* read-rtl.c (apply_macro_to_string): Replace index with strchr.
[official-gcc.git] / gcc / combine.c
blob2c7fbf5e74dc93b63c9d8b38438a48ee06b81b61
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
97 /* Number of attempts to combine instructions in this function. */
99 static int combine_attempts;
101 /* Number of attempts that got as far as substitution in this function. */
103 static int combine_merges;
105 /* Number of instructions combined with added SETs in this function. */
107 static int combine_extras;
109 /* Number of instructions combined in this function. */
111 static int combine_successes;
113 /* Totals over entire compilation. */
115 static int total_attempts, total_merges, total_extras, total_successes;
118 /* Vector mapping INSN_UIDs to cuids.
119 The cuids are like uids but increase monotonically always.
120 Combine always uses cuids so that it can compare them.
121 But actually renumbering the uids, which we used to do,
122 proves to be a bad idea because it makes it hard to compare
123 the dumps produced by earlier passes with those from later passes. */
125 static int *uid_cuid;
126 static int max_uid_cuid;
128 /* Get the cuid of an insn. */
130 #define INSN_CUID(INSN) \
131 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
133 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
134 BITS_PER_WORD would invoke undefined behavior. Work around it. */
136 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
137 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
139 /* Maximum register number, which is the size of the tables below. */
141 static unsigned int combine_max_regno;
143 struct reg_stat {
144 /* Record last point of death of (hard or pseudo) register n. */
145 rtx last_death;
147 /* Record last point of modification of (hard or pseudo) register n. */
148 rtx last_set;
150 /* The next group of fields allows the recording of the last value assigned
151 to (hard or pseudo) register n. We use this information to see if an
152 operation being processed is redundant given a prior operation performed
153 on the register. For example, an `and' with a constant is redundant if
154 all the zero bits are already known to be turned off.
156 We use an approach similar to that used by cse, but change it in the
157 following ways:
159 (1) We do not want to reinitialize at each label.
160 (2) It is useful, but not critical, to know the actual value assigned
161 to a register. Often just its form is helpful.
163 Therefore, we maintain the following fields:
165 last_set_value the last value assigned
166 last_set_label records the value of label_tick when the
167 register was assigned
168 last_set_table_tick records the value of label_tick when a
169 value using the register is assigned
170 last_set_invalid set to nonzero when it is not valid
171 to use the value of this register in some
172 register's value
174 To understand the usage of these tables, it is important to understand
175 the distinction between the value in last_set_value being valid and
176 the register being validly contained in some other expression in the
177 table.
179 (The next two parameters are out of date).
181 reg_stat[i].last_set_value is valid if it is nonzero, and either
182 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
184 Register I may validly appear in any expression returned for the value
185 of another register if reg_n_sets[i] is 1. It may also appear in the
186 value for register J if reg_stat[j].last_set_invalid is zero, or
187 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
189 If an expression is found in the table containing a register which may
190 not validly appear in an expression, the register is replaced by
191 something that won't match, (clobber (const_int 0)). */
193 /* Record last value assigned to (hard or pseudo) register n. */
195 rtx last_set_value;
197 /* Record the value of label_tick when an expression involving register n
198 is placed in last_set_value. */
200 int last_set_table_tick;
202 /* Record the value of label_tick when the value for register n is placed in
203 last_set_value. */
205 int last_set_label;
207 /* These fields are maintained in parallel with last_set_value and are
208 used to store the mode in which the register was last set, the bits
209 that were known to be zero when it was last set, and the number of
210 sign bits copies it was known to have when it was last set. */
212 unsigned HOST_WIDE_INT last_set_nonzero_bits;
213 char last_set_sign_bit_copies;
214 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
216 /* Set nonzero if references to register n in expressions should not be
217 used. last_set_invalid is set nonzero when this register is being
218 assigned to and last_set_table_tick == label_tick. */
220 char last_set_invalid;
222 /* Some registers that are set more than once and used in more than one
223 basic block are nevertheless always set in similar ways. For example,
224 a QImode register may be loaded from memory in two places on a machine
225 where byte loads zero extend.
227 We record in the following fields if a register has some leading bits
228 that are always equal to the sign bit, and what we know about the
229 nonzero bits of a register, specifically which bits are known to be
230 zero.
232 If an entry is zero, it means that we don't know anything special. */
234 unsigned char sign_bit_copies;
236 unsigned HOST_WIDE_INT nonzero_bits;
239 static struct reg_stat *reg_stat;
241 /* Record the cuid of the last insn that invalidated memory
242 (anything that writes memory, and subroutine calls, but not pushes). */
244 static int mem_last_set;
246 /* Record the cuid of the last CALL_INSN
247 so we can tell whether a potential combination crosses any calls. */
249 static int last_call_cuid;
251 /* When `subst' is called, this is the insn that is being modified
252 (by combining in a previous insn). The PATTERN of this insn
253 is still the old pattern partially modified and it should not be
254 looked at, but this may be used to examine the successors of the insn
255 to judge whether a simplification is valid. */
257 static rtx subst_insn;
259 /* This is the lowest CUID that `subst' is currently dealing with.
260 get_last_value will not return a value if the register was set at or
261 after this CUID. If not for this mechanism, we could get confused if
262 I2 or I1 in try_combine were an insn that used the old value of a register
263 to obtain a new value. In that case, we might erroneously get the
264 new value of the register when we wanted the old one. */
266 static int subst_low_cuid;
268 /* This contains any hard registers that are used in newpat; reg_dead_at_p
269 must consider all these registers to be always live. */
271 static HARD_REG_SET newpat_used_regs;
273 /* This is an insn to which a LOG_LINKS entry has been added. If this
274 insn is the earlier than I2 or I3, combine should rescan starting at
275 that location. */
277 static rtx added_links_insn;
279 /* Basic block in which we are performing combines. */
280 static basic_block this_basic_block;
282 /* A bitmap indicating which blocks had registers go dead at entry.
283 After combine, we'll need to re-do global life analysis with
284 those blocks as starting points. */
285 static sbitmap refresh_blocks;
287 /* The following array records the insn_rtx_cost for every insn
288 in the instruction stream. */
290 static int *uid_insn_cost;
292 /* Length of the currently allocated uid_insn_cost array. */
294 static int last_insn_cost;
296 /* Incremented for each label. */
298 static int label_tick;
300 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
301 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
303 static enum machine_mode nonzero_bits_mode;
305 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
306 be safely used. It is zero while computing them and after combine has
307 completed. This former test prevents propagating values based on
308 previously set values, which can be incorrect if a variable is modified
309 in a loop. */
311 static int nonzero_sign_valid;
314 /* Record one modification to rtl structure
315 to be undone by storing old_contents into *where.
316 is_int is 1 if the contents are an int. */
318 struct undo
320 struct undo *next;
321 int is_int;
322 union {rtx r; int i;} old_contents;
323 union {rtx *r; int *i;} where;
326 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
327 num_undo says how many are currently recorded.
329 other_insn is nonzero if we have modified some other insn in the process
330 of working on subst_insn. It must be verified too. */
332 struct undobuf
334 struct undo *undos;
335 struct undo *frees;
336 rtx other_insn;
339 static struct undobuf undobuf;
341 /* Number of times the pseudo being substituted for
342 was found and replaced. */
344 static int n_occurrences;
346 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
347 enum machine_mode,
348 unsigned HOST_WIDE_INT,
349 unsigned HOST_WIDE_INT *);
350 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
351 enum machine_mode,
352 unsigned int, unsigned int *);
353 static void do_SUBST (rtx *, rtx);
354 static void do_SUBST_INT (int *, int);
355 static void init_reg_last (void);
356 static void setup_incoming_promotions (void);
357 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
358 static int cant_combine_insn_p (rtx);
359 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
360 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
361 static int contains_muldiv (rtx);
362 static rtx try_combine (rtx, rtx, rtx, int *);
363 static void undo_all (void);
364 static void undo_commit (void);
365 static rtx *find_split_point (rtx *, rtx);
366 static rtx subst (rtx, rtx, rtx, int, int);
367 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
368 static rtx simplify_if_then_else (rtx);
369 static rtx simplify_set (rtx);
370 static rtx simplify_logical (rtx);
371 static rtx expand_compound_operation (rtx);
372 static rtx expand_field_assignment (rtx);
373 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
374 rtx, unsigned HOST_WIDE_INT, int, int, int);
375 static rtx extract_left_shift (rtx, int);
376 static rtx make_compound_operation (rtx, enum rtx_code);
377 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
378 unsigned HOST_WIDE_INT *);
379 static rtx force_to_mode (rtx, enum machine_mode,
380 unsigned HOST_WIDE_INT, rtx, int);
381 static rtx if_then_else_cond (rtx, rtx *, rtx *);
382 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
383 static int rtx_equal_for_field_assignment_p (rtx, rtx);
384 static rtx make_field_assignment (rtx);
385 static rtx apply_distributive_law (rtx);
386 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
387 unsigned HOST_WIDE_INT);
388 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
389 HOST_WIDE_INT, enum machine_mode, int *);
390 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
391 int);
392 static int recog_for_combine (rtx *, rtx, rtx *);
393 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
394 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
395 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
396 static void update_table_tick (rtx);
397 static void record_value_for_reg (rtx, rtx, rtx);
398 static void check_promoted_subreg (rtx, rtx);
399 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
400 static void record_dead_and_set_regs (rtx);
401 static int get_last_value_validate (rtx *, rtx, int, int);
402 static rtx get_last_value (rtx);
403 static int use_crosses_set_p (rtx, int);
404 static void reg_dead_at_p_1 (rtx, rtx, void *);
405 static int reg_dead_at_p (rtx, rtx);
406 static void move_deaths (rtx, rtx, int, rtx, rtx *);
407 static int reg_bitfield_target_p (rtx, rtx);
408 static void distribute_notes (rtx, rtx, rtx, rtx);
409 static void distribute_links (rtx);
410 static void mark_used_regs_combine (rtx);
411 static int insn_cuid (rtx);
412 static void record_promoted_value (rtx, rtx);
413 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
414 static enum rtx_code combine_reversed_comparison_code (rtx);
415 static int unmentioned_reg_p_1 (rtx *, void *);
416 static bool unmentioned_reg_p (rtx, rtx);
419 /* It is not safe to use ordinary gen_lowpart in combine.
420 See comments in gen_lowpart_for_combine. */
421 #undef RTL_HOOKS_GEN_LOWPART
422 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
424 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
425 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
427 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
428 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
430 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
433 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
434 insn. The substitution can be undone by undo_all. If INTO is already
435 set to NEWVAL, do not record this change. Because computing NEWVAL might
436 also call SUBST, we have to compute it before we put anything into
437 the undo table. */
439 static void
440 do_SUBST (rtx *into, rtx newval)
442 struct undo *buf;
443 rtx oldval = *into;
445 if (oldval == newval)
446 return;
448 /* We'd like to catch as many invalid transformations here as
449 possible. Unfortunately, there are way too many mode changes
450 that are perfectly valid, so we'd waste too much effort for
451 little gain doing the checks here. Focus on catching invalid
452 transformations involving integer constants. */
453 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
454 && GET_CODE (newval) == CONST_INT)
456 /* Sanity check that we're replacing oldval with a CONST_INT
457 that is a valid sign-extension for the original mode. */
458 gcc_assert (INTVAL (newval)
459 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
461 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
462 CONST_INT is not valid, because after the replacement, the
463 original mode would be gone. Unfortunately, we can't tell
464 when do_SUBST is called to replace the operand thereof, so we
465 perform this test on oldval instead, checking whether an
466 invalid replacement took place before we got here. */
467 gcc_assert (!(GET_CODE (oldval) == SUBREG
468 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
469 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
470 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
473 if (undobuf.frees)
474 buf = undobuf.frees, undobuf.frees = buf->next;
475 else
476 buf = xmalloc (sizeof (struct undo));
478 buf->is_int = 0;
479 buf->where.r = into;
480 buf->old_contents.r = oldval;
481 *into = newval;
483 buf->next = undobuf.undos, undobuf.undos = buf;
486 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
488 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
489 for the value of a HOST_WIDE_INT value (including CONST_INT) is
490 not safe. */
492 static void
493 do_SUBST_INT (int *into, int newval)
495 struct undo *buf;
496 int oldval = *into;
498 if (oldval == newval)
499 return;
501 if (undobuf.frees)
502 buf = undobuf.frees, undobuf.frees = buf->next;
503 else
504 buf = xmalloc (sizeof (struct undo));
506 buf->is_int = 1;
507 buf->where.i = into;
508 buf->old_contents.i = oldval;
509 *into = newval;
511 buf->next = undobuf.undos, undobuf.undos = buf;
514 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
516 /* Subroutine of try_combine. Determine whether the combine replacement
517 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
518 that the original instruction sequence I1, I2 and I3. Note that I1
519 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
520 costs of all instructions can be estimated, and the replacements are
521 more expensive than the original sequence. */
523 static bool
524 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
526 int i1_cost, i2_cost, i3_cost;
527 int new_i2_cost, new_i3_cost;
528 int old_cost, new_cost;
530 /* Lookup the original insn_rtx_costs. */
531 i2_cost = INSN_UID (i2) <= last_insn_cost
532 ? uid_insn_cost[INSN_UID (i2)] : 0;
533 i3_cost = INSN_UID (i3) <= last_insn_cost
534 ? uid_insn_cost[INSN_UID (i3)] : 0;
536 if (i1)
538 i1_cost = INSN_UID (i1) <= last_insn_cost
539 ? uid_insn_cost[INSN_UID (i1)] : 0;
540 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
541 ? i1_cost + i2_cost + i3_cost : 0;
543 else
545 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
546 i1_cost = 0;
549 /* Calculate the replacement insn_rtx_costs. */
550 new_i3_cost = insn_rtx_cost (newpat);
551 if (newi2pat)
553 new_i2_cost = insn_rtx_cost (newi2pat);
554 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
555 ? new_i2_cost + new_i3_cost : 0;
557 else
559 new_cost = new_i3_cost;
560 new_i2_cost = 0;
563 /* Disallow this recombination if both new_cost and old_cost are
564 greater than zero, and new_cost is greater than old cost. */
565 if (!undobuf.other_insn
566 && old_cost > 0
567 && new_cost > old_cost)
569 if (dump_file)
571 if (i1)
573 fprintf (dump_file,
574 "rejecting combination of insns %d, %d and %d\n",
575 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
576 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
577 i1_cost, i2_cost, i3_cost, old_cost);
579 else
581 fprintf (dump_file,
582 "rejecting combination of insns %d and %d\n",
583 INSN_UID (i2), INSN_UID (i3));
584 fprintf (dump_file, "original costs %d + %d = %d\n",
585 i2_cost, i3_cost, old_cost);
588 if (newi2pat)
590 fprintf (dump_file, "replacement costs %d + %d = %d\n",
591 new_i2_cost, new_i3_cost, new_cost);
593 else
594 fprintf (dump_file, "replacement cost %d\n", new_cost);
597 return false;
600 /* Update the uid_insn_cost array with the replacement costs. */
601 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
602 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
603 if (i1)
604 uid_insn_cost[INSN_UID (i1)] = 0;
606 return true;
609 /* Main entry point for combiner. F is the first insn of the function.
610 NREGS is the first unused pseudo-reg number.
612 Return nonzero if the combiner has turned an indirect jump
613 instruction into a direct jump. */
615 combine_instructions (rtx f, unsigned int nregs)
617 rtx insn, next;
618 #ifdef HAVE_cc0
619 rtx prev;
620 #endif
621 int i;
622 rtx links, nextlinks;
624 int new_direct_jump_p = 0;
626 combine_attempts = 0;
627 combine_merges = 0;
628 combine_extras = 0;
629 combine_successes = 0;
631 combine_max_regno = nregs;
633 rtl_hooks = combine_rtl_hooks;
635 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
637 init_recog_no_volatile ();
639 /* Compute maximum uid value so uid_cuid can be allocated. */
641 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
642 if (INSN_UID (insn) > i)
643 i = INSN_UID (insn);
645 uid_cuid = xmalloc ((i + 1) * sizeof (int));
646 max_uid_cuid = i;
648 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
650 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
651 problems when, for example, we have j <<= 1 in a loop. */
653 nonzero_sign_valid = 0;
655 /* Compute the mapping from uids to cuids.
656 Cuids are numbers assigned to insns, like uids,
657 except that cuids increase monotonically through the code.
659 Scan all SETs and see if we can deduce anything about what
660 bits are known to be zero for some registers and how many copies
661 of the sign bit are known to exist for those registers.
663 Also set any known values so that we can use it while searching
664 for what bits are known to be set. */
666 label_tick = 1;
668 setup_incoming_promotions ();
670 refresh_blocks = sbitmap_alloc (last_basic_block);
671 sbitmap_zero (refresh_blocks);
673 /* Allocate array of current insn_rtx_costs. */
674 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
675 last_insn_cost = max_uid_cuid;
677 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
679 uid_cuid[INSN_UID (insn)] = ++i;
680 subst_low_cuid = i;
681 subst_insn = insn;
683 if (INSN_P (insn))
685 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
686 NULL);
687 record_dead_and_set_regs (insn);
689 #ifdef AUTO_INC_DEC
690 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
691 if (REG_NOTE_KIND (links) == REG_INC)
692 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
693 NULL);
694 #endif
696 /* Record the current insn_rtx_cost of this instruction. */
697 if (NONJUMP_INSN_P (insn))
698 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
699 if (dump_file)
700 fprintf(dump_file, "insn_cost %d: %d\n",
701 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
704 if (LABEL_P (insn))
705 label_tick++;
708 nonzero_sign_valid = 1;
710 /* Now scan all the insns in forward order. */
712 label_tick = 1;
713 last_call_cuid = 0;
714 mem_last_set = 0;
715 init_reg_last ();
716 setup_incoming_promotions ();
718 FOR_EACH_BB (this_basic_block)
720 for (insn = BB_HEAD (this_basic_block);
721 insn != NEXT_INSN (BB_END (this_basic_block));
722 insn = next ? next : NEXT_INSN (insn))
724 next = 0;
726 if (LABEL_P (insn))
727 label_tick++;
729 else if (INSN_P (insn))
731 /* See if we know about function return values before this
732 insn based upon SUBREG flags. */
733 check_promoted_subreg (insn, PATTERN (insn));
735 /* Try this insn with each insn it links back to. */
737 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
738 if ((next = try_combine (insn, XEXP (links, 0),
739 NULL_RTX, &new_direct_jump_p)) != 0)
740 goto retry;
742 /* Try each sequence of three linked insns ending with this one. */
744 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
746 rtx link = XEXP (links, 0);
748 /* If the linked insn has been replaced by a note, then there
749 is no point in pursuing this chain any further. */
750 if (NOTE_P (link))
751 continue;
753 for (nextlinks = LOG_LINKS (link);
754 nextlinks;
755 nextlinks = XEXP (nextlinks, 1))
756 if ((next = try_combine (insn, link,
757 XEXP (nextlinks, 0),
758 &new_direct_jump_p)) != 0)
759 goto retry;
762 #ifdef HAVE_cc0
763 /* Try to combine a jump insn that uses CC0
764 with a preceding insn that sets CC0, and maybe with its
765 logical predecessor as well.
766 This is how we make decrement-and-branch insns.
767 We need this special code because data flow connections
768 via CC0 do not get entered in LOG_LINKS. */
770 if (JUMP_P (insn)
771 && (prev = prev_nonnote_insn (insn)) != 0
772 && NONJUMP_INSN_P (prev)
773 && sets_cc0_p (PATTERN (prev)))
775 if ((next = try_combine (insn, prev,
776 NULL_RTX, &new_direct_jump_p)) != 0)
777 goto retry;
779 for (nextlinks = LOG_LINKS (prev); nextlinks;
780 nextlinks = XEXP (nextlinks, 1))
781 if ((next = try_combine (insn, prev,
782 XEXP (nextlinks, 0),
783 &new_direct_jump_p)) != 0)
784 goto retry;
787 /* Do the same for an insn that explicitly references CC0. */
788 if (NONJUMP_INSN_P (insn)
789 && (prev = prev_nonnote_insn (insn)) != 0
790 && NONJUMP_INSN_P (prev)
791 && sets_cc0_p (PATTERN (prev))
792 && GET_CODE (PATTERN (insn)) == SET
793 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
795 if ((next = try_combine (insn, prev,
796 NULL_RTX, &new_direct_jump_p)) != 0)
797 goto retry;
799 for (nextlinks = LOG_LINKS (prev); nextlinks;
800 nextlinks = XEXP (nextlinks, 1))
801 if ((next = try_combine (insn, prev,
802 XEXP (nextlinks, 0),
803 &new_direct_jump_p)) != 0)
804 goto retry;
807 /* Finally, see if any of the insns that this insn links to
808 explicitly references CC0. If so, try this insn, that insn,
809 and its predecessor if it sets CC0. */
810 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
811 if (NONJUMP_INSN_P (XEXP (links, 0))
812 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
813 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
814 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
815 && NONJUMP_INSN_P (prev)
816 && sets_cc0_p (PATTERN (prev))
817 && (next = try_combine (insn, XEXP (links, 0),
818 prev, &new_direct_jump_p)) != 0)
819 goto retry;
820 #endif
822 /* Try combining an insn with two different insns whose results it
823 uses. */
824 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
825 for (nextlinks = XEXP (links, 1); nextlinks;
826 nextlinks = XEXP (nextlinks, 1))
827 if ((next = try_combine (insn, XEXP (links, 0),
828 XEXP (nextlinks, 0),
829 &new_direct_jump_p)) != 0)
830 goto retry;
832 /* Try this insn with each REG_EQUAL note it links back to. */
833 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
835 rtx set, note;
836 rtx temp = XEXP (links, 0);
837 if ((set = single_set (temp)) != 0
838 && (note = find_reg_equal_equiv_note (temp)) != 0
839 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
840 /* Avoid using a register that may already been marked
841 dead by an earlier instruction. */
842 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
844 /* Temporarily replace the set's source with the
845 contents of the REG_EQUAL note. The insn will
846 be deleted or recognized by try_combine. */
847 rtx orig = SET_SRC (set);
848 SET_SRC (set) = XEXP (note, 0);
849 next = try_combine (insn, temp, NULL_RTX,
850 &new_direct_jump_p);
851 if (next)
852 goto retry;
853 SET_SRC (set) = orig;
857 if (!NOTE_P (insn))
858 record_dead_and_set_regs (insn);
860 retry:
865 clear_bb_flags ();
867 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
868 BASIC_BLOCK (i)->flags |= BB_DIRTY);
869 new_direct_jump_p |= purge_all_dead_edges (0);
870 delete_noop_moves ();
872 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
873 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
874 | PROP_KILL_DEAD_CODE);
876 /* Clean up. */
877 sbitmap_free (refresh_blocks);
878 free (uid_insn_cost);
879 free (reg_stat);
880 free (uid_cuid);
883 struct undo *undo, *next;
884 for (undo = undobuf.frees; undo; undo = next)
886 next = undo->next;
887 free (undo);
889 undobuf.frees = 0;
892 total_attempts += combine_attempts;
893 total_merges += combine_merges;
894 total_extras += combine_extras;
895 total_successes += combine_successes;
897 nonzero_sign_valid = 0;
898 rtl_hooks = general_rtl_hooks;
900 /* Make recognizer allow volatile MEMs again. */
901 init_recog ();
903 return new_direct_jump_p;
906 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
908 static void
909 init_reg_last (void)
911 unsigned int i;
912 for (i = 0; i < combine_max_regno; i++)
913 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
916 /* Set up any promoted values for incoming argument registers. */
918 static void
919 setup_incoming_promotions (void)
921 unsigned int regno;
922 rtx reg;
923 enum machine_mode mode;
924 int unsignedp;
925 rtx first = get_insns ();
927 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
929 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
930 /* Check whether this register can hold an incoming pointer
931 argument. FUNCTION_ARG_REGNO_P tests outgoing register
932 numbers, so translate if necessary due to register windows. */
933 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
934 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
936 record_value_for_reg
937 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
938 : SIGN_EXTEND),
939 GET_MODE (reg),
940 gen_rtx_CLOBBER (mode, const0_rtx)));
945 /* Called via note_stores. If X is a pseudo that is narrower than
946 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
948 If we are setting only a portion of X and we can't figure out what
949 portion, assume all bits will be used since we don't know what will
950 be happening.
952 Similarly, set how many bits of X are known to be copies of the sign bit
953 at all locations in the function. This is the smallest number implied
954 by any set of X. */
956 static void
957 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
958 void *data ATTRIBUTE_UNUSED)
960 unsigned int num;
962 if (REG_P (x)
963 && REGNO (x) >= FIRST_PSEUDO_REGISTER
964 /* If this register is undefined at the start of the file, we can't
965 say what its contents were. */
966 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
967 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
969 if (set == 0 || GET_CODE (set) == CLOBBER)
971 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
972 reg_stat[REGNO (x)].sign_bit_copies = 1;
973 return;
976 /* If this is a complex assignment, see if we can convert it into a
977 simple assignment. */
978 set = expand_field_assignment (set);
980 /* If this is a simple assignment, or we have a paradoxical SUBREG,
981 set what we know about X. */
983 if (SET_DEST (set) == x
984 || (GET_CODE (SET_DEST (set)) == SUBREG
985 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
986 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
987 && SUBREG_REG (SET_DEST (set)) == x))
989 rtx src = SET_SRC (set);
991 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
992 /* If X is narrower than a word and SRC is a non-negative
993 constant that would appear negative in the mode of X,
994 sign-extend it for use in reg_stat[].nonzero_bits because some
995 machines (maybe most) will actually do the sign-extension
996 and this is the conservative approach.
998 ??? For 2.5, try to tighten up the MD files in this regard
999 instead of this kludge. */
1001 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1002 && GET_CODE (src) == CONST_INT
1003 && INTVAL (src) > 0
1004 && 0 != (INTVAL (src)
1005 & ((HOST_WIDE_INT) 1
1006 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1007 src = GEN_INT (INTVAL (src)
1008 | ((HOST_WIDE_INT) (-1)
1009 << GET_MODE_BITSIZE (GET_MODE (x))));
1010 #endif
1012 /* Don't call nonzero_bits if it cannot change anything. */
1013 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1014 reg_stat[REGNO (x)].nonzero_bits
1015 |= nonzero_bits (src, nonzero_bits_mode);
1016 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1017 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1018 || reg_stat[REGNO (x)].sign_bit_copies > num)
1019 reg_stat[REGNO (x)].sign_bit_copies = num;
1021 else
1023 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1024 reg_stat[REGNO (x)].sign_bit_copies = 1;
1029 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1030 insns that were previously combined into I3 or that will be combined
1031 into the merger of INSN and I3.
1033 Return 0 if the combination is not allowed for any reason.
1035 If the combination is allowed, *PDEST will be set to the single
1036 destination of INSN and *PSRC to the single source, and this function
1037 will return 1. */
1039 static int
1040 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1041 rtx *pdest, rtx *psrc)
1043 int i;
1044 rtx set = 0, src, dest;
1045 rtx p;
1046 #ifdef AUTO_INC_DEC
1047 rtx link;
1048 #endif
1049 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1050 && next_active_insn (succ) == i3)
1051 : next_active_insn (insn) == i3);
1053 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1054 or a PARALLEL consisting of such a SET and CLOBBERs.
1056 If INSN has CLOBBER parallel parts, ignore them for our processing.
1057 By definition, these happen during the execution of the insn. When it
1058 is merged with another insn, all bets are off. If they are, in fact,
1059 needed and aren't also supplied in I3, they may be added by
1060 recog_for_combine. Otherwise, it won't match.
1062 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1063 note.
1065 Get the source and destination of INSN. If more than one, can't
1066 combine. */
1068 if (GET_CODE (PATTERN (insn)) == SET)
1069 set = PATTERN (insn);
1070 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1071 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1073 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1075 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1076 rtx note;
1078 switch (GET_CODE (elt))
1080 /* This is important to combine floating point insns
1081 for the SH4 port. */
1082 case USE:
1083 /* Combining an isolated USE doesn't make sense.
1084 We depend here on combinable_i3pat to reject them. */
1085 /* The code below this loop only verifies that the inputs of
1086 the SET in INSN do not change. We call reg_set_between_p
1087 to verify that the REG in the USE does not change between
1088 I3 and INSN.
1089 If the USE in INSN was for a pseudo register, the matching
1090 insn pattern will likely match any register; combining this
1091 with any other USE would only be safe if we knew that the
1092 used registers have identical values, or if there was
1093 something to tell them apart, e.g. different modes. For
1094 now, we forgo such complicated tests and simply disallow
1095 combining of USES of pseudo registers with any other USE. */
1096 if (REG_P (XEXP (elt, 0))
1097 && GET_CODE (PATTERN (i3)) == PARALLEL)
1099 rtx i3pat = PATTERN (i3);
1100 int i = XVECLEN (i3pat, 0) - 1;
1101 unsigned int regno = REGNO (XEXP (elt, 0));
1105 rtx i3elt = XVECEXP (i3pat, 0, i);
1107 if (GET_CODE (i3elt) == USE
1108 && REG_P (XEXP (i3elt, 0))
1109 && (REGNO (XEXP (i3elt, 0)) == regno
1110 ? reg_set_between_p (XEXP (elt, 0),
1111 PREV_INSN (insn), i3)
1112 : regno >= FIRST_PSEUDO_REGISTER))
1113 return 0;
1115 while (--i >= 0);
1117 break;
1119 /* We can ignore CLOBBERs. */
1120 case CLOBBER:
1121 break;
1123 case SET:
1124 /* Ignore SETs whose result isn't used but not those that
1125 have side-effects. */
1126 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1127 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1128 || INTVAL (XEXP (note, 0)) <= 0)
1129 && ! side_effects_p (elt))
1130 break;
1132 /* If we have already found a SET, this is a second one and
1133 so we cannot combine with this insn. */
1134 if (set)
1135 return 0;
1137 set = elt;
1138 break;
1140 default:
1141 /* Anything else means we can't combine. */
1142 return 0;
1146 if (set == 0
1147 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1148 so don't do anything with it. */
1149 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1150 return 0;
1152 else
1153 return 0;
1155 if (set == 0)
1156 return 0;
1158 set = expand_field_assignment (set);
1159 src = SET_SRC (set), dest = SET_DEST (set);
1161 /* Don't eliminate a store in the stack pointer. */
1162 if (dest == stack_pointer_rtx
1163 /* Don't combine with an insn that sets a register to itself if it has
1164 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1165 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1166 /* Can't merge an ASM_OPERANDS. */
1167 || GET_CODE (src) == ASM_OPERANDS
1168 /* Can't merge a function call. */
1169 || GET_CODE (src) == CALL
1170 /* Don't eliminate a function call argument. */
1171 || (CALL_P (i3)
1172 && (find_reg_fusage (i3, USE, dest)
1173 || (REG_P (dest)
1174 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1175 && global_regs[REGNO (dest)])))
1176 /* Don't substitute into an incremented register. */
1177 || FIND_REG_INC_NOTE (i3, dest)
1178 || (succ && FIND_REG_INC_NOTE (succ, dest))
1179 /* Don't substitute into a non-local goto, this confuses CFG. */
1180 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1181 #if 0
1182 /* Don't combine the end of a libcall into anything. */
1183 /* ??? This gives worse code, and appears to be unnecessary, since no
1184 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1185 use REG_RETVAL notes for noconflict blocks, but other code here
1186 makes sure that those insns don't disappear. */
1187 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1188 #endif
1189 /* Make sure that DEST is not used after SUCC but before I3. */
1190 || (succ && ! all_adjacent
1191 && reg_used_between_p (dest, succ, i3))
1192 /* Make sure that the value that is to be substituted for the register
1193 does not use any registers whose values alter in between. However,
1194 If the insns are adjacent, a use can't cross a set even though we
1195 think it might (this can happen for a sequence of insns each setting
1196 the same destination; last_set of that register might point to
1197 a NOTE). If INSN has a REG_EQUIV note, the register is always
1198 equivalent to the memory so the substitution is valid even if there
1199 are intervening stores. Also, don't move a volatile asm or
1200 UNSPEC_VOLATILE across any other insns. */
1201 || (! all_adjacent
1202 && (((!MEM_P (src)
1203 || ! find_reg_note (insn, REG_EQUIV, src))
1204 && use_crosses_set_p (src, INSN_CUID (insn)))
1205 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1206 || GET_CODE (src) == UNSPEC_VOLATILE))
1207 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1208 better register allocation by not doing the combine. */
1209 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1210 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1211 /* Don't combine across a CALL_INSN, because that would possibly
1212 change whether the life span of some REGs crosses calls or not,
1213 and it is a pain to update that information.
1214 Exception: if source is a constant, moving it later can't hurt.
1215 Accept that special case, because it helps -fforce-addr a lot. */
1216 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1217 return 0;
1219 /* DEST must either be a REG or CC0. */
1220 if (REG_P (dest))
1222 /* If register alignment is being enforced for multi-word items in all
1223 cases except for parameters, it is possible to have a register copy
1224 insn referencing a hard register that is not allowed to contain the
1225 mode being copied and which would not be valid as an operand of most
1226 insns. Eliminate this problem by not combining with such an insn.
1228 Also, on some machines we don't want to extend the life of a hard
1229 register. */
1231 if (REG_P (src)
1232 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1233 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1234 /* Don't extend the life of a hard register unless it is
1235 user variable (if we have few registers) or it can't
1236 fit into the desired register (meaning something special
1237 is going on).
1238 Also avoid substituting a return register into I3, because
1239 reload can't handle a conflict with constraints of other
1240 inputs. */
1241 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1242 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1243 return 0;
1245 else if (GET_CODE (dest) != CC0)
1246 return 0;
1249 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1250 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1251 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1253 /* Don't substitute for a register intended as a clobberable
1254 operand. */
1255 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1256 if (rtx_equal_p (reg, dest))
1257 return 0;
1259 /* If the clobber represents an earlyclobber operand, we must not
1260 substitute an expression containing the clobbered register.
1261 As we do not analyse the constraint strings here, we have to
1262 make the conservative assumption. However, if the register is
1263 a fixed hard reg, the clobber cannot represent any operand;
1264 we leave it up to the machine description to either accept or
1265 reject use-and-clobber patterns. */
1266 if (!REG_P (reg)
1267 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1268 || !fixed_regs[REGNO (reg)])
1269 if (reg_overlap_mentioned_p (reg, src))
1270 return 0;
1273 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1274 or not), reject, unless nothing volatile comes between it and I3 */
1276 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1278 /* Make sure succ doesn't contain a volatile reference. */
1279 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1280 return 0;
1282 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1283 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1284 return 0;
1287 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1288 to be an explicit register variable, and was chosen for a reason. */
1290 if (GET_CODE (src) == ASM_OPERANDS
1291 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1292 return 0;
1294 /* If there are any volatile insns between INSN and I3, reject, because
1295 they might affect machine state. */
1297 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1298 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1299 return 0;
1301 /* If INSN or I2 contains an autoincrement or autodecrement,
1302 make sure that register is not used between there and I3,
1303 and not already used in I3 either.
1304 Also insist that I3 not be a jump; if it were one
1305 and the incremented register were spilled, we would lose. */
1307 #ifdef AUTO_INC_DEC
1308 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1309 if (REG_NOTE_KIND (link) == REG_INC
1310 && (JUMP_P (i3)
1311 || reg_used_between_p (XEXP (link, 0), insn, i3)
1312 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1313 return 0;
1314 #endif
1316 #ifdef HAVE_cc0
1317 /* Don't combine an insn that follows a CC0-setting insn.
1318 An insn that uses CC0 must not be separated from the one that sets it.
1319 We do, however, allow I2 to follow a CC0-setting insn if that insn
1320 is passed as I1; in that case it will be deleted also.
1321 We also allow combining in this case if all the insns are adjacent
1322 because that would leave the two CC0 insns adjacent as well.
1323 It would be more logical to test whether CC0 occurs inside I1 or I2,
1324 but that would be much slower, and this ought to be equivalent. */
1326 p = prev_nonnote_insn (insn);
1327 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1328 && ! all_adjacent)
1329 return 0;
1330 #endif
1332 /* If we get here, we have passed all the tests and the combination is
1333 to be allowed. */
1335 *pdest = dest;
1336 *psrc = src;
1338 return 1;
1341 /* LOC is the location within I3 that contains its pattern or the component
1342 of a PARALLEL of the pattern. We validate that it is valid for combining.
1344 One problem is if I3 modifies its output, as opposed to replacing it
1345 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1346 so would produce an insn that is not equivalent to the original insns.
1348 Consider:
1350 (set (reg:DI 101) (reg:DI 100))
1351 (set (subreg:SI (reg:DI 101) 0) <foo>)
1353 This is NOT equivalent to:
1355 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1356 (set (reg:DI 101) (reg:DI 100))])
1358 Not only does this modify 100 (in which case it might still be valid
1359 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1361 We can also run into a problem if I2 sets a register that I1
1362 uses and I1 gets directly substituted into I3 (not via I2). In that
1363 case, we would be getting the wrong value of I2DEST into I3, so we
1364 must reject the combination. This case occurs when I2 and I1 both
1365 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1366 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1367 of a SET must prevent combination from occurring.
1369 Before doing the above check, we first try to expand a field assignment
1370 into a set of logical operations.
1372 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1373 we place a register that is both set and used within I3. If more than one
1374 such register is detected, we fail.
1376 Return 1 if the combination is valid, zero otherwise. */
1378 static int
1379 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1380 int i1_not_in_src, rtx *pi3dest_killed)
1382 rtx x = *loc;
1384 if (GET_CODE (x) == SET)
1386 rtx set = x ;
1387 rtx dest = SET_DEST (set);
1388 rtx src = SET_SRC (set);
1389 rtx inner_dest = dest;
1391 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1392 || GET_CODE (inner_dest) == SUBREG
1393 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1394 inner_dest = XEXP (inner_dest, 0);
1396 /* Check for the case where I3 modifies its output, as discussed
1397 above. We don't want to prevent pseudos from being combined
1398 into the address of a MEM, so only prevent the combination if
1399 i1 or i2 set the same MEM. */
1400 if ((inner_dest != dest &&
1401 (!MEM_P (inner_dest)
1402 || rtx_equal_p (i2dest, inner_dest)
1403 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1404 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1405 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1407 /* This is the same test done in can_combine_p except we can't test
1408 all_adjacent; we don't have to, since this instruction will stay
1409 in place, thus we are not considering increasing the lifetime of
1410 INNER_DEST.
1412 Also, if this insn sets a function argument, combining it with
1413 something that might need a spill could clobber a previous
1414 function argument; the all_adjacent test in can_combine_p also
1415 checks this; here, we do a more specific test for this case. */
1417 || (REG_P (inner_dest)
1418 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1419 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1420 GET_MODE (inner_dest))))
1421 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1422 return 0;
1424 /* If DEST is used in I3, it is being killed in this insn,
1425 so record that for later.
1426 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1427 STACK_POINTER_REGNUM, since these are always considered to be
1428 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1429 if (pi3dest_killed && REG_P (dest)
1430 && reg_referenced_p (dest, PATTERN (i3))
1431 && REGNO (dest) != FRAME_POINTER_REGNUM
1432 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1433 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1434 #endif
1435 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1436 && (REGNO (dest) != ARG_POINTER_REGNUM
1437 || ! fixed_regs [REGNO (dest)])
1438 #endif
1439 && REGNO (dest) != STACK_POINTER_REGNUM)
1441 if (*pi3dest_killed)
1442 return 0;
1444 *pi3dest_killed = dest;
1448 else if (GET_CODE (x) == PARALLEL)
1450 int i;
1452 for (i = 0; i < XVECLEN (x, 0); i++)
1453 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1454 i1_not_in_src, pi3dest_killed))
1455 return 0;
1458 return 1;
1461 /* Return 1 if X is an arithmetic expression that contains a multiplication
1462 and division. We don't count multiplications by powers of two here. */
1464 static int
1465 contains_muldiv (rtx x)
1467 switch (GET_CODE (x))
1469 case MOD: case DIV: case UMOD: case UDIV:
1470 return 1;
1472 case MULT:
1473 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1474 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1475 default:
1476 if (BINARY_P (x))
1477 return contains_muldiv (XEXP (x, 0))
1478 || contains_muldiv (XEXP (x, 1));
1480 if (UNARY_P (x))
1481 return contains_muldiv (XEXP (x, 0));
1483 return 0;
1487 /* Determine whether INSN can be used in a combination. Return nonzero if
1488 not. This is used in try_combine to detect early some cases where we
1489 can't perform combinations. */
1491 static int
1492 cant_combine_insn_p (rtx insn)
1494 rtx set;
1495 rtx src, dest;
1497 /* If this isn't really an insn, we can't do anything.
1498 This can occur when flow deletes an insn that it has merged into an
1499 auto-increment address. */
1500 if (! INSN_P (insn))
1501 return 1;
1503 /* Never combine loads and stores involving hard regs that are likely
1504 to be spilled. The register allocator can usually handle such
1505 reg-reg moves by tying. If we allow the combiner to make
1506 substitutions of likely-spilled regs, we may abort in reload.
1507 As an exception, we allow combinations involving fixed regs; these are
1508 not available to the register allocator so there's no risk involved. */
1510 set = single_set (insn);
1511 if (! set)
1512 return 0;
1513 src = SET_SRC (set);
1514 dest = SET_DEST (set);
1515 if (GET_CODE (src) == SUBREG)
1516 src = SUBREG_REG (src);
1517 if (GET_CODE (dest) == SUBREG)
1518 dest = SUBREG_REG (dest);
1519 if (REG_P (src) && REG_P (dest)
1520 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1521 && ! fixed_regs[REGNO (src)]
1522 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1523 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1524 && ! fixed_regs[REGNO (dest)]
1525 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1526 return 1;
1528 return 0;
1531 /* Adjust INSN after we made a change to its destination.
1533 Changing the destination can invalidate notes that say something about
1534 the results of the insn and a LOG_LINK pointing to the insn. */
1536 static void
1537 adjust_for_new_dest (rtx insn)
1539 rtx *loc;
1541 /* For notes, be conservative and simply remove them. */
1542 loc = &REG_NOTES (insn);
1543 while (*loc)
1545 enum reg_note kind = REG_NOTE_KIND (*loc);
1546 if (kind == REG_EQUAL || kind == REG_EQUIV)
1547 *loc = XEXP (*loc, 1);
1548 else
1549 loc = &XEXP (*loc, 1);
1552 /* The new insn will have a destination that was previously the destination
1553 of an insn just above it. Call distribute_links to make a LOG_LINK from
1554 the next use of that destination. */
1555 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1558 /* Try to combine the insns I1 and I2 into I3.
1559 Here I1 and I2 appear earlier than I3.
1560 I1 can be zero; then we combine just I2 into I3.
1562 If we are combining three insns and the resulting insn is not recognized,
1563 try splitting it into two insns. If that happens, I2 and I3 are retained
1564 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1565 are pseudo-deleted.
1567 Return 0 if the combination does not work. Then nothing is changed.
1568 If we did the combination, return the insn at which combine should
1569 resume scanning.
