1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
32 #include "coretypes.h"
37 #include "hard-reg-set.h"
38 #include "basic-block.h"
39 #include "insn-config.h"
44 #include "diagnostic-core.h"
54 #include "gimple-iterator.h"
55 #include "gimple-ssa.h"
58 #include "tree-phinodes.h"
59 #include "ssa-iterators.h"
60 #include "tree-ssa-loop-niter.h"
61 #include "tree-ssa-loop.h"
63 #include "tree-pass.h"
64 #include "tree-scalar-evolution.h"
66 #include "pointer-set.h"
68 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
69 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
70 static sreal real_zero
, real_one
, real_almost_one
, real_br_prob_base
,
71 real_inv_br_prob_base
, real_one_half
, real_bb_freq_max
;
73 /* Random guesstimation given names.
74 PROV_VERY_UNLIKELY should be small enough so basic block predicted
75 by it gets below HOT_BB_FREQUENCY_FRACTION. */
76 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
77 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
78 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
79 #define PROB_ALWAYS (REG_BR_PROB_BASE)
81 static void combine_predictions_for_insn (rtx
, basic_block
);
82 static void dump_prediction (FILE *, enum br_predictor
, int, basic_block
, int);
83 static void predict_paths_leading_to (basic_block
, enum br_predictor
, enum prediction
);
84 static void predict_paths_leading_to_edge (edge
, enum br_predictor
, enum prediction
);
85 static bool can_predict_insn_p (const_rtx
);
87 /* Information we hold about each branch predictor.
88 Filled using information from predict.def. */
92 const char *const name
; /* Name used in the debugging dumps. */
93 const int hitrate
; /* Expected hitrate used by
94 predict_insn_def call. */
98 /* Use given predictor without Dempster-Shaffer theory if it matches
99 using first_match heuristics. */
100 #define PRED_FLAG_FIRST_MATCH 1
102 /* Recompute hitrate in percent to our representation. */
104 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
106 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
107 static const struct predictor_info predictor_info
[]= {
108 #include "predict.def"
110 /* Upper bound on predictors. */
115 /* Return TRUE if frequency FREQ is considered to be hot. */
118 maybe_hot_frequency_p (struct function
*fun
, int freq
)
120 struct cgraph_node
*node
= cgraph_get_node (fun
->decl
);
121 if (!profile_info
|| !flag_branch_probabilities
)
123 if (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
)
125 if (node
->frequency
== NODE_FREQUENCY_HOT
)
128 if (profile_status_for_function (fun
) == PROFILE_ABSENT
)
130 if (node
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
131 && freq
< (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun
)->frequency
* 2 / 3))
133 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0)
135 if (freq
< (ENTRY_BLOCK_PTR_FOR_FUNCTION (fun
)->frequency
136 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
141 static gcov_type min_count
= -1;
143 /* Determine the threshold for hot BB counts. */
146 get_hot_bb_threshold ()
148 gcov_working_set_t
*ws
;
151 ws
= find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE
));
153 min_count
= ws
->min_counter
;
158 /* Set the threshold for hot BB counts. */
161 set_hot_bb_threshold (gcov_type min
)
166 /* Return TRUE if frequency FREQ is considered to be hot. */
169 maybe_hot_count_p (struct function
*fun
, gcov_type count
)
171 if (fun
&& profile_status_for_function (fun
) != PROFILE_READ
)
173 /* Code executed at most once is not hot. */
174 if (profile_info
->runs
>= count
)
176 return (count
>= get_hot_bb_threshold ());
179 /* Return true in case BB can be CPU intensive and should be optimized
180 for maximal performance. */
183 maybe_hot_bb_p (struct function
*fun
, const_basic_block bb
)
185 gcc_checking_assert (fun
);
186 if (profile_status_for_function (fun
) == PROFILE_READ
)
187 return maybe_hot_count_p (fun
, bb
->count
);
188 return maybe_hot_frequency_p (fun
, bb
->frequency
);
191 /* Return true if the call can be hot. */
194 cgraph_maybe_hot_edge_p (struct cgraph_edge
*edge
)
196 if (profile_info
&& flag_branch_probabilities
197 && !maybe_hot_count_p (NULL
,
200 if (edge
->caller
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
202 && edge
->callee
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
))
204 if (edge
->caller
->frequency
> NODE_FREQUENCY_UNLIKELY_EXECUTED
206 && edge
->callee
->frequency
<= NODE_FREQUENCY_EXECUTED_ONCE
))
210 if (edge
->caller
->frequency
== NODE_FREQUENCY_HOT
)
212 if (edge
->caller
->frequency
== NODE_FREQUENCY_EXECUTED_ONCE
213 && edge
->frequency
< CGRAPH_FREQ_BASE
* 3 / 2)
215 if (flag_guess_branch_prob
)
217 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
) == 0
218 || edge
->frequency
<= (CGRAPH_FREQ_BASE
219 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION
)))
225 /* Return true in case BB can be CPU intensive and should be optimized
226 for maximal performance. */
229 maybe_hot_edge_p (edge e
)
231 if (profile_status
== PROFILE_READ
)
232 return maybe_hot_count_p (cfun
, e
->count
);
233 return maybe_hot_frequency_p (cfun
, EDGE_FREQUENCY (e
));
238 /* Return true if profile COUNT and FREQUENCY, or function FUN static
239 node frequency reflects never being executed. */
242 probably_never_executed (struct function
*fun
,
243 gcov_type count
, int frequency
)
245 gcc_checking_assert (fun
);
246 if (profile_status_for_function (fun
) == PROFILE_READ
)
248 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
249 if (count
* unlikely_count_fraction
>= profile_info
->runs
)
253 if (!ENTRY_BLOCK_PTR
->frequency
)
255 if (ENTRY_BLOCK_PTR
->count
)
257 gcov_type computed_count
;
258 /* Check for possibility of overflow, in which case entry bb count
259 is large enough to do the division first without losing much
261 if (ENTRY_BLOCK_PTR
->count
< REG_BR_PROB_BASE
* REG_BR_PROB_BASE
)
263 gcov_type scaled_count
264 = frequency
* ENTRY_BLOCK_PTR
->count
* unlikely_count_fraction
;
265 computed_count
= RDIV (scaled_count
, ENTRY_BLOCK_PTR
->frequency
);
269 computed_count
= RDIV (ENTRY_BLOCK_PTR
->count
,
270 ENTRY_BLOCK_PTR
->frequency
);
271 computed_count
*= frequency
* unlikely_count_fraction
;
273 if (computed_count
>= profile_info
->runs
)
278 if ((!profile_info
|| !flag_branch_probabilities
)
279 && (cgraph_get_node (fun
->decl
)->frequency
280 == NODE_FREQUENCY_UNLIKELY_EXECUTED
))
286 /* Return true in case BB is probably never executed. */
289 probably_never_executed_bb_p (struct function
*fun
, const_basic_block bb
)
291 return probably_never_executed (fun
, bb
->count
, bb
->frequency
);
295 /* Return true in case edge E is probably never executed. */
298 probably_never_executed_edge_p (struct function
*fun
, edge e
)
300 return probably_never_executed (fun
, e
->count
, EDGE_FREQUENCY (e
));
303 /* Return true if NODE should be optimized for size. */
306 cgraph_optimize_for_size_p (struct cgraph_node
*node
)
310 if (node
&& (node
->frequency
== NODE_FREQUENCY_UNLIKELY_EXECUTED
))
316 /* Return true when current function should always be optimized for size. */
319 optimize_function_for_size_p (struct function
*fun
)
323 if (!fun
|| !fun
->decl
)
325 return cgraph_optimize_for_size_p (cgraph_get_node (fun
->decl
));
328 /* Return true when current function should always be optimized for speed. */
331 optimize_function_for_speed_p (struct function
*fun
)
333 return !optimize_function_for_size_p (fun
);
336 /* Return TRUE when BB should be optimized for size. */
339 optimize_bb_for_size_p (const_basic_block bb
)
341 return optimize_function_for_size_p (cfun
) || !maybe_hot_bb_p (cfun
, bb
);
344 /* Return TRUE when BB should be optimized for speed. */
347 optimize_bb_for_speed_p (const_basic_block bb
)
349 return !optimize_bb_for_size_p (bb
);
352 /* Return TRUE when BB should be optimized for size. */
355 optimize_edge_for_size_p (edge e
)
357 return optimize_function_for_size_p (cfun
) || !maybe_hot_edge_p (e
);
360 /* Return TRUE when BB should be optimized for speed. */
363 optimize_edge_for_speed_p (edge e
)
365 return !optimize_edge_for_size_p (e
);
368 /* Return TRUE when BB should be optimized for size. */
371 optimize_insn_for_size_p (void)
373 return optimize_function_for_size_p (cfun
) || !crtl
->maybe_hot_insn_p
;
376 /* Return TRUE when BB should be optimized for speed. */
379 optimize_insn_for_speed_p (void)
381 return !optimize_insn_for_size_p ();
384 /* Return TRUE when LOOP should be optimized for size. */
387 optimize_loop_for_size_p (struct loop
*loop
)
389 return optimize_bb_for_size_p (loop
->header
);
392 /* Return TRUE when LOOP should be optimized for speed. */
395 optimize_loop_for_speed_p (struct loop
*loop
)
397 return optimize_bb_for_speed_p (loop
->header
);
400 /* Return TRUE when LOOP nest should be optimized for speed. */
403 optimize_loop_nest_for_speed_p (struct loop
*loop
)
405 struct loop
*l
= loop
;
406 if (optimize_loop_for_speed_p (loop
))
409 while (l
&& l
!= loop
)
411 if (optimize_loop_for_speed_p (l
))
419 while (l
!= loop
&& !l
->next
)
428 /* Return TRUE when LOOP nest should be optimized for size. */
431 optimize_loop_nest_for_size_p (struct loop
*loop
)
433 return !optimize_loop_nest_for_speed_p (loop
);
436 /* Return true when edge E is likely to be well predictable by branch
440 predictable_edge_p (edge e
)
442 if (profile_status
== PROFILE_ABSENT
)
445 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100)
446 || (REG_BR_PROB_BASE
- e
->probability
447 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME
) * REG_BR_PROB_BASE
/ 100))
453 /* Set RTL expansion for BB profile. */
456 rtl_profile_for_bb (basic_block bb
)
458 crtl
->maybe_hot_insn_p
= maybe_hot_bb_p (cfun
, bb
);
461 /* Set RTL expansion for edge profile. */
464 rtl_profile_for_edge (edge e
)
466 crtl
->maybe_hot_insn_p
= maybe_hot_edge_p (e
);
469 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
471 default_rtl_profile (void)
473 crtl
->maybe_hot_insn_p
= true;
476 /* Return true if the one of outgoing edges is already predicted by
480 rtl_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
483 if (!INSN_P (BB_END (bb
)))
485 for (note
= REG_NOTES (BB_END (bb
)); note
; note
= XEXP (note
, 1))
486 if (REG_NOTE_KIND (note
) == REG_BR_PRED
487 && INTVAL (XEXP (XEXP (note
, 0), 0)) == (int)predictor
)
492 /* This map contains for a basic block the list of predictions for the
495 static struct pointer_map_t
*bb_predictions
;
497 /* Structure representing predictions in tree level. */
499 struct edge_prediction
{
500 struct edge_prediction
*ep_next
;
502 enum br_predictor ep_predictor
;
506 /* Return true if the one of outgoing edges is already predicted by
510 gimple_predicted_by_p (const_basic_block bb
, enum br_predictor predictor
)
512 struct edge_prediction
*i
;
513 void **preds
= pointer_map_contains (bb_predictions
, bb
);
518 for (i
= (struct edge_prediction
*) *preds
; i
; i
= i
->ep_next
)
519 if (i
->ep_predictor
== predictor
)
524 /* Return true when the probability of edge is reliable.
