* ggc-zone.c (struct alloc_zone): Add statistics counters.
[official-gcc.git] / gcc / function.c
blobed7821b4f7b4846546646d6cc081bdcc5c6672bb
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
93 compiler passes. */
94 int current_function_is_leaf;
96 /* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
98 life_analysis has run. */
99 int current_function_sp_is_unchanging;
101 /* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
104 int current_function_uses_only_leaf_regs;
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
123 static GTY(()) varray_type prologue;
124 static GTY(()) varray_type epilogue;
126 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
128 static GTY(()) varray_type sibcall_epilogue;
130 /* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
148 struct temp_slot GTY(())
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
155 /* The rtx to used to reference the slot. */
156 rtx slot;
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
160 /* The alignment (in bits) of the slot. */
161 unsigned int align;
162 /* The size, in units, of the slot. */
163 HOST_WIDE_INT size;
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
169 /* Nonzero if this temporary is currently in use. */
170 char in_use;
171 /* Nonzero if this temporary has its address taken. */
172 char addr_taken;
173 /* Nesting level at which this slot is being used. */
174 int level;
175 /* Nonzero if this should survive a call to free_temp_slots. */
176 int keep;
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
179 HOST_WIDE_INT base_offset;
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
182 HOST_WIDE_INT full_size;
185 /* Forward declarations. */
187 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189 static struct temp_slot *find_temp_slot_from_address (rtx);
190 static void instantiate_decls (tree, int);
191 static void instantiate_decls_1 (tree, int);
192 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
195 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196 static void pad_below (struct args_size *, enum machine_mode, tree);
197 static void reorder_blocks_1 (rtx, tree, varray_type *);
198 static void reorder_fix_fragments (tree);
199 static int all_blocks (tree, tree *);
200 static tree *get_block_vector (tree, int *);
201 extern tree debug_find_var_in_block_tree (tree, tree);
202 /* We always define `record_insns' even if it's not used so that we
203 can always export `prologue_epilogue_contains'. */
204 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205 static int contains (rtx, varray_type);
206 #ifdef HAVE_return
207 static void emit_return_into_block (basic_block, rtx);
208 #endif
209 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
210 static rtx keep_stack_depressed (rtx);
211 #endif
212 static void prepare_function_start (tree);
213 static void do_clobber_return_reg (rtx, void *);
214 static void do_use_return_reg (rtx, void *);
215 static void instantiate_virtual_regs_lossage (rtx);
216 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
218 /* Pointer to chain of `struct function' for containing functions. */
219 struct function *outer_function_chain;
221 /* Given a function decl for a containing function,
222 return the `struct function' for it. */
224 struct function *
225 find_function_data (tree decl)
227 struct function *p;
229 for (p = outer_function_chain; p; p = p->outer)
230 if (p->decl == decl)
231 return p;
233 abort ();
236 /* Save the current context for compilation of a nested function.
237 This is called from language-specific code. The caller should use
238 the enter_nested langhook to save any language-specific state,
239 since this function knows only about language-independent
240 variables. */
242 void
243 push_function_context_to (tree context)
245 struct function *p;
247 if (context)
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
258 if (cfun == 0)
259 init_dummy_function_start ();
260 p = cfun;
262 p->outer = outer_function_chain;
263 outer_function_chain = p;
265 lang_hooks.function.enter_nested (p);
267 cfun = 0;
270 void
271 push_function_context (void)
273 push_function_context_to (current_function_decl);
276 /* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
279 void
280 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
282 struct function *p = outer_function_chain;
284 cfun = p;
285 outer_function_chain = p->outer;
287 current_function_decl = p->decl;
288 reg_renumber = 0;
290 restore_emit_status (p);
292 lang_hooks.function.leave_nested (p);
294 /* Reset variables that have known state during rtx generation. */
295 virtuals_instantiated = 0;
296 generating_concat_p = 1;
299 void
300 pop_function_context (void)
302 pop_function_context_from (current_function_decl);
305 /* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
309 void
310 free_after_parsing (struct function *f)
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
317 lang_hooks.function.final (f);
320 /* Clear out all parts of the state in F that can safely be discarded
321 after the function has been compiled, to let garbage collection
322 reclaim the memory. */
324 void
325 free_after_compilation (struct function *f)
327 f->eh = NULL;
328 f->expr = NULL;
329 f->emit = NULL;
330 f->varasm = NULL;
331 f->machine = NULL;
333 f->x_avail_temp_slots = NULL;
334 f->x_used_temp_slots = NULL;
335 f->arg_offset_rtx = NULL;
336 f->return_rtx = NULL;
337 f->internal_arg_pointer = NULL;
338 f->x_nonlocal_goto_handler_labels = NULL;
339 f->x_return_label = NULL;
340 f->x_naked_return_label = NULL;
341 f->x_stack_slot_list = NULL;
342 f->x_tail_recursion_reentry = NULL;
343 f->x_arg_pointer_save_area = NULL;
344 f->x_parm_birth_insn = NULL;
345 f->original_arg_vector = NULL;
346 f->original_decl_initial = NULL;
347 f->epilogue_delay_list = NULL;
350 /* Allocate fixed slots in the stack frame of the current function. */
352 /* Return size needed for stack frame based on slots so far allocated in
353 function F.
354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
355 the caller may have to do that. */
357 HOST_WIDE_INT
358 get_func_frame_size (struct function *f)
360 #ifdef FRAME_GROWS_DOWNWARD
361 return -f->x_frame_offset;
362 #else
363 return f->x_frame_offset;
364 #endif
367 /* Return size needed for stack frame based on slots so far allocated.
368 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
369 the caller may have to do that. */
370 HOST_WIDE_INT
371 get_frame_size (void)
373 return get_func_frame_size (cfun);
376 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
377 with machine mode MODE.
379 ALIGN controls the amount of alignment for the address of the slot:
380 0 means according to MODE,
381 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
382 -2 means use BITS_PER_UNIT,
383 positive specifies alignment boundary in bits.
385 We do not round to stack_boundary here.
387 FUNCTION specifies the function to allocate in. */
389 static rtx
390 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
391 struct function *function)
393 rtx x, addr;
394 int bigend_correction = 0;
395 unsigned int alignment;
396 int frame_off, frame_alignment, frame_phase;
398 if (align == 0)
400 tree type;
402 if (mode == BLKmode)
403 alignment = BIGGEST_ALIGNMENT;
404 else
405 alignment = GET_MODE_ALIGNMENT (mode);
407 /* Allow the target to (possibly) increase the alignment of this
408 stack slot. */
409 type = lang_hooks.types.type_for_mode (mode, 0);
410 if (type)
411 alignment = LOCAL_ALIGNMENT (type, alignment);
413 alignment /= BITS_PER_UNIT;
415 else if (align == -1)
417 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
418 size = CEIL_ROUND (size, alignment);
420 else if (align == -2)
421 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
422 else
423 alignment = align / BITS_PER_UNIT;
425 #ifdef FRAME_GROWS_DOWNWARD
426 function->x_frame_offset -= size;
427 #endif
429 /* Ignore alignment we can't do with expected alignment of the boundary. */
430 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
431 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
433 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
434 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
436 /* Calculate how many bytes the start of local variables is off from
437 stack alignment. */
438 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
440 frame_phase = frame_off ? frame_alignment - frame_off : 0;
442 /* Round the frame offset to the specified alignment. The default is
443 to always honor requests to align the stack but a port may choose to
444 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
445 if (STACK_ALIGNMENT_NEEDED
446 || mode != BLKmode
447 || size != 0)
449 /* We must be careful here, since FRAME_OFFSET might be negative and
450 division with a negative dividend isn't as well defined as we might
451 like. So we instead assume that ALIGNMENT is a power of two and
452 use logical operations which are unambiguous. */
453 #ifdef FRAME_GROWS_DOWNWARD
454 function->x_frame_offset
455 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
456 (unsigned HOST_WIDE_INT) alignment)
457 + frame_phase);
458 #else
459 function->x_frame_offset
460 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
461 (unsigned HOST_WIDE_INT) alignment)
462 + frame_phase);
463 #endif
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (function == cfun && virtuals_instantiated)
474 addr = plus_constant (frame_pointer_rtx,
475 trunc_int_for_mode
476 (frame_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (function->x_frame_offset + bigend_correction,
482 Pmode));
484 #ifndef FRAME_GROWS_DOWNWARD
485 function->x_frame_offset += size;
486 #endif
488 x = gen_rtx_MEM (mode, addr);
490 function->x_stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
493 return x;
496 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
497 current function. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, cfun);
506 /* Removes temporary slot TEMP from LIST. */
508 static void
509 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
511 if (temp->next)
512 temp->next->prev = temp->prev;
513 if (temp->prev)
514 temp->prev->next = temp->next;
515 else
516 *list = temp->next;
518 temp->prev = temp->next = NULL;
521 /* Inserts temporary slot TEMP to LIST. */
523 static void
524 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
526 temp->next = *list;
527 if (*list)
528 (*list)->prev = temp;
529 temp->prev = NULL;
530 *list = temp;
533 /* Returns the list of used temp slots at LEVEL. */
535 static struct temp_slot **
536 temp_slots_at_level (int level)
538 level++;
540 if (!used_temp_slots)
541 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
543 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
544 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
546 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
549 /* Returns the maximal temporary slot level. */
551 static int
552 max_slot_level (void)
554 if (!used_temp_slots)
555 return -1;
557 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
560 /* Moves temporary slot TEMP to LEVEL. */
562 static void
563 move_slot_to_level (struct temp_slot *temp, int level)
565 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
566 insert_slot_to_list (temp, temp_slots_at_level (level));
567 temp->level = level;
570 /* Make temporary slot TEMP available. */
572 static void
573 make_slot_available (struct temp_slot *temp)
575 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
576 insert_slot_to_list (temp, &avail_temp_slots);
577 temp->in_use = 0;
578 temp->level = -1;
581 /* Allocate a temporary stack slot and record it for possible later
582 reuse.
584 MODE is the machine mode to be given to the returned rtx.
586 SIZE is the size in units of the space required. We do no rounding here
587 since assign_stack_local will do any required rounding.
589 KEEP is 1 if this slot is to be retained after a call to
590 free_temp_slots. Automatic variables for a block are allocated
591 with this flag. KEEP values of 2 or 3 were needed respectively
592 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
593 or for SAVE_EXPRs, but they are now unused and will abort.
595 TYPE is the type that will be used for the stack slot. */
598 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
599 tree type)
601 unsigned int align;
602 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
603 rtx slot;
605 /* If SIZE is -1 it means that somebody tried to allocate a temporary
606 of a variable size. */
607 if (size == -1)
608 abort ();
610 /* These are now unused. */
611 if (keep > 1)
612 abort ();
614 if (mode == BLKmode)
615 align = BIGGEST_ALIGNMENT;
616 else
617 align = GET_MODE_ALIGNMENT (mode);
619 if (! type)
620 type = lang_hooks.types.type_for_mode (mode, 0);
622 if (type)
623 align = LOCAL_ALIGNMENT (type, align);
625 /* Try to find an available, already-allocated temporary of the proper
626 mode which meets the size and alignment requirements. Choose the
627 smallest one with the closest alignment. */
628 for (p = avail_temp_slots; p; p = p->next)
630 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
631 && objects_must_conflict_p (p->type, type)
632 && (best_p == 0 || best_p->size > p->size
633 || (best_p->size == p->size && best_p->align > p->align)))
635 if (p->align == align && p->size == size)
637 selected = p;
638 cut_slot_from_list (selected, &avail_temp_slots);
639 best_p = 0;
640 break;
642 best_p = p;
646 /* Make our best, if any, the one to use. */
647 if (best_p)
649 selected = best_p;
650 cut_slot_from_list (selected, &avail_temp_slots);
652 /* If there are enough aligned bytes left over, make them into a new
653 temp_slot so that the extra bytes don't get wasted. Do this only
654 for BLKmode slots, so that we can be sure of the alignment. */
655 if (GET_MODE (best_p->slot) == BLKmode)
657 int alignment = best_p->align / BITS_PER_UNIT;
658 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
660 if (best_p->size - rounded_size >= alignment)
662 p = ggc_alloc (sizeof (struct temp_slot));
663 p->in_use = p->addr_taken = 0;
664 p->size = best_p->size - rounded_size;
665 p->base_offset = best_p->base_offset + rounded_size;
666 p->full_size = best_p->full_size - rounded_size;
667 p->slot = gen_rtx_MEM (BLKmode,
668 plus_constant (XEXP (best_p->slot, 0),
669 rounded_size));
670 p->align = best_p->align;
671 p->address = 0;
672 p->type = best_p->type;
673 insert_slot_to_list (p, &avail_temp_slots);
675 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
676 stack_slot_list);
678 best_p->size = rounded_size;
679 best_p->full_size = rounded_size;
684 /* If we still didn't find one, make a new temporary. */
685 if (selected == 0)
687 HOST_WIDE_INT frame_offset_old = frame_offset;
689 p = ggc_alloc (sizeof (struct temp_slot));
691 /* We are passing an explicit alignment request to assign_stack_local.
692 One side effect of that is assign_stack_local will not round SIZE
693 to ensure the frame offset remains suitably aligned.
695 So for requests which depended on the rounding of SIZE, we go ahead
696 and round it now. We also make sure ALIGNMENT is at least
697 BIGGEST_ALIGNMENT. */
698 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
699 abort ();
700 p->slot = assign_stack_local (mode,
701 (mode == BLKmode
702 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
703 : size),
704 align);
706 p->align = align;
708 /* The following slot size computation is necessary because we don't
709 know the actual size of the temporary slot until assign_stack_local
710 has performed all the frame alignment and size rounding for the
711 requested temporary. Note that extra space added for alignment
712 can be either above or below this stack slot depending on which
713 way the frame grows. We include the extra space if and only if it
714 is above this slot. */
715 #ifdef FRAME_GROWS_DOWNWARD
716 p->size = frame_offset_old - frame_offset;
717 #else
718 p->size = size;
719 #endif
721 /* Now define the fields used by combine_temp_slots. */
722 #ifdef FRAME_GROWS_DOWNWARD
723 p->base_offset = frame_offset;
724 p->full_size = frame_offset_old - frame_offset;
725 #else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
728 #endif
729 p->address = 0;
731 selected = p;
734 p = selected;
735 p->in_use = 1;
736 p->addr_taken = 0;
737 p->type = type;
738 p->level = temp_slot_level;
739 p->keep = keep;
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
754 /* If a type is specified, set the relevant flags. */
755 if (type != 0)
757 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
758 && TYPE_READONLY (type));
759 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
760 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
763 return slot;
766 /* Allocate a temporary stack slot and record it for possible later
767 reuse. First three arguments are same as in preceding function. */
770 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
772 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
775 /* Assign a temporary.
776 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
777 and so that should be used in error messages. In either case, we
778 allocate of the given type.
779 KEEP is as for assign_stack_temp.
780 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
781 it is 0 if a register is OK.
782 DONT_PROMOTE is 1 if we should not promote values in register
783 to wider modes. */
786 assign_temp (tree type_or_decl, int keep, int memory_required,
787 int dont_promote ATTRIBUTE_UNUSED)
789 tree type, decl;
790 enum machine_mode mode;
791 #ifdef PROMOTE_MODE
792 int unsignedp;
793 #endif
795 if (DECL_P (type_or_decl))
796 decl = type_or_decl, type = TREE_TYPE (decl);
797 else
798 decl = NULL, type = type_or_decl;
800 mode = TYPE_MODE (type);
801 #ifdef PROMOTE_MODE
802 unsignedp = TYPE_UNSIGNED (type);
803 #endif
805 if (mode == BLKmode || memory_required)
807 HOST_WIDE_INT size = int_size_in_bytes (type);
808 tree size_tree;
809 rtx tmp;
811 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
812 problems with allocating the stack space. */
813 if (size == 0)
814 size = 1;
816 /* Unfortunately, we don't yet know how to allocate variable-sized
817 temporaries. However, sometimes we have a fixed upper limit on
818 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
819 instead. This is the case for Chill variable-sized strings. */
820 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
821 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
822 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
823 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
825 /* If we still haven't been able to get a size, see if the language
826 can compute a maximum size. */
827 if (size == -1
828 && (size_tree = lang_hooks.types.max_size (type)) != 0
829 && host_integerp (size_tree, 1))
830 size = tree_low_cst (size_tree, 1);
832 /* The size of the temporary may be too large to fit into an integer. */
833 /* ??? Not sure this should happen except for user silliness, so limit
834 this to things that aren't compiler-generated temporaries. The
835 rest of the time we'll abort in assign_stack_temp_for_type. */
836 if (decl && size == -1
837 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
839 error ("%Jsize of variable '%D' is too large", decl, decl);
840 size = 1;
843 tmp = assign_stack_temp_for_type (mode, size, keep, type);
844 return tmp;
847 #ifdef PROMOTE_MODE
848 if (! dont_promote)
849 mode = promote_mode (type, mode, &unsignedp, 0);
850 #endif
852 return gen_reg_rtx (mode);
855 /* Combine temporary stack slots which are adjacent on the stack.
