2016-10-07 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / sched-rgn.c
blobf6d1c91f7683bbe69c463dbaaa88a336604bbe08
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "df.h"
53 #include "tm_p.h"
54 #include "insn-config.h"
55 #include "emit-rtl.h"
56 #include "recog.h"
57 #include "profile.h"
58 #include "insn-attr.h"
59 #include "except.h"
60 #include "params.h"
61 #include "cfganal.h"
62 #include "sched-int.h"
63 #include "sel-sched.h"
64 #include "tree-pass.h"
65 #include "dbgcnt.h"
66 #include "pretty-print.h"
67 #include "print-rtl.h"
69 #ifdef INSN_SCHEDULING
71 /* Some accessor macros for h_i_d members only used within this file. */
72 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
73 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
75 /* nr_inter/spec counts interblock/speculative motion for the function. */
76 static int nr_inter, nr_spec;
78 static int is_cfg_nonregular (void);
80 /* Number of regions in the procedure. */
81 int nr_regions = 0;
83 /* Same as above before adding any new regions. */
84 static int nr_regions_initial = 0;
86 /* Table of region descriptions. */
87 region *rgn_table = NULL;
89 /* Array of lists of regions' blocks. */
90 int *rgn_bb_table = NULL;
92 /* Topological order of blocks in the region (if b2 is reachable from
93 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
94 always referred to by either block or b, while its topological
95 order name (in the region) is referred to by bb. */
96 int *block_to_bb = NULL;
98 /* The number of the region containing a block. */
99 int *containing_rgn = NULL;
101 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
102 Currently we can get a ebb only through splitting of currently
103 scheduling block, therefore, we don't need ebb_head array for every region,
104 hence, its sufficient to hold it for current one only. */
105 int *ebb_head = NULL;
107 /* The minimum probability of reaching a source block so that it will be
108 considered for speculative scheduling. */
109 static int min_spec_prob;
111 static void find_single_block_region (bool);
112 static void find_rgns (void);
113 static bool too_large (int, int *, int *);
115 /* Blocks of the current region being scheduled. */
116 int current_nr_blocks;
117 int current_blocks;
119 /* A speculative motion requires checking live information on the path
120 from 'source' to 'target'. The split blocks are those to be checked.
121 After a speculative motion, live information should be modified in
122 the 'update' blocks.
124 Lists of split and update blocks for each candidate of the current
125 target are in array bblst_table. */
126 static basic_block *bblst_table;
127 static int bblst_size, bblst_last;
129 /* Arrays that hold the DFA state at the end of a basic block, to re-use
130 as the initial state at the start of successor blocks. The BB_STATE
131 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
132 into BB_STATE for basic block I. FIXME: This should be a vec. */
133 static char *bb_state_array = NULL;
134 static state_t *bb_state = NULL;
136 /* Target info declarations.
138 The block currently being scheduled is referred to as the "target" block,
139 while other blocks in the region from which insns can be moved to the
140 target are called "source" blocks. The candidate structure holds info
141 about such sources: are they valid? Speculative? Etc. */
142 struct bblst
144 basic_block *first_member;
145 int nr_members;
148 struct candidate
150 char is_valid;
151 char is_speculative;
152 int src_prob;
153 bblst split_bbs;
154 bblst update_bbs;
157 static candidate *candidate_table;
158 #define IS_VALID(src) (candidate_table[src].is_valid)
159 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
160 #define IS_SPECULATIVE_INSN(INSN) \
161 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
162 #define SRC_PROB(src) ( candidate_table[src].src_prob )
164 /* The bb being currently scheduled. */
165 int target_bb;
167 /* List of edges. */
168 struct edgelst
170 edge *first_member;
171 int nr_members;
174 static edge *edgelst_table;
175 static int edgelst_last;
177 static void extract_edgelst (sbitmap, edgelst *);
179 /* Target info functions. */
180 static void split_edges (int, int, edgelst *);
181 static void compute_trg_info (int);
182 void debug_candidate (int);
183 void debug_candidates (int);
185 /* Dominators array: dom[i] contains the sbitmap of dominators of
186 bb i in the region. */
187 static sbitmap *dom;
189 /* bb 0 is the only region entry. */
190 #define IS_RGN_ENTRY(bb) (!bb)
192 /* Is bb_src dominated by bb_trg. */
193 #define IS_DOMINATED(bb_src, bb_trg) \
194 ( bitmap_bit_p (dom[bb_src], bb_trg) )
196 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
197 the probability of bb i relative to the region entry. */
198 static int *prob;
200 /* Bit-set of edges, where bit i stands for edge i. */
201 typedef sbitmap edgeset;
203 /* Number of edges in the region. */
204 static int rgn_nr_edges;
206 /* Array of size rgn_nr_edges. */
207 static edge *rgn_edges;
209 /* Mapping from each edge in the graph to its number in the rgn. */
210 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
211 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
213 /* The split edges of a source bb is different for each target
214 bb. In order to compute this efficiently, the 'potential-split edges'
215 are computed for each bb prior to scheduling a region. This is actually
216 the split edges of each bb relative to the region entry.
218 pot_split[bb] is the set of potential split edges of bb. */
219 static edgeset *pot_split;
221 /* For every bb, a set of its ancestor edges. */
222 static edgeset *ancestor_edges;
224 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
226 /* Speculative scheduling functions. */
227 static int check_live_1 (int, rtx);
228 static void update_live_1 (int, rtx);
229 static int is_pfree (rtx, int, int);
230 static int find_conditional_protection (rtx_insn *, int);
231 static int is_conditionally_protected (rtx, int, int);
232 static int is_prisky (rtx, int, int);
233 static int is_exception_free (rtx_insn *, int, int);
235 static bool sets_likely_spilled (rtx);
236 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
237 static void add_branch_dependences (rtx_insn *, rtx_insn *);
238 static void compute_block_dependences (int);
240 static void schedule_region (int);
241 static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
242 rtx_insn_list **, rtx_expr_list **);
243 static void propagate_deps (int, struct deps_desc *);
244 static void free_pending_lists (void);
246 /* Functions for construction of the control flow graph. */
248 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
250 We decide not to build the control flow graph if there is possibly more
251 than one entry to the function, if computed branches exist, if we
252 have nonlocal gotos, or if we have an unreachable loop. */
254 static int
255 is_cfg_nonregular (void)
257 basic_block b;
258 rtx_insn *insn;
260 /* If we have a label that could be the target of a nonlocal goto, then
261 the cfg is not well structured. */
262 if (nonlocal_goto_handler_labels)
263 return 1;
265 /* If we have any forced labels, then the cfg is not well structured. */
266 if (forced_labels)
267 return 1;
269 /* If we have exception handlers, then we consider the cfg not well
270 structured. ?!? We should be able to handle this now that we
271 compute an accurate cfg for EH. */
272 if (current_function_has_exception_handlers ())
273 return 1;
275 /* If we have insns which refer to labels as non-jumped-to operands,
276 then we consider the cfg not well structured. */
277 FOR_EACH_BB_FN (b, cfun)
278 FOR_BB_INSNS (b, insn)
280 rtx note, set, dest;
281 rtx_insn *next;
283 /* If this function has a computed jump, then we consider the cfg
284 not well structured. */
285 if (JUMP_P (insn) && computed_jump_p (insn))
286 return 1;
288 if (!INSN_P (insn))
289 continue;
291 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
292 if (note == NULL_RTX)
293 continue;
295 /* For that label not to be seen as a referred-to label, this
296 must be a single-set which is feeding a jump *only*. This
297 could be a conditional jump with the label split off for
298 machine-specific reasons or a casesi/tablejump. */
299 next = next_nonnote_insn (insn);
300 if (next == NULL_RTX
301 || !JUMP_P (next)
302 || (JUMP_LABEL (next) != XEXP (note, 0)
303 && find_reg_note (next, REG_LABEL_TARGET,
304 XEXP (note, 0)) == NULL_RTX)
305 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
306 return 1;
308 set = single_set (insn);
309 if (set == NULL_RTX)
310 return 1;
312 dest = SET_DEST (set);
313 if (!REG_P (dest) || !dead_or_set_p (next, dest))
314 return 1;
317 /* Unreachable loops with more than one basic block are detected
318 during the DFS traversal in find_rgns.
320 Unreachable loops with a single block are detected here. This
321 test is redundant with the one in find_rgns, but it's much
322 cheaper to go ahead and catch the trivial case here. */
323 FOR_EACH_BB_FN (b, cfun)
325 if (EDGE_COUNT (b->preds) == 0
326 || (single_pred_p (b)
327 && single_pred (b) == b))
328 return 1;
331 /* All the tests passed. Consider the cfg well structured. */
332 return 0;
335 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
337 static void
338 extract_edgelst (sbitmap set, edgelst *el)
340 unsigned int i = 0;
341 sbitmap_iterator sbi;
343 /* edgelst table space is reused in each call to extract_edgelst. */
344 edgelst_last = 0;
346 el->first_member = &edgelst_table[edgelst_last];
347 el->nr_members = 0;
349 /* Iterate over each word in the bitset. */
350 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
352 edgelst_table[edgelst_last++] = rgn_edges[i];
353 el->nr_members++;
357 /* Functions for the construction of regions. */
359 /* Print the regions, for debugging purposes. Callable from debugger. */
361 DEBUG_FUNCTION void
362 debug_regions (void)
364 int rgn, bb;
366 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
367 for (rgn = 0; rgn < nr_regions; rgn++)
369 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
370 rgn_table[rgn].rgn_nr_blocks);
371 fprintf (sched_dump, ";;\tbb/block: ");
373 /* We don't have ebb_head initialized yet, so we can't use
374 BB_TO_BLOCK (). */
375 current_blocks = RGN_BLOCKS (rgn);
377 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
378 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
380 fprintf (sched_dump, "\n\n");
384 /* Print the region's basic blocks. */
386 DEBUG_FUNCTION void
387 debug_region (int rgn)
389 int bb;
391 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
392 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
393 rgn_table[rgn].rgn_nr_blocks);
394 fprintf (stderr, ";;\tbb/block: ");
396 /* We don't have ebb_head initialized yet, so we can't use
397 BB_TO_BLOCK (). */
398 current_blocks = RGN_BLOCKS (rgn);
400 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
401 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
403 fprintf (stderr, "\n\n");
405 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
407 dump_bb (stderr,
408 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
409 0, TDF_SLIM | TDF_BLOCKS);
410 fprintf (stderr, "\n");
413 fprintf (stderr, "\n");
417 /* True when a bb with index BB_INDEX contained in region RGN. */
418 static bool
419 bb_in_region_p (int bb_index, int rgn)
421 int i;
423 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
424 if (rgn_bb_table[current_blocks + i] == bb_index)
425 return true;
427 return false;
430 /* Dump region RGN to file F using dot syntax. */
431 void
432 dump_region_dot (FILE *f, int rgn)
434 int i;
436 fprintf (f, "digraph Region_%d {\n", rgn);
438 /* We don't have ebb_head initialized yet, so we can't use
439 BB_TO_BLOCK (). */
440 current_blocks = RGN_BLOCKS (rgn);
442 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
444 edge e;
445 edge_iterator ei;
446 int src_bb_num = rgn_bb_table[current_blocks + i];
447 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
449 FOR_EACH_EDGE (e, ei, bb->succs)
450 if (bb_in_region_p (e->dest->index, rgn))
451 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
453 fprintf (f, "}\n");
456 /* The same, but first open a file specified by FNAME. */
457 void
458 dump_region_dot_file (const char *fname, int rgn)
460 FILE *f = fopen (fname, "wt");
461 dump_region_dot (f, rgn);
462 fclose (f);
465 /* Build a single block region for each basic block in the function.
