (gsi);
5613 if (gimple_code (stmt) == GIMPLE_LABEL)
5614 continue;
5616 /* Don't duplicate label debug stmts. */
5617 if (gimple_debug_bind_p (stmt)
5618 && TREE_CODE (gimple_debug_bind_get_var (stmt))
5619 == LABEL_DECL)
5620 continue;
5622 /* Create a new copy of STMT and duplicate STMT's virtual
5623 operands. */
5624 copy = gimple_copy (stmt);
5625 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
5627 maybe_duplicate_eh_stmt (copy, stmt);
5628 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
5630 /* When copying around a stmt writing into a local non-user
5631 aggregate, make sure it won't share stack slot with other
5632 vars. */
5633 lhs = gimple_get_lhs (stmt);
5634 if (lhs && TREE_CODE (lhs) != SSA_NAME)
5636 tree base = get_base_address (lhs);
5637 if (base
5638 && (TREE_CODE (base) == VAR_DECL
5639 || TREE_CODE (base) == RESULT_DECL)
5640 && DECL_IGNORED_P (base)
5641 && !TREE_STATIC (base)
5642 && !DECL_EXTERNAL (base)
5643 && (TREE_CODE (base) != VAR_DECL
5644 || !DECL_HAS_VALUE_EXPR_P (base)))
5645 DECL_NONSHAREABLE (base) = 1;
5648 /* Create new names for all the definitions created by COPY and
5649 add replacement mappings for each new name. */
5650 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
5651 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
5654 return new_bb;
5657 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5659 static void
5660 add_phi_args_after_copy_edge (edge e_copy)
5662 basic_block bb, bb_copy = e_copy->src, dest;
5663 edge e;
5664 edge_iterator ei;
5665 gimple phi, phi_copy;
5666 tree def;
5667 gimple_stmt_iterator psi, psi_copy;
5669 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
5670 return;
5672 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
5674 if (e_copy->dest->flags & BB_DUPLICATED)
5675 dest = get_bb_original (e_copy->dest);
5676 else
5677 dest = e_copy->dest;
5679 e = find_edge (bb, dest);
5680 if (!e)
5682 /* During loop unrolling the target of the latch edge is copied.
5683 In this case we are not looking for edge to dest, but to
5684 duplicated block whose original was dest. */
5685 FOR_EACH_EDGE (e, ei, bb->succs)
5687 if ((e->dest->flags & BB_DUPLICATED)
5688 && get_bb_original (e->dest) == dest)
5689 break;
5692 gcc_assert (e != NULL);
5695 for (psi = gsi_start_phis (e->dest),
5696 psi_copy = gsi_start_phis (e_copy->dest);
5697 !gsi_end_p (psi);
5698 gsi_next (&psi), gsi_next (&psi_copy))
5700 phi = gsi_stmt (psi);
5701 phi_copy = gsi_stmt (psi_copy);
5702 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
5703 add_phi_arg (phi_copy, def, e_copy,
5704 gimple_phi_arg_location_from_edge (phi, e));
5709 /* Basic block BB_COPY was created by code duplication. Add phi node
5710 arguments for edges going out of BB_COPY. The blocks that were
5711 duplicated have BB_DUPLICATED set. */
5713 void
5714 add_phi_args_after_copy_bb (basic_block bb_copy)
5716 edge e_copy;
5717 edge_iterator ei;
5719 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
5721 add_phi_args_after_copy_edge (e_copy);
5725 /* Blocks in REGION_COPY array of length N_REGION were created by
5726 duplication of basic blocks. Add phi node arguments for edges
5727 going from these blocks. If E_COPY is not NULL, also add
5728 phi node arguments for its destination.*/
5730 void
5731 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
5732 edge e_copy)
5734 unsigned i;
5736 for (i = 0; i < n_region; i++)
5737 region_copy[i]->flags |= BB_DUPLICATED;
5739 for (i = 0; i < n_region; i++)
5740 add_phi_args_after_copy_bb (region_copy[i]);
5741 if (e_copy)
5742 add_phi_args_after_copy_edge (e_copy);
5744 for (i = 0; i < n_region; i++)
5745 region_copy[i]->flags &= ~BB_DUPLICATED;
5748 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5749 important exit edge EXIT. By important we mean that no SSA name defined
5750 inside region is live over the other exit edges of the region. All entry
5751 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5752 to the duplicate of the region. Dominance and loop information is
5753 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
5754 UPDATE_DOMINANCE is false then we assume that the caller will update the
5755 dominance information after calling this function. The new basic
5756 blocks are stored to REGION_COPY in the same order as they had in REGION,
5757 provided that REGION_COPY is not NULL.
5758 The function returns false if it is unable to copy the region,
5759 true otherwise. */
5761 bool
5762 gimple_duplicate_sese_region (edge entry, edge exit,
5763 basic_block *region, unsigned n_region,
5764 basic_block *region_copy,
5765 bool update_dominance)
5767 unsigned i;
5768 bool free_region_copy = false, copying_header = false;
5769 struct loop *loop = entry->dest->loop_father;
5770 edge exit_copy;
5771 vec<basic_block> doms;
5772 edge redirected;
5773 int total_freq = 0, entry_freq = 0;
5774 gcov_type total_count = 0, entry_count = 0;
5776 if (!can_copy_bbs_p (region, n_region))
5777 return false;
5779 /* Some sanity checking. Note that we do not check for all possible
5780 missuses of the functions. I.e. if you ask to copy something weird,
5781 it will work, but the state of structures probably will not be
5782 correct. */
5783 for (i = 0; i < n_region; i++)
5785 /* We do not handle subloops, i.e. all the blocks must belong to the
5786 same loop. */
5787 if (region[i]->loop_father != loop)
5788 return false;
5790 if (region[i] != entry->dest
5791 && region[i] == loop->header)
5792 return false;
5795 set_loop_copy (loop, loop);
5797 /* In case the function is used for loop header copying (which is the primary
5798 use), ensure that EXIT and its copy will be new latch and entry edges. */
5799 if (loop->header == entry->dest)
5801 copying_header = true;
5802 set_loop_copy (loop, loop_outer (loop));
5804 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
5805 return false;
5807 for (i = 0; i < n_region; i++)
5808 if (region[i] != exit->src
5809 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
5810 return false;
5813 if (!region_copy)
5815 region_copy = XNEWVEC (basic_block, n_region);
5816 free_region_copy = true;
5819 initialize_original_copy_tables ();
5821 /* Record blocks outside the region that are dominated by something
5822 inside. */
5823 if (update_dominance)
5825 doms.create (0);
5826 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5829 if (entry->dest->count)
5831 total_count = entry->dest->count;
5832 entry_count = entry->count;
5833 /* Fix up corner cases, to avoid division by zero or creation of negative
5834 frequencies. */
5835 if (entry_count > total_count)
5836 entry_count = total_count;
5838 else
5840 total_freq = entry->dest->frequency;
5841 entry_freq = EDGE_FREQUENCY (entry);
5842 /* Fix up corner cases, to avoid division by zero or creation of negative
5843 frequencies. */
5844 if (total_freq == 0)
5845 total_freq = 1;
5846 else if (entry_freq > total_freq)
5847 entry_freq = total_freq;
5850 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
5851 split_edge_bb_loc (entry), update_dominance);
5852 if (total_count)
5854 scale_bbs_frequencies_gcov_type (region, n_region,
5855 total_count - entry_count,
5856 total_count);
5857 scale_bbs_frequencies_gcov_type (region_copy, n_region, entry_count,
5858 total_count);
5860 else
5862 scale_bbs_frequencies_int (region, n_region, total_freq - entry_freq,
5863 total_freq);
5864 scale_bbs_frequencies_int (region_copy, n_region, entry_freq, total_freq);
5867 if (copying_header)
5869 loop->header = exit->dest;
5870 loop->latch = exit->src;
5873 /* Redirect the entry and add the phi node arguments. */
5874 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
5875 gcc_assert (redirected != NULL);
5876 flush_pending_stmts (entry);
5878 /* Concerning updating of dominators: We must recount dominators
5879 for entry block and its copy. Anything that is outside of the
5880 region, but was dominated by something inside needs recounting as
5881 well. */
5882 if (update_dominance)
5884 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
5885 doms.safe_push (get_bb_original (entry->dest));
5886 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
5887 doms.release ();
5890 /* Add the other PHI node arguments. */
5891 add_phi_args_after_copy (region_copy, n_region, NULL);
5893 if (free_region_copy)
5894 free (region_copy);
5896 free_original_copy_tables ();
5897 return true;
5900 /* Checks if BB is part of the region defined by N_REGION BBS. */
5901 static bool
5902 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
5904 unsigned int n;
5906 for (n = 0; n < n_region; n++)
5908 if (bb == bbs[n])
5909 return true;
5911 return false;
5914 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5915 are stored to REGION_COPY in the same order in that they appear
5916 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5917 the region, EXIT an exit from it. The condition guarding EXIT
5918 is moved to ENTRY. Returns true if duplication succeeds, false
5919 otherwise.
