1 (* ARM NEON documentation generator.
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4 Contributed by CodeSourcery.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>.
22 This is an O'Caml program. The O'Caml compiler is available from:
26 Or from your favourite OS's friendly packaging system. Tested with version
27 3.09.2, though other versions will probably work too.
31 ocamlc -o neon-docgen neon.cmo neon-docgen.ml
34 /path/to/neon-docgen /path/to/gcc/doc/arm-neon-intrinsics.texi
39 (* The combined "ops" and "reinterp" table. *)
40 let ops_reinterp = reinterp
@ ops
42 (* Helper functions for extracting things from the "ops" table. *)
43 let single_opcode desired_opcode
() =
44 List.fold_left
(fun got_so_far
->
47 (opcode
, _
, _
, _
, _
, _
) ->
48 if opcode
= desired_opcode
then row
:: got_so_far
52 let multiple_opcodes desired_opcodes
() =
53 List.fold_left
(fun got_so_far
->
55 (single_opcode desired_opcode
()) @ got_so_far
)
58 let ldx_opcode number
() =
59 List.fold_left
(fun got_so_far
->
62 (opcode
, _
, _
, _
, _
, _
) ->
64 Vldx n
| Vldx_lane n
| Vldx_dup n
when n
= number
->
69 let stx_opcode number
() =
70 List.fold_left
(fun got_so_far
->
73 (opcode
, _
, _
, _
, _
, _
) ->
75 Vstx n
| Vstx_lane n
when n
= number
->
81 List.fold_left
(fun got_so_far
->
84 (opcode
, _
, _
, _
, _
, _
) ->
86 Vtbl _
-> row
:: got_so_far
91 List.fold_left
(fun got_so_far
->
94 (opcode
, _
, _
, _
, _
, _
) ->
96 Vtbx _
-> row
:: got_so_far
100 (* The groups of intrinsics. *)
101 let intrinsic_groups =
102 [ "Addition", single_opcode Vadd
;
103 "Multiplication", single_opcode Vmul
;
104 "Multiply-accumulate", single_opcode Vmla
;
105 "Multiply-subtract", single_opcode Vmls
;
106 "Fused-multiply-accumulate", single_opcode Vfma
;
107 "Fused-multiply-subtract", single_opcode Vfms
;
108 "Round to integral (to nearest, ties to even)", single_opcode Vrintn
;
109 "Round to integral (to nearest, ties away from zero)", single_opcode Vrinta
;
110 "Round to integral (towards +Inf)", single_opcode Vrintp
;
111 "Round to integral (towards -Inf)", single_opcode Vrintm
;
112 "Round to integral (towards 0)", single_opcode Vrintz
;
113 "Subtraction", single_opcode Vsub
;
114 "Comparison (equal-to)", single_opcode Vceq
;
115 "Comparison (greater-than-or-equal-to)", single_opcode Vcge
;
116 "Comparison (less-than-or-equal-to)", single_opcode Vcle
;
117 "Comparison (greater-than)", single_opcode Vcgt
;
118 "Comparison (less-than)", single_opcode Vclt
;
119 "Comparison (absolute greater-than-or-equal-to)", single_opcode Vcage
;
120 "Comparison (absolute less-than-or-equal-to)", single_opcode Vcale
;
121 "Comparison (absolute greater-than)", single_opcode Vcagt
;
122 "Comparison (absolute less-than)", single_opcode Vcalt
;
123 "Test bits", single_opcode Vtst
;
124 "Absolute difference", single_opcode Vabd
;
125 "Absolute difference and accumulate", single_opcode Vaba
;
126 "Maximum", single_opcode Vmax
;
127 "Minimum", single_opcode Vmin
;
128 "Pairwise add", single_opcode Vpadd
;
129 "Pairwise add, single_opcode widen and accumulate", single_opcode Vpada
;
130 "Folding maximum", single_opcode Vpmax
;
131 "Folding minimum", single_opcode Vpmin
;
132 "Reciprocal step", multiple_opcodes [Vrecps
; Vrsqrts
];
133 "Vector shift left", single_opcode Vshl
;
134 "Vector shift left by constant", single_opcode Vshl_n
;
135 "Vector shift right by constant", single_opcode Vshr_n
;
136 "Vector shift right by constant and accumulate", single_opcode Vsra_n
;
137 "Vector shift right and insert", single_opcode Vsri
;
138 "Vector shift left and insert", single_opcode Vsli
;
139 "Absolute value", single_opcode Vabs
;
140 "Negation", single_opcode Vneg
;
141 "Bitwise not", single_opcode Vmvn
;
142 "Count leading sign bits", single_opcode Vcls
;
143 "Count leading zeros", single_opcode Vclz
;
144 "Count number of set bits", single_opcode Vcnt