466 This allows for using the same code for interblock and basic block
467 scheduling. */
469 static void
470 find_single_block_region (bool ebbs_p)
472 basic_block bb, ebb_start;
473 int i = 0;
475 nr_regions = 0;
477 if (ebbs_p) {
478 int probability_cutoff;
479 if (profile_info && flag_branch_probabilities)
480 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
481 else
482 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
483 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
485 FOR_EACH_BB_FN (ebb_start, cfun)
487 RGN_NR_BLOCKS (nr_regions) = 0;
488 RGN_BLOCKS (nr_regions) = i;
489 RGN_DONT_CALC_DEPS (nr_regions) = 0;
490 RGN_HAS_REAL_EBB (nr_regions) = 0;
492 for (bb = ebb_start; ; bb = bb->next_bb)
494 edge e;
496 rgn_bb_table[i] = bb->index;
497 RGN_NR_BLOCKS (nr_regions)++;
498 CONTAINING_RGN (bb->index) = nr_regions;
499 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
500 i++;
502 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
503 || LABEL_P (BB_HEAD (bb->next_bb)))
504 break;
506 e = find_fallthru_edge (bb->succs);
507 if (! e)
508 break;
509 if (e->probability <= probability_cutoff)
510 break;
513 ebb_start = bb;
514 nr_regions++;
517 else
518 FOR_EACH_BB_FN (bb, cfun)
520 rgn_bb_table[nr_regions] = bb->index;
521 RGN_NR_BLOCKS (nr_regions) = 1;
522 RGN_BLOCKS (nr_regions) = nr_regions;
523 RGN_DONT_CALC_DEPS (nr_regions) = 0;
524 RGN_HAS_REAL_EBB (nr_regions) = 0;
526 CONTAINING_RGN (bb->index) = nr_regions;
527 BLOCK_TO_BB (bb->index) = 0;
528 nr_regions++;
532 /* Estimate number of the insns in the BB. */
533 static int
534 rgn_estimate_number_of_insns (basic_block bb)
536 int count;
538 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
540 if (MAY_HAVE_DEBUG_INSNS)
542 rtx_insn *insn;
544 FOR_BB_INSNS (bb, insn)
545 if (DEBUG_INSN_P (insn))
546 count--;
549 return count;
552 /* Update number of blocks and the estimate for number of insns
553 in the region. Return true if the region is "too large" for interblock
554 scheduling (compile time considerations). */
556 static bool
557 too_large (int block, int *num_bbs, int *num_insns)
559 (*num_bbs)++;
560 (*num_insns) += (common_sched_info->estimate_number_of_insns
561 (BASIC_BLOCK_FOR_FN (cfun, block)));
563 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
564 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
567 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
568 is still an inner loop. Put in max_hdr[blk] the header of the most inner
569 loop containing blk. */
570 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
572 if (max_hdr[blk] == -1) \
573 max_hdr[blk] = hdr; \
574 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
575 bitmap_clear_bit (inner, hdr); \
576 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
578 bitmap_clear_bit (inner,max_hdr[blk]); \
579 max_hdr[blk] = hdr; \
583 /* Find regions for interblock scheduling.
585 A region for scheduling can be:
587 * A loop-free procedure, or
589 * A reducible inner loop, or
591 * A basic block not contained in any other region.
593 ?!? In theory we could build other regions based on extended basic
594 blocks or reverse extended basic blocks. Is it worth the trouble?
596 Loop blocks that form a region are put into the region's block list
597 in topological order.
599 This procedure stores its results into the following global (ick) variables
601 * rgn_nr
602 * rgn_table
603 * rgn_bb_table
604 * block_to_bb
605 * containing region
607 We use dominator relationships to avoid making regions out of non-reducible
608 loops.
610 This procedure needs to be converted to work on pred/succ lists instead
611 of edge tables. That would simplify it somewhat. */
613 static void
614 haifa_find_rgns (void)
616 int *max_hdr, *dfs_nr, *degree;
617 char no_loops = 1;
618 int node, child, loop_head, i, head, tail;
619 int count = 0, sp, idx = 0;
620 edge_iterator current_edge;
621 edge_iterator *stack;
622 int num_bbs, num_insns, unreachable;
623 int too_large_failure;
624 basic_block bb;
626 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
627 and a mapping from block to its loop header (if the block is contained
628 in a loop, else -1).
630 Store results in HEADER, INNER, and MAX_HDR respectively, these will
631 be used as inputs to the second traversal.
633 STACK, SP and DFS_NR are only used during the first traversal. */
635 /* Allocate and initialize variables for the first traversal. */
636 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
637 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
638 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
640 /* Note if a block is a natural inner loop header. */
641 auto_sbitmap inner (last_basic_block_for_fn (cfun));
642 bitmap_ones (inner);
644 /* Note if a block is a natural loop header. */
645 auto_sbitmap header (last_basic_block_for_fn (cfun));
646 bitmap_clear (header);
648 /* Note if a block is in the block queue. */
649 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
650 bitmap_clear (in_queue);
652 /* Note if a block is in the block queue. */
653 auto_sbitmap in_stack (last_basic_block_for_fn (cfun));
654 bitmap_clear (in_stack);
656 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
657 max_hdr[i] = -1;
659 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
660 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
662 /* DFS traversal to find inner loops in the cfg. */
664 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
665 sp = -1;
667 while (1)
669 if (EDGE_PASSED (current_edge))
671 /* We have reached a leaf node or a node that was already
672 processed. Pop edges off the stack until we find
673 an edge that has not yet been processed. */
674 while (sp >= 0 && EDGE_PASSED (current_edge))
676 /* Pop entry off the stack. */
677 current_edge = stack[sp--];
678 node = ei_edge (current_edge)->src->index;
679 gcc_assert (node != ENTRY_BLOCK);
680 child = ei_edge (current_edge)->dest->index;
681 gcc_assert (child != EXIT_BLOCK);
682 bitmap_clear_bit (in_stack, child);
683 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
684 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
685 ei_next (&current_edge);
688 /* See if have finished the DFS tree traversal. */
689 if (sp < 0 && EDGE_PASSED (current_edge))
690 break;
692 /* Nope, continue the traversal with the popped node. */
693 continue;
696 /* Process a node. */
697 node = ei_edge (current_edge)->src->index;
698 gcc_assert (node != ENTRY_BLOCK);
699 bitmap_set_bit (in_stack, node);
700 dfs_nr[node] = ++count;
702 /* We don't traverse to the exit block. */
703 child = ei_edge (current_edge)->dest->index;
704 if (child == EXIT_BLOCK)
706 SET_EDGE_PASSED (current_edge);
707 ei_next (&current_edge);
708 continue;
711 /* If the successor is in the stack, then we've found a loop.
712 Mark the loop, if it is not a natural loop, then it will
713 be rejected during the second traversal. */
714 if (bitmap_bit_p (in_stack, child))
716 no_loops = 0;
717 bitmap_set_bit (header, child);
718 UPDATE_LOOP_RELATIONS (node, child);
719 SET_EDGE_PASSED (current_edge);
720 ei_next (&current_edge);
721 continue;
724 /* If the child was already visited, then there is no need to visit
725 it again. Just update the loop relationships and restart
726 with a new edge. */
727 if (dfs_nr[child])
729 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
730 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
731 SET_EDGE_PASSED (current_edge);
732 ei_next (&current_edge);
733 continue;
736 /* Push an entry on the stack and continue DFS traversal. */
737 stack[++sp] = current_edge;
738 SET_EDGE_PASSED (current_edge);
739 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
742 /* Reset ->aux field used by EDGE_PASSED. */
743 FOR_ALL_BB_FN (bb, cfun)
745 edge_iterator ei;
746 edge e;
747 FOR_EACH_EDGE (e, ei, bb->succs)
748 e->aux = NULL;
752 /* Another check for unreachable blocks. The earlier test in
753 is_cfg_nonregular only finds unreachable blocks that do not
754 form a loop.
756 The DFS traversal will mark every block that is reachable from
757 the entry node by placing a nonzero value in dfs_nr. Thus if
758 dfs_nr is zero for any block, then it must be unreachable. */
759 unreachable = 0;
760 FOR_EACH_BB_FN (bb, cfun)
761 if (dfs_nr[bb->index] == 0)
763 unreachable = 1;
764 break;
767 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
768 to hold degree counts. */
769 degree = dfs_nr;
771 FOR_EACH_BB_FN (bb, cfun)
772 degree[bb->index] = EDGE_COUNT (bb->preds);
774 /* Do not perform region scheduling if there are any unreachable
775 blocks. */
776 if (!unreachable)
778 int *queue, *degree1 = NULL;
779 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
780 there basic blocks, which are forced to be region heads.
781 This is done to try to assemble few smaller regions
782 from a too_large region. */
783 sbitmap extended_rgn_header = NULL;
784 bool extend_regions_p;
786 if (no_loops)
787 bitmap_set_bit (header, 0);
789 /* Second traversal:find reducible inner loops and topologically sort
790 block of each region. */
792 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
794 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
795 if (extend_regions_p)
797 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
798 extended_rgn_header =
799 sbitmap_alloc (last_basic_block_for_fn (cfun));
800 bitmap_clear (extended_rgn_header);
803 /* Find blocks which are inner loop headers. We still have non-reducible
804 loops to consider at this point. */
805 FOR_EACH_BB_FN (bb, cfun)
807 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
809 edge e;
810 edge_iterator ei;
811 basic_block jbb;
813 /* Now check that the loop is reducible. We do this separate
814 from finding inner loops so that we do not find a reducible
815 loop which contains an inner non-reducible loop.
817 A simple way to find reducible/natural loops is to verify
818 that each block in the loop is dominated by the loop
819 header.
821 If there exists a block that is not dominated by the loop
822 header, then the block is reachable from outside the loop
823 and thus the loop is not a natural loop. */
824 FOR_EACH_BB_FN (jbb, cfun)
826 /* First identify blocks in the loop, except for the loop
827 entry block. */
828 if (bb->index == max_hdr[jbb->index] && bb != jbb)
830 /* Now verify that the block is dominated by the loop
831 header. */
832 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
833 break;
837 /* If we exited the loop early, then I is the header of
838 a non-reducible loop and we should quit processing it
839 now. */
840 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
841 continue;
843 /* I is a header of an inner loop, or block 0 in a subroutine
844 with no loops at all. */
845 head = tail = -1;
846 too_large_failure = 0;
847 loop_head = max_hdr[bb->index];
849 if (extend_regions_p)
850 /* We save degree in case when we meet a too_large region
851 and cancel it. We need a correct degree later when
852 calling extend_rgns. */
853 memcpy (degree1, degree,
854 last_basic_block_for_fn (cfun) * sizeof (int));
856 /* Decrease degree of all I's successors for topological
857 ordering. */
858 FOR_EACH_EDGE (e, ei, bb->succs)
859 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
860 --degree[e->dest->index];
862 /* Estimate # insns, and count # blocks in the region. */
863 num_bbs = 1;
864 num_insns = common_sched_info->estimate_number_of_insns (bb);
866 /* Find all loop latches (blocks with back edges to the loop
867 header) or all the leaf blocks in the cfg has no loops.
869 Place those blocks into the queue. */
870 if (no_loops)
872 FOR_EACH_BB_FN (jbb, cfun)
873 /* Leaf nodes have only a single successor which must
874 be EXIT_BLOCK. */
875 if (single_succ_p (jbb)
876 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
878 queue[++tail] = jbb->index;
879 bitmap_set_bit (in_queue, jbb->index);
881 if (too_large (jbb->index, &num_bbs, &num_insns))
883 too_large_failure = 1;
884 break;
888 else
890 edge e;
892 FOR_EACH_EDGE (e, ei, bb->preds)
894 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
895 continue;
897 node = e->src->index;
899 if (max_hdr[node] == loop_head && node != bb->index)
901 /* This is a loop latch. */
902 queue[++tail] = node;
903 bitmap_set_bit (in_queue, node);
905 if (too_large (node, &num_bbs, &num_insns))
907 too_large_failure = 1;
908 break;
914 /* Now add all the blocks in the loop to the queue.
916 We know the loop is a natural loop; however the algorithm
917 above will not always mark certain blocks as being in the
918 loop. Consider:
919 node children
920 a b,c
922 c a,d
925 The algorithm in the DFS traversal may not mark B & D as part
926 of the loop (i.e. they will not have max_hdr set to A).
928 We know they can not be loop latches (else they would have
929 had max_hdr set since they'd have a backedge to a dominator
930 block). So we don't need them on the initial queue.
932 We know they are part of the loop because they are dominated
933 by the loop header and can be reached by a backwards walk of
934 the edges starting with nodes on the initial queue.
936 It is safe and desirable to include those nodes in the
937 loop/scheduling region. To do so we would need to decrease
938 the degree of a node if it is the target of a backedge
939 within the loop itself as the node is placed in the queue.
941 We do not do this because I'm not sure that the actual
942 scheduling code will properly handle this case. ?!? */
944 while (head < tail && !too_large_failure)
946 edge e;
947 child = queue[++head];
949 FOR_EACH_EDGE (e, ei,
950 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
952 node = e->src->index;
954 /* See discussion above about nodes not marked as in
955 this loop during the initial DFS traversal. */
956 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
957 || max_hdr[node] != loop_head)
959 tail = -1;
960 break;
962 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
964 queue[++tail] = node;
965 bitmap_set_bit (in_queue, node);
967 if (too_large (node, &num_bbs, &num_insns))
969 too_large_failure = 1;
970 break;
976 if (tail >= 0 && !too_large_failure)
978 /* Place the loop header into list of region blocks. */
979 degree[bb->index] = -1;
980 rgn_bb_table[idx] = bb->index;
981 RGN_NR_BLOCKS (nr_regions) = num_bbs;
982 RGN_BLOCKS (nr_regions) = idx++;
983 RGN_DONT_CALC_DEPS (nr_regions) = 0;
984 RGN_HAS_REAL_EBB (nr_regions) = 0;
985 CONTAINING_RGN (bb->index) = nr_regions;
986 BLOCK_TO_BB (bb->index) = count = 0;
988 /* Remove blocks from queue[] when their in degree
989 becomes zero. Repeat until no blocks are left on the
990 list. This produces a topological list of blocks in
991 the region. */
992 while (tail >= 0)
994 if (head < 0)
995 head = tail;
996 child = queue[head];
997 if (degree[child] == 0)
999 edge e;
1001 degree[child] = -1;
1002 rgn_bb_table[idx++] = child;
1003 BLOCK_TO_BB (child) = ++count;
1004 CONTAINING_RGN (child) = nr_regions;
1005 queue[head] = queue[tail--];
1007 FOR_EACH_EDGE (e, ei,
1008 BASIC_BLOCK_FOR_FN (cfun,
1009 child)->succs)
1010 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1011 --degree[e->dest->index];
1013 else
1014 --head;
1016 ++nr_regions;
1018 else if (extend_regions_p)
1020 /* Restore DEGREE. */
1021 int *t = degree;
1023 degree = degree1;
1024 degree1 = t;
1026 /* And force successors of BB to be region heads.