857 This allows for better use of already allocated stack space. This is only
858 done for BLKmode slots because we can be sure that we won't have alignment
859 problems in this case. */
861 void
862 combine_temp_slots (void)
864 struct temp_slot *p, *q, *next, *next_q;
865 int num_slots;
867 /* We can't combine slots, because the information about which slot
868 is in which alias set will be lost. */
869 if (flag_strict_aliasing)
870 return;
872 /* If there are a lot of temp slots, don't do anything unless
873 high levels of optimization. */
874 if (! flag_expensive_optimizations)
875 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
876 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
877 return;
879 for (p = avail_temp_slots; p; p = next)
881 int delete_p = 0;
883 next = p->next;
885 if (GET_MODE (p->slot) != BLKmode)
886 continue;
888 for (q = p->next; q; q = next_q)
890 int delete_q = 0;
892 next_q = q->next;
894 if (GET_MODE (q->slot) != BLKmode)
895 continue;
897 if (p->base_offset + p->full_size == q->base_offset)
899 /* Q comes after P; combine Q into P. */
900 p->size += q->size;
901 p->full_size += q->full_size;
902 delete_q = 1;
904 else if (q->base_offset + q->full_size == p->base_offset)
906 /* P comes after Q; combine P into Q. */
907 q->size += p->size;
908 q->full_size += p->full_size;
909 delete_p = 1;
910 break;
912 if (delete_q)
913 cut_slot_from_list (q, &avail_temp_slots);
916 /* Either delete P or advance past it. */
917 if (delete_p)
918 cut_slot_from_list (p, &avail_temp_slots);
922 /* Find the temp slot corresponding to the object at address X. */
924 static struct temp_slot *
925 find_temp_slot_from_address (rtx x)
927 struct temp_slot *p;
928 rtx next;
929 int i;
931 for (i = max_slot_level (); i >= 0; i--)
932 for (p = *temp_slots_at_level (i); p; p = p->next)
934 if (XEXP (p->slot, 0) == x
935 || p->address == x
936 || (GET_CODE (x) == PLUS
937 && XEXP (x, 0) == virtual_stack_vars_rtx
938 && GET_CODE (XEXP (x, 1)) == CONST_INT
939 && INTVAL (XEXP (x, 1)) >= p->base_offset
940 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
941 return p;
943 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
944 for (next = p->address; next; next = XEXP (next, 1))
945 if (XEXP (next, 0) == x)
946 return p;
949 /* If we have a sum involving a register, see if it points to a temp
950 slot. */
951 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
952 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
953 return p;
954 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
955 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
956 return p;
958 return 0;
961 /* Indicate that NEW is an alternate way of referring to the temp slot
962 that previously was known by OLD. */
964 void
965 update_temp_slot_address (rtx old, rtx new)
967 struct temp_slot *p;
969 if (rtx_equal_p (old, new))
970 return;
972 p = find_temp_slot_from_address (old);
974 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
975 is a register, see if one operand of the PLUS is a temporary
976 location. If so, NEW points into it. Otherwise, if both OLD and
977 NEW are a PLUS and if there is a register in common between them.
978 If so, try a recursive call on those values. */
979 if (p == 0)
981 if (GET_CODE (old) != PLUS)
982 return;
984 if (REG_P (new))
986 update_temp_slot_address (XEXP (old, 0), new);
987 update_temp_slot_address (XEXP (old, 1), new);
988 return;
990 else if (GET_CODE (new) != PLUS)
991 return;
993 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
996 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
997 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
999 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1000 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1002 return;
1005 /* Otherwise add an alias for the temp's address. */
1006 else if (p->address == 0)
1007 p->address = new;
1008 else
1010 if (GET_CODE (p->address) != EXPR_LIST)
1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1013 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1017 /* If X could be a reference to a temporary slot, mark the fact that its
1018 address was taken. */
1020 void
1021 mark_temp_addr_taken (rtx x)
1023 struct temp_slot *p;
1025 if (x == 0)
1026 return;
1028 /* If X is not in memory or is at a constant address, it cannot be in
1029 a temporary slot. */
1030 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1031 return;
1033 p = find_temp_slot_from_address (XEXP (x, 0));
1034 if (p != 0)
1035 p->addr_taken = 1;
1038 /* If X could be a reference to a temporary slot, mark that slot as
1039 belonging to the to one level higher than the current level. If X
1040 matched one of our slots, just mark that one. Otherwise, we can't
1041 easily predict which it is, so upgrade all of them. Kept slots
1042 need not be touched.
1044 This is called when an ({...}) construct occurs and a statement
1045 returns a value in memory. */
1047 void
1048 preserve_temp_slots (rtx x)
1050 struct temp_slot *p = 0, *next;
1052 /* If there is no result, we still might have some objects whose address
1053 were taken, so we need to make sure they stay around. */
1054 if (x == 0)
1056 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1058 next = p->next;
1060 if (p->addr_taken)
1061 move_slot_to_level (p, temp_slot_level - 1);
1064 return;
1067 /* If X is a register that is being used as a pointer, see if we have
1068 a temporary slot we know it points to. To be consistent with
1069 the code below, we really should preserve all non-kept slots
1070 if we can't find a match, but that seems to be much too costly. */
1071 if (REG_P (x) && REG_POINTER (x))
1072 p = find_temp_slot_from_address (x);
1074 /* If X is not in memory or is at a constant address, it cannot be in
1075 a temporary slot, but it can contain something whose address was
1076 taken. */
1077 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1079 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1081 next = p->next;
1083 if (p->addr_taken)
1084 move_slot_to_level (p, temp_slot_level - 1);
1087 return;
1090 /* First see if we can find a match. */
1091 if (p == 0)
1092 p = find_temp_slot_from_address (XEXP (x, 0));
1094 if (p != 0)
1096 /* Move everything at our level whose address was taken to our new
1097 level in case we used its address. */
1098 struct temp_slot *q;
1100 if (p->level == temp_slot_level)
1102 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1104 next = q->next;
1106 if (p != q && q->addr_taken)
1107 move_slot_to_level (q, temp_slot_level - 1);
1110 move_slot_to_level (p, temp_slot_level - 1);
1111 p->addr_taken = 0;
1113 return;
1116 /* Otherwise, preserve all non-kept slots at this level. */
1117 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1119 next = p->next;
1121 if (!p->keep)
1122 move_slot_to_level (p, temp_slot_level - 1);
1126 /* Free all temporaries used so far. This is normally called at the
1127 end of generating code for a statement. */
1129 void
1130 free_temp_slots (void)
1132 struct temp_slot *p, *next;
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1136 next = p->next;
1138 if (!p->keep)
1139 make_slot_available (p);
1142 combine_temp_slots ();
1145 /* Push deeper into the nesting level for stack temporaries. */
1147 void
1148 push_temp_slots (void)
1150 temp_slot_level++;
1153 /* Pop a temporary nesting level. All slots in use in the current level
1154 are freed. */
1156 void
1157 pop_temp_slots (void)
1159 struct temp_slot *p, *next;
1161 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1163 next = p->next;
1164 make_slot_available (p);
1167 combine_temp_slots ();
1169 temp_slot_level--;
1172 /* Initialize temporary slots. */
1174 void
1175 init_temp_slots (void)
1177 /* We have not allocated any temporaries yet. */
1178 avail_temp_slots = 0;
1179 used_temp_slots = 0;
1180 temp_slot_level = 0;
1183 /* These routines are responsible for converting virtual register references
1184 to the actual hard register references once RTL generation is complete.
1186 The following four variables are used for communication between the
1187 routines. They contain the offsets of the virtual registers from their
1188 respective hard registers. */
1190 static int in_arg_offset;
1191 static int var_offset;
1192 static int dynamic_offset;
1193 static int out_arg_offset;
1194 static int cfa_offset;
1196 /* In most machines, the stack pointer register is equivalent to the bottom
1197 of the stack. */
1199 #ifndef STACK_POINTER_OFFSET
1200 #define STACK_POINTER_OFFSET 0
1201 #endif
1203 /* If not defined, pick an appropriate default for the offset of dynamically
1204 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1205 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1207 #ifndef STACK_DYNAMIC_OFFSET
1209 /* The bottom of the stack points to the actual arguments. If
1210 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1211 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1212 stack space for register parameters is not pushed by the caller, but
1213 rather part of the fixed stack areas and hence not included in
1214 `current_function_outgoing_args_size'. Nevertheless, we must allow
1215 for it when allocating stack dynamic objects. */
1217 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1218 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1219 ((ACCUMULATE_OUTGOING_ARGS \
1220 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1221 + (STACK_POINTER_OFFSET)) \
1223 #else
1224 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1225 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1226 + (STACK_POINTER_OFFSET))
1227 #endif
1228 #endif
1230 /* On most machines, the CFA coincides with the first incoming parm. */
1232 #ifndef ARG_POINTER_CFA_OFFSET
1233 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1234 #endif
1237 /* Pass through the INSNS of function FNDECL and convert virtual register
1238 references to hard register references. */
1240 void
1241 instantiate_virtual_regs (void)
1243 rtx insn;
1245 /* Compute the offsets to use for this function. */
1246 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1247 var_offset = STARTING_FRAME_OFFSET;
1248 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1249 out_arg_offset = STACK_POINTER_OFFSET;
1250 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1252 /* Scan all variables and parameters of this function. For each that is
1253 in memory, instantiate all virtual registers if the result is a valid
1254 address. If not, we do it later. That will handle most uses of virtual
1255 regs on many machines. */
1256 instantiate_decls (current_function_decl, 1);
1258 /* Initialize recognition, indicating that volatile is OK. */
1259 init_recog ();
1261 /* Scan through all the insns, instantiating every virtual register still
1262 present. */
1263 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1264 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1265 || GET_CODE (insn) == CALL_INSN)
1267 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1268 if (INSN_DELETED_P (insn))
1269 continue;
1270 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1271 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1272 if (GET_CODE (insn) == CALL_INSN)
1273 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1274 NULL_RTX, 0);
1276 /* Past this point all ASM statements should match. Verify that
1277 to avoid failures later in the compilation process. */
1278 if (asm_noperands (PATTERN (insn)) >= 0
1279 && ! check_asm_operands (PATTERN (insn)))
1280 instantiate_virtual_regs_lossage (insn);
1283 /* Now instantiate the remaining register equivalences for debugging info.
1284 These will not be valid addresses. */
1285 instantiate_decls (current_function_decl, 0);
1287 /* Indicate that, from now on, assign_stack_local should use
1288 frame_pointer_rtx. */
1289 virtuals_instantiated = 1;
1292 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1293 all virtual registers in their DECL_RTL's.
1295 If VALID_ONLY, do this only if the resulting address is still valid.
1296 Otherwise, always do it. */
1298 static void
1299 instantiate_decls (tree fndecl, int valid_only)
1301 tree decl;
1303 /* Process all parameters of the function. */
1304 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1306 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1307 HOST_WIDE_INT size_rtl;
1309 instantiate_decl (DECL_RTL (decl), size, valid_only);
1311 /* If the parameter was promoted, then the incoming RTL mode may be
1312 larger than the declared type size. We must use the larger of
1313 the two sizes. */
1314 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1315 size = MAX (size_rtl, size);
1316 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1319 /* Now process all variables defined in the function or its subblocks. */
1320 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1323 /* Subroutine of instantiate_decls: Process all decls in the given
1324 BLOCK node and all its subblocks. */
1326 static void
1327 instantiate_decls_1 (tree let, int valid_only)
1329 tree t;
1331 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1332 if (DECL_RTL_SET_P (t))
1333 instantiate_decl (DECL_RTL (t),
1334 int_size_in_bytes (TREE_TYPE (t)),
1335 valid_only);
1337 /* Process all subblocks. */
1338 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1339 instantiate_decls_1 (t, valid_only);
1342 /* Subroutine of the preceding procedures: Given RTL representing a
1343 decl and the size of the object, do any instantiation required.
1345 If VALID_ONLY is nonzero, it means that the RTL should only be
1346 changed if the new address is valid. */
1348 static void
1349 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1351 enum machine_mode mode;
1352 rtx addr;
1354 /* If this is not a MEM, no need to do anything. Similarly if the
1355 address is a constant or a register that is not a virtual register. */
1357 if (x == 0 || !MEM_P (x))
1358 return;
1360 addr = XEXP (x, 0);
1361 if (CONSTANT_P (addr)
1362 || (REG_P (addr)
1363 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1364 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1365 return;
1367 /* If we should only do this if the address is valid, copy the address.
1368 We need to do this so we can undo any changes that might make the
1369 address invalid. This copy is unfortunate, but probably can't be
1370 avoided. */
1372 if (valid_only)
1373 addr = copy_rtx (addr);
1375 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1377 if (valid_only && size >= 0)
1379 unsigned HOST_WIDE_INT decl_size = size;
1381 /* Now verify that the resulting address is valid for every integer or
1382 floating-point mode up to and including SIZE bytes long. We do this
1383 since the object might be accessed in any mode and frame addresses
1384 are shared. */
1386 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1387 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1388 mode = GET_MODE_WIDER_MODE (mode))
1389 if (! memory_address_p (mode, addr))
1390 return;
1392 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1393 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1394 mode = GET_MODE_WIDER_MODE (mode))
1395 if (! memory_address_p (mode, addr))
1396 return;
1399 /* Put back the address now that we have updated it and we either know
1400 it is valid or we don't care whether it is valid. */
1402 XEXP (x, 0) = addr;
1405 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1406 is a virtual register, return the equivalent hard register and set the
1407 offset indirectly through the pointer. Otherwise, return 0. */
1409 static rtx
1410 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1412 rtx new;
1413 HOST_WIDE_INT offset;
1415 if (x == virtual_incoming_args_rtx)
1416 new = arg_pointer_rtx, offset = in_arg_offset;
1417 else if (x == virtual_stack_vars_rtx)
1418 new = frame_pointer_rtx, offset = var_offset;
1419 else if (x == virtual_stack_dynamic_rtx)
1420 new = stack_pointer_rtx, offset = dynamic_offset;
1421 else if (x == virtual_outgoing_args_rtx)
1422 new = stack_pointer_rtx, offset = out_arg_offset;
1423 else if (x == virtual_cfa_rtx)
1424 new = arg_pointer_rtx, offset = cfa_offset;
1425 else
1426 return 0;
1428 *poffset = offset;
1429 return new;
1433 /* Called when instantiate_virtual_regs has failed to update the instruction.
1434 Usually this means that non-matching instruction has been emit, however for
1435 asm statements it may be the problem in the constraints. */
1436 static void
1437 instantiate_virtual_regs_lossage (rtx insn)
1439 if (asm_noperands (PATTERN (insn)) >= 0)
1441 error_for_asm (insn, "impossible constraint in `asm'");
1442 delete_insn (insn);
1444 else
1445 abort ();
1447 /* Given a pointer to a piece of rtx and an optional pointer to the
1448 containing object, instantiate any virtual registers present in it.
1450 If EXTRA_INSNS, we always do the replacement and generate
1451 any extra insns before OBJECT. If it zero, we do nothing if replacement
1452 is not valid.
1454 Return 1 if we either had nothing to do or if we were able to do the
1455 needed replacement. Return 0 otherwise; we only return zero if
1456 EXTRA_INSNS is zero.
1458 We first try some simple transformations to avoid the creation of extra
1459 pseudos. */
1461 static int
1462 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1464 rtx x;
1465 RTX_CODE code;
1466 rtx new = 0;
1467 HOST_WIDE_INT offset = 0;
1468 rtx temp;
1469 rtx seq;
1470 int i, j;
1471 const char *fmt;
1473 /* Re-start here to avoid recursion in common cases. */
1474 restart:
1476 x = *loc;
1477 if (x == 0)
1478 return 1;
1480 /* We may have detected and deleted invalid asm statements. */
1481 if (object && INSN_P (object) && INSN_DELETED_P (object))
1482 return 1;
1484 code = GET_CODE (x);
1486 /* Check for some special cases. */
1487 switch (code)
1489 case CONST_INT:
1490 case CONST_DOUBLE:
1491 case CONST_VECTOR:
1492 case CONST:
1493 case SYMBOL_REF:
1494 case CODE_LABEL:
1495 case PC:
1496 case CC0:
1497 case ASM_INPUT:
1498 case ADDR_VEC:
1499 case ADDR_DIFF_VEC:
1500 case RETURN:
1501 return 1;
1503 case SET:
1504 /* We are allowed to set the virtual registers. This means that
1505 the actual register should receive the source minus the
1506 appropriate offset. This is used, for example, in the handling
1507 of non-local gotos. */
1508 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1510 rtx src = SET_SRC (x);
1512 /* We are setting the register, not using it, so the relevant
1513 offset is the negative of the offset to use were we using
1514 the register. */
1515 offset = - offset;
1516 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1518 /* The only valid sources here are PLUS or REG. Just do
1519 the simplest possible thing to handle them. */
1520 if (!REG_P (src) && GET_CODE (src) != PLUS)
1522 instantiate_virtual_regs_lossage (object);
1523 return 1;
1526 start_sequence ();
1527 if (!REG_P (src))
1528 temp = force_operand (src, NULL_RTX);
1529 else
1530 temp = src;
1531 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1532 seq = get_insns ();
1533 end_sequence ();
1535 emit_insn_before (seq, object);
1536 SET_DEST (x) = new;
1538 if (! validate_change (object, &SET_SRC (x), temp, 0)
1539 || ! extra_insns)
1540 instantiate_virtual_regs_lossage (object);
1542 return 1;
1545 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1546 loc = &SET_SRC (x);
1547 goto restart;
1549 case PLUS:
1550 /* Handle special case of virtual register plus constant. */
1551 if (CONSTANT_P (XEXP (x, 1)))
1553 rtx old, new_offset;
1555 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1556 if (GET_CODE (XEXP (x, 0)) == PLUS)
1558 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1560 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1561 extra_insns);
1562 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1564 else
1566 loc = &XEXP (x, 0);
1567 goto restart;
1571 #ifdef POINTERS_EXTEND_UNSIGNED
1572 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1573 we can commute the PLUS and SUBREG because pointers into the
1574 frame are well-behaved. */
1575 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1576 && GET_CODE (XEXP (x, 1)) == CONST_INT
1577 && 0 != (new
1578 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1579 &offset))
1580 && validate_change (object, loc,
1581 plus_constant (gen_lowpart (ptr_mode,
1582 new),
1583 offset
1584 + INTVAL (XEXP (x, 1))),
1586 return 1;
1587 #endif
1588 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1590 /* We know the second operand is a constant. Unless the
1591 first operand is a REG (which has been already checked),
1592 it needs to be checked. */
1593 if (!REG_P (XEXP (x, 0)))
1595 loc = &XEXP (x, 0);
1596 goto restart;
1598 return 1;
1601 new_offset = plus_constant (XEXP (x, 1), offset);
1603 /* If the new constant is zero, try to replace the sum with just
1604 the register. */
1605 if (new_offset == const0_rtx
1606 && validate_change (object, loc, new, 0))
1607 return 1;
1609 /* Next try to replace the register and new offset.