1571 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1572 new direct jump instruction. */
1574 static rtx
1575 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1577 /* New patterns for I3 and I2, respectively. */
1578 rtx newpat, newi2pat = 0;
1579 int substed_i2 = 0, substed_i1 = 0;
1580 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1581 int added_sets_1, added_sets_2;
1582 /* Total number of SETs to put into I3. */
1583 int total_sets;
1584 /* Nonzero if I2's body now appears in I3. */
1585 int i2_is_used;
1586 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1587 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1588 /* Contains I3 if the destination of I3 is used in its source, which means
1589 that the old life of I3 is being killed. If that usage is placed into
1590 I2 and not in I3, a REG_DEAD note must be made. */
1591 rtx i3dest_killed = 0;
1592 /* SET_DEST and SET_SRC of I2 and I1. */
1593 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1594 /* PATTERN (I2), or a copy of it in certain cases. */
1595 rtx i2pat;
1596 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1597 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1598 int i1_feeds_i3 = 0;
1599 /* Notes that must be added to REG_NOTES in I3 and I2. */
1600 rtx new_i3_notes, new_i2_notes;
1601 /* Notes that we substituted I3 into I2 instead of the normal case. */
1602 int i3_subst_into_i2 = 0;
1603 /* Notes that I1, I2 or I3 is a MULT operation. */
1604 int have_mult = 0;
1605 int swap_i2i3 = 0;
1607 int maxreg;
1608 rtx temp;
1609 rtx link;
1610 int i;
1612 /* Exit early if one of the insns involved can't be used for
1613 combinations. */
1614 if (cant_combine_insn_p (i3)
1615 || cant_combine_insn_p (i2)
1616 || (i1 && cant_combine_insn_p (i1))
1617 /* We also can't do anything if I3 has a
1618 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1619 libcall. */
1620 #if 0
1621 /* ??? This gives worse code, and appears to be unnecessary, since no
1622 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1623 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1624 #endif
1626 return 0;
1628 combine_attempts++;
1629 undobuf.other_insn = 0;
1631 /* Reset the hard register usage information. */
1632 CLEAR_HARD_REG_SET (newpat_used_regs);
1634 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1635 code below, set I1 to be the earlier of the two insns. */
1636 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1637 temp = i1, i1 = i2, i2 = temp;
1639 added_links_insn = 0;
1641 /* First check for one important special-case that the code below will
1642 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1643 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1644 we may be able to replace that destination with the destination of I3.
1645 This occurs in the common code where we compute both a quotient and
1646 remainder into a structure, in which case we want to do the computation
1647 directly into the structure to avoid register-register copies.
1649 Note that this case handles both multiple sets in I2 and also
1650 cases where I2 has a number of CLOBBER or PARALLELs.
1652 We make very conservative checks below and only try to handle the
1653 most common cases of this. For example, we only handle the case
1654 where I2 and I3 are adjacent to avoid making difficult register
1655 usage tests. */
1657 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1658 && REG_P (SET_SRC (PATTERN (i3)))
1659 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1660 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1661 && GET_CODE (PATTERN (i2)) == PARALLEL
1662 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1663 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1664 below would need to check what is inside (and reg_overlap_mentioned_p
1665 doesn't support those codes anyway). Don't allow those destinations;
1666 the resulting insn isn't likely to be recognized anyway. */
1667 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1668 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1669 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1670 SET_DEST (PATTERN (i3)))
1671 && next_real_insn (i2) == i3)
1673 rtx p2 = PATTERN (i2);
1675 /* Make sure that the destination of I3,
1676 which we are going to substitute into one output of I2,
1677 is not used within another output of I2. We must avoid making this:
1678 (parallel [(set (mem (reg 69)) ...)
1679 (set (reg 69) ...)])
1680 which is not well-defined as to order of actions.
1681 (Besides, reload can't handle output reloads for this.)
1683 The problem can also happen if the dest of I3 is a memory ref,
1684 if another dest in I2 is an indirect memory ref. */
1685 for (i = 0; i < XVECLEN (p2, 0); i++)
1686 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1687 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1688 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1689 SET_DEST (XVECEXP (p2, 0, i))))
1690 break;
1692 if (i == XVECLEN (p2, 0))
1693 for (i = 0; i < XVECLEN (p2, 0); i++)
1694 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1695 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1696 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1698 combine_merges++;
1700 subst_insn = i3;
1701 subst_low_cuid = INSN_CUID (i2);
1703 added_sets_2 = added_sets_1 = 0;
1704 i2dest = SET_SRC (PATTERN (i3));
1706 /* Replace the dest in I2 with our dest and make the resulting
1707 insn the new pattern for I3. Then skip to where we
1708 validate the pattern. Everything was set up above. */
1709 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1710 SET_DEST (PATTERN (i3)));
1712 newpat = p2;
1713 i3_subst_into_i2 = 1;
1714 goto validate_replacement;
1718 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1719 one of those words to another constant, merge them by making a new
1720 constant. */
1721 if (i1 == 0
1722 && (temp = single_set (i2)) != 0
1723 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1724 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1725 && REG_P (SET_DEST (temp))
1726 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1727 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1728 && GET_CODE (PATTERN (i3)) == SET
1729 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1730 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1731 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1732 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1733 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1735 HOST_WIDE_INT lo, hi;
1737 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1738 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1739 else
1741 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1742 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1745 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1747 /* We don't handle the case of the target word being wider
1748 than a host wide int. */
1749 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1751 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1752 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1753 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1755 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1756 hi = INTVAL (SET_SRC (PATTERN (i3)));
1757 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1759 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1760 >> (HOST_BITS_PER_WIDE_INT - 1));
1762 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1763 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1764 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1765 (INTVAL (SET_SRC (PATTERN (i3)))));
1766 if (hi == sign)
1767 hi = lo < 0 ? -1 : 0;
1769 else
1770 /* We don't handle the case of the higher word not fitting
1771 entirely in either hi or lo. */
1772 gcc_unreachable ();
1774 combine_merges++;
1775 subst_insn = i3;
1776 subst_low_cuid = INSN_CUID (i2);
1777 added_sets_2 = added_sets_1 = 0;
1778 i2dest = SET_DEST (temp);
1780 SUBST (SET_SRC (temp),
1781 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1783 newpat = PATTERN (i2);
1784 goto validate_replacement;
1787 #ifndef HAVE_cc0
1788 /* If we have no I1 and I2 looks like:
1789 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1790 (set Y OP)])
1791 make up a dummy I1 that is
1792 (set Y OP)
1793 and change I2 to be
1794 (set (reg:CC X) (compare:CC Y (const_int 0)))
1796 (We can ignore any trailing CLOBBERs.)
1798 This undoes a previous combination and allows us to match a branch-and-
1799 decrement insn. */
1801 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1802 && XVECLEN (PATTERN (i2), 0) >= 2
1803 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1804 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1805 == MODE_CC)
1806 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1807 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1808 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1809 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1810 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1811 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1813 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1814 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1815 break;
1817 if (i == 1)
1819 /* We make I1 with the same INSN_UID as I2. This gives it
1820 the same INSN_CUID for value tracking. Our fake I1 will
1821 never appear in the insn stream so giving it the same INSN_UID
1822 as I2 will not cause a problem. */
1824 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1825 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1826 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1827 NULL_RTX);
1829 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1830 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1831 SET_DEST (PATTERN (i1)));
1834 #endif
1836 /* Verify that I2 and I1 are valid for combining. */
1837 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1838 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1840 undo_all ();
1841 return 0;
1844 /* Record whether I2DEST is used in I2SRC and similarly for the other
1845 cases. Knowing this will help in register status updating below. */
1846 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1847 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1848 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1850 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1851 in I2SRC. */
1852 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1854 /* Ensure that I3's pattern can be the destination of combines. */
1855 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1856 i1 && i2dest_in_i1src && i1_feeds_i3,
1857 &i3dest_killed))
1859 undo_all ();
1860 return 0;
1863 /* See if any of the insns is a MULT operation. Unless one is, we will
1864 reject a combination that is, since it must be slower. Be conservative
1865 here. */
1866 if (GET_CODE (i2src) == MULT
1867 || (i1 != 0 && GET_CODE (i1src) == MULT)
1868 || (GET_CODE (PATTERN (i3)) == SET
1869 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1870 have_mult = 1;
1872 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1873 We used to do this EXCEPT in one case: I3 has a post-inc in an
1874 output operand. However, that exception can give rise to insns like
1875 mov r3,(r3)+
1876 which is a famous insn on the PDP-11 where the value of r3 used as the
1877 source was model-dependent. Avoid this sort of thing. */
1879 #if 0
1880 if (!(GET_CODE (PATTERN (i3)) == SET
1881 && REG_P (SET_SRC (PATTERN (i3)))
1882 && MEM_P (SET_DEST (PATTERN (i3)))
1883 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1884 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1885 /* It's not the exception. */
1886 #endif
1887 #ifdef AUTO_INC_DEC
1888 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1889 if (REG_NOTE_KIND (link) == REG_INC
1890 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1891 || (i1 != 0
1892 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1894 undo_all ();
1895 return 0;
1897 #endif
1899 /* See if the SETs in I1 or I2 need to be kept around in the merged
1900 instruction: whenever the value set there is still needed past I3.
1901 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1903 For the SET in I1, we have two cases: If I1 and I2 independently
1904 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1905 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1906 in I1 needs to be kept around unless I1DEST dies or is set in either
1907 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1908 I1DEST. If so, we know I1 feeds into I2. */
1910 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1912 added_sets_1
1913 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1914 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1916 /* If the set in I2 needs to be kept around, we must make a copy of
1917 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1918 PATTERN (I2), we are only substituting for the original I1DEST, not into
1919 an already-substituted copy. This also prevents making self-referential
1920 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1921 I2DEST. */
1923 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1924 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1925 : PATTERN (i2));
1927 if (added_sets_2)
1928 i2pat = copy_rtx (i2pat);
1930 combine_merges++;
1932 /* Substitute in the latest insn for the regs set by the earlier ones. */
1934 maxreg = max_reg_num ();
1936 subst_insn = i3;
1938 /* It is possible that the source of I2 or I1 may be performing an
1939 unneeded operation, such as a ZERO_EXTEND of something that is known
1940 to have the high part zero. Handle that case by letting subst look at
1941 the innermost one of them.
1943 Another way to do this would be to have a function that tries to
1944 simplify a single insn instead of merging two or more insns. We don't
1945 do this because of the potential of infinite loops and because
1946 of the potential extra memory required. However, doing it the way
1947 we are is a bit of a kludge and doesn't catch all cases.
1949 But only do this if -fexpensive-optimizations since it slows things down
1950 and doesn't usually win. */
1952 if (flag_expensive_optimizations)
1954 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1955 if (i1)
1957 subst_low_cuid = INSN_CUID (i1);
1958 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1960 else
1962 subst_low_cuid = INSN_CUID (i2);
1963 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1967 #ifndef HAVE_cc0
1968 /* Many machines that don't use CC0 have insns that can both perform an
1969 arithmetic operation and set the condition code. These operations will
1970 be represented as a PARALLEL with the first element of the vector
1971 being a COMPARE of an arithmetic operation with the constant zero.
1972 The second element of the vector will set some pseudo to the result
1973 of the same arithmetic operation. If we simplify the COMPARE, we won't
1974 match such a pattern and so will generate an extra insn. Here we test
1975 for this case, where both the comparison and the operation result are
1976 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1977 I2SRC. Later we will make the PARALLEL that contains I2. */
1979 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1980 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1981 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1982 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
1984 #ifdef SELECT_CC_MODE
1985 rtx *cc_use;
1986 enum machine_mode compare_mode;
1987 #endif
1989 newpat = PATTERN (i3);
1990 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
1992 i2_is_used = 1;
1994 #ifdef SELECT_CC_MODE
1995 /* See if a COMPARE with the operand we substituted in should be done
1996 with the mode that is currently being used. If not, do the same
1997 processing we do in `subst' for a SET; namely, if the destination
1998 is used only once, try to replace it with a register of the proper
1999 mode and also replace the COMPARE. */
2000 if (undobuf.other_insn == 0
2001 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2002 &undobuf.other_insn))
2003 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2004 i2src, const0_rtx))
2005 != GET_MODE (SET_DEST (newpat))))
2007 unsigned int regno = REGNO (SET_DEST (newpat));
2008 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2010 if (regno < FIRST_PSEUDO_REGISTER
2011 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2012 && ! REG_USERVAR_P (SET_DEST (newpat))))
2014 if (regno >= FIRST_PSEUDO_REGISTER)
2015 SUBST (regno_reg_rtx[regno], new_dest);
2017 SUBST (SET_DEST (newpat), new_dest);
2018 SUBST (XEXP (*cc_use, 0), new_dest);
2019 SUBST (SET_SRC (newpat),
2020 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2022 else
2023 undobuf.other_insn = 0;
2025 #endif
2027 else
2028 #endif
2030 n_occurrences = 0; /* `subst' counts here */
2032 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2033 need to make a unique copy of I2SRC each time we substitute it
2034 to avoid self-referential rtl. */
2036 subst_low_cuid = INSN_CUID (i2);
2037 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2038 ! i1_feeds_i3 && i1dest_in_i1src);
2039 substed_i2 = 1;
2041 /* Record whether i2's body now appears within i3's body. */
2042 i2_is_used = n_occurrences;
2045 /* If we already got a failure, don't try to do more. Otherwise,
2046 try to substitute in I1 if we have it. */
2048 if (i1 && GET_CODE (newpat) != CLOBBER)
2050 /* Before we can do this substitution, we must redo the test done
2051 above (see detailed comments there) that ensures that I1DEST
2052 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2054 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2055 0, (rtx*) 0))
2057 undo_all ();
2058 return 0;
2061 n_occurrences = 0;
2062 subst_low_cuid = INSN_CUID (i1);
2063 newpat = subst (newpat, i1dest, i1src, 0, 0);
2064 substed_i1 = 1;
2067 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2068 to count all the ways that I2SRC and I1SRC can be used. */
2069 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2070 && i2_is_used + added_sets_2 > 1)
2071 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2072 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2073 > 1))
2074 /* Fail if we tried to make a new register (we used to abort, but there's
2075 really no reason to). */
2076 || max_reg_num () != maxreg
2077 /* Fail if we couldn't do something and have a CLOBBER. */
2078 || GET_CODE (newpat) == CLOBBER
2079 /* Fail if this new pattern is a MULT and we didn't have one before
2080 at the outer level. */
2081 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2082 && ! have_mult))
2084 undo_all ();
2085 return 0;
2088 /* If the actions of the earlier insns must be kept
2089 in addition to substituting them into the latest one,
2090 we must make a new PARALLEL for the latest insn
2091 to hold additional the SETs. */
2093 if (added_sets_1 || added_sets_2)
2095 combine_extras++;
2097 if (GET_CODE (newpat) == PARALLEL)
2099 rtvec old = XVEC (newpat, 0);
2100 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2101 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2102 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2103 sizeof (old->elem[0]) * old->num_elem);
2105 else
2107 rtx old = newpat;
2108 total_sets = 1 + added_sets_1 + added_sets_2;
2109 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2110 XVECEXP (newpat, 0, 0) = old;
2113 if (added_sets_1)
2114 XVECEXP (newpat, 0, --total_sets)
2115 = (GET_CODE (PATTERN (i1)) == PARALLEL
2116 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2118 if (added_sets_2)
2120 /* If there is no I1, use I2's body as is. We used to also not do
2121 the subst call below if I2 was substituted into I3,
2122 but that could lose a simplification. */
2123 if (i1 == 0)
2124 XVECEXP (newpat, 0, --total_sets) = i2pat;
2125 else
2126 /* See comment where i2pat is assigned. */
2127 XVECEXP (newpat, 0, --total_sets)
2128 = subst (i2pat, i1dest, i1src, 0, 0);
2132 /* We come here when we are replacing a destination in I2 with the
2133 destination of I3. */
2134 validate_replacement:
2136 /* Note which hard regs this insn has as inputs. */
2137 mark_used_regs_combine (newpat);
2139 /* Is the result of combination a valid instruction? */
2140 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2142 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2143 the second SET's destination is a register that is unused and isn't
2144 marked as an instruction that might trap in an EH region. In that case,
2145 we just need the first SET. This can occur when simplifying a divmod
2146 insn. We *must* test for this case here because the code below that
2147 splits two independent SETs doesn't handle this case correctly when it
2148 updates the register status.
2150 It's pointless doing this if we originally had two sets, one from
2151 i3, and one from i2. Combining then splitting the parallel results
2152 in the original i2 again plus an invalid insn (which we delete).
2153 The net effect is only to move instructions around, which makes
2154 debug info less accurate.
2156 Also check the case where the first SET's destination is unused.
2157 That would not cause incorrect code, but does cause an unneeded
2158 insn to remain. */
2160 if (insn_code_number < 0
2161 && !(added_sets_2 && i1 == 0)
2162 && GET_CODE (newpat) == PARALLEL
2163 && XVECLEN (newpat, 0) == 2
2164 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2165 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2166 && asm_noperands (newpat) < 0)
2168 rtx set0 = XVECEXP (newpat, 0, 0);
2169 rtx set1 = XVECEXP (newpat, 0, 1);
2170 rtx note;
2172 if (((REG_P (SET_DEST (set1))
2173 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2174 || (GET_CODE (SET_DEST (set1)) == SUBREG
2175 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2176 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2177 || INTVAL (XEXP (note, 0)) <= 0)
2178 && ! side_effects_p (SET_SRC (set1)))
2180 newpat = set0;
2181 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2184 else if (((REG_P (SET_DEST (set0))
2185 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2186 || (GET_CODE (SET_DEST (set0)) == SUBREG
2187 && find_reg_note (i3, REG_UNUSED,
2188 SUBREG_REG (SET_DEST (set0)))))
2189 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2190 || INTVAL (XEXP (note, 0)) <= 0)
2191 && ! side_effects_p (SET_SRC (set0)))
2193 newpat = set1;
2194 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2196 if (insn_code_number >= 0)
2198 /* If we will be able to accept this, we have made a
2199 change to the destination of I3. This requires us to
2200 do a few adjustments. */
2202 PATTERN (i3) = newpat;
2203 adjust_for_new_dest (i3);
2208 /* If we were combining three insns and the result is a simple SET
2209 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2210 insns. There are two ways to do this. It can be split using a
2211 machine-specific method (like when you have an addition of a large
2212 constant) or by combine in the function find_split_point. */
2214 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2215 && asm_noperands (newpat) < 0)
2217 rtx m_split, *split;
2218 rtx ni2dest = i2dest;
2220 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2221 use I2DEST as a scratch register will help. In the latter case,
2222 convert I2DEST to the mode of the source of NEWPAT if we can. */
2224 m_split = split_insns (newpat, i3);
2226 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2227 inputs of NEWPAT. */
2229 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2230 possible to try that as a scratch reg. This would require adding
2231 more code to make it work though. */
2233 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2235 /* If I2DEST is a hard register or the only use of a pseudo,
2236 we can change its mode. */
2237 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2238 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2239 && REG_P (i2dest)
2240 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2241 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2242 && ! REG_USERVAR_P (i2dest))))
2243 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2244 REGNO (i2dest));
2246 m_split = split_insns (gen_rtx_PARALLEL
2247 (VOIDmode,
2248 gen_rtvec (2, newpat,
2249 gen_rtx_CLOBBER (VOIDmode,
2250 ni2dest))),
2251 i3);
2252 /* If the split with the mode-changed register didn't work, try
2253 the original register. */
2254 if (! m_split && ni2dest != i2dest)
2256 ni2dest = i2dest;
2257 m_split = split_insns (gen_rtx_PARALLEL
2258 (VOIDmode,
2259 gen_rtvec (2, newpat,
2260 gen_rtx_CLOBBER (VOIDmode,
2261 i2dest))),
2262 i3);
2266 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2268 m_split = PATTERN (m_split);
2269 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2270 if (insn_code_number >= 0)
2271 newpat = m_split;
2273 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2274 && (next_real_insn (i2) == i3
2275 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2277 rtx i2set, i3set;
2278 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2279 newi2pat = PATTERN (m_split);
2281 i3set = single_set (NEXT_INSN (m_split));
2282 i2set = single_set (m_split);
2284 /* In case we changed the mode of I2DEST, replace it in the
2285 pseudo-register table here. We can't do it above in case this
2286 code doesn't get executed and we do a split the other way. */
2288 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2289 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2291 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2293 /* If I2 or I3 has multiple SETs, we won't know how to track
2294 register status, so don't use these insns. If I2's destination
2295 is used between I2 and I3, we also can't use these insns. */
2297 if (i2_code_number >= 0 && i2set && i3set
2298 && (next_real_insn (i2) == i3
2299 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2300 insn_code_number = recog_for_combine (&newi3pat, i3,
2301 &new_i3_notes);
2302 if (insn_code_number >= 0)
2303 newpat = newi3pat;
2305 /* It is possible that both insns now set the destination of I3.
2306 If so, we must show an extra use of it. */
2308 if (insn_code_number >= 0)
2310 rtx new_i3_dest = SET_DEST (i3set);
2311 rtx new_i2_dest = SET_DEST (i2set);
2313 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2314 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2315 || GET_CODE (new_i3_dest) == SUBREG)
2316 new_i3_dest = XEXP (new_i3_dest, 0);
2318 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2319 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2320 || GET_CODE (new_i2_dest) == SUBREG)
2321 new_i2_dest = XEXP (new_i2_dest, 0);
2323 if (REG_P (new_i3_dest)
2324 && REG_P (new_i2_dest)
2325 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2326 REG_N_SETS (REGNO (new_i2_dest))++;
2330 /* If we can split it and use I2DEST, go ahead and see if that
2331 helps things be recognized. Verify that none of the registers
2332 are set between I2 and I3. */
2333 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2334 #ifdef HAVE_cc0
2335 && REG_P (i2dest)
2336 #endif
2337 /* We need I2DEST in the proper mode. If it is a hard register
2338 or the only use of a pseudo, we can change its mode. */
2339 && (GET_MODE (*split) == GET_MODE (i2dest)
2340 || GET_MODE (*split) == VOIDmode
2341 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2342 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2343 && ! REG_USERVAR_P (i2dest)))
2344 && (next_real_insn (i2) == i3
2345 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2346 /* We can't overwrite I2DEST if its value is still used by
2347 NEWPAT. */
2348 && ! reg_referenced_p (i2dest, newpat))
2350 rtx newdest = i2dest;
2351 enum rtx_code split_code = GET_CODE (*split);
2352 enum machine_mode split_mode = GET_MODE (*split);
2354 /* Get NEWDEST as a register in the proper mode. We have already
2355 validated that we can do this. */
2356 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2358 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2360 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2361 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2364 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2365 an ASHIFT. This can occur if it was inside a PLUS and hence
2366 appeared to be a memory address. This is a kludge. */
2367 if (split_code == MULT
2368 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2369 && INTVAL (XEXP (*split, 1)) > 0
2370 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2372 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2373 XEXP (*split, 0), GEN_INT (i)));
2374 /* Update split_code because we may not have a multiply
2375 anymore. */
2376 split_code = GET_CODE (*split);
2379 #ifdef INSN_SCHEDULING
2380 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2381 be written as a ZERO_EXTEND. */
2382 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2384 #ifdef LOAD_EXTEND_OP
2385 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2386 what it really is. */
2387 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2388 == SIGN_EXTEND)
2389 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2390 SUBREG_REG (*split)));
2391 else
2392 #endif
2393 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2394 SUBREG_REG (*split)));
2396 #endif
2398 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2399 SUBST (*split, newdest);
2400 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2402 /* If the split point was a MULT and we didn't have one before,
2403 don't use one now. */
2404 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2405 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2409 /* Check for a case where we loaded from memory in a narrow mode and
2410 then sign extended it, but we need both registers. In that case,
2411 we have a PARALLEL with both loads from the same memory location.
2412 We can split this into a load from memory followed by a register-register
2413 copy. This saves at least one insn, more if register allocation can
2414 eliminate the copy.
2416 We cannot do this if the destination of the first assignment is a
2417 condition code register or cc0. We eliminate this case by making sure
2418 the SET_DEST and SET_SRC have the same mode.
2420 We cannot do this if the destination of the second assignment is
2421 a register that we have already assumed is zero-extended. Similarly
2422 for a SUBREG of such a register. */
2424 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2425 && GET_CODE (newpat) == PARALLEL
2426 && XVECLEN (newpat, 0) == 2
2427 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2428 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2429 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2430 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2431 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2432 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2433 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2434 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2435 INSN_CUID (i2))
2436 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2437 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2438 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2439 (REG_P (temp)
2440 && reg_stat[REGNO (temp)].nonzero_bits != 0
2441 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2442 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2443 && (reg_stat[REGNO (temp)].nonzero_bits
2444 != GET_MODE_MASK (word_mode))))
2445 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2446 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2447 (REG_P (temp)
2448 && reg_stat[REGNO (temp)].nonzero_bits != 0
2449 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2450 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2451 && (reg_stat[REGNO (temp)].nonzero_bits
2452 != GET_MODE_MASK (word_mode)))))
2453 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2454 SET_SRC (XVECEXP (newpat, 0, 1)))
2455 && ! find_reg_note (i3, REG_UNUSED,
2456 SET_DEST (XVECEXP (newpat, 0, 0))))
2458 rtx ni2dest;
2460 newi2pat = XVECEXP (newpat, 0, 0);
2461 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2462 newpat = XVECEXP (newpat, 0, 1);
2463 SUBST (SET_SRC (newpat),
2464 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2465 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2467 if (i2_code_number >= 0)
2468 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2470 if (insn_code_number >= 0)
2471 swap_i2i3 = 1;
2474 /* Similarly, check for a case where we have a PARALLEL of two independent
2475 SETs but we started with three insns. In this case, we can do the sets
2476 as two separate insns. This case occurs when some SET allows two
2477 other insns to combine, but the destination of that SET is still live. */
2479 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2480 && GET_CODE (newpat) == PARALLEL
2481 && XVECLEN (newpat, 0) == 2
2482 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2483 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2484 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2485 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2486 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2487 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2488 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2489 INSN_CUID (i2))
2490 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2491 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2492 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2493 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2494 XVECEXP (newpat, 0, 0))
2495 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2496 XVECEXP (newpat, 0, 1))
2497 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2498 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2500 /* Normally, it doesn't matter which of the two is done first,
2501 but it does if one references cc0. In that case, it has to
2502 be first. */
2503 #ifdef HAVE_cc0
2504 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2506 newi2pat = XVECEXP (newpat, 0, 0);
2507 newpat = XVECEXP (newpat, 0, 1);
2509 else
2510 #endif
2512 newi2pat = XVECEXP (newpat, 0, 1);
2513 newpat = XVECEXP (newpat, 0, 0);
2516 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2518 if (i2_code_number >= 0)
2519 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2522 /* If it still isn't recognized, fail and change things back the way they
2523 were. */
2524 if ((insn_code_number < 0
2525 /* Is the result a reasonable ASM_OPERANDS? */
2526 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2528 undo_all ();
2529 return 0;
2532 /* If we had to change another insn, make sure it is valid also. */
2533 if (undobuf.other_insn)
2535 rtx other_pat = PATTERN (undobuf.other_insn);
2536 rtx new_other_notes;
2537 rtx note, next;
2539 CLEAR_HARD_REG_SET (newpat_used_regs);
2541 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2542 &new_other_notes);
2544 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2546 undo_all ();
2547 return 0;
2550 PATTERN (undobuf.other_insn) = other_pat;
2552 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2553 are still valid. Then add any non-duplicate notes added by
2554 recog_for_combine. */
2555 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2557 next = XEXP (note, 1);
2559 if (REG_NOTE_KIND (note) == REG_UNUSED
2560 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2562 if (REG_P (XEXP (note, 0)))
2563 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2565 remove_note (undobuf.other_insn, note);
2569 for (note = new_other_notes; note; note = XEXP (note, 1))
2570 if (REG_P (XEXP (note, 0)))
2571 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2573 distribute_notes (new_other_notes, undobuf.other_insn,
2574 undobuf.other_insn, NULL_RTX);
2576 #ifdef HAVE_cc0
2577 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2578 they are adjacent to each other or not. */
2580 rtx p = prev_nonnote_insn (i3);
2581 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2582 && sets_cc0_p (newi2pat))
2584 undo_all ();
2585 return 0;
2588 #endif
2590 /* Only allow this combination if insn_rtx_costs reports that the
2591 replacement instructions are cheaper than the originals. */
2592 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2594 undo_all ();
2595 return 0;
2598 /* We now know that we can do this combination. Merge the insns and
2599 update the status of registers and LOG_LINKS. */
2601 if (swap_i2i3)
2603 rtx insn;
2604 rtx link;
2605 rtx ni2dest;
2607 /* I3 now uses what used to be its destination and which is now
2608 I2's destination. This requires us to do a few adjustments. */
2609 PATTERN (i3) = newpat;
2610 adjust_for_new_dest (i3);
2612 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2613 so we still will.
2615 However, some later insn might be using I2's dest and have
2616 a LOG_LINK pointing at I3. We must remove this link.
2617 The simplest way to remove the link is to point it at I1,
2618 which we know will be a NOTE. */
2620 /* newi2pat is usually a SET here; however, recog_for_combine might
2621 have added some clobbers. */
2622 if (GET_CODE (newi2pat) == PARALLEL)
2623 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2624 else
2625 ni2dest = SET_DEST (newi2pat);
2627 for (insn = NEXT_INSN (i3);
2628 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2629 || insn != BB_HEAD (this_basic_block->next_bb));
2630 insn = NEXT_INSN (insn))
2632 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2634 for (link = LOG_LINKS (insn); link;
2635 link = XEXP (link, 1))
2636 if (XEXP (link, 0) == i3)
2637 XEXP (link, 0) = i1;
2639 break;
2645 rtx i3notes, i2notes, i1notes = 0;
2646 rtx i3links, i2links, i1links = 0;
2647 rtx midnotes = 0;
2648 unsigned int regno;
2650 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2651 clear them. */
2652 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2653 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2654 if (i1)
2655 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2657 /* Ensure that we do not have something that should not be shared but
2658 occurs multiple times in the new insns. Check this by first
2659 resetting all the `used' flags and then copying anything is shared. */
2661 reset_used_flags (i3notes);
2662 reset_used_flags (i2notes);
2663 reset_used_flags (i1notes);
2664 reset_used_flags (newpat);
2665 reset_used_flags (newi2pat);
2666 if (undobuf.other_insn)
2667 reset_used_flags (PATTERN (undobuf.other_insn));
2669 i3notes = copy_rtx_if_shared (i3notes);
2670 i2notes = copy_rtx_if_shared (i2notes);
2671 i1notes = copy_rtx_if_shared (i1notes);
2672 newpat = copy_rtx_if_shared (newpat);
2673 newi2pat = copy_rtx_if_shared (newi2pat);
2674 if (undobuf.other_insn)
2675 reset_used_flags (PATTERN (undobuf.other_insn));
2677 INSN_CODE (i3) = insn_code_number;
2678 PATTERN (i3) = newpat;
2680 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2682 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2684 reset_used_flags (call_usage);
2685 call_usage = copy_rtx (call_usage);
2687 if (substed_i2)
2688 replace_rtx (call_usage, i2dest, i2src);
2690 if (substed_i1)
2691 replace_rtx (call_usage, i1dest, i1src);
2693 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2696 if (undobuf.other_insn)
2697 INSN_CODE (undobuf.other_insn) = other_code_number;
2699 /* We had one special case above where I2 had more than one set and
2700 we replaced a destination of one of those sets with the destination
2701 of I3. In that case, we have to update LOG_LINKS of insns later
2702 in this basic block. Note that this (expensive) case is rare.
2704 Also, in this case, we must pretend that all REG_NOTEs for I2
2705 actually came from I3, so that REG_UNUSED notes from I2 will be
2706 properly handled. */
2708 if (i3_subst_into_i2)
2710 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2711 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2712 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2713 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2714 && ! find_reg_note (i2, REG_UNUSED,
2715 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2716 for (temp = NEXT_INSN (i2);
2717 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2718 || BB_HEAD (this_basic_block) != temp);
2719 temp = NEXT_INSN (temp))
2720 if (temp != i3 && INSN_P (temp))
2721 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2722 if (XEXP (link, 0) == i2)
2723 XEXP (link, 0) = i3;
2725 if (i3notes)
2727 rtx link = i3notes;
2728 while (XEXP (link, 1))
2729 link = XEXP (link, 1);
2730 XEXP (link, 1) = i2notes;
2732 else
2733 i3notes = i2notes;
2734 i2notes = 0;
2737 LOG_LINKS (i3) = 0;
2738 REG_NOTES (i3) = 0;
2739 LOG_LINKS (i2) = 0;
2740 REG_NOTES (i2) = 0;
2742 if (newi2pat)
2744 INSN_CODE (i2) = i2_code_number;
2745 PATTERN (i2) = newi2pat;
2747 else
2748 SET_INSN_DELETED (i2);
2750 if (i1)
2752 LOG_LINKS (i1) = 0;
2753 REG_NOTES (i1) = 0;
2754 SET_INSN_DELETED (i1);
2757 /* Get death notes for everything that is now used in either I3 or
2758 I2 and used to die in a previous insn. If we built two new
2759 patterns, move from I1 to I2 then I2 to I3 so that we get the
2760 proper movement on registers that I2 modifies. */
2762 if (newi2pat)
2764 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2765 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2767 else
2768 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2769 i3, &midnotes);
2771 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2772 if (i3notes)
2773 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2774 if (i2notes)
2775 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2776 if (i1notes)
2777 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2778 if (midnotes)
2779 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2781 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2782 know these are REG_UNUSED and want them to go to the desired insn,
2783 so we always pass it as i3. We have not counted the notes in
2784 reg_n_deaths yet, so we need to do so now. */
2786 if (newi2pat && new_i2_notes)
2788 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2789 if (REG_P (XEXP (temp, 0)))
2790 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2792 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2795 if (new_i3_notes)
2797 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2798 if (REG_P (XEXP (temp, 0)))
2799 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2801 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2804 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2805 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2806 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2807 in that case, it might delete I2. Similarly for I2 and I1.
2808 Show an additional death due to the REG_DEAD note we make here. If
2809 we discard it in distribute_notes, we will decrement it again. */
2811 if (i3dest_killed)
2813 if (REG_P (i3dest_killed))
2814 REG_N_DEATHS (REGNO (i3dest_killed))++;
2816 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2817 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2818 NULL_RTX),
2819 NULL_RTX, i2, NULL_RTX);
2820 else
2821 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2822 NULL_RTX),
2823 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2826 if (i2dest_in_i2src)
2828 if (REG_P (i2dest))
2829 REG_N_DEATHS (REGNO (i2dest))++;
2831 if (newi2pat && reg_set_p (i2dest, newi2pat))
2832 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2833 NULL_RTX, i2, NULL_RTX);
2834 else
2835 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2836 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2839 if (i1dest_in_i1src)
2841 if (REG_P (i1dest))
2842 REG_N_DEATHS (REGNO (i1dest))++;
2844 if (newi2pat && reg_set_p (i1dest, newi2pat))
2845 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2846 NULL_RTX, i2, NULL_RTX);
2847 else
2848 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2849 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2852 distribute_links (i3links);
2853 distribute_links (i2links);
2854 distribute_links (i1links);
2856 if (REG_P (i2dest))
2858 rtx link;
2859 rtx i2_insn = 0, i2_val = 0, set;
2861 /* The insn that used to set this register doesn't exist, and
2862 this life of the register may not exist either. See if one of
2863 I3's links points to an insn that sets I2DEST. If it does,
2864 that is now the last known value for I2DEST. If we don't update
2865 this and I2 set the register to a value that depended on its old
2866 contents, we will get confused. If this insn is used, thing
2867 will be set correctly in combine_instructions. */
2869 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2870 if ((set = single_set (XEXP (link, 0))) != 0
2871 && rtx_equal_p (i2dest, SET_DEST (set)))
2872 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2874 record_value_for_reg (i2dest, i2_insn, i2_val);
2876 /* If the reg formerly set in I2 died only once and that was in I3,
2877 zero its use count so it won't make `reload' do any work. */
2878 if (! added_sets_2
2879 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2880 && ! i2dest_in_i2src)
2882 regno = REGNO (i2dest);
2883 REG_N_SETS (regno)--;
2887 if (i1 && REG_P (i1dest))
2889 rtx link;
2890 rtx i1_insn = 0, i1_val = 0, set;
2892 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2893 if ((set = single_set (XEXP (link, 0))) != 0
2894 && rtx_equal_p (i1dest, SET_DEST (set)))
2895 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2897 record_value_for_reg (i1dest, i1_insn, i1_val);
2899 regno = REGNO (i1dest);
2900 if (! added_sets_1 && ! i1dest_in_i1src)
2901 REG_N_SETS (regno)--;
2904 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2905 been made to this insn. The order of
2906 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2907 can affect nonzero_bits of newpat */
2908 if (newi2pat)
2909 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2910 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2912 /* Set new_direct_jump_p if a new return or simple jump instruction
2913 has been created.
2915 If I3 is now an unconditional jump, ensure that it has a
2916 BARRIER following it since it may have initially been a
2917 conditional jump. It may also be the last nonnote insn. */
2919 if (returnjump_p (i3) || any_uncondjump_p (i3))
2921 *new_direct_jump_p = 1;
2922 mark_jump_label (PATTERN (i3), i3, 0);
2924 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2925 || !BARRIER_P (temp))
2926 emit_barrier_after (i3);
2929 if (undobuf.other_insn != NULL_RTX
2930 && (returnjump_p (undobuf.other_insn)
2931 || any_uncondjump_p (undobuf.other_insn)))
2933 *new_direct_jump_p = 1;
2935 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2936 || !BARRIER_P (temp))
2937 emit_barrier_after (undobuf.other_insn);
2940 /* An NOOP jump does not need barrier, but it does need cleaning up
2941 of CFG. */
2942 if (GET_CODE (newpat) == SET
2943 && SET_SRC (newpat) == pc_rtx
2944 && SET_DEST (newpat) == pc_rtx)
2945 *new_direct_jump_p = 1;
2948 combine_successes++;
2949 undo_commit ();
2951 if (added_links_insn
2952 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2953 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2954 return added_links_insn;
2955 else
2956 return newi2pat ? i2 : i3;
2959 /* Undo all the modifications recorded in undobuf. */
2961 static void
2962 undo_all (void)
2964 struct undo *undo, *next;
2966 for (undo = undobuf.undos; undo; undo = next)
2968 next = undo->next;
2969 if (undo->is_int)
2970 *undo->where.i = undo->old_contents.i;
2971 else
2972 *undo->where.r = undo->old_contents.r;
2974 undo->next = undobuf.frees;
2975 undobuf.frees = undo;
2978 undobuf.undos = 0;
2981 /* We've committed to accepting the changes we made. Move all
2982 of the undos to the free list. */
2984 static void
2985 undo_commit (void)
2987 struct undo *undo, *next;
2989 for (undo = undobuf.undos; undo; undo = next)
2991 next = undo->next;
2992 undo->next = undobuf.frees;
2993 undobuf.frees = undo;
2995 undobuf.undos = 0;
2999 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3000 where we have an arithmetic expression and return that point. LOC will
3001 be inside INSN.
3003 try_combine will call this function to see if an insn can be split into
3004 two insns. */
3006 static rtx *
3007 find_split_point (rtx *loc, rtx insn)
3009 rtx x = *loc;
3010 enum rtx_code code = GET_CODE (x);
3011 rtx *split;
3012 unsigned HOST_WIDE_INT len = 0;
3013 HOST_WIDE_INT pos = 0;
3014 int unsignedp = 0;
3015 rtx inner = NULL_RTX;
3017 /* First special-case some codes. */
3018 switch (code)
3020 case SUBREG:
3021 #ifdef INSN_SCHEDULING
3022 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3023 point. */
3024 if (MEM_P (SUBREG_REG (x)))
3025 return loc;
3026 #endif
3027 return find_split_point (&SUBREG_REG (x), insn);
3029 case MEM:
3030 #ifdef HAVE_lo_sum
3031 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3032 using LO_SUM and HIGH. */
3033 if (GET_CODE (XEXP (x, 0)) == CONST
3034 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3036 SUBST (XEXP (x, 0),
3037 gen_rtx_LO_SUM (Pmode,
3038 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3039 XEXP (x, 0)));
3040 return &XEXP (XEXP (x, 0), 0);
3042 #endif
3044 /* If we have a PLUS whose second operand is a constant and the
3045 address is not valid, perhaps will can split it up using
3046 the machine-specific way to split large constants. We use
3047 the first pseudo-reg (one of the virtual regs) as a placeholder;
3048 it will not remain in the result. */
3049 if (GET_CODE (XEXP (x, 0)) == PLUS
3050 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3051 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3053 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3054 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3055 subst_insn);
3057 /* This should have produced two insns, each of which sets our
3058 placeholder. If the source of the second is a valid address,
3059 we can make put both sources together and make a split point
3060 in the middle. */
3062 if (seq
3063 && NEXT_INSN (seq) != NULL_RTX
3064 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3065 && NONJUMP_INSN_P (seq)
3066 && GET_CODE (PATTERN (seq)) == SET
3067 && SET_DEST (PATTERN (seq)) == reg
3068 && ! reg_mentioned_p (reg,
3069 SET_SRC (PATTERN (seq)))
3070 && NONJUMP_INSN_P (NEXT_INSN (seq))
3071 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3072 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3073 && memory_address_p (GET_MODE (x),
3074 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3076 rtx src1 = SET_SRC (PATTERN (seq));
3077 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3079 /* Replace the placeholder in SRC2 with SRC1. If we can
3080 find where in SRC2 it was placed, that can become our
3081 split point and we can replace this address with SRC2.
3082 Just try two obvious places. */
3084 src2 = replace_rtx (src2, reg, src1);
3085 split = 0;
3086 if (XEXP (src2, 0) == src1)
3087 split = &XEXP (src2, 0);
3088 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3089 && XEXP (XEXP (src2, 0), 0) == src1)
3090 split = &XEXP (XEXP (src2, 0), 0);
3092 if (split)
3094 SUBST (XEXP (x, 0), src2);
3095 return split;
3099 /* If that didn't work, perhaps the first operand is complex and
3100 needs to be computed separately, so make a split point there.