1027 This may provide several smaller regions instead
1028 of one too_large region. */
1029 FOR_EACH_EDGE (e, ei, bb->succs)
1030 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1031 bitmap_set_bit (extended_rgn_header, e->dest->index);
1035 free (queue);
1037 if (extend_regions_p)
1039 free (degree1);
1041 bitmap_ior (header, header, extended_rgn_header);
1042 sbitmap_free (extended_rgn_header);
1044 extend_rgns (degree, &idx, header, max_hdr);
1048 /* Any block that did not end up in a region is placed into a region
1049 by itself. */
1050 FOR_EACH_BB_FN (bb, cfun)
1051 if (degree[bb->index] >= 0)
1053 rgn_bb_table[idx] = bb->index;
1054 RGN_NR_BLOCKS (nr_regions) = 1;
1055 RGN_BLOCKS (nr_regions) = idx++;
1056 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1057 RGN_HAS_REAL_EBB (nr_regions) = 0;
1058 CONTAINING_RGN (bb->index) = nr_regions++;
1059 BLOCK_TO_BB (bb->index) = 0;
1062 free (max_hdr);
1063 free (degree);
1064 free (stack);
1068 /* Wrapper function.
1069 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1070 regions. Otherwise just call find_rgns_haifa. */
1071 static void
1072 find_rgns (void)
1074 if (sel_sched_p () && flag_sel_sched_pipelining)
1075 sel_find_rgns ();
1076 else
1077 haifa_find_rgns ();
1080 static int gather_region_statistics (int **);
1081 static void print_region_statistics (int *, int, int *, int);
1083 /* Calculate the histogram that shows the number of regions having the
1084 given number of basic blocks, and store it in the RSP array. Return
1085 the size of this array. */
1086 static int
1087 gather_region_statistics (int **rsp)
1089 int i, *a = 0, a_sz = 0;
1091 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1092 for (i = 0; i < nr_regions; i++)
1094 int nr_blocks = RGN_NR_BLOCKS (i);
1096 gcc_assert (nr_blocks >= 1);
1098 if (nr_blocks > a_sz)
1100 a = XRESIZEVEC (int, a, nr_blocks);
1102 a[a_sz++] = 0;
1103 while (a_sz != nr_blocks);
1106 a[nr_blocks - 1]++;
1109 *rsp = a;
1110 return a_sz;
1113 /* Print regions statistics. S1 and S2 denote the data before and after
1114 calling extend_rgns, respectively. */
1115 static void
1116 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1118 int i;
1120 /* We iterate until s2_sz because extend_rgns does not decrease
1121 the maximal region size. */
1122 for (i = 1; i < s2_sz; i++)
1124 int n1, n2;
1126 n2 = s2[i];
1128 if (n2 == 0)
1129 continue;
1131 if (i >= s1_sz)
1132 n1 = 0;
1133 else
1134 n1 = s1[i];
1136 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1137 "was %d + %d more\n", i + 1, n1, n2 - n1);
1141 /* Extend regions.
1142 DEGREE - Array of incoming edge count, considering only
1143 the edges, that don't have their sources in formed regions yet.
1144 IDXP - pointer to the next available index in rgn_bb_table.
1145 HEADER - set of all region heads.
1146 LOOP_HDR - mapping from block to the containing loop
1147 (two blocks can reside within one region if they have
1148 the same loop header). */
1149 void
1150 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1152 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1153 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1155 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1157 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1159 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1160 post_order_compute (order, false, false);
1162 for (i = nblocks - 1; i >= 0; i--)
1164 int bbn = order[i];
1165 if (degree[bbn] >= 0)
1167 max_hdr[bbn] = bbn;
1168 rescan = 1;
1170 else
1171 /* This block already was processed in find_rgns. */
1172 max_hdr[bbn] = -1;
1175 /* The idea is to topologically walk through CFG in top-down order.
1176 During the traversal, if all the predecessors of a node are
1177 marked to be in the same region (they all have the same max_hdr),
1178 then current node is also marked to be a part of that region.
1179 Otherwise the node starts its own region.
1180 CFG should be traversed until no further changes are made. On each
1181 iteration the set of the region heads is extended (the set of those
1182 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1183 set of all basic blocks, thus the algorithm is guaranteed to
1184 terminate. */
1186 while (rescan && iter < max_iter)
1188 rescan = 0;
1190 for (i = nblocks - 1; i >= 0; i--)
1192 edge e;
1193 edge_iterator ei;
1194 int bbn = order[i];
1196 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1198 int hdr = -1;
1200 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1202 int predn = e->src->index;
1204 if (predn != ENTRY_BLOCK
1205 /* If pred wasn't processed in find_rgns. */
1206 && max_hdr[predn] != -1
1207 /* And pred and bb reside in the same loop.
1208 (Or out of any loop). */
1209 && loop_hdr[bbn] == loop_hdr[predn])
1211 if (hdr == -1)
1212 /* Then bb extends the containing region of pred. */
1213 hdr = max_hdr[predn];
1214 else if (hdr != max_hdr[predn])
1215 /* Too bad, there are at least two predecessors
1216 that reside in different regions. Thus, BB should
1217 begin its own region. */
1219 hdr = bbn;
1220 break;
1223 else
1224 /* BB starts its own region. */
1226 hdr = bbn;
1227 break;
1231 if (hdr == bbn)
1233 /* If BB start its own region,
1234 update set of headers with BB. */
1235 bitmap_set_bit (header, bbn);
1236 rescan = 1;
1238 else
1239 gcc_assert (hdr != -1);
1241 max_hdr[bbn] = hdr;
1245 iter++;
1248 /* Statistics were gathered on the SPEC2000 package of tests with
1249 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1251 Statistics for SPECint:
1252 1 iteration : 1751 cases (38.7%)
1253 2 iterations: 2770 cases (61.3%)
1254 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1255 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1256 (We don't count single block regions here).
1258 Statistics for SPECfp:
1259 1 iteration : 621 cases (35.9%)
1260 2 iterations: 1110 cases (64.1%)
1261 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1262 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1263 (We don't count single block regions here).
1265 By default we do at most 2 iterations.
1266 This can be overridden with max-sched-extend-regions-iters parameter:
1267 0 - disable region extension,
1268 N > 0 - do at most N iterations. */
1270 if (sched_verbose && iter != 0)
1271 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1272 rescan ? "... failed" : "");
1274 if (!rescan && iter != 0)
1276 int *s1 = NULL, s1_sz = 0;
1278 /* Save the old statistics for later printout. */
1279 if (sched_verbose >= 6)
1280 s1_sz = gather_region_statistics (&s1);
1282 /* We have succeeded. Now assemble the regions. */
1283 for (i = nblocks - 1; i >= 0; i--)
1285 int bbn = order[i];
1287 if (max_hdr[bbn] == bbn)
1288 /* BBN is a region head. */
1290 edge e;
1291 edge_iterator ei;
1292 int num_bbs = 0, j, num_insns = 0, large;
1294 large = too_large (bbn, &num_bbs, &num_insns);
1296 degree[bbn] = -1;
1297 rgn_bb_table[idx] = bbn;
1298 RGN_BLOCKS (nr_regions) = idx++;
1299 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1300 RGN_HAS_REAL_EBB (nr_regions) = 0;
1301 CONTAINING_RGN (bbn) = nr_regions;
1302 BLOCK_TO_BB (bbn) = 0;
1304 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1305 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1306 degree[e->dest->index]--;
1308 if (!large)
1309 /* Here we check whether the region is too_large. */
1310 for (j = i - 1; j >= 0; j--)
1312 int succn = order[j];
1313 if (max_hdr[succn] == bbn)
1315 if ((large = too_large (succn, &num_bbs, &num_insns)))
1316 break;
1320 if (large)
1321 /* If the region is too_large, then wrap every block of
1322 the region into single block region.
1323 Here we wrap region head only. Other blocks are
1324 processed in the below cycle. */
1326 RGN_NR_BLOCKS (nr_regions) = 1;
1327 nr_regions++;
1330 num_bbs = 1;
1332 for (j = i - 1; j >= 0; j--)
1334 int succn = order[j];
1336 if (max_hdr[succn] == bbn)
1337 /* This cycle iterates over all basic blocks, that
1338 are supposed to be in the region with head BBN,
1339 and wraps them into that region (or in single
1340 block region). */
1342 gcc_assert (degree[succn] == 0);
1344 degree[succn] = -1;
1345 rgn_bb_table[idx] = succn;
1346 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1347 CONTAINING_RGN (succn) = nr_regions;
1349 if (large)
1350 /* Wrap SUCCN into single block region. */
1352 RGN_BLOCKS (nr_regions) = idx;
1353 RGN_NR_BLOCKS (nr_regions) = 1;
1354 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1355 RGN_HAS_REAL_EBB (nr_regions) = 0;
1356 nr_regions++;
1359 idx++;
1361 FOR_EACH_EDGE (e, ei,
1362 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1363 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1364 degree[e->dest->index]--;
1368 if (!large)
1370 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1371 nr_regions++;
1376 if (sched_verbose >= 6)
1378 int *s2, s2_sz;
1380 /* Get the new statistics and print the comparison with the
1381 one before calling this function. */
1382 s2_sz = gather_region_statistics (&s2);
1383 print_region_statistics (s1, s1_sz, s2, s2_sz);
1384 free (s1);
1385 free (s2);
1389 free (order);
1390 free (max_hdr);
1392 *idxp = idx;
1395 /* Functions for regions scheduling information. */
1397 /* Compute dominators, probability, and potential-split-edges of bb.
1398 Assume that these values were already computed for bb's predecessors. */
1400 static void
1401 compute_dom_prob_ps (int bb)
1403 edge_iterator in_ei;
1404 edge in_edge;
1406 /* We shouldn't have any real ebbs yet. */
1407 gcc_assert (ebb_head [bb] == bb + current_blocks);
1409 if (IS_RGN_ENTRY (bb))
1411 bitmap_set_bit (dom[bb], 0);
1412 prob[bb] = REG_BR_PROB_BASE;
1413 return;
1416 prob[bb] = 0;
1418 /* Initialize dom[bb] to '111..1'. */
1419 bitmap_ones (dom[bb]);
1421 FOR_EACH_EDGE (in_edge, in_ei,
1422 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1424 int pred_bb;
1425 edge out_edge;
1426 edge_iterator out_ei;
1428 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1429 continue;
1431 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1432 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1433 bitmap_ior (ancestor_edges[bb],
1434 ancestor_edges[bb], ancestor_edges[pred_bb]);
1436 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1438 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1440 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1441 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1443 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1444 // The rounding divide in combine_probabilities can result in an extra
1445 // probability increment propagating along 50-50 edges. Eventually when
1446 // the edges re-merge, the accumulated probability can go slightly above
1447 // REG_BR_PROB_BASE.
1448 if (prob[bb] > REG_BR_PROB_BASE)
1449 prob[bb] = REG_BR_PROB_BASE;
1452 bitmap_set_bit (dom[bb], bb);
1453 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1455 if (sched_verbose >= 2)
1456 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1457 (100 * prob[bb]) / REG_BR_PROB_BASE);
1460 /* Functions for target info. */
1462 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1463 Note that bb_trg dominates bb_src. */
1465 static void
1466 split_edges (int bb_src, int bb_trg, edgelst *bl)
1468 auto_sbitmap src (SBITMAP_SIZE (pot_split[bb_src]));
1469 bitmap_copy (src, pot_split[bb_src]);
1471 bitmap_and_compl (src, src, pot_split[bb_trg]);
1472 extract_edgelst (src, bl);
1475 /* Find the valid candidate-source-blocks for the target block TRG, compute
1476 their probability, and check if they are speculative or not.