526 The profile guessing code is good at predicting branch outcome (ie.
527 taken/not taken), that is predicted right slightly over 75% of time.
528 It is however notoriously poor on predicting the probability itself.
529 In general the profile appear a lot flatter (with probabilities closer
530 to 50%) than the reality so it is bad idea to use it to drive optimization
531 such as those disabling dynamic branch prediction for well predictable
534 There are two exceptions - edges leading to noreturn edges and edges
535 predicted by number of iterations heuristics are predicted well. This macro
536 should be able to distinguish those, but at the moment it simply check for
537 noreturn heuristic that is only one giving probability over 99% or bellow
538 1%. In future we might want to propagate reliability information across the
539 CFG if we find this information useful on multiple places. */
541 probability_reliable_p (int prob
)
543 return (profile_status
== PROFILE_READ
544 || (profile_status
== PROFILE_GUESSED
545 && (prob
<= HITRATE (1) || prob
>= HITRATE (99))));
548 /* Same predicate as above, working on edges. */
550 edge_probability_reliable_p (const_edge e
)
552 return probability_reliable_p (e
->probability
);
555 /* Same predicate as edge_probability_reliable_p, working on notes. */
557 br_prob_note_reliable_p (const_rtx note
)
559 gcc_assert (REG_NOTE_KIND (note
) == REG_BR_PROB
);
560 return probability_reliable_p (XINT (note
, 0));
564 predict_insn (rtx insn
, enum br_predictor predictor
, int probability
)
566 gcc_assert (any_condjump_p (insn
));
567 if (!flag_guess_branch_prob
)
570 add_reg_note (insn
, REG_BR_PRED
,
571 gen_rtx_CONCAT (VOIDmode
,
572 GEN_INT ((int) predictor
),
573 GEN_INT ((int) probability
)));
576 /* Predict insn by given predictor. */
579 predict_insn_def (rtx insn
, enum br_predictor predictor
,
580 enum prediction taken
)
582 int probability
= predictor_info
[(int) predictor
].hitrate
;
585 probability
= REG_BR_PROB_BASE
- probability
;
587 predict_insn (insn
, predictor
, probability
);
590 /* Predict edge E with given probability if possible. */
593 rtl_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
596 last_insn
= BB_END (e
->src
);
598 /* We can store the branch prediction information only about
599 conditional jumps. */
600 if (!any_condjump_p (last_insn
))
603 /* We always store probability of branching. */
604 if (e
->flags
& EDGE_FALLTHRU
)
605 probability
= REG_BR_PROB_BASE
- probability
;
607 predict_insn (last_insn
, predictor
, probability
);
610 /* Predict edge E with the given PROBABILITY. */
612 gimple_predict_edge (edge e
, enum br_predictor predictor
, int probability
)
614 gcc_assert (profile_status
!= PROFILE_GUESSED
);
615 if ((e
->src
!= ENTRY_BLOCK_PTR
&& EDGE_COUNT (e
->src
->succs
) > 1)
616 && flag_guess_branch_prob
&& optimize
)
618 struct edge_prediction
*i
= XNEW (struct edge_prediction
);
619 void **preds
= pointer_map_insert (bb_predictions
, e
->src
);
621 i
->ep_next
= (struct edge_prediction
*) *preds
;
623 i
->ep_probability
= probability
;
624 i
->ep_predictor
= predictor
;
629 /* Remove all predictions on given basic block that are attached
632 remove_predictions_associated_with_edge (edge e
)
639 preds
= pointer_map_contains (bb_predictions
, e
->src
);
643 struct edge_prediction
**prediction
= (struct edge_prediction
**) preds
;
644 struct edge_prediction
*next
;
648 if ((*prediction
)->ep_edge
== e
)
650 next
= (*prediction
)->ep_next
;
655 prediction
= &((*prediction
)->ep_next
);
660 /* Clears the list of predictions stored for BB. */
663 clear_bb_predictions (basic_block bb
)
665 void **preds
= pointer_map_contains (bb_predictions
, bb
);
666 struct edge_prediction
*pred
, *next
;
671 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= next
)
673 next
= pred
->ep_next
;
679 /* Return true when we can store prediction on insn INSN.
680 At the moment we represent predictions only on conditional
681 jumps, not at computed jump or other complicated cases. */
683 can_predict_insn_p (const_rtx insn
)
685 return (JUMP_P (insn
)
686 && any_condjump_p (insn
)
687 && EDGE_COUNT (BLOCK_FOR_INSN (insn
)->succs
) >= 2);
690 /* Predict edge E by given predictor if possible. */
693 predict_edge_def (edge e
, enum br_predictor predictor
,
694 enum prediction taken
)
696 int probability
= predictor_info
[(int) predictor
].hitrate
;
699 probability
= REG_BR_PROB_BASE
- probability
;
701 predict_edge (e
, predictor
, probability
);
704 /* Invert all branch predictions or probability notes in the INSN. This needs
705 to be done each time we invert the condition used by the jump. */
708 invert_br_probabilities (rtx insn
)
712 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
713 if (REG_NOTE_KIND (note
) == REG_BR_PROB
)
714 XINT (note
, 0) = REG_BR_PROB_BASE
- XINT (note
, 0);
715 else if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
716 XEXP (XEXP (note
, 0), 1)
717 = GEN_INT (REG_BR_PROB_BASE
- INTVAL (XEXP (XEXP (note
, 0), 1)));
720 /* Dump information about the branch prediction to the output file. */
723 dump_prediction (FILE *file
, enum br_predictor predictor
, int probability
,
724 basic_block bb
, int used
)
732 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
733 if (! (e
->flags
& EDGE_FALLTHRU
))
736 fprintf (file
, " %s heuristics%s: %.1f%%",
737 predictor_info
[predictor
].name
,
738 used
? "" : " (ignored)", probability
* 100.0 / REG_BR_PROB_BASE
);
742 fprintf (file
, " exec ");
743 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, bb
->count
);
746 fprintf (file
, " hit ");
747 fprintf (file
, HOST_WIDEST_INT_PRINT_DEC
, e
->count
);
748 fprintf (file
, " (%.1f%%)", e
->count
* 100.0 / bb
->count
);
752 fprintf (file
, "\n");
755 /* We can not predict the probabilities of outgoing edges of bb. Set them
756 evenly and hope for the best. */
758 set_even_probabilities (basic_block bb
)
764 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
765 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
767 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
768 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
769 e
->probability
= (REG_BR_PROB_BASE
+ nedges
/ 2) / nedges
;
774 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
775 note if not already present. Remove now useless REG_BR_PRED notes. */
778 combine_predictions_for_insn (rtx insn
, basic_block bb
)
783 int best_probability
= PROB_EVEN
;
784 enum br_predictor best_predictor
= END_PREDICTORS
;
785 int combined_probability
= REG_BR_PROB_BASE
/ 2;
787 bool first_match
= false;
790 if (!can_predict_insn_p (insn
))
792 set_even_probabilities (bb
);
796 prob_note
= find_reg_note (insn
, REG_BR_PROB
, 0);
797 pnote
= ®_NOTES (insn
);
799 fprintf (dump_file
, "Predictions for insn %i bb %i\n", INSN_UID (insn
),
802 /* We implement "first match" heuristics and use probability guessed
803 by predictor with smallest index. */
804 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
805 if (REG_NOTE_KIND (note
) == REG_BR_PRED
)
807 enum br_predictor predictor
= ((enum br_predictor
)
808 INTVAL (XEXP (XEXP (note
, 0), 0)));
809 int probability
= INTVAL (XEXP (XEXP (note
, 0), 1));
812 if (best_predictor
> predictor
)
813 best_probability
= probability
, best_predictor
= predictor
;
815 d
= (combined_probability
* probability
816 + (REG_BR_PROB_BASE
- combined_probability
)
817 * (REG_BR_PROB_BASE
- probability
));
819 /* Use FP math to avoid overflows of 32bit integers. */
821 /* If one probability is 0% and one 100%, avoid division by zero. */
822 combined_probability
= REG_BR_PROB_BASE
/ 2;
824 combined_probability
= (((double) combined_probability
) * probability
825 * REG_BR_PROB_BASE
/ d
+ 0.5);
828 /* Decide which heuristic to use. In case we didn't match anything,
829 use no_prediction heuristic, in case we did match, use either
830 first match or Dempster-Shaffer theory depending on the flags. */
832 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
836 dump_prediction (dump_file
, PRED_NO_PREDICTION
,
837 combined_probability
, bb
, true);
840 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
,
842 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
,
847 combined_probability
= best_probability
;
848 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
852 if (REG_NOTE_KIND (*pnote
) == REG_BR_PRED
)
854 enum br_predictor predictor
= ((enum br_predictor
)
855 INTVAL (XEXP (XEXP (*pnote
, 0), 0)));
856 int probability
= INTVAL (XEXP (XEXP (*pnote
, 0), 1));
858 dump_prediction (dump_file
, predictor
, probability
, bb
,
859 !first_match
|| best_predictor
== predictor
);
860 *pnote
= XEXP (*pnote
, 1);
863 pnote
= &XEXP (*pnote
, 1);
868 add_int_reg_note (insn
, REG_BR_PROB
, combined_probability
);
870 /* Save the prediction into CFG in case we are seeing non-degenerated
872 if (!single_succ_p (bb
))
874 BRANCH_EDGE (bb
)->probability
= combined_probability
;
875 FALLTHRU_EDGE (bb
)->probability
876 = REG_BR_PROB_BASE
- combined_probability
;
879 else if (!single_succ_p (bb
))
881 int prob
= XINT (prob_note
, 0);
883 BRANCH_EDGE (bb
)->probability
= prob
;
884 FALLTHRU_EDGE (bb
)->probability
= REG_BR_PROB_BASE
- prob
;
887 single_succ_edge (bb
)->probability
= REG_BR_PROB_BASE
;
890 /* Combine predictions into single probability and store them into CFG.
891 Remove now useless prediction entries. */
894 combine_predictions_for_bb (basic_block bb
)
896 int best_probability
= PROB_EVEN
;
897 enum br_predictor best_predictor
= END_PREDICTORS
;
898 int combined_probability
= REG_BR_PROB_BASE
/ 2;
900 bool first_match
= false;
902 struct edge_prediction
*pred
;
904 edge e
, first
= NULL
, second
= NULL
;
908 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
909 if (!(e
->flags
& (EDGE_EH
| EDGE_FAKE
)))
912 if (first
&& !second
)
918 /* When there is no successor or only one choice, prediction is easy.