3101 This will occur on machines that just support REG + CONST
3102 and have a constant moved through some previous computation. */
3104 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3105 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3106 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3107 return &XEXP (XEXP (x, 0), 0);
3109 break;
3111 case SET:
3112 #ifdef HAVE_cc0
3113 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3114 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3115 we need to put the operand into a register. So split at that
3116 point. */
3118 if (SET_DEST (x) == cc0_rtx
3119 && GET_CODE (SET_SRC (x)) != COMPARE
3120 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3121 && !OBJECT_P (SET_SRC (x))
3122 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3123 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3124 return &SET_SRC (x);
3125 #endif
3127 /* See if we can split SET_SRC as it stands. */
3128 split = find_split_point (&SET_SRC (x), insn);
3129 if (split && split != &SET_SRC (x))
3130 return split;
3132 /* See if we can split SET_DEST as it stands. */
3133 split = find_split_point (&SET_DEST (x), insn);
3134 if (split && split != &SET_DEST (x))
3135 return split;
3137 /* See if this is a bitfield assignment with everything constant. If
3138 so, this is an IOR of an AND, so split it into that. */
3139 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3140 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3141 <= HOST_BITS_PER_WIDE_INT)
3142 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3143 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3144 && GET_CODE (SET_SRC (x)) == CONST_INT
3145 && ((INTVAL (XEXP (SET_DEST (x), 1))
3146 + INTVAL (XEXP (SET_DEST (x), 2)))
3147 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3148 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3150 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3151 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3152 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3153 rtx dest = XEXP (SET_DEST (x), 0);
3154 enum machine_mode mode = GET_MODE (dest);
3155 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3157 if (BITS_BIG_ENDIAN)
3158 pos = GET_MODE_BITSIZE (mode) - len - pos;
3160 if (src == mask)
3161 SUBST (SET_SRC (x),
3162 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3163 else
3164 SUBST (SET_SRC (x),
3165 gen_binary (IOR, mode,
3166 gen_binary (AND, mode, dest,
3167 gen_int_mode (~(mask << pos),
3168 mode)),
3169 GEN_INT (src << pos)));
3171 SUBST (SET_DEST (x), dest);
3173 split = find_split_point (&SET_SRC (x), insn);
3174 if (split && split != &SET_SRC (x))
3175 return split;
3178 /* Otherwise, see if this is an operation that we can split into two.
3179 If so, try to split that. */
3180 code = GET_CODE (SET_SRC (x));
3182 switch (code)
3184 case AND:
3185 /* If we are AND'ing with a large constant that is only a single
3186 bit and the result is only being used in a context where we
3187 need to know if it is zero or nonzero, replace it with a bit
3188 extraction. This will avoid the large constant, which might
3189 have taken more than one insn to make. If the constant were
3190 not a valid argument to the AND but took only one insn to make,
3191 this is no worse, but if it took more than one insn, it will
3192 be better. */
3194 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3195 && REG_P (XEXP (SET_SRC (x), 0))
3196 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3197 && REG_P (SET_DEST (x))
3198 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3199 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3200 && XEXP (*split, 0) == SET_DEST (x)
3201 && XEXP (*split, 1) == const0_rtx)
3203 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3204 XEXP (SET_SRC (x), 0),
3205 pos, NULL_RTX, 1, 1, 0, 0);
3206 if (extraction != 0)
3208 SUBST (SET_SRC (x), extraction);
3209 return find_split_point (loc, insn);
3212 break;
3214 case NE:
3215 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3216 is known to be on, this can be converted into a NEG of a shift. */
3217 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3218 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3219 && 1 <= (pos = exact_log2
3220 (nonzero_bits (XEXP (SET_SRC (x), 0),
3221 GET_MODE (XEXP (SET_SRC (x), 0))))))
3223 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3225 SUBST (SET_SRC (x),
3226 gen_rtx_NEG (mode,
3227 gen_rtx_LSHIFTRT (mode,
3228 XEXP (SET_SRC (x), 0),
3229 GEN_INT (pos))));
3231 split = find_split_point (&SET_SRC (x), insn);
3232 if (split && split != &SET_SRC (x))
3233 return split;
3235 break;
3237 case SIGN_EXTEND:
3238 inner = XEXP (SET_SRC (x), 0);
3240 /* We can't optimize if either mode is a partial integer
3241 mode as we don't know how many bits are significant
3242 in those modes. */
3243 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3244 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3245 break;
3247 pos = 0;
3248 len = GET_MODE_BITSIZE (GET_MODE (inner));
3249 unsignedp = 0;
3250 break;
3252 case SIGN_EXTRACT:
3253 case ZERO_EXTRACT:
3254 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3255 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3257 inner = XEXP (SET_SRC (x), 0);
3258 len = INTVAL (XEXP (SET_SRC (x), 1));
3259 pos = INTVAL (XEXP (SET_SRC (x), 2));
3261 if (BITS_BIG_ENDIAN)
3262 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3263 unsignedp = (code == ZERO_EXTRACT);
3265 break;
3267 default:
3268 break;
3271 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3273 enum machine_mode mode = GET_MODE (SET_SRC (x));
3275 /* For unsigned, we have a choice of a shift followed by an
3276 AND or two shifts. Use two shifts for field sizes where the
3277 constant might be too large. We assume here that we can
3278 always at least get 8-bit constants in an AND insn, which is
3279 true for every current RISC. */
3281 if (unsignedp && len <= 8)
3283 SUBST (SET_SRC (x),
3284 gen_rtx_AND (mode,
3285 gen_rtx_LSHIFTRT
3286 (mode, gen_lowpart (mode, inner),
3287 GEN_INT (pos)),
3288 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3290 split = find_split_point (&SET_SRC (x), insn);
3291 if (split && split != &SET_SRC (x))
3292 return split;
3294 else
3296 SUBST (SET_SRC (x),
3297 gen_rtx_fmt_ee
3298 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3299 gen_rtx_ASHIFT (mode,
3300 gen_lowpart (mode, inner),
3301 GEN_INT (GET_MODE_BITSIZE (mode)
3302 - len - pos)),
3303 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3305 split = find_split_point (&SET_SRC (x), insn);
3306 if (split && split != &SET_SRC (x))
3307 return split;
3311 /* See if this is a simple operation with a constant as the second
3312 operand. It might be that this constant is out of range and hence
3313 could be used as a split point. */
3314 if (BINARY_P (SET_SRC (x))
3315 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3316 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3317 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3318 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3319 return &XEXP (SET_SRC (x), 1);
3321 /* Finally, see if this is a simple operation with its first operand
3322 not in a register. The operation might require this operand in a
3323 register, so return it as a split point. We can always do this
3324 because if the first operand were another operation, we would have
3325 already found it as a split point. */
3326 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3327 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3328 return &XEXP (SET_SRC (x), 0);
3330 return 0;
3332 case AND:
3333 case IOR:
3334 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3335 it is better to write this as (not (ior A B)) so we can split it.
3336 Similarly for IOR. */
3337 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3339 SUBST (*loc,
3340 gen_rtx_NOT (GET_MODE (x),
3341 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3342 GET_MODE (x),
3343 XEXP (XEXP (x, 0), 0),
3344 XEXP (XEXP (x, 1), 0))));
3345 return find_split_point (loc, insn);
3348 /* Many RISC machines have a large set of logical insns. If the
3349 second operand is a NOT, put it first so we will try to split the
3350 other operand first. */
3351 if (GET_CODE (XEXP (x, 1)) == NOT)
3353 rtx tem = XEXP (x, 0);
3354 SUBST (XEXP (x, 0), XEXP (x, 1));
3355 SUBST (XEXP (x, 1), tem);
3357 break;
3359 default:
3360 break;
3363 /* Otherwise, select our actions depending on our rtx class. */
3364 switch (GET_RTX_CLASS (code))
3366 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3367 case RTX_TERNARY:
3368 split = find_split_point (&XEXP (x, 2), insn);
3369 if (split)
3370 return split;
3371 /* ... fall through ... */
3372 case RTX_BIN_ARITH:
3373 case RTX_COMM_ARITH:
3374 case RTX_COMPARE:
3375 case RTX_COMM_COMPARE:
3376 split = find_split_point (&XEXP (x, 1), insn);
3377 if (split)
3378 return split;
3379 /* ... fall through ... */
3380 case RTX_UNARY:
3381 /* Some machines have (and (shift ...) ...) insns. If X is not
3382 an AND, but XEXP (X, 0) is, use it as our split point. */
3383 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3384 return &XEXP (x, 0);
3386 split = find_split_point (&XEXP (x, 0), insn);
3387 if (split)
3388 return split;
3389 return loc;
3391 default:
3392 /* Otherwise, we don't have a split point. */
3393 return 0;
3397 /* Throughout X, replace FROM with TO, and return the result.
3398 The result is TO if X is FROM;
3399 otherwise the result is X, but its contents may have been modified.
3400 If they were modified, a record was made in undobuf so that
3401 undo_all will (among other things) return X to its original state.
3403 If the number of changes necessary is too much to record to undo,
3404 the excess changes are not made, so the result is invalid.
3405 The changes already made can still be undone.
3406 undobuf.num_undo is incremented for such changes, so by testing that
3407 the caller can tell whether the result is valid.
3409 `n_occurrences' is incremented each time FROM is replaced.
3411 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3413 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3414 by copying if `n_occurrences' is nonzero. */
3416 static rtx
3417 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3419 enum rtx_code code = GET_CODE (x);
3420 enum machine_mode op0_mode = VOIDmode;
3421 const char *fmt;
3422 int len, i;
3423 rtx new;
3425 /* Two expressions are equal if they are identical copies of a shared
3426 RTX or if they are both registers with the same register number
3427 and mode. */
3429 #define COMBINE_RTX_EQUAL_P(X,Y) \
3430 ((X) == (Y) \
3431 || (REG_P (X) && REG_P (Y) \
3432 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3434 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3436 n_occurrences++;
3437 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3440 /* If X and FROM are the same register but different modes, they will
3441 not have been seen as equal above. However, flow.c will make a
3442 LOG_LINKS entry for that case. If we do nothing, we will try to
3443 rerecognize our original insn and, when it succeeds, we will
3444 delete the feeding insn, which is incorrect.
3446 So force this insn not to match in this (rare) case. */
3447 if (! in_dest && code == REG && REG_P (from)
3448 && REGNO (x) == REGNO (from))
3449 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3451 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3452 of which may contain things that can be combined. */
3453 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3454 return x;
3456 /* It is possible to have a subexpression appear twice in the insn.
3457 Suppose that FROM is a register that appears within TO.
3458 Then, after that subexpression has been scanned once by `subst',
3459 the second time it is scanned, TO may be found. If we were
3460 to scan TO here, we would find FROM within it and create a
3461 self-referent rtl structure which is completely wrong. */
3462 if (COMBINE_RTX_EQUAL_P (x, to))
3463 return to;
3465 /* Parallel asm_operands need special attention because all of the
3466 inputs are shared across the arms. Furthermore, unsharing the
3467 rtl results in recognition failures. Failure to handle this case
3468 specially can result in circular rtl.
3470 Solve this by doing a normal pass across the first entry of the
3471 parallel, and only processing the SET_DESTs of the subsequent
3472 entries. Ug. */
3474 if (code == PARALLEL
3475 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3476 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3478 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3480 /* If this substitution failed, this whole thing fails. */
3481 if (GET_CODE (new) == CLOBBER
3482 && XEXP (new, 0) == const0_rtx)
3483 return new;
3485 SUBST (XVECEXP (x, 0, 0), new);
3487 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3489 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3491 if (!REG_P (dest)
3492 && GET_CODE (dest) != CC0
3493 && GET_CODE (dest) != PC)
3495 new = subst (dest, from, to, 0, unique_copy);
3497 /* If this substitution failed, this whole thing fails. */
3498 if (GET_CODE (new) == CLOBBER
3499 && XEXP (new, 0) == const0_rtx)
3500 return new;
3502 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3506 else
3508 len = GET_RTX_LENGTH (code);
3509 fmt = GET_RTX_FORMAT (code);
3511 /* We don't need to process a SET_DEST that is a register, CC0,
3512 or PC, so set up to skip this common case. All other cases
3513 where we want to suppress replacing something inside a
3514 SET_SRC are handled via the IN_DEST operand. */
3515 if (code == SET
3516 && (REG_P (SET_DEST (x))
3517 || GET_CODE (SET_DEST (x)) == CC0
3518 || GET_CODE (SET_DEST (x)) == PC))
3519 fmt = "ie";
3521 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3522 constant. */
3523 if (fmt[0] == 'e')
3524 op0_mode = GET_MODE (XEXP (x, 0));
3526 for (i = 0; i < len; i++)
3528 if (fmt[i] == 'E')
3530 int j;
3531 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3533 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3535 new = (unique_copy && n_occurrences
3536 ? copy_rtx (to) : to);
3537 n_occurrences++;
3539 else
3541 new = subst (XVECEXP (x, i, j), from, to, 0,
3542 unique_copy);
3544 /* If this substitution failed, this whole thing
3545 fails. */
3546 if (GET_CODE (new) == CLOBBER
3547 && XEXP (new, 0) == const0_rtx)
3548 return new;
3551 SUBST (XVECEXP (x, i, j), new);
3554 else if (fmt[i] == 'e')
3556 /* If this is a register being set, ignore it. */
3557 new = XEXP (x, i);
3558 if (in_dest
3559 && (code == SUBREG || code == STRICT_LOW_PART
3560 || code == ZERO_EXTRACT)
3561 && i == 0
3562 && REG_P (new))
3565 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3567 /* In general, don't install a subreg involving two
3568 modes not tieable. It can worsen register
3569 allocation, and can even make invalid reload
3570 insns, since the reg inside may need to be copied
3571 from in the outside mode, and that may be invalid
3572 if it is an fp reg copied in integer mode.
3574 We allow two exceptions to this: It is valid if
3575 it is inside another SUBREG and the mode of that
3576 SUBREG and the mode of the inside of TO is
3577 tieable and it is valid if X is a SET that copies
3578 FROM to CC0. */
3580 if (GET_CODE (to) == SUBREG
3581 && ! MODES_TIEABLE_P (GET_MODE (to),
3582 GET_MODE (SUBREG_REG (to)))
3583 && ! (code == SUBREG
3584 && MODES_TIEABLE_P (GET_MODE (x),
3585 GET_MODE (SUBREG_REG (to))))
3586 #ifdef HAVE_cc0
3587 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3588 #endif
3590 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3592 #ifdef CANNOT_CHANGE_MODE_CLASS
3593 if (code == SUBREG
3594 && REG_P (to)
3595 && REGNO (to) < FIRST_PSEUDO_REGISTER
3596 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3597 GET_MODE (to),
3598 GET_MODE (x)))
3599 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3600 #endif
3602 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3603 n_occurrences++;
3605 else
3606 /* If we are in a SET_DEST, suppress most cases unless we
3607 have gone inside a MEM, in which case we want to
3608 simplify the address. We assume here that things that
3609 are actually part of the destination have their inner
3610 parts in the first expression. This is true for SUBREG,
3611 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3612 things aside from REG and MEM that should appear in a
3613 SET_DEST. */
3614 new = subst (XEXP (x, i), from, to,
3615 (((in_dest
3616 && (code == SUBREG || code == STRICT_LOW_PART
3617 || code == ZERO_EXTRACT))
3618 || code == SET)
3619 && i == 0), unique_copy);
3621 /* If we found that we will have to reject this combination,
3622 indicate that by returning the CLOBBER ourselves, rather than
3623 an expression containing it. This will speed things up as
3624 well as prevent accidents where two CLOBBERs are considered
3625 to be equal, thus producing an incorrect simplification. */
3627 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3628 return new;
3630 if (GET_CODE (x) == SUBREG
3631 && (GET_CODE (new) == CONST_INT
3632 || GET_CODE (new) == CONST_DOUBLE))
3634 enum machine_mode mode = GET_MODE (x);
3636 x = simplify_subreg (GET_MODE (x), new,
3637 GET_MODE (SUBREG_REG (x)),
3638 SUBREG_BYTE (x));
3639 if (! x)
3640 x = gen_rtx_CLOBBER (mode, const0_rtx);
3642 else if (GET_CODE (new) == CONST_INT
3643 && GET_CODE (x) == ZERO_EXTEND)
3645 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3646 new, GET_MODE (XEXP (x, 0)));
3647 gcc_assert (x);
3649 else
3650 SUBST (XEXP (x, i), new);
3655 /* Try to simplify X. If the simplification changed the code, it is likely
3656 that further simplification will help, so loop, but limit the number
3657 of repetitions that will be performed. */
3659 for (i = 0; i < 4; i++)
3661 /* If X is sufficiently simple, don't bother trying to do anything
3662 with it. */
3663 if (code != CONST_INT && code != REG && code != CLOBBER)
3664 x = combine_simplify_rtx (x, op0_mode, in_dest);
3666 if (GET_CODE (x) == code)
3667 break;
3669 code = GET_CODE (x);
3671 /* We no longer know the original mode of operand 0 since we
3672 have changed the form of X) */
3673 op0_mode = VOIDmode;
3676 return x;
3679 /* Simplify X, a piece of RTL. We just operate on the expression at the
3680 outer level; call `subst' to simplify recursively. Return the new
3681 expression.
3683 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3684 if we are inside a SET_DEST. */
3686 static rtx
3687 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3689 enum rtx_code code = GET_CODE (x);
3690 enum machine_mode mode = GET_MODE (x);
3691 rtx temp;
3692 rtx reversed;
3693 int i;
3695 /* If this is a commutative operation, put a constant last and a complex
3696 expression first. We don't need to do this for comparisons here. */
3697 if (COMMUTATIVE_ARITH_P (x)
3698 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3700 temp = XEXP (x, 0);
3701 SUBST (XEXP (x, 0), XEXP (x, 1));
3702 SUBST (XEXP (x, 1), temp);
3705 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3706 sign extension of a PLUS with a constant, reverse the order of the sign
3707 extension and the addition. Note that this not the same as the original
3708 code, but overflow is undefined for signed values. Also note that the
3709 PLUS will have been partially moved "inside" the sign-extension, so that
3710 the first operand of X will really look like:
3711 (ashiftrt (plus (ashift A C4) C5) C4).
3712 We convert this to
3713 (plus (ashiftrt (ashift A C4) C2) C4)
3714 and replace the first operand of X with that expression. Later parts
3715 of this function may simplify the expression further.
3717 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3718 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3719 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3721 We do this to simplify address expressions. */
3723 if ((code == PLUS || code == MINUS || code == MULT)
3724 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3725 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3726 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3727 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3728 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3729 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3730 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3731 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3732 XEXP (XEXP (XEXP (x, 0), 0), 1),
3733 XEXP (XEXP (x, 0), 1))) != 0)
3735 rtx new
3736 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3737 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3738 INTVAL (XEXP (XEXP (x, 0), 1)));
3740 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3741 INTVAL (XEXP (XEXP (x, 0), 1)));
3743 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3746 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3747 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3748 things. Check for cases where both arms are testing the same
3749 condition.
3751 Don't do anything if all operands are very simple. */
3753 if ((BINARY_P (x)
3754 && ((!OBJECT_P (XEXP (x, 0))
3755 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3756 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3757 || (!OBJECT_P (XEXP (x, 1))
3758 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3759 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3760 || (UNARY_P (x)
3761 && (!OBJECT_P (XEXP (x, 0))
3762 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3763 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3765 rtx cond, true_rtx, false_rtx;
3767 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3768 if (cond != 0
3769 /* If everything is a comparison, what we have is highly unlikely
3770 to be simpler, so don't use it. */
3771 && ! (COMPARISON_P (x)
3772 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3774 rtx cop1 = const0_rtx;
3775 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3777 if (cond_code == NE && COMPARISON_P (cond))
3778 return x;
3780 /* Simplify the alternative arms; this may collapse the true and
3781 false arms to store-flag values. Be careful to use copy_rtx
3782 here since true_rtx or false_rtx might share RTL with x as a
3783 result of the if_then_else_cond call above. */
3784 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3785 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3787 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3788 is unlikely to be simpler. */
3789 if (general_operand (true_rtx, VOIDmode)
3790 && general_operand (false_rtx, VOIDmode))
3792 enum rtx_code reversed;
3794 /* Restarting if we generate a store-flag expression will cause
3795 us to loop. Just drop through in this case. */
3797 /* If the result values are STORE_FLAG_VALUE and zero, we can
3798 just make the comparison operation. */
3799 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3800 x = gen_binary (cond_code, mode, cond, cop1);
3801 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3802 && ((reversed = reversed_comparison_code_parts
3803 (cond_code, cond, cop1, NULL))
3804 != UNKNOWN))
3805 x = gen_binary (reversed, mode, cond, cop1);
3807 /* Likewise, we can make the negate of a comparison operation
3808 if the result values are - STORE_FLAG_VALUE and zero. */
3809 else if (GET_CODE (true_rtx) == CONST_INT
3810 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3811 && false_rtx == const0_rtx)
3812 x = simplify_gen_unary (NEG, mode,
3813 gen_binary (cond_code, mode, cond,
3814 cop1),
3815 mode);
3816 else if (GET_CODE (false_rtx) == CONST_INT
3817 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3818 && true_rtx == const0_rtx
3819 && ((reversed = reversed_comparison_code_parts
3820 (cond_code, cond, cop1, NULL))
3821 != UNKNOWN))
3822 x = simplify_gen_unary (NEG, mode,
3823 gen_binary (reversed, mode,
3824 cond, cop1),
3825 mode);
3826 else
3827 return gen_rtx_IF_THEN_ELSE (mode,
3828 gen_binary (cond_code, VOIDmode,
3829 cond, cop1),
3830 true_rtx, false_rtx);
3832 code = GET_CODE (x);
3833 op0_mode = VOIDmode;
3838 /* Try to fold this expression in case we have constants that weren't
3839 present before. */
3840 temp = 0;
3841 switch (GET_RTX_CLASS (code))
3843 case RTX_UNARY:
3844 if (op0_mode == VOIDmode)
3845 op0_mode = GET_MODE (XEXP (x, 0));
3846 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3847 break;
3848 case RTX_COMPARE:
3849 case RTX_COMM_COMPARE:
3851 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3852 if (cmp_mode == VOIDmode)
3854 cmp_mode = GET_MODE (XEXP (x, 1));
3855 if (cmp_mode == VOIDmode)
3856 cmp_mode = op0_mode;
3858 temp = simplify_relational_operation (code, mode, cmp_mode,
3859 XEXP (x, 0), XEXP (x, 1));
3861 break;
3862 case RTX_COMM_ARITH:
3863 case RTX_BIN_ARITH:
3864 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3865 break;
3866 case RTX_BITFIELD_OPS:
3867 case RTX_TERNARY:
3868 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3869 XEXP (x, 1), XEXP (x, 2));
3870 break;
3871 default:
3872 break;
3875 if (temp)
3877 x = temp;
3878 code = GET_CODE (temp);
3879 op0_mode = VOIDmode;
3880 mode = GET_MODE (temp);
3883 /* First see if we can apply the inverse distributive law. */
3884 if (code == PLUS || code == MINUS
3885 || code == AND || code == IOR || code == XOR)
3887 x = apply_distributive_law (x);
3888 code = GET_CODE (x);
3889 op0_mode = VOIDmode;
3892 /* If CODE is an associative operation not otherwise handled, see if we
3893 can associate some operands. This can win if they are constants or
3894 if they are logically related (i.e. (a & b) & a). */
3895 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3896 || code == AND || code == IOR || code == XOR
3897 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3898 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3899 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3901 if (GET_CODE (XEXP (x, 0)) == code)
3903 rtx other = XEXP (XEXP (x, 0), 0);
3904 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3905 rtx inner_op1 = XEXP (x, 1);
3906 rtx inner;
3908 /* Make sure we pass the constant operand if any as the second
3909 one if this is a commutative operation. */
3910 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3912 rtx tem = inner_op0;
3913 inner_op0 = inner_op1;
3914 inner_op1 = tem;
3916 inner = simplify_binary_operation (code == MINUS ? PLUS
3917 : code == DIV ? MULT
3918 : code,
3919 mode, inner_op0, inner_op1);
3921 /* For commutative operations, try the other pair if that one
3922 didn't simplify. */
3923 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3925 other = XEXP (XEXP (x, 0), 1);
3926 inner = simplify_binary_operation (code, mode,
3927 XEXP (XEXP (x, 0), 0),
3928 XEXP (x, 1));
3931 if (inner)
3932 return gen_binary (code, mode, other, inner);
3936 /* A little bit of algebraic simplification here. */
3937 switch (code)
3939 case MEM:
3940 /* Ensure that our address has any ASHIFTs converted to MULT in case
3941 address-recognizing predicates are called later. */
3942 temp = make_compound_operation (XEXP (x, 0), MEM);
3943 SUBST (XEXP (x, 0), temp);
3944 break;
3946 case SUBREG:
3947 if (op0_mode == VOIDmode)
3948 op0_mode = GET_MODE (SUBREG_REG (x));
3950 /* See if this can be moved to simplify_subreg. */
3951 if (CONSTANT_P (SUBREG_REG (x))
3952 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3953 /* Don't call gen_lowpart if the inner mode
3954 is VOIDmode and we cannot simplify it, as SUBREG without
3955 inner mode is invalid. */
3956 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3957 || gen_lowpart_common (mode, SUBREG_REG (x))))
3958 return gen_lowpart (mode, SUBREG_REG (x));
3960 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3961 break;
3963 rtx temp;
3964 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3965 SUBREG_BYTE (x));
3966 if (temp)
3967 return temp;
3970 /* Don't change the mode of the MEM if that would change the meaning
3971 of the address. */
3972 if (MEM_P (SUBREG_REG (x))
3973 && (MEM_VOLATILE_P (SUBREG_REG (x))
3974 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
3975 return gen_rtx_CLOBBER (mode, const0_rtx);
3977 /* Note that we cannot do any narrowing for non-constants since
3978 we might have been counting on using the fact that some bits were
3979 zero. We now do this in the SET. */
3981 break;
3983 case NOT:
3984 if (GET_CODE (XEXP (x, 0)) == SUBREG
3985 && subreg_lowpart_p (XEXP (x, 0))
3986 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
3987 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
3988 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
3989 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
3991 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
3993 x = gen_rtx_ROTATE (inner_mode,
3994 simplify_gen_unary (NOT, inner_mode, const1_rtx,
3995 inner_mode),
3996 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
3997 return gen_lowpart (mode, x);
4000 /* Apply De Morgan's laws to reduce number of patterns for machines
4001 with negating logical insns (and-not, nand, etc.). If result has
4002 only one NOT, put it first, since that is how the patterns are
4003 coded. */
4005 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4007 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4008 enum machine_mode op_mode;
4010 op_mode = GET_MODE (in1);
4011 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4013 op_mode = GET_MODE (in2);
4014 if (op_mode == VOIDmode)
4015 op_mode = mode;
4016 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4018 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4020 rtx tem = in2;
4021 in2 = in1; in1 = tem;
4024 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4025 mode, in1, in2);
4027 break;
4029 case NEG:
4030 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4031 if (GET_CODE (XEXP (x, 0)) == XOR
4032 && XEXP (XEXP (x, 0), 1) == const1_rtx
4033 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4034 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4036 temp = expand_compound_operation (XEXP (x, 0));
4038 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4039 replaced by (lshiftrt X C). This will convert
4040 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4042 if (GET_CODE (temp) == ASHIFTRT
4043 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4044 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4045 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4046 INTVAL (XEXP (temp, 1)));
4048 /* If X has only a single bit that might be nonzero, say, bit I, convert
4049 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4050 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4051 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4052 or a SUBREG of one since we'd be making the expression more
4053 complex if it was just a register. */
4055 if (!REG_P (temp)
4056 && ! (GET_CODE (temp) == SUBREG
4057 && REG_P (SUBREG_REG (temp)))
4058 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4060 rtx temp1 = simplify_shift_const
4061 (NULL_RTX, ASHIFTRT, mode,
4062 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4063 GET_MODE_BITSIZE (mode) - 1 - i),
4064 GET_MODE_BITSIZE (mode) - 1 - i);
4066 /* If all we did was surround TEMP with the two shifts, we
4067 haven't improved anything, so don't use it. Otherwise,
4068 we are better off with TEMP1. */
4069 if (GET_CODE (temp1) != ASHIFTRT
4070 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4071 || XEXP (XEXP (temp1, 0), 0) != temp)
4072 return temp1;
4074 break;
4076 case TRUNCATE:
4077 /* We can't handle truncation to a partial integer mode here
4078 because we don't know the real bitsize of the partial
4079 integer mode. */
4080 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4081 break;
4083 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4084 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4085 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4086 SUBST (XEXP (x, 0),
4087 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4088 GET_MODE_MASK (mode), NULL_RTX, 0));
4090 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4091 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4092 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4093 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4094 return XEXP (XEXP (x, 0), 0);
4096 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4097 (OP:SI foo:SI) if OP is NEG or ABS. */
4098 if ((GET_CODE (XEXP (x, 0)) == ABS
4099 || GET_CODE (XEXP (x, 0)) == NEG)
4100 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4101 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4102 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4103 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4104 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4106 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4107 (truncate:SI x). */
4108 if (GET_CODE (XEXP (x, 0)) == SUBREG
4109 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4110 && subreg_lowpart_p (XEXP (x, 0)))
4111 return SUBREG_REG (XEXP (x, 0));
4113 /* If we know that the value is already truncated, we can
4114 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4115 is nonzero for the corresponding modes. But don't do this
4116 for an (LSHIFTRT (MULT ...)) since this will cause problems
4117 with the umulXi3_highpart patterns. */
4118 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4119 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4120 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4121 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4122 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4123 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4124 return gen_lowpart (mode, XEXP (x, 0));
4126 /* A truncate of a comparison can be replaced with a subreg if
4127 STORE_FLAG_VALUE permits. This is like the previous test,
4128 but it works even if the comparison is done in a mode larger
4129 than HOST_BITS_PER_WIDE_INT. */
4130 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4131 && COMPARISON_P (XEXP (x, 0))
4132 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4133 return gen_lowpart (mode, XEXP (x, 0));
4135 /* Similarly, a truncate of a register whose value is a
4136 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4137 permits. */
4138 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4139 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4140 && (temp = get_last_value (XEXP (x, 0)))
4141 && COMPARISON_P (temp))
4142 return gen_lowpart (mode, XEXP (x, 0));
4144 break;
4146 case FLOAT_TRUNCATE:
4147 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4148 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4149 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4150 return XEXP (XEXP (x, 0), 0);
4152 /* (float_truncate:SF (float_truncate:DF foo:XF))
4153 = (float_truncate:SF foo:XF).
4154 This may eliminate double rounding, so it is unsafe.
4156 (float_truncate:SF (float_extend:XF foo:DF))
4157 = (float_truncate:SF foo:DF).
4159 (float_truncate:DF (float_extend:XF foo:SF))
4160 = (float_extend:SF foo:DF). */
4161 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4162 && flag_unsafe_math_optimizations)
4163 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4164 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4165 0)))
4166 > GET_MODE_SIZE (mode)
4167 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4168 mode,
4169 XEXP (XEXP (x, 0), 0), mode);
4171 /* (float_truncate (float x)) is (float x) */
4172 if (GET_CODE (XEXP (x, 0)) == FLOAT
4173 && (flag_unsafe_math_optimizations
4174 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4175 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4176 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4177 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4178 return simplify_gen_unary (FLOAT, mode,
4179 XEXP (XEXP (x, 0), 0),
4180 GET_MODE (XEXP (XEXP (x, 0), 0)));
4182 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4183 (OP:SF foo:SF) if OP is NEG or ABS. */
4184 if ((GET_CODE (XEXP (x, 0)) == ABS
4185 || GET_CODE (XEXP (x, 0)) == NEG)
4186 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4187 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4188 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4189 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4191 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4192 is (float_truncate:SF x). */
4193 if (GET_CODE (XEXP (x, 0)) == SUBREG
4194 && subreg_lowpart_p (XEXP (x, 0))
4195 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4196 return SUBREG_REG (XEXP (x, 0));
4197 break;
4198 case FLOAT_EXTEND:
4199 /* (float_extend (float_extend x)) is (float_extend x)
4201 (float_extend (float x)) is (float x) assuming that double
4202 rounding can't happen.
4204 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4205 || (GET_CODE (XEXP (x, 0)) == FLOAT
4206 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4207 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4208 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4209 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4210 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4211 XEXP (XEXP (x, 0), 0),
4212 GET_MODE (XEXP (XEXP (x, 0), 0)));
4214 break;
4215 #ifdef HAVE_cc0
4216 case COMPARE:
4217 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4218 using cc0, in which case we want to leave it as a COMPARE
4219 so we can distinguish it from a register-register-copy. */
4220 if (XEXP (x, 1) == const0_rtx)
4221 return XEXP (x, 0);
4223 /* x - 0 is the same as x unless x's mode has signed zeros and
4224 allows rounding towards -infinity. Under those conditions,
4225 0 - 0 is -0. */
4226 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4227 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4228 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4229 return XEXP (x, 0);
4230 break;
4231 #endif
4233 case CONST:
4234 /* (const (const X)) can become (const X). Do it this way rather than
4235 returning the inner CONST since CONST can be shared with a
4236 REG_EQUAL note. */
4237 if (GET_CODE (XEXP (x, 0)) == CONST)
4238 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4239 break;
4241 #ifdef HAVE_lo_sum
4242 case LO_SUM:
4243 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4244 can add in an offset. find_split_point will split this address up
4245 again if it doesn't match. */
4246 if (GET_CODE (XEXP (x, 0)) == HIGH
4247 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4248 return XEXP (x, 1);
4249 break;
4250 #endif
4252 case PLUS:
4253 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4255 if (GET_CODE (XEXP (x, 0)) == MULT
4256 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4258 rtx in1, in2;
4260 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4261 in2 = XEXP (XEXP (x, 0), 1);
4262 return gen_binary (MINUS, mode, XEXP (x, 1),
4263 gen_binary (MULT, mode, in1, in2));
4266 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4267 outermost. That's because that's the way indexed addresses are
4268 supposed to appear. This code used to check many more cases, but
4269 they are now checked elsewhere. */
4270 if (GET_CODE (XEXP (x, 0)) == PLUS
4271 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4272 return gen_binary (PLUS, mode,
4273 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4274 XEXP (x, 1)),
4275 XEXP (XEXP (x, 0), 1));
4277 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4278 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4279 bit-field and can be replaced by either a sign_extend or a
4280 sign_extract. The `and' may be a zero_extend and the two
4281 <c>, -<c> constants may be reversed. */
4282 if (GET_CODE (XEXP (x, 0)) == XOR
4283 && GET_CODE (XEXP (x, 1)) == CONST_INT
4284 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4285 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4286 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4287 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4288 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4289 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4290 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4291 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4292 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4293 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4294 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4295 == (unsigned int) i + 1))))
4296 return simplify_shift_const
4297 (NULL_RTX, ASHIFTRT, mode,
4298 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4299 XEXP (XEXP (XEXP (x, 0), 0), 0),
4300 GET_MODE_BITSIZE (mode) - (i + 1)),
4301 GET_MODE_BITSIZE (mode) - (i + 1));
4303 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4304 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4305 is 1. This produces better code than the alternative immediately
4306 below. */
4307 if (COMPARISON_P (XEXP (x, 0))
4308 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4309 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4310 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4311 XEXP (XEXP (x, 0), 0),
4312 XEXP (XEXP (x, 0), 1))))
4313 return
4314 simplify_gen_unary (NEG, mode, reversed, mode);
4316 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4317 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4318 the bitsize of the mode - 1. This allows simplification of
4319 "a = (b & 8) == 0;" */
4320 if (XEXP (x, 1) == constm1_rtx
4321 && !REG_P (XEXP (x, 0))
4322 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4323 && REG_P (SUBREG_REG (XEXP (x, 0))))
4324 && nonzero_bits (XEXP (x, 0), mode) == 1)
4325 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4326 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4327 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4328 GET_MODE_BITSIZE (mode) - 1),
4329 GET_MODE_BITSIZE (mode) - 1);
4331 /* If we are adding two things that have no bits in common, convert
4332 the addition into an IOR. This will often be further simplified,
4333 for example in cases like ((a & 1) + (a & 2)), which can
4334 become a & 3. */
4336 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4337 && (nonzero_bits (XEXP (x, 0), mode)
4338 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4340 /* Try to simplify the expression further. */
4341 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4342 temp = combine_simplify_rtx (tor, mode, in_dest);
4344 /* If we could, great. If not, do not go ahead with the IOR
4345 replacement, since PLUS appears in many special purpose
4346 address arithmetic instructions. */
4347 if (GET_CODE (temp) != CLOBBER && temp != tor)
4348 return temp;
4350 break;
4352 case MINUS:
4353 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4354 by reversing the comparison code if valid. */
4355 if (STORE_FLAG_VALUE == 1
4356 && XEXP (x, 0) == const1_rtx
4357 && COMPARISON_P (XEXP (x, 1))
4358 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4359 XEXP (XEXP (x, 1), 0),
4360 XEXP (XEXP (x, 1), 1))))
4361 return reversed;
4363 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4364 (and <foo> (const_int pow2-1)) */
4365 if (GET_CODE (XEXP (x, 1)) == AND
4366 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4367 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4368 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4369 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4370 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4372 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4374 if (GET_CODE (XEXP (x, 1)) == MULT
4375 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4377 rtx in1, in2;
4379 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4380 in2 = XEXP (XEXP (x, 1), 1);
4381 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4382 XEXP (x, 0));
4385 /* Canonicalize (minus (neg A) (mult B C)) to
4386 (minus (mult (neg B) C) A). */
4387 if (GET_CODE (XEXP (x, 1)) == MULT
4388 && GET_CODE (XEXP (x, 0)) == NEG)
4390 rtx in1, in2;
4392 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4393 in2 = XEXP (XEXP (x, 1), 1);
4394 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4395 XEXP (XEXP (x, 0), 0));
4398 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4399 integers. */
4400 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4401 return gen_binary (MINUS, mode,
4402 gen_binary (MINUS, mode, XEXP (x, 0),
4403 XEXP (XEXP (x, 1), 0)),
4404 XEXP (XEXP (x, 1), 1));
4405 break;
4407 case MULT:
4408 /* If we have (mult (plus A B) C), apply the distributive law and then
4409 the inverse distributive law to see if things simplify. This
4410 occurs mostly in addresses, often when unrolling loops. */
4412 if (GET_CODE (XEXP (x, 0)) == PLUS)
4414 x = apply_distributive_law
4415 (gen_binary (PLUS, mode,
4416 gen_binary (MULT, mode,
4417 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4418 gen_binary (MULT, mode,
4419 XEXP (XEXP (x, 0), 1),
4420 copy_rtx (XEXP (x, 1)))));
4422 if (GET_CODE (x) != MULT)
4423 return x;
4425 /* Try simplify a*(b/c) as (a*b)/c. */
4426 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4427 && GET_CODE (XEXP (x, 0)) == DIV)
4429 rtx tem = simplify_binary_operation (MULT, mode,
4430 XEXP (XEXP (x, 0), 0),
4431 XEXP (x, 1));
4432 if (tem)
4433 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4435 break;
4437 case UDIV:
4438 /* If this is a divide by a power of two, treat it as a shift if
4439 its first operand is a shift. */
4440 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4441 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4442 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4443 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4444 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4445 || GET_CODE (XEXP (x, 0)) == ROTATE
4446 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4447 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4448 break;
4450 case EQ: case NE:
4451 case GT: case GTU: case GE: case GEU:
4452 case LT: case LTU: case LE: case LEU:
4453 case UNEQ: case LTGT:
4454 case UNGT: case UNGE:
4455 case UNLT: case UNLE:
4456 case UNORDERED: case ORDERED:
4457 /* If the first operand is a condition code, we can't do anything
4458 with it. */
4459 if (GET_CODE (XEXP (x, 0)) == COMPARE
4460 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4461 && ! CC0_P (XEXP (x, 0))))
4463 rtx op0 = XEXP (x, 0);
4464 rtx op1 = XEXP (x, 1);
4465 enum rtx_code new_code;
4467 if (GET_CODE (op0) == COMPARE)
4468 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4470 /* Simplify our comparison, if possible. */
4471 new_code = simplify_comparison (code, &op0, &op1);
4473 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4474 if only the low-order bit is possibly nonzero in X (such as when
4475 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4476 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4477 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4478 (plus X 1).
4480 Remove any ZERO_EXTRACT we made when thinking this was a
4481 comparison. It may now be simpler to use, e.g., an AND. If a
4482 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4483 the call to make_compound_operation in the SET case. */
4485 if (STORE_FLAG_VALUE == 1
4486 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4487 && op1 == const0_rtx
4488 && mode == GET_MODE (op0)
4489 && nonzero_bits (op0, mode) == 1)
4490 return gen_lowpart (mode,
4491 expand_compound_operation (op0));
4493 else if (STORE_FLAG_VALUE == 1
4494 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4495 && op1 == const0_rtx
4496 && mode == GET_MODE (op0)
4497 && (num_sign_bit_copies (op0, mode)
4498 == GET_MODE_BITSIZE (mode)))
4500 op0 = expand_compound_operation (op0);
4501 return simplify_gen_unary (NEG, mode,
4502 gen_lowpart (mode, op0),
4503 mode);
4506 else if (STORE_FLAG_VALUE == 1
4507 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4508 && op1 == const0_rtx
4509 && mode == GET_MODE (op0)
4510 && nonzero_bits (op0, mode) == 1)
4512 op0 = expand_compound_operation (op0);
4513 return gen_binary (XOR, mode,
4514 gen_lowpart (mode, op0),
4515 const1_rtx);
4518 else if (STORE_FLAG_VALUE == 1
4519 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4520 && op1 == const0_rtx
4521 && mode == GET_MODE (op0)
4522 && (num_sign_bit_copies (op0, mode)
4523 == GET_MODE_BITSIZE (mode)))
4525 op0 = expand_compound_operation (op0);
4526 return plus_constant (gen_lowpart (mode, op0), 1);
4529 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4530 those above. */
4531 if (STORE_FLAG_VALUE == -1
4532 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4533 && op1 == const0_rtx
4534 && (num_sign_bit_copies (op0, mode)
4535 == GET_MODE_BITSIZE (mode)))
4536 return gen_lowpart (mode,
4537 expand_compound_operation (op0));
4539 else if (STORE_FLAG_VALUE == -1
4540 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4541 && op1 == const0_rtx
4542 && mode == GET_MODE (op0)
4543 && nonzero_bits (op0, mode) == 1)
4545 op0 = expand_compound_operation (op0);
4546 return simplify_gen_unary (NEG, mode,
4547 gen_lowpart (mode, op0),
4548 mode);
4551 else if (STORE_FLAG_VALUE == -1
4552 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4553 && op1 == const0_rtx
4554 && mode == GET_MODE (op0)
4555 && (num_sign_bit_copies (op0, mode)
4556 == GET_MODE_BITSIZE (mode)))
4558 op0 = expand_compound_operation (op0);
4559 return simplify_gen_unary (NOT, mode,
4560 gen_lowpart (mode, op0),
4561 mode);
4564 /* If X is 0/1, (eq X 0) is X-1. */
4565 else if (STORE_FLAG_VALUE == -1
4566 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4567 && op1 == const0_rtx
4568 && mode == GET_MODE (op0)
4569 && nonzero_bits (op0, mode) == 1)
4571 op0 = expand_compound_operation (op0);
4572 return plus_constant (gen_lowpart (mode, op0), -1);
4575 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4576 one bit that might be nonzero, we can convert (ne x 0) to
4577 (ashift x c) where C puts the bit in the sign bit. Remove any
4578 AND with STORE_FLAG_VALUE when we are done, since we are only
4579 going to test the sign bit. */
4580 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4581 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4582 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4583 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4584 && op1 == const0_rtx
4585 && mode == GET_MODE (op0)
4586 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4588 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4589 expand_compound_operation (op0),
4590 GET_MODE_BITSIZE (mode) - 1 - i);
4591 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4592 return XEXP (x, 0);
4593 else
4594 return x;
4597 /* If the code changed, return a whole new comparison. */
4598 if (new_code != code)
4599 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4601 /* Otherwise, keep this operation, but maybe change its operands.
