[testsuite] Require shared effective target for some lto.exp tests
[official-gcc.git] / gcc / tree-vrp.c
blobd7d7a0d3a08c3d1930b38c81d113b3881180e20e
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
66 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
68 /* Allocation pools for tree-vrp allocations. */
69 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
70 static bitmap_obstack vrp_equiv_obstack;
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 /* Return true if the SSA name NAME is live on the edge E. */
78 static bool
79 live_on_edge (edge e, tree name)
81 return (live[e->dest->index]
82 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
85 /* Local functions. */
86 static int compare_values (tree val1, tree val2);
87 static int compare_values_warnv (tree val1, tree val2, bool *);
88 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
89 tree, tree, bool, bool *,
90 bool *);
92 /* Location information for ASSERT_EXPRs. Each instance of this
93 structure describes an ASSERT_EXPR for an SSA name. Since a single
94 SSA name may have more than one assertion associated with it, these
95 locations are kept in a linked list attached to the corresponding
96 SSA name. */
97 struct assert_locus
99 /* Basic block where the assertion would be inserted. */
100 basic_block bb;
102 /* Some assertions need to be inserted on an edge (e.g., assertions
103 generated by COND_EXPRs). In those cases, BB will be NULL. */
104 edge e;
106 /* Pointer to the statement that generated this assertion. */
107 gimple_stmt_iterator si;
109 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
110 enum tree_code comp_code;
112 /* Value being compared against. */
113 tree val;
115 /* Expression to compare. */
116 tree expr;
118 /* Next node in the linked list. */
119 assert_locus *next;
122 /* If bit I is present, it means that SSA name N_i has a list of
123 assertions that should be inserted in the IL. */
124 static bitmap need_assert_for;
126 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
127 holds a list of ASSERT_LOCUS_T nodes that describe where
128 ASSERT_EXPRs for SSA name N_I should be inserted. */
129 static assert_locus **asserts_for;
131 /* Value range array. After propagation, VR_VALUE[I] holds the range
132 of values that SSA name N_I may take. */
133 static unsigned num_vr_values;
134 static value_range **vr_value;
135 static bool values_propagated;
137 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
138 number of executable edges we saw the last time we visited the
139 node. */
140 static int *vr_phi_edge_counts;
142 struct switch_update {
143 gswitch *stmt;
144 tree vec;
147 static vec<edge> to_remove_edges;
148 static vec<switch_update> to_update_switch_stmts;
151 /* Return the maximum value for TYPE. */
153 static inline tree
154 vrp_val_max (const_tree type)
156 if (!INTEGRAL_TYPE_P (type))
157 return NULL_TREE;
159 return TYPE_MAX_VALUE (type);
162 /* Return the minimum value for TYPE. */
164 static inline tree
165 vrp_val_min (const_tree type)
167 if (!INTEGRAL_TYPE_P (type))
168 return NULL_TREE;
170 return TYPE_MIN_VALUE (type);
173 /* Return whether VAL is equal to the maximum value of its type. This
174 will be true for a positive overflow infinity. We can't do a
175 simple equality comparison with TYPE_MAX_VALUE because C typedefs
176 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
177 to the integer constant with the same value in the type. */
179 static inline bool
180 vrp_val_is_max (const_tree val)
182 tree type_max = vrp_val_max (TREE_TYPE (val));
183 return (val == type_max
184 || (type_max != NULL_TREE
185 && operand_equal_p (val, type_max, 0)));
188 /* Return whether VAL is equal to the minimum value of its type. This
189 will be true for a negative overflow infinity. */
191 static inline bool
192 vrp_val_is_min (const_tree val)
194 tree type_min = vrp_val_min (TREE_TYPE (val));
195 return (val == type_min
196 || (type_min != NULL_TREE
197 && operand_equal_p (val, type_min, 0)));
201 /* Return whether TYPE should use an overflow infinity distinct from
202 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
203 represent a signed overflow during VRP computations. An infinity
204 is distinct from a half-range, which will go from some number to
205 TYPE_{MIN,MAX}_VALUE. */
207 static inline bool
208 needs_overflow_infinity (const_tree type)
210 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
213 /* Return whether TYPE can support our overflow infinity
214 representation: we use the TREE_OVERFLOW flag, which only exists
215 for constants. If TYPE doesn't support this, we don't optimize
216 cases which would require signed overflow--we drop them to
217 VARYING. */
