2016-10-07 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / tree-data-ref.c
blob8152da3f180343ad9c4382818515920130144d6e
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
47 information,
49 - to define an interface to access this data.
52 Definitions:
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
64 References:
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "backend.h"
80 #include "rtl.h"
81 #include "tree.h"
82 #include "gimple.h"
83 #include "gimple-pretty-print.h"
84 #include "alias.h"
85 #include "fold-const.h"
86 #include "expr.h"
87 #include "gimple-iterator.h"
88 #include "tree-ssa-loop-niter.h"
89 #include "tree-ssa-loop.h"
90 #include "tree-ssa.h"
91 #include "cfgloop.h"
92 #include "tree-data-ref.h"
93 #include "tree-scalar-evolution.h"
94 #include "dumpfile.h"
95 #include "tree-affine.h"
96 #include "params.h"
98 static struct datadep_stats
100 int num_dependence_tests;
101 int num_dependence_dependent;
102 int num_dependence_independent;
103 int num_dependence_undetermined;
105 int num_subscript_tests;
106 int num_subscript_undetermined;
107 int num_same_subscript_function;
109 int num_ziv;
110 int num_ziv_independent;
111 int num_ziv_dependent;
112 int num_ziv_unimplemented;
114 int num_siv;
115 int num_siv_independent;
116 int num_siv_dependent;
117 int num_siv_unimplemented;
119 int num_miv;
120 int num_miv_independent;
121 int num_miv_dependent;
122 int num_miv_unimplemented;
123 } dependence_stats;
125 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
126 struct data_reference *,
127 struct data_reference *,
128 struct loop *);
129 /* Returns true iff A divides B. */
131 static inline bool
132 tree_fold_divides_p (const_tree a, const_tree b)
134 gcc_assert (TREE_CODE (a) == INTEGER_CST);
135 gcc_assert (TREE_CODE (b) == INTEGER_CST);
136 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
139 /* Returns true iff A divides B. */
141 static inline bool
142 int_divides_p (int a, int b)
144 return ((b % a) == 0);
149 /* Dump into FILE all the data references from DATAREFS. */
151 static void
152 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
154 unsigned int i;
155 struct data_reference *dr;
157 FOR_EACH_VEC_ELT (datarefs, i, dr)
158 dump_data_reference (file, dr);
161 /* Unified dump into FILE all the data references from DATAREFS. */
163 DEBUG_FUNCTION void
164 debug (vec<data_reference_p> &ref)
166 dump_data_references (stderr, ref);
169 DEBUG_FUNCTION void
170 debug (vec<data_reference_p> *ptr)
172 if (ptr)
173 debug (*ptr);
174 else
175 fprintf (stderr, "<nil>\n");
179 /* Dump into STDERR all the data references from DATAREFS. */
181 DEBUG_FUNCTION void
182 debug_data_references (vec<data_reference_p> datarefs)
184 dump_data_references (stderr, datarefs);
187 /* Print to STDERR the data_reference DR. */
189 DEBUG_FUNCTION void
190 debug_data_reference (struct data_reference *dr)
192 dump_data_reference (stderr, dr);
195 /* Dump function for a DATA_REFERENCE structure. */
197 void
198 dump_data_reference (FILE *outf,
199 struct data_reference *dr)
201 unsigned int i;
203 fprintf (outf, "#(Data Ref: \n");
204 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
205 fprintf (outf, "# stmt: ");
206 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
207 fprintf (outf, "# ref: ");
208 print_generic_stmt (outf, DR_REF (dr), 0);
209 fprintf (outf, "# base_object: ");
210 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
212 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
214 fprintf (outf, "# Access function %d: ", i);
215 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
217 fprintf (outf, "#)\n");
220 /* Unified dump function for a DATA_REFERENCE structure. */
222 DEBUG_FUNCTION void
223 debug (data_reference &ref)
225 dump_data_reference (stderr, &ref);
228 DEBUG_FUNCTION void
229 debug (data_reference *ptr)
231 if (ptr)
232 debug (*ptr);
233 else
234 fprintf (stderr, "<nil>\n");
238 /* Dumps the affine function described by FN to the file OUTF. */
240 DEBUG_FUNCTION void
241 dump_affine_function (FILE *outf, affine_fn fn)
243 unsigned i;
244 tree coef;
246 print_generic_expr (outf, fn[0], TDF_SLIM);
247 for (i = 1; fn.iterate (i, &coef); i++)
249 fprintf (outf, " + ");
250 print_generic_expr (outf, coef, TDF_SLIM);
251 fprintf (outf, " * x_%u", i);
255 /* Dumps the conflict function CF to the file OUTF. */
257 DEBUG_FUNCTION void
258 dump_conflict_function (FILE *outf, conflict_function *cf)
260 unsigned i;
262 if (cf->n == NO_DEPENDENCE)
263 fprintf (outf, "no dependence");
264 else if (cf->n == NOT_KNOWN)
265 fprintf (outf, "not known");
266 else
268 for (i = 0; i < cf->n; i++)
270 if (i != 0)
271 fprintf (outf, " ");
272 fprintf (outf, "[");
273 dump_affine_function (outf, cf->fns[i]);
274 fprintf (outf, "]");
279 /* Dump function for a SUBSCRIPT structure. */
281 DEBUG_FUNCTION void
282 dump_subscript (FILE *outf, struct subscript *subscript)
284 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
286 fprintf (outf, "\n (subscript \n");
287 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
288 dump_conflict_function (outf, cf);
289 if (CF_NONTRIVIAL_P (cf))
291 tree last_iteration = SUB_LAST_CONFLICT (subscript);
292 fprintf (outf, "\n last_conflict: ");
293 print_generic_expr (outf, last_iteration, 0);
296 cf = SUB_CONFLICTS_IN_B (subscript);
297 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
298 dump_conflict_function (outf, cf);
299 if (CF_NONTRIVIAL_P (cf))
301 tree last_iteration = SUB_LAST_CONFLICT (subscript);
302 fprintf (outf, "\n last_conflict: ");
303 print_generic_expr (outf, last_iteration, 0);
306 fprintf (outf, "\n (Subscript distance: ");
307 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
308 fprintf (outf, " ))\n");
311 /* Print the classic direction vector DIRV to OUTF. */
313 DEBUG_FUNCTION void
314 print_direction_vector (FILE *outf,
315 lambda_vector dirv,
316 int length)
318 int eq;
320 for (eq = 0; eq < length; eq++)
322 enum data_dependence_direction dir = ((enum data_dependence_direction)
323 dirv[eq]);
325 switch (dir)
327 case dir_positive:
328 fprintf (outf, " +");
329 break;
330 case dir_negative:
331 fprintf (outf, " -");
332 break;
333 case dir_equal:
334 fprintf (outf, " =");
335 break;
336 case dir_positive_or_equal:
337 fprintf (outf, " +=");
338 break;
339 case dir_positive_or_negative:
340 fprintf (outf, " +-");
341 break;
342 case dir_negative_or_equal:
343 fprintf (outf, " -=");
344 break;
345 case dir_star:
346 fprintf (outf, " *");
347 break;
348 default:
349 fprintf (outf, "indep");
350 break;
353 fprintf (outf, "\n");
356 /* Print a vector of direction vectors. */
358 DEBUG_FUNCTION void
359 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
360 int length)
362 unsigned j;
363 lambda_vector v;
365 FOR_EACH_VEC_ELT (dir_vects, j, v)
366 print_direction_vector (outf, v, length);
369 /* Print out a vector VEC of length N to OUTFILE. */
371 DEBUG_FUNCTION void
372 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
374 int i;
376 for (i = 0; i < n; i++)
377 fprintf (outfile, "%3d ", vector[i]);
378 fprintf (outfile, "\n");
381 /* Print a vector of distance vectors. */
383 DEBUG_FUNCTION void
384 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
385 int length)
387 unsigned j;
388 lambda_vector v;
390 FOR_EACH_VEC_ELT (dist_vects, j, v)
391 print_lambda_vector (outf, v, length);
394 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
396 DEBUG_FUNCTION void
397 dump_data_dependence_relation (FILE *outf,
398 struct data_dependence_relation *ddr)
400 struct data_reference *dra, *drb;
402 fprintf (outf, "(Data Dep: \n");
404 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
406 if (ddr)
408 dra = DDR_A (ddr);
409 drb = DDR_B (ddr);
410 if (dra)
411 dump_data_reference (outf, dra);
412 else
413 fprintf (outf, " (nil)\n");
414 if (drb)
415 dump_data_reference (outf, drb);
416 else
417 fprintf (outf, " (nil)\n");
419 fprintf (outf, " (don't know)\n)\n");
420 return;
423 dra = DDR_A (ddr);
424 drb = DDR_B (ddr);
425 dump_data_reference (outf, dra);
426 dump_data_reference (outf, drb);
428 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
429 fprintf (outf, " (no dependence)\n");
431 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
433 unsigned int i;
434 struct loop *loopi;
436 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
438 fprintf (outf, " access_fn_A: ");
439 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
440 fprintf (outf, " access_fn_B: ");
441 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
442 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
445 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
446 fprintf (outf, " loop nest: (");
447 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
448 fprintf (outf, "%d ", loopi->num);
449 fprintf (outf, ")\n");
451 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
453 fprintf (outf, " distance_vector: ");
454 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
455 DDR_NB_LOOPS (ddr));
458 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
460 fprintf (outf, " direction_vector: ");
461 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
462 DDR_NB_LOOPS (ddr));
466 fprintf (outf, ")\n");
469 /* Debug version. */
471 DEBUG_FUNCTION void
472 debug_data_dependence_relation (struct data_dependence_relation *ddr)
474 dump_data_dependence_relation (stderr, ddr);
477 /* Dump into FILE all the dependence relations from DDRS. */
479 DEBUG_FUNCTION void
480 dump_data_dependence_relations (FILE *file,
481 vec<ddr_p> ddrs)
483 unsigned int i;
484 struct data_dependence_relation *ddr;
486 FOR_EACH_VEC_ELT (ddrs, i, ddr)
487 dump_data_dependence_relation (file, ddr);
490 DEBUG_FUNCTION void
491 debug (vec<ddr_p> &ref)
493 dump_data_dependence_relations (stderr, ref);
496 DEBUG_FUNCTION void
497 debug (vec<ddr_p> *ptr)
499 if (ptr)
500 debug (*ptr);
501 else
502 fprintf (stderr, "<nil>\n");
506 /* Dump to STDERR all the dependence relations from DDRS. */
508 DEBUG_FUNCTION void
509 debug_data_dependence_relations (vec<ddr_p> ddrs)
511 dump_data_dependence_relations (stderr, ddrs);
514 /* Dumps the distance and direction vectors in FILE. DDRS contains
515 the dependence relations, and VECT_SIZE is the size of the
516 dependence vectors, or in other words the number of loops in the
517 considered nest. */
519 DEBUG_FUNCTION void
520 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
522 unsigned int i, j;
523 struct data_dependence_relation *ddr;
524 lambda_vector v;
526 FOR_EACH_VEC_ELT (ddrs, i, ddr)
527 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
529 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
531 fprintf (file, "DISTANCE_V (");
532 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
533 fprintf (file, ")\n");
536 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
538 fprintf (file, "DIRECTION_V (");
539 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
540 fprintf (file, ")\n");
544 fprintf (file, "\n\n");
547 /* Dumps the data dependence relations DDRS in FILE. */
549 DEBUG_FUNCTION void
550 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
552 unsigned int i;
553 struct data_dependence_relation *ddr;
555 FOR_EACH_VEC_ELT (ddrs, i, ddr)
556 dump_data_dependence_relation (file, ddr);
558 fprintf (file, "\n\n");
561 DEBUG_FUNCTION void
562 debug_ddrs (vec<ddr_p> ddrs)
564 dump_ddrs (stderr, ddrs);
567 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
568 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
569 constant of type ssizetype, and returns true. If we cannot do this
570 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
571 is returned. */
573 static bool
574 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
575 tree *var, tree *off)
577 tree var0, var1;
578 tree off0, off1;
579 enum tree_code ocode = code;
581 *var = NULL_TREE;
582 *off = NULL_TREE;
584 switch (code)
586 case INTEGER_CST:
587 *var = build_int_cst (type, 0);
588 *off = fold_convert (ssizetype, op0);
589 return true;
591 case POINTER_PLUS_EXPR:
592 ocode = PLUS_EXPR;
593 /* FALLTHROUGH */
594 case PLUS_EXPR:
595 case MINUS_EXPR:
596 split_constant_offset (op0, &var0, &off0);
597 split_constant_offset (op1, &var1, &off1);
598 *var = fold_build2 (code, type, var0, var1);
599 *off = size_binop (ocode, off0, off1);
600 return true;
602 case MULT_EXPR:
603 if (TREE_CODE (op1) != INTEGER_CST)
604 return false;
606 split_constant_offset (op0, &var0, &off0);
607 *var = fold_build2 (MULT_EXPR, type, var0, op1);
608 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
609 return true;
611 case ADDR_EXPR:
613 tree base, poffset;
614 HOST_WIDE_INT pbitsize, pbitpos;
615 machine_mode pmode;
616 int punsignedp, preversep, pvolatilep;
618 op0 = TREE_OPERAND (op0, 0);
619 base
620 = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
621 &punsignedp, &preversep, &pvolatilep);
623 if (pbitpos % BITS_PER_UNIT != 0)
624 return false;
625 base = build_fold_addr_expr (base);
626 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
628 if (poffset)
630 split_constant_offset (poffset, &poffset, &off1);
631 off0 = size_binop (PLUS_EXPR, off0, off1);
632 if (POINTER_TYPE_P (TREE_TYPE (base)))
633 base = fold_build_pointer_plus (base, poffset);
634 else
635 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
636 fold_convert (TREE_TYPE (base), poffset));
639 var0 = fold_convert (type, base);
641 /* If variable length types are involved, punt, otherwise casts
642 might be converted into ARRAY_REFs in gimplify_conversion.