5921 For example,
5923 some_code;
5924 if (cond)
5926 else
5929 is transformed to
5931 if (cond)
5933 some_code;
5936 else
5938 some_code;
5943 bool
5944 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED, edge exit ATTRIBUTE_UNUSED,
5945 basic_block *region ATTRIBUTE_UNUSED, unsigned n_region ATTRIBUTE_UNUSED,
5946 basic_block *region_copy ATTRIBUTE_UNUSED)
5948 unsigned i;
5949 bool free_region_copy = false;
5950 struct loop *loop = exit->dest->loop_father;
5951 struct loop *orig_loop = entry->dest->loop_father;
5952 basic_block switch_bb, entry_bb, nentry_bb;
5953 vec<basic_block> doms;
5954 int total_freq = 0, exit_freq = 0;
5955 gcov_type total_count = 0, exit_count = 0;
5956 edge exits[2], nexits[2], e;
5957 gimple_stmt_iterator gsi;
5958 gimple cond_stmt;
5959 edge sorig, snew;
5960 basic_block exit_bb;
5961 gimple_stmt_iterator psi;
5962 gimple phi;
5963 tree def;
5964 struct loop *target, *aloop, *cloop;
5966 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
5967 exits[0] = exit;
5968 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
5970 if (!can_copy_bbs_p (region, n_region))
5971 return false;
5973 initialize_original_copy_tables ();
5974 set_loop_copy (orig_loop, loop);
5976 target= loop;
5977 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
5979 if (bb_part_of_region_p (aloop->header, region, n_region))
5981 cloop = duplicate_loop (aloop, target);
5982 duplicate_subloops (aloop, cloop);
5986 if (!region_copy)
5988 region_copy = XNEWVEC (basic_block, n_region);
5989 free_region_copy = true;
5992 gcc_assert (!need_ssa_update_p (cfun));
5994 /* Record blocks outside the region that are dominated by something
5995 inside. */
5996 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
5998 if (exit->src->count)
6000 total_count = exit->src->count;
6001 exit_count = exit->count;
6002 /* Fix up corner cases, to avoid division by zero or creation of negative
6003 frequencies. */
6004 if (exit_count > total_count)
6005 exit_count = total_count;
6007 else
6009 total_freq = exit->src->frequency;
6010 exit_freq = EDGE_FREQUENCY (exit);
6011 /* Fix up corner cases, to avoid division by zero or creation of negative
6012 frequencies. */
6013 if (total_freq == 0)
6014 total_freq = 1;
6015 if (exit_freq > total_freq)
6016 exit_freq = total_freq;
6019 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6020 split_edge_bb_loc (exit), true);
6021 if (total_count)
6023 scale_bbs_frequencies_gcov_type (region, n_region,
6024 total_count - exit_count,
6025 total_count);
6026 scale_bbs_frequencies_gcov_type (region_copy, n_region, exit_count,
6027 total_count);
6029 else
6031 scale_bbs_frequencies_int (region, n_region, total_freq - exit_freq,
6032 total_freq);
6033 scale_bbs_frequencies_int (region_copy, n_region, exit_freq, total_freq);
6036 /* Create the switch block, and put the exit condition to it. */
6037 entry_bb = entry->dest;
6038 nentry_bb = get_bb_copy (entry_bb);
6039 if (!last_stmt (entry->src)
6040 || !stmt_ends_bb_p (last_stmt (entry->src)))
6041 switch_bb = entry->src;
6042 else
6043 switch_bb = split_edge (entry);
6044 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6046 gsi = gsi_last_bb (switch_bb);
6047 cond_stmt = last_stmt (exit->src);
6048 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6049 cond_stmt = gimple_copy (cond_stmt);
6051 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6053 sorig = single_succ_edge (switch_bb);
6054 sorig->flags = exits[1]->flags;
6055 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6057 /* Register the new edge from SWITCH_BB in loop exit lists. */
6058 rescan_loop_exit (snew, true, false);
6060 /* Add the PHI node arguments. */
6061 add_phi_args_after_copy (region_copy, n_region, snew);
6063 /* Get rid of now superfluous conditions and associated edges (and phi node
6064 arguments). */
6065 exit_bb = exit->dest;
6067 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6068 PENDING_STMT (e) = NULL;
6070 /* The latch of ORIG_LOOP was copied, and so was the backedge
6071 to the original header. We redirect this backedge to EXIT_BB. */
6072 for (i = 0; i < n_region; i++)
6073 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6075 gcc_assert (single_succ_edge (region_copy[i]));
6076 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6077 PENDING_STMT (e) = NULL;
6078 for (psi = gsi_start_phis (exit_bb);
6079 !gsi_end_p (psi);
6080 gsi_next (&psi))
6082 phi = gsi_stmt (psi);
6083 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6084 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6087 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6088 PENDING_STMT (e) = NULL;
6090 /* Anything that is outside of the region, but was dominated by something
6091 inside needs to update dominance info. */
6092 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6093 doms.release ();
6094 /* Update the SSA web. */
6095 update_ssa (TODO_update_ssa);
6097 if (free_region_copy)
6098 free (region_copy);
6100 free_original_copy_tables ();
6101 return true;
6104 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6105 adding blocks when the dominator traversal reaches EXIT. This
6106 function silently assumes that ENTRY strictly dominates EXIT. */
6108 void
6109 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6110 vec<basic_block> *bbs_p)
6112 basic_block son;
6114 for (son = first_dom_son (CDI_DOMINATORS, entry);
6115 son;
6116 son = next_dom_son (CDI_DOMINATORS, son))
6118 bbs_p->safe_push (son);
6119 if (son != exit)
6120 gather_blocks_in_sese_region (son, exit, bbs_p);
6124 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6125 The duplicates are recorded in VARS_MAP. */
6127 static void
6128 replace_by_duplicate_decl (tree *tp, struct pointer_map_t *vars_map,
6129 tree to_context)
6131 tree t = *tp, new_t;
6132 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6133 void **loc;
6135 if (DECL_CONTEXT (t) == to_context)
6136 return;
6138 loc = pointer_map_contains (vars_map, t);
6140 if (!loc)
6142 loc = pointer_map_insert (vars_map, t);
6144 if (SSA_VAR_P (t))
6146 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6147 add_local_decl (f, new_t);
6149 else
6151 gcc_assert (TREE_CODE (t) == CONST_DECL);
6152 new_t = copy_node (t);
6154 DECL_CONTEXT (new_t) = to_context;
6156 *loc = new_t;
6158 else
6159 new_t = (tree) *loc;
6161 *tp = new_t;
6165 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6166 VARS_MAP maps old ssa names and var_decls to the new ones. */
6168 static tree
6169 replace_ssa_name (tree name, struct pointer_map_t *vars_map,
6170 tree to_context)
6172 void **loc;
6173 tree new_name;
6175 gcc_assert (!virtual_operand_p (name));
6177 loc = pointer_map_contains (vars_map, name);
6179 if (!loc)
6181 tree decl = SSA_NAME_VAR (name);
6182 if (decl)
6184 replace_by_duplicate_decl (&decl, vars_map, to_context);
6185 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6186 decl, SSA_NAME_DEF_STMT (name));
6187 if (SSA_NAME_IS_DEFAULT_DEF (name))
6188 set_ssa_default_def (DECL_STRUCT_FUNCTION (to_context),
6189 decl, new_name);
6191 else
6192 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6193 name, SSA_NAME_DEF_STMT (name));
6195 loc = pointer_map_insert (vars_map, name);
6196 *loc = new_name;
6198 else
6199 new_name = (tree) *loc;
6201 return new_name;
6204 struct move_stmt_d
6206 tree orig_block;
6207 tree new_block;
6208 tree from_context;
6209 tree to_context;
6210 struct pointer_map_t *vars_map;
6211 htab_t new_label_map;
6212 struct pointer_map_t *eh_map;
6213 bool remap_decls_p;
6216 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6217 contained in *TP if it has been ORIG_BLOCK previously and change the
6218 DECL_CONTEXT of every local variable referenced in *TP. */
6220 static tree
6221 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6223 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6224 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6225 tree t = *tp;
6227 if (EXPR_P (t))
6229 tree block = TREE_BLOCK (t);
6230 if (block == p->orig_block
6231 || (p->orig_block == NULL_TREE
6232 && block != NULL_TREE))
6233 TREE_SET_BLOCK (t, p->new_block);
6234 #ifdef ENABLE_CHECKING
6235 else if (block != NULL_TREE)
6237 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6238 block = BLOCK_SUPERCONTEXT (block);
6239 gcc_assert (block == p->orig_block);
6241 #endif
6243 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6245 if (TREE_CODE (t) == SSA_NAME)
6246 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6247 else if (TREE_CODE (t) == LABEL_DECL)
6249 if (p->new_label_map)
6251 struct tree_map in, *out;
6252 in.base.from = t;
6253 out = (struct tree_map *)
6254 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6255 if (out)
6256 *tp = t = out->to;
6259 DECL_CONTEXT (t) = p->to_context;
6261 else if (p->remap_decls_p)
6263 /* Replace T with its duplicate. T should no longer appear in the
6264 parent function, so this looks wasteful; however, it may appear
6265 in referenced_vars, and more importantly, as virtual operands of
6266 statements, and in alias lists of other variables. It would be
6267 quite difficult to expunge it from all those places. ??? It might
6268 suffice to do this for addressable variables. */
6269 if ((TREE_CODE (t) == VAR_DECL
6270 && !is_global_var (t))
6271 || TREE_CODE (t) == CONST_DECL)
6272 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6274 *walk_subtrees = 0;
6276 else if (TYPE_P (t))
6277 *walk_subtrees = 0;
6279 return NULL_TREE;
6282 /* Helper for move_stmt_r. Given an EH region number for the source
6283 function, map that to the duplicate EH regio number in the dest. */
6285 static int
6286 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6288 eh_region old_r, new_r;
6289 void **slot;
6291 old_r = get_eh_region_from_number (old_nr);
6292 slot = pointer_map_contains (p->eh_map, old_r);
6293 new_r = (eh_region) *slot;
6295 return new_r->index;
6298 /* Similar, but operate on INTEGER_CSTs. */
6300 static tree
6301 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6303 int old_nr, new_nr;
6305 old_nr = tree_to_shwi (old_t_nr);
6306 new_nr = move_stmt_eh_region_nr (old_nr, p);
6308 return build_int_cst (integer_type_node, new_nr);
6311 /* Like move_stmt_op, but for gimple statements.