1610 There are two changes to validate here and we can't assume that
1611 in the case of old offset equals new just changing the register
1612 will yield a valid insn. In the interests of a little efficiency,
1613 however, we only call validate change once (we don't queue up the
1614 changes and then call apply_change_group). */
1616 old = XEXP (x, 0);
1617 if (offset == 0
1618 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1619 : (XEXP (x, 0) = new,
1620 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1622 if (! extra_insns)
1624 XEXP (x, 0) = old;
1625 return 0;
1628 /* Otherwise copy the new constant into a register and replace
1629 constant with that register. */
1630 temp = gen_reg_rtx (Pmode);
1631 XEXP (x, 0) = new;
1632 if (validate_change (object, &XEXP (x, 1), temp, 0))
1633 emit_insn_before (gen_move_insn (temp, new_offset), object);
1634 else
1636 /* If that didn't work, replace this expression with a
1637 register containing the sum. */
1639 XEXP (x, 0) = old;
1640 new = gen_rtx_PLUS (Pmode, new, new_offset);
1642 start_sequence ();
1643 temp = force_operand (new, NULL_RTX);
1644 seq = get_insns ();
1645 end_sequence ();
1647 emit_insn_before (seq, object);
1648 if (! validate_change (object, loc, temp, 0)
1649 && ! validate_replace_rtx (x, temp, object))
1651 instantiate_virtual_regs_lossage (object);
1652 return 1;
1657 return 1;
1660 /* Fall through to generic two-operand expression case. */
1661 case EXPR_LIST:
1662 case CALL:
1663 case COMPARE:
1664 case MINUS:
1665 case MULT:
1666 case DIV: case UDIV:
1667 case MOD: case UMOD:
1668 case AND: case IOR: case XOR:
1669 case ROTATERT: case ROTATE:
1670 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1671 case NE: case EQ:
1672 case GE: case GT: case GEU: case GTU:
1673 case LE: case LT: case LEU: case LTU:
1674 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1675 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1676 loc = &XEXP (x, 0);
1677 goto restart;
1679 case MEM:
1680 /* Most cases of MEM that convert to valid addresses have already been
1681 handled by our scan of decls. The only special handling we
1682 need here is to make a copy of the rtx to ensure it isn't being
1683 shared if we have to change it to a pseudo.
1685 If the rtx is a simple reference to an address via a virtual register,
1686 it can potentially be shared. In such cases, first try to make it
1687 a valid address, which can also be shared. Otherwise, copy it and
1688 proceed normally.
1690 First check for common cases that need no processing. These are
1691 usually due to instantiation already being done on a previous instance
1692 of a shared rtx. */
1694 temp = XEXP (x, 0);
1695 if (CONSTANT_ADDRESS_P (temp)
1696 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1697 || temp == arg_pointer_rtx
1698 #endif
1699 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1700 || temp == hard_frame_pointer_rtx
1701 #endif
1702 || temp == frame_pointer_rtx)
1703 return 1;
1705 if (GET_CODE (temp) == PLUS
1706 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1707 && (XEXP (temp, 0) == frame_pointer_rtx
1708 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1709 || XEXP (temp, 0) == hard_frame_pointer_rtx
1710 #endif
1711 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1712 || XEXP (temp, 0) == arg_pointer_rtx
1713 #endif
1715 return 1;
1717 if (temp == virtual_stack_vars_rtx
1718 || temp == virtual_incoming_args_rtx
1719 || (GET_CODE (temp) == PLUS
1720 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1721 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1722 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1724 /* This MEM may be shared. If the substitution can be done without
1725 the need to generate new pseudos, we want to do it in place
1726 so all copies of the shared rtx benefit. The call below will
1727 only make substitutions if the resulting address is still
1728 valid.
1730 Note that we cannot pass X as the object in the recursive call
1731 since the insn being processed may not allow all valid
1732 addresses. However, if we were not passed on object, we can
1733 only modify X without copying it if X will have a valid
1734 address.
1736 ??? Also note that this can still lose if OBJECT is an insn that
1737 has less restrictions on an address that some other insn.
1738 In that case, we will modify the shared address. This case
1739 doesn't seem very likely, though. One case where this could
1740 happen is in the case of a USE or CLOBBER reference, but we
1741 take care of that below. */
1743 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1744 object ? object : x, 0))
1745 return 1;
1747 /* Otherwise make a copy and process that copy. We copy the entire
1748 RTL expression since it might be a PLUS which could also be
1749 shared. */
1750 *loc = x = copy_rtx (x);
1753 /* Fall through to generic unary operation case. */
1754 case PREFETCH:
1755 case SUBREG:
1756 case STRICT_LOW_PART:
1757 case NEG: case NOT:
1758 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1759 case SIGN_EXTEND: case ZERO_EXTEND:
1760 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1761 case FLOAT: case FIX:
1762 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1763 case ABS:
1764 case SQRT:
1765 case FFS:
1766 case CLZ: case CTZ:
1767 case POPCOUNT: case PARITY:
1768 /* These case either have just one operand or we know that we need not
1769 check the rest of the operands. */
1770 loc = &XEXP (x, 0);
1771 goto restart;
1773 case USE:
1774 case CLOBBER:
1775 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1776 go ahead and make the invalid one, but do it to a copy. For a REG,
1777 just make the recursive call, since there's no chance of a problem. */
1779 if ((MEM_P (XEXP (x, 0))
1780 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1782 || (REG_P (XEXP (x, 0))
1783 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1784 return 1;
1786 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1787 loc = &XEXP (x, 0);
1788 goto restart;
1790 case REG:
1791 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1792 in front of this insn and substitute the temporary. */
1793 if ((new = instantiate_new_reg (x, &offset)) != 0)
1795 temp = plus_constant (new, offset);
1796 if (!validate_change (object, loc, temp, 0))
1798 if (! extra_insns)
1799 return 0;
1801 start_sequence ();
1802 temp = force_operand (temp, NULL_RTX);
1803 seq = get_insns ();
1804 end_sequence ();
1806 emit_insn_before (seq, object);
1807 if (! validate_change (object, loc, temp, 0)
1808 && ! validate_replace_rtx (x, temp, object))
1809 instantiate_virtual_regs_lossage (object);
1813 return 1;
1815 default:
1816 break;
1819 /* Scan all subexpressions. */
1820 fmt = GET_RTX_FORMAT (code);
1821 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1822 if (*fmt == 'e')
1824 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1825 return 0;
1827 else if (*fmt == 'E')
1828 for (j = 0; j < XVECLEN (x, i); j++)
1829 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1830 extra_insns))
1831 return 0;
1833 return 1;
1836 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1837 This means a type for which function calls must pass an address to the
1838 function or get an address back from the function.
1839 EXP may be a type node or an expression (whose type is tested). */
1842 aggregate_value_p (tree exp, tree fntype)
1844 int i, regno, nregs;
1845 rtx reg;
1847 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1849 if (fntype)
1850 switch (TREE_CODE (fntype))
1852 case CALL_EXPR:
1853 fntype = get_callee_fndecl (fntype);
1854 fntype = fntype ? TREE_TYPE (fntype) : 0;
1855 break;
1856 case FUNCTION_DECL:
1857 fntype = TREE_TYPE (fntype);
1858 break;
1859 case FUNCTION_TYPE:
1860 case METHOD_TYPE:
1861 break;
1862 case IDENTIFIER_NODE:
1863 fntype = 0;
1864 break;
1865 default:
1866 /* We don't expect other rtl types here. */
1867 abort();
1870 if (TREE_CODE (type) == VOID_TYPE)
1871 return 0;
1872 /* If the front end has decided that this needs to be passed by
1873 reference, do so. */
1874 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1875 && DECL_BY_REFERENCE (exp))
1876 return 1;
1877 if (targetm.calls.return_in_memory (type, fntype))
1878 return 1;
1879 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1880 and thus can't be returned in registers. */
1881 if (TREE_ADDRESSABLE (type))
1882 return 1;
1883 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1884 return 1;
1885 /* Make sure we have suitable call-clobbered regs to return
1886 the value in; if not, we must return it in memory. */
1887 reg = hard_function_value (type, 0, 0);
1889 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1890 it is OK. */
1891 if (!REG_P (reg))
1892 return 0;
1894 regno = REGNO (reg);
1895 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1896 for (i = 0; i < nregs; i++)
1897 if (! call_used_regs[regno + i])
1898 return 1;
1899 return 0;
1902 /* Return true if we should assign DECL a pseudo register; false if it
1903 should live on the local stack. */
1905 bool
1906 use_register_for_decl (tree decl)
1908 /* Honor volatile. */
1909 if (TREE_SIDE_EFFECTS (decl))
1910 return false;
1912 /* Honor addressability. */
1913 if (TREE_ADDRESSABLE (decl))
1914 return false;
1916 /* Only register-like things go in registers. */
1917 if (DECL_MODE (decl) == BLKmode)
1918 return false;
1920 /* If -ffloat-store specified, don't put explicit float variables
1921 into registers. */
1922 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1923 propagates values across these stores, and it probably shouldn't. */
1924 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1925 return false;
1927 /* Compiler-generated temporaries can always go in registers. */
1928 if (DECL_ARTIFICIAL (decl))
1929 return true;
1931 #ifdef NON_SAVING_SETJMP
1932 /* Protect variables not declared "register" from setjmp. */
1933 if (NON_SAVING_SETJMP
1934 && current_function_calls_setjmp
1935 && !DECL_REGISTER (decl))
1936 return false;
1937 #endif
1939 return (optimize || DECL_REGISTER (decl));
1942 /* Return true if TYPE should be passed by invisible reference. */
1944 bool
1945 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1946 tree type, bool named_arg)
1948 if (type)
1950 /* If this type contains non-trivial constructors, then it is
1951 forbidden for the middle-end to create any new copies. */
1952 if (TREE_ADDRESSABLE (type))
1953 return true;
1955 /* GCC post 3.4 passes *all* variable sized types by reference. */
1956 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1957 return true;
1960 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1963 /* Structures to communicate between the subroutines of assign_parms.
1964 The first holds data persistent across all parameters, the second
1965 is cleared out for each parameter. */
1967 struct assign_parm_data_all
1969 CUMULATIVE_ARGS args_so_far;
1970 struct args_size stack_args_size;
1971 tree function_result_decl;
1972 tree orig_fnargs;
1973 rtx conversion_insns;
1974 HOST_WIDE_INT pretend_args_size;
1975 HOST_WIDE_INT extra_pretend_bytes;
1976 int reg_parm_stack_space;
1979 struct assign_parm_data_one
1981 tree nominal_type;
1982 tree passed_type;
1983 rtx entry_parm;
1984 rtx stack_parm;
1985 enum machine_mode nominal_mode;
1986 enum machine_mode passed_mode;
1987 enum machine_mode promoted_mode;
1988 struct locate_and_pad_arg_data locate;
1989 int partial;
1990 BOOL_BITFIELD named_arg : 1;
1991 BOOL_BITFIELD last_named : 1;
1992 BOOL_BITFIELD passed_pointer : 1;
1993 BOOL_BITFIELD on_stack : 1;
1994 BOOL_BITFIELD loaded_in_reg : 1;
1997 /* A subroutine of assign_parms. Initialize ALL. */
1999 static void
2000 assign_parms_initialize_all (struct assign_parm_data_all *all)
2002 tree fntype;
2004 memset (all, 0, sizeof (*all));
2006 fntype = TREE_TYPE (current_function_decl);
2008 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2009 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2010 #else
2011 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2012 current_function_decl, -1);
2013 #endif
2015 #ifdef REG_PARM_STACK_SPACE
2016 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2017 #endif
2020 /* If ARGS contains entries with complex types, split the entry into two
2021 entries of the component type. Return a new list of substitutions are
2022 needed, else the old list. */
2024 static tree
2025 split_complex_args (tree args)
2027 tree p;
2029 /* Before allocating memory, check for the common case of no complex. */
2030 for (p = args; p; p = TREE_CHAIN (p))
2032 tree type = TREE_TYPE (p);
2033 if (TREE_CODE (type) == COMPLEX_TYPE
2034 && targetm.calls.split_complex_arg (type))
2035 goto found;
2037 return args;
2039 found:
2040 args = copy_list (args);
2042 for (p = args; p; p = TREE_CHAIN (p))
2044 tree type = TREE_TYPE (p);
2045 if (TREE_CODE (type) == COMPLEX_TYPE
2046 && targetm.calls.split_complex_arg (type))
2048 tree decl;
2049 tree subtype = TREE_TYPE (type);
2051 /* Rewrite the PARM_DECL's type with its component. */
2052 TREE_TYPE (p) = subtype;
2053 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2054 DECL_MODE (p) = VOIDmode;
2055 DECL_SIZE (p) = NULL;
2056 DECL_SIZE_UNIT (p) = NULL;
2057 layout_decl (p, 0);
2059 /* Build a second synthetic decl. */
2060 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2061 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2062 layout_decl (decl, 0);
2064 /* Splice it in; skip the new decl. */
2065 TREE_CHAIN (decl) = TREE_CHAIN (p);
2066 TREE_CHAIN (p) = decl;
2067 p = decl;
2071 return args;
2074 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2075 the hidden struct return argument, and (abi willing) complex args.
2076 Return the new parameter list. */
2078 static tree
2079 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2081 tree fndecl = current_function_decl;
2082 tree fntype = TREE_TYPE (fndecl);
2083 tree fnargs = DECL_ARGUMENTS (fndecl);
2085 /* If struct value address is treated as the first argument, make it so. */
2086 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2087 && ! current_function_returns_pcc_struct
2088 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2090 tree type = build_pointer_type (TREE_TYPE (fntype));
2091 tree decl;
2093 decl = build_decl (PARM_DECL, NULL_TREE, type);
2094 DECL_ARG_TYPE (decl) = type;
2095 DECL_ARTIFICIAL (decl) = 1;
2097 TREE_CHAIN (decl) = fnargs;
2098 fnargs = decl;
2099 all->function_result_decl = decl;
2102 all->orig_fnargs = fnargs;
2104 /* If the target wants to split complex arguments into scalars, do so. */
2105 if (targetm.calls.split_complex_arg)
2106 fnargs = split_complex_args (fnargs);
2108 return fnargs;
2111 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2112 data for the parameter. Incorporate ABI specifics such as pass-by-
2113 reference and type promotion. */
2115 static void
2116 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2117 struct assign_parm_data_one *data)
2119 tree nominal_type, passed_type;
2120 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2122 memset (data, 0, sizeof (*data));
2124 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2125 if (current_function_stdarg)
2127 tree tem;
2128 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2129 if (DECL_NAME (tem))
2130 break;
2131 if (tem == 0)
2132 data->last_named = true;
2135 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2136 most machines, if this is a varargs/stdarg function, then we treat
2137 the last named arg as if it were anonymous too. */
2138 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2139 data->named_arg = 1;
2140 else
2141 data->named_arg = !data->last_named;
2143 nominal_type = TREE_TYPE (parm);
2144 passed_type = DECL_ARG_TYPE (parm);
2146 /* Look out for errors propagating this far. Also, if the parameter's
2147 type is void then its value doesn't matter. */
2148 if (TREE_TYPE (parm) == error_mark_node
2149 /* This can happen after weird syntax errors
2150 or if an enum type is defined among the parms. */
2151 || TREE_CODE (parm) != PARM_DECL
2152 || passed_type == NULL
2153 || VOID_TYPE_P (nominal_type))
2155 nominal_type = passed_type = void_type_node;
2156 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2157 goto egress;
2160 /* Find mode of arg as it is passed, and mode of arg as it should be
2161 during execution of this function. */
2162 passed_mode = TYPE_MODE (passed_type);
2163 nominal_mode = TYPE_MODE (nominal_type);
2165 /* If the parm is to be passed as a transparent union, use the type of
2166 the first field for the tests below. We have already verified that
2167 the modes are the same. */
2168 if (DECL_TRANSPARENT_UNION (parm)
2169 || (TREE_CODE (passed_type) == UNION_TYPE
2170 && TYPE_TRANSPARENT_UNION (passed_type)))
2171 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2173 /* See if this arg was passed by invisible reference. */
2174 if (pass_by_reference (&all->args_so_far, passed_mode,
2175 passed_type, data->named_arg))
2177 passed_type = nominal_type = build_pointer_type (passed_type);
2178 data->passed_pointer = true;
2179 passed_mode = nominal_mode = Pmode;
2182 /* Find mode as it is passed by the ABI. */
2183 promoted_mode = passed_mode;
2184 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2186 int unsignedp = TYPE_UNSIGNED (passed_type);
2187 promoted_mode = promote_mode (passed_type, promoted_mode,
2188 &unsignedp, 1);
2191 egress:
2192 data->nominal_type = nominal_type;
2193 data->passed_type = passed_type;
2194 data->nominal_mode = nominal_mode;
2195 data->passed_mode = passed_mode;
2196 data->promoted_mode = promoted_mode;
2199 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2201 static void
2202 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2203 struct assign_parm_data_one *data, bool no_rtl)
2205 int varargs_pretend_bytes = 0;
2207 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2208 data->promoted_mode,
2209 data->passed_type,
2210 &varargs_pretend_bytes, no_rtl);
2212 /* If the back-end has requested extra stack space, record how much is
2213 needed. Do not change pretend_args_size otherwise since it may be
2214 nonzero from an earlier partial argument. */
2215 if (varargs_pretend_bytes > 0)
2216 all->pretend_args_size = varargs_pretend_bytes;
2219 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2220 the incoming location of the current parameter. */
2222 static void
2223 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2224 struct assign_parm_data_one *data)
2226 HOST_WIDE_INT pretend_bytes = 0;
2227 rtx entry_parm;
2228 bool in_regs;
2230 if (data->promoted_mode == VOIDmode)
2232 data->entry_parm = data->stack_parm = const0_rtx;
2233 return;
2236 #ifdef FUNCTION_INCOMING_ARG
2237 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2238 data->passed_type, data->named_arg);
2239 #else
2240 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2241 data->passed_type, data->named_arg);
2242 #endif
2244 if (entry_parm == 0)
2245 data->promoted_mode = data->passed_mode;
2247 /* Determine parm's home in the stack, in case it arrives in the stack
2248 or we should pretend it did. Compute the stack position and rtx where
2249 the argument arrives and its size.