1477 For speculative sources, compute their update-blocks and split-blocks. */
1479 static void
1480 compute_trg_info (int trg)
1482 candidate *sp;
1483 edgelst el = { NULL, 0 };
1484 int i, j, k, update_idx;
1485 basic_block block;
1486 edge_iterator ei;
1487 edge e;
1489 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1491 bblst_last = 0;
1492 /* bblst_table holds split blocks and update blocks for each block after
1493 the current one in the region. split blocks and update blocks are
1494 the TO blocks of region edges, so there can be at most rgn_nr_edges
1495 of them. */
1496 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1497 bblst_table = XNEWVEC (basic_block, bblst_size);
1499 edgelst_last = 0;
1500 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1502 /* Define some of the fields for the target bb as well. */
1503 sp = candidate_table + trg;
1504 sp->is_valid = 1;
1505 sp->is_speculative = 0;
1506 sp->src_prob = REG_BR_PROB_BASE;
1508 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1510 for (i = trg + 1; i < current_nr_blocks; i++)
1512 sp = candidate_table + i;
1514 sp->is_valid = IS_DOMINATED (i, trg);
1515 if (sp->is_valid)
1517 int tf = prob[trg], cf = prob[i];
1519 /* In CFGs with low probability edges TF can possibly be zero. */
1520 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1521 sp->is_valid = (sp->src_prob >= min_spec_prob);
1524 if (sp->is_valid)
1526 split_edges (i, trg, &el);
1527 sp->is_speculative = (el.nr_members) ? 1 : 0;
1528 if (sp->is_speculative && !flag_schedule_speculative)
1529 sp->is_valid = 0;
1532 if (sp->is_valid)
1534 /* Compute split blocks and store them in bblst_table.
1535 The TO block of every split edge is a split block. */
1536 sp->split_bbs.first_member = &bblst_table[bblst_last];
1537 sp->split_bbs.nr_members = el.nr_members;
1538 for (j = 0; j < el.nr_members; bblst_last++, j++)
1539 bblst_table[bblst_last] = el.first_member[j]->dest;
1540 sp->update_bbs.first_member = &bblst_table[bblst_last];
1542 /* Compute update blocks and store them in bblst_table.
1543 For every split edge, look at the FROM block, and check
1544 all out edges. For each out edge that is not a split edge,
1545 add the TO block to the update block list. This list can end
1546 up with a lot of duplicates. We need to weed them out to avoid
1547 overrunning the end of the bblst_table. */
1549 update_idx = 0;
1550 bitmap_clear (visited);
1551 for (j = 0; j < el.nr_members; j++)
1553 block = el.first_member[j]->src;
1554 FOR_EACH_EDGE (e, ei, block->succs)
1556 if (!bitmap_bit_p (visited, e->dest->index))
1558 for (k = 0; k < el.nr_members; k++)
1559 if (e == el.first_member[k])
1560 break;
1562 if (k >= el.nr_members)
1564 bblst_table[bblst_last++] = e->dest;
1565 bitmap_set_bit (visited, e->dest->index);
1566 update_idx++;
1571 sp->update_bbs.nr_members = update_idx;
1573 /* Make sure we didn't overrun the end of bblst_table. */
1574 gcc_assert (bblst_last <= bblst_size);
1576 else
1578 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1580 sp->is_speculative = 0;
1581 sp->src_prob = 0;
1586 /* Free the computed target info. */
1587 static void
1588 free_trg_info (void)
1590 free (candidate_table);
1591 free (bblst_table);
1592 free (edgelst_table);
1595 /* Print candidates info, for debugging purposes. Callable from debugger. */
1597 DEBUG_FUNCTION void
1598 debug_candidate (int i)
1600 if (!candidate_table[i].is_valid)
1601 return;
1603 if (candidate_table[i].is_speculative)
1605 int j;
1606 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1608 fprintf (sched_dump, "split path: ");
1609 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1611 int b = candidate_table[i].split_bbs.first_member[j]->index;
1613 fprintf (sched_dump, " %d ", b);
1615 fprintf (sched_dump, "\n");
1617 fprintf (sched_dump, "update path: ");
1618 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1620 int b = candidate_table[i].update_bbs.first_member[j]->index;
1622 fprintf (sched_dump, " %d ", b);
1624 fprintf (sched_dump, "\n");
1626 else
1628 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1632 /* Print candidates info, for debugging purposes. Callable from debugger. */
1634 DEBUG_FUNCTION void
1635 debug_candidates (int trg)
1637 int i;
1639 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1640 BB_TO_BLOCK (trg), trg);
1641 for (i = trg + 1; i < current_nr_blocks; i++)
1642 debug_candidate (i);
1645 /* Functions for speculative scheduling. */
1647 static bitmap_head not_in_df;
1649 /* Return 0 if x is a set of a register alive in the beginning of one
1650 of the split-blocks of src, otherwise return 1. */
1652 static int
1653 check_live_1 (int src, rtx x)
1655 int i;
1656 int regno;
1657 rtx reg = SET_DEST (x);
1659 if (reg == 0)
1660 return 1;
1662 while (GET_CODE (reg) == SUBREG
1663 || GET_CODE (reg) == ZERO_EXTRACT
1664 || GET_CODE (reg) == STRICT_LOW_PART)
1665 reg = XEXP (reg, 0);
1667 if (GET_CODE (reg) == PARALLEL)
1669 int i;
1671 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1672 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1673 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1674 return 1;
1676 return 0;
1679 if (!REG_P (reg))
1680 return 1;
1682 regno = REGNO (reg);
1684 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1686 /* Global registers are assumed live. */
1687 return 0;
1689 else
1691 if (regno < FIRST_PSEUDO_REGISTER)
1693 /* Check for hard registers. */
1694 int j = REG_NREGS (reg);
1695 while (--j >= 0)
1697 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1699 basic_block b = candidate_table[src].split_bbs.first_member[i];
1700 int t = bitmap_bit_p (&not_in_df, b->index);
1702 /* We can have split blocks, that were recently generated.
1703 Such blocks are always outside current region. */
1704 gcc_assert (!t || (CONTAINING_RGN (b->index)
1705 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1707 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1708 return 0;
1712 else
1714 /* Check for pseudo registers. */
1715 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1717 basic_block b = candidate_table[src].split_bbs.first_member[i];
1718 int t = bitmap_bit_p (&not_in_df, b->index);
1720 gcc_assert (!t || (CONTAINING_RGN (b->index)
1721 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1723 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1724 return 0;
1729 return 1;
1732 /* If x is a set of a register R, mark that R is alive in the beginning
1733 of every update-block of src. */
1735 static void
1736 update_live_1 (int src, rtx x)
1738 int i;
1739 int regno;
1740 rtx reg = SET_DEST (x);
1742 if (reg == 0)
1743 return;
1745 while (GET_CODE (reg) == SUBREG
1746 || GET_CODE (reg) == ZERO_EXTRACT
1747 || GET_CODE (reg) == STRICT_LOW_PART)
1748 reg = XEXP (reg, 0);
1750 if (GET_CODE (reg) == PARALLEL)
1752 int i;
1754 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1755 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1756 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1758 return;
1761 if (!REG_P (reg))
1762 return;
1764 /* Global registers are always live, so the code below does not apply
1765 to them. */
1767 regno = REGNO (reg);
1769 if (! HARD_REGISTER_NUM_P (regno)
1770 || !global_regs[regno])
1772 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1774 basic_block b = candidate_table[src].update_bbs.first_member[i];
1775 bitmap_set_range (df_get_live_in (b), regno, REG_NREGS (reg));
1780 /* Return 1 if insn can be speculatively moved from block src to trg,
1781 otherwise return 0. Called before first insertion of insn to
1782 ready-list or before the scheduling. */
1784 static int
1785 check_live (rtx_insn *insn, int src)
1787 /* Find the registers set by instruction. */
1788 if (GET_CODE (PATTERN (insn)) == SET
1789 || GET_CODE (PATTERN (insn)) == CLOBBER)
1790 return check_live_1 (src, PATTERN (insn));
1791 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1793 int j;
1794 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1795 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1796 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1797 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1798 return 0;
1800 return 1;
1803 return 1;
1806 /* Update the live registers info after insn was moved speculatively from
1807 block src to trg. */
1809 static void
1810 update_live (rtx_insn *insn, int src)
1812 /* Find the registers set by instruction. */
1813 if (GET_CODE (PATTERN (insn)) == SET
1814 || GET_CODE (PATTERN (insn)) == CLOBBER)
1815 update_live_1 (src, PATTERN (insn));
1816 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1818 int j;
1819 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1820 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1821 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1822 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1826 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1827 #define IS_REACHABLE(bb_from, bb_to) \
1828 (bb_from == bb_to \
1829 || IS_RGN_ENTRY (bb_from) \
1830 || (bitmap_bit_p (ancestor_edges[bb_to], \
1831 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1832 BB_TO_BLOCK (bb_from)))))))
1834 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1836 static void
1837 set_spec_fed (rtx load_insn)
1839 sd_iterator_def sd_it;
1840 dep_t dep;
1842 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1843 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1844 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1847 /* On the path from the insn to load_insn_bb, find a conditional
1848 branch depending on insn, that guards the speculative load. */
1850 static int
1851 find_conditional_protection (rtx_insn *insn, int load_insn_bb)
1853 sd_iterator_def sd_it;
1854 dep_t dep;
1856 /* Iterate through DEF-USE forward dependences. */
1857 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1859 rtx_insn *next = DEP_CON (dep);
1861 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1862 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1863 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1864 && load_insn_bb != INSN_BB (next)
1865 && DEP_TYPE (dep) == REG_DEP_TRUE
1866 && (JUMP_P (next)
1867 || find_conditional_protection (next, load_insn_bb)))
1868 return 1;
1870 return 0;
1871 } /* find_conditional_protection */
1873 /* Returns 1 if the same insn1 that participates in the computation
1874 of load_insn's address is feeding a conditional branch that is
1875 guarding on load_insn. This is true if we find two DEF-USE
1876 chains:
1877 insn1 -> ... -> conditional-branch
1878 insn1 -> ... -> load_insn,
1879 and if a flow path exists:
1880 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1881 and if insn1 is on the path
1882 region-entry -> ... -> bb_trg -> ... load_insn.
1884 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1885 Locate the branch by following INSN_FORW_DEPS from insn1. */
1887 static int
1888 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1890 sd_iterator_def sd_it;
1891 dep_t dep;
1893 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1895 rtx_insn *insn1 = DEP_PRO (dep);
1897 /* Must be a DEF-USE dependence upon non-branch. */
1898 if (DEP_TYPE (dep) != REG_DEP_TRUE
1899 || JUMP_P (insn1))
1900 continue;
1902 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1903 if (INSN_BB (insn1) == bb_src
1904 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1905 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1906 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1907 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1908 continue;
1910 /* Now search for the conditional-branch. */
1911 if (find_conditional_protection (insn1, bb_src))
1912 return 1;
1914 /* Recursive step: search another insn1, "above" current insn1. */
1915 return is_conditionally_protected (insn1, bb_src, bb_trg);
1918 /* The chain does not exist. */
1919 return 0;
1920 } /* is_conditionally_protected */
1922 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1923 load_insn can move speculatively from bb_src to bb_trg. All the
1924 following must hold:
1926 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1927 (2) load_insn and load1 have a def-use dependence upon
1928 the same insn 'insn1'.