6313 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6314 contained in the current statement in *GSI_P and change the
6315 DECL_CONTEXT of every local variable referenced in the current
6316 statement. */
6318 static tree
6319 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6320 struct walk_stmt_info *wi)
6322 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6323 gimple stmt = gsi_stmt (*gsi_p);
6324 tree block = gimple_block (stmt);
6326 if (block == p->orig_block
6327 || (p->orig_block == NULL_TREE
6328 && block != NULL_TREE))
6329 gimple_set_block (stmt, p->new_block);
6331 switch (gimple_code (stmt))
6333 case GIMPLE_CALL:
6334 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6336 tree r, fndecl = gimple_call_fndecl (stmt);
6337 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6338 switch (DECL_FUNCTION_CODE (fndecl))
6340 case BUILT_IN_EH_COPY_VALUES:
6341 r = gimple_call_arg (stmt, 1);
6342 r = move_stmt_eh_region_tree_nr (r, p);
6343 gimple_call_set_arg (stmt, 1, r);
6344 /* FALLTHRU */
6346 case BUILT_IN_EH_POINTER:
6347 case BUILT_IN_EH_FILTER:
6348 r = gimple_call_arg (stmt, 0);
6349 r = move_stmt_eh_region_tree_nr (r, p);
6350 gimple_call_set_arg (stmt, 0, r);
6351 break;
6353 default:
6354 break;
6357 break;
6359 case GIMPLE_RESX:
6361 int r = gimple_resx_region (stmt);
6362 r = move_stmt_eh_region_nr (r, p);
6363 gimple_resx_set_region (stmt, r);
6365 break;
6367 case GIMPLE_EH_DISPATCH:
6369 int r = gimple_eh_dispatch_region (stmt);
6370 r = move_stmt_eh_region_nr (r, p);
6371 gimple_eh_dispatch_set_region (stmt, r);
6373 break;
6375 case GIMPLE_OMP_RETURN:
6376 case GIMPLE_OMP_CONTINUE:
6377 break;
6378 default:
6379 if (is_gimple_omp (stmt))
6381 /* Do not remap variables inside OMP directives. Variables
6382 referenced in clauses and directive header belong to the
6383 parent function and should not be moved into the child
6384 function. */
6385 bool save_remap_decls_p = p->remap_decls_p;
6386 p->remap_decls_p = false;
6387 *handled_ops_p = true;
6389 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
6390 move_stmt_op, wi);
6392 p->remap_decls_p = save_remap_decls_p;
6394 break;
6397 return NULL_TREE;
6400 /* Move basic block BB from function CFUN to function DEST_FN. The
6401 block is moved out of the original linked list and placed after
6402 block AFTER in the new list. Also, the block is removed from the
6403 original array of blocks and placed in DEST_FN's array of blocks.
6404 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
6405 updated to reflect the moved edges.
6407 The local variables are remapped to new instances, VARS_MAP is used
6408 to record the mapping. */
6410 static void
6411 move_block_to_fn (struct function *dest_cfun, basic_block bb,
6412 basic_block after, bool update_edge_count_p,
6413 struct move_stmt_d *d)
6415 struct control_flow_graph *cfg;
6416 edge_iterator ei;
6417 edge e;
6418 gimple_stmt_iterator si;
6419 unsigned old_len, new_len;
6421 /* Remove BB from dominance structures. */
6422 delete_from_dominance_info (CDI_DOMINATORS, bb);
6424 /* Move BB from its current loop to the copy in the new function. */
6425 if (current_loops)
6427 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
6428 if (new_loop)
6429 bb->loop_father = new_loop;
6432 /* Link BB to the new linked list. */
6433 move_block_after (bb, after);
6435 /* Update the edge count in the corresponding flowgraphs. */
6436 if (update_edge_count_p)
6437 FOR_EACH_EDGE (e, ei, bb->succs)
6439 cfun->cfg->x_n_edges--;
6440 dest_cfun->cfg->x_n_edges++;
6443 /* Remove BB from the original basic block array. */
6444 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
6445 cfun->cfg->x_n_basic_blocks--;
6447 /* Grow DEST_CFUN's basic block array if needed. */
6448 cfg = dest_cfun->cfg;
6449 cfg->x_n_basic_blocks++;
6450 if (bb->index >= cfg->x_last_basic_block)
6451 cfg->x_last_basic_block = bb->index + 1;
6453 old_len = vec_safe_length (cfg->x_basic_block_info);
6454 if ((unsigned) cfg->x_last_basic_block >= old_len)
6456 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
6457 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
6460 (*cfg->x_basic_block_info)[bb->index] = bb;
6462 /* Remap the variables in phi nodes. */
6463 for (si = gsi_start_phis (bb); !gsi_end_p (si); )
6465 gimple phi = gsi_stmt (si);
6466 use_operand_p use;
6467 tree op = PHI_RESULT (phi);
6468 ssa_op_iter oi;
6469 unsigned i;
6471 if (virtual_operand_p (op))
6473 /* Remove the phi nodes for virtual operands (alias analysis will be
6474 run for the new function, anyway). */
6475 remove_phi_node (&si, true);
6476 continue;
6479 SET_PHI_RESULT (phi,
6480 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6481 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
6483 op = USE_FROM_PTR (use);
6484 if (TREE_CODE (op) == SSA_NAME)
6485 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
6488 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
6490 location_t locus = gimple_phi_arg_location (phi, i);
6491 tree block = LOCATION_BLOCK (locus);
6493 if (locus == UNKNOWN_LOCATION)
6494 continue;
6495 if (d->orig_block == NULL_TREE || block == d->orig_block)
6497 if (d->new_block == NULL_TREE)
6498 locus = LOCATION_LOCUS (locus);
6499 else
6500 locus = COMBINE_LOCATION_DATA (line_table, locus, d->new_block);
6501 gimple_phi_arg_set_location (phi, i, locus);
6505 gsi_next (&si);
6508 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6510 gimple stmt = gsi_stmt (si);
6511 struct walk_stmt_info wi;
6513 memset (&wi, 0, sizeof (wi));
6514 wi.info = d;
6515 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
6517 if (gimple_code (stmt) == GIMPLE_LABEL)
6519 tree label = gimple_label_label (stmt);
6520 int uid = LABEL_DECL_UID (label);
6522 gcc_assert (uid > -1);
6524 old_len = vec_safe_length (cfg->x_label_to_block_map);
6525 if (old_len <= (unsigned) uid)
6527 new_len = 3 * uid / 2 + 1;
6528 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
6531 (*cfg->x_label_to_block_map)[uid] = bb;
6532 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
6534 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
6536 if (uid >= dest_cfun->cfg->last_label_uid)
6537 dest_cfun->cfg->last_label_uid = uid + 1;
6540 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
6541 remove_stmt_from_eh_lp_fn (cfun, stmt);
6543 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
6544 gimple_remove_stmt_histograms (cfun, stmt);
6546 /* We cannot leave any operands allocated from the operand caches of
6547 the current function. */
6548 free_stmt_operands (cfun, stmt);
6549 push_cfun (dest_cfun);
6550 update_stmt (stmt);
6551 pop_cfun ();
6554 FOR_EACH_EDGE (e, ei, bb->succs)
6555 if (e->goto_locus != UNKNOWN_LOCATION)
6557 tree block = LOCATION_BLOCK (e->goto_locus);
6558 if (d->orig_block == NULL_TREE
6559 || block == d->orig_block)
6560 e->goto_locus = d->new_block ?
6561 COMBINE_LOCATION_DATA (line_table, e->goto_locus, d->new_block) :
6562 LOCATION_LOCUS (e->goto_locus);
6566 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6567 the outermost EH region. Use REGION as the incoming base EH region. */
6569 static eh_region
6570 find_outermost_region_in_block (struct function *src_cfun,
6571 basic_block bb, eh_region region)
6573 gimple_stmt_iterator si;
6575 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6577 gimple stmt = gsi_stmt (si);
6578 eh_region stmt_region;
6579 int lp_nr;
6581 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
6582 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
6583 if (stmt_region)
6585 if (region == NULL)
6586 region = stmt_region;
6587 else if (stmt_region != region)
6589 region = eh_region_outermost (src_cfun, stmt_region, region);
6590 gcc_assert (region != NULL);
6595 return region;
6598 static tree
6599 new_label_mapper (tree decl, void *data)
6601 htab_t hash = (htab_t) data;
6602 struct tree_map *m;
6603 void **slot;
6605 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
6607 m = XNEW (struct tree_map);
6608 m->hash = DECL_UID (decl);
6609 m->base.from = decl;
6610 m->to = create_artificial_label (UNKNOWN_LOCATION);
6611 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
6612 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
6613 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
6615 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
6616 gcc_assert (*slot == NULL);
6618 *slot = m;
6620 return m->to;
6623 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6624 subblocks. */
6626 static void
6627 replace_block_vars_by_duplicates (tree block, struct pointer_map_t *vars_map,
6628 tree to_context)
6630 tree *tp, t;
6632 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
6634 t = *tp;
6635 if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != CONST_DECL)
6636 continue;
6637 replace_by_duplicate_decl (&t, vars_map, to_context);
6638 if (t != *tp)
6640 if (TREE_CODE (*tp) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (*tp))
6642 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (*tp));
6643 DECL_HAS_VALUE_EXPR_P (t) = 1;
6645 DECL_CHAIN (t) = DECL_CHAIN (*tp);
6646 *tp = t;
6650 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
6651 replace_block_vars_by_duplicates (block, vars_map, to_context);
6654 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
6655 from FN1 to FN2. */
6657 static void
6658 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
6659 struct loop *loop)
6661 /* Discard it from the old loop array. */
6662 (*get_loops (fn1))[loop->num] = NULL;
6664 /* Place it in the new loop array, assigning it a new number. */
6665 loop->num = number_of_loops (fn2);
6666 vec_safe_push (loops_for_fn (fn2)->larray, loop);
6668 /* Recurse to children. */
6669 for (loop = loop->inner; loop; loop = loop->next)
6670 fixup_loop_arrays_after_move (fn1, fn2, loop);
6673 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6674 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6675 single basic block in the original CFG and the new basic block is
6676 returned. DEST_CFUN must not have a CFG yet.
6678 Note that the region need not be a pure SESE region. Blocks inside
6679 the region may contain calls to abort/exit. The only restriction
6680 is that ENTRY_BB should be the only entry point and it must
6681 dominate EXIT_BB.
6683 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6684 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6685 to the new function.