2251 There is one complexity here: If this was a parameter that would
2252 have been passed in registers, but wasn't only because it is
2253 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2254 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2255 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2256 as it was the previous time. */
2257 in_regs = entry_parm != 0;
2258 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2259 in_regs = true;
2260 #endif
2261 if (!in_regs && !data->named_arg)
2263 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2265 rtx tem;
2266 #ifdef FUNCTION_INCOMING_ARG
2267 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2268 data->passed_type, true);
2269 #else
2270 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2271 data->passed_type, true);
2272 #endif
2273 in_regs = tem != NULL;
2277 /* If this parameter was passed both in registers and in the stack, use
2278 the copy on the stack. */
2279 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2280 data->passed_type))
2281 entry_parm = 0;
2283 if (entry_parm)
2285 int partial;
2287 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2288 data->promoted_mode,
2289 data->passed_type,
2290 data->named_arg);
2291 data->partial = partial;
2293 /* The caller might already have allocated stack space for the
2294 register parameters. */
2295 if (partial != 0 && all->reg_parm_stack_space == 0)
2297 /* Part of this argument is passed in registers and part
2298 is passed on the stack. Ask the prologue code to extend
2299 the stack part so that we can recreate the full value.
2301 PRETEND_BYTES is the size of the registers we need to store.
2302 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2303 stack space that the prologue should allocate.
2305 Internally, gcc assumes that the argument pointer is aligned
2306 to STACK_BOUNDARY bits. This is used both for alignment
2307 optimizations (see init_emit) and to locate arguments that are
2308 aligned to more than PARM_BOUNDARY bits. We must preserve this
2309 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2310 a stack boundary. */
2312 /* We assume at most one partial arg, and it must be the first
2313 argument on the stack. */
2314 if (all->extra_pretend_bytes || all->pretend_args_size)
2315 abort ();
2317 pretend_bytes = partial * UNITS_PER_WORD;
2318 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2320 /* We want to align relative to the actual stack pointer, so
2321 don't include this in the stack size until later. */
2322 all->extra_pretend_bytes = all->pretend_args_size;
2326 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2327 entry_parm ? data->partial : 0, current_function_decl,
2328 &all->stack_args_size, &data->locate);
2330 /* Adjust offsets to include the pretend args. */
2331 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2332 data->locate.slot_offset.constant += pretend_bytes;
2333 data->locate.offset.constant += pretend_bytes;
2335 data->entry_parm = entry_parm;
2338 /* A subroutine of assign_parms. If there is actually space on the stack
2339 for this parm, count it in stack_args_size and return true. */
2341 static bool
2342 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2343 struct assign_parm_data_one *data)
2345 /* Trivially true if we've no incomming register. */
2346 if (data->entry_parm == NULL)
2348 /* Also true if we're partially in registers and partially not,
2349 since we've arranged to drop the entire argument on the stack. */
2350 else if (data->partial != 0)
2352 /* Also true if the target says that it's passed in both registers
2353 and on the stack. */
2354 else if (GET_CODE (data->entry_parm) == PARALLEL
2355 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2357 /* Also true if the target says that there's stack allocated for
2358 all register parameters. */
2359 else if (all->reg_parm_stack_space > 0)
2361 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2362 else
2363 return false;
2365 all->stack_args_size.constant += data->locate.size.constant;
2366 if (data->locate.size.var)
2367 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2369 return true;
2372 /* A subroutine of assign_parms. Given that this parameter is allocated
2373 stack space by the ABI, find it. */
2375 static void
2376 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2378 rtx offset_rtx, stack_parm;
2379 unsigned int align, boundary;
2381 /* If we're passing this arg using a reg, make its stack home the
2382 aligned stack slot. */
2383 if (data->entry_parm)
2384 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2385 else
2386 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2388 stack_parm = current_function_internal_arg_pointer;
2389 if (offset_rtx != const0_rtx)
2390 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2391 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2393 set_mem_attributes (stack_parm, parm, 1);
2395 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2396 align = 0;
2398 /* If we're padding upward, we know that the alignment of the slot
2399 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2400 intentionally forcing upward padding. Otherwise we have to come
2401 up with a guess at the alignment based on OFFSET_RTX. */
2402 if (data->locate.where_pad == upward || data->entry_parm)
2403 align = boundary;
2404 else if (GET_CODE (offset_rtx) == CONST_INT)
2406 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2407 align = align & -align;
2409 if (align > 0)
2410 set_mem_align (stack_parm, align);
2412 if (data->entry_parm)
2413 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2415 data->stack_parm = stack_parm;
2418 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2419 always valid and contiguous. */
2421 static void
2422 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2424 rtx entry_parm = data->entry_parm;
2425 rtx stack_parm = data->stack_parm;
2427 /* If this parm was passed part in regs and part in memory, pretend it
2428 arrived entirely in memory by pushing the register-part onto the stack.
2429 In the special case of a DImode or DFmode that is split, we could put
2430 it together in a pseudoreg directly, but for now that's not worth
2431 bothering with. */
2432 if (data->partial != 0)
2434 /* Handle calls that pass values in multiple non-contiguous
2435 locations. The Irix 6 ABI has examples of this. */
2436 if (GET_CODE (entry_parm) == PARALLEL)
2437 emit_group_store (validize_mem (stack_parm), entry_parm,
2438 data->passed_type,
2439 int_size_in_bytes (data->passed_type));
2440 else
2441 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2442 data->partial);
2444 entry_parm = stack_parm;
2447 /* If we didn't decide this parm came in a register, by default it came
2448 on the stack. */
2449 else if (entry_parm == NULL)
2450 entry_parm = stack_parm;
2452 /* When an argument is passed in multiple locations, we can't make use
2453 of this information, but we can save some copying if the whole argument
2454 is passed in a single register. */
2455 else if (GET_CODE (entry_parm) == PARALLEL
2456 && data->nominal_mode != BLKmode
2457 && data->passed_mode != BLKmode)
2459 size_t i, len = XVECLEN (entry_parm, 0);
2461 for (i = 0; i < len; i++)
2462 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2463 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2464 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2465 == data->passed_mode)
2466 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2468 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2469 break;
2473 data->entry_parm = entry_parm;
2476 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2477 always valid and properly aligned. */
2480 static void
2481 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2483 rtx stack_parm = data->stack_parm;
2485 /* If we can't trust the parm stack slot to be aligned enough for its
2486 ultimate type, don't use that slot after entry. We'll make another
2487 stack slot, if we need one. */
2488 if (STRICT_ALIGNMENT && stack_parm
2489 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2490 stack_parm = NULL;
2492 /* If parm was passed in memory, and we need to convert it on entry,
2493 don't store it back in that same slot. */
2494 else if (data->entry_parm == stack_parm
2495 && data->nominal_mode != BLKmode
2496 && data->nominal_mode != data->passed_mode)
2497 stack_parm = NULL;
2499 data->stack_parm = stack_parm;
2502 /* A subroutine of assign_parms. Return true if the current parameter
2503 should be stored as a BLKmode in the current frame. */
2505 static bool
2506 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2508 if (data->nominal_mode == BLKmode)
2509 return true;
2510 if (GET_CODE (data->entry_parm) == PARALLEL)
2511 return true;
2513 #ifdef BLOCK_REG_PADDING
2514 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2515 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2516 return true;
2517 #endif
2519 return false;
2522 /* A subroutine of assign_parms. Arrange for the parameter to be
2523 present and valid in DATA->STACK_RTL. */
2525 static void
2526 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2528 rtx entry_parm = data->entry_parm;
2529 rtx stack_parm = data->stack_parm;
2531 /* If we've a non-block object that's nevertheless passed in parts,
2532 reconstitute it in register operations rather than on the stack. */
2533 if (GET_CODE (entry_parm) == PARALLEL
2534 && data->nominal_mode != BLKmode
2535 && XVECLEN (entry_parm, 0) > 1
2536 && optimize)
2538 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2540 emit_group_store (parmreg, entry_parm, data->nominal_type,
2541 int_size_in_bytes (data->nominal_type));
2542 SET_DECL_RTL (parm, parmreg);
2543 return;
2546 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2547 calls that pass values in multiple non-contiguous locations. */
2548 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2550 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2551 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2552 rtx mem;
2554 /* Note that we will be storing an integral number of words.
2555 So we have to be careful to ensure that we allocate an
2556 integral number of words. We do this below in the
2557 assign_stack_local if space was not allocated in the argument
2558 list. If it was, this will not work if PARM_BOUNDARY is not
2559 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2560 if it becomes a problem. Exception is when BLKmode arrives
2561 with arguments not conforming to word_mode. */
2563 if (stack_parm == 0)
2565 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2566 data->stack_parm = stack_parm;
2567 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2568 set_mem_attributes (stack_parm, parm, 1);
2570 else if (GET_CODE (entry_parm) == PARALLEL)
2572 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2573 abort ();
2575 mem = validize_mem (stack_parm);
2577 /* Handle values in multiple non-contiguous locations. */
2578 if (GET_CODE (entry_parm) == PARALLEL)
2579 emit_group_store (mem, entry_parm, data->passed_type, size);
2581 else if (size == 0)
2584 /* If SIZE is that of a mode no bigger than a word, just use
2585 that mode's store operation. */
2586 else if (size <= UNITS_PER_WORD)
2588 enum machine_mode mode
2589 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2591 if (mode != BLKmode
2592 #ifdef BLOCK_REG_PADDING
2593 && (size == UNITS_PER_WORD
2594 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2595 != (BYTES_BIG_ENDIAN ? upward : downward)))
2596 #endif
2599 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2600 emit_move_insn (change_address (mem, mode, 0), reg);
2603 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2604 machine must be aligned to the left before storing
2605 to memory. Note that the previous test doesn't
2606 handle all cases (e.g. SIZE == 3). */
2607 else if (size != UNITS_PER_WORD
2608 #ifdef BLOCK_REG_PADDING
2609 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2610 == downward)
2611 #else
2612 && BYTES_BIG_ENDIAN
2613 #endif
2616 rtx tem, x;
2617 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2618 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2620 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2621 build_int_2 (by, 0), NULL_RTX, 1);
2622 tem = change_address (mem, word_mode, 0);
2623 emit_move_insn (tem, x);
2625 else
2626 move_block_from_reg (REGNO (data->entry_parm), mem,
2627 size_stored / UNITS_PER_WORD);
2629 else
2630 move_block_from_reg (REGNO (data->entry_parm), mem,
2631 size_stored / UNITS_PER_WORD);
2634 SET_DECL_RTL (parm, stack_parm);
2637 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2638 parameter. Get it there. Perform all ABI specified conversions. */
2640 static void
2641 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2642 struct assign_parm_data_one *data)
2644 rtx parmreg;
2645 enum machine_mode promoted_nominal_mode;
2646 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2647 bool did_conversion = false;
2649 /* Store the parm in a pseudoregister during the function, but we may
2650 need to do it in a wider mode. */
2652 promoted_nominal_mode
2653 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2655 parmreg = gen_reg_rtx (promoted_nominal_mode);
2657 if (!DECL_ARTIFICIAL (parm))
2658 mark_user_reg (parmreg);
2660 /* If this was an item that we received a pointer to,
2661 set DECL_RTL appropriately. */
2662 if (data->passed_pointer)
2664 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2665 set_mem_attributes (x, parm, 1);
2666 SET_DECL_RTL (parm, x);
2668 else
2670 SET_DECL_RTL (parm, parmreg);
2671 maybe_set_unchanging (DECL_RTL (parm), parm);
2674 /* Copy the value into the register. */
2675 if (data->nominal_mode != data->passed_mode
2676 || promoted_nominal_mode != data->promoted_mode)
2678 int save_tree_used;
2680 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2681 mode, by the caller. We now have to convert it to
2682 NOMINAL_MODE, if different. However, PARMREG may be in
2683 a different mode than NOMINAL_MODE if it is being stored
2684 promoted.
2686 If ENTRY_PARM is a hard register, it might be in a register
2687 not valid for operating in its mode (e.g., an odd-numbered
2688 register for a DFmode). In that case, moves are the only
2689 thing valid, so we can't do a convert from there. This
2690 occurs when the calling sequence allow such misaligned
2691 usages.
2693 In addition, the conversion may involve a call, which could
2694 clobber parameters which haven't been copied to pseudo
2695 registers yet. Therefore, we must first copy the parm to
2696 a pseudo reg here, and save the conversion until after all
2697 parameters have been moved. */
2699 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2701 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2703 push_to_sequence (all->conversion_insns);
2704 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2706 if (GET_CODE (tempreg) == SUBREG
2707 && GET_MODE (tempreg) == data->nominal_mode
2708 && REG_P (SUBREG_REG (tempreg))
2709 && data->nominal_mode == data->passed_mode
2710 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2711 && GET_MODE_SIZE (GET_MODE (tempreg))
2712 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2714 /* The argument is already sign/zero extended, so note it
2715 into the subreg. */
2716 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2717 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2720 /* TREE_USED gets set erroneously during expand_assignment. */
2721 save_tree_used = TREE_USED (parm);
2722 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2723 TREE_USED (parm) = save_tree_used;
2724 all->conversion_insns = get_insns ();
2725 end_sequence ();
2727 did_conversion = true;
2729 else
2730 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2732 /* If we were passed a pointer but the actual value can safely live
2733 in a register, put it in one. */
2734 if (data->passed_pointer
2735 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2736 /* If by-reference argument was promoted, demote it. */
2737 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2738 || use_register_for_decl (parm)))
2740 /* We can't use nominal_mode, because it will have been set to
2741 Pmode above. We must use the actual mode of the parm. */
2742 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2743 mark_user_reg (parmreg);
2745 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2747 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2748 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2750 push_to_sequence (all->conversion_insns);
2751 emit_move_insn (tempreg, DECL_RTL (parm));
2752 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2753 emit_move_insn (parmreg, tempreg);
2754 all->conversion_insns = get_insns();
2755 end_sequence ();
2757 did_conversion = true;
2759 else
2760 emit_move_insn (parmreg, DECL_RTL (parm));
2762 SET_DECL_RTL (parm, parmreg);
2764 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2765 now the parm. */
2766 data->stack_parm = NULL;
2769 /* If we are passed an arg by reference and it is our responsibility
2770 to make a copy, do it now.