4602 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4603 SUBST (XEXP (x, 0), op0);
4604 SUBST (XEXP (x, 1), op1);
4606 break;
4608 case IF_THEN_ELSE:
4609 return simplify_if_then_else (x);
4611 case ZERO_EXTRACT:
4612 case SIGN_EXTRACT:
4613 case ZERO_EXTEND:
4614 case SIGN_EXTEND:
4615 /* If we are processing SET_DEST, we are done. */
4616 if (in_dest)
4617 return x;
4619 return expand_compound_operation (x);
4621 case SET:
4622 return simplify_set (x);
4624 case AND:
4625 case IOR:
4626 case XOR:
4627 return simplify_logical (x);
4629 case ABS:
4630 /* (abs (neg <foo>)) -> (abs <foo>) */
4631 if (GET_CODE (XEXP (x, 0)) == NEG)
4632 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4634 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4635 do nothing. */
4636 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4637 break;
4639 /* If operand is something known to be positive, ignore the ABS. */
4640 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4641 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4642 <= HOST_BITS_PER_WIDE_INT)
4643 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4644 & ((HOST_WIDE_INT) 1
4645 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4646 == 0)))
4647 return XEXP (x, 0);
4649 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4650 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4651 return gen_rtx_NEG (mode, XEXP (x, 0));
4653 break;
4655 case FFS:
4656 /* (ffs (*_extend <X>)) = (ffs <X>) */
4657 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4658 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4659 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4660 break;
4662 case POPCOUNT:
4663 case PARITY:
4664 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4665 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4666 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4667 break;
4669 case FLOAT:
4670 /* (float (sign_extend <X>)) = (float <X>). */
4671 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4672 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4673 break;
4675 case ASHIFT:
4676 case LSHIFTRT:
4677 case ASHIFTRT:
4678 case ROTATE:
4679 case ROTATERT:
4680 /* If this is a shift by a constant amount, simplify it. */
4681 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4682 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4683 INTVAL (XEXP (x, 1)));
4685 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4686 SUBST (XEXP (x, 1),
4687 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4688 ((HOST_WIDE_INT) 1
4689 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4690 - 1,
4691 NULL_RTX, 0));
4692 break;
4694 case VEC_SELECT:
4696 rtx op0 = XEXP (x, 0);
4697 rtx op1 = XEXP (x, 1);
4698 int len;
4700 gcc_assert (GET_CODE (op1) == PARALLEL);
4701 len = XVECLEN (op1, 0);
4702 if (len == 1
4703 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4704 && GET_CODE (op0) == VEC_CONCAT)
4706 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4708 /* Try to find the element in the VEC_CONCAT. */
4709 for (;;)
4711 if (GET_MODE (op0) == GET_MODE (x))
4712 return op0;
4713 if (GET_CODE (op0) == VEC_CONCAT)
4715 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4716 if (op0_size < offset)
4717 op0 = XEXP (op0, 0);
4718 else
4720 offset -= op0_size;
4721 op0 = XEXP (op0, 1);
4724 else
4725 break;
4730 break;
4732 default:
4733 break;
4736 return x;
4739 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4741 static rtx
4742 simplify_if_then_else (rtx x)
4744 enum machine_mode mode = GET_MODE (x);
4745 rtx cond = XEXP (x, 0);
4746 rtx true_rtx = XEXP (x, 1);
4747 rtx false_rtx = XEXP (x, 2);
4748 enum rtx_code true_code = GET_CODE (cond);
4749 int comparison_p = COMPARISON_P (cond);
4750 rtx temp;
4751 int i;
4752 enum rtx_code false_code;
4753 rtx reversed;
4755 /* Simplify storing of the truth value. */
4756 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4757 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4759 /* Also when the truth value has to be reversed. */
4760 if (comparison_p
4761 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4762 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4763 XEXP (cond, 1))))
4764 return reversed;
4766 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4767 in it is being compared against certain values. Get the true and false
4768 comparisons and see if that says anything about the value of each arm. */
4770 if (comparison_p
4771 && ((false_code = combine_reversed_comparison_code (cond))
4772 != UNKNOWN)
4773 && REG_P (XEXP (cond, 0)))
4775 HOST_WIDE_INT nzb;
4776 rtx from = XEXP (cond, 0);
4777 rtx true_val = XEXP (cond, 1);
4778 rtx false_val = true_val;
4779 int swapped = 0;
4781 /* If FALSE_CODE is EQ, swap the codes and arms. */
4783 if (false_code == EQ)
4785 swapped = 1, true_code = EQ, false_code = NE;
4786 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4789 /* If we are comparing against zero and the expression being tested has
4790 only a single bit that might be nonzero, that is its value when it is
4791 not equal to zero. Similarly if it is known to be -1 or 0. */
4793 if (true_code == EQ && true_val == const0_rtx
4794 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4795 false_code = EQ, false_val = GEN_INT (nzb);
4796 else if (true_code == EQ && true_val == const0_rtx
4797 && (num_sign_bit_copies (from, GET_MODE (from))
4798 == GET_MODE_BITSIZE (GET_MODE (from))))
4799 false_code = EQ, false_val = constm1_rtx;
4801 /* Now simplify an arm if we know the value of the register in the
4802 branch and it is used in the arm. Be careful due to the potential
4803 of locally-shared RTL. */
4805 if (reg_mentioned_p (from, true_rtx))
4806 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4807 from, true_val),
4808 pc_rtx, pc_rtx, 0, 0);
4809 if (reg_mentioned_p (from, false_rtx))
4810 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4811 from, false_val),
4812 pc_rtx, pc_rtx, 0, 0);
4814 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4815 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4817 true_rtx = XEXP (x, 1);
4818 false_rtx = XEXP (x, 2);
4819 true_code = GET_CODE (cond);
4822 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4823 reversed, do so to avoid needing two sets of patterns for
4824 subtract-and-branch insns. Similarly if we have a constant in the true
4825 arm, the false arm is the same as the first operand of the comparison, or
4826 the false arm is more complicated than the true arm. */
4828 if (comparison_p
4829 && combine_reversed_comparison_code (cond) != UNKNOWN
4830 && (true_rtx == pc_rtx
4831 || (CONSTANT_P (true_rtx)
4832 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4833 || true_rtx == const0_rtx
4834 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4835 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4836 && !OBJECT_P (false_rtx))
4837 || reg_mentioned_p (true_rtx, false_rtx)
4838 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4840 true_code = reversed_comparison_code (cond, NULL);
4841 SUBST (XEXP (x, 0),
4842 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4843 XEXP (cond, 1)));
4845 SUBST (XEXP (x, 1), false_rtx);
4846 SUBST (XEXP (x, 2), true_rtx);
4848 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4849 cond = XEXP (x, 0);
4851 /* It is possible that the conditional has been simplified out. */
4852 true_code = GET_CODE (cond);
4853 comparison_p = COMPARISON_P (cond);
4856 /* If the two arms are identical, we don't need the comparison. */
4858 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4859 return true_rtx;
4861 /* Convert a == b ? b : a to "a". */
4862 if (true_code == EQ && ! side_effects_p (cond)
4863 && !HONOR_NANS (mode)
4864 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4865 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4866 return false_rtx;
4867 else if (true_code == NE && ! side_effects_p (cond)
4868 && !HONOR_NANS (mode)
4869 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4870 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4871 return true_rtx;
4873 /* Look for cases where we have (abs x) or (neg (abs X)). */
4875 if (GET_MODE_CLASS (mode) == MODE_INT
4876 && GET_CODE (false_rtx) == NEG
4877 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4878 && comparison_p
4879 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4880 && ! side_effects_p (true_rtx))
4881 switch (true_code)
4883 case GT:
4884 case GE:
4885 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4886 case LT:
4887 case LE:
4888 return
4889 simplify_gen_unary (NEG, mode,
4890 simplify_gen_unary (ABS, mode, true_rtx, mode),
4891 mode);
4892 default:
4893 break;
4896 /* Look for MIN or MAX. */
4898 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4899 && comparison_p
4900 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4901 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4902 && ! side_effects_p (cond))
4903 switch (true_code)
4905 case GE:
4906 case GT:
4907 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4908 case LE:
4909 case LT:
4910 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4911 case GEU:
4912 case GTU:
4913 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4914 case LEU:
4915 case LTU:
4916 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4917 default:
4918 break;
4921 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4922 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4923 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4924 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4925 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4926 neither 1 or -1, but it isn't worth checking for. */
4928 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4929 && comparison_p
4930 && GET_MODE_CLASS (mode) == MODE_INT
4931 && ! side_effects_p (x))
4933 rtx t = make_compound_operation (true_rtx, SET);
4934 rtx f = make_compound_operation (false_rtx, SET);
4935 rtx cond_op0 = XEXP (cond, 0);
4936 rtx cond_op1 = XEXP (cond, 1);
4937 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4938 enum machine_mode m = mode;
4939 rtx z = 0, c1 = NULL_RTX;
4941 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4942 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4943 || GET_CODE (t) == ASHIFT
4944 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4945 && rtx_equal_p (XEXP (t, 0), f))
4946 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4948 /* If an identity-zero op is commutative, check whether there
4949 would be a match if we swapped the operands. */
4950 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4951 || GET_CODE (t) == XOR)
4952 && rtx_equal_p (XEXP (t, 1), f))
4953 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4954 else if (GET_CODE (t) == SIGN_EXTEND
4955 && (GET_CODE (XEXP (t, 0)) == PLUS
4956 || GET_CODE (XEXP (t, 0)) == MINUS
4957 || GET_CODE (XEXP (t, 0)) == IOR
4958 || GET_CODE (XEXP (t, 0)) == XOR
4959 || GET_CODE (XEXP (t, 0)) == ASHIFT
4960 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4961 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4962 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4963 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4964 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4965 && (num_sign_bit_copies (f, GET_MODE (f))
4966 > (unsigned int)
4967 (GET_MODE_BITSIZE (mode)
4968 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4970 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4971 extend_op = SIGN_EXTEND;
4972 m = GET_MODE (XEXP (t, 0));
4974 else if (GET_CODE (t) == SIGN_EXTEND
4975 && (GET_CODE (XEXP (t, 0)) == PLUS
4976 || GET_CODE (XEXP (t, 0)) == IOR
4977 || GET_CODE (XEXP (t, 0)) == XOR)
4978 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4979 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
4980 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
4981 && (num_sign_bit_copies (f, GET_MODE (f))
4982 > (unsigned int)
4983 (GET_MODE_BITSIZE (mode)
4984 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
4986 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
4987 extend_op = SIGN_EXTEND;
4988 m = GET_MODE (XEXP (t, 0));
4990 else if (GET_CODE (t) == ZERO_EXTEND
4991 && (GET_CODE (XEXP (t, 0)) == PLUS
4992 || GET_CODE (XEXP (t, 0)) == MINUS
4993 || GET_CODE (XEXP (t, 0)) == IOR
4994 || GET_CODE (XEXP (t, 0)) == XOR
4995 || GET_CODE (XEXP (t, 0)) == ASHIFT
4996 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4997 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4998 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4999 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5000 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5001 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5002 && ((nonzero_bits (f, GET_MODE (f))
5003 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5004 == 0))
5006 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5007 extend_op = ZERO_EXTEND;
5008 m = GET_MODE (XEXP (t, 0));
5010 else if (GET_CODE (t) == ZERO_EXTEND
5011 && (GET_CODE (XEXP (t, 0)) == PLUS
5012 || GET_CODE (XEXP (t, 0)) == IOR
5013 || GET_CODE (XEXP (t, 0)) == XOR)
5014 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5015 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5016 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5017 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5018 && ((nonzero_bits (f, GET_MODE (f))
5019 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5020 == 0))
5022 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5023 extend_op = ZERO_EXTEND;
5024 m = GET_MODE (XEXP (t, 0));
5027 if (z)
5029 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5030 pc_rtx, pc_rtx, 0, 0);
5031 temp = gen_binary (MULT, m, temp,
5032 gen_binary (MULT, m, c1, const_true_rtx));
5033 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5034 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5036 if (extend_op != UNKNOWN)
5037 temp = simplify_gen_unary (extend_op, mode, temp, m);
5039 return temp;
5043 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5044 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5045 negation of a single bit, we can convert this operation to a shift. We
5046 can actually do this more generally, but it doesn't seem worth it. */
5048 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5049 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5050 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5051 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5052 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5053 == GET_MODE_BITSIZE (mode))
5054 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5055 return
5056 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5057 gen_lowpart (mode, XEXP (cond, 0)), i);
5059 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5060 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5061 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5062 && GET_MODE (XEXP (cond, 0)) == mode
5063 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5064 == nonzero_bits (XEXP (cond, 0), mode)
5065 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5066 return XEXP (cond, 0);
5068 return x;
5071 /* Simplify X, a SET expression. Return the new expression. */
5073 static rtx
5074 simplify_set (rtx x)
5076 rtx src = SET_SRC (x);
5077 rtx dest = SET_DEST (x);
5078 enum machine_mode mode
5079 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5080 rtx other_insn;
5081 rtx *cc_use;
5083 /* (set (pc) (return)) gets written as (return). */
5084 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5085 return src;
5087 /* Now that we know for sure which bits of SRC we are using, see if we can
5088 simplify the expression for the object knowing that we only need the
5089 low-order bits. */
5091 if (GET_MODE_CLASS (mode) == MODE_INT
5092 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5094 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5095 SUBST (SET_SRC (x), src);
5098 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5099 the comparison result and try to simplify it unless we already have used
5100 undobuf.other_insn. */
5101 if ((GET_MODE_CLASS (mode) == MODE_CC
5102 || GET_CODE (src) == COMPARE
5103 || CC0_P (dest))
5104 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5105 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5106 && COMPARISON_P (*cc_use)
5107 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5109 enum rtx_code old_code = GET_CODE (*cc_use);
5110 enum rtx_code new_code;
5111 rtx op0, op1, tmp;
5112 int other_changed = 0;
5113 enum machine_mode compare_mode = GET_MODE (dest);
5115 if (GET_CODE (src) == COMPARE)
5116 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5117 else
5118 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5120 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5121 op0, op1);
5122 if (!tmp)
5123 new_code = old_code;
5124 else if (!CONSTANT_P (tmp))
5126 new_code = GET_CODE (tmp);
5127 op0 = XEXP (tmp, 0);
5128 op1 = XEXP (tmp, 1);
5130 else
5132 rtx pat = PATTERN (other_insn);
5133 undobuf.other_insn = other_insn;
5134 SUBST (*cc_use, tmp);
5136 /* Attempt to simplify CC user. */
5137 if (GET_CODE (pat) == SET)
5139 rtx new = simplify_rtx (SET_SRC (pat));
5140 if (new != NULL_RTX)
5141 SUBST (SET_SRC (pat), new);
5144 /* Convert X into a no-op move. */
5145 SUBST (SET_DEST (x), pc_rtx);
5146 SUBST (SET_SRC (x), pc_rtx);
5147 return x;
5150 /* Simplify our comparison, if possible. */
5151 new_code = simplify_comparison (new_code, &op0, &op1);
5153 #ifdef SELECT_CC_MODE
5154 /* If this machine has CC modes other than CCmode, check to see if we
5155 need to use a different CC mode here. */
5156 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5157 compare_mode = GET_MODE (op0);
5158 else
5159 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5161 #ifndef HAVE_cc0
5162 /* If the mode changed, we have to change SET_DEST, the mode in the
5163 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5164 a hard register, just build new versions with the proper mode. If it
5165 is a pseudo, we lose unless it is only time we set the pseudo, in
5166 which case we can safely change its mode. */
5167 if (compare_mode != GET_MODE (dest))
5169 unsigned int regno = REGNO (dest);
5170 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5172 if (regno < FIRST_PSEUDO_REGISTER
5173 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5175 if (regno >= FIRST_PSEUDO_REGISTER)
5176 SUBST (regno_reg_rtx[regno], new_dest);
5178 SUBST (SET_DEST (x), new_dest);
5179 SUBST (XEXP (*cc_use, 0), new_dest);
5180 other_changed = 1;
5182 dest = new_dest;
5185 #endif /* cc0 */
5186 #endif /* SELECT_CC_MODE */
5188 /* If the code changed, we have to build a new comparison in
5189 undobuf.other_insn. */
5190 if (new_code != old_code)
5192 int other_changed_previously = other_changed;
5193 unsigned HOST_WIDE_INT mask;
5195 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5196 dest, const0_rtx));
5197 other_changed = 1;
5199 /* If the only change we made was to change an EQ into an NE or
5200 vice versa, OP0 has only one bit that might be nonzero, and OP1
5201 is zero, check if changing the user of the condition code will
5202 produce a valid insn. If it won't, we can keep the original code
5203 in that insn by surrounding our operation with an XOR. */
5205 if (((old_code == NE && new_code == EQ)
5206 || (old_code == EQ && new_code == NE))
5207 && ! other_changed_previously && op1 == const0_rtx
5208 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5209 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5211 rtx pat = PATTERN (other_insn), note = 0;
5213 if ((recog_for_combine (&pat, other_insn, &note) < 0
5214 && ! check_asm_operands (pat)))
5216 PUT_CODE (*cc_use, old_code);
5217 other_changed = 0;
5219 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5224 if (other_changed)
5225 undobuf.other_insn = other_insn;
5227 #ifdef HAVE_cc0
5228 /* If we are now comparing against zero, change our source if
5229 needed. If we do not use cc0, we always have a COMPARE. */
5230 if (op1 == const0_rtx && dest == cc0_rtx)
5232 SUBST (SET_SRC (x), op0);
5233 src = op0;
5235 else
5236 #endif
5238 /* Otherwise, if we didn't previously have a COMPARE in the
5239 correct mode, we need one. */
5240 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5242 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5243 src = SET_SRC (x);
5245 else
5247 /* Otherwise, update the COMPARE if needed. */
5248 SUBST (XEXP (src, 0), op0);
5249 SUBST (XEXP (src, 1), op1);
5252 else
5254 /* Get SET_SRC in a form where we have placed back any
5255 compound expressions. Then do the checks below. */
5256 src = make_compound_operation (src, SET);
5257 SUBST (SET_SRC (x), src);
5260 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5261 and X being a REG or (subreg (reg)), we may be able to convert this to
5262 (set (subreg:m2 x) (op)).
5264 We can always do this if M1 is narrower than M2 because that means that
5265 we only care about the low bits of the result.
5267 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5268 perform a narrower operation than requested since the high-order bits will
5269 be undefined. On machine where it is defined, this transformation is safe
5270 as long as M1 and M2 have the same number of words. */
5272 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5273 && !OBJECT_P (SUBREG_REG (src))
5274 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5275 / UNITS_PER_WORD)
5276 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5277 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5278 #ifndef WORD_REGISTER_OPERATIONS
5279 && (GET_MODE_SIZE (GET_MODE (src))
5280 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5281 #endif
5282 #ifdef CANNOT_CHANGE_MODE_CLASS
5283 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5284 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5285 GET_MODE (SUBREG_REG (src)),
5286 GET_MODE (src)))
5287 #endif
5288 && (REG_P (dest)
5289 || (GET_CODE (dest) == SUBREG
5290 && REG_P (SUBREG_REG (dest)))))
5292 SUBST (SET_DEST (x),
5293 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5294 dest));
5295 SUBST (SET_SRC (x), SUBREG_REG (src));
5297 src = SET_SRC (x), dest = SET_DEST (x);
5300 #ifdef HAVE_cc0
5301 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5302 in SRC. */
5303 if (dest == cc0_rtx
5304 && GET_CODE (src) == SUBREG
5305 && subreg_lowpart_p (src)
5306 && (GET_MODE_BITSIZE (GET_MODE (src))
5307 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5309 rtx inner = SUBREG_REG (src);
5310 enum machine_mode inner_mode = GET_MODE (inner);
5312 /* Here we make sure that we don't have a sign bit on. */
5313 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5314 && (nonzero_bits (inner, inner_mode)
5315 < ((unsigned HOST_WIDE_INT) 1
5316 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5318 SUBST (SET_SRC (x), inner);
5319 src = SET_SRC (x);
5322 #endif
5324 #ifdef LOAD_EXTEND_OP
5325 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5326 would require a paradoxical subreg. Replace the subreg with a
5327 zero_extend to avoid the reload that would otherwise be required. */
5329 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5330 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5331 && SUBREG_BYTE (src) == 0
5332 && (GET_MODE_SIZE (GET_MODE (src))
5333 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5334 && MEM_P (SUBREG_REG (src)))
5336 SUBST (SET_SRC (x),
5337 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5338 GET_MODE (src), SUBREG_REG (src)));
5340 src = SET_SRC (x);
5342 #endif
5344 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5345 are comparing an item known to be 0 or -1 against 0, use a logical
5346 operation instead. Check for one of the arms being an IOR of the other
5347 arm with some value. We compute three terms to be IOR'ed together. In
5348 practice, at most two will be nonzero. Then we do the IOR's. */
5350 if (GET_CODE (dest) != PC
5351 && GET_CODE (src) == IF_THEN_ELSE
5352 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5353 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5354 && XEXP (XEXP (src, 0), 1) == const0_rtx
5355 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5356 #ifdef HAVE_conditional_move
5357 && ! can_conditionally_move_p (GET_MODE (src))
5358 #endif
5359 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5360 GET_MODE (XEXP (XEXP (src, 0), 0)))
5361 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5362 && ! side_effects_p (src))
5364 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5365 ? XEXP (src, 1) : XEXP (src, 2));
5366 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5367 ? XEXP (src, 2) : XEXP (src, 1));
5368 rtx term1 = const0_rtx, term2, term3;
5370 if (GET_CODE (true_rtx) == IOR
5371 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5372 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5373 else if (GET_CODE (true_rtx) == IOR
5374 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5375 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5376 else if (GET_CODE (false_rtx) == IOR
5377 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5378 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5379 else if (GET_CODE (false_rtx) == IOR
5380 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5381 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5383 term2 = gen_binary (AND, GET_MODE (src),
5384 XEXP (XEXP (src, 0), 0), true_rtx);
5385 term3 = gen_binary (AND, GET_MODE (src),
5386 simplify_gen_unary (NOT, GET_MODE (src),
5387 XEXP (XEXP (src, 0), 0),
5388 GET_MODE (src)),
5389 false_rtx);
5391 SUBST (SET_SRC (x),
5392 gen_binary (IOR, GET_MODE (src),
5393 gen_binary (IOR, GET_MODE (src), term1, term2),
5394 term3));
5396 src = SET_SRC (x);
5399 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5400 whole thing fail. */
5401 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5402 return src;
5403 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5404 return dest;
5405 else
5406 /* Convert this into a field assignment operation, if possible. */
5407 return make_field_assignment (x);
5410 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5411 result. */
5413 static rtx
5414 simplify_logical (rtx x)
5416 enum machine_mode mode = GET_MODE (x);
5417 rtx op0 = XEXP (x, 0);
5418 rtx op1 = XEXP (x, 1);
5419 rtx reversed;
5421 switch (GET_CODE (x))
5423 case AND:
5424 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5425 insn (and may simplify more). */
5426 if (GET_CODE (op0) == XOR
5427 && rtx_equal_p (XEXP (op0, 0), op1)
5428 && ! side_effects_p (op1))
5429 x = gen_binary (AND, mode,
5430 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5431 op1);
5433 if (GET_CODE (op0) == XOR
5434 && rtx_equal_p (XEXP (op0, 1), op1)
5435 && ! side_effects_p (op1))
5436 x = gen_binary (AND, mode,
5437 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5438 op1);
5440 /* Similarly for (~(A ^ B)) & A. */
5441 if (GET_CODE (op0) == NOT
5442 && GET_CODE (XEXP (op0, 0)) == XOR
5443 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5444 && ! side_effects_p (op1))
5445 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5447 if (GET_CODE (op0) == NOT
5448 && GET_CODE (XEXP (op0, 0)) == XOR
5449 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5450 && ! side_effects_p (op1))
5451 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5453 /* We can call simplify_and_const_int only if we don't lose
5454 any (sign) bits when converting INTVAL (op1) to
5455 "unsigned HOST_WIDE_INT". */
5456 if (GET_CODE (op1) == CONST_INT
5457 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5458 || INTVAL (op1) > 0))
5460 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5462 /* If we have (ior (and (X C1) C2)) and the next restart would be
5463 the last, simplify this by making C1 as small as possible
5464 and then exit. Only do this if C1 actually changes: for now
5465 this only saves memory but, should this transformation be
5466 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5467 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5468 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5469 && GET_CODE (op1) == CONST_INT
5470 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5471 return gen_binary (IOR, mode,
5472 gen_binary (AND, mode, XEXP (op0, 0),
5473 GEN_INT (INTVAL (XEXP (op0, 1))
5474 & ~INTVAL (op1))), op1);
5476 if (GET_CODE (x) != AND)
5477 return x;
5479 op0 = XEXP (x, 0);
5480 op1 = XEXP (x, 1);
5483 /* Convert (A | B) & A to A. */
5484 if (GET_CODE (op0) == IOR
5485 && (rtx_equal_p (XEXP (op0, 0), op1)
5486 || rtx_equal_p (XEXP (op0, 1), op1))
5487 && ! side_effects_p (XEXP (op0, 0))
5488 && ! side_effects_p (XEXP (op0, 1)))
5489 return op1;
5491 /* In the following group of tests (and those in case IOR below),
5492 we start with some combination of logical operations and apply
5493 the distributive law followed by the inverse distributive law.
5494 Most of the time, this results in no change. However, if some of
5495 the operands are the same or inverses of each other, simplifications
5496 will result.
5498 For example, (and (ior A B) (not B)) can occur as the result of
5499 expanding a bit field assignment. When we apply the distributive
5500 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5501 which then simplifies to (and (A (not B))).
5503 If we have (and (ior A B) C), apply the distributive law and then
5504 the inverse distributive law to see if things simplify. */
5506 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5508 x = apply_distributive_law
5509 (gen_binary (GET_CODE (op0), mode,
5510 gen_binary (AND, mode, XEXP (op0, 0), op1),
5511 gen_binary (AND, mode, XEXP (op0, 1),
5512 copy_rtx (op1))));
5513 if (GET_CODE (x) != AND)
5514 return x;
5517 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5518 return apply_distributive_law
5519 (gen_binary (GET_CODE (op1), mode,
5520 gen_binary (AND, mode, XEXP (op1, 0), op0),
5521 gen_binary (AND, mode, XEXP (op1, 1),
5522 copy_rtx (op0))));
5524 /* Similarly, taking advantage of the fact that
5525 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5527 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5528 return apply_distributive_law
5529 (gen_binary (XOR, mode,
5530 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5531 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5532 XEXP (op1, 1))));
5534 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5535 return apply_distributive_law
5536 (gen_binary (XOR, mode,
5537 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5538 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5539 break;
5541 case IOR:
5542 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5543 if (GET_CODE (op1) == CONST_INT
5544 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5545 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5546 return op1;
5548 /* Convert (A & B) | A to A. */
5549 if (GET_CODE (op0) == AND
5550 && (rtx_equal_p (XEXP (op0, 0), op1)
5551 || rtx_equal_p (XEXP (op0, 1), op1))
5552 && ! side_effects_p (XEXP (op0, 0))
5553 && ! side_effects_p (XEXP (op0, 1)))
5554 return op1;
5556 /* If we have (ior (and A B) C), apply the distributive law and then
5557 the inverse distributive law to see if things simplify. */
5559 if (GET_CODE (op0) == AND)
5561 x = apply_distributive_law
5562 (gen_binary (AND, mode,
5563 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5564 gen_binary (IOR, mode, XEXP (op0, 1),
5565 copy_rtx (op1))));
5567 if (GET_CODE (x) != IOR)
5568 return x;
5571 if (GET_CODE (op1) == AND)
5573 x = apply_distributive_law
5574 (gen_binary (AND, mode,
5575 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5576 gen_binary (IOR, mode, XEXP (op1, 1),
5577 copy_rtx (op0))));
5579 if (GET_CODE (x) != IOR)
5580 return x;
5583 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5584 mode size to (rotate A CX). */
5586 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5587 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5588 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5589 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5590 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5591 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5592 == GET_MODE_BITSIZE (mode)))
5593 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5594 (GET_CODE (op0) == ASHIFT
5595 ? XEXP (op0, 1) : XEXP (op1, 1)));
5597 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5598 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5599 does not affect any of the bits in OP1, it can really be done
5600 as a PLUS and we can associate. We do this by seeing if OP1
5601 can be safely shifted left C bits. */
5602 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5603 && GET_CODE (XEXP (op0, 0)) == PLUS
5604 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5605 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5606 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5608 int count = INTVAL (XEXP (op0, 1));
5609 HOST_WIDE_INT mask = INTVAL (op1) << count;
5611 if (mask >> count == INTVAL (op1)
5612 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5614 SUBST (XEXP (XEXP (op0, 0), 1),
5615 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5616 return op0;
5619 break;
5621 case XOR:
5622 /* If we are XORing two things that have no bits in common,
5623 convert them into an IOR. This helps to detect rotation encoded
5624 using those methods and possibly other simplifications. */
5626 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5627 && (nonzero_bits (op0, mode)
5628 & nonzero_bits (op1, mode)) == 0)
5629 return (gen_binary (IOR, mode, op0, op1));
5631 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5632 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5633 (NOT y). */
5635 int num_negated = 0;
5637 if (GET_CODE (op0) == NOT)
5638 num_negated++, op0 = XEXP (op0, 0);
5639 if (GET_CODE (op1) == NOT)
5640 num_negated++, op1 = XEXP (op1, 0);
5642 if (num_negated == 2)
5644 SUBST (XEXP (x, 0), op0);
5645 SUBST (XEXP (x, 1), op1);
5647 else if (num_negated == 1)
5648 return
5649 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5650 mode);
5653 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5654 correspond to a machine insn or result in further simplifications
5655 if B is a constant. */
5657 if (GET_CODE (op0) == AND
5658 && rtx_equal_p (XEXP (op0, 1), op1)
5659 && ! side_effects_p (op1))
5660 return gen_binary (AND, mode,
5661 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5662 op1);
5664 else if (GET_CODE (op0) == AND
5665 && rtx_equal_p (XEXP (op0, 0), op1)
5666 && ! side_effects_p (op1))
5667 return gen_binary (AND, mode,
5668 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5669 op1);
5671 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5672 comparison if STORE_FLAG_VALUE is 1. */
5673 if (STORE_FLAG_VALUE == 1
5674 && op1 == const1_rtx
5675 && COMPARISON_P (op0)
5676 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5677 XEXP (op0, 1))))
5678 return reversed;
5680 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5681 is (lt foo (const_int 0)), so we can perform the above
5682 simplification if STORE_FLAG_VALUE is 1. */
5684 if (STORE_FLAG_VALUE == 1
5685 && op1 == const1_rtx
5686 && GET_CODE (op0) == LSHIFTRT
5687 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5688 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5689 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5691 /* (xor (comparison foo bar) (const_int sign-bit))
5692 when STORE_FLAG_VALUE is the sign bit. */
5693 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5694 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5695 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5696 && op1 == const_true_rtx
5697 && COMPARISON_P (op0)
5698 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5699 XEXP (op0, 1))))
5700 return reversed;
5702 break;
5704 default:
5705 gcc_unreachable ();
5708 return x;
5711 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5712 operations" because they can be replaced with two more basic operations.
5713 ZERO_EXTEND is also considered "compound" because it can be replaced with
5714 an AND operation, which is simpler, though only one operation.
5716 The function expand_compound_operation is called with an rtx expression
5717 and will convert it to the appropriate shifts and AND operations,
5718 simplifying at each stage.
5720 The function make_compound_operation is called to convert an expression
5721 consisting of shifts and ANDs into the equivalent compound expression.
5722 It is the inverse of this function, loosely speaking. */
5724 static rtx
5725 expand_compound_operation (rtx x)
5727 unsigned HOST_WIDE_INT pos = 0, len;
5728 int unsignedp = 0;
5729 unsigned int modewidth;
5730 rtx tem;
5732 switch (GET_CODE (x))
5734 case ZERO_EXTEND:
5735 unsignedp = 1;
5736 case SIGN_EXTEND:
5737 /* We can't necessarily use a const_int for a multiword mode;
5738 it depends on implicitly extending the value.
5739 Since we don't know the right way to extend it,
5740 we can't tell whether the implicit way is right.
5742 Even for a mode that is no wider than a const_int,
5743 we can't win, because we need to sign extend one of its bits through
5744 the rest of it, and we don't know which bit. */
5745 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5746 return x;
5748 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5749 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5750 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5751 reloaded. If not for that, MEM's would very rarely be safe.
5753 Reject MODEs bigger than a word, because we might not be able
5754 to reference a two-register group starting with an arbitrary register
5755 (and currently gen_lowpart might crash for a SUBREG). */
5757 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5758 return x;
5760 /* Reject MODEs that aren't scalar integers because turning vector
5761 or complex modes into shifts causes problems. */
5763 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5764 return x;
5766 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5767 /* If the inner object has VOIDmode (the only way this can happen
5768 is if it is an ASM_OPERANDS), we can't do anything since we don't
5769 know how much masking to do. */
5770 if (len == 0)
5771 return x;
5773 break;
5775 case ZERO_EXTRACT:
5776 unsignedp = 1;
5777 case SIGN_EXTRACT:
5778 /* If the operand is a CLOBBER, just return it. */
5779 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5780 return XEXP (x, 0);
5782 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5783 || GET_CODE (XEXP (x, 2)) != CONST_INT
5784 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5785 return x;
5787 /* Reject MODEs that aren't scalar integers because turning vector
5788 or complex modes into shifts causes problems. */
5790 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5791 return x;
5793 len = INTVAL (XEXP (x, 1));
5794 pos = INTVAL (XEXP (x, 2));
5796 /* If this goes outside the object being extracted, replace the object
5797 with a (use (mem ...)) construct that only combine understands
5798 and is used only for this purpose. */
5799 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5800 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5802 if (BITS_BIG_ENDIAN)
5803 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5805 break;
5807 default:
5808 return x;
5810 /* Convert sign extension to zero extension, if we know that the high
5811 bit is not set, as this is easier to optimize. It will be converted
5812 back to cheaper alternative in make_extraction. */
5813 if (GET_CODE (x) == SIGN_EXTEND
5814 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5815 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5816 & ~(((unsigned HOST_WIDE_INT)
5817 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5818 >> 1))
5819 == 0)))
5821 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5822 rtx temp2 = expand_compound_operation (temp);
5824 /* Make sure this is a profitable operation. */
5825 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5826 return temp2;
5827 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5828 return temp;
5829 else
5830 return x;
5833 /* We can optimize some special cases of ZERO_EXTEND. */
5834 if (GET_CODE (x) == ZERO_EXTEND)
5836 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5837 know that the last value didn't have any inappropriate bits
5838 set. */
5839 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5840 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5841 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5842 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5843 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5844 return XEXP (XEXP (x, 0), 0);
5846 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5847 if (GET_CODE (XEXP (x, 0)) == SUBREG
5848 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5849 && subreg_lowpart_p (XEXP (x, 0))
5850 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5851 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5852 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5853 return SUBREG_REG (XEXP (x, 0));
5855 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5856 is a comparison and STORE_FLAG_VALUE permits. This is like
5857 the first case, but it works even when GET_MODE (x) is larger
5858 than HOST_WIDE_INT. */
5859 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5860 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5861 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5862 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5863 <= HOST_BITS_PER_WIDE_INT)
5864 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5865 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5866 return XEXP (XEXP (x, 0), 0);
5868 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5869 if (GET_CODE (XEXP (x, 0)) == SUBREG
5870 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5871 && subreg_lowpart_p (XEXP (x, 0))
5872 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5873 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5874 <= HOST_BITS_PER_WIDE_INT)
5875 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5876 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5877 return SUBREG_REG (XEXP (x, 0));
5881 /* If we reach here, we want to return a pair of shifts. The inner
5882 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5883 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5884 logical depending on the value of UNSIGNEDP.
5886 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5887 converted into an AND of a shift.
5889 We must check for the case where the left shift would have a negative
5890 count. This can happen in a case like (x >> 31) & 255 on machines
5891 that can't shift by a constant. On those machines, we would first
5892 combine the shift with the AND to produce a variable-position
5893 extraction. Then the constant of 31 would be substituted in to produce
5894 a such a position. */
5896 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5897 if (modewidth + len >= pos)
5898 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5899 GET_MODE (x),
5900 simplify_shift_const (NULL_RTX, ASHIFT,
5901 GET_MODE (x),
5902 XEXP (x, 0),
5903 modewidth - pos - len),
5904 modewidth - len);
5906 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5907 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5908 simplify_shift_const (NULL_RTX, LSHIFTRT,
5909 GET_MODE (x),
5910 XEXP (x, 0), pos),
5911 ((HOST_WIDE_INT) 1 << len) - 1);
5912 else
5913 /* Any other cases we can't handle. */
5914 return x;
5916 /* If we couldn't do this for some reason, return the original
5917 expression. */
5918 if (GET_CODE (tem) == CLOBBER)
5919 return x;
5921 return tem;
5924 /* X is a SET which contains an assignment of one object into
5925 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5926 or certain SUBREGS). If possible, convert it into a series of
5927 logical operations.
5929 We half-heartedly support variable positions, but do not at all
5930 support variable lengths. */
5932 static rtx
5933 expand_field_assignment (rtx x)
5935 rtx inner;
5936 rtx pos; /* Always counts from low bit. */
5937 int len;
5938 rtx mask;
5939 enum machine_mode compute_mode;
5941 /* Loop until we find something we can't simplify. */
5942 while (1)
5944 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5945 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5947 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5948 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5949 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5951 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5952 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5954 inner = XEXP (SET_DEST (x), 0);
5955 len = INTVAL (XEXP (SET_DEST (x), 1));
5956 pos = XEXP (SET_DEST (x), 2);
5958 /* If the position is constant and spans the width of INNER,
5959 surround INNER with a USE to indicate this. */
5960 if (GET_CODE (pos) == CONST_INT
5961 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5962 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5964 if (BITS_BIG_ENDIAN)
5966 if (GET_CODE (pos) == CONST_INT)
5967 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5968 - INTVAL (pos));
5969 else if (GET_CODE (pos) == MINUS
5970 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5971 && (INTVAL (XEXP (pos, 1))
5972 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5973 /* If position is ADJUST - X, new position is X. */
5974 pos = XEXP (pos, 0);
5975 else
5976 pos = gen_binary (MINUS, GET_MODE (pos),
5977 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
5978 - len),
5979 pos);
5983 /* A SUBREG between two modes that occupy the same numbers of words
5984 can be done by moving the SUBREG to the source. */
5985 else if (GET_CODE (SET_DEST (x)) == SUBREG
5986 /* We need SUBREGs to compute nonzero_bits properly. */
5987 && nonzero_sign_valid
5988 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
5989 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
5990 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
5991 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
5993 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
5994 gen_lowpart
5995 (GET_MODE (SUBREG_REG (SET_DEST (x))),
5996 SET_SRC (x)));
5997 continue;
5999 else
6000 break;
6002 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6003 inner = SUBREG_REG (inner);
6005 compute_mode = GET_MODE (inner);
6007 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6008 if (! SCALAR_INT_MODE_P (compute_mode))
6010 enum machine_mode imode;
6012 /* Don't do anything for vector or complex integral types. */
6013 if (! FLOAT_MODE_P (compute_mode))
6014 break;
6016 /* Try to find an integral mode to pun with. */
6017 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6018 if (imode == BLKmode)
6019 break;
6021 compute_mode = imode;
6022 inner = gen_lowpart (imode, inner);
6025 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6026 if (len < HOST_BITS_PER_WIDE_INT)
6027 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6028 else
6029 break;
6031 /* Now compute the equivalent expression. Make a copy of INNER
6032 for the SET_DEST in case it is a MEM into which we will substitute;
6033 we don't want shared RTL in that case. */
6034 x = gen_rtx_SET
6035 (VOIDmode, copy_rtx (inner),
6036 gen_binary (IOR, compute_mode,
6037 gen_binary (AND, compute_mode,
6038 simplify_gen_unary (NOT, compute_mode,
6039 gen_binary (ASHIFT,
6040 compute_mode,
6041 mask, pos),
6042 compute_mode),
6043 inner),
6044 gen_binary (ASHIFT, compute_mode,
6045 gen_binary (AND, compute_mode,
6046 gen_lowpart
6047 (compute_mode, SET_SRC (x)),
6048 mask),
6049 pos)));
6052 return x;
6055 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6056 it is an RTX that represents a variable starting position; otherwise,
6057 POS is the (constant) starting bit position (counted from the LSB).
6059 INNER may be a USE. This will occur when we started with a bitfield
6060 that went outside the boundary of the object in memory, which is
6061 allowed on most machines. To isolate this case, we produce a USE
6062 whose mode is wide enough and surround the MEM with it. The only
6063 code that understands the USE is this routine. If it is not removed,
6064 it will cause the resulting insn not to match.
6066 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6067 signed reference.
6069 IN_DEST is nonzero if this is a reference in the destination of a
6070 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6071 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6072 be used.
6074 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6075 ZERO_EXTRACT should be built even for bits starting at bit 0.
6077 MODE is the desired mode of the result (if IN_DEST == 0).
6079 The result is an RTX for the extraction or NULL_RTX if the target
6080 can't handle it. */
6082 static rtx
6083 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6084 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6085 int in_dest, int in_compare)
6087 /* This mode describes the size of the storage area
6088 to fetch the overall value from. Within that, we
6089 ignore the POS lowest bits, etc. */
6090 enum machine_mode is_mode = GET_MODE (inner);
6091 enum machine_mode inner_mode;
6092 enum machine_mode wanted_inner_mode = byte_mode;
6093 enum machine_mode wanted_inner_reg_mode = word_mode;
6094 enum machine_mode pos_mode = word_mode;
6095 enum machine_mode extraction_mode = word_mode;
6096 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6097 int spans_byte = 0;
6098 rtx new = 0;
6099 rtx orig_pos_rtx = pos_rtx;
6100 HOST_WIDE_INT orig_pos;
6102 /* Get some information about INNER and get the innermost object. */
6103 if (GET_CODE (inner) == USE)
6104 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6105 /* We don't need to adjust the position because we set up the USE
6106 to pretend that it was a full-word object. */
6107 spans_byte = 1, inner = XEXP (inner, 0);
6108 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6110 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6111 consider just the QI as the memory to extract from.
6112 The subreg adds or removes high bits; its mode is
6113 irrelevant to the meaning of this extraction,
6114 since POS and LEN count from the lsb. */
6115 if (MEM_P (SUBREG_REG (inner)))
6116 is_mode = GET_MODE (SUBREG_REG (inner));
6117 inner = SUBREG_REG (inner);
6119 else if (GET_CODE (inner) == ASHIFT
6120 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6121 && pos_rtx == 0 && pos == 0
6122 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6124 /* We're extracting the least significant bits of an rtx
6125 (ashift X (const_int C)), where LEN > C. Extract the
6126 least significant (LEN - C) bits of X, giving an rtx
6127 whose mode is MODE, then shift it left C times. */
6128 new = make_extraction (mode, XEXP (inner, 0),
6129 0, 0, len - INTVAL (XEXP (inner, 1)),
6130 unsignedp, in_dest, in_compare);
6131 if (new != 0)
6132 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6135 inner_mode = GET_MODE (inner);
6137 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6138 pos = INTVAL (pos_rtx), pos_rtx = 0;
6140 /* See if this can be done without an extraction. We never can if the
6141 width of the field is not the same as that of some integer mode. For
6142 registers, we can only avoid the extraction if the position is at the
6143 low-order bit and this is either not in the destination or we have the
6144 appropriate STRICT_LOW_PART operation available.