6687 All local variables referenced in the region are assumed to be in
6688 the corresponding BLOCK_VARS and unexpanded variable lists
6689 associated with DEST_CFUN. */
6691 basic_block
6692 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
6693 basic_block exit_bb, tree orig_block)
6695 vec<basic_block> bbs, dom_bbs;
6696 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
6697 basic_block after, bb, *entry_pred, *exit_succ, abb;
6698 struct function *saved_cfun = cfun;
6699 int *entry_flag, *exit_flag;
6700 unsigned *entry_prob, *exit_prob;
6701 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
6702 edge e;
6703 edge_iterator ei;
6704 htab_t new_label_map;
6705 struct pointer_map_t *vars_map, *eh_map;
6706 struct loop *loop = entry_bb->loop_father;
6707 struct loop *loop0 = get_loop (saved_cfun, 0);
6708 struct move_stmt_d d;
6710 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6711 region. */
6712 gcc_assert (entry_bb != exit_bb
6713 && (!exit_bb
6714 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
6716 /* Collect all the blocks in the region. Manually add ENTRY_BB
6717 because it won't be added by dfs_enumerate_from. */
6718 bbs.create (0);
6719 bbs.safe_push (entry_bb);
6720 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
6722 /* The blocks that used to be dominated by something in BBS will now be
6723 dominated by the new block. */
6724 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
6725 bbs.address (),
6726 bbs.length ());
6728 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6729 the predecessor edges to ENTRY_BB and the successor edges to
6730 EXIT_BB so that we can re-attach them to the new basic block that
6731 will replace the region. */
6732 num_entry_edges = EDGE_COUNT (entry_bb->preds);
6733 entry_pred = XNEWVEC (basic_block, num_entry_edges);
6734 entry_flag = XNEWVEC (int, num_entry_edges);
6735 entry_prob = XNEWVEC (unsigned, num_entry_edges);
6736 i = 0;
6737 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
6739 entry_prob[i] = e->probability;
6740 entry_flag[i] = e->flags;
6741 entry_pred[i++] = e->src;
6742 remove_edge (e);
6745 if (exit_bb)
6747 num_exit_edges = EDGE_COUNT (exit_bb->succs);
6748 exit_succ = XNEWVEC (basic_block, num_exit_edges);
6749 exit_flag = XNEWVEC (int, num_exit_edges);
6750 exit_prob = XNEWVEC (unsigned, num_exit_edges);
6751 i = 0;
6752 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
6754 exit_prob[i] = e->probability;
6755 exit_flag[i] = e->flags;
6756 exit_succ[i++] = e->dest;
6757 remove_edge (e);
6760 else
6762 num_exit_edges = 0;
6763 exit_succ = NULL;
6764 exit_flag = NULL;
6765 exit_prob = NULL;
6768 /* Switch context to the child function to initialize DEST_FN's CFG. */
6769 gcc_assert (dest_cfun->cfg == NULL);
6770 push_cfun (dest_cfun);
6772 init_empty_tree_cfg ();
6774 /* Initialize EH information for the new function. */
6775 eh_map = NULL;
6776 new_label_map = NULL;
6777 if (saved_cfun->eh)
6779 eh_region region = NULL;
6781 FOR_EACH_VEC_ELT (bbs, i, bb)
6782 region = find_outermost_region_in_block (saved_cfun, bb, region);
6784 init_eh_for_function ();
6785 if (region != NULL)
6787 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
6788 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
6789 new_label_mapper, new_label_map);
6793 /* Initialize an empty loop tree. */
6794 struct loops *loops = ggc_alloc_cleared_loops ();
6795 init_loops_structure (dest_cfun, loops, 1);
6796 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
6797 set_loops_for_fn (dest_cfun, loops);
6799 /* Move the outlined loop tree part. */
6800 num_nodes = bbs.length ();
6801 FOR_EACH_VEC_ELT (bbs, i, bb)
6803 if (bb->loop_father->header == bb)
6805 struct loop *this_loop = bb->loop_father;
6806 struct loop *outer = loop_outer (this_loop);
6807 if (outer == loop
6808 /* If the SESE region contains some bbs ending with
6809 a noreturn call, those are considered to belong
6810 to the outermost loop in saved_cfun, rather than
6811 the entry_bb's loop_father. */
6812 || outer == loop0)
6814 if (outer != loop)
6815 num_nodes -= this_loop->num_nodes;
6816 flow_loop_tree_node_remove (bb->loop_father);
6817 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
6818 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
6821 else if (bb->loop_father == loop0 && loop0 != loop)
6822 num_nodes--;
6824 /* Remove loop exits from the outlined region. */
6825 if (loops_for_fn (saved_cfun)->exits)
6826 FOR_EACH_EDGE (e, ei, bb->succs)
6828 void **slot = htab_find_slot_with_hash
6829 (loops_for_fn (saved_cfun)->exits, e,
6830 htab_hash_pointer (e), NO_INSERT);
6831 if (slot)
6832 htab_clear_slot (loops_for_fn (saved_cfun)->exits, slot);
6837 /* Adjust the number of blocks in the tree root of the outlined part. */
6838 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
6840 /* Setup a mapping to be used by move_block_to_fn. */
6841 loop->aux = current_loops->tree_root;
6842 loop0->aux = current_loops->tree_root;
6844 pop_cfun ();
6846 /* Move blocks from BBS into DEST_CFUN. */
6847 gcc_assert (bbs.length () >= 2);
6848 after = dest_cfun->cfg->x_entry_block_ptr;
6849 vars_map = pointer_map_create ();
6851 memset (&d, 0, sizeof (d));
6852 d.orig_block = orig_block;
6853 d.new_block = DECL_INITIAL (dest_cfun->decl);
6854 d.from_context = cfun->decl;
6855 d.to_context = dest_cfun->decl;
6856 d.vars_map = vars_map;
6857 d.new_label_map = new_label_map;
6858 d.eh_map = eh_map;
6859 d.remap_decls_p = true;
6861 FOR_EACH_VEC_ELT (bbs, i, bb)
6863 /* No need to update edge counts on the last block. It has
6864 already been updated earlier when we detached the region from
6865 the original CFG. */
6866 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
6867 after = bb;
6870 loop->aux = NULL;
6871 loop0->aux = NULL;
6872 /* Loop sizes are no longer correct, fix them up. */
6873 loop->num_nodes -= num_nodes;
6874 for (struct loop *outer = loop_outer (loop);
6875 outer; outer = loop_outer (outer))
6876 outer->num_nodes -= num_nodes;
6877 loop0->num_nodes -= bbs.length () - num_nodes;
6879 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vect_loops)
6881 struct loop *aloop;
6882 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
6883 if (aloop != NULL)
6885 if (aloop->simduid)
6887 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
6888 d.to_context);
6889 dest_cfun->has_simduid_loops = true;
6891 if (aloop->force_vect)
6892 dest_cfun->has_force_vect_loops = true;
6896 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6897 if (orig_block)
6899 tree block;
6900 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6901 == NULL_TREE);
6902 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
6903 = BLOCK_SUBBLOCKS (orig_block);
6904 for (block = BLOCK_SUBBLOCKS (orig_block);
6905 block; block = BLOCK_CHAIN (block))
6906 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
6907 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
6910 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
6911 vars_map, dest_cfun->decl);
6913 if (new_label_map)
6914 htab_delete (new_label_map);
6915 if (eh_map)
6916 pointer_map_destroy (eh_map);
6917 pointer_map_destroy (vars_map);
6919 /* Rewire the entry and exit blocks. The successor to the entry
6920 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6921 the child function. Similarly, the predecessor of DEST_FN's
6922 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6923 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6924 various CFG manipulation function get to the right CFG.
6926 FIXME, this is silly. The CFG ought to become a parameter to
6927 these helpers. */
6928 push_cfun (dest_cfun);
6929 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
6930 if (exit_bb)
6931 make_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
6932 pop_cfun ();
6934 /* Back in the original function, the SESE region has disappeared,
6935 create a new basic block in its place. */
6936 bb = create_empty_bb (entry_pred[0]);
6937 if (current_loops)
6938 add_bb_to_loop (bb, loop);
6939 for (i = 0; i < num_entry_edges; i++)
6941 e = make_edge (entry_pred[i], bb, entry_flag[i]);
6942 e->probability = entry_prob[i];
6945 for (i = 0; i < num_exit_edges; i++)
6947 e = make_edge (bb, exit_succ[i], exit_flag[i]);
6948 e->probability = exit_prob[i];
6951 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
6952 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
6953 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
6954 dom_bbs.release ();
6956 if (exit_bb)
6958 free (exit_prob);
6959 free (exit_flag);
6960 free (exit_succ);
6962 free (entry_prob);
6963 free (entry_flag);
6964 free (entry_pred);
6965 bbs.release ();
6967 return bb;
6971 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
6974 void
6975 dump_function_to_file (tree fndecl, FILE *file, int flags)
6977 tree arg, var, old_current_fndecl = current_function_decl;
6978 struct function *dsf;
6979 bool ignore_topmost_bind = false, any_var = false;
6980 basic_block bb;
6981 tree chain;
6982 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
6983 && decl_is_tm_clone (fndecl));
6984 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
6986 current_function_decl = fndecl;
6987 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
6989 arg = DECL_ARGUMENTS (fndecl);
6990 while (arg)
6992 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
6993 fprintf (file, " ");
6994 print_generic_expr (file, arg, dump_flags);
6995 if (flags & TDF_VERBOSE)
6996 print_node (file, "", arg, 4);
6997 if (DECL_CHAIN (arg))
6998 fprintf (file, ", ");
6999 arg = DECL_CHAIN (arg);
7001 fprintf (file, ")\n");
7003 if (flags & TDF_VERBOSE)
7004 print_node (file, "", fndecl, 2);
7006 dsf = DECL_STRUCT_FUNCTION (fndecl);
7007 if (dsf && (flags & TDF_EH))
7008 dump_eh_tree (file, dsf);
7010 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7012 dump_node (fndecl, TDF_SLIM | flags, file);
7013 current_function_decl = old_current_fndecl;
7014 return;
7017 /* When GIMPLE is lowered, the variables are no longer available in