920 We are lazy for now and predict only basic blocks with two outgoing
921 edges. It is possible to predict generic case too, but we have to
922 ignore first match heuristics and do more involved combining. Implement
927 set_even_probabilities (bb
);
928 clear_bb_predictions (bb
);
930 fprintf (dump_file
, "%i edges in bb %i predicted to even probabilities\n",
936 fprintf (dump_file
, "Predictions for bb %i\n", bb
->index
);
938 preds
= pointer_map_contains (bb_predictions
, bb
);
941 /* We implement "first match" heuristics and use probability guessed
942 by predictor with smallest index. */
943 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
945 enum br_predictor predictor
= pred
->ep_predictor
;
946 int probability
= pred
->ep_probability
;
948 if (pred
->ep_edge
!= first
)
949 probability
= REG_BR_PROB_BASE
- probability
;
952 /* First match heuristics would be widly confused if we predicted
954 if (best_predictor
> predictor
)
956 struct edge_prediction
*pred2
;
957 int prob
= probability
;
959 for (pred2
= (struct edge_prediction
*) *preds
; pred2
; pred2
= pred2
->ep_next
)
960 if (pred2
!= pred
&& pred2
->ep_predictor
== pred
->ep_predictor
)
962 int probability2
= pred
->ep_probability
;
964 if (pred2
->ep_edge
!= first
)
965 probability2
= REG_BR_PROB_BASE
- probability2
;
967 if ((probability
< REG_BR_PROB_BASE
/ 2) !=
968 (probability2
< REG_BR_PROB_BASE
/ 2))
971 /* If the same predictor later gave better result, go for it! */
972 if ((probability
>= REG_BR_PROB_BASE
/ 2 && (probability2
> probability
))
973 || (probability
<= REG_BR_PROB_BASE
/ 2 && (probability2
< probability
)))
977 best_probability
= prob
, best_predictor
= predictor
;
980 d
= (combined_probability
* probability
981 + (REG_BR_PROB_BASE
- combined_probability
)
982 * (REG_BR_PROB_BASE
- probability
));
984 /* Use FP math to avoid overflows of 32bit integers. */
986 /* If one probability is 0% and one 100%, avoid division by zero. */
987 combined_probability
= REG_BR_PROB_BASE
/ 2;
989 combined_probability
= (((double) combined_probability
)
991 * REG_BR_PROB_BASE
/ d
+ 0.5);
995 /* Decide which heuristic to use. In case we didn't match anything,
996 use no_prediction heuristic, in case we did match, use either
997 first match or Dempster-Shaffer theory depending on the flags. */
999 if (predictor_info
[best_predictor
].flags
& PRED_FLAG_FIRST_MATCH
)
1003 dump_prediction (dump_file
, PRED_NO_PREDICTION
, combined_probability
, bb
, true);
1006 dump_prediction (dump_file
, PRED_DS_THEORY
, combined_probability
, bb
,
1008 dump_prediction (dump_file
, PRED_FIRST_MATCH
, best_probability
, bb
,
1013 combined_probability
= best_probability
;
1014 dump_prediction (dump_file
, PRED_COMBINED
, combined_probability
, bb
, true);
1018 for (pred
= (struct edge_prediction
*) *preds
; pred
; pred
= pred
->ep_next
)
1020 enum br_predictor predictor
= pred
->ep_predictor
;
1021 int probability
= pred
->ep_probability
;
1023 if (pred
->ep_edge
!= EDGE_SUCC (bb
, 0))
1024 probability
= REG_BR_PROB_BASE
- probability
;
1025 dump_prediction (dump_file
, predictor
, probability
, bb
,
1026 !first_match
|| best_predictor
== predictor
);
1029 clear_bb_predictions (bb
);
1033 first
->probability
= combined_probability
;
1034 second
->probability
= REG_BR_PROB_BASE
- combined_probability
;
1038 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1039 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1041 T1 and T2 should be one of the following cases:
1042 1. T1 is SSA_NAME, T2 is NULL
1043 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1044 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1047 strips_small_constant (tree t1
, tree t2
)
1054 else if (TREE_CODE (t1
) == SSA_NAME
)
1056 else if (host_integerp (t1
, 0))
1057 value
= tree_low_cst (t1
, 0);
1063 else if (host_integerp (t2
, 0))
1064 value
= tree_low_cst (t2
, 0);
1065 else if (TREE_CODE (t2
) == SSA_NAME
)
1073 if (value
<= 4 && value
>= -4)
1079 /* Return the SSA_NAME in T or T's operands.
1080 Return NULL if SSA_NAME cannot be found. */
1083 get_base_value (tree t
)
1085 if (TREE_CODE (t
) == SSA_NAME
)
1088 if (!BINARY_CLASS_P (t
))
1091 switch (TREE_OPERAND_LENGTH (t
))
1094 return strips_small_constant (TREE_OPERAND (t
, 0), NULL
);
1096 return strips_small_constant (TREE_OPERAND (t
, 0),
1097 TREE_OPERAND (t
, 1));
1103 /* Check the compare STMT in LOOP. If it compares an induction
1104 variable to a loop invariant, return true, and save
1105 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1106 Otherwise return false and set LOOP_INVAIANT to NULL. */
1109 is_comparison_with_loop_invariant_p (gimple stmt
, struct loop
*loop
,
1110 tree
*loop_invariant
,
1111 enum tree_code
*compare_code
,
1115 tree op0
, op1
, bound
, base
;
1117 enum tree_code code
;
1120 code
= gimple_cond_code (stmt
);
1121 *loop_invariant
= NULL
;
1137 op0
= gimple_cond_lhs (stmt
);
1138 op1
= gimple_cond_rhs (stmt
);
1140 if ((TREE_CODE (op0
) != SSA_NAME
&& TREE_CODE (op0
) != INTEGER_CST
)
1141 || (TREE_CODE (op1
) != SSA_NAME
&& TREE_CODE (op1
) != INTEGER_CST
))
1143 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op0
, &iv0
, true))
1145 if (!simple_iv (loop
, loop_containing_stmt (stmt
), op1
, &iv1
, true))
1147 if (TREE_CODE (iv0
.step
) != INTEGER_CST
1148 || TREE_CODE (iv1
.step
) != INTEGER_CST
)
1150 if ((integer_zerop (iv0
.step
) && integer_zerop (iv1
.step
))
1151 || (!integer_zerop (iv0
.step
) && !integer_zerop (iv1
.step
)))
1154 if (integer_zerop (iv0
.step
))
1156 if (code
!= NE_EXPR
&& code
!= EQ_EXPR
)
1157 code
= invert_tree_comparison (code
, false);
1160 if (host_integerp (iv1
.step
, 0))
1169 if (host_integerp (iv0
.step
, 0))
1175 if (TREE_CODE (bound
) != INTEGER_CST
)
1176 bound
= get_base_value (bound
);
1179 if (TREE_CODE (base
) != INTEGER_CST
)
1180 base
= get_base_value (base
);
1184 *loop_invariant
= bound
;
1185 *compare_code
= code
;
1187 *loop_iv_base
= base
;
1191 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1194 expr_coherent_p (tree t1
, tree t2
)
1197 tree ssa_name_1
= NULL
;
1198 tree ssa_name_2
= NULL
;
1200 gcc_assert (TREE_CODE (t1
) == SSA_NAME
|| TREE_CODE (t1
) == INTEGER_CST
);
1201 gcc_assert (TREE_CODE (t2
) == SSA_NAME
|| TREE_CODE (t2
) == INTEGER_CST
);
1206 if (TREE_CODE (t1
) == INTEGER_CST
&& TREE_CODE (t2
) == INTEGER_CST
)
1208 if (TREE_CODE (t1
) == INTEGER_CST
|| TREE_CODE (t2
) == INTEGER_CST
)
1211 /* Check to see if t1 is expressed/defined with t2. */
1212 stmt
= SSA_NAME_DEF_STMT (t1
);
1213 gcc_assert (stmt
!= NULL
);
1214 if (is_gimple_assign (stmt
))
1216 ssa_name_1
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1217 if (ssa_name_1
&& ssa_name_1
== t2
)
1221 /* Check to see if t2 is expressed/defined with t1. */
1222 stmt
= SSA_NAME_DEF_STMT (t2
);
1223 gcc_assert (stmt
!= NULL
);
1224 if (is_gimple_assign (stmt
))
1226 ssa_name_2
= SINGLE_SSA_TREE_OPERAND (stmt
, SSA_OP_USE
);
1227 if (ssa_name_2
&& ssa_name_2
== t1
)
1231 /* Compare if t1 and t2's def_stmts are identical. */
1232 if (ssa_name_2
!= NULL
&& ssa_name_1
== ssa_name_2
)
1238 /* Predict branch probability of BB when BB contains a branch that compares
1239 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1240 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1243 for (int i = 0; i < bound; i++) {
1250 In this loop, we will predict the branch inside the loop to be taken. */
1253 predict_iv_comparison (struct loop
*loop
, basic_block bb
,
1254 tree loop_bound_var
,
1255 tree loop_iv_base_var
,
1256 enum tree_code loop_bound_code
,
1257 int loop_bound_step
)
1260 tree compare_var
, compare_base
;
1261 enum tree_code compare_code
;
1262 tree compare_step_var
;
1266 if (predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1267 || predicted_by_p (bb
, PRED_LOOP_ITERATIONS
)
1268 || predicted_by_p (bb
, PRED_LOOP_EXIT
))
1271 stmt
= last_stmt (bb
);
1272 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
1274 if (!is_comparison_with_loop_invariant_p (stmt
, loop
, &compare_var
,
1280 /* Find the taken edge. */
1281 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
1282 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
1285 /* When comparing an IV to a loop invariant, NE is more likely to be
1286 taken while EQ is more likely to be not-taken. */
1287 if (compare_code
== NE_EXPR
)
1289 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1292 else if (compare_code
== EQ_EXPR
)
1294 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1298 if (!expr_coherent_p (loop_iv_base_var
, compare_base
))
1301 /* If loop bound, base and compare bound are all constants, we can
1302 calculate the probability directly. */
1303 if (host_integerp (loop_bound_var
, 0)
1304 && host_integerp (compare_var
, 0)
1305 && host_integerp (compare_base
, 0))
1308 bool of
, overflow
= false;
1309 double_int mod
, compare_count
, tem
, loop_count
;
1311 double_int loop_bound
= tree_to_double_int (loop_bound_var
);
1312 double_int compare_bound
= tree_to_double_int (compare_var
);
1313 double_int base
= tree_to_double_int (compare_base
);
1314 double_int compare_step
= tree_to_double_int (compare_step_var
);
1316 /* (loop_bound - base) / compare_step */
1317 tem
= loop_bound
.sub_with_overflow (base
, &of
);
1319 loop_count
= tem
.divmod_with_overflow (compare_step
,
1324 if ((!compare_step
.is_negative ())
1325 ^ (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1327 /* (loop_bound - compare_bound) / compare_step */
1328 tem
= loop_bound
.sub_with_overflow (compare_bound
, &of
);
1330 compare_count
= tem
.divmod_with_overflow (compare_step
,
1337 /* (compare_bound - base) / compare_step */
1338 tem
= compare_bound
.sub_with_overflow (base
, &of