2771 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2772 original argument, so we must recreate them in the call to
2773 FUNCTION_ARG_CALLEE_COPIES. */
2774 /* ??? Later add code to handle the case that if the argument isn't
2775 modified, don't do the copy. */
2777 else if (data->passed_pointer)
2779 tree type = TREE_TYPE (data->passed_type);
2781 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2782 type, data->named_arg)
2783 && !TREE_ADDRESSABLE (type))
2785 rtx copy;
2787 /* This sequence may involve a library call perhaps clobbering
2788 registers that haven't been copied to pseudos yet. */
2790 push_to_sequence (all->conversion_insns);
2792 if (!COMPLETE_TYPE_P (type)
2793 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2795 /* This is a variable sized object. */
2796 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2797 TYPE_ALIGN (type));
2798 copy = gen_rtx_MEM (BLKmode, copy);
2800 else
2801 copy = assign_stack_temp (TYPE_MODE (type),
2802 int_size_in_bytes (type), 1);
2803 set_mem_attributes (copy, parm, 1);
2805 store_expr (parm, copy, 0);
2806 emit_move_insn (parmreg, XEXP (copy, 0));
2807 all->conversion_insns = get_insns ();
2808 end_sequence ();
2810 did_conversion = true;
2814 /* Mark the register as eliminable if we did no conversion and it was
2815 copied from memory at a fixed offset, and the arg pointer was not
2816 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2817 offset formed an invalid address, such memory-equivalences as we
2818 make here would screw up life analysis for it. */
2819 if (data->nominal_mode == data->passed_mode
2820 && !did_conversion
2821 && data->stack_parm != 0
2822 && MEM_P (data->stack_parm)
2823 && data->locate.offset.var == 0
2824 && reg_mentioned_p (virtual_incoming_args_rtx,
2825 XEXP (data->stack_parm, 0)))
2827 rtx linsn = get_last_insn ();
2828 rtx sinsn, set;
2830 /* Mark complex types separately. */
2831 if (GET_CODE (parmreg) == CONCAT)
2833 enum machine_mode submode
2834 = GET_MODE_INNER (GET_MODE (parmreg));
2835 int regnor = REGNO (gen_realpart (submode, parmreg));
2836 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2837 rtx stackr = gen_realpart (submode, data->stack_parm);
2838 rtx stacki = gen_imagpart (submode, data->stack_parm);
2840 /* Scan backwards for the set of the real and
2841 imaginary parts. */
2842 for (sinsn = linsn; sinsn != 0;
2843 sinsn = prev_nonnote_insn (sinsn))
2845 set = single_set (sinsn);
2846 if (set == 0)
2847 continue;
2849 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2850 REG_NOTES (sinsn)
2851 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2852 REG_NOTES (sinsn));
2853 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2854 REG_NOTES (sinsn)
2855 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2856 REG_NOTES (sinsn));
2859 else if ((set = single_set (linsn)) != 0
2860 && SET_DEST (set) == parmreg)
2861 REG_NOTES (linsn)
2862 = gen_rtx_EXPR_LIST (REG_EQUIV,
2863 data->stack_parm, REG_NOTES (linsn));
2866 /* For pointer data type, suggest pointer register. */
2867 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2868 mark_reg_pointer (parmreg,
2869 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2872 /* A subroutine of assign_parms. Allocate stack space to hold the current
2873 parameter. Get it there. Perform all ABI specified conversions. */
2875 static void
2876 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2877 struct assign_parm_data_one *data)
2879 /* Value must be stored in the stack slot STACK_PARM during function
2880 execution. */
2882 if (data->promoted_mode != data->nominal_mode)
2884 /* Conversion is required. */
2885 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2887 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2889 push_to_sequence (all->conversion_insns);
2890 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2891 TYPE_UNSIGNED (TREE_TYPE (parm)));
2893 if (data->stack_parm)
2894 /* ??? This may need a big-endian conversion on sparc64. */
2895 data->stack_parm
2896 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2898 all->conversion_insns = get_insns ();
2899 end_sequence ();
2902 if (data->entry_parm != data->stack_parm)
2904 if (data->stack_parm == 0)
2906 data->stack_parm
2907 = assign_stack_local (GET_MODE (data->entry_parm),
2908 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2910 set_mem_attributes (data->stack_parm, parm, 1);
2913 if (data->promoted_mode != data->nominal_mode)
2915 push_to_sequence (all->conversion_insns);
2916 emit_move_insn (validize_mem (data->stack_parm),
2917 validize_mem (data->entry_parm));
2918 all->conversion_insns = get_insns ();
2919 end_sequence ();
2921 else
2922 emit_move_insn (validize_mem (data->stack_parm),
2923 validize_mem (data->entry_parm));
2926 SET_DECL_RTL (parm, data->stack_parm);
2929 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2930 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2932 static void
2933 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2935 tree parm;
2937 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2939 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2940 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2942 rtx tmp, real, imag;
2943 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2945 real = DECL_RTL (fnargs);
2946 imag = DECL_RTL (TREE_CHAIN (fnargs));
2947 if (inner != GET_MODE (real))
2949 real = gen_lowpart_SUBREG (inner, real);
2950 imag = gen_lowpart_SUBREG (inner, imag);
2952 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2953 SET_DECL_RTL (parm, tmp);
2955 real = DECL_INCOMING_RTL (fnargs);
2956 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2957 if (inner != GET_MODE (real))
2959 real = gen_lowpart_SUBREG (inner, real);
2960 imag = gen_lowpart_SUBREG (inner, imag);
2962 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2963 set_decl_incoming_rtl (parm, tmp);
2964 fnargs = TREE_CHAIN (fnargs);
2966 else
2968 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2969 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
2971 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2972 instead of the copy of decl, i.e. FNARGS. */
2973 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2974 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2977 fnargs = TREE_CHAIN (fnargs);
2981 /* Assign RTL expressions to the function's parameters. This may involve
2982 copying them into registers and using those registers as the DECL_RTL. */
2984 void
2985 assign_parms (tree fndecl)
2987 struct assign_parm_data_all all;
2988 tree fnargs, parm;
2989 rtx internal_arg_pointer;
2990 int varargs_setup = 0;
2992 /* If the reg that the virtual arg pointer will be translated into is
2993 not a fixed reg or is the stack pointer, make a copy of the virtual
2994 arg pointer, and address parms via the copy. The frame pointer is
2995 considered fixed even though it is not marked as such.
2997 The second time through, simply use ap to avoid generating rtx. */
2999 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3000 || ! (fixed_regs[ARG_POINTER_REGNUM]
3001 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3002 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3003 else
3004 internal_arg_pointer = virtual_incoming_args_rtx;
3005 current_function_internal_arg_pointer = internal_arg_pointer;
3007 assign_parms_initialize_all (&all);
3008 fnargs = assign_parms_augmented_arg_list (&all);
3010 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3012 struct assign_parm_data_one data;
3014 /* Extract the type of PARM; adjust it according to ABI. */
3015 assign_parm_find_data_types (&all, parm, &data);
3017 /* Early out for errors and void parameters. */
3018 if (data.passed_mode == VOIDmode)
3020 SET_DECL_RTL (parm, const0_rtx);
3021 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3022 continue;
3025 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3026 for the unnamed dummy argument following the last named argument.
3027 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3028 we only want to do this when we get to the actual last named
3029 argument, which will be the first time LAST_NAMED gets set. */
3030 if (data.last_named && !varargs_setup)
3032 varargs_setup = true;
3033 assign_parms_setup_varargs (&all, &data, false);
3036 /* Find out where the parameter arrives in this function. */
3037 assign_parm_find_entry_rtl (&all, &data);
3039 /* Find out where stack space for this parameter might be. */
3040 if (assign_parm_is_stack_parm (&all, &data))
3042 assign_parm_find_stack_rtl (parm, &data);
3043 assign_parm_adjust_entry_rtl (&data);
3046 /* Record permanently how this parm was passed. */
3047 set_decl_incoming_rtl (parm, data.entry_parm);
3049 /* Update info on where next arg arrives in registers. */
3050 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3051 data.passed_type, data.named_arg);
3053 assign_parm_adjust_stack_rtl (&data);
3055 if (assign_parm_setup_block_p (&data))
3056 assign_parm_setup_block (parm, &data);
3057 else if (data.passed_pointer || use_register_for_decl (parm))
3058 assign_parm_setup_reg (&all, parm, &data);
3059 else
3060 assign_parm_setup_stack (&all, parm, &data);
3063 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3064 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3066 /* Output all parameter conversion instructions (possibly including calls)
3067 now that all parameters have been copied out of hard registers. */
3068 emit_insn (all.conversion_insns);
3070 /* If we are receiving a struct value address as the first argument, set up
3071 the RTL for the function result. As this might require code to convert
3072 the transmitted address to Pmode, we do this here to ensure that possible
3073 preliminary conversions of the address have been emitted already. */
3074 if (all.function_result_decl)
3076 tree result = DECL_RESULT (current_function_decl);
3077 rtx addr = DECL_RTL (all.function_result_decl);
3078 rtx x;
3080 if (DECL_BY_REFERENCE (result))
3081 x = addr;
3082 else
3084 addr = convert_memory_address (Pmode, addr);
3085 x = gen_rtx_MEM (DECL_MODE (result), addr);
3086 set_mem_attributes (x, result, 1);
3088 SET_DECL_RTL (result, x);
3091 /* We have aligned all the args, so add space for the pretend args. */
3092 current_function_pretend_args_size = all.pretend_args_size;
3093 all.stack_args_size.constant += all.extra_pretend_bytes;
3094 current_function_args_size = all.stack_args_size.constant;
3096 /* Adjust function incoming argument size for alignment and
3097 minimum length. */
3099 #ifdef REG_PARM_STACK_SPACE
3100 current_function_args_size = MAX (current_function_args_size,
3101 REG_PARM_STACK_SPACE (fndecl));
3102 #endif
3104 current_function_args_size
3105 = ((current_function_args_size + STACK_BYTES - 1)
3106 / STACK_BYTES) * STACK_BYTES;
3108 #ifdef ARGS_GROW_DOWNWARD
3109 current_function_arg_offset_rtx
3110 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3111 : expand_expr (size_diffop (all.stack_args_size.var,
3112 size_int (-all.stack_args_size.constant)),
3113 NULL_RTX, VOIDmode, 0));
3114 #else
3115 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3116 #endif
3118 /* See how many bytes, if any, of its args a function should try to pop
3119 on return. */
3121 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3122 current_function_args_size);
3124 /* For stdarg.h function, save info about
3125 regs and stack space used by the named args. */
3127 current_function_args_info = all.args_so_far;
3129 /* Set the rtx used for the function return value. Put this in its
3130 own variable so any optimizers that need this information don't have
3131 to include tree.h. Do this here so it gets done when an inlined
3132 function gets output. */
3134 current_function_return_rtx
3135 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3136 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3138 /* If scalar return value was computed in a pseudo-reg, or was a named
3139 return value that got dumped to the stack, copy that to the hard
3140 return register. */
3141 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3143 tree decl_result = DECL_RESULT (fndecl);
3144 rtx decl_rtl = DECL_RTL (decl_result);
3146 if (REG_P (decl_rtl)
3147 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3148 : DECL_REGISTER (decl_result))
3150 rtx real_decl_rtl;
3152 #ifdef FUNCTION_OUTGOING_VALUE
3153 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3154 fndecl);
3155 #else
3156 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3157 fndecl);
3158 #endif
3159 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3160 /* The delay slot scheduler assumes that current_function_return_rtx
3161 holds the hard register containing the return value, not a
3162 temporary pseudo. */
3163 current_function_return_rtx = real_decl_rtl;
3168 /* Indicate whether REGNO is an incoming argument to the current function
3169 that was promoted to a wider mode. If so, return the RTX for the
3170 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3171 that REGNO is promoted from and whether the promotion was signed or
3172 unsigned. */
3175 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3177 tree arg;
3179 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3180 arg = TREE_CHAIN (arg))
3181 if (REG_P (DECL_INCOMING_RTL (arg))
3182 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3183 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3185 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3186 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3188 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3189 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3190 && mode != DECL_MODE (arg))
3192 *pmode = DECL_MODE (arg);
3193 *punsignedp = unsignedp;
3194 return DECL_INCOMING_RTL (arg);
3198 return 0;
3202 /* Compute the size and offset from the start of the stacked arguments for a
3203 parm passed in mode PASSED_MODE and with type TYPE.
3205 INITIAL_OFFSET_PTR points to the current offset into the stacked
3206 arguments.
3208 The starting offset and size for this parm are returned in
3209 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3210 nonzero, the offset is that of stack slot, which is returned in
3211 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3212 padding required from the initial offset ptr to the stack slot.
3214 IN_REGS is nonzero if the argument will be passed in registers. It will
3215 never be set if REG_PARM_STACK_SPACE is not defined.
3217 FNDECL is the function in which the argument was defined.
3219 There are two types of rounding that are done. The first, controlled by
3220 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3221 list to be aligned to the specific boundary (in bits). This rounding
3222 affects the initial and starting offsets, but not the argument size.
3224 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3225 optionally rounds the size of the parm to PARM_BOUNDARY. The
3226 initial offset is not affected by this rounding, while the size always
3227 is and the starting offset may be. */
3229 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3230 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3231 callers pass in the total size of args so far as
3232 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3234 void
3235 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3236 int partial, tree fndecl ATTRIBUTE_UNUSED,
3237 struct args_size *initial_offset_ptr,
3238 struct locate_and_pad_arg_data *locate)
3240 tree sizetree;
3241 enum direction where_pad;
3242 int boundary;
3243 int reg_parm_stack_space = 0;
3244 int part_size_in_regs;
3246 #ifdef REG_PARM_STACK_SPACE
3247 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3249 /* If we have found a stack parm before we reach the end of the
3250 area reserved for registers, skip that area. */
3251 if (! in_regs)
3253 if (reg_parm_stack_space > 0)
3255 if (initial_offset_ptr->var)
3257 initial_offset_ptr->var
3258 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3259 ssize_int (reg_parm_stack_space));
3260 initial_offset_ptr->constant = 0;
3262 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3263 initial_offset_ptr->constant = reg_parm_stack_space;
3266 #endif /* REG_PARM_STACK_SPACE */
3268 part_size_in_regs = 0;
3269 if (reg_parm_stack_space == 0)
3270 part_size_in_regs = ((partial * UNITS_PER_WORD)
3271 / (PARM_BOUNDARY / BITS_PER_UNIT)
3272 * (PARM_BOUNDARY / BITS_PER_UNIT));
3274 sizetree
3275 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3276 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3277 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3278 locate->where_pad = where_pad;
3280 #ifdef ARGS_GROW_DOWNWARD
3281 locate->slot_offset.constant = -initial_offset_ptr->constant;
3282 if (initial_offset_ptr->var)
3283 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3284 initial_offset_ptr->var);
3287 tree s2 = sizetree;
3288 if (where_pad != none
3289 && (!host_integerp (sizetree, 1)
3290 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3291 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3292 SUB_PARM_SIZE (locate->slot_offset, s2);
3295 locate->slot_offset.constant += part_size_in_regs;
3297 if (!in_regs
3298 #ifdef REG_PARM_STACK_SPACE
3299 || REG_PARM_STACK_SPACE (fndecl) > 0
3300 #endif
3302 pad_to_arg_alignment (&locate->slot_offset, boundary,
3303 &locate->alignment_pad);
3305 locate->size.constant = (-initial_offset_ptr->constant
3306 - locate->slot_offset.constant);
3307 if (initial_offset_ptr->var)
3308 locate->size.var = size_binop (MINUS_EXPR,
3309 size_binop (MINUS_EXPR,
3310 ssize_int (0),
3311 initial_offset_ptr->var),
3312 locate->slot_offset.var);
3314 /* Pad_below needs the pre-rounded size to know how much to pad
3315 below. */
3316 locate->offset = locate->slot_offset;
3317 if (where_pad == downward)
3318 pad_below (&locate->offset, passed_mode, sizetree);
3320 #else /* !ARGS_GROW_DOWNWARD */
3321 if (!in_regs
3322 #ifdef REG_PARM_STACK_SPACE
3323 || REG_PARM_STACK_SPACE (fndecl) > 0
3324 #endif
3326 pad_to_arg_alignment (initial_offset_ptr, boundary,
3327 &locate->alignment_pad);
3328 locate->slot_offset = *initial_offset_ptr;
3330 #ifdef PUSH_ROUNDING
3331 if (passed_mode != BLKmode)
3332 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3333 #endif
3335 /* Pad_below needs the pre-rounded size to know how much to pad below
3336 so this must be done before rounding up. */
3337 locate->offset = locate->slot_offset;
3338 if (where_pad == downward)
3339 pad_below (&locate->offset, passed_mode, sizetree);
3341 if (where_pad != none
3342 && (!host_integerp (sizetree, 1)
3343 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3344 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3346 ADD_PARM_SIZE (locate->size, sizetree);
3348 locate->size.constant -= part_size_in_regs;
3349 #endif /* ARGS_GROW_DOWNWARD */
3352 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3353 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3355 static void
3356 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3357 struct args_size *alignment_pad)
3359 tree save_var = NULL_TREE;
3360 HOST_WIDE_INT save_constant = 0;
3361 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3362 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3364 #ifdef SPARC_STACK_BOUNDARY_HACK
3365 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3366 higher than the real alignment of %sp. However, when it does this,
3367 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3368 This is a temporary hack while the sparc port is fixed. */
3369 if (SPARC_STACK_BOUNDARY_HACK)
3370 sp_offset = 0;
3371 #endif
3373 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3375 save_var = offset_ptr->var;
3376 save_constant = offset_ptr->constant;
3379 alignment_pad->var = NULL_TREE;
3380 alignment_pad->constant = 0;
3382 if (boundary > BITS_PER_UNIT)
3384 if (offset_ptr->var)
3386 tree sp_offset_tree = ssize_int (sp_offset);
3387 tree offset = size_binop (PLUS_EXPR,
3388 ARGS_SIZE_TREE (*offset_ptr),
3389 sp_offset_tree);
3390 #ifdef ARGS_GROW_DOWNWARD
3391 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3392 #else
3393 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3394 #endif
3396 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3397 /* ARGS_SIZE_TREE includes constant term. */
3398 offset_ptr->constant = 0;
3399 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3400 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3401 save_var);
3403 else
3405 offset_ptr->constant = -sp_offset +
3406 #ifdef ARGS_GROW_DOWNWARD
3407 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3408 #else
3409 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3410 #endif
3411 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3412 alignment_pad->constant = offset_ptr->constant - save_constant;
3417 static void
3418 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3420 if (passed_mode != BLKmode)
3422 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3423 offset_ptr->constant
3424 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3425 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3426 - GET_MODE_SIZE (passed_mode));
3428 else
3430 if (TREE_CODE (sizetree) != INTEGER_CST
3431 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3433 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3434 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3435 /* Add it in. */
3436 ADD_PARM_SIZE (*offset_ptr, s2);
3437 SUB_PARM_SIZE (*offset_ptr, sizetree);
3442 /* Walk the tree of blocks describing the binding levels within a function
3443 and warn about variables the might be killed by setjmp or vfork.