;
145 "Reciprocal estimate", single_opcode Vrecpe
;
146 "Reciprocal square-root estimate", single_opcode Vrsqrte
;
147 "Get lanes from a vector", single_opcode Vget_lane
;
148 "Set lanes in a vector", single_opcode Vset_lane
;
149 "Create vector from literal bit pattern", single_opcode Vcreate
;
150 "Set all lanes to the same value",
151 multiple_opcodes [Vdup_n
; Vmov_n
; Vdup_lane
];
152 "Combining vectors", single_opcode Vcombine
;
153 "Splitting vectors", multiple_opcodes [Vget_high
; Vget_low
];
154 "Conversions", multiple_opcodes [Vcvt
; Vcvt_n
];
155 "Move, single_opcode narrowing", single_opcode Vmovn
;
156 "Move, single_opcode long", single_opcode Vmovl
;
157 "Table lookup", tbl_opcode;
158 "Extended table lookup", tbx_opcode;
159 "Multiply, lane", single_opcode Vmul_lane
;
160 "Long multiply, lane", single_opcode Vmull_lane
;
161 "Saturating doubling long multiply, lane", single_opcode Vqdmull_lane
;
162 "Saturating doubling multiply high, lane", single_opcode Vqdmulh_lane
;
163 "Multiply-accumulate, lane", single_opcode Vmla_lane
;
164 "Multiply-subtract, lane", single_opcode Vmls_lane
;
165 "Vector multiply by scalar", single_opcode Vmul_n
;
166 "Vector long multiply by scalar", single_opcode Vmull_n
;
167 "Vector saturating doubling long multiply by scalar",
168 single_opcode Vqdmull_n
;
169 "Vector saturating doubling multiply high by scalar",
170 single_opcode Vqdmulh_n
;
171 "Vector multiply-accumulate by scalar", single_opcode Vmla_n
;
172 "Vector multiply-subtract by scalar", single_opcode Vmls_n
;
173 "Vector extract", single_opcode Vext
;
174 "Reverse elements", multiple_opcodes [Vrev64
; Vrev32
; Vrev16
];
175 "Bit selection", single_opcode Vbsl
;
176 "Transpose elements", single_opcode Vtrn
;
177 "Zip elements", single_opcode Vzip
;
178 "Unzip elements", single_opcode Vuzp
;
179 "Element/structure loads, VLD1 variants", ldx_opcode 1;
180 "Element/structure stores, VST1 variants", stx_opcode 1;
181 "Element/structure loads, VLD2 variants", ldx_opcode 2;
182 "Element/structure stores, VST2 variants", stx_opcode 2;
183 "Element/structure loads, VLD3 variants", ldx_opcode 3;
184 "Element/structure stores, VST3 variants", stx_opcode 3;
185 "Element/structure loads, VLD4 variants", ldx_opcode 4;
186 "Element/structure stores, VST4 variants", stx_opcode 4;
187 "Logical operations (AND)", single_opcode Vand
;
188 "Logical operations (OR)", single_opcode Vorr
;
189 "Logical operations (exclusive OR)", single_opcode Veor
;
190 "Logical operations (AND-NOT)", single_opcode Vbic
;
191 "Logical operations (OR-NOT)", single_opcode Vorn
;
192 "Reinterpret casts", single_opcode Vreinterp
]
194 (* Given an intrinsic shape, produce a string to document the corresponding
196 let rec analyze_shape shape
=
197 let rec n_things n thing
=
200 | n
-> thing
:: (n_things (n
- 1) thing
)
202 let rec analyze_shape_elt reg_no elt
=
204 Dreg
-> "@var{d" ^
(string_of_int reg_no
) ^
"}"
205 | Qreg
-> "@var{q" ^
(string_of_int reg_no
) ^
"}"
206 | Corereg
-> "@var{r" ^
(string_of_int reg_no
) ^
"}"
207 | Immed
-> "#@var{0}"
208 | VecArray
(1, elt
) ->
209 let elt_regexp = analyze_shape_elt 0 elt
in
210 "@{" ^
elt_regexp ^
"@}"
211 | VecArray
(n
, elt
) ->
215 | m
-> (analyze_shape_elt (m
- 1) elt
) :: (f (m
- 1))
217 let ops = List.rev
(f n
) in
218 "@{" ^
(commas
(fun x
-> x
) ops "") ^
"@}"
219 | (PtrTo elt
| CstPtrTo elt
) ->
220 "[" ^
(analyze_shape_elt reg_no elt
) ^
"]"
221 | Element_of_dreg
-> (analyze_shape_elt reg_no Dreg
) ^
"[@var{0}]"
222 | Element_of_qreg
-> (analyze_shape_elt reg_no Qreg
) ^
"[@var{0}]"
223 | All_elements_of_dreg
-> (analyze_shape_elt reg_no Dreg
) ^
"[]"
224 | Alternatives alts
-> (analyze_shape_elt reg_no
(List.hd alts
))
227 All
(n
, elt
) -> commas
(analyze_shape_elt 0) (n_things n elt
) ""
228 | Long
-> (analyze_shape_elt 0 Qreg
) ^