1929 (3) either load2 is in bb_trg, or:
1930 - there's only one split-block, and
1931 - load1 is on the escape path, and
1933 From all these we can conclude that the two loads access memory
1934 addresses that differ at most by a constant, and hence if moving
1935 load_insn would cause an exception, it would have been caused by
1936 load2 anyhow. */
1938 static int
1939 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1941 sd_iterator_def back_sd_it;
1942 dep_t back_dep;
1943 candidate *candp = candidate_table + bb_src;
1945 if (candp->split_bbs.nr_members != 1)
1946 /* Must have exactly one escape block. */
1947 return 0;
1949 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1951 rtx_insn *insn1 = DEP_PRO (back_dep);
1953 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1954 /* Found a DEF-USE dependence (insn1, load_insn). */
1956 sd_iterator_def fore_sd_it;
1957 dep_t fore_dep;
1959 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1961 rtx_insn *insn2 = DEP_CON (fore_dep);
1963 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1965 /* Found a DEF-USE dependence (insn1, insn2). */
1966 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1967 /* insn2 not guaranteed to be a 1 base reg load. */
1968 continue;
1970 if (INSN_BB (insn2) == bb_trg)
1971 /* insn2 is the similar load, in the target block. */
1972 return 1;
1974 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1975 /* insn2 is a similar load, in a split-block. */
1976 return 1;
1982 /* Couldn't find a similar load. */
1983 return 0;
1984 } /* is_pfree */
1986 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1987 a load moved speculatively, or if load_insn is protected by
1988 a compare on load_insn's address). */
1990 static int
1991 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1993 if (FED_BY_SPEC_LOAD (load_insn))
1994 return 1;
1996 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
1997 /* Dependence may 'hide' out of the region. */
1998 return 1;
2000 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2001 return 1;
2003 return 0;
2006 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2007 Return 1 if insn is exception-free (and the motion is valid)
2008 and 0 otherwise. */
2010 static int
2011 is_exception_free (rtx_insn *insn, int bb_src, int bb_trg)
2013 int insn_class = haifa_classify_insn (insn);
2015 /* Handle non-load insns. */
2016 switch (insn_class)
2018 case TRAP_FREE:
2019 return 1;
2020 case TRAP_RISKY:
2021 return 0;
2022 default:;
2025 /* Handle loads. */
2026 if (!flag_schedule_speculative_load)
2027 return 0;
2028 IS_LOAD_INSN (insn) = 1;
2029 switch (insn_class)
2031 case IFREE:
2032 return (1);
2033 case IRISKY:
2034 return 0;
2035 case PFREE_CANDIDATE:
2036 if (is_pfree (insn, bb_src, bb_trg))
2037 return 1;
2038 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2039 /* FALLTHRU */
2040 case PRISKY_CANDIDATE:
2041 if (!flag_schedule_speculative_load_dangerous
2042 || is_prisky (insn, bb_src, bb_trg))
2043 return 0;
2044 break;
2045 default:;
2048 return flag_schedule_speculative_load_dangerous;
2051 /* The number of insns from the current block scheduled so far. */
2052 static int sched_target_n_insns;
2053 /* The number of insns from the current block to be scheduled in total. */
2054 static int target_n_insns;
2055 /* The number of insns from the entire region scheduled so far. */
2056 static int sched_n_insns;
2058 /* Implementations of the sched_info functions for region scheduling. */
2059 static void init_ready_list (void);
2060 static int can_schedule_ready_p (rtx_insn *);
2061 static void begin_schedule_ready (rtx_insn *);
2062 static ds_t new_ready (rtx_insn *, ds_t);
2063 static int schedule_more_p (void);
2064 static const char *rgn_print_insn (const rtx_insn *, int);
2065 static int rgn_rank (rtx_insn *, rtx_insn *);
2066 static void compute_jump_reg_dependencies (rtx, regset);
2068 /* Functions for speculative scheduling. */
2069 static void rgn_add_remove_insn (rtx_insn *, int);
2070 static void rgn_add_block (basic_block, basic_block);
2071 static void rgn_fix_recovery_cfg (int, int, int);
2072 static basic_block advance_target_bb (basic_block, rtx_insn *);
2074 /* Return nonzero if there are more insns that should be scheduled. */
2076 static int
2077 schedule_more_p (void)
2079 return sched_target_n_insns < target_n_insns;
2082 /* Add all insns that are initially ready to the ready list READY. Called
2083 once before scheduling a set of insns. */
2085 static void
2086 init_ready_list (void)
2088 rtx_insn *prev_head = current_sched_info->prev_head;
2089 rtx_insn *next_tail = current_sched_info->next_tail;
2090 int bb_src;
2091 rtx_insn *insn;
2093 target_n_insns = 0;
2094 sched_target_n_insns = 0;
2095 sched_n_insns = 0;
2097 /* Print debugging information. */
2098 if (sched_verbose >= 5)
2099 debug_rgn_dependencies (target_bb);
2101 /* Prepare current target block info. */
2102 if (current_nr_blocks > 1)
2103 compute_trg_info (target_bb);
2105 /* Initialize ready list with all 'ready' insns in target block.
2106 Count number of insns in the target block being scheduled. */
2107 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2109 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2110 TODO_SPEC (insn) = HARD_DEP;
2111 try_ready (insn);
2112 target_n_insns++;
2114 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2117 /* Add to ready list all 'ready' insns in valid source blocks.
2118 For speculative insns, check-live, exception-free, and
2119 issue-delay. */
2120 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2121 if (IS_VALID (bb_src))
2123 rtx_insn *src_head;
2124 rtx_insn *src_next_tail;
2125 rtx_insn *tail, *head;
2127 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2128 &head, &tail);
2129 src_next_tail = NEXT_INSN (tail);
2130 src_head = head;
2132 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2133 if (INSN_P (insn))
2135 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2136 TODO_SPEC (insn) = HARD_DEP;
2137 try_ready (insn);
2142 /* Called after taking INSN from the ready list. Returns nonzero if this
2143 insn can be scheduled, nonzero if we should silently discard it. */
2145 static int
2146 can_schedule_ready_p (rtx_insn *insn)
2148 /* An interblock motion? */
2149 if (INSN_BB (insn) != target_bb
2150 && IS_SPECULATIVE_INSN (insn)
2151 && !check_live (insn, INSN_BB (insn)))
2152 return 0;
2153 else
2154 return 1;
2157 /* Updates counter and other information. Split from can_schedule_ready_p ()
2158 because when we schedule insn speculatively then insn passed to
2159 can_schedule_ready_p () differs from the one passed to
2160 begin_schedule_ready (). */
2161 static void
2162 begin_schedule_ready (rtx_insn *insn)
2164 /* An interblock motion? */
2165 if (INSN_BB (insn) != target_bb)
2167 if (IS_SPECULATIVE_INSN (insn))
2169 gcc_assert (check_live (insn, INSN_BB (insn)));
2171 update_live (insn, INSN_BB (insn));
2173 /* For speculative load, mark insns fed by it. */
2174 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2175 set_spec_fed (insn);
2177 nr_spec++;
2179 nr_inter++;
2181 else
2183 /* In block motion. */
2184 sched_target_n_insns++;
2186 sched_n_insns++;
2189 /* Called after INSN has all its hard dependencies resolved and the speculation
2190 of type TS is enough to overcome them all.
2191 Return nonzero if it should be moved to the ready list or the queue, or zero
2192 if we should silently discard it. */
2193 static ds_t
2194 new_ready (rtx_insn *next, ds_t ts)
2196 if (INSN_BB (next) != target_bb)
2198 int not_ex_free = 0;
2200 /* For speculative insns, before inserting to ready/queue,
2201 check live, exception-free, and issue-delay. */
2202 if (!IS_VALID (INSN_BB (next))
2203 || CANT_MOVE (next)
2204 || (IS_SPECULATIVE_INSN (next)
2205 && ((recog_memoized (next) >= 0
2206 && min_insn_conflict_delay (curr_state, next, next)
2207 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2208 || IS_SPECULATION_CHECK_P (next)
2209 || !check_live (next, INSN_BB (next))
2210 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2211 target_bb)))))
2213 if (not_ex_free
2214 /* We are here because is_exception_free () == false.
2215 But we possibly can handle that with control speculation. */
2216 && sched_deps_info->generate_spec_deps
2217 && spec_info->mask & BEGIN_CONTROL)
2219 ds_t new_ds;
2221 /* Add control speculation to NEXT's dependency type. */
2222 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2224 /* Check if NEXT can be speculated with new dependency type. */
2225 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2226 /* Here we got new control-speculative instruction. */
2227 ts = new_ds;
2228 else
2229 /* NEXT isn't ready yet. */
2230 ts = DEP_POSTPONED;
2232 else
2233 /* NEXT isn't ready yet. */
2234 ts = DEP_POSTPONED;
2238 return ts;
2241 /* Return a string that contains the insn uid and optionally anything else
2242 necessary to identify this insn in an output. It's valid to use a
2243 static buffer for this. The ALIGNED parameter should cause the string
2244 to be formatted so that multiple output lines will line up nicely. */
2246 static const char *
2247 rgn_print_insn (const rtx_insn *insn, int aligned)
2249 static char tmp[80];
2251 if (aligned)
2252 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2253 else
2255 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2256 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2257 else
2258 sprintf (tmp, "%d", INSN_UID (insn));
2260 return tmp;
2263 /* Compare priority of two insns. Return a positive number if the second
2264 insn is to be preferred for scheduling, and a negative one if the first
2265 is to be preferred. Zero if they are equally good. */
2267 static int
2268 rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2270 /* Some comparison make sense in interblock scheduling only. */
2271 if (INSN_BB (insn1) != INSN_BB (insn2))
2273 int spec_val, prob_val;
2275 /* Prefer an inblock motion on an interblock motion. */
2276 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2277 return 1;
2278 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2279 return -1;
2281 /* Prefer a useful motion on a speculative one. */
2282 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2283 if (spec_val)
2284 return spec_val;
2286 /* Prefer a more probable (speculative) insn. */
2287 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2288 if (prob_val)
2289 return prob_val;
2291 return 0;
2294 /* NEXT is an instruction that depends on INSN (a backward dependence);
2295 return nonzero if we should include this dependence in priority
2296 calculations. */
2299 contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2301 /* NEXT and INSN reside in one ebb. */
2302 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2305 /* INSN is a JUMP_INSN. Store the set of registers that must be
2306 considered as used by this jump in USED. */
2308 static void
2309 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2310 regset used ATTRIBUTE_UNUSED)
2312 /* Nothing to do here, since we postprocess jumps in
2313 add_branch_dependences. */
2316 /* This variable holds common_sched_info hooks and data relevant to
2317 the interblock scheduler. */
2318 static struct common_sched_info_def rgn_common_sched_info;
2321 /* This holds data for the dependence analysis relevant to
2322 the interblock scheduler. */
2323 static struct sched_deps_info_def rgn_sched_deps_info;
2325 /* This holds constant data used for initializing the above structure
2326 for the Haifa scheduler. */
2327 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2329 compute_jump_reg_dependencies,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 0, 0, 0
2334 /* Same as above, but for the selective scheduler. */
2335 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2337 compute_jump_reg_dependencies,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 0, 0, 0
2342 /* Return true if scheduling INSN will trigger finish of scheduling
2343 current block. */
2344 static bool
2345 rgn_insn_finishes_block_p (rtx_insn *insn)
2347 if (INSN_BB (insn) == target_bb
2348 && sched_target_n_insns + 1 == target_n_insns)
2349 /* INSN is the last not-scheduled instruction in the current block. */
2350 return true;
2352 return false;
2355 /* Used in schedule_insns to initialize current_sched_info for scheduling
2356 regions (or single basic blocks). */
2358 static const struct haifa_sched_info rgn_const_sched_info =
2360 init_ready_list,
2361 can_schedule_ready_p,
2362 schedule_more_p,
2363 new_ready,
2364 rgn_rank,
2365 rgn_print_insn,
2366 contributes_to_priority,
2367 rgn_insn_finishes_block_p,
2369 NULL, NULL,
2370 NULL, NULL,
2371 0, 0,
2373 rgn_add_remove_insn,
2374 begin_schedule_ready,
2375 NULL,
2376 advance_target_bb,
2377 NULL, NULL,
2378 SCHED_RGN
2381 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2382 for the interblock scheduler frontend. */
2383 static struct haifa_sched_info rgn_sched_info;
2385 /* Returns maximum priority that an insn was assigned to. */
2388 get_rgn_sched_max_insns_priority (void)
2390 return rgn_sched_info.sched_max_insns_priority;
2393 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2395 static bool
2396 sets_likely_spilled (rtx pat)
2398 bool ret = false;
2399 note_stores (pat, sets_likely_spilled_1, &ret);
2400 return ret;
2403 static void
2404 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2406 bool *ret = (bool *) data;
2408 if (GET_CODE (pat) == SET
2409 && REG_P (x)
2410 && HARD_REGISTER_P (x)
2411 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2412 *ret = true;
2415 /* A bitmap to note insns that participate in any dependency. Used in
2416 add_branch_dependences. */
2417 static sbitmap insn_referenced;
2419 /* Add dependences so that branches are scheduled to run last in their
2420 block. */
2421 static void
2422 add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2424 rtx_insn *insn, *last;
2426 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2427 that can throw exceptions, force them to remain in order at the end of
2428 the block by adding dependencies and giving the last a high priority.
2429 There may be notes present, and prev_head may also be a note.
2431 Branches must obviously remain at the end. Calls should remain at the
2432 end since moving them results in worse register allocation. Uses remain
2433 at the end to ensure proper register allocation.
2435 cc0 setters remain at the end because they can't be moved away from
2436 their cc0 user.