6146 For MEM, we can avoid an extract if the field starts on an appropriate
6147 boundary and we can change the mode of the memory reference. However,
6148 we cannot directly access the MEM if we have a USE and the underlying
6149 MEM is not TMODE. This combination means that MEM was being used in a
6150 context where bits outside its mode were being referenced; that is only
6151 valid in bit-field insns. */
6153 if (tmode != BLKmode
6154 && ! (spans_byte && inner_mode != tmode)
6155 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6156 && !MEM_P (inner)
6157 && (! in_dest
6158 || (REG_P (inner)
6159 && have_insn_for (STRICT_LOW_PART, tmode))))
6160 || (MEM_P (inner) && pos_rtx == 0
6161 && (pos
6162 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6163 : BITS_PER_UNIT)) == 0
6164 /* We can't do this if we are widening INNER_MODE (it
6165 may not be aligned, for one thing). */
6166 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6167 && (inner_mode == tmode
6168 || (! mode_dependent_address_p (XEXP (inner, 0))
6169 && ! MEM_VOLATILE_P (inner))))))
6171 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6172 field. If the original and current mode are the same, we need not
6173 adjust the offset. Otherwise, we do if bytes big endian.
6175 If INNER is not a MEM, get a piece consisting of just the field
6176 of interest (in this case POS % BITS_PER_WORD must be 0). */
6178 if (MEM_P (inner))
6180 HOST_WIDE_INT offset;
6182 /* POS counts from lsb, but make OFFSET count in memory order. */
6183 if (BYTES_BIG_ENDIAN)
6184 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6185 else
6186 offset = pos / BITS_PER_UNIT;
6188 new = adjust_address_nv (inner, tmode, offset);
6190 else if (REG_P (inner))
6192 if (tmode != inner_mode)
6194 /* We can't call gen_lowpart in a DEST since we
6195 always want a SUBREG (see below) and it would sometimes
6196 return a new hard register. */
6197 if (pos || in_dest)
6199 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6201 if (WORDS_BIG_ENDIAN
6202 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6203 final_word = ((GET_MODE_SIZE (inner_mode)
6204 - GET_MODE_SIZE (tmode))
6205 / UNITS_PER_WORD) - final_word;
6207 final_word *= UNITS_PER_WORD;
6208 if (BYTES_BIG_ENDIAN &&
6209 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6210 final_word += (GET_MODE_SIZE (inner_mode)
6211 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6213 /* Avoid creating invalid subregs, for example when
6214 simplifying (x>>32)&255. */
6215 if (final_word >= GET_MODE_SIZE (inner_mode))
6216 return NULL_RTX;
6218 new = gen_rtx_SUBREG (tmode, inner, final_word);
6220 else
6221 new = gen_lowpart (tmode, inner);
6223 else
6224 new = inner;
6226 else
6227 new = force_to_mode (inner, tmode,
6228 len >= HOST_BITS_PER_WIDE_INT
6229 ? ~(unsigned HOST_WIDE_INT) 0
6230 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6231 NULL_RTX, 0);
6233 /* If this extraction is going into the destination of a SET,
6234 make a STRICT_LOW_PART unless we made a MEM. */
6236 if (in_dest)
6237 return (MEM_P (new) ? new
6238 : (GET_CODE (new) != SUBREG
6239 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6240 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6242 if (mode == tmode)
6243 return new;
6245 if (GET_CODE (new) == CONST_INT)
6246 return gen_int_mode (INTVAL (new), mode);
6248 /* If we know that no extraneous bits are set, and that the high
6249 bit is not set, convert the extraction to the cheaper of
6250 sign and zero extension, that are equivalent in these cases. */
6251 if (flag_expensive_optimizations
6252 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6253 && ((nonzero_bits (new, tmode)
6254 & ~(((unsigned HOST_WIDE_INT)
6255 GET_MODE_MASK (tmode))
6256 >> 1))
6257 == 0)))
6259 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6260 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6262 /* Prefer ZERO_EXTENSION, since it gives more information to
6263 backends. */
6264 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6265 return temp;
6266 return temp1;
6269 /* Otherwise, sign- or zero-extend unless we already are in the
6270 proper mode. */
6272 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6273 mode, new));
6276 /* Unless this is a COMPARE or we have a funny memory reference,
6277 don't do anything with zero-extending field extracts starting at
6278 the low-order bit since they are simple AND operations. */
6279 if (pos_rtx == 0 && pos == 0 && ! in_dest
6280 && ! in_compare && ! spans_byte && unsignedp)
6281 return 0;
6283 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6284 we would be spanning bytes or if the position is not a constant and the
6285 length is not 1. In all other cases, we would only be going outside
6286 our object in cases when an original shift would have been
6287 undefined. */
6288 if (! spans_byte && MEM_P (inner)
6289 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6290 || (pos_rtx != 0 && len != 1)))
6291 return 0;
6293 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6294 and the mode for the result. */
6295 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6297 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6298 pos_mode = mode_for_extraction (EP_insv, 2);
6299 extraction_mode = mode_for_extraction (EP_insv, 3);
6302 if (! in_dest && unsignedp
6303 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6305 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6306 pos_mode = mode_for_extraction (EP_extzv, 3);
6307 extraction_mode = mode_for_extraction (EP_extzv, 0);
6310 if (! in_dest && ! unsignedp
6311 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6313 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6314 pos_mode = mode_for_extraction (EP_extv, 3);
6315 extraction_mode = mode_for_extraction (EP_extv, 0);
6318 /* Never narrow an object, since that might not be safe. */
6320 if (mode != VOIDmode
6321 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6322 extraction_mode = mode;
6324 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6325 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6326 pos_mode = GET_MODE (pos_rtx);
6328 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6329 if we have to change the mode of memory and cannot, the desired mode is
6330 EXTRACTION_MODE. */
6331 if (!MEM_P (inner))
6332 wanted_inner_mode = wanted_inner_reg_mode;
6333 else if (inner_mode != wanted_inner_mode
6334 && (mode_dependent_address_p (XEXP (inner, 0))
6335 || MEM_VOLATILE_P (inner)))
6336 wanted_inner_mode = extraction_mode;
6338 orig_pos = pos;
6340 if (BITS_BIG_ENDIAN)
6342 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6343 BITS_BIG_ENDIAN style. If position is constant, compute new
6344 position. Otherwise, build subtraction.
6345 Note that POS is relative to the mode of the original argument.
6346 If it's a MEM we need to recompute POS relative to that.
6347 However, if we're extracting from (or inserting into) a register,
6348 we want to recompute POS relative to wanted_inner_mode. */
6349 int width = (MEM_P (inner)
6350 ? GET_MODE_BITSIZE (is_mode)
6351 : GET_MODE_BITSIZE (wanted_inner_mode));
6353 if (pos_rtx == 0)
6354 pos = width - len - pos;
6355 else
6356 pos_rtx
6357 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6358 /* POS may be less than 0 now, but we check for that below.
6359 Note that it can only be less than 0 if !MEM_P (inner). */
6362 /* If INNER has a wider mode, make it smaller. If this is a constant
6363 extract, try to adjust the byte to point to the byte containing
6364 the value. */
6365 if (wanted_inner_mode != VOIDmode
6366 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6367 && ((MEM_P (inner)
6368 && (inner_mode == wanted_inner_mode
6369 || (! mode_dependent_address_p (XEXP (inner, 0))
6370 && ! MEM_VOLATILE_P (inner))))))
6372 int offset = 0;
6374 /* The computations below will be correct if the machine is big
6375 endian in both bits and bytes or little endian in bits and bytes.
6376 If it is mixed, we must adjust. */
6378 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6379 adjust OFFSET to compensate. */
6380 if (BYTES_BIG_ENDIAN
6381 && ! spans_byte
6382 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6383 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6385 /* If this is a constant position, we can move to the desired byte. */
6386 if (pos_rtx == 0)
6388 offset += pos / BITS_PER_UNIT;
6389 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6392 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6393 && ! spans_byte
6394 && is_mode != wanted_inner_mode)
6395 offset = (GET_MODE_SIZE (is_mode)
6396 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6398 if (offset != 0 || inner_mode != wanted_inner_mode)
6399 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6402 /* If INNER is not memory, we can always get it into the proper mode. If we
6403 are changing its mode, POS must be a constant and smaller than the size
6404 of the new mode. */
6405 else if (!MEM_P (inner))
6407 if (GET_MODE (inner) != wanted_inner_mode
6408 && (pos_rtx != 0
6409 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6410 return 0;
6412 inner = force_to_mode (inner, wanted_inner_mode,
6413 pos_rtx
6414 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6415 ? ~(unsigned HOST_WIDE_INT) 0
6416 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6417 << orig_pos),
6418 NULL_RTX, 0);
6421 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6422 have to zero extend. Otherwise, we can just use a SUBREG. */
6423 if (pos_rtx != 0
6424 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6426 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6428 /* If we know that no extraneous bits are set, and that the high
6429 bit is not set, convert extraction to cheaper one - either
6430 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6431 cases. */
6432 if (flag_expensive_optimizations
6433 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6434 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6435 & ~(((unsigned HOST_WIDE_INT)
6436 GET_MODE_MASK (GET_MODE (pos_rtx)))
6437 >> 1))
6438 == 0)))
6440 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6442 /* Prefer ZERO_EXTENSION, since it gives more information to
6443 backends. */
6444 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6445 temp = temp1;
6447 pos_rtx = temp;
6449 else if (pos_rtx != 0
6450 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6451 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6453 /* Make POS_RTX unless we already have it and it is correct. If we don't
6454 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6455 be a CONST_INT. */
6456 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6457 pos_rtx = orig_pos_rtx;
6459 else if (pos_rtx == 0)
6460 pos_rtx = GEN_INT (pos);
6462 /* Make the required operation. See if we can use existing rtx. */
6463 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6464 extraction_mode, inner, GEN_INT (len), pos_rtx);
6465 if (! in_dest)
6466 new = gen_lowpart (mode, new);
6468 return new;
6471 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6472 with any other operations in X. Return X without that shift if so. */
6474 static rtx
6475 extract_left_shift (rtx x, int count)
6477 enum rtx_code code = GET_CODE (x);
6478 enum machine_mode mode = GET_MODE (x);
6479 rtx tem;
6481 switch (code)
6483 case ASHIFT:
6484 /* This is the shift itself. If it is wide enough, we will return
6485 either the value being shifted if the shift count is equal to
6486 COUNT or a shift for the difference. */
6487 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6488 && INTVAL (XEXP (x, 1)) >= count)
6489 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6490 INTVAL (XEXP (x, 1)) - count);
6491 break;
6493 case NEG: case NOT:
6494 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6495 return simplify_gen_unary (code, mode, tem, mode);
6497 break;
6499 case PLUS: case IOR: case XOR: case AND:
6500 /* If we can safely shift this constant and we find the inner shift,
6501 make a new operation. */
6502 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6503 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6504 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6505 return gen_binary (code, mode, tem,
6506 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6508 break;
6510 default:
6511 break;
6514 return 0;
6517 /* Look at the expression rooted at X. Look for expressions
6518 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6519 Form these expressions.
6521 Return the new rtx, usually just X.
6523 Also, for machines like the VAX that don't have logical shift insns,
6524 try to convert logical to arithmetic shift operations in cases where
6525 they are equivalent. This undoes the canonicalizations to logical
6526 shifts done elsewhere.
6528 We try, as much as possible, to re-use rtl expressions to save memory.
6530 IN_CODE says what kind of expression we are processing. Normally, it is
6531 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6532 being kludges), it is MEM. When processing the arguments of a comparison
6533 or a COMPARE against zero, it is COMPARE. */
6535 static rtx
6536 make_compound_operation (rtx x, enum rtx_code in_code)
6538 enum rtx_code code = GET_CODE (x);
6539 enum machine_mode mode = GET_MODE (x);
6540 int mode_width = GET_MODE_BITSIZE (mode);
6541 rtx rhs, lhs;
6542 enum rtx_code next_code;
6543 int i;
6544 rtx new = 0;
6545 rtx tem;
6546 const char *fmt;
6548 /* Select the code to be used in recursive calls. Once we are inside an
6549 address, we stay there. If we have a comparison, set to COMPARE,
6550 but once inside, go back to our default of SET. */
6552 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6553 : ((code == COMPARE || COMPARISON_P (x))
6554 && XEXP (x, 1) == const0_rtx) ? COMPARE
6555 : in_code == COMPARE ? SET : in_code);
6557 /* Process depending on the code of this operation. If NEW is set
6558 nonzero, it will be returned. */
6560 switch (code)
6562 case ASHIFT:
6563 /* Convert shifts by constants into multiplications if inside
6564 an address. */
6565 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6566 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6567 && INTVAL (XEXP (x, 1)) >= 0)
6569 new = make_compound_operation (XEXP (x, 0), next_code);
6570 new = gen_rtx_MULT (mode, new,
6571 GEN_INT ((HOST_WIDE_INT) 1
6572 << INTVAL (XEXP (x, 1))));
6574 break;
6576 case AND:
6577 /* If the second operand is not a constant, we can't do anything
6578 with it. */
6579 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6580 break;
6582 /* If the constant is a power of two minus one and the first operand
6583 is a logical right shift, make an extraction. */
6584 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6585 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6587 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6588 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6589 0, in_code == COMPARE);
6592 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6593 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6594 && subreg_lowpart_p (XEXP (x, 0))
6595 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6596 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6598 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6599 next_code);
6600 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6601 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6602 0, in_code == COMPARE);
6604 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6605 else if ((GET_CODE (XEXP (x, 0)) == XOR
6606 || GET_CODE (XEXP (x, 0)) == IOR)
6607 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6608 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6609 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6611 /* Apply the distributive law, and then try to make extractions. */
6612 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6613 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6614 XEXP (x, 1)),
6615 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6616 XEXP (x, 1)));
6617 new = make_compound_operation (new, in_code);
6620 /* If we are have (and (rotate X C) M) and C is larger than the number
6621 of bits in M, this is an extraction. */
6623 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6624 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6625 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6626 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6628 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6629 new = make_extraction (mode, new,
6630 (GET_MODE_BITSIZE (mode)
6631 - INTVAL (XEXP (XEXP (x, 0), 1))),
6632 NULL_RTX, i, 1, 0, in_code == COMPARE);
6635 /* On machines without logical shifts, if the operand of the AND is
6636 a logical shift and our mask turns off all the propagated sign
6637 bits, we can replace the logical shift with an arithmetic shift. */
6638 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6639 && !have_insn_for (LSHIFTRT, mode)
6640 && have_insn_for (ASHIFTRT, mode)
6641 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6642 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6643 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6644 && mode_width <= HOST_BITS_PER_WIDE_INT)
6646 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6648 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6649 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6650 SUBST (XEXP (x, 0),
6651 gen_rtx_ASHIFTRT (mode,
6652 make_compound_operation
6653 (XEXP (XEXP (x, 0), 0), next_code),
6654 XEXP (XEXP (x, 0), 1)));
6657 /* If the constant is one less than a power of two, this might be
6658 representable by an extraction even if no shift is present.
6659 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6660 we are in a COMPARE. */
6661 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6662 new = make_extraction (mode,
6663 make_compound_operation (XEXP (x, 0),
6664 next_code),
6665 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6667 /* If we are in a comparison and this is an AND with a power of two,
6668 convert this into the appropriate bit extract. */
6669 else if (in_code == COMPARE
6670 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6671 new = make_extraction (mode,
6672 make_compound_operation (XEXP (x, 0),
6673 next_code),
6674 i, NULL_RTX, 1, 1, 0, 1);
6676 break;
6678 case LSHIFTRT:
6679 /* If the sign bit is known to be zero, replace this with an
6680 arithmetic shift. */
6681 if (have_insn_for (ASHIFTRT, mode)
6682 && ! have_insn_for (LSHIFTRT, mode)
6683 && mode_width <= HOST_BITS_PER_WIDE_INT
6684 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6686 new = gen_rtx_ASHIFTRT (mode,
6687 make_compound_operation (XEXP (x, 0),
6688 next_code),
6689 XEXP (x, 1));
6690 break;
6693 /* ... fall through ... */
6695 case ASHIFTRT:
6696 lhs = XEXP (x, 0);
6697 rhs = XEXP (x, 1);
6699 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6700 this is a SIGN_EXTRACT. */
6701 if (GET_CODE (rhs) == CONST_INT
6702 && GET_CODE (lhs) == ASHIFT
6703 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6704 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6706 new = make_compound_operation (XEXP (lhs, 0), next_code);
6707 new = make_extraction (mode, new,
6708 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6709 NULL_RTX, mode_width - INTVAL (rhs),
6710 code == LSHIFTRT, 0, in_code == COMPARE);
6711 break;
6714 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6715 If so, try to merge the shifts into a SIGN_EXTEND. We could
6716 also do this for some cases of SIGN_EXTRACT, but it doesn't
6717 seem worth the effort; the case checked for occurs on Alpha. */
6719 if (!OBJECT_P (lhs)
6720 && ! (GET_CODE (lhs) == SUBREG
6721 && (OBJECT_P (SUBREG_REG (lhs))))
6722 && GET_CODE (rhs) == CONST_INT
6723 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6724 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6725 new = make_extraction (mode, make_compound_operation (new, next_code),
6726 0, NULL_RTX, mode_width - INTVAL (rhs),
6727 code == LSHIFTRT, 0, in_code == COMPARE);
6729 break;
6731 case SUBREG:
6732 /* Call ourselves recursively on the inner expression. If we are
6733 narrowing the object and it has a different RTL code from
6734 what it originally did, do this SUBREG as a force_to_mode. */
6736 tem = make_compound_operation (SUBREG_REG (x), in_code);
6737 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6738 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6739 && subreg_lowpart_p (x))
6741 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6742 NULL_RTX, 0);
6744 /* If we have something other than a SUBREG, we might have
6745 done an expansion, so rerun ourselves. */
6746 if (GET_CODE (newer) != SUBREG)
6747 newer = make_compound_operation (newer, in_code);
6749 return newer;
6752 /* If this is a paradoxical subreg, and the new code is a sign or
6753 zero extension, omit the subreg and widen the extension. If it
6754 is a regular subreg, we can still get rid of the subreg by not
6755 widening so much, or in fact removing the extension entirely. */
6756 if ((GET_CODE (tem) == SIGN_EXTEND
6757 || GET_CODE (tem) == ZERO_EXTEND)
6758 && subreg_lowpart_p (x))
6760 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6761 || (GET_MODE_SIZE (mode) >
6762 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6764 if (! SCALAR_INT_MODE_P (mode))
6765 break;
6766 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6768 else
6769 tem = gen_lowpart (mode, XEXP (tem, 0));
6770 return tem;
6772 break;
6774 default:
6775 break;
6778 if (new)
6780 x = gen_lowpart (mode, new);
6781 code = GET_CODE (x);
6784 /* Now recursively process each operand of this operation. */
6785 fmt = GET_RTX_FORMAT (code);
6786 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6787 if (fmt[i] == 'e')
6789 new = make_compound_operation (XEXP (x, i), next_code);
6790 SUBST (XEXP (x, i), new);
6793 return x;
6796 /* Given M see if it is a value that would select a field of bits
6797 within an item, but not the entire word. Return -1 if not.
6798 Otherwise, return the starting position of the field, where 0 is the
6799 low-order bit.
6801 *PLEN is set to the length of the field. */
6803 static int
6804 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6806 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6807 int pos = exact_log2 (m & -m);
6808 int len = 0;
6810 if (pos >= 0)
6811 /* Now shift off the low-order zero bits and see if we have a
6812 power of two minus 1. */
6813 len = exact_log2 ((m >> pos) + 1);
6815 if (len <= 0)
6816 pos = -1;
6818 *plen = len;
6819 return pos;
6822 /* See if X can be simplified knowing that we will only refer to it in
6823 MODE and will only refer to those bits that are nonzero in MASK.
6824 If other bits are being computed or if masking operations are done
6825 that select a superset of the bits in MASK, they can sometimes be
6826 ignored.
6828 Return a possibly simplified expression, but always convert X to
6829 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6831 Also, if REG is nonzero and X is a register equal in value to REG,
6832 replace X with REG.
6834 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6835 are all off in X. This is used when X will be complemented, by either
6836 NOT, NEG, or XOR. */
6838 static rtx
6839 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6840 rtx reg, int just_select)
6842 enum rtx_code code = GET_CODE (x);
6843 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6844 enum machine_mode op_mode;
6845 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6846 rtx op0, op1, temp;
6848 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6849 code below will do the wrong thing since the mode of such an
6850 expression is VOIDmode.
6852 Also do nothing if X is a CLOBBER; this can happen if X was
6853 the return value from a call to gen_lowpart. */
6854 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6855 return x;
6857 /* We want to perform the operation is its present mode unless we know
6858 that the operation is valid in MODE, in which case we do the operation
6859 in MODE. */
6860 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6861 && have_insn_for (code, mode))
6862 ? mode : GET_MODE (x));
6864 /* It is not valid to do a right-shift in a narrower mode
6865 than the one it came in with. */
6866 if ((code == LSHIFTRT || code == ASHIFTRT)
6867 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6868 op_mode = GET_MODE (x);
6870 /* Truncate MASK to fit OP_MODE. */
6871 if (op_mode)
6872 mask &= GET_MODE_MASK (op_mode);
6874 /* When we have an arithmetic operation, or a shift whose count we
6875 do not know, we need to assume that all bits up to the highest-order
6876 bit in MASK will be needed. This is how we form such a mask. */
6877 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6878 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6879 else
6880 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6881 - 1);
6883 /* Determine what bits of X are guaranteed to be (non)zero. */
6884 nonzero = nonzero_bits (x, mode);
6886 /* If none of the bits in X are needed, return a zero. */
6887 if (! just_select && (nonzero & mask) == 0)
6888 x = const0_rtx;
6890 /* If X is a CONST_INT, return a new one. Do this here since the
6891 test below will fail. */
6892 if (GET_CODE (x) == CONST_INT)
6894 if (SCALAR_INT_MODE_P (mode))
6895 return gen_int_mode (INTVAL (x) & mask, mode);
6896 else
6898 x = GEN_INT (INTVAL (x) & mask);
6899 return gen_lowpart_common (mode, x);
6903 /* If X is narrower than MODE and we want all the bits in X's mode, just
6904 get X in the proper mode. */
6905 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6906 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6907 return gen_lowpart (mode, x);
6909 switch (code)
6911 case CLOBBER:
6912 /* If X is a (clobber (const_int)), return it since we know we are
6913 generating something that won't match. */
6914 return x;
6916 case USE:
6917 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6918 spanned the boundary of the MEM. If we are now masking so it is
6919 within that boundary, we don't need the USE any more. */
6920 if (! BITS_BIG_ENDIAN
6921 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6922 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6923 break;
6925 case SIGN_EXTEND:
6926 case ZERO_EXTEND:
6927 case ZERO_EXTRACT:
6928 case SIGN_EXTRACT:
6929 x = expand_compound_operation (x);
6930 if (GET_CODE (x) != code)
6931 return force_to_mode (x, mode, mask, reg, next_select);
6932 break;
6934 case REG:
6935 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6936 || rtx_equal_p (reg, get_last_value (x))))
6937 x = reg;
6938 break;
6940 case SUBREG:
6941 if (subreg_lowpart_p (x)
6942 /* We can ignore the effect of this SUBREG if it narrows the mode or
6943 if the constant masks to zero all the bits the mode doesn't
6944 have. */
6945 && ((GET_MODE_SIZE (GET_MODE (x))
6946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6947 || (0 == (mask
6948 & GET_MODE_MASK (GET_MODE (x))
6949 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6950 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6951 break;
6953 case AND:
6954 /* If this is an AND with a constant, convert it into an AND
6955 whose constant is the AND of that constant with MASK. If it
6956 remains an AND of MASK, delete it since it is redundant. */
6958 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6960 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6961 mask & INTVAL (XEXP (x, 1)));
6963 /* If X is still an AND, see if it is an AND with a mask that
6964 is just some low-order bits. If so, and it is MASK, we don't
6965 need it. */
6967 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6968 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6969 == mask))
6970 x = XEXP (x, 0);
6972 /* If it remains an AND, try making another AND with the bits
6973 in the mode mask that aren't in MASK turned on. If the
6974 constant in the AND is wide enough, this might make a
6975 cheaper constant. */
6977 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6978 && GET_MODE_MASK (GET_MODE (x)) != mask
6979 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
6981 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
6982 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
6983 int width = GET_MODE_BITSIZE (GET_MODE (x));
6984 rtx y;
6986 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
6987 number, sign extend it. */
6988 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
6989 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
6990 cval |= (HOST_WIDE_INT) -1 << width;
6992 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
6993 if (rtx_cost (y, SET) < rtx_cost (x, SET))
6994 x = y;
6997 break;
7000 goto binop;
7002 case PLUS:
7003 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7004 low-order bits (as in an alignment operation) and FOO is already
7005 aligned to that boundary, mask C1 to that boundary as well.
7006 This may eliminate that PLUS and, later, the AND. */
7009 unsigned int width = GET_MODE_BITSIZE (mode);
7010 unsigned HOST_WIDE_INT smask = mask;
7012 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7013 number, sign extend it. */
7015 if (width < HOST_BITS_PER_WIDE_INT
7016 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7017 smask |= (HOST_WIDE_INT) -1 << width;
7019 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7020 && exact_log2 (- smask) >= 0
7021 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7022 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7023 return force_to_mode (plus_constant (XEXP (x, 0),
7024 (INTVAL (XEXP (x, 1)) & smask)),
7025 mode, smask, reg, next_select);
7028 /* ... fall through ... */
7030 case MULT:
7031 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7032 most significant bit in MASK since carries from those bits will
7033 affect the bits we are interested in. */
7034 mask = fuller_mask;
7035 goto binop;
7037 case MINUS:
7038 /* If X is (minus C Y) where C's least set bit is larger than any bit
7039 in the mask, then we may replace with (neg Y). */
7040 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7041 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7042 & -INTVAL (XEXP (x, 0))))
7043 > mask))
7045 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7046 GET_MODE (x));
7047 return force_to_mode (x, mode, mask, reg, next_select);
7050 /* Similarly, if C contains every bit in the fuller_mask, then we may
7051 replace with (not Y). */
7052 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7053 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7054 == INTVAL (XEXP (x, 0))))
7056 x = simplify_gen_unary (NOT, GET_MODE (x),
7057 XEXP (x, 1), GET_MODE (x));
7058 return force_to_mode (x, mode, mask, reg, next_select);
7061 mask = fuller_mask;
7062 goto binop;
7064 case IOR:
7065 case XOR:
7066 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7067 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7068 operation which may be a bitfield extraction. Ensure that the
7069 constant we form is not wider than the mode of X. */
7071 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7072 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7073 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7074 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7075 && GET_CODE (XEXP (x, 1)) == CONST_INT
7076 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7077 + floor_log2 (INTVAL (XEXP (x, 1))))
7078 < GET_MODE_BITSIZE (GET_MODE (x)))
7079 && (INTVAL (XEXP (x, 1))
7080 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7082 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7083 << INTVAL (XEXP (XEXP (x, 0), 1)));
7084 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7085 XEXP (XEXP (x, 0), 0), temp);
7086 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7087 XEXP (XEXP (x, 0), 1));
7088 return force_to_mode (x, mode, mask, reg, next_select);
7091 binop:
7092 /* For most binary operations, just propagate into the operation and
7093 change the mode if we have an operation of that mode. */
7095 op0 = gen_lowpart (op_mode,
7096 force_to_mode (XEXP (x, 0), mode, mask,
7097 reg, next_select));
7098 op1 = gen_lowpart (op_mode,
7099 force_to_mode (XEXP (x, 1), mode, mask,
7100 reg, next_select));
7102 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7103 x = gen_binary (code, op_mode, op0, op1);
7104 break;
7106 case ASHIFT:
7107 /* For left shifts, do the same, but just for the first operand.
7108 However, we cannot do anything with shifts where we cannot
7109 guarantee that the counts are smaller than the size of the mode
7110 because such a count will have a different meaning in a
7111 wider mode. */
7113 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7114 && INTVAL (XEXP (x, 1)) >= 0
7115 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7116 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7117 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7118 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7119 break;
7121 /* If the shift count is a constant and we can do arithmetic in
7122 the mode of the shift, refine which bits we need. Otherwise, use the
7123 conservative form of the mask. */
7124 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7125 && INTVAL (XEXP (x, 1)) >= 0
7126 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7127 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7128 mask >>= INTVAL (XEXP (x, 1));
7129 else
7130 mask = fuller_mask;
7132 op0 = gen_lowpart (op_mode,
7133 force_to_mode (XEXP (x, 0), op_mode,
7134 mask, reg, next_select));
7136 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7137 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7138 break;
7140 case LSHIFTRT:
7141 /* Here we can only do something if the shift count is a constant,
7142 this shift constant is valid for the host, and we can do arithmetic
7143 in OP_MODE. */
7145 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7146 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7147 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7149 rtx inner = XEXP (x, 0);
7150 unsigned HOST_WIDE_INT inner_mask;
7152 /* Select the mask of the bits we need for the shift operand. */
7153 inner_mask = mask << INTVAL (XEXP (x, 1));
7155 /* We can only change the mode of the shift if we can do arithmetic
7156 in the mode of the shift and INNER_MASK is no wider than the
7157 width of X's mode. */
7158 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7159 op_mode = GET_MODE (x);
7161 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7163 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7164 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7167 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7168 shift and AND produces only copies of the sign bit (C2 is one less
7169 than a power of two), we can do this with just a shift. */
7171 if (GET_CODE (x) == LSHIFTRT
7172 && GET_CODE (XEXP (x, 1)) == CONST_INT
7173 /* The shift puts one of the sign bit copies in the least significant
7174 bit. */
7175 && ((INTVAL (XEXP (x, 1))
7176 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7177 >= GET_MODE_BITSIZE (GET_MODE (x)))
7178 && exact_log2 (mask + 1) >= 0
7179 /* Number of bits left after the shift must be more than the mask
7180 needs. */
7181 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7182 <= GET_MODE_BITSIZE (GET_MODE (x)))
7183 /* Must be more sign bit copies than the mask needs. */
7184 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7185 >= exact_log2 (mask + 1)))
7186 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7187 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7188 - exact_log2 (mask + 1)));
7190 goto shiftrt;
7192 case ASHIFTRT:
7193 /* If we are just looking for the sign bit, we don't need this shift at
7194 all, even if it has a variable count. */
7195 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7196 && (mask == ((unsigned HOST_WIDE_INT) 1
7197 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7198 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7200 /* If this is a shift by a constant, get a mask that contains those bits
7201 that are not copies of the sign bit. We then have two cases: If
7202 MASK only includes those bits, this can be a logical shift, which may
7203 allow simplifications. If MASK is a single-bit field not within
7204 those bits, we are requesting a copy of the sign bit and hence can
7205 shift the sign bit to the appropriate location. */
7207 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7208 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7210 int i = -1;
7212 /* If the considered data is wider than HOST_WIDE_INT, we can't
7213 represent a mask for all its bits in a single scalar.
7214 But we only care about the lower bits, so calculate these. */
7216 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7218 nonzero = ~(HOST_WIDE_INT) 0;
7220 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7221 is the number of bits a full-width mask would have set.
7222 We need only shift if these are fewer than nonzero can
7223 hold. If not, we must keep all bits set in nonzero. */
7225 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7226 < HOST_BITS_PER_WIDE_INT)
7227 nonzero >>= INTVAL (XEXP (x, 1))
7228 + HOST_BITS_PER_WIDE_INT
7229 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7231 else
7233 nonzero = GET_MODE_MASK (GET_MODE (x));
7234 nonzero >>= INTVAL (XEXP (x, 1));
7237 if ((mask & ~nonzero) == 0
7238 || (i = exact_log2 (mask)) >= 0)
7240 x = simplify_shift_const
7241 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7242 i < 0 ? INTVAL (XEXP (x, 1))
7243 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7245 if (GET_CODE (x) != ASHIFTRT)
7246 return force_to_mode (x, mode, mask, reg, next_select);
7250 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7251 even if the shift count isn't a constant. */
7252 if (mask == 1)
7253 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7255 shiftrt:
7257 /* If this is a zero- or sign-extension operation that just affects bits
7258 we don't care about, remove it. Be sure the call above returned
7259 something that is still a shift. */
7261 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7262 && GET_CODE (XEXP (x, 1)) == CONST_INT
7263 && INTVAL (XEXP (x, 1)) >= 0
7264 && (INTVAL (XEXP (x, 1))
7265 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7266 && GET_CODE (XEXP (x, 0)) == ASHIFT
7267 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7268 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7269 reg, next_select);
7271 break;
7273 case ROTATE:
7274 case ROTATERT:
7275 /* If the shift count is constant and we can do computations
7276 in the mode of X, compute where the bits we care about are.
7277 Otherwise, we can't do anything. Don't change the mode of
7278 the shift or propagate MODE into the shift, though. */
7279 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7280 && INTVAL (XEXP (x, 1)) >= 0)
7282 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7283 GET_MODE (x), GEN_INT (mask),
7284 XEXP (x, 1));
7285 if (temp && GET_CODE (temp) == CONST_INT)
7286 SUBST (XEXP (x, 0),
7287 force_to_mode (XEXP (x, 0), GET_MODE (x),
7288 INTVAL (temp), reg, next_select));
7290 break;
7292 case NEG:
7293 /* If we just want the low-order bit, the NEG isn't needed since it
7294 won't change the low-order bit. */
7295 if (mask == 1)
7296 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7298 /* We need any bits less significant than the most significant bit in
7299 MASK since carries from those bits will affect the bits we are
7300 interested in. */
7301 mask = fuller_mask;
7302 goto unop;
7304 case NOT:
7305 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7306 same as the XOR case above. Ensure that the constant we form is not
7307 wider than the mode of X. */
7309 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7310 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7311 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7312 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7313 < GET_MODE_BITSIZE (GET_MODE (x)))
7314 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7316 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7317 GET_MODE (x));
7318 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7319 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7321 return force_to_mode (x, mode, mask, reg, next_select);
7324 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7325 use the full mask inside the NOT. */
7326 mask = fuller_mask;
7328 unop:
7329 op0 = gen_lowpart (op_mode,
7330 force_to_mode (XEXP (x, 0), mode, mask,
7331 reg, next_select));
7332 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7333 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7334 break;
7336 case NE:
7337 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7338 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7339 which is equal to STORE_FLAG_VALUE. */
7340 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7341 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7342 && (nonzero_bits (XEXP (x, 0), mode)
7343 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7344 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7346 break;
7348 case IF_THEN_ELSE:
7349 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7350 written in a narrower mode. We play it safe and do not do so. */
7352 SUBST (XEXP (x, 1),
7353 gen_lowpart (GET_MODE (x),
7354 force_to_mode (XEXP (x, 1), mode,
7355 mask, reg, next_select)));
7356 SUBST (XEXP (x, 2),
7357 gen_lowpart (GET_MODE (x),
7358 force_to_mode (XEXP (x, 2), mode,
7359 mask, reg, next_select)));
7360 break;
7362 default:
7363 break;
7366 /* Ensure we return a value of the proper mode. */
7367 return gen_lowpart (mode, x);
7370 /* Return nonzero if X is an expression that has one of two values depending on
7371 whether some other value is zero or nonzero. In that case, we return the
7372 value that is being tested, *PTRUE is set to the value if the rtx being
7373 returned has a nonzero value, and *PFALSE is set to the other alternative.
7375 If we return zero, we set *PTRUE and *PFALSE to X. */
7377 static rtx
7378 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7380 enum machine_mode mode = GET_MODE (x);
7381 enum rtx_code code = GET_CODE (x);
7382 rtx cond0, cond1, true0, true1, false0, false1;
7383 unsigned HOST_WIDE_INT nz;
7385 /* If we are comparing a value against zero, we are done. */
7386 if ((code == NE || code == EQ)
7387 && XEXP (x, 1) == const0_rtx)
7389 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7390 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7391 return XEXP (x, 0);
7394 /* If this is a unary operation whose operand has one of two values, apply
7395 our opcode to compute those values. */
7396 else if (UNARY_P (x)
7397 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7399 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7400 *pfalse = simplify_gen_unary (code, mode, false0,
7401 GET_MODE (XEXP (x, 0)));
7402 return cond0;
7405 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7406 make can't possibly match and would suppress other optimizations. */
7407 else if (code == COMPARE)
7410 /* If this is a binary operation, see if either side has only one of two
7411 values. If either one does or if both do and they are conditional on
7412 the same value, compute the new true and false values. */
7413 else if (BINARY_P (x))
7415 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7416 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7418 if ((cond0 != 0 || cond1 != 0)
7419 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7421 /* If if_then_else_cond returned zero, then true/false are the
7422 same rtl. We must copy one of them to prevent invalid rtl
7423 sharing. */
7424 if (cond0 == 0)
7425 true0 = copy_rtx (true0);
7426 else if (cond1 == 0)
7427 true1 = copy_rtx (true1);
7429 *ptrue = gen_binary (code, mode, true0, true1);
7430 *pfalse = gen_binary (code, mode, false0, false1);
7431 return cond0 ? cond0 : cond1;
7434 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7435 operands is zero when the other is nonzero, and vice-versa,
7436 and STORE_FLAG_VALUE is 1 or -1. */
7438 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7439 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7440 || code == UMAX)
7441 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7443 rtx op0 = XEXP (XEXP (x, 0), 1);
7444 rtx op1 = XEXP (XEXP (x, 1), 1);
7446 cond0 = XEXP (XEXP (x, 0), 0);
7447 cond1 = XEXP (XEXP (x, 1), 0);
7449 if (COMPARISON_P (cond0)
7450 && COMPARISON_P (cond1)
7451 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7452 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7453 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7454 || ((swap_condition (GET_CODE (cond0))
7455 == combine_reversed_comparison_code (cond1))
7456 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7457 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7458 && ! side_effects_p (x))
7460 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7461 *pfalse = gen_binary (MULT, mode,
7462 (code == MINUS
7463 ? simplify_gen_unary (NEG, mode, op1,
7464 mode)
7465 : op1),
7466 const_true_rtx);
7467 return cond0;
7471 /* Similarly for MULT, AND and UMIN, except that for these the result
7472 is always zero. */
7473 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7474 && (code == MULT || code == AND || code == UMIN)
7475 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7477 cond0 = XEXP (XEXP (x, 0), 0);
7478 cond1 = XEXP (XEXP (x, 1), 0);
7480 if (COMPARISON_P (cond0)
7481 && COMPARISON_P (cond1)
7482 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7483 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7484 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7485 || ((swap_condition (GET_CODE (cond0))
7486 == combine_reversed_comparison_code (cond1))
7487 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7488 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7489 && ! side_effects_p (x))
7491 *ptrue = *pfalse = const0_rtx;
7492 return cond0;
7497 else if (code == IF_THEN_ELSE)
7499 /* If we have IF_THEN_ELSE already, extract the condition and
7500 canonicalize it if it is NE or EQ. */
7501 cond0 = XEXP (x, 0);
7502 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7503 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7504 return XEXP (cond0, 0);
7505 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7507 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7508 return XEXP (cond0, 0);
7510 else
7511 return cond0;
7514 /* If X is a SUBREG, we can narrow both the true and false values
7515 if the inner expression, if there is a condition. */
7516 else if (code == SUBREG
7517 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7518 &true0, &false0)))
7520 true0 = simplify_gen_subreg (mode, true0,
7521 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7522 false0 = simplify_gen_subreg (mode, false0,
7523 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7524 if (true0 && false0)
7526 *ptrue = true0;
7527 *pfalse = false0;
7528 return cond0;
7532 /* If X is a constant, this isn't special and will cause confusions
7533 if we treat it as such. Likewise if it is equivalent to a constant. */
7534 else if (CONSTANT_P (x)
7535 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7538 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7539 will be least confusing to the rest of the compiler. */
7540 else if (mode == BImode)
7542 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7543 return x;
7546 /* If X is known to be either 0 or -1, those are the true and
7547 false values when testing X. */
7548 else if (x == constm1_rtx || x == const0_rtx
7549 || (mode != VOIDmode
7550 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7552 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7553 return x;
7556 /* Likewise for 0 or a single bit. */
7557 else if (SCALAR_INT_MODE_P (mode)
7558 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7559 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7561 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7562 return x;
7565 /* Otherwise fail; show no condition with true and false values the same. */
7566 *ptrue = *pfalse = x;
7567 return 0;
7570 /* Return the value of expression X given the fact that condition COND
7571 is known to be true when applied to REG as its first operand and VAL
7572 as its second. X is known to not be shared and so can be modified in
7573 place.
7575 We only handle the simplest cases, and specifically those cases that
7576 arise with IF_THEN_ELSE expressions. */
7578 static rtx
7579 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7581 enum rtx_code code = GET_CODE (x);
7582 rtx temp;
7583 const char *fmt;
7584 int i, j;
7586 if (side_effects_p (x))
7587 return x;
7589 /* If either operand of the condition is a floating point value,
7590 then we have to avoid collapsing an EQ comparison. */
7591 if (cond == EQ
7592 && rtx_equal_p (x, reg)
7593 && ! FLOAT_MODE_P (GET_MODE (x))
7594 && ! FLOAT_MODE_P (GET_MODE (val)))
7595 return val;
7597 if (cond == UNEQ && rtx_equal_p (x, reg))
7598 return val;
7600 /* If X is (abs REG) and we know something about REG's relationship
7601 with zero, we may be able to simplify this. */
7603 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7604 switch (cond)
7606 case GE: case GT: case EQ:
7607 return XEXP (x, 0);
7608 case LT: case LE:
7609 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7610 XEXP (x, 0),
7611 GET_MODE (XEXP (x, 0)));
7612 default:
7613 break;
7616 /* The only other cases we handle are MIN, MAX, and comparisons if the
7617 operands are the same as REG and VAL. */
7619 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7621 if (rtx_equal_p (XEXP (x, 0), val))
7622 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7624 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7626 if (COMPARISON_P (x))
7628 if (comparison_dominates_p (cond, code))
7629 return const_true_rtx;
7631 code = combine_reversed_comparison_code (x);
7632 if (code != UNKNOWN
7633 && comparison_dominates_p (cond, code))
7634 return const0_rtx;
7635 else
7636 return x;
7638 else if (code == SMAX || code == SMIN
7639 || code == UMIN || code == UMAX)
7641 int unsignedp = (code == UMIN || code == UMAX);
7643 /* Do not reverse the condition when it is NE or EQ.