219 static inline bool
220 supports_overflow_infinity (const_tree type)
222 tree min = vrp_val_min (type), max = vrp_val_max (type);
223 gcc_checking_assert (needs_overflow_infinity (type));
224 return (min != NULL_TREE
225 && CONSTANT_CLASS_P (min)
226 && max != NULL_TREE
227 && CONSTANT_CLASS_P (max));
230 /* VAL is the maximum or minimum value of a type. Return a
231 corresponding overflow infinity. */
233 static inline tree
234 make_overflow_infinity (tree val)
236 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
237 val = copy_node (val);
238 TREE_OVERFLOW (val) = 1;
239 return val;
242 /* Return a negative overflow infinity for TYPE. */
244 static inline tree
245 negative_overflow_infinity (tree type)
247 gcc_checking_assert (supports_overflow_infinity (type));
248 return make_overflow_infinity (vrp_val_min (type));
251 /* Return a positive overflow infinity for TYPE. */
253 static inline tree
254 positive_overflow_infinity (tree type)
256 gcc_checking_assert (supports_overflow_infinity (type));
257 return make_overflow_infinity (vrp_val_max (type));
260 /* Return whether VAL is a negative overflow infinity. */
262 static inline bool
263 is_negative_overflow_infinity (const_tree val)
265 return (TREE_OVERFLOW_P (val)
266 && needs_overflow_infinity (TREE_TYPE (val))
267 && vrp_val_is_min (val));
270 /* Return whether VAL is a positive overflow infinity. */
272 static inline bool
273 is_positive_overflow_infinity (const_tree val)
275 return (TREE_OVERFLOW_P (val)
276 && needs_overflow_infinity (TREE_TYPE (val))
277 && vrp_val_is_max (val));
280 /* Return whether VAL is a positive or negative overflow infinity. */
282 static inline bool
283 is_overflow_infinity (const_tree val)
285 return (TREE_OVERFLOW_P (val)
286 && needs_overflow_infinity (TREE_TYPE (val))
287 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
290 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
292 static inline bool
293 stmt_overflow_infinity (gimple *stmt)
295 if (is_gimple_assign (stmt)
296 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
297 GIMPLE_SINGLE_RHS)
298 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
299 return false;
302 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
303 the same value with TREE_OVERFLOW clear. This can be used to avoid
304 confusing a regular value with an overflow value. */
306 static inline tree
307 avoid_overflow_infinity (tree val)
309 if (!is_overflow_infinity (val))
310 return val;
312 if (vrp_val_is_max (val))
313 return vrp_val_max (TREE_TYPE (val));
314 else
316 gcc_checking_assert (vrp_val_is_min (val));
317 return vrp_val_min (TREE_TYPE (val));
322 /* Set value range VR to VR_UNDEFINED. */
324 static inline void
325 set_value_range_to_undefined (value_range *vr)
327 vr->type = VR_UNDEFINED;
328 vr->min = vr->max = NULL_TREE;
329 if (vr->equiv)
330 bitmap_clear (vr->equiv);
334 /* Set value range VR to VR_VARYING. */
336 static inline void
337 set_value_range_to_varying (value_range *vr)
339 vr->type = VR_VARYING;
340 vr->min = vr->max = NULL_TREE;
341 if (vr->equiv)
342 bitmap_clear (vr->equiv);
346 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
348 static void
349 set_value_range (value_range *vr, enum value_range_type t, tree min,
350 tree max, bitmap equiv)
352 /* Check the validity of the range. */
353 if (flag_checking
354 && (t == VR_RANGE || t == VR_ANTI_RANGE))
356 int cmp;
358 gcc_assert (min && max);
360 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
361 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
363 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
364 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
366 cmp = compare_values (min, max);
367 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
370 if (flag_checking
371 && (t == VR_UNDEFINED || t == VR_VARYING))
373 gcc_assert (min == NULL_TREE && max == NULL_TREE);
374 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
377 vr->type = t;
378 vr->min = min;
379 vr->max = max;
381 /* Since updating the equivalence set involves deep copying the
382 bitmaps, only do it if absolutely necessary. */
383 if (vr->equiv == NULL
384 && equiv != NULL)
385 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
387 if (equiv != vr->equiv)
389 if (equiv && !bitmap_empty_p (equiv))
390 bitmap_copy (vr->equiv, equiv);
391 else
392 bitmap_clear (vr->equiv);
397 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
398 This means adjusting T, MIN and MAX representing the case of a
399 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
400 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
401 In corner cases where MAX+1 or MIN-1 wraps this will fall back
402 to varying.