2438 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2440 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2442 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2443 values) are not moved before reload because we can wind up with register
2444 allocation failures. */
2446 while (tail != head && DEBUG_INSN_P (tail))
2447 tail = PREV_INSN (tail);
2449 insn = tail;
2450 last = 0;
2451 while (CALL_P (insn)
2452 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2453 || (NONJUMP_INSN_P (insn)
2454 && (GET_CODE (PATTERN (insn)) == USE
2455 || GET_CODE (PATTERN (insn)) == CLOBBER
2456 || can_throw_internal (insn)
2457 || (HAVE_cc0 && sets_cc0_p (PATTERN (insn)))
2458 || (!reload_completed
2459 && sets_likely_spilled (PATTERN (insn)))))
2460 || NOTE_P (insn)
2461 || (last != 0 && SCHED_GROUP_P (last)))
2463 if (!NOTE_P (insn))
2465 if (last != 0
2466 && sd_find_dep_between (insn, last, false) == NULL)
2468 if (! sched_insns_conditions_mutex_p (last, insn))
2469 add_dependence (last, insn, REG_DEP_ANTI);
2470 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2473 CANT_MOVE (insn) = 1;
2475 last = insn;
2478 /* Don't overrun the bounds of the basic block. */
2479 if (insn == head)
2480 break;
2483 insn = PREV_INSN (insn);
2484 while (insn != head && DEBUG_INSN_P (insn));
2487 /* Make sure these insns are scheduled last in their block. */
2488 insn = last;
2489 if (insn != 0)
2490 while (insn != head)
2492 insn = prev_nonnote_insn (insn);
2494 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2495 || DEBUG_INSN_P (insn))
2496 continue;
2498 if (! sched_insns_conditions_mutex_p (last, insn))
2499 add_dependence (last, insn, REG_DEP_ANTI);
2502 if (!targetm.have_conditional_execution ())
2503 return;
2505 /* Finally, if the block ends in a jump, and we are doing intra-block
2506 scheduling, make sure that the branch depends on any COND_EXEC insns
2507 inside the block to avoid moving the COND_EXECs past the branch insn.
2509 We only have to do this after reload, because (1) before reload there
2510 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2511 scheduler after reload.
2513 FIXME: We could in some cases move COND_EXEC insns past the branch if
2514 this scheduler would be a little smarter. Consider this code:
2516 T = [addr]
2517 C ? addr += 4
2518 !C ? X += 12
2519 C ? T += 1
2520 C ? jump foo
2522 On a target with a one cycle stall on a memory access the optimal
2523 sequence would be:
2525 T = [addr]
2526 C ? addr += 4
2527 C ? T += 1
2528 C ? jump foo
2529 !C ? X += 12
2531 We don't want to put the 'X += 12' before the branch because it just
2532 wastes a cycle of execution time when the branch is taken.
2534 Note that in the example "!C" will always be true. That is another
2535 possible improvement for handling COND_EXECs in this scheduler: it
2536 could remove always-true predicates. */
2538 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2539 return;
2541 insn = tail;
2542 while (insn != head)
2544 insn = PREV_INSN (insn);
2546 /* Note that we want to add this dependency even when
2547 sched_insns_conditions_mutex_p returns true. The whole point
2548 is that we _want_ this dependency, even if these insns really
2549 are independent. */
2550 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2551 add_dependence (tail, insn, REG_DEP_ANTI);
2555 /* Data structures for the computation of data dependences in a regions. We
2556 keep one `deps' structure for every basic block. Before analyzing the
2557 data dependences for a bb, its variables are initialized as a function of
2558 the variables of its predecessors. When the analysis for a bb completes,
2559 we save the contents to the corresponding bb_deps[bb] variable. */
2561 static struct deps_desc *bb_deps;
2563 static void
2564 concat_insn_mem_list (rtx_insn_list *copy_insns,
2565 rtx_expr_list *copy_mems,
2566 rtx_insn_list **old_insns_p,
2567 rtx_expr_list **old_mems_p)
2569 rtx_insn_list *new_insns = *old_insns_p;
2570 rtx_expr_list *new_mems = *old_mems_p;
2572 while (copy_insns)
2574 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2575 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2576 copy_insns = copy_insns->next ();
2577 copy_mems = copy_mems->next ();
2580 *old_insns_p = new_insns;
2581 *old_mems_p = new_mems;
2584 /* Join PRED_DEPS to the SUCC_DEPS. */
2585 void
2586 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2588 unsigned reg;
2589 reg_set_iterator rsi;
2591 /* The reg_last lists are inherited by successor. */
2592 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2594 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2595 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2597 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2598 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2599 succ_rl->implicit_sets
2600 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2601 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2602 succ_rl->clobbers);
2603 succ_rl->uses_length += pred_rl->uses_length;
2604 succ_rl->clobbers_length += pred_rl->clobbers_length;
2606 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2608 /* Mem read/write lists are inherited by successor. */
2609 concat_insn_mem_list (pred_deps->pending_read_insns,
2610 pred_deps->pending_read_mems,
2611 &succ_deps->pending_read_insns,
2612 &succ_deps->pending_read_mems);
2613 concat_insn_mem_list (pred_deps->pending_write_insns,
2614 pred_deps->pending_write_mems,
2615 &succ_deps->pending_write_insns,
2616 &succ_deps->pending_write_mems);
2618 succ_deps->pending_jump_insns
2619 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2620 succ_deps->pending_jump_insns);
2621 succ_deps->last_pending_memory_flush
2622 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2623 succ_deps->last_pending_memory_flush);
2625 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2626 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2627 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2629 /* last_function_call is inherited by successor. */
2630 succ_deps->last_function_call
2631 = concat_INSN_LIST (pred_deps->last_function_call,
2632 succ_deps->last_function_call);
2634 /* last_function_call_may_noreturn is inherited by successor. */
2635 succ_deps->last_function_call_may_noreturn
2636 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2637 succ_deps->last_function_call_may_noreturn);
2639 /* sched_before_next_call is inherited by successor. */
2640 succ_deps->sched_before_next_call
2641 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2642 succ_deps->sched_before_next_call);
2645 /* After computing the dependencies for block BB, propagate the dependencies
2646 found in TMP_DEPS to the successors of the block. */
2647 static void
2648 propagate_deps (int bb, struct deps_desc *pred_deps)
2650 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2651 edge_iterator ei;
2652 edge e;
2654 /* bb's structures are inherited by its successors. */
2655 FOR_EACH_EDGE (e, ei, block->succs)
2657 /* Only bbs "below" bb, in the same region, are interesting. */
2658 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2659 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2660 || BLOCK_TO_BB (e->dest->index) <= bb)
2661 continue;
2663 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2666 /* These lists should point to the right place, for correct
2667 freeing later. */
2668 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2669 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2670 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2671 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2672 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2674 /* Can't allow these to be freed twice. */
2675 pred_deps->pending_read_insns = 0;
2676 pred_deps->pending_read_mems = 0;
2677 pred_deps->pending_write_insns = 0;
2678 pred_deps->pending_write_mems = 0;
2679 pred_deps->pending_jump_insns = 0;
2682 /* Compute dependences inside bb. In a multiple blocks region:
2683 (1) a bb is analyzed after its predecessors, and (2) the lists in
2684 effect at the end of bb (after analyzing for bb) are inherited by
2685 bb's successors.
2687 Specifically for reg-reg data dependences, the block insns are
2688 scanned by sched_analyze () top-to-bottom. Three lists are
2689 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2690 reg_last[].implicit_sets for implicit hard register DEFs, and
2691 reg_last[].uses for register USEs.
2693 When analysis is completed for bb, we update for its successors:
2694 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2695 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2696 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2698 The mechanism for computing mem-mem data dependence is very
2699 similar, and the result is interblock dependences in the region. */
2701 static void
2702 compute_block_dependences (int bb)
2704 rtx_insn *head, *tail;
2705 struct deps_desc tmp_deps;
2707 tmp_deps = bb_deps[bb];
2709 /* Do the analysis for this block. */
2710 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2711 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2713 sched_analyze (&tmp_deps, head, tail);
2715 /* Selective scheduling handles control dependencies by itself. */
2716 if (!sel_sched_p ())
2717 add_branch_dependences (head, tail);
2719 if (current_nr_blocks > 1)
2720 propagate_deps (bb, &tmp_deps);
2722 /* Free up the INSN_LISTs. */
2723 free_deps (&tmp_deps);
2725 if (targetm.sched.dependencies_evaluation_hook)
2726 targetm.sched.dependencies_evaluation_hook (head, tail);
2729 /* Free dependencies of instructions inside BB. */
2730 static void
2731 free_block_dependencies (int bb)
2733 rtx_insn *head;
2734 rtx_insn *tail;
2736 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2738 if (no_real_insns_p (head, tail))
2739 return;
2741 sched_free_deps (head, tail, true);
2744 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2745 them to the unused_*_list variables, so that they can be reused. */
2747 static void
2748 free_pending_lists (void)
2750 int bb;
2752 for (bb = 0; bb < current_nr_blocks; bb++)
2754 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2755 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2756 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2757 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2758 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2762 /* Print dependences for debugging starting from FROM_BB.
2763 Callable from debugger. */
2764 /* Print dependences for debugging starting from FROM_BB.
2765 Callable from debugger. */
2766 DEBUG_FUNCTION void
2767 debug_rgn_dependencies (int from_bb)
2769 int bb;
2771 fprintf (sched_dump,
2772 ";; --------------- forward dependences: ------------ \n");
2774 for (bb = from_bb; bb < current_nr_blocks; bb++)
2776 rtx_insn *head, *tail;
2778 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2779 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2780 BB_TO_BLOCK (bb), bb);
2782 debug_dependencies (head, tail);
2786 /* Print dependencies information for instructions between HEAD and TAIL.
2787 ??? This function would probably fit best in haifa-sched.c. */
2788 void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2790 rtx_insn *insn;
2791 rtx_insn *next_tail = NEXT_INSN (tail);
2793 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2794 "insn", "code", "bb", "dep", "prio", "cost",
2795 "reservation");
2796 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2797 "----", "----", "--", "---", "----", "----",
2798 "-----------");
2800 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2802 if (! INSN_P (insn))
2804 int n;
2805 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2806 if (NOTE_P (insn))
2808 n = NOTE_KIND (insn);
2809 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2811 else
2812 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2813 continue;
2816 fprintf (sched_dump,
2817 ";; %s%5d%6d%6d%6d%6d%6d ",
2818 (SCHED_GROUP_P (insn) ? "+" : " "),
2819 INSN_UID (insn),
2820 INSN_CODE (insn),
2821 BLOCK_NUM (insn),
2822 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2823 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2824 : INSN_PRIORITY (insn))
2825 : INSN_PRIORITY (insn)),
2826 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2827 : insn_cost (insn))
2828 : insn_cost (insn)));
2830 if (recog_memoized (insn) < 0)
2831 fprintf (sched_dump, "nothing");
2832 else
2833 print_reservation (sched_dump, insn);
2835 fprintf (sched_dump, "\t: ");
2837 sd_iterator_def sd_it;
2838 dep_t dep;
2840 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2841 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2842 DEP_NONREG (dep) ? "n" : "",
2843 DEP_MULTIPLE (dep) ? "m" : "");
2845 fprintf (sched_dump, "\n");
2848 fprintf (sched_dump, "\n");
2851 /* Dump dependency graph for the current region to a file using dot syntax. */
2853 void
2854 dump_rgn_dependencies_dot (FILE *file)
2856 rtx_insn *head, *tail, *con, *pro;
2857 sd_iterator_def sd_it;
2858 dep_t dep;
2859 int bb;
2860 pretty_printer pp;
2862 pp.buffer->stream = file;
2863 pp_printf (&pp, "digraph SchedDG {\n");
2865 for (bb = 0; bb < current_nr_blocks; ++bb)
2867 /* Begin subgraph (basic block). */
2868 pp_printf (&pp, "subgraph cluster_block_%d {\n", bb);
2869 pp_printf (&pp, "\t" "color=blue;" "\n");
2870 pp_printf (&pp, "\t" "style=bold;" "\n");
2871 pp_printf (&pp, "\t" "label=\"BB #%d\";\n", BB_TO_BLOCK (bb));
2873 /* Setup head and tail (no support for EBBs). */
2874 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2875 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2876 tail = NEXT_INSN (tail);
2878 /* Dump all insns. */
2879 for (con = head; con != tail; con = NEXT_INSN (con))
2881 if (!INSN_P (con))
2882 continue;
2884 /* Pretty print the insn. */
2885 pp_printf (&pp, "\t%d [label=\"{", INSN_UID (con));
2886 pp_write_text_to_stream (&pp);
2887 print_insn (&pp, con, /*verbose=*/false);
2888 pp_write_text_as_dot_label_to_stream (&pp, /*for_record=*/true);
2889 pp_write_text_to_stream (&pp);
2891 /* Dump instruction attributes. */
2892 pp_printf (&pp, "|{ uid:%d | luid:%d | prio:%d }}\",shape=record]\n",
2893 INSN_UID (con), INSN_LUID (con), INSN_PRIORITY (con));
2895 /* Dump all deps. */
2896 FOR_EACH_DEP (con, SD_LIST_BACK, sd_it, dep)
2898 int weight = 0;
2899 const char *color;
2900 pro = DEP_PRO (dep);
2902 switch (DEP_TYPE (dep))
2904 case REG_DEP_TRUE:
2905 color = "black";
2906 weight = 1;
2907 break;
2908 case REG_DEP_OUTPUT:
2909 case REG_DEP_ANTI:
2910 color = "orange";
2911 break;
2912 case REG_DEP_CONTROL:
2913 color = "blue";
2914 break;
2915 default:
2916 gcc_unreachable ();
2919 pp_printf (&pp, "\t%d -> %d [color=%s",
2920 INSN_UID (pro), INSN_UID (con), color);
2921 if (int cost = dep_cost (dep))
2922 pp_printf (&pp, ",label=%d", cost);
2923 pp_printf (&pp, ",weight=%d", weight);
2924 pp_printf (&pp, "];\n");
2927 pp_printf (&pp, "}\n");
2930 pp_printf (&pp, "}\n");
2931 pp_flush (&pp);
2934 /* Dump dependency graph for the current region to a file using dot syntax. */
2936 DEBUG_FUNCTION void
2937 dump_rgn_dependencies_dot (const char *fname)
2939 FILE *fp;
2941 fp = fopen (fname, "w");
2942 if (!fp)
2944 perror ("fopen");
2945 return;
2948 dump_rgn_dependencies_dot (fp);
2949 fclose (fp);
2953 /* Returns true if all the basic blocks of the current region have
2954 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2955 bool
2956 sched_is_disabled_for_current_region_p (void)
2958 int bb;
2960 for (bb = 0; bb < current_nr_blocks; bb++)
2961 if (!(BASIC_BLOCK_FOR_FN (cfun,
2962 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2963 return false;
2965 return true;
2968 /* Free all region dependencies saved in INSN_BACK_DEPS and
2969 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2970 when scheduling, so this function is supposed to be called from
2971 the selective scheduling only. */
2972 void
2973 free_rgn_deps (void)
2975 int bb;
2977 for (bb = 0; bb < current_nr_blocks; bb++)
2979 rtx_insn *head, *tail;
2981 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2982 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2984 sched_free_deps (head, tail, false);
2988 static int rgn_n_insns;
2990 /* Compute insn priority for a current region. */
2991 void
2992 compute_priorities (void)
2994 int bb;
2996 current_sched_info->sched_max_insns_priority = 0;
2997 for (bb = 0; bb < current_nr_blocks; bb++)
2999 rtx_insn *head, *tail;
3001 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
3002 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
3004 if (no_real_insns_p (head, tail))
3005 continue;
3007 rgn_n_insns += set_priorities (head, tail);
3009 current_sched_info->sched_max_insns_priority++;
3012 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
3014 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
3015 zero for the first call to this function, to allocate the arrays for the
3016 first time.