7644 This is because we cannot conclude anything about
7645 the value of 'SMAX (x, y)' when x is not equal to y,
7646 but we can when x equals y. */
7647 if ((code == SMAX || code == UMAX)
7648 && ! (cond == EQ || cond == NE))
7649 cond = reverse_condition (cond);
7651 switch (cond)
7653 case GE: case GT:
7654 return unsignedp ? x : XEXP (x, 1);
7655 case LE: case LT:
7656 return unsignedp ? x : XEXP (x, 0);
7657 case GEU: case GTU:
7658 return unsignedp ? XEXP (x, 1) : x;
7659 case LEU: case LTU:
7660 return unsignedp ? XEXP (x, 0) : x;
7661 default:
7662 break;
7667 else if (code == SUBREG)
7669 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7670 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7672 if (SUBREG_REG (x) != r)
7674 /* We must simplify subreg here, before we lose track of the
7675 original inner_mode. */
7676 new = simplify_subreg (GET_MODE (x), r,
7677 inner_mode, SUBREG_BYTE (x));
7678 if (new)
7679 return new;
7680 else
7681 SUBST (SUBREG_REG (x), r);
7684 return x;
7686 /* We don't have to handle SIGN_EXTEND here, because even in the
7687 case of replacing something with a modeless CONST_INT, a
7688 CONST_INT is already (supposed to be) a valid sign extension for
7689 its narrower mode, which implies it's already properly
7690 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7691 story is different. */
7692 else if (code == ZERO_EXTEND)
7694 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7695 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7697 if (XEXP (x, 0) != r)
7699 /* We must simplify the zero_extend here, before we lose
7700 track of the original inner_mode. */
7701 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7702 r, inner_mode);
7703 if (new)
7704 return new;
7705 else
7706 SUBST (XEXP (x, 0), r);
7709 return x;
7712 fmt = GET_RTX_FORMAT (code);
7713 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7715 if (fmt[i] == 'e')
7716 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7717 else if (fmt[i] == 'E')
7718 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7719 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7720 cond, reg, val));
7723 return x;
7726 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7727 assignment as a field assignment. */
7729 static int
7730 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7732 if (x == y || rtx_equal_p (x, y))
7733 return 1;
7735 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7736 return 0;
7738 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7739 Note that all SUBREGs of MEM are paradoxical; otherwise they
7740 would have been rewritten. */
7741 if (MEM_P (x) && GET_CODE (y) == SUBREG
7742 && MEM_P (SUBREG_REG (y))
7743 && rtx_equal_p (SUBREG_REG (y),
7744 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7745 return 1;
7747 if (MEM_P (y) && GET_CODE (x) == SUBREG
7748 && MEM_P (SUBREG_REG (x))
7749 && rtx_equal_p (SUBREG_REG (x),
7750 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7751 return 1;
7753 /* We used to see if get_last_value of X and Y were the same but that's
7754 not correct. In one direction, we'll cause the assignment to have
7755 the wrong destination and in the case, we'll import a register into this
7756 insn that might have already have been dead. So fail if none of the
7757 above cases are true. */
7758 return 0;
7761 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7762 Return that assignment if so.
7764 We only handle the most common cases. */
7766 static rtx
7767 make_field_assignment (rtx x)
7769 rtx dest = SET_DEST (x);
7770 rtx src = SET_SRC (x);
7771 rtx assign;
7772 rtx rhs, lhs;
7773 HOST_WIDE_INT c1;
7774 HOST_WIDE_INT pos;
7775 unsigned HOST_WIDE_INT len;
7776 rtx other;
7777 enum machine_mode mode;
7779 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7780 a clear of a one-bit field. We will have changed it to
7781 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7782 for a SUBREG. */
7784 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7785 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7786 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7787 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7789 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7790 1, 1, 1, 0);
7791 if (assign != 0)
7792 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7793 return x;
7796 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7797 && subreg_lowpart_p (XEXP (src, 0))
7798 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7799 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7800 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7801 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7802 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7803 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7805 assign = make_extraction (VOIDmode, dest, 0,
7806 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7807 1, 1, 1, 0);
7808 if (assign != 0)
7809 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7810 return x;
7813 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7814 one-bit field. */
7815 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7816 && XEXP (XEXP (src, 0), 0) == const1_rtx
7817 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7819 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7820 1, 1, 1, 0);
7821 if (assign != 0)
7822 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7823 return x;
7826 /* The other case we handle is assignments into a constant-position
7827 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7828 a mask that has all one bits except for a group of zero bits and
7829 OTHER is known to have zeros where C1 has ones, this is such an
7830 assignment. Compute the position and length from C1. Shift OTHER
7831 to the appropriate position, force it to the required mode, and
7832 make the extraction. Check for the AND in both operands. */
7834 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7835 return x;
7837 rhs = expand_compound_operation (XEXP (src, 0));
7838 lhs = expand_compound_operation (XEXP (src, 1));
7840 if (GET_CODE (rhs) == AND
7841 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7842 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7843 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7844 else if (GET_CODE (lhs) == AND
7845 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7846 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7847 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7848 else
7849 return x;
7851 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7852 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7853 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7854 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7855 return x;
7857 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7858 if (assign == 0)
7859 return x;
7861 /* The mode to use for the source is the mode of the assignment, or of
7862 what is inside a possible STRICT_LOW_PART. */
7863 mode = (GET_CODE (assign) == STRICT_LOW_PART
7864 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7866 /* Shift OTHER right POS places and make it the source, restricting it
7867 to the proper length and mode. */
7869 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7870 GET_MODE (src), other, pos),
7871 mode,
7872 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7873 ? ~(unsigned HOST_WIDE_INT) 0
7874 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7875 dest, 0);
7877 /* If SRC is masked by an AND that does not make a difference in
7878 the value being stored, strip it. */
7879 if (GET_CODE (assign) == ZERO_EXTRACT
7880 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7881 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7882 && GET_CODE (src) == AND
7883 && GET_CODE (XEXP (src, 1)) == CONST_INT
7884 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7885 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7886 src = XEXP (src, 0);
7888 return gen_rtx_SET (VOIDmode, assign, src);
7891 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7892 if so. */
7894 static rtx
7895 apply_distributive_law (rtx x)
7897 enum rtx_code code = GET_CODE (x);
7898 enum rtx_code inner_code;
7899 rtx lhs, rhs, other;
7900 rtx tem;
7902 /* Distributivity is not true for floating point as it can change the
7903 value. So we don't do it unless -funsafe-math-optimizations. */
7904 if (FLOAT_MODE_P (GET_MODE (x))
7905 && ! flag_unsafe_math_optimizations)
7906 return x;
7908 /* The outer operation can only be one of the following: */
7909 if (code != IOR && code != AND && code != XOR
7910 && code != PLUS && code != MINUS)
7911 return x;
7913 lhs = XEXP (x, 0);
7914 rhs = XEXP (x, 1);
7916 /* If either operand is a primitive we can't do anything, so get out
7917 fast. */
7918 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7919 return x;
7921 lhs = expand_compound_operation (lhs);
7922 rhs = expand_compound_operation (rhs);
7923 inner_code = GET_CODE (lhs);
7924 if (inner_code != GET_CODE (rhs))
7925 return x;
7927 /* See if the inner and outer operations distribute. */
7928 switch (inner_code)
7930 case LSHIFTRT:
7931 case ASHIFTRT:
7932 case AND:
7933 case IOR:
7934 /* These all distribute except over PLUS. */
7935 if (code == PLUS || code == MINUS)
7936 return x;
7937 break;
7939 case MULT:
7940 if (code != PLUS && code != MINUS)
7941 return x;
7942 break;
7944 case ASHIFT:
7945 /* This is also a multiply, so it distributes over everything. */
7946 break;
7948 case SUBREG:
7949 /* Non-paradoxical SUBREGs distributes over all operations, provided
7950 the inner modes and byte offsets are the same, this is an extraction
7951 of a low-order part, we don't convert an fp operation to int or
7952 vice versa, and we would not be converting a single-word
7953 operation into a multi-word operation. The latter test is not
7954 required, but it prevents generating unneeded multi-word operations.
7955 Some of the previous tests are redundant given the latter test, but
7956 are retained because they are required for correctness.
7958 We produce the result slightly differently in this case. */
7960 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7961 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7962 || ! subreg_lowpart_p (lhs)
7963 || (GET_MODE_CLASS (GET_MODE (lhs))
7964 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7965 || (GET_MODE_SIZE (GET_MODE (lhs))
7966 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7967 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7968 return x;
7970 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7971 SUBREG_REG (lhs), SUBREG_REG (rhs));
7972 return gen_lowpart (GET_MODE (x), tem);
7974 default:
7975 return x;
7978 /* Set LHS and RHS to the inner operands (A and B in the example
7979 above) and set OTHER to the common operand (C in the example).
7980 There is only one way to do this unless the inner operation is
7981 commutative. */
7982 if (COMMUTATIVE_ARITH_P (lhs)
7983 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
7984 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
7985 else if (COMMUTATIVE_ARITH_P (lhs)
7986 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
7987 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
7988 else if (COMMUTATIVE_ARITH_P (lhs)
7989 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
7990 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
7991 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
7992 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
7993 else
7994 return x;
7996 /* Form the new inner operation, seeing if it simplifies first. */
7997 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
7999 /* There is one exception to the general way of distributing:
8000 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8001 if (code == XOR && inner_code == IOR)
8003 inner_code = AND;
8004 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8007 /* We may be able to continuing distributing the result, so call
8008 ourselves recursively on the inner operation before forming the
8009 outer operation, which we return. */
8010 return gen_binary (inner_code, GET_MODE (x),
8011 apply_distributive_law (tem), other);
8014 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8015 in MODE.
8017 Return an equivalent form, if different from X. Otherwise, return X. If
8018 X is zero, we are to always construct the equivalent form. */
8020 static rtx
8021 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8022 unsigned HOST_WIDE_INT constop)
8024 unsigned HOST_WIDE_INT nonzero;
8025 int i;
8027 /* Simplify VAROP knowing that we will be only looking at some of the
8028 bits in it.
8030 Note by passing in CONSTOP, we guarantee that the bits not set in
8031 CONSTOP are not significant and will never be examined. We must
8032 ensure that is the case by explicitly masking out those bits
8033 before returning. */
8034 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8036 /* If VAROP is a CLOBBER, we will fail so return it. */
8037 if (GET_CODE (varop) == CLOBBER)
8038 return varop;
8040 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8041 to VAROP and return the new constant. */
8042 if (GET_CODE (varop) == CONST_INT)
8043 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8045 /* See what bits may be nonzero in VAROP. Unlike the general case of
8046 a call to nonzero_bits, here we don't care about bits outside
8047 MODE. */
8049 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8051 /* Turn off all bits in the constant that are known to already be zero.
8052 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8053 which is tested below. */
8055 constop &= nonzero;
8057 /* If we don't have any bits left, return zero. */
8058 if (constop == 0)
8059 return const0_rtx;
8061 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8062 a power of two, we can replace this with an ASHIFT. */
8063 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8064 && (i = exact_log2 (constop)) >= 0)
8065 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8067 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8068 or XOR, then try to apply the distributive law. This may eliminate
8069 operations if either branch can be simplified because of the AND.
8070 It may also make some cases more complex, but those cases probably
8071 won't match a pattern either with or without this. */
8073 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8074 return
8075 gen_lowpart
8076 (mode,
8077 apply_distributive_law
8078 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8079 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8080 XEXP (varop, 0), constop),
8081 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8082 XEXP (varop, 1), constop))));
8084 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8085 the AND and see if one of the operands simplifies to zero. If so, we
8086 may eliminate it. */
8088 if (GET_CODE (varop) == PLUS
8089 && exact_log2 (constop + 1) >= 0)
8091 rtx o0, o1;
8093 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8094 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8095 if (o0 == const0_rtx)
8096 return o1;
8097 if (o1 == const0_rtx)
8098 return o0;
8101 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8102 if we already had one (just check for the simplest cases). */
8103 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8104 && GET_MODE (XEXP (x, 0)) == mode
8105 && SUBREG_REG (XEXP (x, 0)) == varop)
8106 varop = XEXP (x, 0);
8107 else
8108 varop = gen_lowpart (mode, varop);
8110 /* If we can't make the SUBREG, try to return what we were given. */
8111 if (GET_CODE (varop) == CLOBBER)
8112 return x ? x : varop;
8114 /* If we are only masking insignificant bits, return VAROP. */
8115 if (constop == nonzero)
8116 x = varop;
8117 else
8119 /* Otherwise, return an AND. */
8120 constop = trunc_int_for_mode (constop, mode);
8121 /* See how much, if any, of X we can use. */
8122 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8123 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8125 else
8127 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8128 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8129 SUBST (XEXP (x, 1), GEN_INT (constop));
8131 SUBST (XEXP (x, 0), varop);
8135 return x;
8138 /* Given a REG, X, compute which bits in X can be nonzero.
8139 We don't care about bits outside of those defined in MODE.
8141 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8142 a shift, AND, or zero_extract, we can do better. */
8144 static rtx
8145 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8146 rtx known_x ATTRIBUTE_UNUSED,
8147 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8148 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8149 unsigned HOST_WIDE_INT *nonzero)
8151 rtx tem;
8153 /* If X is a register whose nonzero bits value is current, use it.
8154 Otherwise, if X is a register whose value we can find, use that
8155 value. Otherwise, use the previously-computed global nonzero bits
8156 for this register. */
8158 if (reg_stat[REGNO (x)].last_set_value != 0
8159 && (reg_stat[REGNO (x)].last_set_mode == mode
8160 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8161 && GET_MODE_CLASS (mode) == MODE_INT))
8162 && (reg_stat[REGNO (x)].last_set_label == label_tick
8163 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8164 && REG_N_SETS (REGNO (x)) == 1
8165 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8166 REGNO (x))))
8167 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8169 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8170 return NULL;
8173 tem = get_last_value (x);
8175 if (tem)
8177 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8178 /* If X is narrower than MODE and TEM is a non-negative
8179 constant that would appear negative in the mode of X,
8180 sign-extend it for use in reg_nonzero_bits because some
8181 machines (maybe most) will actually do the sign-extension
8182 and this is the conservative approach.
8184 ??? For 2.5, try to tighten up the MD files in this regard
8185 instead of this kludge. */
8187 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8188 && GET_CODE (tem) == CONST_INT
8189 && INTVAL (tem) > 0
8190 && 0 != (INTVAL (tem)
8191 & ((HOST_WIDE_INT) 1
8192 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8193 tem = GEN_INT (INTVAL (tem)
8194 | ((HOST_WIDE_INT) (-1)
8195 << GET_MODE_BITSIZE (GET_MODE (x))));
8196 #endif
8197 return tem;
8199 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8201 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8203 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8204 /* We don't know anything about the upper bits. */
8205 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8206 *nonzero &= mask;
8209 return NULL;
8212 /* Return the number of bits at the high-order end of X that are known to
8213 be equal to the sign bit. X will be used in mode MODE; if MODE is
8214 VOIDmode, X will be used in its own mode. The returned value will always
8215 be between 1 and the number of bits in MODE. */
8217 static rtx
8218 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8219 rtx known_x ATTRIBUTE_UNUSED,
8220 enum machine_mode known_mode
8221 ATTRIBUTE_UNUSED,
8222 unsigned int known_ret ATTRIBUTE_UNUSED,
8223 unsigned int *result)
8225 rtx tem;
8227 if (reg_stat[REGNO (x)].last_set_value != 0
8228 && reg_stat[REGNO (x)].last_set_mode == mode
8229 && (reg_stat[REGNO (x)].last_set_label == label_tick
8230 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8231 && REG_N_SETS (REGNO (x)) == 1
8232 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8233 REGNO (x))))
8234 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8236 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8237 return NULL;
8240 tem = get_last_value (x);
8241 if (tem != 0)
8242 return tem;
8244 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8245 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8246 *result = reg_stat[REGNO (x)].sign_bit_copies;
8248 return NULL;
8251 /* Return the number of "extended" bits there are in X, when interpreted
8252 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8253 unsigned quantities, this is the number of high-order zero bits.
8254 For signed quantities, this is the number of copies of the sign bit
8255 minus 1. In both case, this function returns the number of "spare"
8256 bits. For example, if two quantities for which this function returns
8257 at least 1 are added, the addition is known not to overflow.
8259 This function will always return 0 unless called during combine, which
8260 implies that it must be called from a define_split. */
8262 unsigned int
8263 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8265 if (nonzero_sign_valid == 0)
8266 return 0;
8268 return (unsignedp
8269 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8270 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8271 - floor_log2 (nonzero_bits (x, mode)))
8272 : 0)
8273 : num_sign_bit_copies (x, mode) - 1);
8276 /* This function is called from `simplify_shift_const' to merge two
8277 outer operations. Specifically, we have already found that we need
8278 to perform operation *POP0 with constant *PCONST0 at the outermost
8279 position. We would now like to also perform OP1 with constant CONST1
8280 (with *POP0 being done last).
8282 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8283 the resulting operation. *PCOMP_P is set to 1 if we would need to
8284 complement the innermost operand, otherwise it is unchanged.
8286 MODE is the mode in which the operation will be done. No bits outside
8287 the width of this mode matter. It is assumed that the width of this mode
8288 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8290 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8291 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8292 result is simply *PCONST0.
8294 If the resulting operation cannot be expressed as one operation, we
8295 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8297 static int
8298 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8300 enum rtx_code op0 = *pop0;
8301 HOST_WIDE_INT const0 = *pconst0;
8303 const0 &= GET_MODE_MASK (mode);
8304 const1 &= GET_MODE_MASK (mode);
8306 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8307 if (op0 == AND)
8308 const1 &= const0;
8310 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8311 if OP0 is SET. */
8313 if (op1 == UNKNOWN || op0 == SET)
8314 return 1;
8316 else if (op0 == UNKNOWN)
8317 op0 = op1, const0 = const1;
8319 else if (op0 == op1)
8321 switch (op0)
8323 case AND:
8324 const0 &= const1;
8325 break;
8326 case IOR:
8327 const0 |= const1;
8328 break;
8329 case XOR:
8330 const0 ^= const1;
8331 break;
8332 case PLUS:
8333 const0 += const1;
8334 break;
8335 case NEG:
8336 op0 = UNKNOWN;
8337 break;
8338 default:
8339 break;
8343 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8344 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8345 return 0;
8347 /* If the two constants aren't the same, we can't do anything. The
8348 remaining six cases can all be done. */
8349 else if (const0 != const1)
8350 return 0;
8352 else
8353 switch (op0)
8355 case IOR:
8356 if (op1 == AND)
8357 /* (a & b) | b == b */
8358 op0 = SET;
8359 else /* op1 == XOR */
8360 /* (a ^ b) | b == a | b */
8362 break;
8364 case XOR:
8365 if (op1 == AND)
8366 /* (a & b) ^ b == (~a) & b */
8367 op0 = AND, *pcomp_p = 1;
8368 else /* op1 == IOR */
8369 /* (a | b) ^ b == a & ~b */
8370 op0 = AND, const0 = ~const0;
8371 break;
8373 case AND:
8374 if (op1 == IOR)
8375 /* (a | b) & b == b */
8376 op0 = SET;
8377 else /* op1 == XOR */
8378 /* (a ^ b) & b) == (~a) & b */
8379 *pcomp_p = 1;
8380 break;
8381 default:
8382 break;
8385 /* Check for NO-OP cases. */
8386 const0 &= GET_MODE_MASK (mode);
8387 if (const0 == 0
8388 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8389 op0 = UNKNOWN;
8390 else if (const0 == 0 && op0 == AND)
8391 op0 = SET;
8392 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8393 && op0 == AND)
8394 op0 = UNKNOWN;
8396 /* ??? Slightly redundant with the above mask, but not entirely.
8397 Moving this above means we'd have to sign-extend the mode mask
8398 for the final test. */
8399 const0 = trunc_int_for_mode (const0, mode);
8401 *pop0 = op0;
8402 *pconst0 = const0;
8404 return 1;
8407 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8408 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8409 that we started with.
8411 The shift is normally computed in the widest mode we find in VAROP, as
8412 long as it isn't a different number of words than RESULT_MODE. Exceptions
8413 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8415 static rtx
8416 simplify_shift_const (rtx x, enum rtx_code code,
8417 enum machine_mode result_mode, rtx varop,
8418 int orig_count)
8420 enum rtx_code orig_code = code;
8421 unsigned int count;
8422 int signed_count;
8423 enum machine_mode mode = result_mode;
8424 enum machine_mode shift_mode, tmode;
8425 unsigned int mode_words
8426 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8427 /* We form (outer_op (code varop count) (outer_const)). */
8428 enum rtx_code outer_op = UNKNOWN;
8429 HOST_WIDE_INT outer_const = 0;
8430 rtx const_rtx;
8431 int complement_p = 0;
8432 rtx new;
8434 /* Make sure and truncate the "natural" shift on the way in. We don't
8435 want to do this inside the loop as it makes it more difficult to
8436 combine shifts. */
8437 if (SHIFT_COUNT_TRUNCATED)
8438 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8440 /* If we were given an invalid count, don't do anything except exactly
8441 what was requested. */
8443 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8445 if (x)
8446 return x;
8448 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8451 count = orig_count;
8453 /* Unless one of the branches of the `if' in this loop does a `continue',
8454 we will `break' the loop after the `if'. */
8456 while (count != 0)
8458 /* If we have an operand of (clobber (const_int 0)), just return that
8459 value. */
8460 if (GET_CODE (varop) == CLOBBER)
8461 return varop;
8463 /* If we discovered we had to complement VAROP, leave. Making a NOT
8464 here would cause an infinite loop. */
8465 if (complement_p)
8466 break;
8468 /* Convert ROTATERT to ROTATE. */
8469 if (code == ROTATERT)
8471 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8472 code = ROTATE;
8473 if (VECTOR_MODE_P (result_mode))
8474 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8475 else
8476 count = bitsize - count;
8479 /* We need to determine what mode we will do the shift in. If the
8480 shift is a right shift or a ROTATE, we must always do it in the mode
8481 it was originally done in. Otherwise, we can do it in MODE, the
8482 widest mode encountered. */
8483 shift_mode
8484 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8485 ? result_mode : mode);
8487 /* Handle cases where the count is greater than the size of the mode
8488 minus 1. For ASHIFT, use the size minus one as the count (this can
8489 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8490 take the count modulo the size. For other shifts, the result is
8491 zero.
8493 Since these shifts are being produced by the compiler by combining
8494 multiple operations, each of which are defined, we know what the
8495 result is supposed to be. */
8497 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8499 if (code == ASHIFTRT)
8500 count = GET_MODE_BITSIZE (shift_mode) - 1;
8501 else if (code == ROTATE || code == ROTATERT)
8502 count %= GET_MODE_BITSIZE (shift_mode);
8503 else
8505 /* We can't simply return zero because there may be an
8506 outer op. */
8507 varop = const0_rtx;
8508 count = 0;
8509 break;
8513 /* An arithmetic right shift of a quantity known to be -1 or 0
8514 is a no-op. */
8515 if (code == ASHIFTRT
8516 && (num_sign_bit_copies (varop, shift_mode)
8517 == GET_MODE_BITSIZE (shift_mode)))
8519 count = 0;
8520 break;
8523 /* If we are doing an arithmetic right shift and discarding all but
8524 the sign bit copies, this is equivalent to doing a shift by the
8525 bitsize minus one. Convert it into that shift because it will often
8526 allow other simplifications. */
8528 if (code == ASHIFTRT
8529 && (count + num_sign_bit_copies (varop, shift_mode)
8530 >= GET_MODE_BITSIZE (shift_mode)))
8531 count = GET_MODE_BITSIZE (shift_mode) - 1;
8533 /* We simplify the tests below and elsewhere by converting
8534 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8535 `make_compound_operation' will convert it to an ASHIFTRT for
8536 those machines (such as VAX) that don't have an LSHIFTRT. */
8537 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8538 && code == ASHIFTRT
8539 && ((nonzero_bits (varop, shift_mode)
8540 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8541 == 0))
8542 code = LSHIFTRT;
8544 if (code == LSHIFTRT
8545 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8546 && !(nonzero_bits (varop, shift_mode) >> count))
8547 varop = const0_rtx;
8548 if (code == ASHIFT
8549 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8550 && !((nonzero_bits (varop, shift_mode) << count)
8551 & GET_MODE_MASK (shift_mode)))
8552 varop = const0_rtx;
8554 switch (GET_CODE (varop))
8556 case SIGN_EXTEND:
8557 case ZERO_EXTEND:
8558 case SIGN_EXTRACT:
8559 case ZERO_EXTRACT:
8560 new = expand_compound_operation (varop);
8561 if (new != varop)
8563 varop = new;
8564 continue;
8566 break;
8568 case MEM:
8569 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8570 minus the width of a smaller mode, we can do this with a
8571 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8572 if ((code == ASHIFTRT || code == LSHIFTRT)
8573 && ! mode_dependent_address_p (XEXP (varop, 0))
8574 && ! MEM_VOLATILE_P (varop)
8575 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8576 MODE_INT, 1)) != BLKmode)
8578 new = adjust_address_nv (varop, tmode,
8579 BYTES_BIG_ENDIAN ? 0
8580 : count / BITS_PER_UNIT);
8582 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8583 : ZERO_EXTEND, mode, new);
8584 count = 0;
8585 continue;
8587 break;
8589 case USE:
8590 /* Similar to the case above, except that we can only do this if
8591 the resulting mode is the same as that of the underlying
8592 MEM and adjust the address depending on the *bits* endianness
8593 because of the way that bit-field extract insns are defined. */
8594 if ((code == ASHIFTRT || code == LSHIFTRT)
8595 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8596 MODE_INT, 1)) != BLKmode
8597 && tmode == GET_MODE (XEXP (varop, 0)))
8599 if (BITS_BIG_ENDIAN)
8600 new = XEXP (varop, 0);
8601 else
8603 new = copy_rtx (XEXP (varop, 0));
8604 SUBST (XEXP (new, 0),
8605 plus_constant (XEXP (new, 0),
8606 count / BITS_PER_UNIT));
8609 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8610 : ZERO_EXTEND, mode, new);
8611 count = 0;
8612 continue;
8614 break;
8616 case SUBREG:
8617 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8618 the same number of words as what we've seen so far. Then store
8619 the widest mode in MODE. */
8620 if (subreg_lowpart_p (varop)
8621 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8622 > GET_MODE_SIZE (GET_MODE (varop)))
8623 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8624 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8625 == mode_words)
8627 varop = SUBREG_REG (varop);
8628 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8629 mode = GET_MODE (varop);
8630 continue;
8632 break;
8634 case MULT:
8635 /* Some machines use MULT instead of ASHIFT because MULT
8636 is cheaper. But it is still better on those machines to
8637 merge two shifts into one. */
8638 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8639 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8641 varop
8642 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8643 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8644 continue;
8646 break;
8648 case UDIV:
8649 /* Similar, for when divides are cheaper. */
8650 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8651 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8653 varop
8654 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8655 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8656 continue;
8658 break;
8660 case ASHIFTRT:
8661 /* If we are extracting just the sign bit of an arithmetic
8662 right shift, that shift is not needed. However, the sign
8663 bit of a wider mode may be different from what would be
8664 interpreted as the sign bit in a narrower mode, so, if
8665 the result is narrower, don't discard the shift. */
8666 if (code == LSHIFTRT
8667 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8668 && (GET_MODE_BITSIZE (result_mode)
8669 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8671 varop = XEXP (varop, 0);
8672 continue;
8675 /* ... fall through ... */
8677 case LSHIFTRT:
8678 case ASHIFT:
8679 case ROTATE:
8680 /* Here we have two nested shifts. The result is usually the
8681 AND of a new shift with a mask. We compute the result below. */
8682 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8683 && INTVAL (XEXP (varop, 1)) >= 0
8684 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8685 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8686 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8688 enum rtx_code first_code = GET_CODE (varop);
8689 unsigned int first_count = INTVAL (XEXP (varop, 1));
8690 unsigned HOST_WIDE_INT mask;
8691 rtx mask_rtx;
8693 /* We have one common special case. We can't do any merging if
8694 the inner code is an ASHIFTRT of a smaller mode. However, if
8695 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8696 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8697 we can convert it to
8698 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8699 This simplifies certain SIGN_EXTEND operations. */
8700 if (code == ASHIFT && first_code == ASHIFTRT
8701 && count == (unsigned int)
8702 (GET_MODE_BITSIZE (result_mode)
8703 - GET_MODE_BITSIZE (GET_MODE (varop))))
8705 /* C3 has the low-order C1 bits zero. */
8707 mask = (GET_MODE_MASK (mode)
8708 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8710 varop = simplify_and_const_int (NULL_RTX, result_mode,
8711 XEXP (varop, 0), mask);
8712 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8713 varop, count);
8714 count = first_count;
8715 code = ASHIFTRT;
8716 continue;
8719 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8720 than C1 high-order bits equal to the sign bit, we can convert
8721 this to either an ASHIFT or an ASHIFTRT depending on the
8722 two counts.
8724 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8726 if (code == ASHIFTRT && first_code == ASHIFT
8727 && GET_MODE (varop) == shift_mode
8728 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8729 > first_count))
8731 varop = XEXP (varop, 0);
8733 signed_count = count - first_count;
8734 if (signed_count < 0)
8735 count = -signed_count, code = ASHIFT;
8736 else
8737 count = signed_count;
8739 continue;
8742 /* There are some cases we can't do. If CODE is ASHIFTRT,
8743 we can only do this if FIRST_CODE is also ASHIFTRT.
8745 We can't do the case when CODE is ROTATE and FIRST_CODE is
8746 ASHIFTRT.
8748 If the mode of this shift is not the mode of the outer shift,
8749 we can't do this if either shift is a right shift or ROTATE.
8751 Finally, we can't do any of these if the mode is too wide
8752 unless the codes are the same.
8754 Handle the case where the shift codes are the same
8755 first. */
8757 if (code == first_code)
8759 if (GET_MODE (varop) != result_mode
8760 && (code == ASHIFTRT || code == LSHIFTRT
8761 || code == ROTATE))
8762 break;
8764 count += first_count;
8765 varop = XEXP (varop, 0);
8766 continue;
8769 if (code == ASHIFTRT
8770 || (code == ROTATE && first_code == ASHIFTRT)
8771 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8772 || (GET_MODE (varop) != result_mode
8773 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8774 || first_code == ROTATE
8775 || code == ROTATE)))
8776 break;
8778 /* To compute the mask to apply after the shift, shift the
8779 nonzero bits of the inner shift the same way the
8780 outer shift will. */
8782 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8784 mask_rtx
8785 = simplify_binary_operation (code, result_mode, mask_rtx,
8786 GEN_INT (count));
8788 /* Give up if we can't compute an outer operation to use. */
8789 if (mask_rtx == 0
8790 || GET_CODE (mask_rtx) != CONST_INT
8791 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8792 INTVAL (mask_rtx),
8793 result_mode, &complement_p))
8794 break;
8796 /* If the shifts are in the same direction, we add the
8797 counts. Otherwise, we subtract them. */
8798 signed_count = count;
8799 if ((code == ASHIFTRT || code == LSHIFTRT)
8800 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8801 signed_count += first_count;
8802 else
8803 signed_count -= first_count;
8805 /* If COUNT is positive, the new shift is usually CODE,
8806 except for the two exceptions below, in which case it is
8807 FIRST_CODE. If the count is negative, FIRST_CODE should
8808 always be used */
8809 if (signed_count > 0
8810 && ((first_code == ROTATE && code == ASHIFT)
8811 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8812 code = first_code, count = signed_count;
8813 else if (signed_count < 0)
8814 code = first_code, count = -signed_count;
8815 else
8816 count = signed_count;
8818 varop = XEXP (varop, 0);
8819 continue;
8822 /* If we have (A << B << C) for any shift, we can convert this to
8823 (A << C << B). This wins if A is a constant. Only try this if
8824 B is not a constant. */
8826 else if (GET_CODE (varop) == code
8827 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8828 && 0 != (new
8829 = simplify_binary_operation (code, mode,
8830 XEXP (varop, 0),
8831 GEN_INT (count))))
8833 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8834 count = 0;
8835 continue;
8837 break;
8839 case NOT:
8840 /* Make this fit the case below. */
8841 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8842 GEN_INT (GET_MODE_MASK (mode)));
8843 continue;
8845 case IOR:
8846 case AND:
8847 case XOR:
8848 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8849 with C the size of VAROP - 1 and the shift is logical if
8850 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8851 we have an (le X 0) operation. If we have an arithmetic shift
8852 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8853 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8855 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8856 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8857 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8858 && (code == LSHIFTRT || code == ASHIFTRT)
8859 && count == (unsigned int)
8860 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8861 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8863 count = 0;
8864 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8865 const0_rtx);
8867 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8868 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8870 continue;
8873 /* If we have (shift (logical)), move the logical to the outside
8874 to allow it to possibly combine with another logical and the
8875 shift to combine with another shift. This also canonicalizes to
8876 what a ZERO_EXTRACT looks like. Also, some machines have
8877 (and (shift)) insns. */
8879 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8880 /* We can't do this if we have (ashiftrt (xor)) and the
8881 constant has its sign bit set in shift_mode. */
8882 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8883 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8884 shift_mode))
8885 && (new = simplify_binary_operation (code, result_mode,
8886 XEXP (varop, 1),
8887 GEN_INT (count))) != 0
8888 && GET_CODE (new) == CONST_INT
8889 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8890 INTVAL (new), result_mode, &complement_p))
8892 varop = XEXP (varop, 0);
8893 continue;
8896 /* If we can't do that, try to simplify the shift in each arm of the
8897 logical expression, make a new logical expression, and apply
8898 the inverse distributive law. This also can't be done
8899 for some (ashiftrt (xor)). */
8900 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8901 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8902 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8903 shift_mode)))
8905 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8906 XEXP (varop, 0), count);
8907 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8908 XEXP (varop, 1), count);
8910 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8911 varop = apply_distributive_law (varop);
8913 count = 0;
8914 continue;
8916 break;
8918 case EQ:
8919 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8920 says that the sign bit can be tested, FOO has mode MODE, C is
8921 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8922 that may be nonzero. */
8923 if (code == LSHIFTRT
8924 && XEXP (varop, 1) == const0_rtx
8925 && GET_MODE (XEXP (varop, 0)) == result_mode
8926 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8927 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8928 && ((STORE_FLAG_VALUE
8929 & ((HOST_WIDE_INT) 1
8930 < (GET_MODE_BITSIZE (result_mode) - 1))))
8931 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8932 && merge_outer_ops (&outer_op, &outer_const, XOR,
8933 (HOST_WIDE_INT) 1, result_mode,
8934 &complement_p))
8936 varop = XEXP (varop, 0);
8937 count = 0;
8938 continue;
8940 break;
8942 case NEG:
8943 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8944 than the number of bits in the mode is equivalent to A. */
8945 if (code == LSHIFTRT
8946 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8947 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8949 varop = XEXP (varop, 0);
8950 count = 0;
8951 continue;
8954 /* NEG commutes with ASHIFT since it is multiplication. Move the
8955 NEG outside to allow shifts to combine. */
8956 if (code == ASHIFT
8957 && merge_outer_ops (&outer_op, &outer_const, NEG,
8958 (HOST_WIDE_INT) 0, result_mode,
8959 &complement_p))
8961 varop = XEXP (varop, 0);
8962 continue;
8964 break;
8966 case PLUS:
8967 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8968 is one less than the number of bits in the mode is
8969 equivalent to (xor A 1). */
8970 if (code == LSHIFTRT
8971 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8972 && XEXP (varop, 1) == constm1_rtx
8973 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8974 && merge_outer_ops (&outer_op, &outer_const, XOR,
8975 (HOST_WIDE_INT) 1, result_mode,
8976 &complement_p))
8978 count = 0;
8979 varop = XEXP (varop, 0);
8980 continue;
8983 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
8984 that might be nonzero in BAR are those being shifted out and those
8985 bits are known zero in FOO, we can replace the PLUS with FOO.
8986 Similarly in the other operand order. This code occurs when
8987 we are computing the size of a variable-size array. */
8989 if ((code == ASHIFTRT || code == LSHIFTRT)
8990 && count < HOST_BITS_PER_WIDE_INT
8991 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
8992 && (nonzero_bits (XEXP (varop, 1), result_mode)
8993 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
8995 varop = XEXP (varop, 0);
8996 continue;
8998 else if ((code == ASHIFTRT || code == LSHIFTRT)
8999 && count < HOST_BITS_PER_WIDE_INT
9000 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9001 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9002 >> count)
9003 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9004 & nonzero_bits (XEXP (varop, 1),
9005 result_mode)))
9007 varop = XEXP (varop, 1);
9008 continue;
9011 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9012 if (code == ASHIFT
9013 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9014 && (new = simplify_binary_operation (ASHIFT, result_mode,
9015 XEXP (varop, 1),
9016 GEN_INT (count))) != 0
9017 && GET_CODE (new) == CONST_INT
9018 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9019 INTVAL (new), result_mode, &complement_p))
9021 varop = XEXP (varop, 0);
9022 continue;
9024 break;
9026 case MINUS:
9027 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9028 with C the size of VAROP - 1 and the shift is logical if
9029 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9030 we have a (gt X 0) operation. If the shift is arithmetic with
9031 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9032 we have a (neg (gt X 0)) operation. */
9034 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9035 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9036 && count == (unsigned int)
9037 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9038 && (code == LSHIFTRT || code == ASHIFTRT)
9039 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9040 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9041 == count
9042 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9044 count = 0;
9045 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9046 const0_rtx);
9048 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9049 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9051 continue;
9053 break;
9055 case TRUNCATE:
9056 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9057 if the truncate does not affect the value. */
9058 if (code == LSHIFTRT
9059 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9060 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9061 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9062 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9063 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9065 rtx varop_inner = XEXP (varop, 0);
9067 varop_inner
9068 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9069 XEXP (varop_inner, 0),
9070 GEN_INT
9071 (count + INTVAL (XEXP (varop_inner, 1))));
9072 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9073 count = 0;
9074 continue;
9076 break;
9078 default:
9079 break;
9082 break;
9085 /* We need to determine what mode to do the shift in. If the shift is
9086 a right shift or ROTATE, we must always do it in the mode it was
9087 originally done in. Otherwise, we can do it in MODE, the widest mode
9088 encountered. The code we care about is that of the shift that will
9089 actually be done, not the shift that was originally requested. */
9090 shift_mode
9091 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9092 ? result_mode : mode);
9094 /* We have now finished analyzing the shift. The result should be
9095 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9096 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9097 to the result of the shift. OUTER_CONST is the relevant constant,
9098 but we must turn off all bits turned off in the shift.
9100 If we were passed a value for X, see if we can use any pieces of
9101 it. If not, make new rtx. */
9103 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9104 && GET_CODE (XEXP (x, 1)) == CONST_INT
9105 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9106 const_rtx = XEXP (x, 1);
9107 else
9108 const_rtx = GEN_INT (count);
9110 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9111 && GET_MODE (XEXP (x, 0)) == shift_mode
9112 && SUBREG_REG (XEXP (x, 0)) == varop)
9113 varop = XEXP (x, 0);
9114 else if (GET_MODE (varop) != shift_mode)
9115 varop = gen_lowpart (shift_mode, varop);
9117 /* If we can't make the SUBREG, try to return what we were given. */
9118 if (GET_CODE (varop) == CLOBBER)
9119 return x ? x : varop;
9121 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9122 if (new != 0)
9123 x = new;
9124 else
9125 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9127 /* If we have an outer operation and we just made a shift, it is
9128 possible that we could have simplified the shift were it not
9129 for the outer operation. So try to do the simplification
9130 recursively. */
9132 if (outer_op != UNKNOWN && GET_CODE (x) == code
9133 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9134 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9135 INTVAL (XEXP (x, 1)));
9137 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9138 turn off all the bits that the shift would have turned off. */
9139 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9140 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9141 GET_MODE_MASK (result_mode) >> orig_count);
9143 /* Do the remainder of the processing in RESULT_MODE. */
9144 x = gen_lowpart (result_mode, x);
9146 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9147 operation. */
9148 if (complement_p)
9149 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9151 if (outer_op != UNKNOWN)
9153 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9154 outer_const = trunc_int_for_mode (outer_const, result_mode);
9156 if (outer_op == AND)
9157 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9158 else if (outer_op == SET)
9159 /* This means that we have determined that the result is
9160 equivalent to a constant. This should be rare. */
9161 x = GEN_INT (outer_const);
9162 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9163 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9164 else
9165 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9168 return x;
9171 /* Like recog, but we receive the address of a pointer to a new pattern.
9172 We try to match the rtx that the pointer points to.
9173 If that fails, we may try to modify or replace the pattern,
9174 storing the replacement into the same pointer object.
9176 Modifications include deletion or addition of CLOBBERs.
9178 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9179 the CLOBBERs are placed.
9181 The value is the final insn code from the pattern ultimately matched,
9182 or -1. */
9184 static int
9185 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9187 rtx pat = *pnewpat;
9188 int insn_code_number;
9189 int num_clobbers_to_add = 0;
9190 int i;
9191 rtx notes = 0;
9192 rtx old_notes, old_pat;
9194 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9195 we use to indicate that something didn't match. If we find such a
9196 thing, force rejection. */
9197 if (GET_CODE (pat) == PARALLEL)
9198 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9199 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9200 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9201 return -1;
9203 old_pat = PATTERN (insn);
9204 old_notes = REG_NOTES (insn);
9205 PATTERN (insn) = pat;
9206 REG_NOTES (insn) = 0;
9208 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9210 /* If it isn't, there is the possibility that we previously had an insn
9211 that clobbered some register as a side effect, but the combined
9212 insn doesn't need to do that. So try once more without the clobbers
9213 unless this represents an ASM insn. */
9215 if (insn_code_number < 0 && ! check_asm_operands (pat)
9216 && GET_CODE (pat) == PARALLEL)
9218 int pos;
9220 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9221 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9223 if (i != pos)
9224 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9225 pos++;
9228 SUBST_INT (XVECLEN (pat, 0), pos);
9230 if (pos == 1)
9231 pat = XVECEXP (pat, 0, 0);
9233 PATTERN (insn) = pat;
9234 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9236 PATTERN (insn) = old_pat;
9237 REG_NOTES (insn) = old_notes;
9239 /* Recognize all noop sets, these will be killed by followup pass. */
9240 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9241 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9243 /* If we had any clobbers to add, make a new pattern than contains
9244 them. Then check to make sure that all of them are dead. */
9245 if (num_clobbers_to_add)
9247 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9248 rtvec_alloc (GET_CODE (pat) == PARALLEL
9249 ? (XVECLEN (pat, 0)
9250 + num_clobbers_to_add)
9251 : num_clobbers_to_add + 1));
9253 if (GET_CODE (pat) == PARALLEL)
9254 for (i = 0; i < XVECLEN (pat, 0); i++)
9255 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9256 else
9257 XVECEXP (newpat, 0, 0) = pat;
9259 add_clobbers (newpat, insn_code_number);
9261 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9262 i < XVECLEN (newpat, 0); i++)
9264 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9265 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9266 return -1;
9267 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9268 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9270 pat = newpat;
9273 *pnewpat = pat;
9274 *pnotes = notes;
9276 return insn_code_number;
9279 /* Like gen_lowpart_general but for use by combine. In combine it
9280 is not possible to create any new pseudoregs. However, it is
9281 safe to create invalid memory addresses, because combine will
9282 try to recognize them and all they will do is make the combine
9283 attempt fail.