403 This routine exists to ease canonicalization in the case where we
404 extract ranges from var + CST op limit. */
406 static void
407 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
408 tree min, tree max, bitmap equiv)
410 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
411 if (t == VR_UNDEFINED)
413 set_value_range_to_undefined (vr);
414 return;
416 else if (t == VR_VARYING)
418 set_value_range_to_varying (vr);
419 return;
422 /* Nothing to canonicalize for symbolic ranges. */
423 if (TREE_CODE (min) != INTEGER_CST
424 || TREE_CODE (max) != INTEGER_CST)
426 set_value_range (vr, t, min, max, equiv);
427 return;
430 /* Wrong order for min and max, to swap them and the VR type we need
431 to adjust them. */
432 if (tree_int_cst_lt (max, min))
434 tree one, tmp;
436 /* For one bit precision if max < min, then the swapped
437 range covers all values, so for VR_RANGE it is varying and
438 for VR_ANTI_RANGE empty range, so drop to varying as well. */
439 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
441 set_value_range_to_varying (vr);
442 return;
445 one = build_int_cst (TREE_TYPE (min), 1);
446 tmp = int_const_binop (PLUS_EXPR, max, one);
447 max = int_const_binop (MINUS_EXPR, min, one);
448 min = tmp;
450 /* There's one corner case, if we had [C+1, C] before we now have
451 that again. But this represents an empty value range, so drop
452 to varying in this case. */
453 if (tree_int_cst_lt (max, min))
455 set_value_range_to_varying (vr);
456 return;
459 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 /* Anti-ranges that can be represented as ranges should be so. */
463 if (t == VR_ANTI_RANGE)
465 bool is_min = vrp_val_is_min (min);
466 bool is_max = vrp_val_is_max (max);
468 if (is_min && is_max)
470 /* We cannot deal with empty ranges, drop to varying.
471 ??? This could be VR_UNDEFINED instead. */
472 set_value_range_to_varying (vr);
473 return;
475 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
476 && (is_min || is_max))
478 /* Non-empty boolean ranges can always be represented
479 as a singleton range. */
480 if (is_min)
481 min = max = vrp_val_max (TREE_TYPE (min));
482 else
483 min = max = vrp_val_min (TREE_TYPE (min));
484 t = VR_RANGE;
486 else if (is_min
487 /* As a special exception preserve non-null ranges. */
488 && !(TYPE_UNSIGNED (TREE_TYPE (min))
489 && integer_zerop (max)))
491 tree one = build_int_cst (TREE_TYPE (max), 1);
492 min = int_const_binop (PLUS_EXPR, max, one);
493 max = vrp_val_max (TREE_TYPE (max));
494 t = VR_RANGE;
496 else if (is_max)
498 tree one = build_int_cst (TREE_TYPE (min), 1);
499 max = int_const_binop (MINUS_EXPR, min, one);
500 min = vrp_val_min (TREE_TYPE (min));
501 t = VR_RANGE;
505 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
506 to make sure VRP iteration terminates, otherwise we can get into
507 oscillations. */
509 set_value_range (vr, t, min, max, equiv);
512 /* Copy value range FROM into value range TO. */
514 static inline void
515 copy_value_range (value_range *to, value_range *from)
517 set_value_range (to, from->type, from->min, from->max, from->equiv);
520 /* Set value range VR to a single value. This function is only called
521 with values we get from statements, and exists to clear the
522 TREE_OVERFLOW flag so that we don't think we have an overflow
523 infinity when we shouldn't. */
525 static inline void
526 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
528 gcc_assert (is_gimple_min_invariant (val));
529 if (TREE_OVERFLOW_P (val))
530 val = drop_tree_overflow (val);
531 set_value_range (vr, VR_RANGE, val, val, equiv);
534 /* Set value range VR to a non-negative range of type TYPE.