", " ^
(analyze_shape_elt 0 Dreg
) ^
229 ", " ^
(analyze_shape_elt 0 Dreg
)
230 | Long_noreg elt
-> (analyze_shape_elt 0 elt
) ^
", " ^
231 (analyze_shape_elt 0 elt
)
232 | Wide
-> (analyze_shape_elt 0 Qreg
) ^
", " ^
(analyze_shape_elt 0 Qreg
) ^
233 ", " ^
(analyze_shape_elt 0 Dreg
)
234 | Wide_noreg elt
-> analyze_shape (Long_noreg elt
)
235 | Narrow
-> (analyze_shape_elt 0 Dreg
) ^
", " ^
(analyze_shape_elt 0 Qreg
) ^
236 ", " ^
(analyze_shape_elt 0 Qreg
)
237 | Use_operands elts
-> commas
(analyze_shape_elt 0) (Array.to_list elts
) ""
239 analyze_shape (Use_operands
[| Dreg
; Dreg
; Element_of_dreg
|])
241 analyze_shape (Use_operands
[| Qreg
; Qreg
; Element_of_dreg
|])
242 | By_scalar _
-> assert false
244 analyze_shape (Use_operands
[| Qreg
; Dreg
; Element_of_dreg
|])
246 analyze_shape (Use_operands
[| Qreg
; Dreg
; Element_of_dreg
|])
248 let elt_regexp = analyze_shape_elt 0 elt
in
249 let elt_regexp'
= analyze_shape_elt 1 elt
in
250 elt_regexp ^
", " ^
elt_regexp'
251 | Unary_scalar _
-> "FIXME Unary_scalar"
252 | Binary_imm elt
-> analyze_shape (Use_operands
[| elt
; elt
; Immed
|])
253 | Narrow_imm
-> analyze_shape (Use_operands
[| Dreg
; Qreg
; Immed
|])
254 | Long_imm
-> analyze_shape (Use_operands
[| Qreg
; Dreg
; Immed
|])
256 (* Document a single intrinsic. *)
257 let describe_intrinsic first chan
258 (elt_ty
, (_
, features
, shape
, name
, munge
, _
)) =
259 let c_arity, new_elt_ty
= munge shape elt_ty
in
260 let c_types = strings_of_arity
c_arity in
261 Printf.fprintf chan
"@itemize @bullet\n";
262 let item_code = if first
then "@item" else "@itemx" in
263 Printf.fprintf chan
"%s %s %s_%s (" item_code (List.hd
c_types)
264 (intrinsic_name name
) (string_of_elt elt_ty
);
265 Printf.fprintf chan
"%s)\n" (commas
(fun ty
-> ty
) (List.tl
c_types) "");
266 if not
(List.exists
(fun feature
-> feature
= No_op
) features
) then
268 let print_one_insn name
=
269 Printf.fprintf chan
"@code{";
270 let no_suffix = (new_elt_ty
= NoElts
) in
271 let name_with_suffix =
272 if no_suffix then name
273 else name ^
"." ^
(string_of_elt_dots new_elt_ty
)
275 let possible_operands = analyze_all_shapes features shape
278 let rec print_one_possible_operand op
=
279 Printf.fprintf chan
"%s %s}" name_with_suffix op
281 (* If the intrinsic expands to multiple instructions, we assume
282 they are all of the same form. *)
283 print_one_possible_operand (List.hd
possible_operands)
285 let rec print_insns names
=
288 | [name
] -> print_one_insn name
289 | name
::names
-> (print_one_insn name
;
290 Printf.fprintf chan
" @emph{or} ";
293 let insn_names = get_insn_names features name
in
294 Printf.fprintf chan
"@*@emph{Form of expected instruction(s):} ";
295 print_insns insn_names;
296 Printf.fprintf chan
"\n"
298 Printf.fprintf chan
"@end itemize\n";
299 Printf.fprintf chan
"\n\n"
301 (* Document a group of intrinsics. *)
302 let document_group chan
(group_title
, group_extractor
) =
303 (* Extract the rows in question from the ops table and then turn them
304 into a list of intrinsics. *)
306 List.fold_left
(fun got_so_far
->
309 (_
, _
, _
, _
, _
, elt_tys
) ->
310 List.fold_left
(fun got_so_far'
->
312 (elt_ty
, row
) :: got_so_far'
)
314 ) [] (group_extractor
())
316 (* Emit the title for this group. *)
317 Printf.fprintf chan
"@subsubsection %s\n\n" group_title
;
318 (* Emit a description of each intrinsic. *)
319 List.iter
(describe_intrinsic true chan
) intrinsics;
320 (* Close this group. *)
321 Printf.fprintf chan
"\n\n"
323 let gnu_header chan
=
324 List.iter
(fun s
-> Printf.fprintf chan
"%s\n" s
) [
325 "@c Copyright (C) 2006-2014 Free Software Foundation, Inc.";
326 "@c This is part of the GCC manual.";
327 "@c For copying conditions, see the file gcc.texi.";
329 "@c This file is generated automatically using gcc/config/arm/neon-docgen.ml";
330 "@c Please do not edit manually."]