643 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
644 possibly no longer appears in current GIMPLE, might resurface.
645 This perhaps could run
646 if (CONVERT_EXPR_P (var0))
648 gimplify_conversion (&var0);
649 // Attempt to fill in any within var0 found ARRAY_REF's
650 // element size from corresponding op embedded ARRAY_REF,
651 // if unsuccessful, just punt.
652 } */
653 while (POINTER_TYPE_P (type))
654 type = TREE_TYPE (type);
655 if (int_size_in_bytes (type) < 0)
656 return false;
658 *var = var0;
659 *off = off0;
660 return true;
663 case SSA_NAME:
665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
666 return false;
668 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
669 enum tree_code subcode;
671 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
672 return false;
674 var0 = gimple_assign_rhs1 (def_stmt);
675 subcode = gimple_assign_rhs_code (def_stmt);
676 var1 = gimple_assign_rhs2 (def_stmt);
678 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
680 CASE_CONVERT:
682 /* We must not introduce undefined overflow, and we must not change the value.
683 Hence we're okay if the inner type doesn't overflow to start with
684 (pointer or signed), the outer type also is an integer or pointer
685 and the outer precision is at least as large as the inner. */
686 tree itype = TREE_TYPE (op0);
687 if ((POINTER_TYPE_P (itype)
688 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
689 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
690 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
692 split_constant_offset (op0, &var0, off);
693 *var = fold_convert (type, var0);
694 return true;
696 return false;
699 default:
700 return false;
704 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
705 will be ssizetype. */
707 void
708 split_constant_offset (tree exp, tree *var, tree *off)
710 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
711 enum tree_code code;
713 *var = exp;
714 *off = ssize_int (0);
715 STRIP_NOPS (exp);
717 if (tree_is_chrec (exp)
718 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
719 return;
721 otype = TREE_TYPE (exp);
722 code = TREE_CODE (exp);
723 extract_ops_from_tree (exp, &code, &op0, &op1);
724 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
726 *var = fold_convert (type, e);
727 *off = o;
731 /* Returns the address ADDR of an object in a canonical shape (without nop
732 casts, and with type of pointer to the object). */
734 static tree
735 canonicalize_base_object_address (tree addr)
737 tree orig = addr;
739 STRIP_NOPS (addr);
741 /* The base address may be obtained by casting from integer, in that case
742 keep the cast. */
743 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
744 return orig;
746 if (TREE_CODE (addr) != ADDR_EXPR)
747 return addr;
749 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
752 /* Analyzes the behavior of the memory reference DR in the innermost loop or
753 basic block that contains it. Returns true if analysis succeed or false
754 otherwise. */
756 bool
757 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
759 gimple *stmt = DR_STMT (dr);
760 struct loop *loop = loop_containing_stmt (stmt);
761 tree ref = DR_REF (dr);
762 HOST_WIDE_INT pbitsize, pbitpos;
763 tree base, poffset;
764 machine_mode pmode;
765 int punsignedp, preversep, pvolatilep;
766 affine_iv base_iv, offset_iv;
767 tree init, dinit, step;
768 bool in_loop = (loop && loop->num);
770 if (dump_file && (dump_flags & TDF_DETAILS))
771 fprintf (dump_file, "analyze_innermost: ");
773 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
774 &punsignedp, &preversep, &pvolatilep);
775 gcc_assert (base != NULL_TREE);
777 if (pbitpos % BITS_PER_UNIT != 0)
779 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "failed: bit offset alignment.\n");
781 return false;
784 if (preversep)
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "failed: reverse storage order.\n");
788 return false;
791 if (TREE_CODE (base) == MEM_REF)
793 if (!integer_zerop (TREE_OPERAND (base, 1)))
795 offset_int moff = mem_ref_offset (base);
796 tree mofft = wide_int_to_tree (sizetype, moff);
797 if (!poffset)
798 poffset = mofft;
799 else
800 poffset = size_binop (PLUS_EXPR, poffset, mofft);
802 base = TREE_OPERAND (base, 0);
804 else
805 base = build_fold_addr_expr (base);
807 if (in_loop)
809 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
810 nest ? true : false))
812 if (nest)
814 if (dump_file && (dump_flags & TDF_DETAILS))
815 fprintf (dump_file, "failed: evolution of base is not"
816 " affine.\n");
817 return false;
819 else
821 base_iv.base = base;
822 base_iv.step = ssize_int (0);
823 base_iv.no_overflow = true;
827 else
829 base_iv.base = base;
830 base_iv.step = ssize_int (0);
831 base_iv.no_overflow = true;
834 if (!poffset)
836 offset_iv.base = ssize_int (0);
837 offset_iv.step = ssize_int (0);
839 else
841 if (!in_loop)
843 offset_iv.base = poffset;
844 offset_iv.step = ssize_int (0);
846 else if (!simple_iv (loop, loop_containing_stmt (stmt),
847 poffset, &offset_iv,
848 nest ? true : false))
850 if (nest)
852 if (dump_file && (dump_flags & TDF_DETAILS))
853 fprintf (dump_file, "failed: evolution of offset is not"
854 " affine.\n");
855 return false;
857 else
859 offset_iv.base = poffset;
860 offset_iv.step = ssize_int (0);
865 init = ssize_int (pbitpos / BITS_PER_UNIT);
866 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
867 init = size_binop (PLUS_EXPR, init, dinit);
868 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
869 init = size_binop (PLUS_EXPR, init, dinit);
871 step = size_binop (PLUS_EXPR,
872 fold_convert (ssizetype, base_iv.step),
873 fold_convert (ssizetype, offset_iv.step));
875 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
877 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
878 DR_INIT (dr) = init;
879 DR_STEP (dr) = step;
881 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
883 if (dump_file && (dump_flags & TDF_DETAILS))
884 fprintf (dump_file, "success.\n");
886 return true;
889 /* Determines the base object and the list of indices of memory reference
890 DR, analyzed in LOOP and instantiated in loop nest NEST. */
892 static void
893 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
895 vec<tree> access_fns = vNULL;
896 tree ref, op;
897 tree base, off, access_fn;
898 basic_block before_loop;
900 /* If analyzing a basic-block there are no indices to analyze
901 and thus no access functions. */
902 if (!nest)
904 DR_BASE_OBJECT (dr) = DR_REF (dr);
905 DR_ACCESS_FNS (dr).create (0);
906 return;
909 ref = DR_REF (dr);
910 before_loop = block_before_loop (nest);
912 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
913 into a two element array with a constant index. The base is
914 then just the immediate underlying object. */
915 if (TREE_CODE (ref) == REALPART_EXPR)
917 ref = TREE_OPERAND (ref, 0);
918 access_fns.safe_push (integer_zero_node);
920 else if (TREE_CODE (ref) == IMAGPART_EXPR)
922 ref = TREE_OPERAND (ref, 0);
923 access_fns.safe_push (integer_one_node);
926 /* Analyze access functions of dimensions we know to be independent. */
927 while (handled_component_p (ref))
929 if (TREE_CODE (ref) == ARRAY_REF)
931 op = TREE_OPERAND (ref, 1);
932 access_fn = analyze_scalar_evolution (loop, op);
933 access_fn = instantiate_scev (before_loop, loop, access_fn);
934 access_fns.safe_push (access_fn);
936 else if (TREE_CODE (ref) == COMPONENT_REF
937 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
939 /* For COMPONENT_REFs of records (but not unions!) use the
940 FIELD_DECL offset as constant access function so we can
941 disambiguate a[i].f1 and a[i].f2. */
942 tree off = component_ref_field_offset (ref);
943 off = size_binop (PLUS_EXPR,
944 size_binop (MULT_EXPR,
945 fold_convert (bitsizetype, off),
946 bitsize_int (BITS_PER_UNIT)),
947 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
948 access_fns.safe_push (off);
950 else
951 /* If we have an unhandled component we could not translate
952 to an access function stop analyzing. We have determined
953 our base object in this case. */
954 break;
956 ref = TREE_OPERAND (ref, 0);
959 /* If the address operand of a MEM_REF base has an evolution in the
960 analyzed nest, add it as an additional independent access-function. */
961 if (TREE_CODE (ref) == MEM_REF)
963 op = TREE_OPERAND (ref, 0);
964 access_fn = analyze_scalar_evolution (loop, op);
965 access_fn = instantiate_scev (before_loop, loop, access_fn);
966 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
968 tree orig_type;
969 tree memoff = TREE_OPERAND (ref, 1);
970 base = initial_condition (access_fn);
971 orig_type = TREE_TYPE (base);
972 STRIP_USELESS_TYPE_CONVERSION (base);
973 split_constant_offset (base, &base, &off);
974 STRIP_USELESS_TYPE_CONVERSION (base);
975 /* Fold the MEM_REF offset into the evolutions initial
976 value to make more bases comparable. */
977 if (!integer_zerop (memoff))
979 off = size_binop (PLUS_EXPR, off,
980 fold_convert (ssizetype, memoff));
981 memoff = build_int_cst (TREE_TYPE (memoff), 0);
983 /* Adjust the offset so it is a multiple of the access type
984 size and thus we separate bases that can possibly be used
985 to produce partial overlaps (which the access_fn machinery
986 cannot handle). */
987 wide_int rem;
988 if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
989 && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
990 && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
991 rem = wi::mod_trunc (off, TYPE_SIZE_UNIT (TREE_TYPE (ref)), SIGNED);
992 else
993 /* If we can't compute the remainder simply force the initial
994 condition to zero. */
995 rem = off;
996 off = wide_int_to_tree (ssizetype, wi::sub (off, rem));
997 memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
998 /* And finally replace the initial condition. */
999 access_fn = chrec_replace_initial_condition
1000 (access_fn, fold_convert (orig_type, off));
1001 /* ??? This is still not a suitable base object for
1002 dr_may_alias_p - the base object needs to be an
1003 access that covers the object as whole. With
1004 an evolution in the pointer this cannot be
1005 guaranteed.