);
1340 compare_count
= tem
.divmod_with_overflow (compare_step
,
1345 if (compare_code
== LE_EXPR
|| compare_code
== GE_EXPR
)
1347 if (loop_bound_code
== LE_EXPR
|| loop_bound_code
== GE_EXPR
)
1349 if (compare_count
.is_negative ())
1350 compare_count
= double_int_zero
;
1351 if (loop_count
.is_negative ())
1352 loop_count
= double_int_zero
;
1353 if (loop_count
.is_zero ())
1355 else if (compare_count
.scmp (loop_count
) == 1)
1356 probability
= REG_BR_PROB_BASE
;
1359 /* If loop_count is too big, such that REG_BR_PROB_BASE * loop_count
1360 could overflow, shift both loop_count and compare_count right
1361 a bit so that it doesn't overflow. Note both counts are known not
1362 to be negative at this point. */
1363 int clz_bits
= clz_hwi (loop_count
.high
);
1364 gcc_assert (REG_BR_PROB_BASE
< 32768);
1367 loop_count
.arshift (16 - clz_bits
, HOST_BITS_PER_DOUBLE_INT
);
1368 compare_count
.arshift (16 - clz_bits
, HOST_BITS_PER_DOUBLE_INT
);
1370 tem
= compare_count
.mul_with_sign (double_int::from_shwi
1371 (REG_BR_PROB_BASE
), true, &of
);
1373 tem
= tem
.divmod (loop_count
, true, TRUNC_DIV_EXPR
, &mod
);
1374 probability
= tem
.to_uhwi ();
1378 predict_edge (then_edge
, PRED_LOOP_IV_COMPARE
, probability
);
1383 if (expr_coherent_p (loop_bound_var
, compare_var
))
1385 if ((loop_bound_code
== LT_EXPR
|| loop_bound_code
== LE_EXPR
)
1386 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1387 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1388 else if ((loop_bound_code
== GT_EXPR
|| loop_bound_code
== GE_EXPR
)
1389 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1390 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1391 else if (loop_bound_code
== NE_EXPR
)
1393 /* If the loop backedge condition is "(i != bound)", we do
1394 the comparison based on the step of IV:
1395 * step < 0 : backedge condition is like (i > bound)
1396 * step > 0 : backedge condition is like (i < bound) */
1397 gcc_assert (loop_bound_step
!= 0);
1398 if (loop_bound_step
> 0
1399 && (compare_code
== LT_EXPR
1400 || compare_code
== LE_EXPR
))
1401 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1402 else if (loop_bound_step
< 0
1403 && (compare_code
== GT_EXPR
1404 || compare_code
== GE_EXPR
))
1405 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1407 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1410 /* The branch is predicted not-taken if loop_bound_code is
1411 opposite with compare_code. */
1412 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1414 else if (expr_coherent_p (loop_iv_base_var
, compare_var
))
1417 for (i = s; i < h; i++)
1419 The branch should be predicted taken. */
1420 if (loop_bound_step
> 0
1421 && (compare_code
== GT_EXPR
|| compare_code
== GE_EXPR
))
1422 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1423 else if (loop_bound_step
< 0
1424 && (compare_code
== LT_EXPR
|| compare_code
== LE_EXPR
))
1425 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, TAKEN
);
1427 predict_edge_def (then_edge
, PRED_LOOP_IV_COMPARE_GUESS
, NOT_TAKEN
);
1431 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1432 exits are resulted from short-circuit conditions that will generate an
1435 if (foo() || global > 10)
1438 This will be translated into:
1443 if foo() goto BB6 else goto BB5
1445 if global > 10 goto BB6 else goto BB7
1449 iftmp = (PHI 0(BB5), 1(BB6))
1450 if iftmp == 1 goto BB8 else goto BB3
1452 outside of the loop...
1454 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1455 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1456 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1457 exits to predict them using PRED_LOOP_EXIT. */
1460 predict_extra_loop_exits (edge exit_edge
)
1463 bool check_value_one
;
1465 tree cmp_rhs
, cmp_lhs
;
1466 gimple cmp_stmt
= last_stmt (exit_edge
->src
);
1468 if (!cmp_stmt
|| gimple_code (cmp_stmt
) != GIMPLE_COND
)
1470 cmp_rhs
= gimple_cond_rhs (cmp_stmt
);
1471 cmp_lhs
= gimple_cond_lhs (cmp_stmt
);
1472 if (!TREE_CONSTANT (cmp_rhs
)
1473 || !(integer_zerop (cmp_rhs
) || integer_onep (cmp_rhs
)))
1475 if (TREE_CODE (cmp_lhs
) != SSA_NAME
)
1478 /* If check_value_one is true, only the phi_args with value '1' will lead
1479 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1481 check_value_one
= (((integer_onep (cmp_rhs
))
1482 ^ (gimple_cond_code (cmp_stmt
) == EQ_EXPR
))
1483 ^ ((exit_edge
->flags
& EDGE_TRUE_VALUE
) != 0));
1485 phi_stmt
= SSA_NAME_DEF_STMT (cmp_lhs
);
1486 if (!phi_stmt
|| gimple_code (phi_stmt
) != GIMPLE_PHI
)
1489 for (i
= 0; i
< gimple_phi_num_args (phi_stmt
); i
++)
1493 tree val
= gimple_phi_arg_def (phi_stmt
, i
);
1494 edge e
= gimple_phi_arg_edge (phi_stmt
, i
);
1496 if (!TREE_CONSTANT (val
) || !(integer_zerop (val
) || integer_onep (val
)))
1498 if ((check_value_one
^ integer_onep (val
)) == 1)
1500 if (EDGE_COUNT (e
->src
->succs
) != 1)
1502 predict_paths_leading_to_edge (e
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1506 FOR_EACH_EDGE (e1
, ei
, e
->src
->preds
)
1507 predict_paths_leading_to_edge (e1
, PRED_LOOP_EXIT
, NOT_TAKEN
);
1511 /* Predict edge probabilities by exploiting loop structure. */
1514 predict_loops (void)
1519 /* Try to predict out blocks in a loop that are not part of a
1521 FOR_EACH_LOOP (li
, loop
, 0)
1523 basic_block bb
, *bbs
;
1524 unsigned j
, n_exits
;
1526 struct tree_niter_desc niter_desc
;
1528 struct nb_iter_bound
*nb_iter
;
1529 enum tree_code loop_bound_code
= ERROR_MARK
;
1530 tree loop_bound_step
= NULL
;
1531 tree loop_bound_var
= NULL
;
1532 tree loop_iv_base
= NULL
;
1535 exits
= get_loop_exit_edges (loop
);
1536 n_exits
= exits
.length ();
1543 FOR_EACH_VEC_ELT (exits
, j
, ex
)
1546 HOST_WIDE_INT nitercst
;
1547 int max
= PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS
);
1549 enum br_predictor predictor
;
1551 predict_extra_loop_exits (ex
);
1553 if (number_of_iterations_exit (loop
, ex
, &niter_desc
, false, false))
1554 niter
= niter_desc
.niter
;
1555 if (!niter
|| TREE_CODE (niter_desc
.niter
) != INTEGER_CST
)
1556 niter
= loop_niter_by_eval (loop
, ex
);
1558 if (TREE_CODE (niter
) == INTEGER_CST
)
1560 if (host_integerp (niter
, 1)
1562 && compare_tree_int (niter
, max
- 1) == -1)
1563 nitercst
= tree_low_cst (niter
, 1) + 1;
1566 predictor
= PRED_LOOP_ITERATIONS
;
1568 /* If we have just one exit and we can derive some information about
1569 the number of iterations of the loop from the statements inside
1570 the loop, use it to predict this exit. */
1571 else if (n_exits
== 1)
1573 nitercst
= estimated_stmt_executions_int (loop
);
1579 predictor
= PRED_LOOP_ITERATIONS_GUESSED
;
1584 /* If the prediction for number of iterations is zero, do not
1585 predict the exit edges. */
1589 probability
= ((REG_BR_PROB_BASE
+ nitercst
/ 2) / nitercst
);
1590 predict_edge (ex
, predictor
, probability
);
1594 /* Find information about loop bound variables. */
1595 for (nb_iter
= loop
->bounds
; nb_iter
;
1596 nb_iter
= nb_iter
->next
)
1598 && gimple_code (nb_iter
->stmt
) == GIMPLE_COND
)
1600 stmt
= nb_iter
->stmt
;
1603 if (!stmt
&& last_stmt (loop
->header
)
1604 && gimple_code (last_stmt (loop
->header
)) == GIMPLE_COND
)
1605 stmt
= last_stmt (loop
->header
);
1607 is_comparison_with_loop_invariant_p (stmt
, loop
,
1613 bbs
= get_loop_body (loop
);
1615 for (j
= 0; j
< loop
->num_nodes
; j
++)
1617 int header_found
= 0;
1623 /* Bypass loop heuristics on continue statement. These
1624 statements construct loops via "non-loop" constructs
1625 in the source language and are better to be handled
1627 if (predicted_by_p (bb
, PRED_CONTINUE
))
1630 /* Loop branch heuristics - predict an edge back to a
1631 loop's head as taken. */
1632 if (bb
== loop
->latch
)
1634 e
= find_edge (loop
->latch
, loop
->header
);
1638 predict_edge_def (e
, PRED_LOOP_BRANCH
, TAKEN
);
1642 /* Loop exit heuristics - predict an edge exiting the loop if the
1643 conditional has no loop header successors as not taken. */
1645 /* If we already used more reliable loop exit predictors, do not
1646 bother with PRED_LOOP_EXIT. */
1647 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS_GUESSED
)
1648 && !predicted_by_p (bb
, PRED_LOOP_ITERATIONS
))
1650 /* For loop with many exits we don't want to predict all exits
1651 with the pretty large probability, because if all exits are
1652 considered in row, the loop would be predicted to iterate
1653 almost never. The code to divide probability by number of
1654 exits is very rough. It should compute the number of exits
1655 taken in each patch through function (not the overall number
1656 of exits that might be a lot higher for loops with wide switch
1657 statements in them) and compute n-th square root.
1659 We limit the minimal probability by 2% to avoid
1660 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1661 as this was causing regression in perl benchmark containing such
1664 int probability
= ((REG_BR_PROB_BASE
1665 - predictor_info
[(int) PRED_LOOP_EXIT
].hitrate
)
1667 if (probability
< HITRATE (2))
1668 probability
= HITRATE (2);
1669 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1670 if (e
->dest
->index
< NUM_FIXED_BLOCKS
1671 || !flow_bb_inside_loop_p (loop
, e
->dest
))
1672 predict_edge (e
, PRED_LOOP_EXIT
, probability
);
1675 predict_iv_comparison (loop
, bb
, loop_bound_var
, loop_iv_base
,
1677 tree_low_cst (loop_bound_step
, 0));
1680 /* Free basic blocks from get_loop_body. */
1685 /* Attempt to predict probabilities of BB outgoing edges using local
1688 bb_estimate_probability_locally (basic_block bb
)
1690 rtx last_insn
= BB_END (bb
);
1693 if (! can_predict_insn_p (last_insn
))
1695 cond
= get_condition (last_insn
, NULL
, false, false);
1699 /* Try "pointer heuristic."