3444 This is done after calling flow_analysis and before global_alloc
3445 clobbers the pseudo-regs to hard regs. */
3447 void
3448 setjmp_vars_warning (tree block)
3450 tree decl, sub;
3452 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3454 if (TREE_CODE (decl) == VAR_DECL
3455 && DECL_RTL_SET_P (decl)
3456 && REG_P (DECL_RTL (decl))
3457 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3458 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3459 decl, decl);
3462 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3463 setjmp_vars_warning (sub);
3466 /* Do the appropriate part of setjmp_vars_warning
3467 but for arguments instead of local variables. */
3469 void
3470 setjmp_args_warning (void)
3472 tree decl;
3473 for (decl = DECL_ARGUMENTS (current_function_decl);
3474 decl; decl = TREE_CHAIN (decl))
3475 if (DECL_RTL (decl) != 0
3476 && REG_P (DECL_RTL (decl))
3477 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3478 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3479 decl, decl);
3483 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3484 and create duplicate blocks. */
3485 /* ??? Need an option to either create block fragments or to create
3486 abstract origin duplicates of a source block. It really depends
3487 on what optimization has been performed. */
3489 void
3490 reorder_blocks (void)
3492 tree block = DECL_INITIAL (current_function_decl);
3493 varray_type block_stack;
3495 if (block == NULL_TREE)
3496 return;
3498 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3500 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3501 clear_block_marks (block);
3503 /* Prune the old trees away, so that they don't get in the way. */
3504 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3505 BLOCK_CHAIN (block) = NULL_TREE;
3507 /* Recreate the block tree from the note nesting. */
3508 reorder_blocks_1 (get_insns (), block, &block_stack);
3509 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3511 /* Remove deleted blocks from the block fragment chains. */
3512 reorder_fix_fragments (block);
3515 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3517 void
3518 clear_block_marks (tree block)
3520 while (block)
3522 TREE_ASM_WRITTEN (block) = 0;
3523 clear_block_marks (BLOCK_SUBBLOCKS (block));
3524 block = BLOCK_CHAIN (block);
3528 static void
3529 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3531 rtx insn;
3533 for (insn = insns; insn; insn = NEXT_INSN (insn))
3535 if (NOTE_P (insn))
3537 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3539 tree block = NOTE_BLOCK (insn);
3541 /* If we have seen this block before, that means it now
3542 spans multiple address regions. Create a new fragment. */
3543 if (TREE_ASM_WRITTEN (block))
3545 tree new_block = copy_node (block);
3546 tree origin;
3548 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3549 ? BLOCK_FRAGMENT_ORIGIN (block)
3550 : block);
3551 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3552 BLOCK_FRAGMENT_CHAIN (new_block)
3553 = BLOCK_FRAGMENT_CHAIN (origin);
3554 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3556 NOTE_BLOCK (insn) = new_block;
3557 block = new_block;
3560 BLOCK_SUBBLOCKS (block) = 0;
3561 TREE_ASM_WRITTEN (block) = 1;
3562 /* When there's only one block for the entire function,
3563 current_block == block and we mustn't do this, it
3564 will cause infinite recursion. */
3565 if (block != current_block)
3567 BLOCK_SUPERCONTEXT (block) = current_block;
3568 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3569 BLOCK_SUBBLOCKS (current_block) = block;
3570 current_block = block;
3572 VARRAY_PUSH_TREE (*p_block_stack, block);
3574 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3576 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3577 VARRAY_POP (*p_block_stack);
3578 BLOCK_SUBBLOCKS (current_block)
3579 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3580 current_block = BLOCK_SUPERCONTEXT (current_block);
3586 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3587 appears in the block tree, select one of the fragments to become
3588 the new origin block. */
3590 static void
3591 reorder_fix_fragments (tree block)
3593 while (block)
3595 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3596 tree new_origin = NULL_TREE;
3598 if (dup_origin)
3600 if (! TREE_ASM_WRITTEN (dup_origin))
3602 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3604 /* Find the first of the remaining fragments. There must
3605 be at least one -- the current block. */
3606 while (! TREE_ASM_WRITTEN (new_origin))
3607 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3608 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3611 else if (! dup_origin)
3612 new_origin = block;
3614 /* Re-root the rest of the fragments to the new origin. In the
3615 case that DUP_ORIGIN was null, that means BLOCK was the origin
3616 of a chain of fragments and we want to remove those fragments
3617 that didn't make it to the output. */
3618 if (new_origin)
3620 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3621 tree chain = *pp;
3623 while (chain)
3625 if (TREE_ASM_WRITTEN (chain))
3627 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3628 *pp = chain;
3629 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3631 chain = BLOCK_FRAGMENT_CHAIN (chain);
3633 *pp = NULL_TREE;
3636 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3637 block = BLOCK_CHAIN (block);
3641 /* Reverse the order of elements in the chain T of blocks,
3642 and return the new head of the chain (old last element). */
3644 tree
3645 blocks_nreverse (tree t)
3647 tree prev = 0, decl, next;
3648 for (decl = t; decl; decl = next)
3650 next = BLOCK_CHAIN (decl);
3651 BLOCK_CHAIN (decl) = prev;
3652 prev = decl;
3654 return prev;
3657 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3658 non-NULL, list them all into VECTOR, in a depth-first preorder
3659 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3660 blocks. */
3662 static int
3663 all_blocks (tree block, tree *vector)
3665 int n_blocks = 0;
3667 while (block)
3669 TREE_ASM_WRITTEN (block) = 0;
3671 /* Record this block. */
3672 if (vector)
3673 vector[n_blocks] = block;
3675 ++n_blocks;
3677 /* Record the subblocks, and their subblocks... */
3678 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3679 vector ? vector + n_blocks : 0);
3680 block = BLOCK_CHAIN (block);
3683 return n_blocks;
3686 /* Return a vector containing all the blocks rooted at BLOCK. The
3687 number of elements in the vector is stored in N_BLOCKS_P. The
3688 vector is dynamically allocated; it is the caller's responsibility
3689 to call `free' on the pointer returned. */
3691 static tree *
3692 get_block_vector (tree block, int *n_blocks_p)
3694 tree *block_vector;
3696 *n_blocks_p = all_blocks (block, NULL);
3697 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3698 all_blocks (block, block_vector);
3700 return block_vector;
3703 static GTY(()) int next_block_index = 2;
3705 /* Set BLOCK_NUMBER for all the blocks in FN. */
3707 void
3708 number_blocks (tree fn)
3710 int i;
3711 int n_blocks;
3712 tree *block_vector;
3714 /* For SDB and XCOFF debugging output, we start numbering the blocks
3715 from 1 within each function, rather than keeping a running
3716 count. */
3717 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3718 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3719 next_block_index = 1;
3720 #endif
3722 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3724 /* The top-level BLOCK isn't numbered at all. */
3725 for (i = 1; i < n_blocks; ++i)
3726 /* We number the blocks from two. */
3727 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3729 free (block_vector);
3731 return;
3734 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3736 tree
3737 debug_find_var_in_block_tree (tree var, tree block)
3739 tree t;
3741 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3742 if (t == var)
3743 return block;
3745 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3747 tree ret = debug_find_var_in_block_tree (var, t);
3748 if (ret)
3749 return ret;
3752 return NULL_TREE;
3755 /* Allocate a function structure for FNDECL and set its contents
3756 to the defaults. */
3758 void
3759 allocate_struct_function (tree fndecl)
3761 tree result;
3762 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3764 cfun = ggc_alloc_cleared (sizeof (struct function));
3766 cfun->stack_alignment_needed = STACK_BOUNDARY;
3767 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3769 current_function_funcdef_no = funcdef_no++;
3771 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3773 init_eh_for_function ();
3775 lang_hooks.function.init (cfun);
3776 if (init_machine_status)
3777 cfun->machine = (*init_machine_status) ();
3779 if (fndecl == NULL)
3780 return;
3782 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3783 cfun->decl = fndecl;
3785 result = DECL_RESULT (fndecl);
3786 if (aggregate_value_p (result, fndecl))
3788 #ifdef PCC_STATIC_STRUCT_RETURN
3789 current_function_returns_pcc_struct = 1;
3790 #endif
3791 current_function_returns_struct = 1;
3794 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3796 current_function_stdarg
3797 = (fntype
3798 && TYPE_ARG_TYPES (fntype) != 0
3799 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3800 != void_type_node));
3803 /* Reset cfun, and other non-struct-function variables to defaults as
3804 appropriate for emitting rtl at the start of a function. */
3806 static void
3807 prepare_function_start (tree fndecl)
3809 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3810 cfun = DECL_STRUCT_FUNCTION (fndecl);
3811 else
3812 allocate_struct_function (fndecl);
3813 init_emit ();
3814 init_varasm_status (cfun);
3815 init_expr ();
3817 cse_not_expected = ! optimize;
3819 /* Caller save not needed yet. */
3820 caller_save_needed = 0;
3822 /* We haven't done register allocation yet. */
3823 reg_renumber = 0;
3825 /* Indicate that we have not instantiated virtual registers yet. */
3826 virtuals_instantiated = 0;
3828 /* Indicate that we want CONCATs now. */
3829 generating_concat_p = 1;
3831 /* Indicate we have no need of a frame pointer yet. */
3832 frame_pointer_needed = 0;
3835 /* Initialize the rtl expansion mechanism so that we can do simple things
3836 like generate sequences. This is used to provide a context during global
3837 initialization of some passes. */
3838 void
3839 init_dummy_function_start (void)
3841 prepare_function_start (NULL);
3844 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3845 and initialize static variables for generating RTL for the statements
3846 of the function. */
3848 void
3849 init_function_start (tree subr)
3851 prepare_function_start (subr);
3853 /* Prevent ever trying to delete the first instruction of a
3854 function. Also tell final how to output a linenum before the
3855 function prologue. Note linenums could be missing, e.g. when
3856 compiling a Java .class file. */
3857 if (! DECL_IS_BUILTIN (subr))
3858 emit_line_note (DECL_SOURCE_LOCATION (subr));
3860 /* Make sure first insn is a note even if we don't want linenums.
3861 This makes sure the first insn will never be deleted.
3862 Also, final expects a note to appear there. */
3863 emit_note (NOTE_INSN_DELETED);
3865 /* Warn if this value is an aggregate type,
3866 regardless of which calling convention we are using for it. */
3867 if (warn_aggregate_return
3868 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
3869 warning ("function returns an aggregate");
3872 /* Make sure all values used by the optimization passes have sane
3873 defaults. */
3874 void
3875 init_function_for_compilation (void)
3877 reg_renumber = 0;
3879 /* No prologue/epilogue insns yet. */
3880 VARRAY_GROW (prologue, 0);
3881 VARRAY_GROW (epilogue, 0);
3882 VARRAY_GROW (sibcall_epilogue, 0);
3885 /* Expand a call to __main at the beginning of a possible main function. */
3887 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3888 #undef HAS_INIT_SECTION
3889 #define HAS_INIT_SECTION
3890 #endif
3892 void
3893 expand_main_function (void)
3895 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3896 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3898 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
3899 rtx tmp, seq;
3901 start_sequence ();
3902 /* Forcibly align the stack. */
3903 #ifdef STACK_GROWS_DOWNWARD
3904 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3905 stack_pointer_rtx, 1, OPTAB_WIDEN);
3906 #else
3907 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3908 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3909 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3910 stack_pointer_rtx, 1, OPTAB_WIDEN);
3911 #endif
3912 if (tmp != stack_pointer_rtx)
3913 emit_move_insn (stack_pointer_rtx, tmp);
3915 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3916 tmp = force_reg (Pmode, const0_rtx);
3917 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
3918 seq = get_insns ();
3919 end_sequence ();
3921 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3922 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3923 break;
3924 if (tmp)
3925 emit_insn_before (seq, tmp);
3926 else
3927 emit_insn (seq);
3929 #endif
3931 #ifndef HAS_INIT_SECTION
3932 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
3933 #endif
3936 /* The PENDING_SIZES represent the sizes of variable-sized types.
3937 Create RTL for the various sizes now (using temporary variables),
3938 so that we can refer to the sizes from the RTL we are generating
3939 for the current function. The PENDING_SIZES are a TREE_LIST. The
3940 TREE_VALUE of each node is a SAVE_EXPR. */
3942 void
3943 expand_pending_sizes (tree pending_sizes)
3945 tree tem;
3947 /* Evaluate now the sizes of any types declared among the arguments. */
3948 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
3949 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
3952 /* Start the RTL for a new function, and set variables used for
3953 emitting RTL.
3954 SUBR is the FUNCTION_DECL node.
3955 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3956 the function's parameters, which must be run at any return statement. */
3958 void
3959 expand_function_start (tree subr)
3961 /* Make sure volatile mem refs aren't considered
3962 valid operands of arithmetic insns. */
3963 init_recog_no_volatile ();
3965 current_function_profile
3966 = (profile_flag
3967 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3969 current_function_limit_stack
3970 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3972 /* Make the label for return statements to jump to. Do not special
3973 case machines with special return instructions -- they will be
3974 handled later during jump, ifcvt, or epilogue creation. */
3975 return_label = gen_label_rtx ();
3977 /* Initialize rtx used to return the value. */
3978 /* Do this before assign_parms so that we copy the struct value address
3979 before any library calls that assign parms might generate. */
3981 /* Decide whether to return the value in memory or in a register. */
3982 if (aggregate_value_p (DECL_RESULT (subr), subr))
3984 /* Returning something that won't go in a register. */
3985 rtx value_address = 0;
3987 #ifdef PCC_STATIC_STRUCT_RETURN
3988 if (current_function_returns_pcc_struct)
3990 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3991 value_address = assemble_static_space (size);
3993 else
3994 #endif
3996 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
3997 /* Expect to be passed the address of a place to store the value.
3998 If it is passed as an argument, assign_parms will take care of
3999 it. */
4000 if (sv)
4002 value_address = gen_reg_rtx (Pmode);
4003 emit_move_insn (value_address, sv);
4006 if (value_address)
4008 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
4009 set_mem_attributes (x, DECL_RESULT (subr), 1);
4010 SET_DECL_RTL (DECL_RESULT (subr), x);
4013 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4014 /* If return mode is void, this decl rtl should not be used. */
4015 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4016 else
4018 /* Compute the return values into a pseudo reg, which we will copy
4019 into the true return register after the cleanups are done. */
4021 /* In order to figure out what mode to use for the pseudo, we
4022 figure out what the mode of the eventual return register will
4023 actually be, and use that. */
4024 rtx hard_reg
4025 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4026 subr, 1);
4028 /* Structures that are returned in registers are not aggregate_value_p,
4029 so we may see a PARALLEL or a REG. */
4030 if (REG_P (hard_reg))
4031 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4032 else if (GET_CODE (hard_reg) == PARALLEL)
4033 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4034 else
4035 abort ();
4037 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4038 result to the real return register(s). */
4039 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4042 /* Initialize rtx for parameters and local variables.
4043 In some cases this requires emitting insns. */
4044 assign_parms (subr);
4046 /* If function gets a static chain arg, store it. */
4047 if (cfun->static_chain_decl)
4049 tree parm = cfun->static_chain_decl;
4050 rtx local = gen_reg_rtx (Pmode);
4052 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4053 SET_DECL_RTL (parm, local);
4054 maybe_set_unchanging (local, parm);
4055 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4057 emit_move_insn (local, static_chain_incoming_rtx);
4060 /* If the function receives a non-local goto, then store the
4061 bits we need to restore the frame pointer. */
4062 if (cfun->nonlocal_goto_save_area)
4064 tree t_save;
4065 rtx r_save;
4067 /* ??? We need to do this save early. Unfortunately here is
4068 before the frame variable gets declared. Help out... */
4069 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4071 t_save = build4 (ARRAY_REF, ptr_type_node,
4072 cfun->nonlocal_goto_save_area,
4073 integer_zero_node, NULL_TREE, NULL_TREE);
4074 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4075 r_save = convert_memory_address (Pmode, r_save);
4077 emit_move_insn (r_save, virtual_stack_vars_rtx);
4078 update_nonlocal_goto_save_area ();
4081 /* The following was moved from init_function_start.