7018 BIND_EXPRs, so display them separately. */
7019 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7021 unsigned ix;
7022 ignore_topmost_bind = true;
7024 fprintf (file, "{\n");
7025 if (!vec_safe_is_empty (fun->local_decls))
7026 FOR_EACH_LOCAL_DECL (fun, ix, var)
7028 print_generic_decl (file, var, flags);
7029 if (flags & TDF_VERBOSE)
7030 print_node (file, "", var, 4);
7031 fprintf (file, "\n");
7033 any_var = true;
7035 if (gimple_in_ssa_p (cfun))
7036 for (ix = 1; ix < num_ssa_names; ++ix)
7038 tree name = ssa_name (ix);
7039 if (name && !SSA_NAME_VAR (name))
7041 fprintf (file, " ");
7042 print_generic_expr (file, TREE_TYPE (name), flags);
7043 fprintf (file, " ");
7044 print_generic_expr (file, name, flags);
7045 fprintf (file, ";\n");
7047 any_var = true;
7052 if (fun && fun->decl == fndecl
7053 && fun->cfg
7054 && basic_block_info_for_fn (fun))
7056 /* If the CFG has been built, emit a CFG-based dump. */
7057 if (!ignore_topmost_bind)
7058 fprintf (file, "{\n");
7060 if (any_var && n_basic_blocks_for_fn (fun))
7061 fprintf (file, "\n");
7063 FOR_EACH_BB_FN (bb, fun)
7064 dump_bb (file, bb, 2, flags | TDF_COMMENT);
7066 fprintf (file, "}\n");
7068 else if (DECL_SAVED_TREE (fndecl) == NULL)
7070 /* The function is now in GIMPLE form but the CFG has not been
7071 built yet. Emit the single sequence of GIMPLE statements
7072 that make up its body. */
7073 gimple_seq body = gimple_body (fndecl);
7075 if (gimple_seq_first_stmt (body)
7076 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
7077 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
7078 print_gimple_seq (file, body, 0, flags);
7079 else
7081 if (!ignore_topmost_bind)
7082 fprintf (file, "{\n");
7084 if (any_var)
7085 fprintf (file, "\n");
7087 print_gimple_seq (file, body, 2, flags);
7088 fprintf (file, "}\n");
7091 else
7093 int indent;
7095 /* Make a tree based dump. */
7096 chain = DECL_SAVED_TREE (fndecl);
7097 if (chain && TREE_CODE (chain) == BIND_EXPR)
7099 if (ignore_topmost_bind)
7101 chain = BIND_EXPR_BODY (chain);
7102 indent = 2;
7104 else
7105 indent = 0;
7107 else
7109 if (!ignore_topmost_bind)
7110 fprintf (file, "{\n");
7111 indent = 2;
7114 if (any_var)
7115 fprintf (file, "\n");
7117 print_generic_stmt_indented (file, chain, flags, indent);
7118 if (ignore_topmost_bind)
7119 fprintf (file, "}\n");
7122 if (flags & TDF_ENUMERATE_LOCALS)
7123 dump_enumerated_decls (file, flags);
7124 fprintf (file, "\n\n");
7126 current_function_decl = old_current_fndecl;
7129 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
7131 DEBUG_FUNCTION void
7132 debug_function (tree fn, int flags)
7134 dump_function_to_file (fn, stderr, flags);
7138 /* Print on FILE the indexes for the predecessors of basic_block BB. */
7140 static void
7141 print_pred_bbs (FILE *file, basic_block bb)
7143 edge e;
7144 edge_iterator ei;
7146 FOR_EACH_EDGE (e, ei, bb->preds)
7147 fprintf (file, "bb_%d ", e->src->index);
7151 /* Print on FILE the indexes for the successors of basic_block BB. */
7153 static void
7154 print_succ_bbs (FILE *file, basic_block bb)
7156 edge e;
7157 edge_iterator ei;
7159 FOR_EACH_EDGE (e, ei, bb->succs)
7160 fprintf (file, "bb_%d ", e->dest->index);
7163 /* Print to FILE the basic block BB following the VERBOSITY level. */
7165 void
7166 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
7168 char *s_indent = (char *) alloca ((size_t) indent + 1);
7169 memset ((void *) s_indent, ' ', (size_t) indent);
7170 s_indent[indent] = '\0';
7172 /* Print basic_block's header. */
7173 if (verbosity >= 2)
7175 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
7176 print_pred_bbs (file, bb);
7177 fprintf (file, "}, succs = {");
7178 print_succ_bbs (file, bb);
7179 fprintf (file, "})\n");
7182 /* Print basic_block's body. */
7183 if (verbosity >= 3)
7185 fprintf (file, "%s {\n", s_indent);
7186 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
7187 fprintf (file, "%s }\n", s_indent);
7191 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
7193 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
7194 VERBOSITY level this outputs the contents of the loop, or just its
7195 structure. */
7197 static void
7198 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
7200 char *s_indent;
7201 basic_block bb;
7203 if (loop == NULL)
7204 return;
7206 s_indent = (char *) alloca ((size_t) indent + 1);
7207 memset ((void *) s_indent, ' ', (size_t) indent);
7208 s_indent[indent] = '\0';
7210 /* Print loop's header. */
7211 fprintf (file, "%sloop_%d (", s_indent, loop->num);
7212 if (loop->header)
7213 fprintf (file, "header = %d", loop->header->index);
7214 else
7216 fprintf (file, "deleted)\n");
7217 return;
7219 if (loop->latch)
7220 fprintf (file, ", latch = %d", loop->latch->index);
7221 else
7222 fprintf (file, ", multiple latches");
7223 fprintf (file, ", niter = ");
7224 print_generic_expr (file, loop->nb_iterations, 0);
7226 if (loop->any_upper_bound)
7228 fprintf (file, ", upper_bound = ");
7229 dump_double_int (file, loop->nb_iterations_upper_bound, true);
7232 if (loop->any_estimate)
7234 fprintf (file, ", estimate = ");
7235 dump_double_int (file, loop->nb_iterations_estimate, true);
7237 fprintf (file, ")\n");
7239 /* Print loop's body. */
7240 if (verbosity >= 1)
7242 fprintf (file, "%s{\n", s_indent);
7243 FOR_EACH_BB_FN (bb, cfun)
7244 if (bb->loop_father == loop)
7245 print_loops_bb (file, bb, indent, verbosity);
7247 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
7248 fprintf (file, "%s}\n", s_indent);
7252 /* Print the LOOP and its sibling loops on FILE, indented INDENT
7253 spaces. Following VERBOSITY level this outputs the contents of the
7254 loop, or just its structure. */
7256 static void
7257 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
7258 int verbosity)
7260 if (loop == NULL)
7261 return;
7263 print_loop (file, loop, indent, verbosity);
7264 print_loop_and_siblings (file, loop->next, indent, verbosity);
7267 /* Follow a CFG edge from the entry point of the program, and on entry
7268 of a loop, pretty print the loop structure on FILE. */
7270 void
7271 print_loops (FILE *file, int verbosity)
7273 basic_block bb;
7275 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
7276 if (bb && bb->loop_father)
7277 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
7280 /* Dump a loop. */
7282 DEBUG_FUNCTION void
7283 debug (struct loop &ref)
7285 print_loop (stderr, &ref, 0, /*verbosity*/0);
7288 DEBUG_FUNCTION void
7289 debug (struct loop *ptr)
7291 if (ptr)
7292 debug (*ptr);
7293 else
7294 fprintf (stderr, "<nil>\n");
7297 /* Dump a loop verbosely. */
7299 DEBUG_FUNCTION void
7300 debug_verbose (struct loop &ref)
7302 print_loop (stderr, &ref, 0, /*verbosity*/3);
7305 DEBUG_FUNCTION void
7306 debug_verbose (struct loop *ptr)
7308 if (ptr)
7309 debug (*ptr);
7310 else
7311 fprintf (stderr, "<nil>\n");
7315 /* Debugging loops structure at tree level, at some VERBOSITY level. */
7317 DEBUG_FUNCTION void
7318 debug_loops (int verbosity)
7320 print_loops (stderr, verbosity);
7323 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
7325 DEBUG_FUNCTION void
7326 debug_loop (struct loop *loop, int verbosity)
7328 print_loop (stderr, loop, 0, verbosity);
7331 /* Print on stderr the code of loop number NUM, at some VERBOSITY
7332 level. */
7334 DEBUG_FUNCTION void
7335 debug_loop_num (unsigned num, int verbosity)
7337 debug_loop (get_loop (cfun, num), verbosity);
7340 /* Return true if BB ends with a call, possibly followed by some
7341 instructions that must stay with the call. Return false,
7342 otherwise. */
7344 static bool
7345 gimple_block_ends_with_call_p (basic_block bb)
7347 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7348 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
7352 /* Return true if BB ends with a conditional branch. Return false,
7353 otherwise. */
7355 static bool
7356 gimple_block_ends_with_condjump_p (const_basic_block bb)
7358 gimple stmt = last_stmt (CONST_CAST_BB (bb));
7359 return (stmt && gimple_code (stmt) == GIMPLE_COND);
7363 /* Return true if we need to add fake edge to exit at statement T.
7364 Helper function for gimple_flow_call_edges_add. */
7366 static bool
7367 need_fake_edge_p (gimple t)
7369 tree fndecl = NULL_TREE;
7370 int call_flags = 0;
7372 /* NORETURN and LONGJMP calls already have an edge to exit.
7373 CONST and PURE calls do not need one.
7374 We don't currently check for CONST and PURE here, although
7375 it would be a good idea, because those attributes are
7376 figured out from the RTL in mark_constant_function, and
7377 the counter incrementation code from -fprofile-arcs
7378 leads to different results from -fbranch-probabilities. */
7379 if (is_gimple_call (t))
7381 fndecl = gimple_call_fndecl (t);
7382 call_flags = gimple_call_flags (t);
7385 if (is_gimple_call (t)
7386 && fndecl
7387 && DECL_BUILT_IN (fndecl)
7388 && (call_flags & ECF_NOTHROW)
7389 && !(call_flags & ECF_RETURNS_TWICE)
7390 /* fork() doesn't really return twice, but the effect of
7391 wrapping it in __gcov_fork() which calls __gcov_flush()
7392 and clears the counters before forking has the same
7393 effect as returning twice. Force a fake edge. */
7394 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
7395 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
7396 return false;
7398 if (is_gimple_call (t))
7400 edge_iterator ei;
7401 edge e;
7402 basic_block bb;
7404 if (!(call_flags & ECF_NORETURN))
7405 return true;
7407 bb = gimple_bb (t);
7408 FOR_EACH_EDGE (e, ei, bb->succs)
7409 if ((e->flags & EDGE_FAKE) == 0)
7410 return true;
7413 if (gimple_code (t) == GIMPLE_ASM
7414 && (gimple_asm_volatile_p (t) || gimple_asm_input_p (t)))
7415 return true;
7417 return false;
7421 /* Add fake edges to the function exit for any non constant and non
7422 noreturn calls (or noreturn calls with EH/abnormal edges),
7423 volatile inline assembly in the bitmap of blocks specified by BLOCKS
7424 or to the whole CFG if BLOCKS is zero. Return the number of blocks
7425 that were split.