1700 A comparison ptr == 0 is predicted as false.
1701 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1702 if (COMPARISON_P (cond
)
1703 && ((REG_P (XEXP (cond
, 0)) && REG_POINTER (XEXP (cond
, 0)))
1704 || (REG_P (XEXP (cond
, 1)) && REG_POINTER (XEXP (cond
, 1)))))
1706 if (GET_CODE (cond
) == EQ
)
1707 predict_insn_def (last_insn
, PRED_POINTER
, NOT_TAKEN
);
1708 else if (GET_CODE (cond
) == NE
)
1709 predict_insn_def (last_insn
, PRED_POINTER
, TAKEN
);
1713 /* Try "opcode heuristic."
1714 EQ tests are usually false and NE tests are usually true. Also,
1715 most quantities are positive, so we can make the appropriate guesses
1716 about signed comparisons against zero. */
1717 switch (GET_CODE (cond
))
1720 /* Unconditional branch. */
1721 predict_insn_def (last_insn
, PRED_UNCONDITIONAL
,
1722 cond
== const0_rtx
? NOT_TAKEN
: TAKEN
);
1727 /* Floating point comparisons appears to behave in a very
1728 unpredictable way because of special role of = tests in
1730 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1732 /* Comparisons with 0 are often used for booleans and there is
1733 nothing useful to predict about them. */
1734 else if (XEXP (cond
, 1) == const0_rtx
1735 || XEXP (cond
, 0) == const0_rtx
)
1738 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, NOT_TAKEN
);
1743 /* Floating point comparisons appears to behave in a very
1744 unpredictable way because of special role of = tests in
1746 if (FLOAT_MODE_P (GET_MODE (XEXP (cond
, 0))))
1748 /* Comparisons with 0 are often used for booleans and there is
1749 nothing useful to predict about them. */
1750 else if (XEXP (cond
, 1) == const0_rtx
1751 || XEXP (cond
, 0) == const0_rtx
)
1754 predict_insn_def (last_insn
, PRED_OPCODE_NONEQUAL
, TAKEN
);
1758 predict_insn_def (last_insn
, PRED_FPOPCODE
, TAKEN
);
1762 predict_insn_def (last_insn
, PRED_FPOPCODE
, NOT_TAKEN
);
1767 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1768 || XEXP (cond
, 1) == constm1_rtx
)
1769 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, NOT_TAKEN
);
1774 if (XEXP (cond
, 1) == const0_rtx
|| XEXP (cond
, 1) == const1_rtx
1775 || XEXP (cond
, 1) == constm1_rtx
)
1776 predict_insn_def (last_insn
, PRED_OPCODE_POSITIVE
, TAKEN
);
1784 /* Set edge->probability for each successor edge of BB. */
1786 guess_outgoing_edge_probabilities (basic_block bb
)
1788 bb_estimate_probability_locally (bb
);
1789 combine_predictions_for_insn (BB_END (bb
), bb
);
1792 static tree
expr_expected_value (tree
, bitmap
);
1794 /* Helper function for expr_expected_value. */
1797 expr_expected_value_1 (tree type
, tree op0
, enum tree_code code
,
1798 tree op1
, bitmap visited
)
1802 if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
)
1804 if (TREE_CONSTANT (op0
))
1807 if (code
!= SSA_NAME
)
1810 def
= SSA_NAME_DEF_STMT (op0
);
1812 /* If we were already here, break the infinite cycle. */
1813 if (!bitmap_set_bit (visited
, SSA_NAME_VERSION (op0
)))
1816 if (gimple_code (def
) == GIMPLE_PHI
)
1818 /* All the arguments of the PHI node must have the same constant
1820 int i
, n
= gimple_phi_num_args (def
);
1821 tree val
= NULL
, new_val
;
1823 for (i
= 0; i
< n
; i
++)
1825 tree arg
= PHI_ARG_DEF (def
, i
);
1827 /* If this PHI has itself as an argument, we cannot
1828 determine the string length of this argument. However,
1829 if we can find an expected constant value for the other
1830 PHI args then we can still be sure that this is
1831 likely a constant. So be optimistic and just
1832 continue with the next argument. */
1833 if (arg
== PHI_RESULT (def
))
1836 new_val
= expr_expected_value (arg
, visited
);
1841 else if (!operand_equal_p (val
, new_val
, false))
1846 if (is_gimple_assign (def
))
1848 if (gimple_assign_lhs (def
) != op0
)
1851 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def
)),
1852 gimple_assign_rhs1 (def
),
1853 gimple_assign_rhs_code (def
),
1854 gimple_assign_rhs2 (def
),
1858 if (is_gimple_call (def
))
1860 tree decl
= gimple_call_fndecl (def
);
1863 if (DECL_BUILT_IN_CLASS (decl
) == BUILT_IN_NORMAL
)
1864 switch (DECL_FUNCTION_CODE (decl
))
1866 case BUILT_IN_EXPECT
:
1869 if (gimple_call_num_args (def
) != 2)
1871 val
= gimple_call_arg (def
, 0);
1872 if (TREE_CONSTANT (val
))
1874 return gimple_call_arg (def
, 1);
1877 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N
:
1878 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1
:
1879 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2
:
1880 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4
:
1881 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8
:
1882 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16
:
1883 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE
:
1884 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N
:
1885 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1
:
1886 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2
:
1887 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4
:
1888 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8
:
1889 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16
:
1890 /* Assume that any given atomic operation has low contention,
1891 and thus the compare-and-swap operation succeeds. */
1892 return boolean_true_node
;
1899 if (get_gimple_rhs_class (code
) == GIMPLE_BINARY_RHS
)
1902 op0
= expr_expected_value (op0
, visited
);
1905 op1
= expr_expected_value (op1
, visited
);
1908 res
= fold_build2 (code
, type
, op0
, op1
);
1909 if (TREE_CONSTANT (res
))
1913 if (get_gimple_rhs_class (code
) == GIMPLE_UNARY_RHS
)
1916 op0
= expr_expected_value (op0
, visited
);
1919 res
= fold_build1 (code
, type
, op0
);
1920 if (TREE_CONSTANT (res
))
1927 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1928 The function is used by builtin_expect branch predictor so the evidence
1929 must come from this construct and additional possible constant folding.
1931 We may want to implement more involved value guess (such as value range
1932 propagation based prediction), but such tricks shall go to new
1936 expr_expected_value (tree expr
, bitmap visited
)
1938 enum tree_code code
;
1941 if (TREE_CONSTANT (expr
))
1944 extract_ops_from_tree (expr
, &code
, &op0
, &op1
);
1945 return expr_expected_value_1 (TREE_TYPE (expr
),
1946 op0
, code
, op1
, visited
);
1950 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1951 we no longer need. */
1953 strip_predict_hints (void)
1961 gimple_stmt_iterator bi
;
1962 for (bi
= gsi_start_bb (bb
); !gsi_end_p (bi
);)
1964 gimple stmt
= gsi_stmt (bi
);
1966 if (gimple_code (stmt
) == GIMPLE_PREDICT
)
1968 gsi_remove (&bi
, true);
1971 else if (gimple_code (stmt
) == GIMPLE_CALL
)
1973 tree fndecl
= gimple_call_fndecl (stmt
);
1976 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
1977 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_EXPECT
1978 && gimple_call_num_args (stmt
) == 2)
1980 var
= gimple_call_lhs (stmt
);
1984 = gimple_build_assign (var
, gimple_call_arg (stmt
, 0));
1985 gsi_replace (&bi
, ass_stmt
, true);
1989 gsi_remove (&bi
, true);
2000 /* Predict using opcode of the last statement in basic block. */
2002 tree_predict_by_opcode (basic_block bb
)
2004 gimple stmt
= last_stmt (bb
);
2013 if (!stmt
|| gimple_code (stmt
) != GIMPLE_COND
)
2015 FOR_EACH_EDGE (then_edge
, ei
, bb
->succs
)
2016 if (then_edge
->flags
& EDGE_TRUE_VALUE
)
2018 op0
= gimple_cond_lhs (stmt
);
2019 op1
= gimple_cond_rhs (stmt
);
2020 cmp
= gimple_cond_code (stmt
);
2021 type
= TREE_TYPE (op0
);
2022 visited
= BITMAP_ALLOC (NULL
);
2023 val
= expr_expected_value_1 (boolean_type_node
, op0
, cmp
, op1
, visited
);
2024 BITMAP_FREE (visited
);
2027 int percent
= PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY
);
2029 gcc_assert (percent
>= 0 && percent
<= 100);
2030 if (integer_zerop (val
))
2031 percent
= 100 - percent
;
2032 predict_edge (then_edge
, PRED_BUILTIN_EXPECT
, HITRATE (percent
));
2034 /* Try "pointer heuristic."
2035 A comparison ptr == 0 is predicted as false.
2036 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2037 if (POINTER_TYPE_P (type
))
2040 predict_edge_def (then_edge
, PRED_TREE_POINTER
, NOT_TAKEN
);
2041 else if (cmp
== NE_EXPR
)
2042 predict_edge_def (then_edge
, PRED_TREE_POINTER
, TAKEN
);
2046 /* Try "opcode heuristic."
2047 EQ tests are usually false and NE tests are usually true. Also,
2048 most quantities are positive, so we can make the appropriate guesses
2049 about signed comparisons against zero. */
2054 /* Floating point comparisons appears to behave in a very
2055 unpredictable way because of special role of = tests in
2057 if (FLOAT_TYPE_P (type
))
2059 /* Comparisons with 0 are often used for booleans and there is
2060 nothing useful to predict about them. */
2061 else if (integer_zerop (op0
) || integer_zerop (op1
))
2064 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, NOT_TAKEN
);
2069 /* Floating point comparisons appears to behave in a very
2070 unpredictable way because of special role of = tests in
2072 if (FLOAT_TYPE_P (type
))
2074 /* Comparisons with 0 are often used for booleans and there is
2075 nothing useful to predict about them. */
2076 else if (integer_zerop (op0
)
2077 || integer_zerop (op1
))
2080 predict_edge_def (then_edge
, PRED_TREE_OPCODE_NONEQUAL
, TAKEN
);
2084 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, TAKEN
);
2087 case UNORDERED_EXPR
:
2088 predict_edge_def (then_edge
, PRED_TREE_FPOPCODE
, NOT_TAKEN
);
2093 if (integer_zerop (op1
)
2094 || integer_onep (op1
)
2095 || integer_all_onesp (op1
)
2098 || real_minus_onep (op1
))
2099 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, NOT_TAKEN
);
2104 if (integer_zerop (op1
)
2105 || integer_onep (op1
)
2106 || integer_all_onesp (op1
)
2109 || real_minus_onep (op1
))
2110 predict_edge_def (then_edge
, PRED_TREE_OPCODE_POSITIVE
, TAKEN
);
2118 /* Try to guess whether the value of return means error code. */
2120 static enum br_predictor
2121 return_prediction (tree val
, enum prediction
*prediction
)
2125 return PRED_NO_PREDICTION
;
2126 /* Different heuristics for pointers and scalars. */
2127 if (POINTER_TYPE_P (TREE_TYPE (val
)))
2129 /* NULL is usually not returned. */
2130 if (integer_zerop (val
))
2132 *prediction
= NOT_TAKEN
;
2133 return PRED_NULL_RETURN
;
2136 else if (INTEGRAL_TYPE_P (TREE_TYPE (val
)))
2138 /* Negative return values are often used to indicate
2140 if (TREE_CODE (val
) == INTEGER_CST
2141 && tree_int_cst_sgn (val
) < 0)
2143 *prediction
= NOT_TAKEN
;
2144 return PRED_NEGATIVE_RETURN
;
2146 /* Constant return values seems to be commonly taken.