9285 If for some reason this cannot do its job, an rtx
9286 (clobber (const_int 0)) is returned.
9287 An insn containing that will not be recognized. */
9289 static rtx
9290 gen_lowpart_for_combine (enum machine_mode mode, rtx x)
9292 rtx result;
9294 if (GET_MODE (x) == mode)
9295 return x;
9297 /* Return identity if this is a CONST or symbolic
9298 reference. */
9299 if (mode == Pmode
9300 && (GET_CODE (x) == CONST
9301 || GET_CODE (x) == SYMBOL_REF
9302 || GET_CODE (x) == LABEL_REF))
9303 return x;
9305 /* We can only support MODE being wider than a word if X is a
9306 constant integer or has a mode the same size. */
9308 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
9309 && ! ((GET_MODE (x) == VOIDmode
9310 && (GET_CODE (x) == CONST_INT
9311 || GET_CODE (x) == CONST_DOUBLE))
9312 || GET_MODE_SIZE (GET_MODE (x)) == GET_MODE_SIZE (mode)))
9313 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9315 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9316 won't know what to do. So we will strip off the SUBREG here and
9317 process normally. */
9318 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9320 x = SUBREG_REG (x);
9321 if (GET_MODE (x) == mode)
9322 return x;
9325 result = gen_lowpart_common (mode, x);
9326 #ifdef CANNOT_CHANGE_MODE_CLASS
9327 if (result != 0 && GET_CODE (result) == SUBREG)
9328 record_subregs_of_mode (result);
9329 #endif
9331 if (result)
9332 return result;
9334 if (MEM_P (x))
9336 int offset = 0;
9338 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9339 address. */
9340 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9341 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9343 /* If we want to refer to something bigger than the original memref,
9344 generate a paradoxical subreg instead. That will force a reload
9345 of the original memref X. */
9346 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
9347 return gen_rtx_SUBREG (mode, x, 0);
9349 if (WORDS_BIG_ENDIAN)
9350 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
9351 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
9353 if (BYTES_BIG_ENDIAN)
9355 /* Adjust the address so that the address-after-the-data is
9356 unchanged. */
9357 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
9358 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
9361 return adjust_address_nv (x, mode, offset);
9364 /* If X is a comparison operator, rewrite it in a new mode. This
9365 probably won't match, but may allow further simplifications. */
9366 else if (COMPARISON_P (x))
9367 return gen_rtx_fmt_ee (GET_CODE (x), mode, XEXP (x, 0), XEXP (x, 1));
9369 /* If we couldn't simplify X any other way, just enclose it in a
9370 SUBREG. Normally, this SUBREG won't match, but some patterns may
9371 include an explicit SUBREG or we may simplify it further in combine. */
9372 else
9374 int offset = 0;
9375 rtx res;
9376 enum machine_mode sub_mode = GET_MODE (x);
9378 offset = subreg_lowpart_offset (mode, sub_mode);
9379 if (sub_mode == VOIDmode)
9381 sub_mode = int_mode_for_mode (mode);
9382 x = gen_lowpart_common (sub_mode, x);
9383 if (x == 0)
9384 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
9386 res = simplify_gen_subreg (mode, x, sub_mode, offset);
9387 if (res)
9388 return res;
9389 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
9393 /* These routines make binary and unary operations by first seeing if they
9394 fold; if not, a new expression is allocated. */
9396 static rtx
9397 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9399 rtx result;
9400 rtx tem;
9402 if (GET_CODE (op0) == CLOBBER)
9403 return op0;
9404 else if (GET_CODE (op1) == CLOBBER)
9405 return op1;
9407 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9408 && swap_commutative_operands_p (op0, op1))
9409 tem = op0, op0 = op1, op1 = tem;
9411 if (GET_RTX_CLASS (code) == RTX_COMPARE
9412 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9414 enum machine_mode op_mode = GET_MODE (op0);
9416 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9417 just (REL_OP X Y). */
9418 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9420 op1 = XEXP (op0, 1);
9421 op0 = XEXP (op0, 0);
9422 op_mode = GET_MODE (op0);
9425 if (op_mode == VOIDmode)
9426 op_mode = GET_MODE (op1);
9427 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9429 else
9430 result = simplify_binary_operation (code, mode, op0, op1);
9432 if (result)
9433 return result;
9435 /* Put complex operands first and constants second. */
9436 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9437 && swap_commutative_operands_p (op0, op1))
9438 return gen_rtx_fmt_ee (code, mode, op1, op0);
9440 /* If we are turning off bits already known off in OP0, we need not do
9441 an AND. */
9442 else if (code == AND && GET_CODE (op1) == CONST_INT
9443 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9444 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9445 return op0;
9447 return gen_rtx_fmt_ee (code, mode, op0, op1);
9450 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9451 comparison code that will be tested.
9453 The result is a possibly different comparison code to use. *POP0 and
9454 *POP1 may be updated.
9456 It is possible that we might detect that a comparison is either always
9457 true or always false. However, we do not perform general constant
9458 folding in combine, so this knowledge isn't useful. Such tautologies
9459 should have been detected earlier. Hence we ignore all such cases. */
9461 static enum rtx_code
9462 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9464 rtx op0 = *pop0;
9465 rtx op1 = *pop1;
9466 rtx tem, tem1;
9467 int i;
9468 enum machine_mode mode, tmode;
9470 /* Try a few ways of applying the same transformation to both operands. */
9471 while (1)
9473 #ifndef WORD_REGISTER_OPERATIONS
9474 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9475 so check specially. */
9476 if (code != GTU && code != GEU && code != LTU && code != LEU
9477 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9478 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9479 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9480 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9481 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9482 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9483 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9484 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9485 && XEXP (op0, 1) == XEXP (op1, 1)
9486 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9487 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9488 && (INTVAL (XEXP (op0, 1))
9489 == (GET_MODE_BITSIZE (GET_MODE (op0))
9490 - (GET_MODE_BITSIZE
9491 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9493 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9494 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9496 #endif
9498 /* If both operands are the same constant shift, see if we can ignore the
9499 shift. We can if the shift is a rotate or if the bits shifted out of
9500 this shift are known to be zero for both inputs and if the type of
9501 comparison is compatible with the shift. */
9502 if (GET_CODE (op0) == GET_CODE (op1)
9503 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9504 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9505 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9506 && (code != GT && code != LT && code != GE && code != LE))
9507 || (GET_CODE (op0) == ASHIFTRT
9508 && (code != GTU && code != LTU
9509 && code != GEU && code != LEU)))
9510 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9511 && INTVAL (XEXP (op0, 1)) >= 0
9512 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9513 && XEXP (op0, 1) == XEXP (op1, 1))
9515 enum machine_mode mode = GET_MODE (op0);
9516 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9517 int shift_count = INTVAL (XEXP (op0, 1));
9519 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9520 mask &= (mask >> shift_count) << shift_count;
9521 else if (GET_CODE (op0) == ASHIFT)
9522 mask = (mask & (mask << shift_count)) >> shift_count;
9524 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9525 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9526 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9527 else
9528 break;
9531 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9532 SUBREGs are of the same mode, and, in both cases, the AND would
9533 be redundant if the comparison was done in the narrower mode,
9534 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9535 and the operand's possibly nonzero bits are 0xffffff01; in that case
9536 if we only care about QImode, we don't need the AND). This case
9537 occurs if the output mode of an scc insn is not SImode and
9538 STORE_FLAG_VALUE == 1 (e.g., the 386).
9540 Similarly, check for a case where the AND's are ZERO_EXTEND
9541 operations from some narrower mode even though a SUBREG is not
9542 present. */
9544 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9545 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9546 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9548 rtx inner_op0 = XEXP (op0, 0);
9549 rtx inner_op1 = XEXP (op1, 0);
9550 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9551 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9552 int changed = 0;
9554 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9555 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9556 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9557 && (GET_MODE (SUBREG_REG (inner_op0))
9558 == GET_MODE (SUBREG_REG (inner_op1)))
9559 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9560 <= HOST_BITS_PER_WIDE_INT)
9561 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9562 GET_MODE (SUBREG_REG (inner_op0)))))
9563 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9564 GET_MODE (SUBREG_REG (inner_op1))))))
9566 op0 = SUBREG_REG (inner_op0);
9567 op1 = SUBREG_REG (inner_op1);
9569 /* The resulting comparison is always unsigned since we masked
9570 off the original sign bit. */
9571 code = unsigned_condition (code);
9573 changed = 1;
9576 else if (c0 == c1)
9577 for (tmode = GET_CLASS_NARROWEST_MODE
9578 (GET_MODE_CLASS (GET_MODE (op0)));
9579 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9580 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9582 op0 = gen_lowpart (tmode, inner_op0);
9583 op1 = gen_lowpart (tmode, inner_op1);
9584 code = unsigned_condition (code);
9585 changed = 1;
9586 break;
9589 if (! changed)
9590 break;
9593 /* If both operands are NOT, we can strip off the outer operation
9594 and adjust the comparison code for swapped operands; similarly for
9595 NEG, except that this must be an equality comparison. */
9596 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9597 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9598 && (code == EQ || code == NE)))
9599 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9601 else
9602 break;
9605 /* If the first operand is a constant, swap the operands and adjust the
9606 comparison code appropriately, but don't do this if the second operand
9607 is already a constant integer. */
9608 if (swap_commutative_operands_p (op0, op1))
9610 tem = op0, op0 = op1, op1 = tem;
9611 code = swap_condition (code);
9614 /* We now enter a loop during which we will try to simplify the comparison.
9615 For the most part, we only are concerned with comparisons with zero,
9616 but some things may really be comparisons with zero but not start
9617 out looking that way. */
9619 while (GET_CODE (op1) == CONST_INT)
9621 enum machine_mode mode = GET_MODE (op0);
9622 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9623 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9624 int equality_comparison_p;
9625 int sign_bit_comparison_p;
9626 int unsigned_comparison_p;
9627 HOST_WIDE_INT const_op;
9629 /* We only want to handle integral modes. This catches VOIDmode,
9630 CCmode, and the floating-point modes. An exception is that we
9631 can handle VOIDmode if OP0 is a COMPARE or a comparison
9632 operation. */
9634 if (GET_MODE_CLASS (mode) != MODE_INT
9635 && ! (mode == VOIDmode
9636 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9637 break;
9639 /* Get the constant we are comparing against and turn off all bits
9640 not on in our mode. */
9641 const_op = INTVAL (op1);
9642 if (mode != VOIDmode)
9643 const_op = trunc_int_for_mode (const_op, mode);
9644 op1 = GEN_INT (const_op);
9646 /* If we are comparing against a constant power of two and the value
9647 being compared can only have that single bit nonzero (e.g., it was
9648 `and'ed with that bit), we can replace this with a comparison
9649 with zero. */
9650 if (const_op
9651 && (code == EQ || code == NE || code == GE || code == GEU
9652 || code == LT || code == LTU)
9653 && mode_width <= HOST_BITS_PER_WIDE_INT
9654 && exact_log2 (const_op) >= 0
9655 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9657 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9658 op1 = const0_rtx, const_op = 0;
9661 /* Similarly, if we are comparing a value known to be either -1 or
9662 0 with -1, change it to the opposite comparison against zero. */
9664 if (const_op == -1
9665 && (code == EQ || code == NE || code == GT || code == LE
9666 || code == GEU || code == LTU)
9667 && num_sign_bit_copies (op0, mode) == mode_width)
9669 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9670 op1 = const0_rtx, const_op = 0;
9673 /* Do some canonicalizations based on the comparison code. We prefer
9674 comparisons against zero and then prefer equality comparisons.
9675 If we can reduce the size of a constant, we will do that too. */
9677 switch (code)
9679 case LT:
9680 /* < C is equivalent to <= (C - 1) */
9681 if (const_op > 0)
9683 const_op -= 1;
9684 op1 = GEN_INT (const_op);
9685 code = LE;
9686 /* ... fall through to LE case below. */
9688 else
9689 break;
9691 case LE:
9692 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9693 if (const_op < 0)
9695 const_op += 1;
9696 op1 = GEN_INT (const_op);
9697 code = LT;
9700 /* If we are doing a <= 0 comparison on a value known to have
9701 a zero sign bit, we can replace this with == 0. */
9702 else if (const_op == 0
9703 && mode_width <= HOST_BITS_PER_WIDE_INT
9704 && (nonzero_bits (op0, mode)
9705 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9706 code = EQ;
9707 break;
9709 case GE:
9710 /* >= C is equivalent to > (C - 1). */
9711 if (const_op > 0)
9713 const_op -= 1;
9714 op1 = GEN_INT (const_op);
9715 code = GT;
9716 /* ... fall through to GT below. */
9718 else
9719 break;
9721 case GT:
9722 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9723 if (const_op < 0)
9725 const_op += 1;
9726 op1 = GEN_INT (const_op);
9727 code = GE;
9730 /* If we are doing a > 0 comparison on a value known to have
9731 a zero sign bit, we can replace this with != 0. */
9732 else if (const_op == 0
9733 && mode_width <= HOST_BITS_PER_WIDE_INT
9734 && (nonzero_bits (op0, mode)
9735 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9736 code = NE;
9737 break;
9739 case LTU:
9740 /* < C is equivalent to <= (C - 1). */
9741 if (const_op > 0)
9743 const_op -= 1;
9744 op1 = GEN_INT (const_op);
9745 code = LEU;
9746 /* ... fall through ... */
9749 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9750 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9751 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9753 const_op = 0, op1 = const0_rtx;
9754 code = GE;
9755 break;
9757 else
9758 break;
9760 case LEU:
9761 /* unsigned <= 0 is equivalent to == 0 */
9762 if (const_op == 0)
9763 code = EQ;
9765 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9766 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9767 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9769 const_op = 0, op1 = const0_rtx;
9770 code = GE;
9772 break;
9774 case GEU:
9775 /* >= C is equivalent to > (C - 1). */
9776 if (const_op > 1)
9778 const_op -= 1;
9779 op1 = GEN_INT (const_op);
9780 code = GTU;
9781 /* ... fall through ... */
9784 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9785 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9786 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9788 const_op = 0, op1 = const0_rtx;
9789 code = LT;
9790 break;
9792 else
9793 break;
9795 case GTU:
9796 /* unsigned > 0 is equivalent to != 0 */
9797 if (const_op == 0)
9798 code = NE;
9800 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9801 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9802 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9804 const_op = 0, op1 = const0_rtx;
9805 code = LT;
9807 break;
9809 default:
9810 break;
9813 /* Compute some predicates to simplify code below. */
9815 equality_comparison_p = (code == EQ || code == NE);
9816 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9817 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9818 || code == GEU);
9820 /* If this is a sign bit comparison and we can do arithmetic in
9821 MODE, say that we will only be needing the sign bit of OP0. */
9822 if (sign_bit_comparison_p
9823 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9824 op0 = force_to_mode (op0, mode,
9825 ((HOST_WIDE_INT) 1
9826 << (GET_MODE_BITSIZE (mode) - 1)),
9827 NULL_RTX, 0);
9829 /* Now try cases based on the opcode of OP0. If none of the cases
9830 does a "continue", we exit this loop immediately after the
9831 switch. */
9833 switch (GET_CODE (op0))
9835 case ZERO_EXTRACT:
9836 /* If we are extracting a single bit from a variable position in
9837 a constant that has only a single bit set and are comparing it
9838 with zero, we can convert this into an equality comparison
9839 between the position and the location of the single bit. */
9840 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9841 have already reduced the shift count modulo the word size. */
9842 if (!SHIFT_COUNT_TRUNCATED
9843 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9844 && XEXP (op0, 1) == const1_rtx
9845 && equality_comparison_p && const_op == 0
9846 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9848 if (BITS_BIG_ENDIAN)
9850 enum machine_mode new_mode
9851 = mode_for_extraction (EP_extzv, 1);
9852 if (new_mode == MAX_MACHINE_MODE)
9853 i = BITS_PER_WORD - 1 - i;
9854 else
9856 mode = new_mode;
9857 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9861 op0 = XEXP (op0, 2);
9862 op1 = GEN_INT (i);
9863 const_op = i;
9865 /* Result is nonzero iff shift count is equal to I. */
9866 code = reverse_condition (code);
9867 continue;
9870 /* ... fall through ... */
9872 case SIGN_EXTRACT:
9873 tem = expand_compound_operation (op0);
9874 if (tem != op0)
9876 op0 = tem;
9877 continue;
9879 break;
9881 case NOT:
9882 /* If testing for equality, we can take the NOT of the constant. */
9883 if (equality_comparison_p
9884 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9886 op0 = XEXP (op0, 0);
9887 op1 = tem;
9888 continue;
9891 /* If just looking at the sign bit, reverse the sense of the
9892 comparison. */
9893 if (sign_bit_comparison_p)
9895 op0 = XEXP (op0, 0);
9896 code = (code == GE ? LT : GE);
9897 continue;
9899 break;
9901 case NEG:
9902 /* If testing for equality, we can take the NEG of the constant. */
9903 if (equality_comparison_p
9904 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9906 op0 = XEXP (op0, 0);
9907 op1 = tem;
9908 continue;
9911 /* The remaining cases only apply to comparisons with zero. */
9912 if (const_op != 0)
9913 break;
9915 /* When X is ABS or is known positive,
9916 (neg X) is < 0 if and only if X != 0. */
9918 if (sign_bit_comparison_p
9919 && (GET_CODE (XEXP (op0, 0)) == ABS
9920 || (mode_width <= HOST_BITS_PER_WIDE_INT
9921 && (nonzero_bits (XEXP (op0, 0), mode)
9922 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9924 op0 = XEXP (op0, 0);
9925 code = (code == LT ? NE : EQ);
9926 continue;
9929 /* If we have NEG of something whose two high-order bits are the
9930 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9931 if (num_sign_bit_copies (op0, mode) >= 2)
9933 op0 = XEXP (op0, 0);
9934 code = swap_condition (code);
9935 continue;
9937 break;
9939 case ROTATE:
9940 /* If we are testing equality and our count is a constant, we
9941 can perform the inverse operation on our RHS. */
9942 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9943 && (tem = simplify_binary_operation (ROTATERT, mode,
9944 op1, XEXP (op0, 1))) != 0)
9946 op0 = XEXP (op0, 0);
9947 op1 = tem;
9948 continue;
9951 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
9952 a particular bit. Convert it to an AND of a constant of that
9953 bit. This will be converted into a ZERO_EXTRACT. */
9954 if (const_op == 0 && sign_bit_comparison_p
9955 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9956 && mode_width <= HOST_BITS_PER_WIDE_INT)
9958 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
9959 ((HOST_WIDE_INT) 1
9960 << (mode_width - 1
9961 - INTVAL (XEXP (op0, 1)))));
9962 code = (code == LT ? NE : EQ);
9963 continue;
9966 /* Fall through. */
9968 case ABS:
9969 /* ABS is ignorable inside an equality comparison with zero. */
9970 if (const_op == 0 && equality_comparison_p)
9972 op0 = XEXP (op0, 0);
9973 continue;
9975 break;
9977 case SIGN_EXTEND:
9978 /* Can simplify (compare (zero/sign_extend FOO) CONST)
9979 to (compare FOO CONST) if CONST fits in FOO's mode and we
9980 are either testing inequality or have an unsigned comparison
9981 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
9982 if (! unsigned_comparison_p
9983 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9984 <= HOST_BITS_PER_WIDE_INT)
9985 && ((unsigned HOST_WIDE_INT) const_op
9986 < (((unsigned HOST_WIDE_INT) 1
9987 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
9989 op0 = XEXP (op0, 0);
9990 continue;
9992 break;
9994 case SUBREG:
9995 /* Check for the case where we are comparing A - C1 with C2,
9996 both constants are smaller than 1/2 the maximum positive
9997 value in MODE, and the comparison is equality or unsigned.
9998 In that case, if A is either zero-extended to MODE or has
9999 sufficient sign bits so that the high-order bit in MODE
10000 is a copy of the sign in the inner mode, we can prove that it is
10001 safe to do the operation in the wider mode. This simplifies
10002 many range checks. */
10004 if (mode_width <= HOST_BITS_PER_WIDE_INT
10005 && subreg_lowpart_p (op0)
10006 && GET_CODE (SUBREG_REG (op0)) == PLUS
10007 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT
10008 && INTVAL (XEXP (SUBREG_REG (op0), 1)) < 0
10009 && (-INTVAL (XEXP (SUBREG_REG (op0), 1))
10010 < (HOST_WIDE_INT) (GET_MODE_MASK (mode) / 2))
10011 && (unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode) / 2
10012 && (0 == (nonzero_bits (XEXP (SUBREG_REG (op0), 0),
10013 GET_MODE (SUBREG_REG (op0)))
10014 & ~GET_MODE_MASK (mode))
10015 || (num_sign_bit_copies (XEXP (SUBREG_REG (op0), 0),
10016 GET_MODE (SUBREG_REG (op0)))
10017 > (unsigned int)
10018 (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10019 - GET_MODE_BITSIZE (mode)))))
10021 op0 = SUBREG_REG (op0);
10022 continue;
10025 /* If the inner mode is narrower and we are extracting the low part,
10026 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10027 if (subreg_lowpart_p (op0)
10028 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10029 /* Fall through */ ;
10030 else
10031 break;
10033 /* ... fall through ... */
10035 case ZERO_EXTEND:
10036 if ((unsigned_comparison_p || equality_comparison_p)
10037 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10038 <= HOST_BITS_PER_WIDE_INT)
10039 && ((unsigned HOST_WIDE_INT) const_op
10040 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10042 op0 = XEXP (op0, 0);
10043 continue;
10045 break;
10047 case PLUS:
10048 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10049 this for equality comparisons due to pathological cases involving
10050 overflows. */
10051 if (equality_comparison_p
10052 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10053 op1, XEXP (op0, 1))))
10055 op0 = XEXP (op0, 0);
10056 op1 = tem;
10057 continue;
10060 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10061 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10062 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10064 op0 = XEXP (XEXP (op0, 0), 0);
10065 code = (code == LT ? EQ : NE);
10066 continue;
10068 break;
10070 case MINUS:
10071 /* We used to optimize signed comparisons against zero, but that
10072 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10073 arrive here as equality comparisons, or (GEU, LTU) are
10074 optimized away. No need to special-case them. */
10076 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10077 (eq B (minus A C)), whichever simplifies. We can only do
10078 this for equality comparisons due to pathological cases involving
10079 overflows. */
10080 if (equality_comparison_p
10081 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10082 XEXP (op0, 1), op1)))
10084 op0 = XEXP (op0, 0);
10085 op1 = tem;
10086 continue;
10089 if (equality_comparison_p
10090 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10091 XEXP (op0, 0), op1)))
10093 op0 = XEXP (op0, 1);
10094 op1 = tem;
10095 continue;
10098 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10099 of bits in X minus 1, is one iff X > 0. */
10100 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10101 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10102 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10103 == mode_width - 1
10104 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10106 op0 = XEXP (op0, 1);
10107 code = (code == GE ? LE : GT);
10108 continue;
10110 break;
10112 case XOR:
10113 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10114 if C is zero or B is a constant. */
10115 if (equality_comparison_p
10116 && 0 != (tem = simplify_binary_operation (XOR, mode,
10117 XEXP (op0, 1), op1)))
10119 op0 = XEXP (op0, 0);
10120 op1 = tem;
10121 continue;
10123 break;
10125 case EQ: case NE:
10126 case UNEQ: case LTGT:
10127 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10128 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10129 case UNORDERED: case ORDERED:
10130 /* We can't do anything if OP0 is a condition code value, rather
10131 than an actual data value. */
10132 if (const_op != 0
10133 || CC0_P (XEXP (op0, 0))
10134 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10135 break;
10137 /* Get the two operands being compared. */
10138 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10139 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10140 else
10141 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10143 /* Check for the cases where we simply want the result of the
10144 earlier test or the opposite of that result. */
10145 if (code == NE || code == EQ
10146 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10147 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10148 && (STORE_FLAG_VALUE
10149 & (((HOST_WIDE_INT) 1
10150 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10151 && (code == LT || code == GE)))
10153 enum rtx_code new_code;
10154 if (code == LT || code == NE)
10155 new_code = GET_CODE (op0);
10156 else
10157 new_code = combine_reversed_comparison_code (op0);
10159 if (new_code != UNKNOWN)
10161 code = new_code;
10162 op0 = tem;
10163 op1 = tem1;
10164 continue;
10167 break;
10169 case IOR:
10170 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10171 iff X <= 0. */
10172 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10173 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10174 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10176 op0 = XEXP (op0, 1);
10177 code = (code == GE ? GT : LE);
10178 continue;
10180 break;
10182 case AND:
10183 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10184 will be converted to a ZERO_EXTRACT later. */
10185 if (const_op == 0 && equality_comparison_p
10186 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10187 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10189 op0 = simplify_and_const_int
10190 (op0, mode, gen_rtx_LSHIFTRT (mode,
10191 XEXP (op0, 1),
10192 XEXP (XEXP (op0, 0), 1)),
10193 (HOST_WIDE_INT) 1);
10194 continue;
10197 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10198 zero and X is a comparison and C1 and C2 describe only bits set
10199 in STORE_FLAG_VALUE, we can compare with X. */
10200 if (const_op == 0 && equality_comparison_p
10201 && mode_width <= HOST_BITS_PER_WIDE_INT
10202 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10203 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10204 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10205 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10206 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10208 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10209 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10210 if ((~STORE_FLAG_VALUE & mask) == 0
10211 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10212 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10213 && COMPARISON_P (tem))))
10215 op0 = XEXP (XEXP (op0, 0), 0);
10216 continue;
10220 /* If we are doing an equality comparison of an AND of a bit equal
10221 to the sign bit, replace this with a LT or GE comparison of
10222 the underlying value. */
10223 if (equality_comparison_p
10224 && const_op == 0
10225 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10226 && mode_width <= HOST_BITS_PER_WIDE_INT
10227 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10228 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10230 op0 = XEXP (op0, 0);
10231 code = (code == EQ ? GE : LT);
10232 continue;
10235 /* If this AND operation is really a ZERO_EXTEND from a narrower
10236 mode, the constant fits within that mode, and this is either an
10237 equality or unsigned comparison, try to do this comparison in
10238 the narrower mode. */
10239 if ((equality_comparison_p || unsigned_comparison_p)
10240 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10241 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10242 & GET_MODE_MASK (mode))
10243 + 1)) >= 0
10244 && const_op >> i == 0
10245 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10247 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10248 continue;
10251 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10252 fits in both M1 and M2 and the SUBREG is either paradoxical
10253 or represents the low part, permute the SUBREG and the AND
10254 and try again. */
10255 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10257 unsigned HOST_WIDE_INT c1;
10258 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10259 /* Require an integral mode, to avoid creating something like
10260 (AND:SF ...). */
10261 if (SCALAR_INT_MODE_P (tmode)
10262 /* It is unsafe to commute the AND into the SUBREG if the
10263 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10264 not defined. As originally written the upper bits
10265 have a defined value due to the AND operation.
10266 However, if we commute the AND inside the SUBREG then
10267 they no longer have defined values and the meaning of
10268 the code has been changed. */
10269 && (0
10270 #ifdef WORD_REGISTER_OPERATIONS
10271 || (mode_width > GET_MODE_BITSIZE (tmode)
10272 && mode_width <= BITS_PER_WORD)
10273 #endif
10274 || (mode_width <= GET_MODE_BITSIZE (tmode)
10275 && subreg_lowpart_p (XEXP (op0, 0))))
10276 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10277 && mode_width <= HOST_BITS_PER_WIDE_INT
10278 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10279 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10280 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10281 && c1 != mask
10282 && c1 != GET_MODE_MASK (tmode))
10284 op0 = gen_binary (AND, tmode,
10285 SUBREG_REG (XEXP (op0, 0)),
10286 gen_int_mode (c1, tmode));
10287 op0 = gen_lowpart (mode, op0);
10288 continue;
10292 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10293 if (const_op == 0 && equality_comparison_p
10294 && XEXP (op0, 1) == const1_rtx
10295 && GET_CODE (XEXP (op0, 0)) == NOT)
10297 op0 = simplify_and_const_int
10298 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10299 code = (code == NE ? EQ : NE);
10300 continue;
10303 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10304 (eq (and (lshiftrt X) 1) 0).
10305 Also handle the case where (not X) is expressed using xor. */
10306 if (const_op == 0 && equality_comparison_p
10307 && XEXP (op0, 1) == const1_rtx
10308 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10310 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10311 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10313 if (GET_CODE (shift_op) == NOT
10314 || (GET_CODE (shift_op) == XOR
10315 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10316 && GET_CODE (shift_count) == CONST_INT
10317 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10318 && (INTVAL (XEXP (shift_op, 1))
10319 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10321 op0 = simplify_and_const_int
10322 (NULL_RTX, mode,
10323 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10324 (HOST_WIDE_INT) 1);
10325 code = (code == NE ? EQ : NE);
10326 continue;
10329 break;
10331 case ASHIFT:
10332 /* If we have (compare (ashift FOO N) (const_int C)) and
10333 the high order N bits of FOO (N+1 if an inequality comparison)
10334 are known to be zero, we can do this by comparing FOO with C
10335 shifted right N bits so long as the low-order N bits of C are
10336 zero. */
10337 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10338 && INTVAL (XEXP (op0, 1)) >= 0
10339 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10340 < HOST_BITS_PER_WIDE_INT)
10341 && ((const_op
10342 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10343 && mode_width <= HOST_BITS_PER_WIDE_INT
10344 && (nonzero_bits (XEXP (op0, 0), mode)
10345 & ~(mask >> (INTVAL (XEXP (op0, 1))
10346 + ! equality_comparison_p))) == 0)
10348 /* We must perform a logical shift, not an arithmetic one,
10349 as we want the top N bits of C to be zero. */
10350 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10352 temp >>= INTVAL (XEXP (op0, 1));
10353 op1 = gen_int_mode (temp, mode);
10354 op0 = XEXP (op0, 0);
10355 continue;
10358 /* If we are doing a sign bit comparison, it means we are testing
10359 a particular bit. Convert it to the appropriate AND. */
10360 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10361 && mode_width <= HOST_BITS_PER_WIDE_INT)
10363 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10364 ((HOST_WIDE_INT) 1
10365 << (mode_width - 1
10366 - INTVAL (XEXP (op0, 1)))));
10367 code = (code == LT ? NE : EQ);
10368 continue;
10371 /* If this an equality comparison with zero and we are shifting
10372 the low bit to the sign bit, we can convert this to an AND of the
10373 low-order bit. */
10374 if (const_op == 0 && equality_comparison_p
10375 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10376 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10377 == mode_width - 1)
10379 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10380 (HOST_WIDE_INT) 1);
10381 continue;
10383 break;
10385 case ASHIFTRT:
10386 /* If this is an equality comparison with zero, we can do this
10387 as a logical shift, which might be much simpler. */
10388 if (equality_comparison_p && const_op == 0
10389 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10391 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10392 XEXP (op0, 0),
10393 INTVAL (XEXP (op0, 1)));
10394 continue;
10397 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10398 do the comparison in a narrower mode. */
10399 if (! unsigned_comparison_p
10400 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10401 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10402 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10403 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10404 MODE_INT, 1)) != BLKmode
10405 && (((unsigned HOST_WIDE_INT) const_op
10406 + (GET_MODE_MASK (tmode) >> 1) + 1)
10407 <= GET_MODE_MASK (tmode)))
10409 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10410 continue;
10413 /* Likewise if OP0 is a PLUS of a sign extension with a
10414 constant, which is usually represented with the PLUS
10415 between the shifts. */
10416 if (! unsigned_comparison_p
10417 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10418 && GET_CODE (XEXP (op0, 0)) == PLUS
10419 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10420 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10421 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10422 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10423 MODE_INT, 1)) != BLKmode
10424 && (((unsigned HOST_WIDE_INT) const_op
10425 + (GET_MODE_MASK (tmode) >> 1) + 1)
10426 <= GET_MODE_MASK (tmode)))
10428 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10429 rtx add_const = XEXP (XEXP (op0, 0), 1);
10430 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10431 XEXP (op0, 1));
10433 op0 = gen_binary (PLUS, tmode,
10434 gen_lowpart (tmode, inner),
10435 new_const);
10436 continue;
10439 /* ... fall through ... */
10440 case LSHIFTRT:
10441 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10442 the low order N bits of FOO are known to be zero, we can do this
10443 by comparing FOO with C shifted left N bits so long as no
10444 overflow occurs. */
10445 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10446 && INTVAL (XEXP (op0, 1)) >= 0
10447 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10448 && mode_width <= HOST_BITS_PER_WIDE_INT
10449 && (nonzero_bits (XEXP (op0, 0), mode)
10450 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10451 && (((unsigned HOST_WIDE_INT) const_op
10452 + (GET_CODE (op0) != LSHIFTRT
10453 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10454 + 1)
10455 : 0))
10456 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10458 /* If the shift was logical, then we must make the condition
10459 unsigned. */
10460 if (GET_CODE (op0) == LSHIFTRT)
10461 code = unsigned_condition (code);
10463 const_op <<= INTVAL (XEXP (op0, 1));
10464 op1 = GEN_INT (const_op);
10465 op0 = XEXP (op0, 0);
10466 continue;
10469 /* If we are using this shift to extract just the sign bit, we
10470 can replace this with an LT or GE comparison. */
10471 if (const_op == 0
10472 && (equality_comparison_p || sign_bit_comparison_p)
10473 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10474 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10475 == mode_width - 1)
10477 op0 = XEXP (op0, 0);
10478 code = (code == NE || code == GT ? LT : GE);
10479 continue;
10481 break;
10483 default:
10484 break;
10487 break;
10490 /* Now make any compound operations involved in this comparison. Then,
10491 check for an outmost SUBREG on OP0 that is not doing anything or is
10492 paradoxical. The latter transformation must only be performed when
10493 it is known that the "extra" bits will be the same in op0 and op1 or
10494 that they don't matter. There are three cases to consider:
10496 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10497 care bits and we can assume they have any convenient value. So
10498 making the transformation is safe.
10500 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10501 In this case the upper bits of op0 are undefined. We should not make
10502 the simplification in that case as we do not know the contents of
10503 those bits.
10505 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10506 UNKNOWN. In that case we know those bits are zeros or ones. We must
10507 also be sure that they are the same as the upper bits of op1.
10509 We can never remove a SUBREG for a non-equality comparison because
10510 the sign bit is in a different place in the underlying object. */
10512 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10513 op1 = make_compound_operation (op1, SET);
10515 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10516 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10517 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10518 && (code == NE || code == EQ))
10520 if (GET_MODE_SIZE (GET_MODE (op0))
10521 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10523 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10524 implemented. */
10525 if (REG_P (SUBREG_REG (op0)))
10527 op0 = SUBREG_REG (op0);
10528 op1 = gen_lowpart (GET_MODE (op0), op1);
10531 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10532 <= HOST_BITS_PER_WIDE_INT)
10533 && (nonzero_bits (SUBREG_REG (op0),
10534 GET_MODE (SUBREG_REG (op0)))
10535 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10537 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10539 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10540 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10541 op0 = SUBREG_REG (op0), op1 = tem;
10545 /* We now do the opposite procedure: Some machines don't have compare
10546 insns in all modes. If OP0's mode is an integer mode smaller than a
10547 word and we can't do a compare in that mode, see if there is a larger
10548 mode for which we can do the compare. There are a number of cases in
10549 which we can use the wider mode. */
10551 mode = GET_MODE (op0);
10552 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10553 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10554 && ! have_insn_for (COMPARE, mode))
10555 for (tmode = GET_MODE_WIDER_MODE (mode);
10556 (tmode != VOIDmode
10557 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10558 tmode = GET_MODE_WIDER_MODE (tmode))
10559 if (have_insn_for (COMPARE, tmode))
10561 int zero_extended;
10563 /* If the only nonzero bits in OP0 and OP1 are those in the
10564 narrower mode and this is an equality or unsigned comparison,
10565 we can use the wider mode. Similarly for sign-extended
10566 values, in which case it is true for all comparisons. */
10567 zero_extended = ((code == EQ || code == NE
10568 || code == GEU || code == GTU
10569 || code == LEU || code == LTU)
10570 && (nonzero_bits (op0, tmode)
10571 & ~GET_MODE_MASK (mode)) == 0
10572 && ((GET_CODE (op1) == CONST_INT
10573 || (nonzero_bits (op1, tmode)
10574 & ~GET_MODE_MASK (mode)) == 0)));
10576 if (zero_extended
10577 || ((num_sign_bit_copies (op0, tmode)
10578 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10579 - GET_MODE_BITSIZE (mode)))
10580 && (num_sign_bit_copies (op1, tmode)
10581 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10582 - GET_MODE_BITSIZE (mode)))))
10584 /* If OP0 is an AND and we don't have an AND in MODE either,
10585 make a new AND in the proper mode. */
10586 if (GET_CODE (op0) == AND
10587 && !have_insn_for (AND, mode))
10588 op0 = gen_binary (AND, tmode,
10589 gen_lowpart (tmode,
10590 XEXP (op0, 0)),
10591 gen_lowpart (tmode,
10592 XEXP (op0, 1)));
10594 op0 = gen_lowpart (tmode, op0);
10595 if (zero_extended && GET_CODE (op1) == CONST_INT)
10596 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10597 op1 = gen_lowpart (tmode, op1);
10598 break;
10601 /* If this is a test for negative, we can make an explicit
10602 test of the sign bit. */
10604 if (op1 == const0_rtx && (code == LT || code == GE)
10605 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10607 op0 = gen_binary (AND, tmode,
10608 gen_lowpart (tmode, op0),
10609 GEN_INT ((HOST_WIDE_INT) 1
10610 << (GET_MODE_BITSIZE (mode) - 1)));
10611 code = (code == LT) ? NE : EQ;
10612 break;
10616 #ifdef CANONICALIZE_COMPARISON
10617 /* If this machine only supports a subset of valid comparisons, see if we
10618 can convert an unsupported one into a supported one. */
10619 CANONICALIZE_COMPARISON (code, op0, op1);
10620 #endif
10622 *pop0 = op0;
10623 *pop1 = op1;
10625 return code;
10628 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10629 searching backward. */
10630 static enum rtx_code
10631 combine_reversed_comparison_code (rtx exp)
10633 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10634 rtx x;
10636 if (code1 != UNKNOWN
10637 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10638 return code1;
10639 /* Otherwise try and find where the condition codes were last set and
10640 use that. */
10641 x = get_last_value (XEXP (exp, 0));
10642 if (!x || GET_CODE (x) != COMPARE)
10643 return UNKNOWN;
10644 return reversed_comparison_code_parts (GET_CODE (exp),
10645 XEXP (x, 0), XEXP (x, 1), NULL);
10648 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10649 Return NULL_RTX in case we fail to do the reversal. */
10650 static rtx
10651 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10653 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10654 if (reversed_code == UNKNOWN)
10655 return NULL_RTX;
10656 else
10657 return gen_binary (reversed_code, mode, op0, op1);
10660 /* Utility function for following routine. Called when X is part of a value
10661 being stored into last_set_value. Sets last_set_table_tick
10662 for each register mentioned. Similar to mention_regs in cse.c */
10664 static void
10665 update_table_tick (rtx x)
10667 enum rtx_code code = GET_CODE (x);
10668 const char *fmt = GET_RTX_FORMAT (code);
10669 int i;
10671 if (code == REG)
10673 unsigned int regno = REGNO (x);
10674 unsigned int endregno
10675 = regno + (regno < FIRST_PSEUDO_REGISTER
10676 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10677 unsigned int r;
10679 for (r = regno; r < endregno; r++)
10680 reg_stat[r].last_set_table_tick = label_tick;
10682 return;
10685 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10686 /* Note that we can't have an "E" in values stored; see
10687 get_last_value_validate. */
10688 if (fmt[i] == 'e')
10690 /* Check for identical subexpressions. If x contains
10691 identical subexpression we only have to traverse one of
10692 them. */
10693 if (i == 0 && ARITHMETIC_P (x))
10695 /* Note that at this point x1 has already been
10696 processed. */
10697 rtx x0 = XEXP (x, 0);
10698 rtx x1 = XEXP (x, 1);
10700 /* If x0 and x1 are identical then there is no need to
10701 process x0. */
10702 if (x0 == x1)
10703 break;
10705 /* If x0 is identical to a subexpression of x1 then while
10706 processing x1, x0 has already been processed. Thus we
10707 are done with x. */
10708 if (ARITHMETIC_P (x1)
10709 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10710 break;
10712 /* If x1 is identical to a subexpression of x0 then we
10713 still have to process the rest of x0. */
10714 if (ARITHMETIC_P (x0)
10715 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10717 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10718 break;
10722 update_table_tick (XEXP (x, i));
10726 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10727 are saying that the register is clobbered and we no longer know its
10728 value. If INSN is zero, don't update reg_stat[].last_set; this is
10729 only permitted with VALUE also zero and is used to invalidate the
10730 register. */
10732 static void
10733 record_value_for_reg (rtx reg, rtx insn, rtx value)
10735 unsigned int regno = REGNO (reg);
10736 unsigned int endregno
10737 = regno + (regno < FIRST_PSEUDO_REGISTER
10738 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10739 unsigned int i;
10741 /* If VALUE contains REG and we have a previous value for REG, substitute
10742 the previous value. */
10743 if (value && insn && reg_overlap_mentioned_p (reg, value))
10745 rtx tem;
10747 /* Set things up so get_last_value is allowed to see anything set up to
10748 our insn. */
10749 subst_low_cuid = INSN_CUID (insn);
10750 tem = get_last_value (reg);
10752 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10753 it isn't going to be useful and will take a lot of time to process,
10754 so just use the CLOBBER. */
10756 if (tem)
10758 if (ARITHMETIC_P (tem)
10759 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10760 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10761 tem = XEXP (tem, 0);
10763 value = replace_rtx (copy_rtx (value), reg, tem);
10767 /* For each register modified, show we don't know its value, that
10768 we don't know about its bitwise content, that its value has been
10769 updated, and that we don't know the location of the death of the
10770 register. */
10771 for (i = regno; i < endregno; i++)
10773 if (insn)
10774 reg_stat[i].last_set = insn;
10776 reg_stat[i].last_set_value = 0;
10777 reg_stat[i].last_set_mode = 0;
10778 reg_stat[i].last_set_nonzero_bits = 0;
10779 reg_stat[i].last_set_sign_bit_copies = 0;
10780 reg_stat[i].last_death = 0;
10783 /* Mark registers that are being referenced in this value. */
10784 if (value)
10785 update_table_tick (value);
10787 /* Now update the status of each register being set.