7427 The goal is to expose cases in which entering a basic block does
7428 not imply that all subsequent instructions must be executed. */
7430 static int
7431 gimple_flow_call_edges_add (sbitmap blocks)
7433 int i;
7434 int blocks_split = 0;
7435 int last_bb = last_basic_block_for_fn (cfun);
7436 bool check_last_block = false;
7438 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7439 return 0;
7441 if (! blocks)
7442 check_last_block = true;
7443 else
7444 check_last_block = bitmap_bit_p (blocks,
7445 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
7447 /* In the last basic block, before epilogue generation, there will be
7448 a fallthru edge to EXIT. Special care is required if the last insn
7449 of the last basic block is a call because make_edge folds duplicate
7450 edges, which would result in the fallthru edge also being marked
7451 fake, which would result in the fallthru edge being removed by
7452 remove_fake_edges, which would result in an invalid CFG.
7454 Moreover, we can't elide the outgoing fake edge, since the block
7455 profiler needs to take this into account in order to solve the minimal
7456 spanning tree in the case that the call doesn't return.
7458 Handle this by adding a dummy instruction in a new last basic block. */
7459 if (check_last_block)
7461 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
7462 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
7463 gimple t = NULL;
7465 if (!gsi_end_p (gsi))
7466 t = gsi_stmt (gsi);
7468 if (t && need_fake_edge_p (t))
7470 edge e;
7472 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7473 if (e)
7475 gsi_insert_on_edge (e, gimple_build_nop ());
7476 gsi_commit_edge_inserts ();
7481 /* Now add fake edges to the function exit for any non constant
7482 calls since there is no way that we can determine if they will
7483 return or not... */
7484 for (i = 0; i < last_bb; i++)
7486 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7487 gimple_stmt_iterator gsi;
7488 gimple stmt, last_stmt;
7490 if (!bb)
7491 continue;
7493 if (blocks && !bitmap_bit_p (blocks, i))
7494 continue;
7496 gsi = gsi_last_nondebug_bb (bb);
7497 if (!gsi_end_p (gsi))
7499 last_stmt = gsi_stmt (gsi);
7502 stmt = gsi_stmt (gsi);
7503 if (need_fake_edge_p (stmt))
7505 edge e;
7507 /* The handling above of the final block before the
7508 epilogue should be enough to verify that there is
7509 no edge to the exit block in CFG already.
7510 Calling make_edge in such case would cause us to
7511 mark that edge as fake and remove it later. */
7512 #ifdef ENABLE_CHECKING
7513 if (stmt == last_stmt)
7515 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
7516 gcc_assert (e == NULL);
7518 #endif
7520 /* Note that the following may create a new basic block
7521 and renumber the existing basic blocks. */
7522 if (stmt != last_stmt)
7524 e = split_block (bb, stmt);
7525 if (e)
7526 blocks_split++;
7528 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
7530 gsi_prev (&gsi);
7532 while (!gsi_end_p (gsi));
7536 if (blocks_split)
7537 verify_flow_info ();
7539 return blocks_split;
7542 /* Removes edge E and all the blocks dominated by it, and updates dominance
7543 information. The IL in E->src needs to be updated separately.
7544 If dominance info is not available, only the edge E is removed.*/
7546 void
7547 remove_edge_and_dominated_blocks (edge e)
7549 vec<basic_block> bbs_to_remove = vNULL;
7550 vec<basic_block> bbs_to_fix_dom = vNULL;
7551 bitmap df, df_idom;
7552 edge f;
7553 edge_iterator ei;
7554 bool none_removed = false;
7555 unsigned i;
7556 basic_block bb, dbb;
7557 bitmap_iterator bi;
7559 if (!dom_info_available_p (CDI_DOMINATORS))
7561 remove_edge (e);
7562 return;
7565 /* No updating is needed for edges to exit. */
7566 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7568 if (cfgcleanup_altered_bbs)
7569 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7570 remove_edge (e);
7571 return;
7574 /* First, we find the basic blocks to remove. If E->dest has a predecessor
7575 that is not dominated by E->dest, then this set is empty. Otherwise,
7576 all the basic blocks dominated by E->dest are removed.
7578 Also, to DF_IDOM we store the immediate dominators of the blocks in
7579 the dominance frontier of E (i.e., of the successors of the
7580 removed blocks, if there are any, and of E->dest otherwise). */
7581 FOR_EACH_EDGE (f, ei, e->dest->preds)
7583 if (f == e)
7584 continue;
7586 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
7588 none_removed = true;
7589 break;
7593 df = BITMAP_ALLOC (NULL);
7594 df_idom = BITMAP_ALLOC (NULL);
7596 if (none_removed)
7597 bitmap_set_bit (df_idom,
7598 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
7599 else
7601 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
7602 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7604 FOR_EACH_EDGE (f, ei, bb->succs)
7606 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
7607 bitmap_set_bit (df, f->dest->index);
7610 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
7611 bitmap_clear_bit (df, bb->index);
7613 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
7615 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7616 bitmap_set_bit (df_idom,
7617 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
7621 if (cfgcleanup_altered_bbs)
7623 /* Record the set of the altered basic blocks. */
7624 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
7625 bitmap_ior_into (cfgcleanup_altered_bbs, df);
7628 /* Remove E and the cancelled blocks. */
7629 if (none_removed)
7630 remove_edge (e);
7631 else
7633 /* Walk backwards so as to get a chance to substitute all
7634 released DEFs into debug stmts. See
7635 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
7636 details. */
7637 for (i = bbs_to_remove.length (); i-- > 0; )
7638 delete_basic_block (bbs_to_remove[i]);
7641 /* Update the dominance information. The immediate dominator may change only
7642 for blocks whose immediate dominator belongs to DF_IDOM:
7644 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
7645 removal. Let Z the arbitrary block such that idom(Z) = Y and
7646 Z dominates X after the removal. Before removal, there exists a path P
7647 from Y to X that avoids Z. Let F be the last edge on P that is
7648 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
7649 dominates W, and because of P, Z does not dominate W), and W belongs to
7650 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
7651 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
7653 bb = BASIC_BLOCK_FOR_FN (cfun, i);
7654 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
7655 dbb;
7656 dbb = next_dom_son (CDI_DOMINATORS, dbb))
7657 bbs_to_fix_dom.safe_push (dbb);
7660 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
7662 BITMAP_FREE (df);
7663 BITMAP_FREE (df_idom);
7664 bbs_to_remove.release ();
7665 bbs_to_fix_dom.release ();
7668 /* Purge dead EH edges from basic block BB. */
7670 bool
7671 gimple_purge_dead_eh_edges (basic_block bb)
7673 bool changed = false;
7674 edge e;
7675 edge_iterator ei;
7676 gimple stmt = last_stmt (bb);
7678 if (stmt && stmt_can_throw_internal (stmt))
7679 return false;
7681 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7683 if (e->flags & EDGE_EH)
7685 remove_edge_and_dominated_blocks (e);
7686 changed = true;
7688 else
7689 ei_next (&ei);
7692 return changed;
7695 /* Purge dead EH edges from basic block listed in BLOCKS. */
7697 bool
7698 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
7700 bool changed = false;
7701 unsigned i;
7702 bitmap_iterator bi;
7704 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7706 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7708 /* Earlier gimple_purge_dead_eh_edges could have removed
7709 this basic block already. */
7710 gcc_assert (bb || changed);
7711 if (bb != NULL)
7712 changed |= gimple_purge_dead_eh_edges (bb);
7715 return changed;
7718 /* Purge dead abnormal call edges from basic block BB. */
7720 bool
7721 gimple_purge_dead_abnormal_call_edges (basic_block bb)
7723 bool changed = false;
7724 edge e;
7725 edge_iterator ei;
7726 gimple stmt = last_stmt (bb);
7728 if (!cfun->has_nonlocal_label
7729 && !cfun->calls_setjmp)
7730 return false;
7732 if (stmt && stmt_can_make_abnormal_goto (stmt))
7733 return false;
7735 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
7737 if (e->flags & EDGE_ABNORMAL)
7739 if (e->flags & EDGE_FALLTHRU)
7740 e->flags &= ~EDGE_ABNORMAL;
7741 else
7742 remove_edge_and_dominated_blocks (e);
7743 changed = true;
7745 else
7746 ei_next (&ei);
7749 return changed;
7752 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7754 bool
7755 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
7757 bool changed = false;
7758 unsigned i;
7759 bitmap_iterator bi;
7761 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
7763 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
7765 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7766 this basic block already. */
7767 gcc_assert (bb || changed);
7768 if (bb != NULL)
7769 changed |= gimple_purge_dead_abnormal_call_edges (bb);
7772 return changed;
7775 /* This function is called whenever a new edge is created or
7776 redirected. */
7778 static void
7779 gimple_execute_on_growing_pred (edge e)
7781 basic_block bb = e->dest;
7783 if (!gimple_seq_empty_p (phi_nodes (bb)))
7784 reserve_phi_args_for_new_edge (bb);
7787 /* This function is called immediately before edge E is removed from
7788 the edge vector E->dest->preds. */
7790 static void
7791 gimple_execute_on_shrinking_pred (edge e)
7793 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
7794 remove_phi_args (e);
7797 /*---------------------------------------------------------------------------
7798 Helper functions for Loop versioning
7799 ---------------------------------------------------------------------------*/
7801 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7802 of 'first'. Both of them are dominated by 'new_head' basic block. When
7803 'new_head' was created by 'second's incoming edge it received phi arguments
7804 on the edge by split_edge(). Later, additional edge 'e' was created to
7805 connect 'new_head' and 'first'. Now this routine adds phi args on this
7806 additional edge 'e' that new_head to second edge received as part of edge
7807 splitting. */
7809 static void
7810 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
7811 basic_block new_head, edge e)
7813 gimple phi1, phi2;
7814 gimple_stmt_iterator psi1, psi2;
7815 tree def;
7816 edge e2 = find_edge (new_head, second);
7818 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7819 edge, we should always have an edge from NEW_HEAD to SECOND. */
7820 gcc_assert (e2 != NULL);
7822 /* Browse all 'second' basic block phi nodes and add phi args to
7823 edge 'e' for 'first' head. PHI args are always in correct order. */
7825 for (psi2 = gsi_start_phis (second),
7826 psi1 = gsi_start_phis (first);
7827 !gsi_end_p (psi2) && !gsi_end_p (psi1);
7828 gsi_next (&psi2), gsi_next (&psi1))
7830 phi1 = gsi_stmt (psi1);
7831 phi2 = gsi_stmt (psi2);
7832 def = PHI_ARG_DEF (phi2, e2->dest_idx);
7833 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
7838 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7839 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7840 the destination of the ELSE part. */
7842 static void
7843 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
7844 basic_block second_head ATTRIBUTE_UNUSED,
7845 basic_block cond_bb, void *cond_e)
7847 gimple_stmt_iterator gsi;
7848 gimple new_cond_expr;
7849 tree cond_expr = (tree) cond_e;
7850 edge e0;
7852 /* Build new conditional expr */
7853 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
7854 NULL_TREE, NULL_TREE);
7856 /* Add new cond in cond_bb. */
7857 gsi = gsi_last_bb (cond_bb);
7858 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
7860 /* Adjust edges appropriately to connect new head with first head
7861 as well as second head. */
7862 e0 = single_succ_edge (cond_bb);
7863 e0->flags &= ~EDGE_FALLTHRU;
7864 e0->flags |= EDGE_FALSE_VALUE;
7868 /* Do book-keeping of basic block BB for the profile consistency checker.