2147 Zero/one often represent booleans so exclude them from the
2149 if (TREE_CONSTANT (val
)
2150 && (!integer_zerop (val
) && !integer_onep (val
)))
2152 *prediction
= TAKEN
;
2153 return PRED_CONST_RETURN
;
2156 return PRED_NO_PREDICTION
;
2159 /* Find the basic block with return expression and look up for possible
2160 return value trying to apply RETURN_PREDICTION heuristics. */
2162 apply_return_prediction (void)
2164 gimple return_stmt
= NULL
;
2168 int phi_num_args
, i
;
2169 enum br_predictor pred
;
2170 enum prediction direction
;
2173 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
2175 return_stmt
= last_stmt (e
->src
);
2177 && gimple_code (return_stmt
) == GIMPLE_RETURN
)
2182 return_val
= gimple_return_retval (return_stmt
);
2185 if (TREE_CODE (return_val
) != SSA_NAME
2186 || !SSA_NAME_DEF_STMT (return_val
)
2187 || gimple_code (SSA_NAME_DEF_STMT (return_val
)) != GIMPLE_PHI
)
2189 phi
= SSA_NAME_DEF_STMT (return_val
);
2190 phi_num_args
= gimple_phi_num_args (phi
);
2191 pred
= return_prediction (PHI_ARG_DEF (phi
, 0), &direction
);
2193 /* Avoid the degenerate case where all return values form the function
2194 belongs to same category (ie they are all positive constants)
2195 so we can hardly say something about them. */
2196 for (i
= 1; i
< phi_num_args
; i
++)
2197 if (pred
!= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
))
2199 if (i
!= phi_num_args
)
2200 for (i
= 0; i
< phi_num_args
; i
++)
2202 pred
= return_prediction (PHI_ARG_DEF (phi
, i
), &direction
);
2203 if (pred
!= PRED_NO_PREDICTION
)
2204 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi
, i
), pred
,
2209 /* Look for basic block that contains unlikely to happen events
2210 (such as noreturn calls) and mark all paths leading to execution
2211 of this basic blocks as unlikely. */
2214 tree_bb_level_predictions (void)
2217 bool has_return_edges
= false;
2221 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
2222 if (!(e
->flags
& (EDGE_ABNORMAL
| EDGE_FAKE
| EDGE_EH
)))
2224 has_return_edges
= true;
2228 apply_return_prediction ();
2232 gimple_stmt_iterator gsi
;
2234 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2236 gimple stmt
= gsi_stmt (gsi
);
2239 if (is_gimple_call (stmt
))
2241 if ((gimple_call_flags (stmt
) & ECF_NORETURN
)
2242 && has_return_edges
)
2243 predict_paths_leading_to (bb
, PRED_NORETURN
,
2245 decl
= gimple_call_fndecl (stmt
);
2247 && lookup_attribute ("cold",
2248 DECL_ATTRIBUTES (decl
)))
2249 predict_paths_leading_to (bb
, PRED_COLD_FUNCTION
,
2252 else if (gimple_code (stmt
) == GIMPLE_PREDICT
)
2254 predict_paths_leading_to (bb
, gimple_predict_predictor (stmt
),
2255 gimple_predict_outcome (stmt
));
2256 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2257 hints to callers. */
2263 #ifdef ENABLE_CHECKING
2265 /* Callback for pointer_map_traverse, asserts that the pointer map is
2269 assert_is_empty (const void *key ATTRIBUTE_UNUSED
, void **value
,
2270 void *data ATTRIBUTE_UNUSED
)
2272 gcc_assert (!*value
);
2277 /* Predict branch probabilities and estimate profile for basic block BB. */
2280 tree_estimate_probability_bb (basic_block bb
)
2286 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2288 /* Predict edges to user labels with attributes. */
2289 if (e
->dest
!= EXIT_BLOCK_PTR
)
2291 gimple_stmt_iterator gi
;
2292 for (gi
= gsi_start_bb (e
->dest
); !gsi_end_p (gi
); gsi_next (&gi
))
2294 gimple stmt
= gsi_stmt (gi
);
2297 if (gimple_code (stmt
) != GIMPLE_LABEL
)
2299 decl
= gimple_label_label (stmt
);
2300 if (DECL_ARTIFICIAL (decl
))
2303 /* Finally, we have a user-defined label. */
2304 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl
)))
2305 predict_edge_def (e
, PRED_COLD_LABEL
, NOT_TAKEN
);
2306 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl
)))
2307 predict_edge_def (e
, PRED_HOT_LABEL
, TAKEN
);
2311 /* Predict early returns to be probable, as we've already taken
2312 care for error returns and other cases are often used for
2313 fast paths through function.
2315 Since we've already removed the return statements, we are
2316 looking for CFG like:
2326 if (e
->dest
!= bb
->next_bb
2327 && e
->dest
!= EXIT_BLOCK_PTR
2328 && single_succ_p (e
->dest
)
2329 && single_succ_edge (e
->dest
)->dest
== EXIT_BLOCK_PTR
2330 && (last
= last_stmt (e
->dest
)) != NULL
2331 && gimple_code (last
) == GIMPLE_RETURN
)
2336 if (single_succ_p (bb
))
2338 FOR_EACH_EDGE (e1
, ei1
, bb
->preds
)
2339 if (!predicted_by_p (e1
->src
, PRED_NULL_RETURN
)
2340 && !predicted_by_p (e1
->src
, PRED_CONST_RETURN
)
2341 && !predicted_by_p (e1
->src
, PRED_NEGATIVE_RETURN
))
2342 predict_edge_def (e1
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2345 if (!predicted_by_p (e
->src
, PRED_NULL_RETURN
)
2346 && !predicted_by_p (e
->src
, PRED_CONST_RETURN
)
2347 && !predicted_by_p (e
->src
, PRED_NEGATIVE_RETURN
))
2348 predict_edge_def (e
, PRED_TREE_EARLY_RETURN
, NOT_TAKEN
);
2351 /* Look for block we are guarding (ie we dominate it,
2352 but it doesn't postdominate us). */
2353 if (e
->dest
!= EXIT_BLOCK_PTR
&& e
->dest
!= bb
2354 && dominated_by_p (CDI_DOMINATORS
, e
->dest
, e
->src
)
2355 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e
->dest
))
2357 gimple_stmt_iterator bi
;
2359 /* The call heuristic claims that a guarded function call
2360 is improbable. This is because such calls are often used
2361 to signal exceptional situations such as printing error
2363 for (bi
= gsi_start_bb (e
->dest
); !gsi_end_p (bi
);
2366 gimple stmt
= gsi_stmt (bi
);
2367 if (is_gimple_call (stmt
)
2368 /* Constant and pure calls are hardly used to signalize
2369 something exceptional. */
2370 && gimple_has_side_effects (stmt
))
2372 predict_edge_def (e
, PRED_CALL
, NOT_TAKEN
);
2378 tree_predict_by_opcode (bb
);
2381 /* Predict branch probabilities and estimate profile of the tree CFG.
2382 This function can be called from the loop optimizers to recompute
2383 the profile information. */
2386 tree_estimate_probability (void)
2390 add_noreturn_fake_exit_edges ();
2391 connect_infinite_loops_to_exit ();
2392 /* We use loop_niter_by_eval, which requires that the loops have
2394 create_preheaders (CP_SIMPLE_PREHEADERS
);
2395 calculate_dominance_info (CDI_POST_DOMINATORS
);
2397 bb_predictions
= pointer_map_create ();
2398 tree_bb_level_predictions ();
2399 record_loop_exits ();
2401 if (number_of_loops (cfun
) > 1)
2405 tree_estimate_probability_bb (bb
);
2408 combine_predictions_for_bb (bb
);
2410 #ifdef ENABLE_CHECKING
2411 pointer_map_traverse (bb_predictions
, assert_is_empty
, NULL
);
2413 pointer_map_destroy (bb_predictions
);
2414 bb_predictions
= NULL
;
2416 estimate_bb_frequencies (false);
2417 free_dominance_info (CDI_POST_DOMINATORS
);
2418 remove_fake_exit_edges ();
2421 /* Predict branch probabilities and estimate profile of the tree CFG.
2422 This is the driver function for PASS_PROFILE. */
2425 tree_estimate_probability_driver (void)
2429 loop_optimizer_init (LOOPS_NORMAL
);
2430 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2431 flow_loops_dump (dump_file
, NULL
, 0);
2433 mark_irreducible_loops ();
2435 nb_loops
= number_of_loops (cfun
);
2439 tree_estimate_probability ();
2444 loop_optimizer_finalize ();
2445 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2446 gimple_dump_cfg (dump_file
, dump_flags
);
2447 if (profile_status
== PROFILE_ABSENT
)
2448 profile_status
= PROFILE_GUESSED
;
2452 /* Predict edges to successors of CUR whose sources are not postdominated by
2453 BB by PRED and recurse to all postdominators. */
2456 predict_paths_for_bb (basic_block cur
, basic_block bb
,
2457 enum br_predictor pred
,
2458 enum prediction taken
,
2465 /* We are looking for all edges forming edge cut induced by
2466 set of all blocks postdominated by BB. */
2467 FOR_EACH_EDGE (e
, ei
, cur
->preds
)
2468 if (e
->src
->index
>= NUM_FIXED_BLOCKS
2469 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, bb
))
2475 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2476 if (e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2478 gcc_assert (bb
== cur
|| dominated_by_p (CDI_POST_DOMINATORS
, cur
, bb
));
2480 /* See if there is an edge from e->src that is not abnormal
2481 and does not lead to BB. */
2482 FOR_EACH_EDGE (e2
, ei2
, e
->src
->succs
)
2484 && !(e2
->flags
& (EDGE_EH
| EDGE_FAKE
))
2485 && !dominated_by_p (CDI_POST_DOMINATORS
, e2
->dest
, bb
))
2491 /* If there is non-abnormal path leaving e->src, predict edge
2492 using predictor. Otherwise we need to look for paths
2495 The second may lead to infinite loop in the case we are predicitng
2496 regions that are only reachable by abnormal edges. We simply
2497 prevent visiting given BB twice. */
2499 predict_edge_def (e
, pred
, taken
);
2500 else if (bitmap_set_bit (visited
, e
->src
->index
))
2501 predict_paths_for_bb (e
->src
, e
->src
, pred
, taken
, visited
);
2503 for (son
= first_dom_son (CDI_POST_DOMINATORS
, cur
);
2505 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
2506 predict_paths_for_bb (son
, bb
, pred
, taken
, visited
);
2509 /* Sets branch probabilities according to PREDiction and
2513 predict_paths_leading_to (basic_block bb
, enum br_predictor pred
,
2514 enum prediction taken
)
2516 bitmap visited
= BITMAP_ALLOC (NULL
);
2517 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2518 BITMAP_FREE (visited
);
2521 /* Like predict_paths_leading_to but take edge instead of basic block. */
2524 predict_paths_leading_to_edge (edge e
, enum br_predictor pred
,
2525 enum prediction taken
)
2527 bool has_nonloop_edge
= false;
2531 basic_block bb
= e
->src
;
2532 FOR_EACH_EDGE (e2
, ei
, bb
->succs
)
2533 if (e2
->dest
!= e
->src
&& e2
->dest
!= e
->dest
2534 && !(e
->flags
& (EDGE_EH
| EDGE_FAKE
))
2535 && !dominated_by_p (CDI_POST_DOMINATORS
, e
->src
, e2
->dest
))
2537 has_nonloop_edge
= true;
2540 if (!has_nonloop_edge
)
2542 bitmap visited
= BITMAP_ALLOC (NULL
);
2543 predict_paths_for_bb (bb
, bb
, pred
, taken
, visited
);
2544 BITMAP_FREE (visited
);
2547 predict_edge_def (e
, pred
, taken
);
2550 /* This is used to carry information about basic blocks. It is
2551 attached to the AUX field of the standard CFG block. */
2553 typedef struct block_info_def
2555 /* Estimated frequency of execution of basic_block. */
2558 /* To keep queue of basic blocks to process. */
2561 /* Number of predecessors we need to visit first. */
2565 /* Similar information for edges. */
2566 typedef struct edge_info_def
2568 /* In case edge is a loopback edge, the probability edge will be reached
2569 in case header is. Estimated number of iterations of the loop can be
2570 then computed as 1 / (1 - back_edge_prob). */
2571 sreal back_edge_prob
;
2572 /* True if the edge is a loopback edge in the natural loop. */
2573 unsigned int back_edge
:1;
2576 #define BLOCK_INFO(B) ((block_info) (B)->aux)
2577 #define EDGE_INFO(E) ((edge_info) (E)->aux)
2579 /* Helper function for estimate_bb_frequencies.