1006 As a band-aid, mark the access so we can special-case
1007 it in dr_may_alias_p. */
1008 tree old = ref;
1009 ref = fold_build2_loc (EXPR_LOCATION (ref),
1010 MEM_REF, TREE_TYPE (ref),
1011 base, memoff);
1012 MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
1013 MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
1014 DR_UNCONSTRAINED_BASE (dr) = true;
1015 access_fns.safe_push (access_fn);
1018 else if (DECL_P (ref))
1020 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1021 ref = build2 (MEM_REF, TREE_TYPE (ref),
1022 build_fold_addr_expr (ref),
1023 build_int_cst (reference_alias_ptr_type (ref), 0));
1026 DR_BASE_OBJECT (dr) = ref;
1027 DR_ACCESS_FNS (dr) = access_fns;
1030 /* Extracts the alias analysis information from the memory reference DR. */
1032 static void
1033 dr_analyze_alias (struct data_reference *dr)
1035 tree ref = DR_REF (dr);
1036 tree base = get_base_address (ref), addr;
1038 if (INDIRECT_REF_P (base)
1039 || TREE_CODE (base) == MEM_REF)
1041 addr = TREE_OPERAND (base, 0);
1042 if (TREE_CODE (addr) == SSA_NAME)
1043 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1047 /* Frees data reference DR. */
1049 void
1050 free_data_ref (data_reference_p dr)
1052 DR_ACCESS_FNS (dr).release ();
1053 free (dr);
1056 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1057 is read if IS_READ is true, write otherwise. Returns the
1058 data_reference description of MEMREF. NEST is the outermost loop
1059 in which the reference should be instantiated, LOOP is the loop in
1060 which the data reference should be analyzed. */
1062 struct data_reference *
1063 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple *stmt,
1064 bool is_read)
1066 struct data_reference *dr;
1068 if (dump_file && (dump_flags & TDF_DETAILS))
1070 fprintf (dump_file, "Creating dr for ");
1071 print_generic_expr (dump_file, memref, TDF_SLIM);
1072 fprintf (dump_file, "\n");
1075 dr = XCNEW (struct data_reference);
1076 DR_STMT (dr) = stmt;
1077 DR_REF (dr) = memref;
1078 DR_IS_READ (dr) = is_read;
1080 dr_analyze_innermost (dr, nest);
1081 dr_analyze_indices (dr, nest, loop);
1082 dr_analyze_alias (dr);
1084 if (dump_file && (dump_flags & TDF_DETAILS))
1086 unsigned i;
1087 fprintf (dump_file, "\tbase_address: ");
1088 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1089 fprintf (dump_file, "\n\toffset from base address: ");
1090 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1091 fprintf (dump_file, "\n\tconstant offset from base address: ");
1092 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1093 fprintf (dump_file, "\n\tstep: ");
1094 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1095 fprintf (dump_file, "\n\taligned to: ");
1096 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1097 fprintf (dump_file, "\n\tbase_object: ");
1098 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1099 fprintf (dump_file, "\n");
1100 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1102 fprintf (dump_file, "\tAccess function %d: ", i);
1103 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1107 return dr;
1110 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1111 expressions. */
1112 static bool
1113 dr_equal_offsets_p1 (tree offset1, tree offset2)
1115 bool res;
1117 STRIP_NOPS (offset1);
1118 STRIP_NOPS (offset2);
1120 if (offset1 == offset2)
1121 return true;
1123 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1124 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1125 return false;
1127 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1128 TREE_OPERAND (offset2, 0));
1130 if (!res || !BINARY_CLASS_P (offset1))
1131 return res;
1133 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1134 TREE_OPERAND (offset2, 1));
1136 return res;
1139 /* Check if DRA and DRB have equal offsets. */
1140 bool
1141 dr_equal_offsets_p (struct data_reference *dra,
1142 struct data_reference *drb)
1144 tree offset1, offset2;
1146 offset1 = DR_OFFSET (dra);
1147 offset2 = DR_OFFSET (drb);
1149 return dr_equal_offsets_p1 (offset1, offset2);
1152 /* Returns true if FNA == FNB. */
1154 static bool
1155 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1157 unsigned i, n = fna.length ();
1159 if (n != fnb.length ())
1160 return false;
1162 for (i = 0; i < n; i++)
1163 if (!operand_equal_p (fna[i], fnb[i], 0))
1164 return false;
1166 return true;
1169 /* If all the functions in CF are the same, returns one of them,
1170 otherwise returns NULL. */
1172 static affine_fn
1173 common_affine_function (conflict_function *cf)
1175 unsigned i;
1176 affine_fn comm;
1178 if (!CF_NONTRIVIAL_P (cf))
1179 return affine_fn ();
1181 comm = cf->fns[0];
1183 for (i = 1; i < cf->n; i++)
1184 if (!affine_function_equal_p (comm, cf->fns[i]))
1185 return affine_fn ();
1187 return comm;
1190 /* Returns the base of the affine function FN. */
1192 static tree
1193 affine_function_base (affine_fn fn)
1195 return fn[0];
1198 /* Returns true if FN is a constant. */
1200 static bool
1201 affine_function_constant_p (affine_fn fn)
1203 unsigned i;
1204 tree coef;
1206 for (i = 1; fn.iterate (i, &coef); i++)
1207 if (!integer_zerop (coef))
1208 return false;
1210 return true;
1213 /* Returns true if FN is the zero constant function. */
1215 static bool
1216 affine_function_zero_p (affine_fn fn)
1218 return (integer_zerop (affine_function_base (fn))
1219 && affine_function_constant_p (fn));
1222 /* Returns a signed integer type with the largest precision from TA
1223 and TB. */
1225 static tree
1226 signed_type_for_types (tree ta, tree tb)
1228 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1229 return signed_type_for (ta);
1230 else
1231 return signed_type_for (tb);
1234 /* Applies operation OP on affine functions FNA and FNB, and returns the
1235 result. */
1237 static affine_fn
1238 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1240 unsigned i, n, m;
1241 affine_fn ret;
1242 tree coef;
1244 if (fnb.length () > fna.length ())
1246 n = fna.length ();
1247 m = fnb.length ();
1249 else
1251 n = fnb.length ();
1252 m = fna.length ();
1255 ret.create (m);
1256 for (i = 0; i < n; i++)
1258 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1259 TREE_TYPE (fnb[i]));
1260 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1263 for (; fna.iterate (i, &coef); i++)
1264 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1265 coef, integer_zero_node));
1266 for (; fnb.iterate (i, &coef); i++)
1267 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1268 integer_zero_node, coef));
1270 return ret;
1273 /* Returns the sum of affine functions FNA and FNB. */
1275 static affine_fn
1276 affine_fn_plus (affine_fn fna, affine_fn fnb)
1278 return affine_fn_op (PLUS_EXPR, fna, fnb);
1281 /* Returns the difference of affine functions FNA and FNB. */
1283 static affine_fn
1284 affine_fn_minus (affine_fn fna, affine_fn fnb)
1286 return affine_fn_op (MINUS_EXPR, fna, fnb);
1289 /* Frees affine function FN. */
1291 static void
1292 affine_fn_free (affine_fn fn)
1294 fn.release ();
1297 /* Determine for each subscript in the data dependence relation DDR
1298 the distance. */
1300 static void
1301 compute_subscript_distance (struct data_dependence_relation *ddr)
1303 conflict_function *cf_a, *cf_b;
1304 affine_fn fn_a, fn_b, diff;
1306 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1308 unsigned int i;
1310 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1312 struct subscript *subscript;
1314 subscript = DDR_SUBSCRIPT (ddr, i);
1315 cf_a = SUB_CONFLICTS_IN_A (subscript);
1316 cf_b = SUB_CONFLICTS_IN_B (subscript);
1318 fn_a = common_affine_function (cf_a);
1319 fn_b = common_affine_function (cf_b);
1320 if (!fn_a.exists () || !fn_b.exists ())
1322 SUB_DISTANCE (subscript) = chrec_dont_know;
1323 return;
1325 diff = affine_fn_minus (fn_a, fn_b);
1327 if (affine_function_constant_p (diff))
1328 SUB_DISTANCE (subscript) = affine_function_base (diff);
1329 else
1330 SUB_DISTANCE (subscript) = chrec_dont_know;
1332 affine_fn_free (diff);
1337 /* Returns the conflict function for "unknown". */
1339 static conflict_function *
1340 conflict_fn_not_known (void)
1342 conflict_function *fn = XCNEW (conflict_function);
1343 fn->n = NOT_KNOWN;
1345 return fn;
1348 /* Returns the conflict function for "independent". */
1350 static conflict_function *
1351 conflict_fn_no_dependence (void)
1353 conflict_function *fn = XCNEW (conflict_function);
1354 fn->n = NO_DEPENDENCE;
1356 return fn;
1359 /* Returns true if the address of OBJ is invariant in LOOP. */
1361 static bool
1362 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1364 while (handled_component_p (obj))
1366 if (TREE_CODE (obj) == ARRAY_REF)
1368 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1369 need to check the stride and the lower bound of the reference. */
1370 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1371 loop->num)
1372 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1373 loop->num))
1374 return false;
1376 else if (TREE_CODE (obj) == COMPONENT_REF)
1378 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1379 loop->num))
1380 return false;
1382 obj = TREE_OPERAND (obj, 0);
1385 if (!INDIRECT_REF_P (obj)
1386 && TREE_CODE (obj) != MEM_REF)
1387 return true;
1389 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1390 loop->num);
1393 /* Returns false if we can prove that data references A and B do not alias,
1394 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1395 considered. */
1397 bool
1398 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1399 bool loop_nest)
1401 tree addr_a = DR_BASE_OBJECT (a);
1402 tree addr_b = DR_BASE_OBJECT (b);
1404 /* If we are not processing a loop nest but scalar code we
1405 do not need to care about possible cross-iteration dependences
1406 and thus can process the full original reference. Do so,
1407 similar to how loop invariant motion applies extra offset-based
1408 disambiguation. */
1409 if (!loop_nest)
1411 aff_tree off1, off2;
1412 widest_int size1, size2;
1413 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1414 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1415 aff_combination_scale (&off1, -1);
1416 aff_combination_add (&off2, &off1);
1417 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1418 return false;
1421 if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
1422 && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
1423 && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
1424 && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
1425 return false;
1427 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1428 do not know the size of the base-object. So we cannot do any
1429 offset/overlap based analysis but have to rely on points-to
1430 information only. */
1431 if (TREE_CODE (addr_a) == MEM_REF
1432 && (DR_UNCONSTRAINED_BASE (a)
1433 || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
1435 /* For true dependences we can apply TBAA. */
1436 if (flag_strict_aliasing
1437 && DR_IS_WRITE (a) && DR_IS_READ (b)
1438 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1439 get_alias_set (DR_REF (b))))
1440 return false;
1441 if (TREE_CODE (addr_b) == MEM_REF)
1442 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1443 TREE_OPERAND (addr_b, 0));
1444 else
1445 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1446 build_fold_addr_expr (addr_b));
1448 else if (TREE_CODE (addr_b) == MEM_REF
1449 && (DR_UNCONSTRAINED_BASE (b)
1450 || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
1452 /* For true dependences we can apply TBAA. */
1453 if (flag_strict_aliasing
1454 && DR_IS_WRITE (a) && DR_IS_READ (b)
1455 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1456 get_alias_set (DR_REF (b))))
1457 return false;
1458 if (TREE_CODE (addr_a) == MEM_REF)
1459 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1460 TREE_OPERAND (addr_b, 0));
1461 else
1462 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1463 TREE_OPERAND (addr_b, 0));
1466 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1467 that is being subsetted in the loop nest. */
1468 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1469 return refs_output_dependent_p (addr_a, addr_b);
1470 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1471 return refs_anti_dependent_p (addr_a, addr_b);
1472 return refs_may_alias_p (addr_a, addr_b);
1475 /* Initialize a data dependence relation between data accesses A and
1476 B. NB_LOOPS is the number of loops surrounding the references: the
1477 size of the classic distance/direction vectors. */
1479 struct data_dependence_relation *
1480 initialize_data_dependence_relation (struct data_reference *a,
1481 struct data_reference *b,
1482 vec<loop_p> loop_nest)
1484 struct data_dependence_relation *res;
1485 unsigned int i;
1487 res = XNEW (struct data_dependence_relation);
1488 DDR_A (res) = a;
1489 DDR_B (res) = b;
1490 DDR_LOOP_NEST (res).create (0);
1491 DDR_REVERSED_P (res) = false;
1492 DDR_SUBSCRIPTS (res).create (0);
1493 DDR_DIR_VECTS (res).create (0);
1494 DDR_DIST_VECTS (res).create (0);
1496 if (a == NULL || b == NULL)
1498 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1499 return res;
1502 /* If the data references do not alias, then they are independent. */
1503 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1505 DDR_ARE_DEPENDENT (res) = chrec_known;
1506 return res;
1509 /* The case where the references are exactly the same. */
1510 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1512 if ((loop_nest.exists ()
1513 && !object_address_invariant_in_loop_p (loop_nest[0],
1514 DR_BASE_OBJECT (a)))
1515 || DR_NUM_DIMENSIONS (a) == 0)
1517 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1518 return res;
1520 DDR_AFFINE_P (res) = true;
1521 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1522 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1523 DDR_LOOP_NEST (res) = loop_nest;
1524 DDR_INNER_LOOP (res) = 0;
1525 DDR_SELF_REFERENCE (res) = true;
1526 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1528 struct subscript *subscript;
1530 subscript = XNEW (struct subscript);
1531 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1532 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1533 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1534 SUB_DISTANCE (subscript) = chrec_dont_know;
1535 DDR_SUBSCRIPTS (res).safe_push (subscript);
1537 return res;
1540 /* If the references do not access the same object, we do not know
1541 whether they alias or not. We do not care about TBAA or alignment
1542 info so we can use OEP_ADDRESS_OF to avoid false negatives.
1543 But the accesses have to use compatible types as otherwise the
1544 built indices would not match. */
1545 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), OEP_ADDRESS_OF)
1546 || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
1547 TREE_TYPE (DR_BASE_OBJECT (b))))
1549 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1550 return res;
1553 /* If the base of the object is not invariant in the loop nest, we cannot
1554 analyze it. TODO -- in fact, it would suffice to record that there may
1555 be arbitrary dependences in the loops where the base object varies. */
1556 if ((loop_nest.exists ()
1557 && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT (a)))
1558 || DR_NUM_DIMENSIONS (a) == 0)
1560 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1561 return res;
1564 /* If the number of dimensions of the access to not agree we can have
1565 a pointer access to a component of the array element type and an
1566 array access while the base-objects are still the same. Punt. */
1567 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1569 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1570 return res;
1573 DDR_AFFINE_P (res) = true;
1574 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1575 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1576 DDR_LOOP_NEST (res) = loop_nest;
1577 DDR_INNER_LOOP (res) = 0;
1578 DDR_SELF_REFERENCE (res) = false;
1580 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1582 struct subscript *subscript;
1584 subscript = XNEW (struct subscript);
1585 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1586 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1587 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1588 SUB_DISTANCE (subscript) = chrec_dont_know;
1589 DDR_SUBSCRIPTS (res).safe_push (subscript);
1592 return res;
1595 /* Frees memory used by the conflict function F. */
1597 static void
1598 free_conflict_function (conflict_function *f)
1600 unsigned i;
1602 if (CF_NONTRIVIAL_P (f))
1604 for (i = 0; i < f->n; i++)
1605 affine_fn_free (f->fns[i]);
1607 free (f);
1610 /* Frees memory used by SUBSCRIPTS. */
1612 static void
1613 free_subscripts (vec<subscript_p> subscripts)
1615 unsigned i;
1616 subscript_p s;
1618 FOR_EACH_VEC_ELT (subscripts, i, s)
1620 free_conflict_function (s->conflicting_iterations_in_a);
1621 free_conflict_function (s->conflicting_iterations_in_b);
1622 free (s);
1624 subscripts.release ();
1627 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1628 description. */
1630 static inline void
1631 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1632 tree chrec)
1634 DDR_ARE_DEPENDENT (ddr) = chrec;
1635 free_subscripts (DDR_SUBSCRIPTS (ddr));
1636 DDR_SUBSCRIPTS (ddr).create (0);
1639 /* The dependence relation DDR cannot be represented by a distance
1640 vector. */
1642 static inline void
1643 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1645 if (dump_file && (dump_flags & TDF_DETAILS))
1646 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1648 DDR_AFFINE_P (ddr) = false;
1653 /* This section contains the classic Banerjee tests. */
1655 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1656 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1658 static inline bool
1659 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1661 return (evolution_function_is_constant_p (chrec_a)
1662 && evolution_function_is_constant_p (chrec_b));
1665 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1666 variable, i.e., if the SIV (Single Index Variable) test is true. */
1668 static bool
1669 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1671 if ((evolution_function_is_constant_p (chrec_a)
1672 && evolution_function_is_univariate_p (chrec_b))
1673 || (evolution_function_is_constant_p (chrec_b)
1674 && evolution_function_is_univariate_p (chrec_a)))
1675 return true;
1677 if (evolution_function_is_univariate_p (chrec_a)
1678 && evolution_function_is_univariate_p (chrec_b))
1680 switch (TREE_CODE (chrec_a))
1682 case POLYNOMIAL_CHREC:
1683 switch (TREE_CODE (chrec_b))
1685 case POLYNOMIAL_CHREC:
1686 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1687 return false;
1688 /* FALLTHRU */
1690 default:
1691 return true;
1694 default:
1695 return true;
1699 return false;
1702 /* Creates a conflict function with N dimensions. The affine functions
1703 in each dimension follow. */
1705 static conflict_function *
1706 conflict_fn (unsigned n, ...)