3018 This function is called once during initialization of the scheduler, and
3019 called again to resize the arrays if new basic blocks have been created,
3020 for example for speculation recovery code. */
3022 static void
3023 realloc_bb_state_array (int saved_last_basic_block)
3025 char *old_bb_state_array = bb_state_array;
3026 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
3027 size_t slbb = (size_t) saved_last_basic_block;
3029 /* Nothing to do if nothing changed since the last time this was called. */
3030 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
3031 return;
3033 /* The selective scheduler doesn't use the state arrays. */
3034 if (sel_sched_p ())
3036 gcc_assert (bb_state_array == NULL && bb_state == NULL);
3037 return;
3040 gcc_checking_assert (saved_last_basic_block == 0
3041 || (bb_state_array != NULL && bb_state != NULL));
3043 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
3044 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
3046 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
3047 Otherwise only fixup the newly allocated ones. For the state
3048 array itself, only initialize the new entries. */
3049 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
3050 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
3051 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
3052 for (size_t i = slbb; i < lbb; i++)
3053 state_reset (bb_state[i]);
3056 /* Free the arrays of DFA states at the end of each basic block. */
3058 static void
3059 free_bb_state_array (void)
3061 free (bb_state_array);
3062 free (bb_state);
3063 bb_state_array = NULL;
3064 bb_state = NULL;
3067 /* Schedule a region. A region is either an inner loop, a loop-free
3068 subroutine, or a single basic block. Each bb in the region is
3069 scheduled after its flow predecessors. */
3071 static void
3072 schedule_region (int rgn)
3074 int bb;
3075 int sched_rgn_n_insns = 0;
3077 rgn_n_insns = 0;
3079 /* Do not support register pressure sensitive scheduling for the new regions
3080 as we don't update the liveness info for them. */
3081 if (sched_pressure != SCHED_PRESSURE_NONE
3082 && rgn >= nr_regions_initial)
3084 free_global_sched_pressure_data ();
3085 sched_pressure = SCHED_PRESSURE_NONE;
3088 rgn_setup_region (rgn);
3090 /* Don't schedule region that is marked by
3091 NOTE_DISABLE_SCHED_OF_BLOCK. */
3092 if (sched_is_disabled_for_current_region_p ())
3093 return;
3095 sched_rgn_compute_dependencies (rgn);
3097 sched_rgn_local_init (rgn);
3099 /* Set priorities. */
3100 compute_priorities ();
3102 sched_extend_ready_list (rgn_n_insns);
3104 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3106 sched_init_region_reg_pressure_info ();
3107 for (bb = 0; bb < current_nr_blocks; bb++)
3109 basic_block first_bb, last_bb;
3110 rtx_insn *head, *tail;
3112 first_bb = EBB_FIRST_BB (bb);
3113 last_bb = EBB_LAST_BB (bb);
3115 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3117 if (no_real_insns_p (head, tail))
3119 gcc_assert (first_bb == last_bb);
3120 continue;
3122 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3126 /* Now we can schedule all blocks. */
3127 for (bb = 0; bb < current_nr_blocks; bb++)
3129 basic_block first_bb, last_bb, curr_bb;
3130 rtx_insn *head, *tail;
3132 first_bb = EBB_FIRST_BB (bb);
3133 last_bb = EBB_LAST_BB (bb);
3135 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3137 if (no_real_insns_p (head, tail))
3139 gcc_assert (first_bb == last_bb);
3140 continue;
3143 current_sched_info->prev_head = PREV_INSN (head);
3144 current_sched_info->next_tail = NEXT_INSN (tail);
3146 remove_notes (head, tail);
3148 unlink_bb_notes (first_bb, last_bb);
3150 target_bb = bb;
3152 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3153 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3155 curr_bb = first_bb;
3156 if (dbg_cnt (sched_block))
3158 edge f;
3159 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3161 schedule_block (&curr_bb, bb_state[first_bb->index]);
3162 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3163 sched_rgn_n_insns += sched_n_insns;
3164 realloc_bb_state_array (saved_last_basic_block);
3165 f = find_fallthru_edge (last_bb->succs);
3166 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3167 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3169 memcpy (bb_state[f->dest->index], curr_state,
3170 dfa_state_size);
3171 if (sched_verbose >= 5)
3172 fprintf (sched_dump, "saving state for edge %d->%d\n",
3173 f->src->index, f->dest->index);
3176 else
3178 sched_rgn_n_insns += rgn_n_insns;
3181 /* Clean up. */
3182 if (current_nr_blocks > 1)
3183 free_trg_info ();
3186 /* Sanity check: verify that all region insns were scheduled. */
3187 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3189 sched_finish_ready_list ();
3191 /* Done with this region. */
3192 sched_rgn_local_finish ();
3194 /* Free dependencies. */
3195 for (bb = 0; bb < current_nr_blocks; ++bb)
3196 free_block_dependencies (bb);
3198 gcc_assert (haifa_recovery_bb_ever_added_p
3199 || deps_pools_are_empty_p ());
3202 /* Initialize data structures for region scheduling. */
3204 void
3205 sched_rgn_init (bool single_blocks_p)
3207 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3208 / 100);
3210 nr_inter = 0;
3211 nr_spec = 0;
3213 extend_regions ();
3215 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3216 CONTAINING_RGN (EXIT_BLOCK) = -1;
3218 realloc_bb_state_array (0);
3220 /* Compute regions for scheduling. */
3221 if (single_blocks_p
3222 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3223 || !flag_schedule_interblock
3224 || is_cfg_nonregular ())
3226 find_single_block_region (sel_sched_p ());
3228 else
3230 /* Compute the dominators and post dominators. */
3231 if (!sel_sched_p ())
3232 calculate_dominance_info (CDI_DOMINATORS);
3234 /* Find regions. */
3235 find_rgns ();
3237 if (sched_verbose >= 3)
3238 debug_regions ();
3240 /* For now. This will move as more and more of haifa is converted
3241 to using the cfg code. */
3242 if (!sel_sched_p ())
3243 free_dominance_info (CDI_DOMINATORS);
3246 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3248 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3249 RGN_NR_BLOCKS (nr_regions - 1));
3250 nr_regions_initial = nr_regions;
3253 /* Free data structures for region scheduling. */
3254 void
3255 sched_rgn_finish (void)
3257 free_bb_state_array ();
3259 /* Reposition the prologue and epilogue notes in case we moved the
3260 prologue/epilogue insns. */
3261 if (reload_completed)
3262 reposition_prologue_and_epilogue_notes ();
3264 if (sched_verbose)
3266 if (reload_completed == 0
3267 && flag_schedule_interblock)
3269 fprintf (sched_dump,
3270 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3271 nr_inter, nr_spec);
3273 else
3274 gcc_assert (nr_inter <= 0);
3275 fprintf (sched_dump, "\n\n");
3278 nr_regions = 0;
3280 free (rgn_table);
3281 rgn_table = NULL;
3283 free (rgn_bb_table);
3284 rgn_bb_table = NULL;
3286 free (block_to_bb);
3287 block_to_bb = NULL;
3289 free (containing_rgn);
3290 containing_rgn = NULL;
3292 free (ebb_head);
3293 ebb_head = NULL;
3296 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3297 point to the region RGN. */
3298 void
3299 rgn_setup_region (int rgn)
3301 int bb;
3303 /* Set variables for the current region. */
3304 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3305 current_blocks = RGN_BLOCKS (rgn);
3307 /* EBB_HEAD is a region-scope structure. But we realloc it for
3308 each region to save time/memory/something else.
3309 See comments in add_block1, for what reasons we allocate +1 element. */
3310 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3311 for (bb = 0; bb <= current_nr_blocks; bb++)
3312 ebb_head[bb] = current_blocks + bb;
3315 /* Compute instruction dependencies in region RGN. */
3316 void
3317 sched_rgn_compute_dependencies (int rgn)
3319 if (!RGN_DONT_CALC_DEPS (rgn))
3321 int bb;
3323 if (sel_sched_p ())
3324 sched_emulate_haifa_p = 1;
3326 init_deps_global ();
3328 /* Initializations for region data dependence analysis. */
3329 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3330 for (bb = 0; bb < current_nr_blocks; bb++)
3331 init_deps (bb_deps + bb, false);
3333 /* Initialize bitmap used in add_branch_dependences. */
3334 insn_referenced = sbitmap_alloc (sched_max_luid);
3335 bitmap_clear (insn_referenced);
3337 /* Compute backward dependencies. */
3338 for (bb = 0; bb < current_nr_blocks; bb++)
3339 compute_block_dependences (bb);
3341 sbitmap_free (insn_referenced);
3342 free_pending_lists ();
3343 finish_deps_global ();
3344 free (bb_deps);
3346 /* We don't want to recalculate this twice. */
3347 RGN_DONT_CALC_DEPS (rgn) = 1;
3349 if (sel_sched_p ())
3350 sched_emulate_haifa_p = 0;
3352 else
3353 /* (This is a recovery block. It is always a single block region.)