2580 Propagate the frequencies in blocks marked in
2581 TOVISIT, starting in HEAD. */
2584 propagate_freq (basic_block head
, bitmap tovisit
)
2593 /* For each basic block we need to visit count number of his predecessors
2594 we need to visit first. */
2595 EXECUTE_IF_SET_IN_BITMAP (tovisit
, 0, i
, bi
)
2600 bb
= BASIC_BLOCK (i
);
2602 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2604 bool visit
= bitmap_bit_p (tovisit
, e
->src
->index
);
2606 if (visit
&& !(e
->flags
& EDGE_DFS_BACK
))
2608 else if (visit
&& dump_file
&& !EDGE_INFO (e
)->back_edge
)
2610 "Irreducible region hit, ignoring edge to %i->%i\n",
2611 e
->src
->index
, bb
->index
);
2613 BLOCK_INFO (bb
)->npredecessors
= count
;
2614 /* When function never returns, we will never process exit block. */
2615 if (!count
&& bb
== EXIT_BLOCK_PTR
)
2616 bb
->count
= bb
->frequency
= 0;
2619 memcpy (&BLOCK_INFO (head
)->frequency
, &real_one
, sizeof (real_one
));
2621 for (bb
= head
; bb
; bb
= nextbb
)
2624 sreal cyclic_probability
, frequency
;
2626 memcpy (&cyclic_probability
, &real_zero
, sizeof (real_zero
));
2627 memcpy (&frequency
, &real_zero
, sizeof (real_zero
));
2629 nextbb
= BLOCK_INFO (bb
)->next
;
2630 BLOCK_INFO (bb
)->next
= NULL
;
2632 /* Compute frequency of basic block. */
2635 #ifdef ENABLE_CHECKING
2636 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2637 gcc_assert (!bitmap_bit_p (tovisit
, e
->src
->index
)
2638 || (e
->flags
& EDGE_DFS_BACK
));
2641 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2642 if (EDGE_INFO (e
)->back_edge
)
2644 sreal_add (&cyclic_probability
, &cyclic_probability
,
2645 &EDGE_INFO (e
)->back_edge_prob
);
2647 else if (!(e
->flags
& EDGE_DFS_BACK
))
2651 /* frequency += (e->probability
2652 * BLOCK_INFO (e->src)->frequency /
2653 REG_BR_PROB_BASE); */
2655 sreal_init (&tmp
, e
->probability
, 0);
2656 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (e
->src
)->frequency
);
2657 sreal_mul (&tmp
, &tmp
, &real_inv_br_prob_base
);
2658 sreal_add (&frequency
, &frequency
, &tmp
);
2661 if (sreal_compare (&cyclic_probability
, &real_zero
) == 0)
2663 memcpy (&BLOCK_INFO (bb
)->frequency
, &frequency
,
2664 sizeof (frequency
));
2668 if (sreal_compare (&cyclic_probability
, &real_almost_one
) > 0)
2670 memcpy (&cyclic_probability
, &real_almost_one
,
2671 sizeof (real_almost_one
));
2674 /* BLOCK_INFO (bb)->frequency = frequency
2675 / (1 - cyclic_probability) */
2677 sreal_sub (&cyclic_probability
, &real_one
, &cyclic_probability
);
2678 sreal_div (&BLOCK_INFO (bb
)->frequency
,
2679 &frequency
, &cyclic_probability
);
2683 bitmap_clear_bit (tovisit
, bb
->index
);
2685 e
= find_edge (bb
, head
);
2690 /* EDGE_INFO (e)->back_edge_prob
2691 = ((e->probability * BLOCK_INFO (bb)->frequency)
2692 / REG_BR_PROB_BASE); */
2694 sreal_init (&tmp
, e
->probability
, 0);
2695 sreal_mul (&tmp
, &tmp
, &BLOCK_INFO (bb
)->frequency
);
2696 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
2697 &tmp
, &real_inv_br_prob_base
);
2700 /* Propagate to successor blocks. */
2701 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2702 if (!(e
->flags
& EDGE_DFS_BACK
)
2703 && BLOCK_INFO (e
->dest
)->npredecessors
)
2705 BLOCK_INFO (e
->dest
)->npredecessors
--;
2706 if (!BLOCK_INFO (e
->dest
)->npredecessors
)
2711 BLOCK_INFO (last
)->next
= e
->dest
;
2719 /* Estimate frequencies in loops at same nest level. */
2722 estimate_loops_at_level (struct loop
*first_loop
)
2726 for (loop
= first_loop
; loop
; loop
= loop
->next
)
2731 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2733 estimate_loops_at_level (loop
->inner
);
2735 /* Find current loop back edge and mark it. */
2736 e
= loop_latch_edge (loop
);
2737 EDGE_INFO (e
)->back_edge
= 1;
2739 bbs
= get_loop_body (loop
);
2740 for (i
= 0; i
< loop
->num_nodes
; i
++)
2741 bitmap_set_bit (tovisit
, bbs
[i
]->index
);
2743 propagate_freq (loop
->header
, tovisit
);
2744 BITMAP_FREE (tovisit
);
2748 /* Propagates frequencies through structure of loops. */
2751 estimate_loops (void)
2753 bitmap tovisit
= BITMAP_ALLOC (NULL
);
2756 /* Start by estimating the frequencies in the loops. */
2757 if (number_of_loops (cfun
) > 1)
2758 estimate_loops_at_level (current_loops
->tree_root
->inner
);
2760 /* Now propagate the frequencies through all the blocks. */
2763 bitmap_set_bit (tovisit
, bb
->index
);
2765 propagate_freq (ENTRY_BLOCK_PTR
, tovisit
);
2766 BITMAP_FREE (tovisit
);
2769 /* Drop the profile for NODE to guessed, and update its frequency based on
2770 whether it is expected to be hot given the CALL_COUNT. */
2773 drop_profile (struct cgraph_node
*node
, gcov_type call_count
)
2775 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2776 /* In the case where this was called by another function with a
2777 dropped profile, call_count will be 0. Since there are no
2778 non-zero call counts to this function, we don't know for sure
2779 whether it is hot, and therefore it will be marked normal below. */
2780 bool hot
= maybe_hot_count_p (NULL
, call_count
);
2784 "Dropping 0 profile for %s/%i. %s based on calls.\n",
2785 cgraph_node_name (node
), node
->order
,
2786 hot
? "Function is hot" : "Function is normal");
2787 /* We only expect to miss profiles for functions that are reached
2788 via non-zero call edges in cases where the function may have
2789 been linked from another module or library (COMDATs and extern
2790 templates). See the comments below for handle_missing_profiles.
2791 Also, only warn in cases where the missing counts exceed the
2792 number of training runs. In certain cases with an execv followed
2793 by a no-return call the profile for the no-return call is not
2794 dumped and there can be a mismatch. */
2795 if (!DECL_COMDAT (node
->decl
) && !DECL_EXTERNAL (node
->decl
)
2796 && call_count
> profile_info
->runs
)
2798 if (flag_profile_correction
)
2802 "Missing counts for called function %s/%i\n",
2803 cgraph_node_name (node
), node
->order
);
2806 warning (0, "Missing counts for called function %s/%i",
2807 cgraph_node_name (node
), node
->order
);
2810 profile_status_for_function (fn
)
2811 = (flag_guess_branch_prob
? PROFILE_GUESSED
: PROFILE_ABSENT
);
2813 = hot
? NODE_FREQUENCY_HOT
: NODE_FREQUENCY_NORMAL
;
2816 /* In the case of COMDAT routines, multiple object files will contain the same
2817 function and the linker will select one for the binary. In that case
2818 all the other copies from the profile instrument binary will be missing
2819 profile counts. Look for cases where this happened, due to non-zero
2820 call counts going to 0-count functions, and drop the profile to guessed
2821 so that we can use the estimated probabilities and avoid optimizing only
2824 The other case where the profile may be missing is when the routine
2825 is not going to be emitted to the object file, e.g. for "extern template"
2826 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
2827 all other cases of non-zero calls to 0-count functions. */
2830 handle_missing_profiles (void)
2832 struct cgraph_node
*node
;
2833 int unlikely_count_fraction
= PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION
);
2834 vec
<struct cgraph_node
*> worklist
;
2835 worklist
.create (64);
2837 /* See if 0 count function has non-0 count callers. In this case we
2838 lost some profile. Drop its function profile to PROFILE_GUESSED. */
2839 FOR_EACH_DEFINED_FUNCTION (node
)
2841 struct cgraph_edge
*e
;
2842 gcov_type call_count
= 0;
2843 struct function
*fn
= DECL_STRUCT_FUNCTION (node
->decl
);
2847 for (e
= node
->callers
; e
; e
= e
->next_caller
)
2848 call_count
+= e
->count
;
2851 && (call_count
* unlikely_count_fraction
>= profile_info
->runs
))
2853 drop_profile (node
, call_count
);
2854 worklist
.safe_push (node
);
2858 /* Propagate the profile dropping to other 0-count COMDATs that are
2859 potentially called by COMDATs we already dropped the profile on. */
2860 while (worklist
.length () > 0)
2862 struct cgraph_edge
*e
;
2864 node
= worklist
.pop ();
2865 for (e
= node
->callees
; e
; e
= e
->next_caller
)
2867 struct cgraph_node
*callee
= e
->callee
;
2868 struct function
*fn
= DECL_STRUCT_FUNCTION (callee
->decl
);
2870 if (callee
->count
> 0)
2872 if (DECL_COMDAT (callee
->decl
) && fn
&& fn
->cfg
2873 && profile_status_for_function (fn
) == PROFILE_READ
)
2875 drop_profile (node
, 0);
2876 worklist
.safe_push (callee
);
2880 worklist
.release ();
2883 /* Convert counts measured by profile driven feedback to frequencies.