7869 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
7870 then do post-pass accounting. Store the counting in RECORD. */
7871 static void
7872 gimple_account_profile_record (basic_block bb, int after_pass,
7873 struct profile_record *record)
7875 gimple_stmt_iterator i;
7876 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
7878 record->size[after_pass]
7879 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
7880 if (profile_status_for_fn (cfun) == PROFILE_READ)
7881 record->time[after_pass]
7882 += estimate_num_insns (gsi_stmt (i),
7883 &eni_time_weights) * bb->count;
7884 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
7885 record->time[after_pass]
7886 += estimate_num_insns (gsi_stmt (i),
7887 &eni_time_weights) * bb->frequency;
7891 struct cfg_hooks gimple_cfg_hooks = {
7892 "gimple",
7893 gimple_verify_flow_info,
7894 gimple_dump_bb, /* dump_bb */
7895 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
7896 create_bb, /* create_basic_block */
7897 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
7898 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
7899 gimple_can_remove_branch_p, /* can_remove_branch_p */
7900 remove_bb, /* delete_basic_block */
7901 gimple_split_block, /* split_block */
7902 gimple_move_block_after, /* move_block_after */
7903 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
7904 gimple_merge_blocks, /* merge_blocks */
7905 gimple_predict_edge, /* predict_edge */
7906 gimple_predicted_by_p, /* predicted_by_p */
7907 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
7908 gimple_duplicate_bb, /* duplicate_block */
7909 gimple_split_edge, /* split_edge */
7910 gimple_make_forwarder_block, /* make_forward_block */
7911 NULL, /* tidy_fallthru_edge */
7912 NULL, /* force_nonfallthru */
7913 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
7914 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
7915 gimple_flow_call_edges_add, /* flow_call_edges_add */
7916 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
7917 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
7918 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
7919 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
7920 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
7921 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
7922 flush_pending_stmts, /* flush_pending_stmts */
7923 gimple_empty_block_p, /* block_empty_p */
7924 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
7925 gimple_account_profile_record,
7929 /* Split all critical edges. */
7931 unsigned int
7932 split_critical_edges (void)
7934 basic_block bb;
7935 edge e;
7936 edge_iterator ei;
7938 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7939 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7940 mappings around the calls to split_edge. */
7941 start_recording_case_labels ();
7942 FOR_ALL_BB_FN (bb, cfun)
7944 FOR_EACH_EDGE (e, ei, bb->succs)
7946 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
7947 split_edge (e);
7948 /* PRE inserts statements to edges and expects that
7949 since split_critical_edges was done beforehand, committing edge
7950 insertions will not split more edges. In addition to critical
7951 edges we must split edges that have multiple successors and
7952 end by control flow statements, such as RESX.
7953 Go ahead and split them too. This matches the logic in
7954 gimple_find_edge_insert_loc. */
7955 else if ((!single_pred_p (e->dest)
7956 || !gimple_seq_empty_p (phi_nodes (e->dest))
7957 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7958 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
7959 && !(e->flags & EDGE_ABNORMAL))
7961 gimple_stmt_iterator gsi;
7963 gsi = gsi_last_bb (e->src);
7964 if (!gsi_end_p (gsi)
7965 && stmt_ends_bb_p (gsi_stmt (gsi))
7966 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
7967 && !gimple_call_builtin_p (gsi_stmt (gsi),
7968 BUILT_IN_RETURN)))
7969 split_edge (e);
7973 end_recording_case_labels ();
7974 return 0;
7977 namespace {
7979 const pass_data pass_data_split_crit_edges =
7981 GIMPLE_PASS, /* type */
7982 "crited", /* name */
7983 OPTGROUP_NONE, /* optinfo_flags */
7984 false, /* has_gate */
7985 true, /* has_execute */
7986 TV_TREE_SPLIT_EDGES, /* tv_id */
7987 PROP_cfg, /* properties_required */
7988 PROP_no_crit_edges, /* properties_provided */
7989 0, /* properties_destroyed */
7990 0, /* todo_flags_start */
7991 TODO_verify_flow, /* todo_flags_finish */
7994 class pass_split_crit_edges : public gimple_opt_pass
7996 public:
7997 pass_split_crit_edges (gcc::context *ctxt)
7998 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8001 /* opt_pass methods: */
8002 unsigned int execute () { return split_critical_edges (); }
8004 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8005 }; // class pass_split_crit_edges
8007 } // anon namespace
8009 gimple_opt_pass *
8010 make_pass_split_crit_edges (gcc::context *ctxt)
8012 return new pass_split_crit_edges (ctxt);
8016 /* Build a ternary operation and gimplify it. Emit code before GSI.
8017 Return the gimple_val holding the result. */
8019 tree
8020 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
8021 tree type, tree a, tree b, tree c)
8023 tree ret;
8024 location_t loc = gimple_location (gsi_stmt (*gsi));
8026 ret = fold_build3_loc (loc, code, type, a, b, c);
8027 STRIP_NOPS (ret);
8029 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8030 GSI_SAME_STMT);
8033 /* Build a binary operation and gimplify it. Emit code before GSI.
8034 Return the gimple_val holding the result. */
8036 tree
8037 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
8038 tree type, tree a, tree b)
8040 tree ret;
8042 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
8043 STRIP_NOPS (ret);
8045 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8046 GSI_SAME_STMT);
8049 /* Build a unary operation and gimplify it. Emit code before GSI.