1708 unsigned i;
1709 conflict_function *ret = XCNEW (conflict_function);
1710 va_list ap;
1712 gcc_assert (0 < n && n <= MAX_DIM);
1713 va_start (ap, n);
1715 ret->n = n;
1716 for (i = 0; i < n; i++)
1717 ret->fns[i] = va_arg (ap, affine_fn);
1718 va_end (ap);
1720 return ret;
1723 /* Returns constant affine function with value CST. */
1725 static affine_fn
1726 affine_fn_cst (tree cst)
1728 affine_fn fn;
1729 fn.create (1);
1730 fn.quick_push (cst);
1731 return fn;
1734 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1736 static affine_fn
1737 affine_fn_univar (tree cst, unsigned dim, tree coef)
1739 affine_fn fn;
1740 fn.create (dim + 1);
1741 unsigned i;
1743 gcc_assert (dim > 0);
1744 fn.quick_push (cst);
1745 for (i = 1; i < dim; i++)
1746 fn.quick_push (integer_zero_node);
1747 fn.quick_push (coef);
1748 return fn;
1751 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1752 *OVERLAPS_B are initialized to the functions that describe the
1753 relation between the elements accessed twice by CHREC_A and
1754 CHREC_B. For k >= 0, the following property is verified:
1756 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1758 static void
1759 analyze_ziv_subscript (tree chrec_a,
1760 tree chrec_b,
1761 conflict_function **overlaps_a,
1762 conflict_function **overlaps_b,
1763 tree *last_conflicts)
1765 tree type, difference;
1766 dependence_stats.num_ziv++;
1768 if (dump_file && (dump_flags & TDF_DETAILS))
1769 fprintf (dump_file, "(analyze_ziv_subscript \n");
1771 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1772 chrec_a = chrec_convert (type, chrec_a, NULL);
1773 chrec_b = chrec_convert (type, chrec_b, NULL);
1774 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1776 switch (TREE_CODE (difference))
1778 case INTEGER_CST:
1779 if (integer_zerop (difference))
1781 /* The difference is equal to zero: the accessed index
1782 overlaps for each iteration in the loop. */
1783 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1784 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1785 *last_conflicts = chrec_dont_know;
1786 dependence_stats.num_ziv_dependent++;
1788 else
1790 /* The accesses do not overlap. */
1791 *overlaps_a = conflict_fn_no_dependence ();
1792 *overlaps_b = conflict_fn_no_dependence ();
1793 *last_conflicts = integer_zero_node;
1794 dependence_stats.num_ziv_independent++;
1796 break;
1798 default:
1799 /* We're not sure whether the indexes overlap. For the moment,
1800 conservatively answer "don't know". */
1801 if (dump_file && (dump_flags & TDF_DETAILS))
1802 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1804 *overlaps_a = conflict_fn_not_known ();
1805 *overlaps_b = conflict_fn_not_known ();
1806 *last_conflicts = chrec_dont_know;
1807 dependence_stats.num_ziv_unimplemented++;
1808 break;
1811 if (dump_file && (dump_flags & TDF_DETAILS))
1812 fprintf (dump_file, ")\n");
1815 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1816 and only if it fits to the int type. If this is not the case, or the
1817 bound on the number of iterations of LOOP could not be derived, returns
1818 chrec_dont_know. */
1820 static tree
1821 max_stmt_executions_tree (struct loop *loop)
1823 widest_int nit;
1825 if (!max_stmt_executions (loop, &nit))
1826 return chrec_dont_know;
1828 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
1829 return chrec_dont_know;
1831 return wide_int_to_tree (unsigned_type_node, nit);
1834 /* Determine whether the CHREC is always positive/negative. If the expression
1835 cannot be statically analyzed, return false, otherwise set the answer into
1836 VALUE. */
1838 static bool
1839 chrec_is_positive (tree chrec, bool *value)
1841 bool value0, value1, value2;
1842 tree end_value, nb_iter;
1844 switch (TREE_CODE (chrec))
1846 case POLYNOMIAL_CHREC:
1847 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1848 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1849 return false;
1851 /* FIXME -- overflows. */
1852 if (value0 == value1)
1854 *value = value0;
1855 return true;
1858 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1859 and the proof consists in showing that the sign never
1860 changes during the execution of the loop, from 0 to
1861 loop->nb_iterations. */
1862 if (!evolution_function_is_affine_p (chrec))
1863 return false;
1865 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1866 if (chrec_contains_undetermined (nb_iter))
1867 return false;
1869 #if 0
1870 /* TODO -- If the test is after the exit, we may decrease the number of
1871 iterations by one. */
1872 if (after_exit)
1873 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1874 #endif
1876 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1878 if (!chrec_is_positive (end_value, &value2))
1879 return false;
1881 *value = value0;
1882 return value0 == value1;
1884 case INTEGER_CST:
1885 switch (tree_int_cst_sgn (chrec))
1887 case -1:
1888 *value = false;
1889 break;
1890 case 1:
1891 *value = true;
1892 break;
1893 default:
1894 return false;
1896 return true;
1898 default:
1899 return false;
1904 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1905 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1906 *OVERLAPS_B are initialized to the functions that describe the
1907 relation between the elements accessed twice by CHREC_A and
1908 CHREC_B. For k >= 0, the following property is verified:
1910 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1912 static void
1913 analyze_siv_subscript_cst_affine (tree chrec_a,
1914 tree chrec_b,
1915 conflict_function **overlaps_a,
1916 conflict_function **overlaps_b,
1917 tree *last_conflicts)
1919 bool value0, value1, value2;
1920 tree type, difference, tmp;
1922 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1923 chrec_a = chrec_convert (type, chrec_a, NULL);
1924 chrec_b = chrec_convert (type, chrec_b, NULL);
1925 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1927 /* Special case overlap in the first iteration. */
1928 if (integer_zerop (difference))
1930 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1931 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1932 *last_conflicts = integer_one_node;
1933 return;
1936 if (!chrec_is_positive (initial_condition (difference), &value0))
1938 if (dump_file && (dump_flags & TDF_DETAILS))
1939 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1941 dependence_stats.num_siv_unimplemented++;
1942 *overlaps_a = conflict_fn_not_known ();
1943 *overlaps_b = conflict_fn_not_known ();
1944 *last_conflicts = chrec_dont_know;
1945 return;
1947 else
1949 if (value0 == false)
1951 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1953 if (dump_file && (dump_flags & TDF_DETAILS))
1954 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1956 *overlaps_a = conflict_fn_not_known ();
1957 *overlaps_b = conflict_fn_not_known ();
1958 *last_conflicts = chrec_dont_know;
1959 dependence_stats.num_siv_unimplemented++;
1960 return;
1962 else
1964 if (value1 == true)
1966 /* Example:
1967 chrec_a = 12
1968 chrec_b = {10, +, 1}
1971 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1973 HOST_WIDE_INT numiter;
1974 struct loop *loop = get_chrec_loop (chrec_b);
1976 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1977 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1978 fold_build1 (ABS_EXPR, type, difference),
1979 CHREC_RIGHT (chrec_b));
1980 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1981 *last_conflicts = integer_one_node;
1984 /* Perform weak-zero siv test to see if overlap is
1985 outside the loop bounds. */
1986 numiter = max_stmt_executions_int (loop);
1988 if (numiter >= 0
1989 && compare_tree_int (tmp, numiter) > 0)
1991 free_conflict_function (*overlaps_a);
1992 free_conflict_function (*overlaps_b);
1993 *overlaps_a = conflict_fn_no_dependence ();
1994 *overlaps_b = conflict_fn_no_dependence ();
1995 *last_conflicts = integer_zero_node;
1996 dependence_stats.num_siv_independent++;
1997 return;
1999 dependence_stats.num_siv_dependent++;
2000 return;
2003 /* When the step does not divide the difference, there are
2004 no overlaps. */
2005 else
2007 *overlaps_a = conflict_fn_no_dependence ();
2008 *overlaps_b = conflict_fn_no_dependence ();
2009 *last_conflicts = integer_zero_node;
2010 dependence_stats.num_siv_independent++;
2011 return;
2015 else
2017 /* Example:
2018 chrec_a = 12
2019 chrec_b = {10, +, -1}
2021 In this case, chrec_a will not overlap with chrec_b. */
2022 *overlaps_a = conflict_fn_no_dependence ();
2023 *overlaps_b = conflict_fn_no_dependence ();
2024 *last_conflicts = integer_zero_node;
2025 dependence_stats.num_siv_independent++;
2026 return;
2030 else
2032 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2034 if (dump_file && (dump_flags & TDF_DETAILS))
2035 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2037 *overlaps_a = conflict_fn_not_known ();
2038 *overlaps_b = conflict_fn_not_known ();
2039 *last_conflicts = chrec_dont_know;
2040 dependence_stats.num_siv_unimplemented++;
2041 return;
2043 else
2045 if (value2 == false)
2047 /* Example:
2048 chrec_a = 3
2049 chrec_b = {10, +, -1}
2051 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
2053 HOST_WIDE_INT numiter;
2054 struct loop *loop = get_chrec_loop (chrec_b);
2056 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2057 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
2058 CHREC_RIGHT (chrec_b));
2059 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
2060 *last_conflicts = integer_one_node;
2062 /* Perform weak-zero siv test to see if overlap is
2063 outside the loop bounds. */
2064 numiter = max_stmt_executions_int (loop);
2066 if (numiter >= 0
2067 && compare_tree_int (tmp, numiter) > 0)
2069 free_conflict_function (*overlaps_a);
2070 free_conflict_function (*overlaps_b);
2071 *overlaps_a = conflict_fn_no_dependence ();
2072 *overlaps_b = conflict_fn_no_dependence ();
2073 *last_conflicts = integer_zero_node;
2074 dependence_stats.num_siv_independent++;
2075 return;
2077 dependence_stats.num_siv_dependent++;
2078 return;
2081 /* When the step does not divide the difference, there
2082 are no overlaps. */
2083 else
2085 *overlaps_a = conflict_fn_no_dependence ();
2086 *overlaps_b = conflict_fn_no_dependence ();
2087 *last_conflicts = integer_zero_node;
2088 dependence_stats.num_siv_independent++;
2089 return;
2092 else
2094 /* Example:
2095 chrec_a = 3
2096 chrec_b = {4, +, 1}
2098 In this case, chrec_a will not overlap with chrec_b. */
2099 *overlaps_a = conflict_fn_no_dependence ();
2100 *overlaps_b = conflict_fn_no_dependence ();
2101 *last_conflicts = integer_zero_node;
2102 dependence_stats.num_siv_independent++;
2103 return;
2110 /* Helper recursive function for initializing the matrix A. Returns
2111 the initial value of CHREC. */
2113 static tree
2114 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2116 gcc_assert (chrec);
2118 switch (TREE_CODE (chrec))
2120 case POLYNOMIAL_CHREC:
2121 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2123 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2124 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2126 case PLUS_EXPR:
2127 case MULT_EXPR:
2128 case MINUS_EXPR:
2130 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2131 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2133 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2136 CASE_CONVERT:
2138 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2139 return chrec_convert (chrec_type (chrec), op, NULL);
2142 case BIT_NOT_EXPR:
2144 /* Handle ~X as -1 - X. */
2145 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2146 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2147 build_int_cst (TREE_TYPE (chrec), -1), op);
2150 case INTEGER_CST:
2151 return chrec;
2153 default:
2154 gcc_unreachable ();
2155 return NULL_TREE;
2159 #define FLOOR_DIV(x,y) ((x) / (y))
2161 /* Solves the special case of the Diophantine equation:
2162 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2164 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2165 number of iterations that loops X and Y run. The overlaps will be
2166 constructed as evolutions in dimension DIM. */
2168 static void
2169 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2170 affine_fn *overlaps_a,
2171 affine_fn *overlaps_b,
2172 tree *last_conflicts, int dim)
2174 if (((step_a > 0 && step_b > 0)
2175 || (step_a < 0 && step_b < 0)))
2177 int step_overlaps_a, step_overlaps_b;
2178 int gcd_steps_a_b, last_conflict, tau2;
2180 gcd_steps_a_b = gcd (step_a, step_b);
2181 step_overlaps_a = step_b / gcd_steps_a_b;
2182 step_overlaps_b = step_a / gcd_steps_a_b;
2184 if (niter > 0)
2186 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2187 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2188 last_conflict = tau2;
2189 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2191 else
2192 *last_conflicts = chrec_dont_know;
2194 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2195 build_int_cst (NULL_TREE,
2196 step_overlaps_a));
2197 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2198 build_int_cst (NULL_TREE,
2199 step_overlaps_b));
2202 else
2204 *overlaps_a = affine_fn_cst (integer_zero_node);
2205 *overlaps_b = affine_fn_cst (integer_zero_node);
2206 *last_conflicts = integer_zero_node;
2210 /* Solves the special case of a Diophantine equation where CHREC_A is
2211 an affine bivariate function, and CHREC_B is an affine univariate
2212 function. For example,
2214 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2216 has the following overlapping functions:
2218 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2219 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2220 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2222 FORNOW: This is a specialized implementation for a case occurring in
2223 a common benchmark. Implement the general algorithm. */
2225 static void
2226 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2227 conflict_function **overlaps_a,
2228 conflict_function **overlaps_b,
2229 tree *last_conflicts)
2231 bool xz_p, yz_p, xyz_p;
2232 int step_x, step_y, step_z;
2233 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2234 affine_fn overlaps_a_xz, overlaps_b_xz;
2235 affine_fn overlaps_a_yz, overlaps_b_yz;
2236 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2237 affine_fn ova1, ova2, ovb;
2238 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2240 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2241 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2242 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2244 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2245 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2246 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2248 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2250 if (dump_file && (dump_flags & TDF_DETAILS))
2251 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2253 *overlaps_a = conflict_fn_not_known ();
2254 *overlaps_b = conflict_fn_not_known ();
2255 *last_conflicts = chrec_dont_know;
2256 return;
2259 niter = MIN (niter_x, niter_z);
2260 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2261 &overlaps_a_xz,
2262 &overlaps_b_xz,
2263 &last_conflicts_xz, 1);
2264 niter = MIN (niter_y, niter_z);
2265 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2266 &overlaps_a_yz,
2267 &overlaps_b_yz,
2268 &last_conflicts_yz, 2);
2269 niter = MIN (niter_x, niter_z);
2270 niter = MIN (niter_y, niter);
2271 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2272 &overlaps_a_xyz,
2273 &overlaps_b_xyz,
2274 &last_conflicts_xyz, 3);
2276 xz_p = !integer_zerop (last_conflicts_xz);
2277 yz_p = !integer_zerop (last_conflicts_yz);
2278 xyz_p = !integer_zerop (last_conflicts_xyz);
2280 if (xz_p || yz_p || xyz_p)
2282 ova1 = affine_fn_cst (integer_zero_node);
2283 ova2 = affine_fn_cst (integer_zero_node);
2284 ovb = affine_fn_cst (integer_zero_node);
2285 if (xz_p)
2287 affine_fn t0 = ova1;
2288 affine_fn t2 = ovb;
2290 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2291 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2292 affine_fn_free (t0);
2293 affine_fn_free (t2);
2294 *last_conflicts = last_conflicts_xz;
2296 if (yz_p)
2298 affine_fn t0 = ova2;
2299 affine_fn t2 = ovb;
2301 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2302 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2303 affine_fn_free (t0);
2304 affine_fn_free (t2);
2305 *last_conflicts = last_conflicts_yz;
2307 if (xyz_p)
2309 affine_fn t0 = ova1;
2310 affine_fn t2 = ova2;
2311 affine_fn t4 = ovb;
2313 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2314 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2315 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2316 affine_fn_free (t0);
2317 affine_fn_free (t2);
2318 affine_fn_free (t4);
2319 *last_conflicts = last_conflicts_xyz;
2321 *overlaps_a = conflict_fn (2, ova1, ova2);
2322 *overlaps_b = conflict_fn (1, ovb);
2324 else
2326 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2327 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2328 *last_conflicts = integer_zero_node;
2331 affine_fn_free (overlaps_a_xz);
2332 affine_fn_free (overlaps_b_xz);
2333 affine_fn_free (overlaps_a_yz);
2334 affine_fn_free (overlaps_b_yz);
2335 affine_fn_free (overlaps_a_xyz);
2336 affine_fn_free (overlaps_b_xyz);
2339 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2341 static void
2342 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2343 int size)
2345 memcpy (vec2, vec1, size * sizeof (*vec1));
2348 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2350 static void
2351 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2352 int m, int n)
2354 int i;
2356 for (i = 0; i < m; i++)
2357 lambda_vector_copy (mat1[i], mat2[i], n);
2360 /* Store the N x N identity matrix in MAT. */
2362 static void
2363 lambda_matrix_id (lambda_matrix mat, int size)
2365 int i, j;
2367 for (i = 0; i < size; i++)
2368 for (j = 0; j < size; j++)
2369 mat[i][j] = (i == j) ? 1 : 0;
2372 /* Return the first nonzero element of vector VEC1 between START and N.