2884 Return nonzero iff there was any nonzero execution count. */
2887 counts_to_freqs (void)
2889 gcov_type count_max
, true_count_max
= 0;
2892 /* Don't overwrite the estimated frequencies when the profile for
2893 the function is missing. We may drop this function PROFILE_GUESSED
2894 later in drop_profile (). */
2895 if (!ENTRY_BLOCK_PTR
->count
)
2898 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2899 true_count_max
= MAX (bb
->count
, true_count_max
);
2901 count_max
= MAX (true_count_max
, 1);
2902 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2903 bb
->frequency
= (bb
->count
* BB_FREQ_MAX
+ count_max
/ 2) / count_max
;
2905 return true_count_max
;
2908 /* Return true if function is likely to be expensive, so there is no point to
2909 optimize performance of prologue, epilogue or do inlining at the expense
2910 of code size growth. THRESHOLD is the limit of number of instructions
2911 function can execute at average to be still considered not expensive. */
2914 expensive_function_p (int threshold
)
2916 unsigned int sum
= 0;
2920 /* We can not compute accurately for large thresholds due to scaled
2922 gcc_assert (threshold
<= BB_FREQ_MAX
);
2924 /* Frequencies are out of range. This either means that function contains
2925 internal loop executing more than BB_FREQ_MAX times or profile feedback
2926 is available and function has not been executed at all. */
2927 if (ENTRY_BLOCK_PTR
->frequency
== 0)
2930 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2931 limit
= ENTRY_BLOCK_PTR
->frequency
* threshold
;
2936 FOR_BB_INSNS (bb
, insn
)
2937 if (active_insn_p (insn
))
2939 sum
+= bb
->frequency
;
2948 /* Estimate and propagate basic block frequencies using the given branch
2949 probabilities. If FORCE is true, the frequencies are used to estimate
2950 the counts even when there are already non-zero profile counts. */
2953 estimate_bb_frequencies (bool force
)
2958 if (force
|| profile_status
!= PROFILE_READ
|| !counts_to_freqs ())
2960 static int real_values_initialized
= 0;
2962 if (!real_values_initialized
)
2964 real_values_initialized
= 1;
2965 sreal_init (&real_zero
, 0, 0);
2966 sreal_init (&real_one
, 1, 0);
2967 sreal_init (&real_br_prob_base
, REG_BR_PROB_BASE
, 0);
2968 sreal_init (&real_bb_freq_max
, BB_FREQ_MAX
, 0);
2969 sreal_init (&real_one_half
, 1, -1);
2970 sreal_div (&real_inv_br_prob_base
, &real_one
, &real_br_prob_base
);
2971 sreal_sub (&real_almost_one
, &real_one
, &real_inv_br_prob_base
);
2974 mark_dfs_back_edges ();
2976 single_succ_edge (ENTRY_BLOCK_PTR
)->probability
= REG_BR_PROB_BASE
;
2978 /* Set up block info for each basic block. */
2979 alloc_aux_for_blocks (sizeof (struct block_info_def
));
2980 alloc_aux_for_edges (sizeof (struct edge_info_def
));
2981 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
2986 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2988 sreal_init (&EDGE_INFO (e
)->back_edge_prob
, e
->probability
, 0);
2989 sreal_mul (&EDGE_INFO (e
)->back_edge_prob
,
2990 &EDGE_INFO (e
)->back_edge_prob
,
2991 &real_inv_br_prob_base
);
2995 /* First compute frequencies locally for each loop from innermost
2996 to outermost to examine frequencies for back edges. */
2999 memcpy (&freq_max
, &real_zero
, sizeof (real_zero
));
3001 if (sreal_compare (&freq_max
, &BLOCK_INFO (bb
)->frequency
) < 0)
3002 memcpy (&freq_max
, &BLOCK_INFO (bb
)->frequency
, sizeof (freq_max
));
3004 sreal_div (&freq_max
, &real_bb_freq_max
, &freq_max
);
3005 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
3009 sreal_mul (&tmp
, &BLOCK_INFO (bb
)->frequency
, &freq_max
);
3010 sreal_add (&tmp
, &tmp
, &real_one_half
);
3011 bb
->frequency
= sreal_to_int (&tmp
);
3014 free_aux_for_blocks ();
3015 free_aux_for_edges ();
3017 compute_function_frequency ();
3020 /* Decide whether function is hot, cold or unlikely executed. */
3022 compute_function_frequency (void)
3025 struct cgraph_node
*node
= cgraph_get_node (current_function_decl
);
3027 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
3028 || MAIN_NAME_P (DECL_NAME (current_function_decl
)))
3029 node
->only_called_at_startup
= true;
3030 if (DECL_STATIC_DESTRUCTOR (current_function_decl
))
3031 node
->only_called_at_exit
= true;
3033 if (profile_status
!= PROFILE_READ
)
3035 int flags
= flags_from_decl_or_type (current_function_decl
);
3036 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl
))
3038 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
3039 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl
))
3041 node
->frequency
= NODE_FREQUENCY_HOT
;
3042 else if (flags
& ECF_NORETURN
)
3043 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3044 else if (MAIN_NAME_P (DECL_NAME (current_function_decl
)))
3045 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3046 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
3047 || DECL_STATIC_DESTRUCTOR (current_function_decl
))
3048 node
->frequency
= NODE_FREQUENCY_EXECUTED_ONCE
;
3052 /* Only first time try to drop function into unlikely executed.
3053 After inlining the roundoff errors may confuse us.
3054 Ipa-profile pass will drop functions only called from unlikely
3055 functions to unlikely and that is most of what we care about. */
3056 if (!cfun
->after_inlining
)
3057 node
->frequency
= NODE_FREQUENCY_UNLIKELY_EXECUTED
;
3060 if (maybe_hot_bb_p (cfun
, bb
))
3062 node
->frequency
= NODE_FREQUENCY_HOT
;
3065 if (!probably_never_executed_bb_p (cfun
, bb
))
3066 node
->frequency
= NODE_FREQUENCY_NORMAL
;
3071 gate_estimate_probability (void)
3073 return flag_guess_branch_prob
;
3076 /* Build PREDICT_EXPR. */
3078 build_predict_expr (enum br_predictor predictor
, enum prediction taken
)
3080 tree t
= build1 (PREDICT_EXPR
, void_type_node
,
3081 build_int_cst (integer_type_node
, predictor
));
3082 SET_PREDICT_EXPR_OUTCOME (t
, taken
);
3087 predictor_name (enum br_predictor predictor
)
3089 return predictor_info
[predictor
].name
;
3094 const pass_data pass_data_profile
=
3096 GIMPLE_PASS
, /* type */
3097 "profile_estimate", /* name */
3098 OPTGROUP_NONE
, /* optinfo_flags */
3099 true, /* has_gate */
3100 true, /* has_execute */
3101 TV_BRANCH_PROB
, /* tv_id */
3102 PROP_cfg
, /* properties_required */
3103 0, /* properties_provided */
3104 0, /* properties_destroyed */
3105 0, /* todo_flags_start */
3106 TODO_verify_ssa
, /* todo_flags_finish */
3109 class pass_profile
: public gimple_opt_pass
3112 pass_profile (gcc::context
*ctxt
)
3113 : gimple_opt_pass (pass_data_profile
, ctxt
)
3116 /* opt_pass methods: */
3117 bool gate () { return gate_estimate_probability (); }
3118 unsigned int execute () { return tree_estimate_probability_driver (); }
3120 }; // class pass_profile
3125 make_pass_profile (gcc::context
*ctxt
)
3127 return new pass_profile (ctxt
);
3132 const pass_data pass_data_strip_predict_hints
=
3134 GIMPLE_PASS
, /* type */
3135 "*strip_predict_hints", /* name */
3136 OPTGROUP_NONE
, /* optinfo_flags */
3137 false, /* has_gate */
3138 true, /* has_execute */
3139 TV_BRANCH_PROB
, /* tv_id */
3140 PROP_cfg
, /* properties_required */
3141 0, /* properties_provided */
3142 0, /* properties_destroyed */
3143 0, /* todo_flags_start */
3144 TODO_verify_ssa
, /* todo_flags_finish */
3147 class pass_strip_predict_hints
: public gimple_opt_pass
3150 pass_strip_predict_hints (gcc::context
*ctxt
)
3151 : gimple_opt_pass (pass_data_strip_predict_hints
, ctxt
)
3154 /* opt_pass methods: */
3155 opt_pass
* clone () { return new pass_strip_predict_hints (m_ctxt
); }
3156 unsigned int execute () { return strip_predict_hints (); }
3158 }; // class pass_strip_predict_hints
3163 make_pass_strip_predict_hints (gcc::context
*ctxt
)
3165 return new pass_strip_predict_hints (ctxt
);
3168 /* Rebuild function frequencies. Passes are in general expected to
3169 maintain profile by hand, however in some cases this is not possible:
3170 for example when inlining several functions with loops freuqencies might run
3171 out of scale and thus needs to be recomputed. */
3174 rebuild_frequencies (void)
3176 timevar_push (TV_REBUILD_FREQUENCIES
);
3178 /* When the max bb count in the function is small, there is a higher
3179 chance that there were truncation errors in the integer scaling
3180 of counts by inlining and other optimizations. This could lead
3181 to incorrect classification of code as being cold when it isn't.
3182 In that case, force the estimation of bb counts/frequencies from the
3183 branch probabilities, rather than computing frequencies from counts,
3184 which may also lead to frequencies incorrectly reduced to 0. There
3185 is less precision in the probabilities, so we only do this for small
3187 gcov_type count_max
= 0;
3189 FOR_BB_BETWEEN (bb
, ENTRY_BLOCK_PTR
, NULL
, next_bb
)
3190 count_max
= MAX (bb
->count
, count_max
);
3192 if (profile_status
== PROFILE_GUESSED
3193 || (profile_status
== PROFILE_READ
&& count_max
< REG_BR_PROB_BASE
/10))
3195 loop_optimizer_init (0);
3196 add_noreturn_fake_exit_edges ();
3197 mark_irreducible_loops ();
3198 connect_infinite_loops_to_exit ();
3199 estimate_bb_frequencies (true);
3200 remove_fake_exit_edges ();
3201 loop_optimizer_finalize ();
3203 else if (profile_status
== PROFILE_READ
)
3207 timevar_pop (TV_REBUILD_FREQUENCIES
);