3354 OR (We use selective scheduling.) */
3355 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3358 /* Init region data structures. Returns true if this region should
3359 not be scheduled. */
3360 void
3361 sched_rgn_local_init (int rgn)
3363 int bb;
3365 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3366 if (current_nr_blocks > 1)
3368 basic_block block;
3369 edge e;
3370 edge_iterator ei;
3372 prob = XNEWVEC (int, current_nr_blocks);
3374 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3375 bitmap_vector_clear (dom, current_nr_blocks);
3377 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3378 rgn_nr_edges = 0;
3379 FOR_EACH_BB_FN (block, cfun)
3381 if (CONTAINING_RGN (block->index) != rgn)
3382 continue;
3383 FOR_EACH_EDGE (e, ei, block->succs)
3384 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3387 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3388 rgn_nr_edges = 0;
3389 FOR_EACH_BB_FN (block, cfun)
3391 if (CONTAINING_RGN (block->index) != rgn)
3392 continue;
3393 FOR_EACH_EDGE (e, ei, block->succs)
3394 rgn_edges[rgn_nr_edges++] = e;
3397 /* Split edges. */
3398 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3399 bitmap_vector_clear (pot_split, current_nr_blocks);
3400 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3401 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3403 /* Compute probabilities, dominators, split_edges. */
3404 for (bb = 0; bb < current_nr_blocks; bb++)
3405 compute_dom_prob_ps (bb);
3407 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3408 /* We don't need them anymore. But we want to avoid duplication of
3409 aux fields in the newly created edges. */
3410 FOR_EACH_BB_FN (block, cfun)
3412 if (CONTAINING_RGN (block->index) != rgn)
3413 continue;
3414 FOR_EACH_EDGE (e, ei, block->succs)
3415 e->aux = NULL;
3420 /* Free data computed for the finished region. */
3421 void
3422 sched_rgn_local_free (void)
3424 free (prob);
3425 sbitmap_vector_free (dom);
3426 sbitmap_vector_free (pot_split);
3427 sbitmap_vector_free (ancestor_edges);
3428 free (rgn_edges);
3431 /* Free data computed for the finished region. */
3432 void
3433 sched_rgn_local_finish (void)
3435 if (current_nr_blocks > 1 && !sel_sched_p ())
3437 sched_rgn_local_free ();
3441 /* Setup scheduler infos. */
3442 void
3443 rgn_setup_common_sched_info (void)
3445 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3446 sizeof (rgn_common_sched_info));
3448 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3449 rgn_common_sched_info.add_block = rgn_add_block;
3450 rgn_common_sched_info.estimate_number_of_insns
3451 = rgn_estimate_number_of_insns;
3452 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3454 common_sched_info = &rgn_common_sched_info;
3457 /* Setup all *_sched_info structures (for the Haifa frontend
3458 and for the dependence analysis) in the interblock scheduler. */
3459 void
3460 rgn_setup_sched_infos (void)
3462 if (!sel_sched_p ())
3463 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3464 sizeof (rgn_sched_deps_info));
3465 else
3466 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3467 sizeof (rgn_sched_deps_info));
3469 sched_deps_info = &rgn_sched_deps_info;
3471 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3472 current_sched_info = &rgn_sched_info;
3475 /* The one entry point in this file. */
3476 void
3477 schedule_insns (void)
3479 int rgn;
3481 /* Taking care of this degenerate case makes the rest of
3482 this code simpler. */
3483 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3484 return;
3486 rgn_setup_common_sched_info ();
3487 rgn_setup_sched_infos ();
3489 haifa_sched_init ();
3490 sched_rgn_init (reload_completed);
3492 bitmap_initialize (&not_in_df, 0);
3493 bitmap_clear (&not_in_df);
3495 /* Schedule every region in the subroutine. */
3496 for (rgn = 0; rgn < nr_regions; rgn++)
3497 if (dbg_cnt (sched_region))
3498 schedule_region (rgn);
3500 /* Clean up. */
3501 sched_rgn_finish ();
3502 bitmap_clear (&not_in_df);
3504 haifa_sched_finish ();
3507 /* INSN has been added to/removed from current region. */
3508 static void
3509 rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3511 if (!remove_p)
3512 rgn_n_insns++;
3513 else
3514 rgn_n_insns--;
3516 if (INSN_BB (insn) == target_bb)
3518 if (!remove_p)
3519 target_n_insns++;
3520 else
3521 target_n_insns--;
3525 /* Extend internal data structures. */
3526 void
3527 extend_regions (void)
3529 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3530 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3531 n_basic_blocks_for_fn (cfun));
3532 block_to_bb = XRESIZEVEC (int, block_to_bb,
3533 last_basic_block_for_fn (cfun));
3534 containing_rgn = XRESIZEVEC (int, containing_rgn,
3535 last_basic_block_for_fn (cfun));
3538 void
3539 rgn_make_new_region_out_of_new_block (basic_block bb)
3541 int i;
3543 i = RGN_BLOCKS (nr_regions);
3544 /* I - first free position in rgn_bb_table. */
3546 rgn_bb_table[i] = bb->index;
3547 RGN_NR_BLOCKS (nr_regions) = 1;
3548 RGN_HAS_REAL_EBB (nr_regions) = 0;
3549 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3550 CONTAINING_RGN (bb->index) = nr_regions;
3551 BLOCK_TO_BB (bb->index) = 0;
3553 nr_regions++;
3555 RGN_BLOCKS (nr_regions) = i + 1;
3558 /* BB was added to ebb after AFTER. */
3559 static void
3560 rgn_add_block (basic_block bb, basic_block after)
3562 extend_regions ();
3563 bitmap_set_bit (&not_in_df, bb->index);
3565 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3567 rgn_make_new_region_out_of_new_block (bb);
3568 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3569 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3571 else
3573 int i, pos;
3575 /* We need to fix rgn_table, block_to_bb, containing_rgn
3576 and ebb_head. */
3578 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3580 /* We extend ebb_head to one more position to
3581 easily find the last position of the last ebb in
3582 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3583 is _always_ valid for access. */
3585 i = BLOCK_TO_BB (after->index) + 1;
3586 pos = ebb_head[i] - 1;
3587 /* Now POS is the index of the last block in the region. */
3589 /* Find index of basic block AFTER. */
3590 for (; rgn_bb_table[pos] != after->index; pos--)
3593 pos++;
3594 gcc_assert (pos > ebb_head[i - 1]);
3596 /* i - ebb right after "AFTER". */
3597 /* ebb_head[i] - VALID. */
3599 /* Source position: ebb_head[i]
3600 Destination position: ebb_head[i] + 1
3601 Last position:
3602 RGN_BLOCKS (nr_regions) - 1
3603 Number of elements to copy: (last_position) - (source_position) + 1
3606 memmove (rgn_bb_table + pos + 1,
3607 rgn_bb_table + pos,
3608 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3609 * sizeof (*rgn_bb_table));
3611 rgn_bb_table[pos] = bb->index;
3613 for (; i <= current_nr_blocks; i++)
3614 ebb_head [i]++;
3616 i = CONTAINING_RGN (after->index);
3617 CONTAINING_RGN (bb->index) = i;
3619 RGN_HAS_REAL_EBB (i) = 1;
3621 for (++i; i <= nr_regions; i++)
3622 RGN_BLOCKS (i)++;
3626 /* Fix internal data after interblock movement of jump instruction.
3627 For parameter meaning please refer to
3628 sched-int.h: struct sched_info: fix_recovery_cfg. */
3629 static void
3630 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3632 int old_pos, new_pos, i;
3634 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3636 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3637 rgn_bb_table[old_pos] != check_bb_nexti;
3638 old_pos--)
3640 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3642 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3643 rgn_bb_table[new_pos] != bbi;
3644 new_pos--)
3646 new_pos++;
3647 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3649 gcc_assert (new_pos < old_pos);
3651 memmove (rgn_bb_table + new_pos + 1,
3652 rgn_bb_table + new_pos,
3653 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3655 rgn_bb_table[new_pos] = check_bb_nexti;
3657 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3658 ebb_head[i]++;
3661 /* Return next block in ebb chain. For parameter meaning please refer to
3662 sched-int.h: struct sched_info: advance_target_bb. */
3663 static basic_block
3664 advance_target_bb (basic_block bb, rtx_insn *insn)
3666 if (insn)
3667 return 0;
3669 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3670 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3671 return bb->next_bb;
3674 #endif
3676 /* Run instruction scheduler. */
3677 static unsigned int
3678 rest_of_handle_live_range_shrinkage (void)
3680 #ifdef INSN_SCHEDULING
3681 int saved;
3683 initialize_live_range_shrinkage ();
3684 saved = flag_schedule_interblock;
3685 flag_schedule_interblock = false;
3686 schedule_insns ();
3687 flag_schedule_interblock = saved;
3688 finish_live_range_shrinkage ();
3689 #endif
3690 return 0;
3693 /* Run instruction scheduler. */
3694 static unsigned int
3695 rest_of_handle_sched (void)
3697 #ifdef INSN_SCHEDULING
3698 if (flag_selective_scheduling
3699 && ! maybe_skip_selective_scheduling ())
3700 run_selective_scheduling ();
3701 else
3702 schedule_insns ();
3703 #endif
3704 return 0;
3707 /* Run second scheduling pass after reload. */
3708 static unsigned int
3709 rest_of_handle_sched2 (void)
3711 #ifdef INSN_SCHEDULING
3712 if (flag_selective_scheduling2
3713 && ! maybe_skip_selective_scheduling ())
3714 run_selective_scheduling ();
3715 else
3717 /* Do control and data sched analysis again,
3718 and write some more of the results to dump file. */
3719 if (flag_sched2_use_superblocks)
3720 schedule_ebbs ();
3721 else
3722 schedule_insns ();
3724 #endif
3725 return 0;
3728 static unsigned int
3729 rest_of_handle_sched_fusion (void)
3731 #ifdef INSN_SCHEDULING
3732 sched_fusion = true;
3733 schedule_insns ();
3734 sched_fusion = false;
3735 #endif
3736 return 0;
3739 namespace {
3741 const pass_data pass_data_live_range_shrinkage =
3743 RTL_PASS, /* type */
3744 "lr_shrinkage", /* name */
3745 OPTGROUP_NONE, /* optinfo_flags */
3746 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3747 0, /* properties_required */
3748 0, /* properties_provided */
3749 0, /* properties_destroyed */
3750 0, /* todo_flags_start */
3751 TODO_df_finish, /* todo_flags_finish */
3754 class pass_live_range_shrinkage : public rtl_opt_pass
3756 public:
3757 pass_live_range_shrinkage(gcc::context *ctxt)
3758 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3761 /* opt_pass methods: */
3762 virtual bool gate (function *)
3764 #ifdef INSN_SCHEDULING
3765 return flag_live_range_shrinkage;
3766 #else
3767 return 0;
3768 #endif
3771 virtual unsigned int execute (function *)
3773 return rest_of_handle_live_range_shrinkage ();
3776 }; // class pass_live_range_shrinkage
3778 } // anon namespace
3780 rtl_opt_pass *
3781 make_pass_live_range_shrinkage (gcc::context *ctxt)
3783 return new pass_live_range_shrinkage (ctxt);
3786 namespace {
3788 const pass_data pass_data_sched =
3790 RTL_PASS, /* type */
3791 "sched1", /* name */
3792 OPTGROUP_NONE, /* optinfo_flags */
3793 TV_SCHED, /* tv_id */
3794 0, /* properties_required */
3795 0, /* properties_provided */
3796 0, /* properties_destroyed */
3797 0, /* todo_flags_start */
3798 TODO_df_finish, /* todo_flags_finish */
3801 class pass_sched : public rtl_opt_pass
3803 public:
3804 pass_sched (gcc::context *ctxt)
3805 : rtl_opt_pass (pass_data_sched, ctxt)
3808 /* opt_pass methods: */
3809 virtual bool gate (function *);
3810 virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3812 }; // class pass_sched
3814 bool
3815 pass_sched::gate (function *)
3817 #ifdef INSN_SCHEDULING
3818 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3819 #else
3820 return 0;
3821 #endif
3824 } // anon namespace
3826 rtl_opt_pass *
3827 make_pass_sched (gcc::context *ctxt)
3829 return new pass_sched (ctxt);
3832 namespace {
3834 const pass_data pass_data_sched2 =
3836 RTL_PASS, /* type */
3837 "sched2", /* name */
3838 OPTGROUP_NONE, /* optinfo_flags */
3839 TV_SCHED2, /* tv_id */
3840 0, /* properties_required */
3841 0, /* properties_provided */
3842 0, /* properties_destroyed */
3843 0, /* todo_flags_start */
3844 TODO_df_finish, /* todo_flags_finish */
3847 class pass_sched2 : public rtl_opt_pass
3849 public:
3850 pass_sched2 (gcc::context *ctxt)
3851 : rtl_opt_pass (pass_data_sched2, ctxt)
3854 /* opt_pass methods: */
3855 virtual bool gate (function *);
3856 virtual unsigned int execute (function *)
3858 return rest_of_handle_sched2 ();
3861 }; // class pass_sched2
3863 bool
3864 pass_sched2::gate (function *)
3866 #ifdef INSN_SCHEDULING
3867 return optimize > 0 && flag_schedule_insns_after_reload
3868 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3869 #else
3870 return 0;
3871 #endif
3874 } // anon namespace
3876 rtl_opt_pass *
3877 make_pass_sched2 (gcc::context *ctxt)
3879 return new pass_sched2 (ctxt);
3882 namespace {
3884 const pass_data pass_data_sched_fusion =
3886 RTL_PASS, /* type */
3887 "sched_fusion", /* name */
3888 OPTGROUP_NONE, /* optinfo_flags */
3889 TV_SCHED_FUSION, /* tv_id */
3890 0, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 TODO_df_finish, /* todo_flags_finish */
3897 class pass_sched_fusion : public rtl_opt_pass
3899 public:
3900 pass_sched_fusion (gcc::context *ctxt)
3901 : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3904 /* opt_pass methods: */
3905 virtual bool gate (function *);
3906 virtual unsigned int execute (function *)
3908 return rest_of_handle_sched_fusion ();
3911 }; // class pass_sched2
3913 bool
3914 pass_sched_fusion::gate (function *)
3916 #ifdef INSN_SCHEDULING
3917 /* Scheduling fusion relies on peephole2 to do real fusion work,
3918 so only enable it if peephole2 is in effect. */
3919 return (optimize > 0 && flag_peephole2
3920 && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3921 #else
3922 return 0;
3923 #endif
3926 } // anon namespace
3928 rtl_opt_pass *
3929 make_pass_sched_fusion (gcc::context *ctxt)
3931 return new pass_sched_fusion (ctxt);