2373 We must have START <= N. Returns N if VEC1 is the zero vector. */
2375 static int
2376 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2378 int j = start;
2379 while (j < n && vec1[j] == 0)
2380 j++;
2381 return j;
2384 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2385 R2 = R2 + CONST1 * R1. */
2387 static void
2388 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2390 int i;
2392 if (const1 == 0)
2393 return;
2395 for (i = 0; i < n; i++)
2396 mat[r2][i] += const1 * mat[r1][i];
2399 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2400 and store the result in VEC2. */
2402 static void
2403 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2404 int size, int const1)
2406 int i;
2408 if (const1 == 0)
2409 lambda_vector_clear (vec2, size);
2410 else
2411 for (i = 0; i < size; i++)
2412 vec2[i] = const1 * vec1[i];
2415 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2417 static void
2418 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2419 int size)
2421 lambda_vector_mult_const (vec1, vec2, size, -1);
2424 /* Negate row R1 of matrix MAT which has N columns. */
2426 static void
2427 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2429 lambda_vector_negate (mat[r1], mat[r1], n);
2432 /* Return true if two vectors are equal. */
2434 static bool
2435 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2437 int i;
2438 for (i = 0; i < size; i++)
2439 if (vec1[i] != vec2[i])
2440 return false;
2441 return true;
2444 /* Given an M x N integer matrix A, this function determines an M x
2445 M unimodular matrix U, and an M x N echelon matrix S such that
2446 "U.A = S". This decomposition is also known as "right Hermite".
2448 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2449 Restructuring Compilers" Utpal Banerjee. */
2451 static void
2452 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2453 lambda_matrix S, lambda_matrix U)
2455 int i, j, i0 = 0;
2457 lambda_matrix_copy (A, S, m, n);
2458 lambda_matrix_id (U, m);
2460 for (j = 0; j < n; j++)
2462 if (lambda_vector_first_nz (S[j], m, i0) < m)
2464 ++i0;
2465 for (i = m - 1; i >= i0; i--)
2467 while (S[i][j] != 0)
2469 int sigma, factor, a, b;
2471 a = S[i-1][j];
2472 b = S[i][j];
2473 sigma = (a * b < 0) ? -1: 1;
2474 a = abs (a);
2475 b = abs (b);
2476 factor = sigma * (a / b);
2478 lambda_matrix_row_add (S, n, i, i-1, -factor);
2479 std::swap (S[i], S[i-1]);
2481 lambda_matrix_row_add (U, m, i, i-1, -factor);
2482 std::swap (U[i], U[i-1]);
2489 /* Determines the overlapping elements due to accesses CHREC_A and
2490 CHREC_B, that are affine functions. This function cannot handle
2491 symbolic evolution functions, ie. when initial conditions are
2492 parameters, because it uses lambda matrices of integers. */
2494 static void
2495 analyze_subscript_affine_affine (tree chrec_a,
2496 tree chrec_b,
2497 conflict_function **overlaps_a,
2498 conflict_function **overlaps_b,
2499 tree *last_conflicts)
2501 unsigned nb_vars_a, nb_vars_b, dim;
2502 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2503 lambda_matrix A, U, S;
2504 struct obstack scratch_obstack;
2506 if (eq_evolutions_p (chrec_a, chrec_b))
2508 /* The accessed index overlaps for each iteration in the
2509 loop. */
2510 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2511 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2512 *last_conflicts = chrec_dont_know;
2513 return;
2515 if (dump_file && (dump_flags & TDF_DETAILS))
2516 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2518 /* For determining the initial intersection, we have to solve a
2519 Diophantine equation. This is the most time consuming part.
2521 For answering to the question: "Is there a dependence?" we have
2522 to prove that there exists a solution to the Diophantine
2523 equation, and that the solution is in the iteration domain,
2524 i.e. the solution is positive or zero, and that the solution
2525 happens before the upper bound loop.nb_iterations. Otherwise
2526 there is no dependence. This function outputs a description of
2527 the iterations that hold the intersections. */
2529 nb_vars_a = nb_vars_in_chrec (chrec_a);
2530 nb_vars_b = nb_vars_in_chrec (chrec_b);
2532 gcc_obstack_init (&scratch_obstack);
2534 dim = nb_vars_a + nb_vars_b;
2535 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2536 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2537 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2539 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2540 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2541 gamma = init_b - init_a;
2543 /* Don't do all the hard work of solving the Diophantine equation
2544 when we already know the solution: for example,
2545 | {3, +, 1}_1
2546 | {3, +, 4}_2
2547 | gamma = 3 - 3 = 0.
2548 Then the first overlap occurs during the first iterations:
2549 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2551 if (gamma == 0)
2553 if (nb_vars_a == 1 && nb_vars_b == 1)
2555 HOST_WIDE_INT step_a, step_b;
2556 HOST_WIDE_INT niter, niter_a, niter_b;
2557 affine_fn ova, ovb;
2559 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2560 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2561 niter = MIN (niter_a, niter_b);
2562 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2563 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2565 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2566 &ova, &ovb,
2567 last_conflicts, 1);
2568 *overlaps_a = conflict_fn (1, ova);
2569 *overlaps_b = conflict_fn (1, ovb);
2572 else if (nb_vars_a == 2 && nb_vars_b == 1)
2573 compute_overlap_steps_for_affine_1_2
2574 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2576 else if (nb_vars_a == 1 && nb_vars_b == 2)
2577 compute_overlap_steps_for_affine_1_2
2578 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2580 else
2582 if (dump_file && (dump_flags & TDF_DETAILS))
2583 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2584 *overlaps_a = conflict_fn_not_known ();
2585 *overlaps_b = conflict_fn_not_known ();
2586 *last_conflicts = chrec_dont_know;
2588 goto end_analyze_subs_aa;
2591 /* U.A = S */
2592 lambda_matrix_right_hermite (A, dim, 1, S, U);
2594 if (S[0][0] < 0)
2596 S[0][0] *= -1;
2597 lambda_matrix_row_negate (U, dim, 0);
2599 gcd_alpha_beta = S[0][0];
2601 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2602 but that is a quite strange case. Instead of ICEing, answer
2603 don't know. */
2604 if (gcd_alpha_beta == 0)
2606 *overlaps_a = conflict_fn_not_known ();
2607 *overlaps_b = conflict_fn_not_known ();
2608 *last_conflicts = chrec_dont_know;
2609 goto end_analyze_subs_aa;
2612 /* The classic "gcd-test". */
2613 if (!int_divides_p (gcd_alpha_beta, gamma))
2615 /* The "gcd-test" has determined that there is no integer
2616 solution, i.e. there is no dependence. */
2617 *overlaps_a = conflict_fn_no_dependence ();
2618 *overlaps_b = conflict_fn_no_dependence ();
2619 *last_conflicts = integer_zero_node;
2622 /* Both access functions are univariate. This includes SIV and MIV cases. */
2623 else if (nb_vars_a == 1 && nb_vars_b == 1)
2625 /* Both functions should have the same evolution sign. */
2626 if (((A[0][0] > 0 && -A[1][0] > 0)
2627 || (A[0][0] < 0 && -A[1][0] < 0)))
2629 /* The solutions are given by:
2631 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2632 | [u21 u22] [y0]
2634 For a given integer t. Using the following variables,
2636 | i0 = u11 * gamma / gcd_alpha_beta
2637 | j0 = u12 * gamma / gcd_alpha_beta
2638 | i1 = u21
2639 | j1 = u22
2641 the solutions are:
2643 | x0 = i0 + i1 * t,
2644 | y0 = j0 + j1 * t. */
2645 HOST_WIDE_INT i0, j0, i1, j1;
2647 i0 = U[0][0] * gamma / gcd_alpha_beta;
2648 j0 = U[0][1] * gamma / gcd_alpha_beta;
2649 i1 = U[1][0];
2650 j1 = U[1][1];
2652 if ((i1 == 0 && i0 < 0)
2653 || (j1 == 0 && j0 < 0))
2655 /* There is no solution.
2656 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2657 falls in here, but for the moment we don't look at the
2658 upper bound of the iteration domain. */
2659 *overlaps_a = conflict_fn_no_dependence ();
2660 *overlaps_b = conflict_fn_no_dependence ();
2661 *last_conflicts = integer_zero_node;
2662 goto end_analyze_subs_aa;
2665 if (i1 > 0 && j1 > 0)
2667 HOST_WIDE_INT niter_a
2668 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2669 HOST_WIDE_INT niter_b
2670 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2671 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2673 /* (X0, Y0) is a solution of the Diophantine equation:
2674 "chrec_a (X0) = chrec_b (Y0)". */
2675 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2676 CEIL (-j0, j1));
2677 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2678 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2680 /* (X1, Y1) is the smallest positive solution of the eq
2681 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2682 first conflict occurs. */
2683 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2684 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2685 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2687 if (niter > 0)
2689 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter_a - i0, i1),
2690 FLOOR_DIV (niter_b - j0, j1));
2691 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2693 /* If the overlap occurs outside of the bounds of the
2694 loop, there is no dependence. */
2695 if (x1 >= niter_a || y1 >= niter_b)
2697 *overlaps_a = conflict_fn_no_dependence ();
2698 *overlaps_b = conflict_fn_no_dependence ();
2699 *last_conflicts = integer_zero_node;
2700 goto end_analyze_subs_aa;
2702 else
2703 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2705 else
2706 *last_conflicts = chrec_dont_know;
2708 *overlaps_a
2709 = conflict_fn (1,
2710 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2712 build_int_cst (NULL_TREE, i1)));
2713 *overlaps_b
2714 = conflict_fn (1,
2715 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2717 build_int_cst (NULL_TREE, j1)));
2719 else
2721 /* FIXME: For the moment, the upper bound of the
2722 iteration domain for i and j is not checked. */
2723 if (dump_file && (dump_flags & TDF_DETAILS))
2724 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2725 *overlaps_a = conflict_fn_not_known ();
2726 *overlaps_b = conflict_fn_not_known ();
2727 *last_conflicts = chrec_dont_know;
2730 else
2732 if (dump_file && (dump_flags & TDF_DETAILS))
2733 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2734 *overlaps_a = conflict_fn_not_known ();
2735 *overlaps_b = conflict_fn_not_known ();
2736 *last_conflicts = chrec_dont_know;
2739 else
2741 if (dump_file && (dump_flags & TDF_DETAILS))
2742 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2743 *overlaps_a = conflict_fn_not_known ();
2744 *overlaps_b = conflict_fn_not_known ();
2745 *last_conflicts = chrec_dont_know;
2748 end_analyze_subs_aa:
2749 obstack_free (&scratch_obstack, NULL);
2750 if (dump_file && (dump_flags & TDF_DETAILS))
2752 fprintf (dump_file, " (overlaps_a = ");
2753 dump_conflict_function (dump_file, *overlaps_a);
2754 fprintf (dump_file, ")\n (overlaps_b = ");
2755 dump_conflict_function (dump_file, *overlaps_b);
2756 fprintf (dump_file, "))\n");
2760 /* Returns true when analyze_subscript_affine_affine can be used for
2761 determining the dependence relation between chrec_a and chrec_b,
2762 that contain symbols. This function modifies chrec_a and chrec_b
2763 such that the analysis result is the same, and such that they don't
2764 contain symbols, and then can safely be passed to the analyzer.