535 OVERFLOW_INFINITY indicates whether to use an overflow infinity
536 rather than TYPE_MAX_VALUE; this should be true if we determine
537 that the range is nonnegative based on the assumption that signed
538 overflow does not occur. */
540 static inline void
541 set_value_range_to_nonnegative (value_range *vr, tree type,
542 bool overflow_infinity)
544 tree zero;
546 if (overflow_infinity && !supports_overflow_infinity (type))
548 set_value_range_to_varying (vr);
549 return;
552 zero = build_int_cst (type, 0);
553 set_value_range (vr, VR_RANGE, zero,
554 (overflow_infinity
555 ? positive_overflow_infinity (type)
556 : TYPE_MAX_VALUE (type)),
557 vr->equiv);
560 /* Set value range VR to a non-NULL range of type TYPE. */
562 static inline void
563 set_value_range_to_nonnull (value_range *vr, tree type)
565 tree zero = build_int_cst (type, 0);
566 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
570 /* Set value range VR to a NULL range of type TYPE. */
572 static inline void
573 set_value_range_to_null (value_range *vr, tree type)
575 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
579 /* Set value range VR to a range of a truthvalue of type TYPE. */
581 static inline void
582 set_value_range_to_truthvalue (value_range *vr, tree type)
584 if (TYPE_PRECISION (type) == 1)
585 set_value_range_to_varying (vr);
586 else
587 set_value_range (vr, VR_RANGE,
588 build_int_cst (type, 0), build_int_cst (type, 1),
589 vr->equiv);
593 /* If abs (min) < abs (max), set VR to [-max, max], if
594 abs (min) >= abs (max), set VR to [-min, min]. */
596 static void
597 abs_extent_range (value_range *vr, tree min, tree max)
599 int cmp;
601 gcc_assert (TREE_CODE (min) == INTEGER_CST);
602 gcc_assert (TREE_CODE (max) == INTEGER_CST);
603 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
604 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
605 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
606 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
607 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
609 set_value_range_to_varying (vr);
610 return;
612 cmp = compare_values (min, max);
613 if (cmp == -1)
614 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
615 else if (cmp == 0 || cmp == 1)
617 max = min;
618 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
620 else
622 set_value_range_to_varying (vr);
623 return;
625 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
629 /* Return value range information for VAR.
631 If we have no values ranges recorded (ie, VRP is not running), then
632 return NULL. Otherwise create an empty range if none existed for VAR. */
634 static value_range *
635 get_value_range (const_tree var)
637 static const value_range vr_const_varying
638 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
639 value_range *vr;
640 tree sym;
641 unsigned ver = SSA_NAME_VERSION (var);
643 /* If we have no recorded ranges, then return NULL. */
644 if (! vr_value)
645 return NULL;
647 /* If we query the range for a new SSA name return an unmodifiable VARYING.
648 We should get here at most from the substitute-and-fold stage which
649 will never try to change values. */
650 if (ver >= num_vr_values)
651 return CONST_CAST (value_range *, &vr_const_varying);
653 vr = vr_value[ver];
654 if (vr)
655 return vr;
657 /* After propagation finished do not allocate new value-ranges. */
658 if (values_propagated)
659 return CONST_CAST (value_range *, &vr_const_varying);
661 /* Create a default value range. */
662 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
663 memset (vr, 0, sizeof (*vr));
665 /* Defer allocating the equivalence set. */
666 vr->equiv = NULL;
668 /* If VAR is a default definition of a parameter, the variable can
669 take any value in VAR's type. */
670 if (SSA_NAME_IS_DEFAULT_DEF (var))
672 sym = SSA_NAME_VAR (var);
673 if (TREE_CODE (sym) == PARM_DECL)
675 /* Try to use the "nonnull" attribute to create ~[0, 0]
676 anti-ranges for pointers. Note that this is only valid with
677 default definitions of PARM_DECLs. */
678 if (POINTER_TYPE_P (TREE_TYPE (sym))
679 && (nonnull_arg_p (sym)
680 || get_ptr_nonnull (var)))
681 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
682 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
684 wide_int min, max;
685 value_range_type rtype = get_range_info (var, &min, &max);
686 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
687 set_value_range (vr, rtype,
688 wide_int_to_tree (TREE_TYPE (var), min),
689 wide_int_to_tree (TREE_TYPE (var), max),
690 NULL);
691 else
692 set_value_range_to_varying (vr);
694 else
695 set_value_range_to_varying (vr);
697 else if (TREE_CODE (sym) == RESULT_DECL
698 && DECL_BY_REFERENCE (sym))
699 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
702 return vr;
705 /* Set value-ranges of all SSA names defined by STMT to varying. */
707 static void
708 set_defs_to_varying (gimple *stmt)
710 ssa_op_iter i;
711 tree def;
712 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
714 value_range *vr = get_value_range (def);
715 /* Avoid writing to vr_const_varying get_value_range may return. */
716 if (vr->type != VR_VARYING)
717 set_value_range_to_varying (vr);
722 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
724 static inline bool
725 vrp_operand_equal_p (const_tree val1, const_tree val2)
727 if (val1 == val2)
728 return true;
729 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
730 return false;
731 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
734 /* Return true, if the bitmaps B1 and B2 are equal. */
736 static inline bool
737 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
739 return (b1 == b2
740 || ((!b1 || bitmap_empty_p (b1))
741 && (!b2 || bitmap_empty_p (b2)))
742 || (b1 && b2
743 && bitmap_equal_p (b1, b2)));
746 /* Update the value range and equivalence set for variable VAR to
747 NEW_VR. Return true if NEW_VR is different from VAR's previous
748 value.