10788 If someone is using this register in this block, set this register
10789 to invalid since we will get confused between the two lives in this
10790 basic block. This makes using this register always invalid. In cse, we
10791 scan the table to invalidate all entries using this register, but this
10792 is too much work for us. */
10794 for (i = regno; i < endregno; i++)
10796 reg_stat[i].last_set_label = label_tick;
10797 if (value && reg_stat[i].last_set_table_tick == label_tick)
10798 reg_stat[i].last_set_invalid = 1;
10799 else
10800 reg_stat[i].last_set_invalid = 0;
10803 /* The value being assigned might refer to X (like in "x++;"). In that
10804 case, we must replace it with (clobber (const_int 0)) to prevent
10805 infinite loops. */
10806 if (value && ! get_last_value_validate (&value, insn,
10807 reg_stat[regno].last_set_label, 0))
10809 value = copy_rtx (value);
10810 if (! get_last_value_validate (&value, insn,
10811 reg_stat[regno].last_set_label, 1))
10812 value = 0;
10815 /* For the main register being modified, update the value, the mode, the
10816 nonzero bits, and the number of sign bit copies. */
10818 reg_stat[regno].last_set_value = value;
10820 if (value)
10822 enum machine_mode mode = GET_MODE (reg);
10823 subst_low_cuid = INSN_CUID (insn);
10824 reg_stat[regno].last_set_mode = mode;
10825 if (GET_MODE_CLASS (mode) == MODE_INT
10826 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10827 mode = nonzero_bits_mode;
10828 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10829 reg_stat[regno].last_set_sign_bit_copies
10830 = num_sign_bit_copies (value, GET_MODE (reg));
10834 /* Called via note_stores from record_dead_and_set_regs to handle one
10835 SET or CLOBBER in an insn. DATA is the instruction in which the
10836 set is occurring. */
10838 static void
10839 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10841 rtx record_dead_insn = (rtx) data;
10843 if (GET_CODE (dest) == SUBREG)
10844 dest = SUBREG_REG (dest);
10846 if (REG_P (dest))
10848 /* If we are setting the whole register, we know its value. Otherwise
10849 show that we don't know the value. We can handle SUBREG in
10850 some cases. */
10851 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10852 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10853 else if (GET_CODE (setter) == SET
10854 && GET_CODE (SET_DEST (setter)) == SUBREG
10855 && SUBREG_REG (SET_DEST (setter)) == dest
10856 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10857 && subreg_lowpart_p (SET_DEST (setter)))
10858 record_value_for_reg (dest, record_dead_insn,
10859 gen_lowpart (GET_MODE (dest),
10860 SET_SRC (setter)));
10861 else
10862 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10864 else if (MEM_P (dest)
10865 /* Ignore pushes, they clobber nothing. */
10866 && ! push_operand (dest, GET_MODE (dest)))
10867 mem_last_set = INSN_CUID (record_dead_insn);
10870 /* Update the records of when each REG was most recently set or killed
10871 for the things done by INSN. This is the last thing done in processing
10872 INSN in the combiner loop.
10874 We update reg_stat[], in particular fields last_set, last_set_value,
10875 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
10876 last_death, and also the similar information mem_last_set (which insn
10877 most recently modified memory) and last_call_cuid (which insn was the
10878 most recent subroutine call). */
10880 static void
10881 record_dead_and_set_regs (rtx insn)
10883 rtx link;
10884 unsigned int i;
10886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
10888 if (REG_NOTE_KIND (link) == REG_DEAD
10889 && REG_P (XEXP (link, 0)))
10891 unsigned int regno = REGNO (XEXP (link, 0));
10892 unsigned int endregno
10893 = regno + (regno < FIRST_PSEUDO_REGISTER
10894 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
10895 : 1);
10897 for (i = regno; i < endregno; i++)
10898 reg_stat[i].last_death = insn;
10900 else if (REG_NOTE_KIND (link) == REG_INC)
10901 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
10904 if (CALL_P (insn))
10906 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
10907 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
10909 reg_stat[i].last_set_value = 0;
10910 reg_stat[i].last_set_mode = 0;
10911 reg_stat[i].last_set_nonzero_bits = 0;
10912 reg_stat[i].last_set_sign_bit_copies = 0;
10913 reg_stat[i].last_death = 0;
10916 last_call_cuid = mem_last_set = INSN_CUID (insn);
10918 /* Don't bother recording what this insn does. It might set the
10919 return value register, but we can't combine into a call
10920 pattern anyway, so there's no point trying (and it may cause
10921 a crash, if e.g. we wind up asking for last_set_value of a
10922 SUBREG of the return value register). */
10923 return;
10926 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
10929 /* If a SUBREG has the promoted bit set, it is in fact a property of the
10930 register present in the SUBREG, so for each such SUBREG go back and
10931 adjust nonzero and sign bit information of the registers that are
10932 known to have some zero/sign bits set.
10934 This is needed because when combine blows the SUBREGs away, the
10935 information on zero/sign bits is lost and further combines can be
10936 missed because of that. */
10938 static void
10939 record_promoted_value (rtx insn, rtx subreg)
10941 rtx links, set;
10942 unsigned int regno = REGNO (SUBREG_REG (subreg));
10943 enum machine_mode mode = GET_MODE (subreg);
10945 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
10946 return;
10948 for (links = LOG_LINKS (insn); links;)
10950 insn = XEXP (links, 0);
10951 set = single_set (insn);
10953 if (! set || !REG_P (SET_DEST (set))
10954 || REGNO (SET_DEST (set)) != regno
10955 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
10957 links = XEXP (links, 1);
10958 continue;
10961 if (reg_stat[regno].last_set == insn)
10963 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
10964 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
10967 if (REG_P (SET_SRC (set)))
10969 regno = REGNO (SET_SRC (set));
10970 links = LOG_LINKS (insn);
10972 else
10973 break;
10977 /* Scan X for promoted SUBREGs. For each one found,
10978 note what it implies to the registers used in it. */
10980 static void
10981 check_promoted_subreg (rtx insn, rtx x)
10983 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
10984 && REG_P (SUBREG_REG (x)))
10985 record_promoted_value (insn, x);
10986 else
10988 const char *format = GET_RTX_FORMAT (GET_CODE (x));
10989 int i, j;
10991 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
10992 switch (format[i])
10994 case 'e':
10995 check_promoted_subreg (insn, XEXP (x, i));
10996 break;
10997 case 'V':
10998 case 'E':
10999 if (XVEC (x, i) != 0)
11000 for (j = 0; j < XVECLEN (x, i); j++)
11001 check_promoted_subreg (insn, XVECEXP (x, i, j));
11002 break;
11007 /* Utility routine for the following function. Verify that all the registers
11008 mentioned in *LOC are valid when *LOC was part of a value set when
11009 label_tick == TICK. Return 0 if some are not.
11011 If REPLACE is nonzero, replace the invalid reference with
11012 (clobber (const_int 0)) and return 1. This replacement is useful because
11013 we often can get useful information about the form of a value (e.g., if
11014 it was produced by a shift that always produces -1 or 0) even though
11015 we don't know exactly what registers it was produced from. */
11017 static int
11018 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11020 rtx x = *loc;
11021 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11022 int len = GET_RTX_LENGTH (GET_CODE (x));
11023 int i;
11025 if (REG_P (x))
11027 unsigned int regno = REGNO (x);
11028 unsigned int endregno
11029 = regno + (regno < FIRST_PSEUDO_REGISTER
11030 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11031 unsigned int j;
11033 for (j = regno; j < endregno; j++)
11034 if (reg_stat[j].last_set_invalid
11035 /* If this is a pseudo-register that was only set once and not
11036 live at the beginning of the function, it is always valid. */
11037 || (! (regno >= FIRST_PSEUDO_REGISTER
11038 && REG_N_SETS (regno) == 1
11039 && (! REGNO_REG_SET_P
11040 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11041 && reg_stat[j].last_set_label > tick))
11043 if (replace)
11044 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11045 return replace;
11048 return 1;
11050 /* If this is a memory reference, make sure that there were
11051 no stores after it that might have clobbered the value. We don't
11052 have alias info, so we assume any store invalidates it. */
11053 else if (MEM_P (x) && !MEM_READONLY_P (x)
11054 && INSN_CUID (insn) <= mem_last_set)
11056 if (replace)
11057 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11058 return replace;
11061 for (i = 0; i < len; i++)
11063 if (fmt[i] == 'e')
11065 /* Check for identical subexpressions. If x contains
11066 identical subexpression we only have to traverse one of
11067 them. */
11068 if (i == 1 && ARITHMETIC_P (x))
11070 /* Note that at this point x0 has already been checked
11071 and found valid. */
11072 rtx x0 = XEXP (x, 0);
11073 rtx x1 = XEXP (x, 1);
11075 /* If x0 and x1 are identical then x is also valid. */
11076 if (x0 == x1)
11077 return 1;
11079 /* If x1 is identical to a subexpression of x0 then
11080 while checking x0, x1 has already been checked. Thus
11081 it is valid and so as x. */
11082 if (ARITHMETIC_P (x0)
11083 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11084 return 1;
11086 /* If x0 is identical to a subexpression of x1 then x is
11087 valid iff the rest of x1 is valid. */
11088 if (ARITHMETIC_P (x1)
11089 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11090 return
11091 get_last_value_validate (&XEXP (x1,
11092 x0 == XEXP (x1, 0) ? 1 : 0),
11093 insn, tick, replace);
11096 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11097 replace) == 0)
11098 return 0;
11100 /* Don't bother with these. They shouldn't occur anyway. */
11101 else if (fmt[i] == 'E')
11102 return 0;
11105 /* If we haven't found a reason for it to be invalid, it is valid. */
11106 return 1;
11109 /* Get the last value assigned to X, if known. Some registers
11110 in the value may be replaced with (clobber (const_int 0)) if their value
11111 is known longer known reliably. */
11113 static rtx
11114 get_last_value (rtx x)
11116 unsigned int regno;
11117 rtx value;
11119 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11120 then convert it to the desired mode. If this is a paradoxical SUBREG,
11121 we cannot predict what values the "extra" bits might have. */
11122 if (GET_CODE (x) == SUBREG
11123 && subreg_lowpart_p (x)
11124 && (GET_MODE_SIZE (GET_MODE (x))
11125 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11126 && (value = get_last_value (SUBREG_REG (x))) != 0)
11127 return gen_lowpart (GET_MODE (x), value);
11129 if (!REG_P (x))
11130 return 0;
11132 regno = REGNO (x);
11133 value = reg_stat[regno].last_set_value;
11135 /* If we don't have a value, or if it isn't for this basic block and
11136 it's either a hard register, set more than once, or it's a live
11137 at the beginning of the function, return 0.
11139 Because if it's not live at the beginning of the function then the reg
11140 is always set before being used (is never used without being set).
11141 And, if it's set only once, and it's always set before use, then all
11142 uses must have the same last value, even if it's not from this basic
11143 block. */
11145 if (value == 0
11146 || (reg_stat[regno].last_set_label != label_tick
11147 && (regno < FIRST_PSEUDO_REGISTER
11148 || REG_N_SETS (regno) != 1
11149 || (REGNO_REG_SET_P
11150 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11151 return 0;
11153 /* If the value was set in a later insn than the ones we are processing,
11154 we can't use it even if the register was only set once. */
11155 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11156 return 0;
11158 /* If the value has all its registers valid, return it. */
11159 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11160 reg_stat[regno].last_set_label, 0))
11161 return value;
11163 /* Otherwise, make a copy and replace any invalid register with
11164 (clobber (const_int 0)). If that fails for some reason, return 0. */
11166 value = copy_rtx (value);
11167 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11168 reg_stat[regno].last_set_label, 1))
11169 return value;
11171 return 0;
11174 /* Return nonzero if expression X refers to a REG or to memory
11175 that is set in an instruction more recent than FROM_CUID. */
11177 static int
11178 use_crosses_set_p (rtx x, int from_cuid)
11180 const char *fmt;
11181 int i;
11182 enum rtx_code code = GET_CODE (x);
11184 if (code == REG)
11186 unsigned int regno = REGNO (x);
11187 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11188 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11190 #ifdef PUSH_ROUNDING
11191 /* Don't allow uses of the stack pointer to be moved,
11192 because we don't know whether the move crosses a push insn. */
11193 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11194 return 1;
11195 #endif
11196 for (; regno < endreg; regno++)
11197 if (reg_stat[regno].last_set
11198 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11199 return 1;
11200 return 0;
11203 if (code == MEM && mem_last_set > from_cuid)
11204 return 1;
11206 fmt = GET_RTX_FORMAT (code);
11208 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11210 if (fmt[i] == 'E')
11212 int j;
11213 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11214 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11215 return 1;
11217 else if (fmt[i] == 'e'
11218 && use_crosses_set_p (XEXP (x, i), from_cuid))
11219 return 1;
11221 return 0;
11224 /* Define three variables used for communication between the following
11225 routines. */
11227 static unsigned int reg_dead_regno, reg_dead_endregno;
11228 static int reg_dead_flag;
11230 /* Function called via note_stores from reg_dead_at_p.
11232 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11233 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11235 static void
11236 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11238 unsigned int regno, endregno;
11240 if (!REG_P (dest))
11241 return;
11243 regno = REGNO (dest);
11244 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11245 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11247 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11248 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11251 /* Return nonzero if REG is known to be dead at INSN.
11253 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11254 referencing REG, it is dead. If we hit a SET referencing REG, it is
11255 live. Otherwise, see if it is live or dead at the start of the basic
11256 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11257 must be assumed to be always live. */
11259 static int
11260 reg_dead_at_p (rtx reg, rtx insn)
11262 basic_block block;
11263 unsigned int i;
11265 /* Set variables for reg_dead_at_p_1. */
11266 reg_dead_regno = REGNO (reg);
11267 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11268 ? hard_regno_nregs[reg_dead_regno]
11269 [GET_MODE (reg)]
11270 : 1);
11272 reg_dead_flag = 0;
11274 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11275 we allow the machine description to decide whether use-and-clobber
11276 patterns are OK. */
11277 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11279 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11280 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11281 return 0;
11284 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11285 beginning of function. */
11286 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11287 insn = prev_nonnote_insn (insn))
11289 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11290 if (reg_dead_flag)
11291 return reg_dead_flag == 1 ? 1 : 0;
11293 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11294 return 1;
11297 /* Get the basic block that we were in. */
11298 if (insn == 0)
11299 block = ENTRY_BLOCK_PTR->next_bb;
11300 else
11302 FOR_EACH_BB (block)
11303 if (insn == BB_HEAD (block))
11304 break;
11306 if (block == EXIT_BLOCK_PTR)
11307 return 0;
11310 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11311 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11312 return 0;
11314 return 1;
11317 /* Note hard registers in X that are used. This code is similar to
11318 that in flow.c, but much simpler since we don't care about pseudos. */
11320 static void
11321 mark_used_regs_combine (rtx x)
11323 RTX_CODE code = GET_CODE (x);
11324 unsigned int regno;
11325 int i;
11327 switch (code)
11329 case LABEL_REF:
11330 case SYMBOL_REF:
11331 case CONST_INT:
11332 case CONST:
11333 case CONST_DOUBLE:
11334 case CONST_VECTOR:
11335 case PC:
11336 case ADDR_VEC:
11337 case ADDR_DIFF_VEC:
11338 case ASM_INPUT:
11339 #ifdef HAVE_cc0
11340 /* CC0 must die in the insn after it is set, so we don't need to take
11341 special note of it here. */
11342 case CC0:
11343 #endif
11344 return;
11346 case CLOBBER:
11347 /* If we are clobbering a MEM, mark any hard registers inside the
11348 address as used. */
11349 if (MEM_P (XEXP (x, 0)))
11350 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11351 return;
11353 case REG:
11354 regno = REGNO (x);
11355 /* A hard reg in a wide mode may really be multiple registers.
11356 If so, mark all of them just like the first. */
11357 if (regno < FIRST_PSEUDO_REGISTER)
11359 unsigned int endregno, r;
11361 /* None of this applies to the stack, frame or arg pointers. */
11362 if (regno == STACK_POINTER_REGNUM
11363 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11364 || regno == HARD_FRAME_POINTER_REGNUM
11365 #endif
11366 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11367 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11368 #endif
11369 || regno == FRAME_POINTER_REGNUM)
11370 return;
11372 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11373 for (r = regno; r < endregno; r++)
11374 SET_HARD_REG_BIT (newpat_used_regs, r);
11376 return;
11378 case SET:
11380 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11381 the address. */
11382 rtx testreg = SET_DEST (x);
11384 while (GET_CODE (testreg) == SUBREG
11385 || GET_CODE (testreg) == ZERO_EXTRACT
11386 || GET_CODE (testreg) == SIGN_EXTRACT
11387 || GET_CODE (testreg) == STRICT_LOW_PART)
11388 testreg = XEXP (testreg, 0);
11390 if (MEM_P (testreg))
11391 mark_used_regs_combine (XEXP (testreg, 0));
11393 mark_used_regs_combine (SET_SRC (x));
11395 return;
11397 default:
11398 break;
11401 /* Recursively scan the operands of this expression. */
11404 const char *fmt = GET_RTX_FORMAT (code);
11406 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11408 if (fmt[i] == 'e')
11409 mark_used_regs_combine (XEXP (x, i));
11410 else if (fmt[i] == 'E')
11412 int j;
11414 for (j = 0; j < XVECLEN (x, i); j++)
11415 mark_used_regs_combine (XVECEXP (x, i, j));
11421 /* Remove register number REGNO from the dead registers list of INSN.
11423 Return the note used to record the death, if there was one. */
11426 remove_death (unsigned int regno, rtx insn)
11428 rtx note = find_regno_note (insn, REG_DEAD, regno);
11430 if (note)
11432 REG_N_DEATHS (regno)--;
11433 remove_note (insn, note);
11436 return note;
11439 /* For each register (hardware or pseudo) used within expression X, if its
11440 death is in an instruction with cuid between FROM_CUID (inclusive) and
11441 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11442 list headed by PNOTES.
11444 That said, don't move registers killed by maybe_kill_insn.
11446 This is done when X is being merged by combination into TO_INSN. These
11447 notes will then be distributed as needed. */
11449 static void
11450 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11451 rtx *pnotes)
11453 const char *fmt;
11454 int len, i;
11455 enum rtx_code code = GET_CODE (x);
11457 if (code == REG)
11459 unsigned int regno = REGNO (x);
11460 rtx where_dead = reg_stat[regno].last_death;
11461 rtx before_dead, after_dead;
11463 /* Don't move the register if it gets killed in between from and to. */
11464 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11465 && ! reg_referenced_p (x, maybe_kill_insn))
11466 return;
11468 /* WHERE_DEAD could be a USE insn made by combine, so first we
11469 make sure that we have insns with valid INSN_CUID values. */
11470 before_dead = where_dead;
11471 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11472 before_dead = PREV_INSN (before_dead);
11474 after_dead = where_dead;
11475 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11476 after_dead = NEXT_INSN (after_dead);
11478 if (before_dead && after_dead
11479 && INSN_CUID (before_dead) >= from_cuid
11480 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11481 || (where_dead != after_dead
11482 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11484 rtx note = remove_death (regno, where_dead);
11486 /* It is possible for the call above to return 0. This can occur
11487 when last_death points to I2 or I1 that we combined with.
11488 In that case make a new note.
11490 We must also check for the case where X is a hard register
11491 and NOTE is a death note for a range of hard registers
11492 including X. In that case, we must put REG_DEAD notes for
11493 the remaining registers in place of NOTE. */
11495 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11496 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11497 > GET_MODE_SIZE (GET_MODE (x))))
11499 unsigned int deadregno = REGNO (XEXP (note, 0));
11500 unsigned int deadend
11501 = (deadregno + hard_regno_nregs[deadregno]
11502 [GET_MODE (XEXP (note, 0))]);
11503 unsigned int ourend
11504 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11505 unsigned int i;
11507 for (i = deadregno; i < deadend; i++)
11508 if (i < regno || i >= ourend)
11509 REG_NOTES (where_dead)
11510 = gen_rtx_EXPR_LIST (REG_DEAD,
11511 regno_reg_rtx[i],
11512 REG_NOTES (where_dead));
11515 /* If we didn't find any note, or if we found a REG_DEAD note that
11516 covers only part of the given reg, and we have a multi-reg hard
11517 register, then to be safe we must check for REG_DEAD notes
11518 for each register other than the first. They could have
11519 their own REG_DEAD notes lying around. */
11520 else if ((note == 0
11521 || (note != 0
11522 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11523 < GET_MODE_SIZE (GET_MODE (x)))))
11524 && regno < FIRST_PSEUDO_REGISTER
11525 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11527 unsigned int ourend
11528 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11529 unsigned int i, offset;
11530 rtx oldnotes = 0;
11532 if (note)
11533 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11534 else
11535 offset = 1;
11537 for (i = regno + offset; i < ourend; i++)
11538 move_deaths (regno_reg_rtx[i],
11539 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11542 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11544 XEXP (note, 1) = *pnotes;
11545 *pnotes = note;
11547 else
11548 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11550 REG_N_DEATHS (regno)++;
11553 return;
11556 else if (GET_CODE (x) == SET)
11558 rtx dest = SET_DEST (x);
11560 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11562 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11563 that accesses one word of a multi-word item, some
11564 piece of everything register in the expression is used by
11565 this insn, so remove any old death. */
11566 /* ??? So why do we test for equality of the sizes? */
11568 if (GET_CODE (dest) == ZERO_EXTRACT
11569 || GET_CODE (dest) == STRICT_LOW_PART
11570 || (GET_CODE (dest) == SUBREG
11571 && (((GET_MODE_SIZE (GET_MODE (dest))
11572 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11573 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11574 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11576 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11577 return;
11580 /* If this is some other SUBREG, we know it replaces the entire
11581 value, so use that as the destination. */
11582 if (GET_CODE (dest) == SUBREG)
11583 dest = SUBREG_REG (dest);
11585 /* If this is a MEM, adjust deaths of anything used in the address.
11586 For a REG (the only other possibility), the entire value is
11587 being replaced so the old value is not used in this insn. */
11589 if (MEM_P (dest))
11590 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11591 to_insn, pnotes);
11592 return;
11595 else if (GET_CODE (x) == CLOBBER)
11596 return;
11598 len = GET_RTX_LENGTH (code);
11599 fmt = GET_RTX_FORMAT (code);
11601 for (i = 0; i < len; i++)
11603 if (fmt[i] == 'E')
11605 int j;
11606 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11607 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11608 to_insn, pnotes);
11610 else if (fmt[i] == 'e')
11611 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11615 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11616 pattern of an insn. X must be a REG. */
11618 static int
11619 reg_bitfield_target_p (rtx x, rtx body)
11621 int i;
11623 if (GET_CODE (body) == SET)
11625 rtx dest = SET_DEST (body);
11626 rtx target;
11627 unsigned int regno, tregno, endregno, endtregno;
11629 if (GET_CODE (dest) == ZERO_EXTRACT)
11630 target = XEXP (dest, 0);
11631 else if (GET_CODE (dest) == STRICT_LOW_PART)
11632 target = SUBREG_REG (XEXP (dest, 0));
11633 else
11634 return 0;
11636 if (GET_CODE (target) == SUBREG)
11637 target = SUBREG_REG (target);
11639 if (!REG_P (target))
11640 return 0;
11642 tregno = REGNO (target), regno = REGNO (x);
11643 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11644 return target == x;
11646 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11647 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11649 return endregno > tregno && regno < endtregno;
11652 else if (GET_CODE (body) == PARALLEL)
11653 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11654 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11655 return 1;
11657 return 0;
11660 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11661 as appropriate. I3 and I2 are the insns resulting from the combination
11662 insns including FROM (I2 may be zero).
11664 Each note in the list is either ignored or placed on some insns, depending
11665 on the type of note. */
11667 static void
11668 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11670 rtx note, next_note;
11671 rtx tem;
11673 for (note = notes; note; note = next_note)
11675 rtx place = 0, place2 = 0;
11677 /* If this NOTE references a pseudo register, ensure it references
11678 the latest copy of that register. */
11679 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11680 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11681 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11683 next_note = XEXP (note, 1);
11684 switch (REG_NOTE_KIND (note))
11686 case REG_BR_PROB:
11687 case REG_BR_PRED:
11688 /* Doesn't matter much where we put this, as long as it's somewhere.
11689 It is preferable to keep these notes on branches, which is most
11690 likely to be i3. */
11691 place = i3;
11692 break;
11694 case REG_VALUE_PROFILE:
11695 /* Just get rid of this note, as it is unused later anyway. */
11696 break;
11698 case REG_NON_LOCAL_GOTO:
11699 if (JUMP_P (i3))
11700 place = i3;
11701 else
11703 gcc_assert (i2 && JUMP_P (i2));
11704 place = i2;
11706 break;
11708 case REG_EH_REGION:
11709 /* These notes must remain with the call or trapping instruction. */
11710 if (CALL_P (i3))
11711 place = i3;
11712 else if (i2 && CALL_P (i2))
11713 place = i2;
11714 else
11716 gcc_assert (flag_non_call_exceptions);
11717 if (may_trap_p (i3))
11718 place = i3;
11719 else if (i2 && may_trap_p (i2))
11720 place = i2;
11721 /* ??? Otherwise assume we've combined things such that we
11722 can now prove that the instructions can't trap. Drop the
11723 note in this case. */
11725 break;
11727 case REG_ALWAYS_RETURN:
11728 case REG_NORETURN:
11729 case REG_SETJMP:
11730 /* These notes must remain with the call. It should not be
11731 possible for both I2 and I3 to be a call. */
11732 if (CALL_P (i3))
11733 place = i3;
11734 else
11736 gcc_assert (i2 && CALL_P (i2));
11737 place = i2;
11739 break;
11741 case REG_UNUSED:
11742 /* Any clobbers for i3 may still exist, and so we must process
11743 REG_UNUSED notes from that insn.
11745 Any clobbers from i2 or i1 can only exist if they were added by
11746 recog_for_combine. In that case, recog_for_combine created the
11747 necessary REG_UNUSED notes. Trying to keep any original
11748 REG_UNUSED notes from these insns can cause incorrect output
11749 if it is for the same register as the original i3 dest.
11750 In that case, we will notice that the register is set in i3,
11751 and then add a REG_UNUSED note for the destination of i3, which
11752 is wrong. However, it is possible to have REG_UNUSED notes from
11753 i2 or i1 for register which were both used and clobbered, so
11754 we keep notes from i2 or i1 if they will turn into REG_DEAD
11755 notes. */
11757 /* If this register is set or clobbered in I3, put the note there
11758 unless there is one already. */
11759 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11761 if (from_insn != i3)
11762 break;
11764 if (! (REG_P (XEXP (note, 0))
11765 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11766 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11767 place = i3;
11769 /* Otherwise, if this register is used by I3, then this register
11770 now dies here, so we must put a REG_DEAD note here unless there
11771 is one already. */
11772 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11773 && ! (REG_P (XEXP (note, 0))
11774 ? find_regno_note (i3, REG_DEAD,
11775 REGNO (XEXP (note, 0)))
11776 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11778 PUT_REG_NOTE_KIND (note, REG_DEAD);
11779 place = i3;
11781 break;
11783 case REG_EQUAL:
11784 case REG_EQUIV:
11785 case REG_NOALIAS:
11786 /* These notes say something about results of an insn. We can
11787 only support them if they used to be on I3 in which case they
11788 remain on I3. Otherwise they are ignored.
11790 If the note refers to an expression that is not a constant, we
11791 must also ignore the note since we cannot tell whether the
11792 equivalence is still true. It might be possible to do
11793 slightly better than this (we only have a problem if I2DEST
11794 or I1DEST is present in the expression), but it doesn't
11795 seem worth the trouble. */
11797 if (from_insn == i3
11798 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11799 place = i3;
11800 break;
11802 case REG_INC:
11803 case REG_NO_CONFLICT:
11804 /* These notes say something about how a register is used. They must
11805 be present on any use of the register in I2 or I3. */
11806 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11807 place = i3;
11809 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11811 if (place)
11812 place2 = i2;
11813 else
11814 place = i2;
11816 break;
11818 case REG_LABEL:
11819 /* This can show up in several ways -- either directly in the
11820 pattern, or hidden off in the constant pool with (or without?)
11821 a REG_EQUAL note. */
11822 /* ??? Ignore the without-reg_equal-note problem for now. */
11823 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11824 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11825 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11826 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11827 place = i3;
11829 if (i2
11830 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11831 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11832 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11833 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11835 if (place)
11836 place2 = i2;
11837 else
11838 place = i2;
11841 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11842 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11843 if (place && JUMP_P (place))
11845 rtx label = JUMP_LABEL (place);
11847 if (!label)
11848 JUMP_LABEL (place) = XEXP (note, 0);
11849 else
11851 gcc_assert (label == XEXP (note, 0));
11852 if (LABEL_P (label))
11853 LABEL_NUSES (label)--;
11855 place = 0;
11857 if (place2 && JUMP_P (place2))
11859 rtx label = JUMP_LABEL (place2);
11861 if (!label)
11862 JUMP_LABEL (place2) = XEXP (note, 0);
11863 else
11865 gcc_assert (label == XEXP (note, 0));
11866 if (LABEL_P (label))
11867 LABEL_NUSES (label)--;
11869 place2 = 0;
11871 break;
11873 case REG_NONNEG:
11874 /* This note says something about the value of a register prior
11875 to the execution of an insn. It is too much trouble to see
11876 if the note is still correct in all situations. It is better
11877 to simply delete it. */
11878 break;
11880 case REG_RETVAL:
11881 /* If the insn previously containing this note still exists,
11882 put it back where it was. Otherwise move it to the previous
11883 insn. Adjust the corresponding REG_LIBCALL note. */
11884 if (!NOTE_P (from_insn))
11885 place = from_insn;
11886 else
11888 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
11889 place = prev_real_insn (from_insn);
11890 if (tem && place)
11891 XEXP (tem, 0) = place;
11892 /* If we're deleting the last remaining instruction of a
11893 libcall sequence, don't add the notes. */
11894 else if (XEXP (note, 0) == from_insn)
11895 tem = place = 0;
11896 /* Don't add the dangling REG_RETVAL note. */
11897 else if (! tem)
11898 place = 0;
11900 break;
11902 case REG_LIBCALL:
11903 /* This is handled similarly to REG_RETVAL. */
11904 if (!NOTE_P (from_insn))
11905 place = from_insn;
11906 else
11908 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
11909 place = next_real_insn (from_insn);
11910 if (tem && place)
11911 XEXP (tem, 0) = place;
11912 /* If we're deleting the last remaining instruction of a
11913 libcall sequence, don't add the notes. */
11914 else if (XEXP (note, 0) == from_insn)
11915 tem = place = 0;
11916 /* Don't add the dangling REG_LIBCALL note. */
11917 else if (! tem)
11918 place = 0;
11920 break;
11922 case REG_DEAD:
11923 /* If the register is used as an input in I3, it dies there.
11924 Similarly for I2, if it is nonzero and adjacent to I3.
11926 If the register is not used as an input in either I3 or I2
11927 and it is not one of the registers we were supposed to eliminate,
11928 there are two possibilities. We might have a non-adjacent I2
11929 or we might have somehow eliminated an additional register
11930 from a computation. For example, we might have had A & B where
11931 we discover that B will always be zero. In this case we will
11932 eliminate the reference to A.
11934 In both cases, we must search to see if we can find a previous
11935 use of A and put the death note there. */
11937 if (from_insn
11938 && CALL_P (from_insn)
11939 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
11940 place = from_insn;
11941 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
11942 place = i3;
11943 else if (i2 != 0 && next_nonnote_insn (i2) == i3
11944 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
11945 place = i2;
11947 if (place == 0)
11949 basic_block bb = this_basic_block;
11951 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
11953 if (! INSN_P (tem))
11955 if (tem == BB_HEAD (bb))
11956 break;
11957 continue;
11960 /* If the register is being set at TEM, see if that is all
11961 TEM is doing. If so, delete TEM. Otherwise, make this
11962 into a REG_UNUSED note instead. Don't delete sets to
11963 global register vars. */
11964 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
11965 || !global_regs[REGNO (XEXP (note, 0))])
11966 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
11968 rtx set = single_set (tem);
11969 rtx inner_dest = 0;
11970 #ifdef HAVE_cc0
11971 rtx cc0_setter = NULL_RTX;
11972 #endif
11974 if (set != 0)
11975 for (inner_dest = SET_DEST (set);
11976 (GET_CODE (inner_dest) == STRICT_LOW_PART
11977 || GET_CODE (inner_dest) == SUBREG
11978 || GET_CODE (inner_dest) == ZERO_EXTRACT);
11979 inner_dest = XEXP (inner_dest, 0))
11982 /* Verify that it was the set, and not a clobber that
11983 modified the register.
11985 CC0 targets must be careful to maintain setter/user
11986 pairs. If we cannot delete the setter due to side
11987 effects, mark the user with an UNUSED note instead
11988 of deleting it. */
11990 if (set != 0 && ! side_effects_p (SET_SRC (set))
11991 && rtx_equal_p (XEXP (note, 0), inner_dest)
11992 #ifdef HAVE_cc0
11993 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
11994 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
11995 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
11996 #endif
11999 /* Move the notes and links of TEM elsewhere.
12000 This might delete other dead insns recursively.
12001 First set the pattern to something that won't use
12002 any register. */
12003 rtx old_notes = REG_NOTES (tem);
12005 PATTERN (tem) = pc_rtx;
12006 REG_NOTES (tem) = NULL;
12008 distribute_notes (old_notes, tem, tem, NULL_RTX);
12009 distribute_links (LOG_LINKS (tem));
12011 SET_INSN_DELETED (tem);
12013 #ifdef HAVE_cc0
12014 /* Delete the setter too. */
12015 if (cc0_setter)
12017 PATTERN (cc0_setter) = pc_rtx;
12018 old_notes = REG_NOTES (cc0_setter);
12019 REG_NOTES (cc0_setter) = NULL;
12021 distribute_notes (old_notes, cc0_setter,
12022 cc0_setter, NULL_RTX);
12023 distribute_links (LOG_LINKS (cc0_setter));
12025 SET_INSN_DELETED (cc0_setter);
12027 #endif
12029 else
12031 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12033 /* If there isn't already a REG_UNUSED note, put one
12034 here. Do not place a REG_DEAD note, even if
12035 the register is also used here; that would not
12036 match the algorithm used in lifetime analysis
12037 and can cause the consistency check in the
12038 scheduler to fail. */
12039 if (! find_regno_note (tem, REG_UNUSED,
12040 REGNO (XEXP (note, 0))))
12041 place = tem;
12042 break;
12045 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12046 || (CALL_P (tem)
12047 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12049 place = tem;
12051 /* If we are doing a 3->2 combination, and we have a
12052 register which formerly died in i3 and was not used
12053 by i2, which now no longer dies in i3 and is used in
12054 i2 but does not die in i2, and place is between i2
12055 and i3, then we may need to move a link from place to
12056 i2. */
12057 if (i2 && INSN_UID (place) <= max_uid_cuid
12058 && INSN_CUID (place) > INSN_CUID (i2)
12059 && from_insn
12060 && INSN_CUID (from_insn) > INSN_CUID (i2)
12061 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12063 rtx links = LOG_LINKS (place);
12064 LOG_LINKS (place) = 0;
12065 distribute_links (links);
12067 break;
12070 if (tem == BB_HEAD (bb))
12071 break;
12074 /* We haven't found an insn for the death note and it
12075 is still a REG_DEAD note, but we have hit the beginning
12076 of the block. If the existing life info says the reg
12077 was dead, there's nothing left to do. Otherwise, we'll
12078 need to do a global life update after combine. */
12079 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12080 && REGNO_REG_SET_P (bb->global_live_at_start,
12081 REGNO (XEXP (note, 0))))
12082 SET_BIT (refresh_blocks, this_basic_block->index);
12085 /* If the register is set or already dead at PLACE, we needn't do
12086 anything with this note if it is still a REG_DEAD note.
12087 We check here if it is set at all, not if is it totally replaced,
12088 which is what `dead_or_set_p' checks, so also check for it being
12089 set partially. */
12091 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12093 unsigned int regno = REGNO (XEXP (note, 0));
12095 /* Similarly, if the instruction on which we want to place
12096 the note is a noop, we'll need do a global live update
12097 after we remove them in delete_noop_moves. */
12098 if (noop_move_p (place))
12099 SET_BIT (refresh_blocks, this_basic_block->index);
12101 if (dead_or_set_p (place, XEXP (note, 0))
12102 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12104 /* Unless the register previously died in PLACE, clear
12105 last_death. [I no longer understand why this is
12106 being done.] */
12107 if (reg_stat[regno].last_death != place)
12108 reg_stat[regno].last_death = 0;
12109 place = 0;
12111 else
12112 reg_stat[regno].last_death = place;
12114 /* If this is a death note for a hard reg that is occupying
12115 multiple registers, ensure that we are still using all
12116 parts of the object. If we find a piece of the object
12117 that is unused, we must arrange for an appropriate REG_DEAD
12118 note to be added for it. However, we can't just emit a USE
12119 and tag the note to it, since the register might actually
12120 be dead; so we recourse, and the recursive call then finds
12121 the previous insn that used this register. */
12123 if (place && regno < FIRST_PSEUDO_REGISTER
12124 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12126 unsigned int endregno
12127 = regno + hard_regno_nregs[regno]
12128 [GET_MODE (XEXP (note, 0))];
12129 int all_used = 1;
12130 unsigned int i;
12132 for (i = regno; i < endregno; i++)
12133 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12134 && ! find_regno_fusage (place, USE, i))
12135 || dead_or_set_regno_p (place, i))
12136 all_used = 0;
12138 if (! all_used)
12140 /* Put only REG_DEAD notes for pieces that are
12141 not already dead or set. */
12143 for (i = regno; i < endregno;
12144 i += hard_regno_nregs[i][reg_raw_mode[i]])
12146 rtx piece = regno_reg_rtx[i];
12147 basic_block bb = this_basic_block;
12149 if (! dead_or_set_p (place, piece)
12150 && ! reg_bitfield_target_p (piece,
12151 PATTERN (place)))
12153 rtx new_note
12154 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12156 distribute_notes (new_note, place, place,
12157 NULL_RTX);
12159 else if (! refers_to_regno_p (i, i + 1,
12160 PATTERN (place), 0)
12161 && ! find_regno_fusage (place, USE, i))
12162 for (tem = PREV_INSN (place); ;
12163 tem = PREV_INSN (tem))
12165 if (! INSN_P (tem))
12167 if (tem == BB_HEAD (bb))
12169 SET_BIT (refresh_blocks,
12170 this_basic_block->index);
12171 break;
12173 continue;
12175 if (dead_or_set_p (tem, piece)
12176 || reg_bitfield_target_p (piece,
12177 PATTERN (tem)))
12179 REG_NOTES (tem)
12180 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12181 REG_NOTES (tem));
12182 break;
12188 place = 0;
12192 break;
12194 default:
12195 /* Any other notes should not be present at this point in the
12196 compilation. */
12197 gcc_unreachable ();
12200 if (place)
12202 XEXP (note, 1) = REG_NOTES (place);
12203 REG_NOTES (place) = note;
12205 else if ((REG_NOTE_KIND (note) == REG_DEAD
12206 || REG_NOTE_KIND (note) == REG_UNUSED)
12207 && REG_P (XEXP (note, 0)))
12208 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12210 if (place2)
12212 if ((REG_NOTE_KIND (note) == REG_DEAD
12213 || REG_NOTE_KIND (note) == REG_UNUSED)
12214 && REG_P (XEXP (note, 0)))
12215 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12217 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12218 REG_NOTE_KIND (note),
12219 XEXP (note, 0),
12220 REG_NOTES (place2));
12225 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12226 I3, I2, and I1 to new locations. This is also called to add a link
12227 pointing at I3 when I3's destination is changed. */
12229 static void
12230 distribute_links (rtx links)
12232 rtx link, next_link;
12234 for (link = links; link; link = next_link)
12236 rtx place = 0;
12237 rtx insn;
12238 rtx set, reg;
12240 next_link = XEXP (link, 1);
12242 /* If the insn that this link points to is a NOTE or isn't a single
12243 set, ignore it. In the latter case, it isn't clear what we
12244 can do other than ignore the link, since we can't tell which
12245 register it was for. Such links wouldn't be used by combine
12246 anyway.
12248 It is not possible for the destination of the target of the link to
12249 have been changed by combine. The only potential of this is if we
12250 replace I3, I2, and I1 by I3 and I2. But in that case the
12251 destination of I2 also remains unchanged. */
12253 if (NOTE_P (XEXP (link, 0))
12254 || (set = single_set (XEXP (link, 0))) == 0)
12255 continue;
12257 reg = SET_DEST (set);
12258 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12259 || GET_CODE (reg) == SIGN_EXTRACT
12260 || GET_CODE (reg) == STRICT_LOW_PART)
12261 reg = XEXP (reg, 0);
12263 /* A LOG_LINK is defined as being placed on the first insn that uses
12264 a register and points to the insn that sets the register. Start
12265 searching at the next insn after the target of the link and stop
12266 when we reach a set of the register or the end of the basic block.
12268 Note that this correctly handles the link that used to point from
12269 I3 to I2. Also note that not much searching is typically done here
12270 since most links don't point very far away. */
12272 for (insn = NEXT_INSN (XEXP (link, 0));
12273 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12274 || BB_HEAD (this_basic_block->next_bb) != insn));
12275 insn = NEXT_INSN (insn))
12276 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12278 if (reg_referenced_p (reg, PATTERN (insn)))
12279 place = insn;
12280 break;
12282 else if (CALL_P (insn)
12283 && find_reg_fusage (insn, USE, reg))
12285 place = insn;
12286 break;
12288 else if (INSN_P (insn) && reg_set_p (reg, insn))
12289 break;
12291 /* If we found a place to put the link, place it there unless there
12292 is already a link to the same insn as LINK at that point. */
12294 if (place)
12296 rtx link2;
12298 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12299 if (XEXP (link2, 0) == XEXP (link, 0))
12300 break;
12302 if (link2 == 0)
12304 XEXP (link, 1) = LOG_LINKS (place);
12305 LOG_LINKS (place) = link;
12307 /* Set added_links_insn to the earliest insn we added a
12308 link to. */
12309 if (added_links_insn == 0
12310 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12311 added_links_insn = place;
12317 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12318 Check whether the expression pointer to by LOC is a register or
12319 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12320 Otherwise return zero. */
12322 static int
12323 unmentioned_reg_p_1 (rtx *loc, void *expr)
12325 rtx x = *loc;
12327 if (x != NULL_RTX
12328 && (REG_P (x) || MEM_P (x))
12329 && ! reg_mentioned_p (x, (rtx) expr))
12330 return 1;
12331 return 0;
12334 /* Check for any register or memory mentioned in EQUIV that is not
12335 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12336 of EXPR where some registers may have been replaced by constants. */
12338 static bool
12339 unmentioned_reg_p (rtx equiv, rtx expr)
12341 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12344 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12346 static int
12347 insn_cuid (rtx insn)
12349 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12350 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12351 insn = NEXT_INSN (insn);
12353 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12355 return INSN_CUID (insn);
12358 void
12359 dump_combine_stats (FILE *file)
12361 fnotice
12362 (file,
12363 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12364 combine_attempts, combine_merges, combine_extras, combine_successes);
12367 void
12368 dump_combine_total_stats (FILE *file)
12370 fnotice
12371 (file,
12372 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12373 total_attempts, total_merges, total_extras, total_successes);