2766 Example: The analysis of the following tuples of evolutions produce
2767 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2768 vs. {0, +, 1}_1
2770 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2771 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2774 static bool
2775 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2777 tree diff, type, left_a, left_b, right_b;
2779 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2780 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2781 /* FIXME: For the moment not handled. Might be refined later. */
2782 return false;
2784 type = chrec_type (*chrec_a);
2785 left_a = CHREC_LEFT (*chrec_a);
2786 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2787 diff = chrec_fold_minus (type, left_a, left_b);
2789 if (!evolution_function_is_constant_p (diff))
2790 return false;
2792 if (dump_file && (dump_flags & TDF_DETAILS))
2793 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2795 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2796 diff, CHREC_RIGHT (*chrec_a));
2797 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2798 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2799 build_int_cst (type, 0),
2800 right_b);
2801 return true;
2804 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2805 *OVERLAPS_B are initialized to the functions that describe the
2806 relation between the elements accessed twice by CHREC_A and
2807 CHREC_B. For k >= 0, the following property is verified:
2809 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2811 static void
2812 analyze_siv_subscript (tree chrec_a,
2813 tree chrec_b,
2814 conflict_function **overlaps_a,
2815 conflict_function **overlaps_b,
2816 tree *last_conflicts,
2817 int loop_nest_num)
2819 dependence_stats.num_siv++;
2821 if (dump_file && (dump_flags & TDF_DETAILS))
2822 fprintf (dump_file, "(analyze_siv_subscript \n");
2824 if (evolution_function_is_constant_p (chrec_a)
2825 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2826 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2827 overlaps_a, overlaps_b, last_conflicts);
2829 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2830 && evolution_function_is_constant_p (chrec_b))
2831 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2832 overlaps_b, overlaps_a, last_conflicts);
2834 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2835 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2837 if (!chrec_contains_symbols (chrec_a)
2838 && !chrec_contains_symbols (chrec_b))
2840 analyze_subscript_affine_affine (chrec_a, chrec_b,
2841 overlaps_a, overlaps_b,
2842 last_conflicts);
2844 if (CF_NOT_KNOWN_P (*overlaps_a)
2845 || CF_NOT_KNOWN_P (*overlaps_b))
2846 dependence_stats.num_siv_unimplemented++;
2847 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2848 || CF_NO_DEPENDENCE_P (*overlaps_b))
2849 dependence_stats.num_siv_independent++;
2850 else
2851 dependence_stats.num_siv_dependent++;
2853 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2854 &chrec_b))
2856 analyze_subscript_affine_affine (chrec_a, chrec_b,
2857 overlaps_a, overlaps_b,
2858 last_conflicts);
2860 if (CF_NOT_KNOWN_P (*overlaps_a)
2861 || CF_NOT_KNOWN_P (*overlaps_b))
2862 dependence_stats.num_siv_unimplemented++;
2863 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2864 || CF_NO_DEPENDENCE_P (*overlaps_b))
2865 dependence_stats.num_siv_independent++;
2866 else
2867 dependence_stats.num_siv_dependent++;
2869 else
2870 goto siv_subscript_dontknow;
2873 else
2875 siv_subscript_dontknow:;
2876 if (dump_file && (dump_flags & TDF_DETAILS))
2877 fprintf (dump_file, " siv test failed: unimplemented");
2878 *overlaps_a = conflict_fn_not_known ();
2879 *overlaps_b = conflict_fn_not_known ();
2880 *last_conflicts = chrec_dont_know;
2881 dependence_stats.num_siv_unimplemented++;
2884 if (dump_file && (dump_flags & TDF_DETAILS))
2885 fprintf (dump_file, ")\n");
2888 /* Returns false if we can prove that the greatest common divisor of the steps
2889 of CHREC does not divide CST, false otherwise. */
2891 static bool
2892 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2894 HOST_WIDE_INT cd = 0, val;
2895 tree step;
2897 if (!tree_fits_shwi_p (cst))
2898 return true;
2899 val = tree_to_shwi (cst);
2901 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2903 step = CHREC_RIGHT (chrec);
2904 if (!tree_fits_shwi_p (step))
2905 return true;
2906 cd = gcd (cd, tree_to_shwi (step));
2907 chrec = CHREC_LEFT (chrec);
2910 return val % cd == 0;
2913 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2914 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2915 functions that describe the relation between the elements accessed
2916 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2917 is verified:
2919 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2921 static void
2922 analyze_miv_subscript (tree chrec_a,
2923 tree chrec_b,
2924 conflict_function **overlaps_a,
2925 conflict_function **overlaps_b,
2926 tree *last_conflicts,
2927 struct loop *loop_nest)
2929 tree type, difference;
2931 dependence_stats.num_miv++;
2932 if (dump_file && (dump_flags & TDF_DETAILS))
2933 fprintf (dump_file, "(analyze_miv_subscript \n");
2935 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2936 chrec_a = chrec_convert (type, chrec_a, NULL);
2937 chrec_b = chrec_convert (type, chrec_b, NULL);
2938 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2940 if (eq_evolutions_p (chrec_a, chrec_b))
2942 /* Access functions are the same: all the elements are accessed
2943 in the same order. */
2944 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2945 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2946 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2947 dependence_stats.num_miv_dependent++;
2950 else if (evolution_function_is_constant_p (difference)
2951 /* For the moment, the following is verified:
2952 evolution_function_is_affine_multivariate_p (chrec_a,
2953 loop_nest->num) */
2954 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2956 /* testsuite/.../ssa-chrec-33.c
2957 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2959 The difference is 1, and all the evolution steps are multiples
2960 of 2, consequently there are no overlapping elements. */
2961 *overlaps_a = conflict_fn_no_dependence ();
2962 *overlaps_b = conflict_fn_no_dependence ();
2963 *last_conflicts = integer_zero_node;
2964 dependence_stats.num_miv_independent++;
2967 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2968 && !chrec_contains_symbols (chrec_a)
2969 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2970 && !chrec_contains_symbols (chrec_b))
2972 /* testsuite/.../ssa-chrec-35.c
2973 {0, +, 1}_2 vs. {0, +, 1}_3
2974 the overlapping elements are respectively located at iterations:
2975 {0, +, 1}_x and {0, +, 1}_x,
2976 in other words, we have the equality:
2977 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2979 Other examples:
2980 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2981 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2983 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2984 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2986 analyze_subscript_affine_affine (chrec_a, chrec_b,
2987 overlaps_a, overlaps_b, last_conflicts);
2989 if (CF_NOT_KNOWN_P (*overlaps_a)
2990 || CF_NOT_KNOWN_P (*overlaps_b))
2991 dependence_stats.num_miv_unimplemented++;
2992 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2993 || CF_NO_DEPENDENCE_P (*overlaps_b))
2994 dependence_stats.num_miv_independent++;
2995 else
2996 dependence_stats.num_miv_dependent++;
2999 else
3001 /* When the analysis is too difficult, answer "don't know". */
3002 if (dump_file && (dump_flags & TDF_DETAILS))
3003 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
3005 *overlaps_a = conflict_fn_not_known ();
3006 *overlaps_b = conflict_fn_not_known ();
3007 *last_conflicts = chrec_dont_know;
3008 dependence_stats.num_miv_unimplemented++;
3011 if (dump_file && (dump_flags & TDF_DETAILS))
3012 fprintf (dump_file, ")\n");
3015 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
3016 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
3017 OVERLAP_ITERATIONS_B are initialized with two functions that
3018 describe the iterations that contain conflicting elements.
3020 Remark: For an integer k >= 0, the following equality is true:
3022 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3025 static void
3026 analyze_overlapping_iterations (tree chrec_a,
3027 tree chrec_b,
3028 conflict_function **overlap_iterations_a,
3029 conflict_function **overlap_iterations_b,
3030 tree *last_conflicts, struct loop *loop_nest)
3032 unsigned int lnn = loop_nest->num;
3034 dependence_stats.num_subscript_tests++;
3036 if (dump_file && (dump_flags & TDF_DETAILS))
3038 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3039 fprintf (dump_file, " (chrec_a = ");
3040 print_generic_expr (dump_file, chrec_a, 0);
3041 fprintf (dump_file, ")\n (chrec_b = ");
3042 print_generic_expr (dump_file, chrec_b, 0);
3043 fprintf (dump_file, ")\n");
3046 if (chrec_a == NULL_TREE
3047 || chrec_b == NULL_TREE
3048 || chrec_contains_undetermined (chrec_a)
3049 || chrec_contains_undetermined (chrec_b))
3051 dependence_stats.num_subscript_undetermined++;
3053 *overlap_iterations_a = conflict_fn_not_known ();
3054 *overlap_iterations_b = conflict_fn_not_known ();
3057 /* If they are the same chrec, and are affine, they overlap
3058 on every iteration. */
3059 else if (eq_evolutions_p (chrec_a, chrec_b)
3060 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3061 || operand_equal_p (chrec_a, chrec_b, 0)))
3063 dependence_stats.num_same_subscript_function++;
3064 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3065 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3066 *last_conflicts = chrec_dont_know;
3069 /* If they aren't the same, and aren't affine, we can't do anything
3070 yet. */
3071 else if ((chrec_contains_symbols (chrec_a)
3072 || chrec_contains_symbols (chrec_b))
3073 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3074 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3076 dependence_stats.num_subscript_undetermined++;
3077 *overlap_iterations_a = conflict_fn_not_known ();
3078 *overlap_iterations_b = conflict_fn_not_known ();
3081 else if (ziv_subscript_p (chrec_a, chrec_b))
3082 analyze_ziv_subscript (chrec_a, chrec_b,
3083 overlap_iterations_a, overlap_iterations_b,
3084 last_conflicts);
3086 else if (siv_subscript_p (chrec_a, chrec_b))
3087 analyze_siv_subscript (chrec_a, chrec_b,
3088 overlap_iterations_a, overlap_iterations_b,
3089 last_conflicts, lnn);
3091 else
3092 analyze_miv_subscript (chrec_a, chrec_b,
3093 overlap_iterations_a, overlap_iterations_b,
3094 last_conflicts, loop_nest);
3096 if (dump_file && (dump_flags & TDF_DETAILS))
3098 fprintf (dump_file, " (overlap_iterations_a = ");
3099 dump_conflict_function (dump_file, *overlap_iterations_a);
3100 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3101 dump_conflict_function (dump_file, *overlap_iterations_b);
3102 fprintf (dump_file, "))\n");
3106 /* Helper function for uniquely inserting distance vectors. */
3108 static void
3109 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3111 unsigned i;
3112 lambda_vector v;
3114 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3115 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3116 return;
3118 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3121 /* Helper function for uniquely inserting direction vectors. */
3123 static void
3124 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3126 unsigned i;
3127 lambda_vector v;
3129 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3130 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3131 return;
3133 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3136 /* Add a distance of 1 on all the loops outer than INDEX. If we
3137 haven't yet determined a distance for this outer loop, push a new
3138 distance vector composed of the previous distance, and a distance
3139 of 1 for this outer loop. Example:
3141 | loop_1
3142 | loop_2
3143 | A[10]
3144 | endloop_2
3145 | endloop_1
3147 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3148 save (0, 1), then we have to save (1, 0). */
3150 static void
3151 add_outer_distances (struct data_dependence_relation *ddr,
3152 lambda_vector dist_v, int index)
3154 /* For each outer loop where init_v is not set, the accesses are
3155 in dependence of distance 1 in the loop. */
3156 while (--index >= 0)
3158 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3159 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3160 save_v[index] = 1;
3161 save_dist_v (ddr, save_v);
3165 /* Return false when fail to represent the data dependence as a
3166 distance vector. INIT_B is set to true when a component has been
3167 added to the distance vector DIST_V. INDEX_CARRY is then set to
3168 the index in DIST_V that carries the dependence. */
3170 static bool
3171 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3172 struct data_reference *ddr_a,
3173 struct data_reference *ddr_b,
3174 lambda_vector dist_v, bool *init_b,
3175 int *index_carry)
3177 unsigned i;
3178 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3180 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3182 tree access_fn_a, access_fn_b;
3183 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3185 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3187 non_affine_dependence_relation (ddr);
3188 return false;
3191 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3192 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3194 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3195 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3197 int dist, index;
3198 int var_a = CHREC_VARIABLE (access_fn_a);
3199 int var_b = CHREC_VARIABLE (access_fn_b);
3201 if (var_a != var_b
3202 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3204 non_affine_dependence_relation (ddr);
3205 return false;
3208 dist = int_cst_value (SUB_DISTANCE (subscript));
3209 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3210 *index_carry = MIN (index, *index_carry);
3212 /* This is the subscript coupling test. If we have already
3213 recorded a distance for this loop (a distance coming from
3214 another subscript), it should be the same. For example,
3215 in the following code, there is no dependence:
3217 | loop i = 0, N, 1
3218 | T[i+1][i] = ...