335 @item poly128_t vldrq_p128(poly128_t const *)
339 @item void vstrq_p128(poly128_t *, poly128_t)
343 @item uint64x1_t vceq_p64 (poly64x1_t, poly64x1_t)
347 @item uint64x1_t vtst_p64 (poly64x1_t, poly64x1_t)
351 @item uint32_t vsha1h_u32 (uint32_t)
352 @*@emph{Form of expected instruction(s):} @code{sha1h.32 @var{q0}, @var{q1}}
356 @item uint32x4_t vsha1cq_u32 (uint32x4_t, uint32_t, uint32x4_t)
357 @*@emph{Form of expected instruction(s):} @code{sha1c.32 @var{q0}, @var{q1}, @var{q2}}
361 @item uint32x4_t vsha1pq_u32 (uint32x4_t, uint32_t, uint32x4_t)
362 @*@emph{Form of expected instruction(s):} @code{sha1p.32 @var{q0}, @var{q1}, @var{q2}}
366 @item uint32x4_t vsha1mq_u32 (uint32x4_t, uint32_t, uint32x4_t)
367 @*@emph{Form of expected instruction(s):} @code{sha1m.32 @var{q0}, @var{q1}, @var{q2}}
371 @item uint32x4_t vsha1su0q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
372 @*@emph{Form of expected instruction(s):} @code{sha1su0.32 @var{q0}, @var{q1}, @var{q2}}
376 @item uint32x4_t vsha1su1q_u32 (uint32x4_t, uint32x4_t)
377 @*@emph{Form of expected instruction(s):} @code{sha1su1.32 @var{q0}, @var{q1}, @var{q2}}
381 @item uint32x4_t vsha256hq_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
382 @*@emph{Form of expected instruction(s):} @code{sha256h.32 @var{q0}, @var{q1}, @var{q2}}
386 @item uint32x4_t vsha256h2q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
387 @*@emph{Form of expected instruction(s):} @code{sha256h2.32 @var{q0}, @var{q1}, @var{q2}}
391 @item uint32x4_t vsha256su0q_u32 (uint32x4_t, uint32x4_t)
392 @*@emph{Form of expected instruction(s):} @code{sha256su0.32 @var{q0}, @var{q1}}
396 @item uint32x4_t vsha256su1q_u32 (uint32x4_t, uint32x4_t, uint32x4_t)
397 @*@emph{Form of expected instruction(s):} @code{sha256su1.32 @var{q0}, @var{q1}, @var{q2}}
401 @item poly128_t vmull_p64 (poly64_t a, poly64_t b)
402 @*@emph{Form of expected instruction(s):} @code{vmull.p64 @var{q0}, @var{d1}, @var{d2}}
406 @item poly128_t vmull_high_p64 (poly64x2_t a, poly64x2_t b)
407 @*@emph{Form of expected instruction(s):} @code{vmull.p64 @var{q0}, @var{d1}, @var{d2}}
411 (* Program entry point. *)
413 if Array.length
Sys.argv
<> 2 then
414 failwith
"Usage: neon-docgen <output filename>"
416 let file = Sys.argv
.(1) in
418 let chan = open_out
file in
420 List.iter
(document_group chan) intrinsic_groups;
421 Printf.fprintf
chan "%s\n" crypto_doc;
423 with Sys_error sys
->
424 failwith
("Could not create output file " ^
file ^
": " ^ sys
)