4082 The move is supposed to make sdb output more accurate. */
4083 /* Indicate the beginning of the function body,
4084 as opposed to parm setup. */
4085 emit_note (NOTE_INSN_FUNCTION_BEG);
4087 if (!NOTE_P (get_last_insn ()))
4088 emit_note (NOTE_INSN_DELETED);
4089 parm_birth_insn = get_last_insn ();
4091 if (current_function_profile)
4093 #ifdef PROFILE_HOOK
4094 PROFILE_HOOK (current_function_funcdef_no);
4095 #endif
4098 /* After the display initializations is where the tail-recursion label
4099 should go, if we end up needing one. Ensure we have a NOTE here
4100 since some things (like trampolines) get placed before this. */
4101 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4103 /* Evaluate now the sizes of any types declared among the arguments. */
4104 expand_pending_sizes (nreverse (get_pending_sizes ()));
4106 /* Make sure there is a line number after the function entry setup code. */
4107 force_next_line_note ();
4110 /* Undo the effects of init_dummy_function_start. */
4111 void
4112 expand_dummy_function_end (void)
4114 /* End any sequences that failed to be closed due to syntax errors. */
4115 while (in_sequence_p ())
4116 end_sequence ();
4118 /* Outside function body, can't compute type's actual size
4119 until next function's body starts. */
4121 free_after_parsing (cfun);
4122 free_after_compilation (cfun);
4123 cfun = 0;
4126 /* Call DOIT for each hard register used as a return value from
4127 the current function. */
4129 void
4130 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4132 rtx outgoing = current_function_return_rtx;
4134 if (! outgoing)
4135 return;
4137 if (REG_P (outgoing))
4138 (*doit) (outgoing, arg);
4139 else if (GET_CODE (outgoing) == PARALLEL)
4141 int i;
4143 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4145 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4147 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4148 (*doit) (x, arg);
4153 static void
4154 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4156 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4159 void
4160 clobber_return_register (void)
4162 diddle_return_value (do_clobber_return_reg, NULL);
4164 /* In case we do use pseudo to return value, clobber it too. */
4165 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4167 tree decl_result = DECL_RESULT (current_function_decl);
4168 rtx decl_rtl = DECL_RTL (decl_result);
4169 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4171 do_clobber_return_reg (decl_rtl, NULL);
4176 static void
4177 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4179 emit_insn (gen_rtx_USE (VOIDmode, reg));
4182 void
4183 use_return_register (void)
4185 diddle_return_value (do_use_return_reg, NULL);
4188 /* Possibly warn about unused parameters. */
4189 void
4190 do_warn_unused_parameter (tree fn)
4192 tree decl;
4194 for (decl = DECL_ARGUMENTS (fn);
4195 decl; decl = TREE_CHAIN (decl))
4196 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4197 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4198 warning ("%Junused parameter '%D'", decl, decl);
4201 static GTY(()) rtx initial_trampoline;
4203 /* Generate RTL for the end of the current function. */
4205 void
4206 expand_function_end (void)
4208 rtx clobber_after;
4210 /* If arg_pointer_save_area was referenced only from a nested
4211 function, we will not have initialized it yet. Do that now. */
4212 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4213 get_arg_pointer_save_area (cfun);
4215 /* If we are doing stack checking and this function makes calls,
4216 do a stack probe at the start of the function to ensure we have enough
4217 space for another stack frame. */
4218 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4220 rtx insn, seq;
4222 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4223 if (CALL_P (insn))
4225 start_sequence ();
4226 probe_stack_range (STACK_CHECK_PROTECT,
4227 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4228 seq = get_insns ();
4229 end_sequence ();
4230 emit_insn_before (seq, tail_recursion_reentry);
4231 break;
4235 /* Possibly warn about unused parameters.
4236 When frontend does unit-at-a-time, the warning is already
4237 issued at finalization time. */
4238 if (warn_unused_parameter
4239 && !lang_hooks.callgraph.expand_function)
4240 do_warn_unused_parameter (current_function_decl);
4242 /* End any sequences that failed to be closed due to syntax errors. */
4243 while (in_sequence_p ())
4244 end_sequence ();
4246 clear_pending_stack_adjust ();
4247 do_pending_stack_adjust ();
4249 /* @@@ This is a kludge. We want to ensure that instructions that
4250 may trap are not moved into the epilogue by scheduling, because
4251 we don't always emit unwind information for the epilogue.
4252 However, not all machine descriptions define a blockage insn, so
4253 emit an ASM_INPUT to act as one. */
4254 if (flag_non_call_exceptions)
4255 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4257 /* Mark the end of the function body.
4258 If control reaches this insn, the function can drop through
4259 without returning a value. */
4260 emit_note (NOTE_INSN_FUNCTION_END);
4262 /* Must mark the last line number note in the function, so that the test
4263 coverage code can avoid counting the last line twice. This just tells
4264 the code to ignore the immediately following line note, since there
4265 already exists a copy of this note somewhere above. This line number
4266 note is still needed for debugging though, so we can't delete it. */
4267 if (flag_test_coverage)
4268 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4270 /* Output a linenumber for the end of the function.
4271 SDB depends on this. */
4272 force_next_line_note ();
4273 emit_line_note (input_location);
4275 /* Before the return label (if any), clobber the return
4276 registers so that they are not propagated live to the rest of
4277 the function. This can only happen with functions that drop
4278 through; if there had been a return statement, there would
4279 have either been a return rtx, or a jump to the return label.
4281 We delay actual code generation after the current_function_value_rtx
4282 is computed. */
4283 clobber_after = get_last_insn ();
4285 /* Output the label for the actual return from the function,
4286 if one is expected. This happens either because a function epilogue
4287 is used instead of a return instruction, or because a return was done
4288 with a goto in order to run local cleanups, or because of pcc-style
4289 structure returning. */
4290 if (return_label)
4291 emit_label (return_label);
4293 /* Let except.c know where it should emit the call to unregister
4294 the function context for sjlj exceptions. */
4295 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4296 sjlj_emit_function_exit_after (get_last_insn ());
4298 /* If we had calls to alloca, and this machine needs
4299 an accurate stack pointer to exit the function,
4300 insert some code to save and restore the stack pointer. */
4301 if (! EXIT_IGNORE_STACK
4302 && current_function_calls_alloca)
4304 rtx tem = 0;
4306 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4307 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4310 /* If scalar return value was computed in a pseudo-reg, or was a named
4311 return value that got dumped to the stack, copy that to the hard
4312 return register. */
4313 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4315 tree decl_result = DECL_RESULT (current_function_decl);
4316 rtx decl_rtl = DECL_RTL (decl_result);
4318 if (REG_P (decl_rtl)
4319 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4320 : DECL_REGISTER (decl_result))
4322 rtx real_decl_rtl = current_function_return_rtx;
4324 /* This should be set in assign_parms. */
4325 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4326 abort ();
4328 /* If this is a BLKmode structure being returned in registers,
4329 then use the mode computed in expand_return. Note that if
4330 decl_rtl is memory, then its mode may have been changed,
4331 but that current_function_return_rtx has not. */
4332 if (GET_MODE (real_decl_rtl) == BLKmode)
4333 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4335 /* If a named return value dumped decl_return to memory, then
4336 we may need to re-do the PROMOTE_MODE signed/unsigned
4337 extension. */
4338 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4340 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4342 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4343 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4344 &unsignedp, 1);
4346 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4348 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4350 /* If expand_function_start has created a PARALLEL for decl_rtl,
4351 move the result to the real return registers. Otherwise, do
4352 a group load from decl_rtl for a named return. */
4353 if (GET_CODE (decl_rtl) == PARALLEL)
4354 emit_group_move (real_decl_rtl, decl_rtl);
4355 else
4356 emit_group_load (real_decl_rtl, decl_rtl,
4357 TREE_TYPE (decl_result),
4358 int_size_in_bytes (TREE_TYPE (decl_result)));
4360 else
4361 emit_move_insn (real_decl_rtl, decl_rtl);
4365 /* If returning a structure, arrange to return the address of the value
4366 in a place where debuggers expect to find it.
4368 If returning a structure PCC style,
4369 the caller also depends on this value.
4370 And current_function_returns_pcc_struct is not necessarily set. */
4371 if (current_function_returns_struct
4372 || current_function_returns_pcc_struct)
4374 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4375 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4376 rtx outgoing;
4378 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4379 type = TREE_TYPE (type);
4380 else
4381 value_address = XEXP (value_address, 0);
4383 #ifdef FUNCTION_OUTGOING_VALUE
4384 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4385 current_function_decl);
4386 #else
4387 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4388 current_function_decl);
4389 #endif
4391 /* Mark this as a function return value so integrate will delete the
4392 assignment and USE below when inlining this function. */
4393 REG_FUNCTION_VALUE_P (outgoing) = 1;
4395 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4396 value_address = convert_memory_address (GET_MODE (outgoing),
4397 value_address);
4399 emit_move_insn (outgoing, value_address);
4401 /* Show return register used to hold result (in this case the address
4402 of the result. */
4403 current_function_return_rtx = outgoing;
4406 /* If this is an implementation of throw, do what's necessary to
4407 communicate between __builtin_eh_return and the epilogue. */
4408 expand_eh_return ();
4410 /* Emit the actual code to clobber return register. */
4412 rtx seq, after;
4414 start_sequence ();
4415 clobber_return_register ();
4416 seq = get_insns ();
4417 end_sequence ();
4419 after = emit_insn_after (seq, clobber_after);
4422 /* Output the label for the naked return from the function, if one is
4423 expected. This is currently used only by __builtin_return. */
4424 if (naked_return_label)
4425 emit_label (naked_return_label);
4427 /* ??? This should no longer be necessary since stupid is no longer with
4428 us, but there are some parts of the compiler (eg reload_combine, and
4429 sh mach_dep_reorg) that still try and compute their own lifetime info
4430 instead of using the general framework. */
4431 use_return_register ();
4435 get_arg_pointer_save_area (struct function *f)
4437 rtx ret = f->x_arg_pointer_save_area;
4439 if (! ret)
4441 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4442 f->x_arg_pointer_save_area = ret;
4445 if (f == cfun && ! f->arg_pointer_save_area_init)
4447 rtx seq;
4449 /* Save the arg pointer at the beginning of the function. The
4450 generated stack slot may not be a valid memory address, so we
4451 have to check it and fix it if necessary. */
4452 start_sequence ();
4453 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4454 seq = get_insns ();
4455 end_sequence ();
4457 push_topmost_sequence ();
4458 emit_insn_after (seq, get_insns ());
4459 pop_topmost_sequence ();
4462 return ret;
4465 /* Extend a vector that records the INSN_UIDs of INSNS
4466 (a list of one or more insns). */
4468 static void
4469 record_insns (rtx insns, varray_type *vecp)
4471 int i, len;
4472 rtx tmp;
4474 tmp = insns;
4475 len = 0;
4476 while (tmp != NULL_RTX)
4478 len++;
4479 tmp = NEXT_INSN (tmp);
4482 i = VARRAY_SIZE (*vecp);
4483 VARRAY_GROW (*vecp, i + len);
4484 tmp = insns;
4485 while (tmp != NULL_RTX)
4487 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4488 i++;
4489 tmp = NEXT_INSN (tmp);
4493 /* Set the locator of the insn chain starting at INSN to LOC. */
4494 static void
4495 set_insn_locators (rtx insn, int loc)
4497 while (insn != NULL_RTX)
4499 if (INSN_P (insn))
4500 INSN_LOCATOR (insn) = loc;
4501 insn = NEXT_INSN (insn);
4505 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4506 be running after reorg, SEQUENCE rtl is possible. */
4508 static int
4509 contains (rtx insn, varray_type vec)
4511 int i, j;
4513 if (NONJUMP_INSN_P (insn)
4514 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4516 int count = 0;
4517 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4518 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4519 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4520 count++;
4521 return count;
4523 else
4525 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4526 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4527 return 1;
4529 return 0;
4533 prologue_epilogue_contains (rtx insn)
4535 if (contains (insn, prologue))
4536 return 1;
4537 if (contains (insn, epilogue))
4538 return 1;
4539 return 0;
4543 sibcall_epilogue_contains (rtx insn)
4545 if (sibcall_epilogue)
4546 return contains (insn, sibcall_epilogue);
4547 return 0;
4550 #ifdef HAVE_return
4551 /* Insert gen_return at the end of block BB. This also means updating
4552 block_for_insn appropriately. */
4554 static void
4555 emit_return_into_block (basic_block bb, rtx line_note)
4557 emit_jump_insn_after (gen_return (), BB_END (bb));
4558 if (line_note)
4559 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4561 #endif /* HAVE_return */
4563 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4565 /* These functions convert the epilogue into a variant that does not modify the
4566 stack pointer. This is used in cases where a function returns an object
4567 whose size is not known until it is computed. The called function leaves the
4568 object on the stack, leaves the stack depressed, and returns a pointer to
4569 the object.
4571 What we need to do is track all modifications and references to the stack
4572 pointer, deleting the modifications and changing the references to point to
4573 the location the stack pointer would have pointed to had the modifications
4574 taken place.
4576 These functions need to be portable so we need to make as few assumptions
4577 about the epilogue as we can. However, the epilogue basically contains
4578 three things: instructions to reset the stack pointer, instructions to
4579 reload registers, possibly including the frame pointer, and an
4580 instruction to return to the caller.
4582 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4583 We also make no attempt to validate the insns we make since if they are
4584 invalid, we probably can't do anything valid. The intent is that these
4585 routines get "smarter" as more and more machines start to use them and
4586 they try operating on different epilogues.
4588 We use the following structure to track what the part of the epilogue that
4589 we've already processed has done. We keep two copies of the SP equivalence,
4590 one for use during the insn we are processing and one for use in the next
4591 insn. The difference is because one part of a PARALLEL may adjust SP
4592 and the other may use it. */
4594 struct epi_info
4596 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4597 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4598 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4599 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4600 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4601 should be set to once we no longer need
4602 its value. */
4603 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4604 for registers. */
4607 static void handle_epilogue_set (rtx, struct epi_info *);
4608 static void update_epilogue_consts (rtx, rtx, void *);
4609 static void emit_equiv_load (struct epi_info *);
4611 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4612 no modifications to the stack pointer. Return the new list of insns. */
4614 static rtx
4615 keep_stack_depressed (rtx insns)
4617 int j;
4618 struct epi_info info;
4619 rtx insn, next;
4621 /* If the epilogue is just a single instruction, it must be OK as is. */
4622 if (NEXT_INSN (insns) == NULL_RTX)
4623 return insns;
4625 /* Otherwise, start a sequence, initialize the information we have, and
4626 process all the insns we were given. */
4627 start_sequence ();
4629 info.sp_equiv_reg = stack_pointer_rtx;
4630 info.sp_offset = 0;
4631 info.equiv_reg_src = 0;
4633 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4634 info.const_equiv[j] = 0;
4636 insn = insns;
4637 next = NULL_RTX;
4638 while (insn != NULL_RTX)
4640 next = NEXT_INSN (insn);
4642 if (!INSN_P (insn))
4644 add_insn (insn);
4645 insn = next;
4646 continue;
4649 /* If this insn references the register that SP is equivalent to and
4650 we have a pending load to that register, we must force out the load
4651 first and then indicate we no longer know what SP's equivalent is. */
4652 if (info.equiv_reg_src != 0
4653 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4655 emit_equiv_load (&info);
4656 info.sp_equiv_reg = 0;
4659 info.new_sp_equiv_reg = info.sp_equiv_reg;
4660 info.new_sp_offset = info.sp_offset;
4662 /* If this is a (RETURN) and the return address is on the stack,
4663 update the address and change to an indirect jump. */
4664 if (GET_CODE (PATTERN (insn)) == RETURN
4665 || (GET_CODE (PATTERN (insn)) == PARALLEL
4666 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4668 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4669 rtx base = 0;
4670 HOST_WIDE_INT offset = 0;
4671 rtx jump_insn, jump_set;
4673 /* If the return address is in a register, we can emit the insn
4674 unchanged. Otherwise, it must be a MEM and we see what the
4675 base register and offset are. In any case, we have to emit any
4676 pending load to the equivalent reg of SP, if any. */
4677 if (REG_P (retaddr))
4679 emit_equiv_load (&info);
4680 add_insn (insn);
4681 insn = next;
4682 continue;
4684 else if (MEM_P (retaddr)
4685 && REG_P (XEXP (retaddr, 0)))
4686 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4687 else if (MEM_P (retaddr)
4688 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4689 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4690 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4692 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4693 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4695 else
4696 abort ();
4698 /* If the base of the location containing the return pointer
4699 is SP, we must update it with the replacement address. Otherwise,
4700 just build the necessary MEM. */
4701 retaddr = plus_constant (base, offset);
4702 if (base == stack_pointer_rtx)
4703 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4704 plus_constant (info.sp_equiv_reg,
4705 info.sp_offset));
4707 retaddr = gen_rtx_MEM (Pmode, retaddr);
4709 /* If there is a pending load to the equivalent register for SP
4710 and we reference that register, we must load our address into
4711 a scratch register and then do that load. */
4712 if (info.equiv_reg_src
4713 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4715 unsigned int regno;
4716 rtx reg;
4718 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4719 if (HARD_REGNO_MODE_OK (regno, Pmode)
4720 && !fixed_regs[regno]
4721 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4722 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4723 regno)
4724 && !refers_to_regno_p (regno,
4725 regno + hard_regno_nregs[regno]
4726 [Pmode],
4727 info.equiv_reg_src, NULL)
4728 && info.const_equiv[regno] == 0)
4729 break;
4731 if (regno == FIRST_PSEUDO_REGISTER)
4732 abort ();
4734 reg = gen_rtx_REG (Pmode, regno);
4735 emit_move_insn (reg, retaddr);
4736 retaddr = reg;
4739 emit_equiv_load (&info);
4740 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4742 /* Show the SET in the above insn is a RETURN. */
4743 jump_set = single_set (jump_insn);
4744 if (jump_set == 0)
4745 abort ();
4746 else
4747 SET_IS_RETURN_P (jump_set) = 1;
4750 /* If SP is not mentioned in the pattern and its equivalent register, if
4751 any, is not modified, just emit it. Otherwise, if neither is set,
4752 replace the reference to SP and emit the insn. If none of those are
4753 true, handle each SET individually. */
4754 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4755 && (info.sp_equiv_reg == stack_pointer_rtx
4756 || !reg_set_p (info.sp_equiv_reg, insn)))
4757 add_insn (insn);
4758 else if (! reg_set_p (stack_pointer_rtx, insn)
4759 && (info.sp_equiv_reg == stack_pointer_rtx
4760 || !reg_set_p (info.sp_equiv_reg, insn)))
4762 if (! validate_replace_rtx (stack_pointer_rtx,
4763 plus_constant (info.sp_equiv_reg,
4764 info.sp_offset),
4765 insn))
4766 abort ();
4768 add_insn (insn);
4770 else if (GET_CODE (PATTERN (insn)) == SET)
4771 handle_epilogue_set (PATTERN (insn), &info);
4772 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4774 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4775 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4776 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4778 else
4779 add_insn (insn);
4781 info.sp_equiv_reg = info.new_sp_equiv_reg;
4782 info.sp_offset = info.new_sp_offset;
4784 /* Now update any constants this insn sets. */
4785 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4786 insn = next;
4789 insns = get_insns ();
4790 end_sequence ();
4791 return insns;
4794 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4795 structure that contains information about what we've seen so far. We
4796 process this SET by either updating that data or by emitting one or
4797 more insns. */
4799 static void
4800 handle_epilogue_set (rtx set, struct epi_info *p)
4802 /* First handle the case where we are setting SP. Record what it is being
4803 set from. If unknown, abort. */
4804 if (reg_set_p (stack_pointer_rtx, set))
4806 if (SET_DEST (set) != stack_pointer_rtx)
4807 abort ();
4809 if (GET_CODE (SET_SRC (set)) == PLUS)
4811 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4812 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4813 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4814 else if (REG_P (XEXP (SET_SRC (set), 1))
4815 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4816 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4817 p->new_sp_offset
4818 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4819 else
4820 abort ();
4822 else
4823 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4825 /* If we are adjusting SP, we adjust from the old data. */
4826 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4828 p->new_sp_equiv_reg = p->sp_equiv_reg;
4829 p->new_sp_offset += p->sp_offset;
4832 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4833 abort ();
4835 return;
4838 /* Next handle the case where we are setting SP's equivalent register.