8050 Return the gimple_val holding the result. */
8052 tree
8053 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
8054 tree a)
8056 tree ret;
8058 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
8059 STRIP_NOPS (ret);
8061 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
8062 GSI_SAME_STMT);
8067 /* Emit return warnings. */
8069 static unsigned int
8070 execute_warn_function_return (void)
8072 source_location location;
8073 gimple last;
8074 edge e;
8075 edge_iterator ei;
8077 if (!targetm.warn_func_return (cfun->decl))
8078 return 0;
8080 /* If we have a path to EXIT, then we do return. */
8081 if (TREE_THIS_VOLATILE (cfun->decl)
8082 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0)
8084 location = UNKNOWN_LOCATION;
8085 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8087 last = last_stmt (e->src);
8088 if ((gimple_code (last) == GIMPLE_RETURN
8089 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
8090 && (location = gimple_location (last)) != UNKNOWN_LOCATION)
8091 break;
8093 if (location == UNKNOWN_LOCATION)
8094 location = cfun->function_end_locus;
8095 warning_at (location, 0, "%<noreturn%> function does return");
8098 /* If we see "return;" in some basic block, then we do reach the end
8099 without returning a value. */
8100 else if (warn_return_type
8101 && !TREE_NO_WARNING (cfun->decl)
8102 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) > 0
8103 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
8105 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
8107 gimple last = last_stmt (e->src);
8108 if (gimple_code (last) == GIMPLE_RETURN
8109 && gimple_return_retval (last) == NULL
8110 && !gimple_no_warning_p (last))
8112 location = gimple_location (last);
8113 if (location == UNKNOWN_LOCATION)
8114 location = cfun->function_end_locus;
8115 warning_at (location, OPT_Wreturn_type, "control reaches end of non-void function");
8116 TREE_NO_WARNING (cfun->decl) = 1;
8117 break;
8121 return 0;
8125 /* Given a basic block B which ends with a conditional and has
8126 precisely two successors, determine which of the edges is taken if
8127 the conditional is true and which is taken if the conditional is
8128 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
8130 void
8131 extract_true_false_edges_from_block (basic_block b,
8132 edge *true_edge,
8133 edge *false_edge)
8135 edge e = EDGE_SUCC (b, 0);
8137 if (e->flags & EDGE_TRUE_VALUE)
8139 *true_edge = e;
8140 *false_edge = EDGE_SUCC (b, 1);
8142 else
8144 *false_edge = e;
8145 *true_edge = EDGE_SUCC (b, 1);
8149 namespace {
8151 const pass_data pass_data_warn_function_return =
8153 GIMPLE_PASS, /* type */
8154 "*warn_function_return", /* name */
8155 OPTGROUP_NONE, /* optinfo_flags */
8156 false, /* has_gate */
8157 true, /* has_execute */
8158 TV_NONE, /* tv_id */
8159 PROP_cfg, /* properties_required */
8160 0, /* properties_provided */
8161 0, /* properties_destroyed */
8162 0, /* todo_flags_start */
8163 0, /* todo_flags_finish */
8166 class pass_warn_function_return : public gimple_opt_pass
8168 public:
8169 pass_warn_function_return (gcc::context *ctxt)
8170 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
8173 /* opt_pass methods: */
8174 unsigned int execute () { return execute_warn_function_return (); }
8176 }; // class pass_warn_function_return
8178 } // anon namespace
8180 gimple_opt_pass *
8181 make_pass_warn_function_return (gcc::context *ctxt)
8183 return new pass_warn_function_return (ctxt);
8186 /* Walk a gimplified function and warn for functions whose return value is
8187 ignored and attribute((warn_unused_result)) is set. This is done before
8188 inlining, so we don't have to worry about that. */
8190 static void
8191 do_warn_unused_result (gimple_seq seq)
8193 tree fdecl, ftype;
8194 gimple_stmt_iterator i;
8196 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
8198 gimple g = gsi_stmt (i);
8200 switch (gimple_code (g))
8202 case GIMPLE_BIND:
8203 do_warn_unused_result (gimple_bind_body (g));
8204 break;
8205 case GIMPLE_TRY:
8206 do_warn_unused_result (gimple_try_eval (g));
8207 do_warn_unused_result (gimple_try_cleanup (g));
8208 break;
8209 case GIMPLE_CATCH:
8210 do_warn_unused_result (gimple_catch_handler (g));
8211 break;
8212 case GIMPLE_EH_FILTER:
8213 do_warn_unused_result (gimple_eh_filter_failure (g));
8214 break;
8216 case GIMPLE_CALL:
8217 if (gimple_call_lhs (g))
8218 break;
8219 if (gimple_call_internal_p (g))
8220 break;
8222 /* This is a naked call, as opposed to a GIMPLE_CALL with an
8223 LHS. All calls whose value is ignored should be
8224 represented like this. Look for the attribute. */
8225 fdecl = gimple_call_fndecl (g);
8226 ftype = gimple_call_fntype (g);
8228 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
8230 location_t loc = gimple_location (g);
8232 if (fdecl)
8233 warning_at (loc, OPT_Wunused_result,
8234 "ignoring return value of %qD, "
8235 "declared with attribute warn_unused_result",
8236 fdecl);
8237 else
8238 warning_at (loc, OPT_Wunused_result,
8239 "ignoring return value of function "
8240 "declared with attribute warn_unused_result");
8242 break;
8244 default:
8245 /* Not a container, not a call, or a call whose value is used. */
8246 break;
8251 static unsigned int
8252 run_warn_unused_result (void)
8254 do_warn_unused_result (gimple_body (current_function_decl));
8255 return 0;
8258 static bool
8259 gate_warn_unused_result (void)
8261 return flag_warn_unused_result;
8264 namespace {
8266 const pass_data pass_data_warn_unused_result =
8268 GIMPLE_PASS, /* type */
8269 "*warn_unused_result", /* name */
8270 OPTGROUP_NONE, /* optinfo_flags */
8271 true, /* has_gate */
8272 true, /* has_execute */
8273 TV_NONE, /* tv_id */
8274 PROP_gimple_any, /* properties_required */
8275 0, /* properties_provided */
8276 0, /* properties_destroyed */
8277 0, /* todo_flags_start */
8278 0, /* todo_flags_finish */
8281 class pass_warn_unused_result : public gimple_opt_pass
8283 public:
8284 pass_warn_unused_result (gcc::context *ctxt)
8285 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
8288 /* opt_pass methods: */
8289 bool gate () { return gate_warn_unused_result (); }
8290 unsigned int execute () { return run_warn_unused_result (); }
8292 }; // class pass_warn_unused_result
8294 } // anon namespace
8296 gimple_opt_pass *
8297 make_pass_warn_unused_result (gcc::context *ctxt)
8299 return new pass_warn_unused_result (ctxt);
8302 /* IPA passes, compilation of earlier functions or inlining
8303 might have changed some properties, such as marked functions nothrow,
8304 pure, const or noreturn.
8305 Remove redundant edges and basic blocks, and create new ones if necessary.
8307 This pass can't be executed as stand alone pass from pass manager, because
8308 in between inlining and this fixup the verify_flow_info would fail. */
8310 unsigned int
8311 execute_fixup_cfg (void)
8313 basic_block bb;
8314 gimple_stmt_iterator gsi;
8315 int todo = gimple_in_ssa_p (cfun) ? TODO_verify_ssa : 0;
8316 gcov_type count_scale;
8317 edge e;
8318 edge_iterator ei;
8320 count_scale
8321 = GCOV_COMPUTE_SCALE (cgraph_get_node (current_function_decl)->count,
8322 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count);
8324 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count =
8325 cgraph_get_node (current_function_decl)->count;
8326 EXIT_BLOCK_PTR_FOR_FN (cfun)->count =
8327 apply_scale (EXIT_BLOCK_PTR_FOR_FN (cfun)->count,
8328 count_scale);
8330 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
8331 e->count = apply_scale (e->count, count_scale);
8333 FOR_EACH_BB_FN (bb, cfun)
8335 bb->count = apply_scale (bb->count, count_scale);
8336 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
8338 gimple stmt = gsi_stmt (gsi);
8339 tree decl = is_gimple_call (stmt)
8340 ? gimple_call_fndecl (stmt)
8341 : NULL;
8342 if (decl)
8344 int flags = gimple_call_flags (stmt);
8345 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
8347 if (gimple_purge_dead_abnormal_call_edges (bb))
8348 todo |= TODO_cleanup_cfg;
8350 if (gimple_in_ssa_p (cfun))
8352 todo |= TODO_update_ssa | TODO_cleanup_cfg;
8353 update_stmt (stmt);
8357 if (flags & ECF_NORETURN
8358 && fixup_noreturn_call (stmt))
8359 todo |= TODO_cleanup_cfg;
8362 if (maybe_clean_eh_stmt (stmt)
8363 && gimple_purge_dead_eh_edges (bb))
8364 todo |= TODO_cleanup_cfg;
8367 FOR_EACH_EDGE (e, ei, bb->succs)
8368 e->count = apply_scale (e->count, count_scale);
8370 /* If we have a basic block with no successors that does not
8371 end with a control statement or a noreturn call end it with
8372 a call to __builtin_unreachable. This situation can occur
8373 when inlining a noreturn call that does in fact return. */
8374 if (EDGE_COUNT (bb->succs) == 0)
8376 gimple stmt = last_stmt (bb);
8377 if (!stmt
8378 || (!is_ctrl_stmt (stmt)
8379 && (!is_gimple_call (stmt)
8380 || (gimple_call_flags (stmt) & ECF_NORETURN) == 0)))
8382 stmt = gimple_build_call
8383 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
8384 gimple_stmt_iterator gsi = gsi_last_bb (bb);
8385 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
8389 if (count_scale != REG_BR_PROB_BASE)
8390 compute_function_frequency ();
8392 /* We just processed all calls. */
8393 if (cfun->gimple_df)
8394 vec_free (MODIFIED_NORETURN_CALLS (cfun));
8396 /* Dump a textual representation of the flowgraph. */
8397 if (dump_file)
8398 gimple_dump_cfg (dump_file, dump_flags);
8400 if (current_loops
8401 && (todo & TODO_cleanup_cfg))
8402 loops_state_set (LOOPS_NEED_FIXUP);
8404 return todo;
8407 namespace {
8409 const pass_data pass_data_fixup_cfg =
8411 GIMPLE_PASS, /* type */
8412 "*free_cfg_annotations", /* name */
8413 OPTGROUP_NONE, /* optinfo_flags */
8414 false, /* has_gate */
8415 true, /* has_execute */
8416 TV_NONE, /* tv_id */
8417 PROP_cfg, /* properties_required */
8418 0, /* properties_provided */
8419 0, /* properties_destroyed */
8420 0, /* todo_flags_start */
8421 0, /* todo_flags_finish */
8424 class pass_fixup_cfg : public gimple_opt_pass
8426 public:
8427 pass_fixup_cfg (gcc::context *ctxt)
8428 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
8431 /* opt_pass methods: */
8432 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
8433 unsigned int execute () { return execute_fixup_cfg (); }
8435 }; // class pass_fixup_cfg
8437 } // anon namespace
8439 gimple_opt_pass *
8440 make_pass_fixup_cfg (gcc::context *ctxt)
8442 return new pass_fixup_cfg (ctxt);
8445 /* Garbage collection support for edge_def. */
8447 extern void gt_ggc_mx (tree&);
8448 extern void gt_ggc_mx (gimple&);
8449 extern void gt_ggc_mx (rtx&);
8450 extern void gt_ggc_mx (basic_block&);
8452 void
8453 gt_ggc_mx (edge_def *e)
8455 tree block = LOCATION_BLOCK (e->goto_locus);
8456 gt_ggc_mx (e->src);
8457 gt_ggc_mx (e->dest);
8458 if (current_ir_type () == IR_GIMPLE)
8459 gt_ggc_mx (e->insns.g);
8460 else
8461 gt_ggc_mx (e->insns.r);
8462 gt_ggc_mx (block);
8465 /* PCH support for edge_def. */
8467 extern void gt_pch_nx (tree&);
8468 extern void gt_pch_nx (gimple&);
8469 extern void gt_pch_nx (rtx&);
8470 extern void gt_pch_nx (basic_block&);
8472 void
8473 gt_pch_nx (edge_def *e)
8475 tree block = LOCATION_BLOCK (e->goto_locus);
8476 gt_pch_nx (e->src);
8477 gt_pch_nx (e->dest);
8478 if (current_ir_type () == IR_GIMPLE)
8479 gt_pch_nx (e->insns.g);
8480 else
8481 gt_pch_nx (e->insns.r);
8482 gt_pch_nx (block);
8485 void
8486 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
8488 tree block = LOCATION_BLOCK (e->goto_locus);
8489 op (&(e->src), cookie);
8490 op (&(e->dest), cookie);
8491 if (current_ir_type () == IR_GIMPLE)
8492 op (&(e->insns.g), cookie);
8493 else
8494 op (&(e->insns.r), cookie);
8495 op (&(block), cookie);