3219 | ... = T[i][i]
3220 | endloop
3222 if (init_v[index] != 0 && dist_v[index] != dist)
3224 finalize_ddr_dependent (ddr, chrec_known);
3225 return false;
3228 dist_v[index] = dist;
3229 init_v[index] = 1;
3230 *init_b = true;
3232 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3234 /* This can be for example an affine vs. constant dependence
3235 (T[i] vs. T[3]) that is not an affine dependence and is
3236 not representable as a distance vector. */
3237 non_affine_dependence_relation (ddr);
3238 return false;
3242 return true;
3245 /* Return true when the DDR contains only constant access functions. */
3247 static bool
3248 constant_access_functions (const struct data_dependence_relation *ddr)
3250 unsigned i;
3252 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3253 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3254 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3255 return false;
3257 return true;
3260 /* Helper function for the case where DDR_A and DDR_B are the same
3261 multivariate access function with a constant step. For an example
3262 see pr34635-1.c. */
3264 static void
3265 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3267 int x_1, x_2;
3268 tree c_1 = CHREC_LEFT (c_2);
3269 tree c_0 = CHREC_LEFT (c_1);
3270 lambda_vector dist_v;
3271 int v1, v2, cd;
3273 /* Polynomials with more than 2 variables are not handled yet. When
3274 the evolution steps are parameters, it is not possible to
3275 represent the dependence using classical distance vectors. */
3276 if (TREE_CODE (c_0) != INTEGER_CST
3277 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3278 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3280 DDR_AFFINE_P (ddr) = false;
3281 return;
3284 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3285 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3287 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3288 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3289 v1 = int_cst_value (CHREC_RIGHT (c_1));
3290 v2 = int_cst_value (CHREC_RIGHT (c_2));
3291 cd = gcd (v1, v2);
3292 v1 /= cd;
3293 v2 /= cd;
3295 if (v2 < 0)
3297 v2 = -v2;
3298 v1 = -v1;
3301 dist_v[x_1] = v2;
3302 dist_v[x_2] = -v1;
3303 save_dist_v (ddr, dist_v);
3305 add_outer_distances (ddr, dist_v, x_1);
3308 /* Helper function for the case where DDR_A and DDR_B are the same
3309 access functions. */
3311 static void
3312 add_other_self_distances (struct data_dependence_relation *ddr)
3314 lambda_vector dist_v;
3315 unsigned i;
3316 int index_carry = DDR_NB_LOOPS (ddr);
3318 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3320 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3322 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3324 if (!evolution_function_is_univariate_p (access_fun))
3326 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3328 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3329 return;
3332 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3334 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3335 add_multivariate_self_dist (ddr, access_fun);
3336 else
3337 /* The evolution step is not constant: it varies in
3338 the outer loop, so this cannot be represented by a
3339 distance vector. For example in pr34635.c the
3340 evolution is {0, +, {0, +, 4}_1}_2. */
3341 DDR_AFFINE_P (ddr) = false;
3343 return;
3346 index_carry = MIN (index_carry,
3347 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3348 DDR_LOOP_NEST (ddr)));
3352 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3353 add_outer_distances (ddr, dist_v, index_carry);
3356 static void
3357 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3359 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3361 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3362 save_dist_v (ddr, dist_v);
3365 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3366 is the case for example when access functions are the same and
3367 equal to a constant, as in:
3369 | loop_1
3370 | A[3] = ...
3371 | ... = A[3]
3372 | endloop_1
3374 in which case the distance vectors are (0) and (1). */
3376 static void
3377 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3379 unsigned i, j;
3381 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3383 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3384 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3385 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3387 for (j = 0; j < ca->n; j++)
3388 if (affine_function_zero_p (ca->fns[j]))
3390 insert_innermost_unit_dist_vector (ddr);
3391 return;
3394 for (j = 0; j < cb->n; j++)
3395 if (affine_function_zero_p (cb->fns[j]))
3397 insert_innermost_unit_dist_vector (ddr);
3398 return;
3403 /* Compute the classic per loop distance vector. DDR is the data
3404 dependence relation to build a vector from. Return false when fail
3405 to represent the data dependence as a distance vector. */
3407 static bool
3408 build_classic_dist_vector (struct data_dependence_relation *ddr,
3409 struct loop *loop_nest)
3411 bool init_b = false;
3412 int index_carry = DDR_NB_LOOPS (ddr);
3413 lambda_vector dist_v;
3415 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3416 return false;
3418 if (same_access_functions (ddr))
3420 /* Save the 0 vector. */
3421 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3422 save_dist_v (ddr, dist_v);
3424 if (constant_access_functions (ddr))
3425 add_distance_for_zero_overlaps (ddr);
3427 if (DDR_NB_LOOPS (ddr) > 1)
3428 add_other_self_distances (ddr);
3430 return true;
3433 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3434 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3435 dist_v, &init_b, &index_carry))
3436 return false;
3438 /* Save the distance vector if we initialized one. */
3439 if (init_b)
3441 /* Verify a basic constraint: classic distance vectors should
3442 always be lexicographically positive.
3444 Data references are collected in the order of execution of
3445 the program, thus for the following loop
3447 | for (i = 1; i < 100; i++)
3448 | for (j = 1; j < 100; j++)
3450 | t = T[j+1][i-1]; // A
3451 | T[j][i] = t + 2; // B
3454 references are collected following the direction of the wind:
3455 A then B. The data dependence tests are performed also
3456 following this order, such that we're looking at the distance
3457 separating the elements accessed by A from the elements later
3458 accessed by B. But in this example, the distance returned by
3459 test_dep (A, B) is lexicographically negative (-1, 1), that
3460 means that the access A occurs later than B with respect to
3461 the outer loop, ie. we're actually looking upwind. In this
3462 case we solve test_dep (B, A) looking downwind to the
3463 lexicographically positive solution, that returns the
3464 distance vector (1, -1). */
3465 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3467 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3468 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3469 loop_nest))
3470 return false;
3471 compute_subscript_distance (ddr);
3472 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3473 save_v, &init_b, &index_carry))
3474 return false;
3475 save_dist_v (ddr, save_v);
3476 DDR_REVERSED_P (ddr) = true;
3478 /* In this case there is a dependence forward for all the
3479 outer loops:
3481 | for (k = 1; k < 100; k++)
3482 | for (i = 1; i < 100; i++)
3483 | for (j = 1; j < 100; j++)
3485 | t = T[j+1][i-1]; // A
3486 | T[j][i] = t + 2; // B
3489 the vectors are:
3490 (0, 1, -1)
3491 (1, 1, -1)
3492 (1, -1, 1)
3494 if (DDR_NB_LOOPS (ddr) > 1)
3496 add_outer_distances (ddr, save_v, index_carry);
3497 add_outer_distances (ddr, dist_v, index_carry);
3500 else
3502 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3503 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3505 if (DDR_NB_LOOPS (ddr) > 1)
3507 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3509 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3510 DDR_A (ddr), loop_nest))
3511 return false;
3512 compute_subscript_distance (ddr);
3513 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3514 opposite_v, &init_b,
3515 &index_carry))
3516 return false;
3518 save_dist_v (ddr, save_v);
3519 add_outer_distances (ddr, dist_v, index_carry);
3520 add_outer_distances (ddr, opposite_v, index_carry);
3522 else
3523 save_dist_v (ddr, save_v);
3526 else
3528 /* There is a distance of 1 on all the outer loops: Example:
3529 there is a dependence of distance 1 on loop_1 for the array A.
3531 | loop_1
3532 | A[5] = ...
3533 | endloop
3535 add_outer_distances (ddr, dist_v,
3536 lambda_vector_first_nz (dist_v,
3537 DDR_NB_LOOPS (ddr), 0));
3540 if (dump_file && (dump_flags & TDF_DETAILS))
3542 unsigned i;
3544 fprintf (dump_file, "(build_classic_dist_vector\n");
3545 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3547 fprintf (dump_file, " dist_vector = (");
3548 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3549 DDR_NB_LOOPS (ddr));
3550 fprintf (dump_file, " )\n");
3552 fprintf (dump_file, ")\n");
3555 return true;
3558 /* Return the direction for a given distance.
3559 FIXME: Computing dir this way is suboptimal, since dir can catch
3560 cases that dist is unable to represent. */
3562 static inline enum data_dependence_direction
3563 dir_from_dist (int dist)
3565 if (dist > 0)
3566 return dir_positive;
3567 else if (dist < 0)
3568 return dir_negative;
3569 else
3570 return dir_equal;
3573 /* Compute the classic per loop direction vector. DDR is the data
3574 dependence relation to build a vector from. */
3576 static void
3577 build_classic_dir_vector (struct data_dependence_relation *ddr)
3579 unsigned i, j;
3580 lambda_vector dist_v;
3582 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3584 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3586 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3587 dir_v[j] = dir_from_dist (dist_v[j]);
3589 save_dir_v (ddr, dir_v);
3593 /* Helper function. Returns true when there is a dependence between
3594 data references DRA and DRB. */
3596 static bool
3597 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3598 struct data_reference *dra,
3599 struct data_reference *drb,
3600 struct loop *loop_nest)
3602 unsigned int i;
3603 tree last_conflicts;
3604 struct subscript *subscript;
3605 tree res = NULL_TREE;
3607 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3609 conflict_function *overlaps_a, *overlaps_b;
3611 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3612 DR_ACCESS_FN (drb, i),
3613 &overlaps_a, &overlaps_b,
3614 &last_conflicts, loop_nest);
3616 if (SUB_CONFLICTS_IN_A (subscript))
3617 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3618 if (SUB_CONFLICTS_IN_B (subscript))
3619 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3621 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3622 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3623 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3625 /* If there is any undetermined conflict function we have to
3626 give a conservative answer in case we cannot prove that
3627 no dependence exists when analyzing another subscript. */
3628 if (CF_NOT_KNOWN_P (overlaps_a)
3629 || CF_NOT_KNOWN_P (overlaps_b))
3631 res = chrec_dont_know;
3632 continue;
3635 /* When there is a subscript with no dependence we can stop. */
3636 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3637 || CF_NO_DEPENDENCE_P (overlaps_b))
3639 res = chrec_known;
3640 break;
3644 if (res == NULL_TREE)
3645 return true;
3647 if (res == chrec_known)
3648 dependence_stats.num_dependence_independent++;
3649 else
3650 dependence_stats.num_dependence_undetermined++;
3651 finalize_ddr_dependent (ddr, res);
3652 return false;
3655 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3657 static void
3658 subscript_dependence_tester (struct data_dependence_relation *ddr,
3659 struct loop *loop_nest)
3661 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3662 dependence_stats.num_dependence_dependent++;
3664 compute_subscript_distance (ddr);
3665 if (build_classic_dist_vector (ddr, loop_nest))
3666 build_classic_dir_vector (ddr);
3669 /* Returns true when all the access functions of A are affine or
3670 constant with respect to LOOP_NEST. */
3672 static bool
3673 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3674 const struct loop *loop_nest)
3676 unsigned int i;
3677 vec<tree> fns = DR_ACCESS_FNS (a);
3678 tree t;
3680 FOR_EACH_VEC_ELT (fns, i, t)
3681 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3682 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3683 return false;
3685 return true;
3688 /* This computes the affine dependence relation between A and B with
3689 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
3690 independence between two accesses, while CHREC_DONT_KNOW is used
3691 for representing the unknown relation.