750 NOTE: This function assumes that NEW_VR is a temporary value range
751 object created for the sole purpose of updating VAR's range. The
752 storage used by the equivalence set from NEW_VR will be freed by
753 this function. Do not call update_value_range when NEW_VR
754 is the range object associated with another SSA name. */
756 static inline bool
757 update_value_range (const_tree var, value_range *new_vr)
759 value_range *old_vr;
760 bool is_new;
762 /* If there is a value-range on the SSA name from earlier analysis
763 factor that in. */
764 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
766 wide_int min, max;
767 value_range_type rtype = get_range_info (var, &min, &max);
768 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
770 tree nr_min, nr_max;
771 /* Range info on SSA names doesn't carry overflow information
772 so make sure to preserve the overflow bit on the lattice. */
773 if (rtype == VR_RANGE
774 && needs_overflow_infinity (TREE_TYPE (var))
775 && (new_vr->type == VR_VARYING
776 || (new_vr->type == VR_RANGE
777 && is_negative_overflow_infinity (new_vr->min)))
778 && wi::eq_p (vrp_val_min (TREE_TYPE (var)), min))
779 nr_min = negative_overflow_infinity (TREE_TYPE (var));
780 else
781 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
782 if (rtype == VR_RANGE
783 && needs_overflow_infinity (TREE_TYPE (var))
784 && (new_vr->type == VR_VARYING
785 || (new_vr->type == VR_RANGE
786 && is_positive_overflow_infinity (new_vr->max)))
787 && wi::eq_p (vrp_val_max (TREE_TYPE (var)), max))
788 nr_max = positive_overflow_infinity (TREE_TYPE (var));
789 else
790 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
791 value_range nr = VR_INITIALIZER;
792 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
793 vrp_intersect_ranges (new_vr, &nr);
797 /* Update the value range, if necessary. */
798 old_vr = get_value_range (var);
799 is_new = old_vr->type != new_vr->type
800 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
801 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
802 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
804 if (is_new)
806 /* Do not allow transitions up the lattice. The following
807 is slightly more awkward than just new_vr->type < old_vr->type
808 because VR_RANGE and VR_ANTI_RANGE need to be considered
809 the same. We may not have is_new when transitioning to
810 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
811 called. */
812 if (new_vr->type == VR_UNDEFINED)
814 BITMAP_FREE (new_vr->equiv);
815 set_value_range_to_varying (old_vr);
816 set_value_range_to_varying (new_vr);
817 return true;
819 else
820 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
821 new_vr->equiv);
824 BITMAP_FREE (new_vr->equiv);
826 return is_new;
830 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
831 point where equivalence processing can be turned on/off. */
833 static void
834 add_equivalence (bitmap *equiv, const_tree var)
836 unsigned ver = SSA_NAME_VERSION (var);
837 value_range *vr = get_value_range (var);
839 if (*equiv == NULL)
840 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
841 bitmap_set_bit (*equiv, ver);
842 if (vr && vr->equiv)
843 bitmap_ior_into (*equiv, vr->equiv);
847 /* Return true if VR is ~[0, 0]. */
849 static inline bool
850 range_is_nonnull (value_range *vr)
852 return vr->type == VR_ANTI_RANGE
853 && integer_zerop (vr->min)
854 && integer_zerop (vr->max);
858 /* Return true if VR is [0, 0]. */
860 static inline bool
861 range_is_null (value_range *vr)
863 return vr->type == VR_RANGE
864 && integer_zerop (vr->min)
865 && integer_zerop (vr->max);
868 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
869 a singleton. */
871 static inline bool
872 range_int_cst_p (value_range *vr)
874 return (vr->type == VR_RANGE