4839 If we already have a value to set it to, abort. We could update, but
4840 there seems little point in handling that case. Note that we have
4841 to allow for the case where we are setting the register set in
4842 the previous part of a PARALLEL inside a single insn. But use the
4843 old offset for any updates within this insn. We must allow for the case
4844 where the register is being set in a different (usually wider) mode than
4845 Pmode). */
4846 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4848 if (p->equiv_reg_src != 0
4849 || !REG_P (p->new_sp_equiv_reg)
4850 || !REG_P (SET_DEST (set))
4851 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4852 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4853 abort ();
4854 else
4855 p->equiv_reg_src
4856 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4857 plus_constant (p->sp_equiv_reg,
4858 p->sp_offset));
4861 /* Otherwise, replace any references to SP in the insn to its new value
4862 and emit the insn. */
4863 else
4865 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4866 plus_constant (p->sp_equiv_reg,
4867 p->sp_offset));
4868 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4869 plus_constant (p->sp_equiv_reg,
4870 p->sp_offset));
4871 emit_insn (set);
4875 /* Update the tracking information for registers set to constants. */
4877 static void
4878 update_epilogue_consts (rtx dest, rtx x, void *data)
4880 struct epi_info *p = (struct epi_info *) data;
4881 rtx new;
4883 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4884 return;
4886 /* If we are either clobbering a register or doing a partial set,
4887 show we don't know the value. */
4888 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
4889 p->const_equiv[REGNO (dest)] = 0;
4891 /* If we are setting it to a constant, record that constant. */
4892 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
4893 p->const_equiv[REGNO (dest)] = SET_SRC (x);
4895 /* If this is a binary operation between a register we have been tracking
4896 and a constant, see if we can compute a new constant value. */
4897 else if (ARITHMETIC_P (SET_SRC (x))
4898 && REG_P (XEXP (SET_SRC (x), 0))
4899 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4900 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4901 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4902 && 0 != (new = simplify_binary_operation
4903 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4904 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4905 XEXP (SET_SRC (x), 1)))
4906 && GET_CODE (new) == CONST_INT)
4907 p->const_equiv[REGNO (dest)] = new;
4909 /* Otherwise, we can't do anything with this value. */
4910 else
4911 p->const_equiv[REGNO (dest)] = 0;
4914 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4916 static void
4917 emit_equiv_load (struct epi_info *p)
4919 if (p->equiv_reg_src != 0)
4921 rtx dest = p->sp_equiv_reg;
4923 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4924 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4925 REGNO (p->sp_equiv_reg));
4927 emit_move_insn (dest, p->equiv_reg_src);
4928 p->equiv_reg_src = 0;
4931 #endif
4933 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
4934 this into place with notes indicating where the prologue ends and where
4935 the epilogue begins. Update the basic block information when possible. */
4937 void
4938 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
4940 int inserted = 0;
4941 edge e;
4942 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
4943 rtx seq;
4944 #endif
4945 #ifdef HAVE_prologue
4946 rtx prologue_end = NULL_RTX;
4947 #endif
4948 #if defined (HAVE_epilogue) || defined(HAVE_return)
4949 rtx epilogue_end = NULL_RTX;
4950 #endif
4952 #ifdef HAVE_prologue
4953 if (HAVE_prologue)
4955 start_sequence ();
4956 seq = gen_prologue ();
4957 emit_insn (seq);
4959 /* Retain a map of the prologue insns. */
4960 record_insns (seq, &prologue);
4961 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
4963 seq = get_insns ();
4964 end_sequence ();
4965 set_insn_locators (seq, prologue_locator);
4967 /* Can't deal with multiple successors of the entry block
4968 at the moment. Function should always have at least one
4969 entry point. */
4970 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4971 abort ();
4973 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4974 inserted = 1;
4976 #endif
4978 /* If the exit block has no non-fake predecessors, we don't need
4979 an epilogue. */
4980 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
4981 if ((e->flags & EDGE_FAKE) == 0)
4982 break;
4983 if (e == NULL)
4984 goto epilogue_done;
4986 #ifdef HAVE_return
4987 if (optimize && HAVE_return)
4989 /* If we're allowed to generate a simple return instruction,
4990 then by definition we don't need a full epilogue. Examine
4991 the block that falls through to EXIT. If it does not
4992 contain any code, examine its predecessors and try to
4993 emit (conditional) return instructions. */
4995 basic_block last;
4996 edge e_next;
4997 rtx label;
4999 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5000 if (e->flags & EDGE_FALLTHRU)
5001 break;
5002 if (e == NULL)
5003 goto epilogue_done;
5004 last = e->src;
5006 /* Verify that there are no active instructions in the last block. */
5007 label = BB_END (last);
5008 while (label && !LABEL_P (label))
5010 if (active_insn_p (label))
5011 break;
5012 label = PREV_INSN (label);
5015 if (BB_HEAD (last) == label && LABEL_P (label))
5017 rtx epilogue_line_note = NULL_RTX;
5019 /* Locate the line number associated with the closing brace,
5020 if we can find one. */
5021 for (seq = get_last_insn ();
5022 seq && ! active_insn_p (seq);
5023 seq = PREV_INSN (seq))
5024 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5026 epilogue_line_note = seq;
5027 break;
5030 for (e = last->pred; e; e = e_next)
5032 basic_block bb = e->src;
5033 rtx jump;
5035 e_next = e->pred_next;
5036 if (bb == ENTRY_BLOCK_PTR)
5037 continue;
5039 jump = BB_END (bb);
5040 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5041 continue;
5043 /* If we have an unconditional jump, we can replace that
5044 with a simple return instruction. */
5045 if (simplejump_p (jump))
5047 emit_return_into_block (bb, epilogue_line_note);
5048 delete_insn (jump);
5051 /* If we have a conditional jump, we can try to replace
5052 that with a conditional return instruction. */
5053 else if (condjump_p (jump))
5055 if (! redirect_jump (jump, 0, 0))
5056 continue;
5058 /* If this block has only one successor, it both jumps
5059 and falls through to the fallthru block, so we can't
5060 delete the edge. */
5061 if (bb->succ->succ_next == NULL)
5062 continue;
5064 else
5065 continue;
5067 /* Fix up the CFG for the successful change we just made. */
5068 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5071 /* Emit a return insn for the exit fallthru block. Whether
5072 this is still reachable will be determined later. */
5074 emit_barrier_after (BB_END (last));
5075 emit_return_into_block (last, epilogue_line_note);
5076 epilogue_end = BB_END (last);
5077 last->succ->flags &= ~EDGE_FALLTHRU;
5078 goto epilogue_done;
5081 #endif
5082 /* Find the edge that falls through to EXIT. Other edges may exist
5083 due to RETURN instructions, but those don't need epilogues.
5084 There really shouldn't be a mixture -- either all should have
5085 been converted or none, however... */
5087 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5088 if (e->flags & EDGE_FALLTHRU)
5089 break;
5090 if (e == NULL)
5091 goto epilogue_done;
5093 #ifdef HAVE_epilogue
5094 if (HAVE_epilogue)
5096 start_sequence ();
5097 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5099 seq = gen_epilogue ();
5101 #ifdef INCOMING_RETURN_ADDR_RTX
5102 /* If this function returns with the stack depressed and we can support
5103 it, massage the epilogue to actually do that. */
5104 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5105 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5106 seq = keep_stack_depressed (seq);
5107 #endif
5109 emit_jump_insn (seq);
5111 /* Retain a map of the epilogue insns. */
5112 record_insns (seq, &epilogue);
5113 set_insn_locators (seq, epilogue_locator);
5115 seq = get_insns ();
5116 end_sequence ();
5118 insert_insn_on_edge (seq, e);
5119 inserted = 1;
5121 else
5122 #endif
5124 basic_block cur_bb;
5126 if (! next_active_insn (BB_END (e->src)))
5127 goto epilogue_done;
5128 /* We have a fall-through edge to the exit block, the source is not
5129 at the end of the function, and there will be an assembler epilogue
5130 at the end of the function.
5131 We can't use force_nonfallthru here, because that would try to
5132 use return. Inserting a jump 'by hand' is extremely messy, so
5133 we take advantage of cfg_layout_finalize using
5134 fixup_fallthru_exit_predecessor. */
5135 cfg_layout_initialize (0);
5136 FOR_EACH_BB (cur_bb)
5137 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5138 cur_bb->rbi->next = cur_bb->next_bb;
5139 cfg_layout_finalize ();
5141 epilogue_done:
5143 if (inserted)
5144 commit_edge_insertions ();
5146 #ifdef HAVE_sibcall_epilogue
5147 /* Emit sibling epilogues before any sibling call sites. */
5148 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5150 basic_block bb = e->src;
5151 rtx insn = BB_END (bb);
5152 rtx i;
5153 rtx newinsn;
5155 if (!CALL_P (insn)
5156 || ! SIBLING_CALL_P (insn))
5157 continue;
5159 start_sequence ();
5160 emit_insn (gen_sibcall_epilogue ());
5161 seq = get_insns ();
5162 end_sequence ();
5164 /* Retain a map of the epilogue insns. Used in life analysis to
5165 avoid getting rid of sibcall epilogue insns. Do this before we
5166 actually emit the sequence. */
5167 record_insns (seq, &sibcall_epilogue);
5168 set_insn_locators (seq, epilogue_locator);
5170 i = PREV_INSN (insn);
5171 newinsn = emit_insn_before (seq, insn);
5173 #endif
5175 #ifdef HAVE_prologue
5176 /* This is probably all useless now that we use locators. */
5177 if (prologue_end)
5179 rtx insn, prev;
5181 /* GDB handles `break f' by setting a breakpoint on the first
5182 line note after the prologue. Which means (1) that if
5183 there are line number notes before where we inserted the
5184 prologue we should move them, and (2) we should generate a
5185 note before the end of the first basic block, if there isn't
5186 one already there.
5188 ??? This behavior is completely broken when dealing with
5189 multiple entry functions. We simply place the note always
5190 into first basic block and let alternate entry points
5191 to be missed.
5194 for (insn = prologue_end; insn; insn = prev)
5196 prev = PREV_INSN (insn);
5197 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5199 /* Note that we cannot reorder the first insn in the
5200 chain, since rest_of_compilation relies on that
5201 remaining constant. */
5202 if (prev == NULL)
5203 break;
5204 reorder_insns (insn, insn, prologue_end);
5208 /* Find the last line number note in the first block. */
5209 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5210 insn != prologue_end && insn;
5211 insn = PREV_INSN (insn))
5212 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5213 break;
5215 /* If we didn't find one, make a copy of the first line number
5216 we run across. */
5217 if (! insn)
5219 for (insn = next_active_insn (prologue_end);
5220 insn;
5221 insn = PREV_INSN (insn))
5222 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5224 emit_note_copy_after (insn, prologue_end);
5225 break;
5229 #endif
5230 #ifdef HAVE_epilogue
5231 if (epilogue_end)
5233 rtx insn, next;
5235 /* Similarly, move any line notes that appear after the epilogue.
5236 There is no need, however, to be quite so anal about the existence
5237 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5238 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5239 info generation. */
5240 for (insn = epilogue_end; insn; insn = next)
5242 next = NEXT_INSN (insn);
5243 if (NOTE_P (insn)
5244 && (NOTE_LINE_NUMBER (insn) > 0
5245 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5246 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5247 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5250 #endif
5253 /* Reposition the prologue-end and epilogue-begin notes after instruction
5254 scheduling and delayed branch scheduling. */
5256 void
5257 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5259 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5260 rtx insn, last, note;
5261 int len;
5263 if ((len = VARRAY_SIZE (prologue)) > 0)
5265 last = 0, note = 0;
5267 /* Scan from the beginning until we reach the last prologue insn.
5268 We apparently can't depend on basic_block_{head,end} after
5269 reorg has run. */
5270 for (insn = f; insn; insn = NEXT_INSN (insn))
5272 if (NOTE_P (insn))
5274 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5275 note = insn;
5277 else if (contains (insn, prologue))
5279 last = insn;
5280 if (--len == 0)
5281 break;
5285 if (last)
5287 /* Find the prologue-end note if we haven't already, and
5288 move it to just after the last prologue insn. */
5289 if (note == 0)
5291 for (note = last; (note = NEXT_INSN (note));)
5292 if (NOTE_P (note)
5293 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5294 break;
5297 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5298 if (LABEL_P (last))
5299 last = NEXT_INSN (last);
5300 reorder_insns (note, note, last);
5304 if ((len = VARRAY_SIZE (epilogue)) > 0)
5306 last = 0, note = 0;
5308 /* Scan from the end until we reach the first epilogue insn.
5309 We apparently can't depend on basic_block_{head,end} after
5310 reorg has run. */
5311 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5313 if (NOTE_P (insn))
5315 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5316 note = insn;
5318 else if (contains (insn, epilogue))
5320 last = insn;
5321 if (--len == 0)
5322 break;
5326 if (last)
5328 /* Find the epilogue-begin note if we haven't already, and
5329 move it to just before the first epilogue insn. */
5330 if (note == 0)
5332 for (note = insn; (note = PREV_INSN (note));)
5333 if (NOTE_P (note)
5334 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5335 break;
5338 if (PREV_INSN (last) != note)
5339 reorder_insns (note, note, PREV_INSN (last));
5342 #endif /* HAVE_prologue or HAVE_epilogue */
5345 /* Called once, at initialization, to initialize function.c. */
5347 void
5348 init_function_once (void)
5350 VARRAY_INT_INIT (prologue, 0, "prologue");
5351 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5352 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5355 /* Resets insn_block_boundaries array. */
5357 void
5358 reset_block_changes (void)
5360 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5361 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5364 /* Record the boundary for BLOCK. */
5365 void
5366 record_block_change (tree block)
5368 int i, n;
5369 tree last_block;
5371 if (!block)
5372 return;
5374 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5375 VARRAY_POP (cfun->ib_boundaries_block);
5376 n = get_max_uid ();
5377 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5378 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5380 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5383 /* Finishes record of boundaries. */
5384 void finalize_block_changes (void)
5386 record_block_change (DECL_INITIAL (current_function_decl));
5389 /* For INSN return the BLOCK it belongs to. */
5390 void
5391 check_block_change (rtx insn, tree *block)
5393 unsigned uid = INSN_UID (insn);
5395 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5396 return;
5398 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5401 /* Releases the ib_boundaries_block records. */
5402 void
5403 free_block_changes (void)
5405 cfun->ib_boundaries_block = NULL;
5408 /* Returns the name of the current function. */
5409 const char *
5410 current_function_name (void)
5412 return lang_hooks.decl_printable_name (cfun->decl, 2);
5415 #include "gt-function.h"