3693 Note that it is possible to stop the computation of the dependence
3694 relation the first time we detect a CHREC_KNOWN element for a given
3695 subscript. */
3697 void
3698 compute_affine_dependence (struct data_dependence_relation *ddr,
3699 struct loop *loop_nest)
3701 struct data_reference *dra = DDR_A (ddr);
3702 struct data_reference *drb = DDR_B (ddr);
3704 if (dump_file && (dump_flags & TDF_DETAILS))
3706 fprintf (dump_file, "(compute_affine_dependence\n");
3707 fprintf (dump_file, " stmt_a: ");
3708 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
3709 fprintf (dump_file, " stmt_b: ");
3710 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
3713 /* Analyze only when the dependence relation is not yet known. */
3714 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
3716 dependence_stats.num_dependence_tests++;
3718 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
3719 && access_functions_are_affine_or_constant_p (drb, loop_nest))
3720 subscript_dependence_tester (ddr, loop_nest);
3722 /* As a last case, if the dependence cannot be determined, or if
3723 the dependence is considered too difficult to determine, answer
3724 "don't know". */
3725 else
3727 dependence_stats.num_dependence_undetermined++;
3729 if (dump_file && (dump_flags & TDF_DETAILS))
3731 fprintf (dump_file, "Data ref a:\n");
3732 dump_data_reference (dump_file, dra);
3733 fprintf (dump_file, "Data ref b:\n");
3734 dump_data_reference (dump_file, drb);
3735 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
3737 finalize_ddr_dependent (ddr, chrec_dont_know);
3741 if (dump_file && (dump_flags & TDF_DETAILS))
3743 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
3744 fprintf (dump_file, ") -> no dependence\n");
3745 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
3746 fprintf (dump_file, ") -> dependence analysis failed\n");
3747 else
3748 fprintf (dump_file, ")\n");
3752 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
3753 the data references in DATAREFS, in the LOOP_NEST. When
3754 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
3755 relations. Return true when successful, i.e. data references number
3756 is small enough to be handled. */
3758 bool
3759 compute_all_dependences (vec<data_reference_p> datarefs,
3760 vec<ddr_p> *dependence_relations,
3761 vec<loop_p> loop_nest,
3762 bool compute_self_and_rr)
3764 struct data_dependence_relation *ddr;
3765 struct data_reference *a, *b;
3766 unsigned int i, j;
3768 if ((int) datarefs.length ()
3769 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
3771 struct data_dependence_relation *ddr;
3773 /* Insert a single relation into dependence_relations:
3774 chrec_dont_know. */
3775 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
3776 dependence_relations->safe_push (ddr);
3777 return false;
3780 FOR_EACH_VEC_ELT (datarefs, i, a)
3781 for (j = i + 1; datarefs.iterate (j, &b); j++)
3782 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
3784 ddr = initialize_data_dependence_relation (a, b, loop_nest);
3785 dependence_relations->safe_push (ddr);
3786 if (loop_nest.exists ())
3787 compute_affine_dependence (ddr, loop_nest[0]);
3790 if (compute_self_and_rr)
3791 FOR_EACH_VEC_ELT (datarefs, i, a)
3793 ddr = initialize_data_dependence_relation (a, a, loop_nest);
3794 dependence_relations->safe_push (ddr);
3795 if (loop_nest.exists ())
3796 compute_affine_dependence (ddr, loop_nest[0]);
3799 return true;
3802 /* Describes a location of a memory reference. */
3804 struct data_ref_loc
3806 /* The memory reference. */
3807 tree ref;
3809 /* True if the memory reference is read. */
3810 bool is_read;
3814 /* Stores the locations of memory references in STMT to REFERENCES. Returns
3815 true if STMT clobbers memory, false otherwise. */
3817 static bool
3818 get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
3820 bool clobbers_memory = false;
3821 data_ref_loc ref;
3822 tree op0, op1;
3823 enum gimple_code stmt_code = gimple_code (stmt);
3825 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
3826 As we cannot model data-references to not spelled out
3827 accesses give up if they may occur. */
3828 if (stmt_code == GIMPLE_CALL
3829 && !(gimple_call_flags (stmt) & ECF_CONST))
3831 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
3832 if (gimple_call_internal_p (stmt))
3833 switch (gimple_call_internal_fn (stmt))
3835 case IFN_GOMP_SIMD_LANE:
3837 struct loop *loop = gimple_bb (stmt)->loop_father;
3838 tree uid = gimple_call_arg (stmt, 0);
3839 gcc_assert (TREE_CODE (uid) == SSA_NAME);
3840 if (loop == NULL
3841 || loop->simduid != SSA_NAME_VAR (uid))
3842 clobbers_memory = true;
3843 break;
3845 case IFN_MASK_LOAD:
3846 case IFN_MASK_STORE:
3847 break;
3848 default:
3849 clobbers_memory = true;
3850 break;
3852 else
3853 clobbers_memory = true;
3855 else if (stmt_code == GIMPLE_ASM
3856 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
3857 || gimple_vuse (stmt)))
3858 clobbers_memory = true;
3860 if (!gimple_vuse (stmt))
3861 return clobbers_memory;
3863 if (stmt_code == GIMPLE_ASSIGN)
3865 tree base;
3866 op0 = gimple_assign_lhs (stmt);
3867 op1 = gimple_assign_rhs1 (stmt);
3869 if (DECL_P (op1)
3870 || (REFERENCE_CLASS_P (op1)
3871 && (base = get_base_address (op1))
3872 && TREE_CODE (base) != SSA_NAME
3873 && !is_gimple_min_invariant (base)))
3875 ref.ref = op1;
3876 ref.is_read = true;
3877 references->safe_push (ref);
3880 else if (stmt_code == GIMPLE_CALL)
3882 unsigned i, n;
3883 tree ptr, type;
3884 unsigned int align;
3886 ref.is_read = false;
3887 if (gimple_call_internal_p (stmt))
3888 switch (gimple_call_internal_fn (stmt))
3890 case IFN_MASK_LOAD:
3891 if (gimple_call_lhs (stmt) == NULL_TREE)
3892 break;
3893 ref.is_read = true;
3894 /* FALLTHRU */
3895 case IFN_MASK_STORE:
3896 ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
3897 align = tree_to_shwi (gimple_call_arg (stmt, 1));
3898 if (ref.is_read)
3899 type = TREE_TYPE (gimple_call_lhs (stmt));
3900 else
3901 type = TREE_TYPE (gimple_call_arg (stmt, 3));
3902 if (TYPE_ALIGN (type) != align)
3903 type = build_aligned_type (type, align);
3904 ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
3905 ptr);
3906 references->safe_push (ref);
3907 return false;
3908 default:
3909 break;
3912 op0 = gimple_call_lhs (stmt);
3913 n = gimple_call_num_args (stmt);
3914 for (i = 0; i < n; i++)
3916 op1 = gimple_call_arg (stmt, i);
3918 if (DECL_P (op1)
3919 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
3921 ref.ref = op1;
3922 ref.is_read = true;
3923 references->safe_push (ref);
3927 else
3928 return clobbers_memory;
3930 if (op0
3931 && (DECL_P (op0)
3932 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
3934 ref.ref = op0;
3935 ref.is_read = false;
3936 references->safe_push (ref);
3938 return clobbers_memory;
3942 /* Returns true if the loop-nest has any data reference. */
3944 bool
3945 loop_nest_has_data_refs (loop_p loop)
3947 basic_block *bbs = get_loop_body (loop);
3948 auto_vec<data_ref_loc, 3> references;
3950 for (unsigned i = 0; i < loop->num_nodes; i++)
3952 basic_block bb = bbs[i];
3953 gimple_stmt_iterator bsi;
3955 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3957 gimple *stmt = gsi_stmt (bsi);
3958 get_references_in_stmt (stmt, &references);
3959 if (references.length ())
3961 free (bbs);
3962 return true;
3966 free (bbs);
3968 if (loop->inner)
3970 loop = loop->inner;
3971 while (loop)
3973 if (loop_nest_has_data_refs (loop))
3974 return true;
3975 loop = loop->next;
3978 return false;
3981 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
3982 reference, returns false, otherwise returns true. NEST is the outermost
3983 loop of the loop nest in which the references should be analyzed. */
3985 bool
3986 find_data_references_in_stmt (struct loop *nest, gimple *stmt,
3987 vec<data_reference_p> *datarefs)
3989 unsigned i;
3990 auto_vec<data_ref_loc, 2> references;
3991 data_ref_loc *ref;
3992 bool ret = true;
3993 data_reference_p dr;
3995 if (get_references_in_stmt (stmt, &references))
3996 return false;
3998 FOR_EACH_VEC_ELT (references, i, ref)
4000 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4001 ref->ref, stmt, ref->is_read);
4002 gcc_assert (dr != NULL);
4003 datarefs->safe_push (dr);
4006 return ret;
4009 /* Stores the data references in STMT to DATAREFS. If there is an
4010 unanalyzable reference, returns false, otherwise returns true.
4011 NEST is the outermost loop of the loop nest in which the references
4012 should be instantiated, LOOP is the loop in which the references
4013 should be analyzed. */
4015 bool
4016 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple *stmt,
4017 vec<data_reference_p> *datarefs)
4019 unsigned i;
4020 auto_vec<data_ref_loc, 2> references;
4021 data_ref_loc *ref;
4022 bool ret = true;
4023 data_reference_p dr;
4025 if (get_references_in_stmt (stmt, &references))
4026 return false;
4028 FOR_EACH_VEC_ELT (references, i, ref)
4030 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
4031 gcc_assert (dr != NULL);
4032 datarefs->safe_push (dr);
4035 return ret;
4038 /* Search the data references in LOOP, and record the information into
4039 DATAREFS. Returns chrec_dont_know when failing to analyze a
4040 difficult case, returns NULL_TREE otherwise. */
4042 tree
4043 find_data_references_in_bb (struct loop *loop, basic_block bb,
4044 vec<data_reference_p> *datarefs)
4046 gimple_stmt_iterator bsi;
4048 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4050 gimple *stmt = gsi_stmt (bsi);
4052 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4054 struct data_reference *res;
4055 res = XCNEW (struct data_reference);
4056 datarefs->safe_push (res);
4058 return chrec_dont_know;
4062 return NULL_TREE;
4065 /* Search the data references in LOOP, and record the information into
4066 DATAREFS. Returns chrec_dont_know when failing to analyze a
4067 difficult case, returns NULL_TREE otherwise.
4069 TODO: This function should be made smarter so that it can handle address
4070 arithmetic as if they were array accesses, etc. */
4072 tree
4073 find_data_references_in_loop (struct loop *loop,
4074 vec<data_reference_p> *datarefs)
4076 basic_block bb, *bbs;
4077 unsigned int i;
4079 bbs = get_loop_body_in_dom_order (loop);
4081 for (i = 0; i < loop->num_nodes; i++)
4083 bb = bbs[i];
4085 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4087 free (bbs);
4088 return chrec_dont_know;
4091 free (bbs);
4093 return NULL_TREE;
4096 /* Recursive helper function. */
4098 static bool
4099 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4101 /* Inner loops of the nest should not contain siblings. Example:
4102 when there are two consecutive loops,
4104 | loop_0
4105 | loop_1
4106 | A[{0, +, 1}_1]
4107 | endloop_1
4108 | loop_2
4109 | A[{0, +, 1}_2]
4110 | endloop_2
4111 | endloop_0
4113 the dependence relation cannot be captured by the distance
4114 abstraction. */
4115 if (loop->next)
4116 return false;
4118 loop_nest->safe_push (loop);
4119 if (loop->inner)
4120 return find_loop_nest_1 (loop->inner, loop_nest);
4121 return true;
4124 /* Return false when the LOOP is not well nested. Otherwise return
4125 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4126 contain the loops from the outermost to the innermost, as they will
4127 appear in the classic distance vector. */
4129 bool
4130 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4132 loop_nest->safe_push (loop);
4133 if (loop->inner)
4134 return find_loop_nest_1 (loop->inner, loop_nest);
4135 return true;
4138 /* Returns true when the data dependences have been computed, false otherwise.
4139 Given a loop nest LOOP, the following vectors are returned:
4140 DATAREFS is initialized to all the array elements contained in this loop,
4141 DEPENDENCE_RELATIONS contains the relations between the data references.
4142 Compute read-read and self relations if
4143 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4145 bool
4146 compute_data_dependences_for_loop (struct loop *loop,
4147 bool compute_self_and_read_read_dependences,
4148 vec<loop_p> *loop_nest,
4149 vec<data_reference_p> *datarefs,
4150 vec<ddr_p> *dependence_relations)
4152 bool res = true;
4154 memset (&dependence_stats, 0, sizeof (dependence_stats));
4156 /* If the loop nest is not well formed, or one of the data references
4157 is not computable, give up without spending time to compute other
4158 dependences. */
4159 if (!loop
4160 || !find_loop_nest (loop, loop_nest)
4161 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4162 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4163 compute_self_and_read_read_dependences))
4164 res = false;
4166 if (dump_file && (dump_flags & TDF_STATS))
4168 fprintf (dump_file, "Dependence tester statistics:\n");
4170 fprintf (dump_file, "Number of dependence tests: %d\n",
4171 dependence_stats.num_dependence_tests);
4172 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4173 dependence_stats.num_dependence_dependent);
4174 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4175 dependence_stats.num_dependence_independent);
4176 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4177 dependence_stats.num_dependence_undetermined);
4179 fprintf (dump_file, "Number of subscript tests: %d\n",
4180 dependence_stats.num_subscript_tests);
4181 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4182 dependence_stats.num_subscript_undetermined);
4183 fprintf (dump_file, "Number of same subscript function: %d\n",
4184 dependence_stats.num_same_subscript_function);
4186 fprintf (dump_file, "Number of ziv tests: %d\n",
4187 dependence_stats.num_ziv);
4188 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4189 dependence_stats.num_ziv_dependent);
4190 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4191 dependence_stats.num_ziv_independent);
4192 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4193 dependence_stats.num_ziv_unimplemented);
4195 fprintf (dump_file, "Number of siv tests: %d\n",
4196 dependence_stats.num_siv);
4197 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4198 dependence_stats.num_siv_dependent);
4199 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4200 dependence_stats.num_siv_independent);
4201 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4202 dependence_stats.num_siv_unimplemented);
4204 fprintf (dump_file, "Number of miv tests: %d\n",
4205 dependence_stats.num_miv);
4206 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4207 dependence_stats.num_miv_dependent);
4208 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4209 dependence_stats.num_miv_independent);
4210 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4211 dependence_stats.num_miv_unimplemented);
4214 return res;
4217 /* Free the memory used by a data dependence relation DDR. */
4219 void
4220 free_dependence_relation (struct data_dependence_relation *ddr)
4222 if (ddr == NULL)
4223 return;
4225 if (DDR_SUBSCRIPTS (ddr).exists ())
4226 free_subscripts (DDR_SUBSCRIPTS (ddr));
4227 DDR_DIST_VECTS (ddr).release ();
4228 DDR_DIR_VECTS (ddr).release ();
4230 free (ddr);
4233 /* Free the memory used by the data dependence relations from
4234 DEPENDENCE_RELATIONS. */
4236 void
4237 free_dependence_relations (vec<ddr_p> dependence_relations)
4239 unsigned int i;
4240 struct data_dependence_relation *ddr;
4242 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4243 if (ddr)
4244 free_dependence_relation (ddr);
4246 dependence_relations.release ();
4249 /* Free the memory used by the data references from DATAREFS. */
4251 void
4252 free_data_refs (vec<data_reference_p> datarefs)
4254 unsigned int i;
4255 struct data_reference *dr;
4257 FOR_EACH_VEC_ELT (datarefs, i, dr)
4258 free_data_ref (dr);
4259 datarefs.release ();