875 && TREE_CODE (vr->max) == INTEGER_CST
876 && TREE_CODE (vr->min) == INTEGER_CST);
879 /* Return true if VR is a INTEGER_CST singleton. */
881 static inline bool
882 range_int_cst_singleton_p (value_range *vr)
884 return (range_int_cst_p (vr)
885 && !is_overflow_infinity (vr->min)
886 && !is_overflow_infinity (vr->max)
887 && tree_int_cst_equal (vr->min, vr->max));
890 /* Return true if value range VR involves at least one symbol. */
892 static inline bool
893 symbolic_range_p (value_range *vr)
895 return (!is_gimple_min_invariant (vr->min)
896 || !is_gimple_min_invariant (vr->max));
899 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
900 otherwise. We only handle additive operations and set NEG to true if the
901 symbol is negated and INV to the invariant part, if any. */
903 static tree
904 get_single_symbol (tree t, bool *neg, tree *inv)
906 bool neg_;
907 tree inv_;
909 *inv = NULL_TREE;
910 *neg = false;
912 if (TREE_CODE (t) == PLUS_EXPR
913 || TREE_CODE (t) == POINTER_PLUS_EXPR
914 || TREE_CODE (t) == MINUS_EXPR)
916 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
918 neg_ = (TREE_CODE (t) == MINUS_EXPR);
919 inv_ = TREE_OPERAND (t, 0);
920 t = TREE_OPERAND (t, 1);
922 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
924 neg_ = false;
925 inv_ = TREE_OPERAND (t, 1);
926 t = TREE_OPERAND (t, 0);
928 else
929 return NULL_TREE;
931 else
933 neg_ = false;
934 inv_ = NULL_TREE;
937 if (TREE_CODE (t) == NEGATE_EXPR)
939 t = TREE_OPERAND (t, 0);
940 neg_ = !neg_;
943 if (TREE_CODE (t) != SSA_NAME)
944 return NULL_TREE;
946 *neg = neg_;
947 *inv = inv_;
948 return t;
951 /* The reverse operation: build a symbolic expression with TYPE
952 from symbol SYM, negated according to NEG, and invariant INV. */
954 static tree
955 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
957 const bool pointer_p = POINTER_TYPE_P (type);
958 tree t = sym;
960 if (neg)
961 t = build1 (NEGATE_EXPR, type, t);
963 if (integer_zerop (inv))
964 return t;
966 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
969 /* Return true if value range VR involves exactly one symbol SYM. */
971 static bool
972 symbolic_range_based_on_p (value_range *vr, const_tree sym)
974 bool neg, min_has_symbol, max_has_symbol;
975 tree inv;
977 if (is_gimple_min_invariant (vr->min))
978 min_has_symbol = false;
979 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
980 min_has_symbol = true;
981 else
982 return false;
984 if (is_gimple_min_invariant (vr->max))
985 max_has_symbol = false;
986 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
987 max_has_symbol = true;
988 else
989 return false;
991 return (min_has_symbol || max_has_symbol);
994 /* Return true if value range VR uses an overflow infinity. */
996 static inline bool
997 overflow_infinity_range_p (value_range *vr)
999 return (vr->type == VR_RANGE
1000 && (is_overflow_infinity (vr->min)
1001 || is_overflow_infinity (vr->max)));
1004 /* Return false if we can not make a valid comparison based on VR;
1005 this will be the case if it uses an overflow infinity and overflow
1006 is not undefined (i.e., -fno-strict-overflow is in effect).
1007 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1008 uses an overflow infinity. */
1010 static bool
1011 usable_range_p (value_range *vr, bool *strict_overflow_p)
1013 gcc_assert (vr->type == VR_RANGE);
1014 if (is_overflow_infinity (vr->min))
1016 *strict_overflow_p = true;
1017 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1018 return false;
1020 if (is_overflow_infinity (vr->max))
1022 *strict_overflow_p = true;
1023 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1024 return false;
1026 return true;
1029 /* Return true if the result of assignment STMT is know to be non-zero.
1030 If the return value is based on the assumption that signed overflow is
1031 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1032 *STRICT_OVERFLOW_P.*/
1034 static bool
1035 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1037 enum tree_code code = gimple_assign_rhs_code (stmt);
1038 switch (get_gimple_rhs_class (code))
1040 case GIMPLE_UNARY_RHS:
1041 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1042 gimple_expr_type (stmt),
1043 gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_BINARY_RHS:
1046 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1047 gimple_expr_type (stmt),
1048 gimple_assign_rhs1 (stmt),
1049 gimple_assign_rhs2 (stmt),
1050 strict_overflow_p);
1051 case GIMPLE_TERNARY_RHS:
1052 return false;
1053 case GIMPLE_SINGLE_RHS:
1054 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1055 strict_overflow_p);
1056 case GIMPLE_INVALID_RHS:
1057 gcc_unreachable ();
1058 default:
1059 gcc_unreachable ();
1063 /* Return true if STMT is known to compute a non-zero value.
1064 If the return value is based on the assumption that signed overflow is
1065 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1066 *STRICT_OVERFLOW_P.*/
1068 static bool
1069 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1071 switch (gimple_code (stmt))
1073 case GIMPLE_ASSIGN:
1074 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1075 case GIMPLE_CALL:
1077 tree fndecl = gimple_call_fndecl (stmt);
1078 if (!fndecl) return false;
1079 if (flag_delete_null_pointer_checks && !flag_check_new
1080 && DECL_IS_OPERATOR_NEW (fndecl)
1081 && !TREE_NOTHROW (fndecl))
1082 return true;
1083 /* References are always non-NULL. */
1084 if (flag_delete_null_pointer_checks
1085 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1086 return true;
1087 if (flag_delete_null_pointer_checks &&
1088 lookup_attribute ("returns_nonnull",
1089 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1090 return true;
1092 gcall *call_stmt = as_a<gcall *> (stmt);
1093 unsigned rf = gimple_call_return_flags (call_stmt);
1094 if (rf & ERF_RETURNS_ARG)
1096 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1097 if (argnum < gimple_call_num_args (call_stmt))
1099 tree arg = gimple_call_arg (call_stmt, argnum);
1100 if (SSA_VAR_P (arg)
1101 && infer_nonnull_range_by_attribute (stmt, arg))
1102 return true;
1105 return gimple_alloca_call_p (stmt);
1107 default:
1108 gcc_unreachable ();
1112 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1113 obtained so far. */
1115 static bool
1116 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1118 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1119 return true;
1121 /* If we have an expression of the form &X->a, then the expression
1122 is nonnull if X is nonnull. */
1123 if (is_gimple_assign (stmt)
1124 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1126 tree expr = gimple_assign_rhs1 (stmt);
1127 tree base = get_base_address (TREE_OPERAND (expr, 0));
1129 if (base != NULL_TREE
1130 && TREE_CODE (base) == MEM_REF
1131 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1133 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1134 if (range_is_nonnull (vr))
1135 return true;
1139 return false;
1142 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1143 a gimple invariant, or SSA_NAME +- CST. */
1145 static bool
1146 valid_value_p (tree expr)
1148 if (TREE_CODE (expr) == SSA_NAME)
1149 return true;
1151 if (TREE_CODE (expr) == PLUS_EXPR
1152 || TREE_CODE (expr) == MINUS_EXPR)
1153 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1154 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1156 return is_gimple_min_invariant (expr);
1159 /* Return
1160 1 if VAL < VAL2
1161 0 if !(VAL < VAL2)
1162 -2 if those are incomparable. */
1163 static inline int
1164 operand_less_p (tree val, tree val2)
1166 /* LT is folded faster than GE and others. Inline the common case. */
1167 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1169 if (! is_positive_overflow_infinity (val2))
1170 return tree_int_cst_lt (val, val2);
1172 else
1174 tree tcmp;
1176 fold_defer_overflow_warnings ();
1178 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1180 fold_undefer_and_ignore_overflow_warnings ();
1182 if (!tcmp
1183 || TREE_CODE (tcmp) != INTEGER_CST)
1184 return -2;
1186 if (!integer_zerop (tcmp))
1187 return 1;
1190 /* val >= val2, not considering overflow infinity. */
1191 if (is_negative_overflow_infinity (val))
1192 return is_negative_overflow_infinity (val2) ? 0 : 1;
1193 else if (is_positive_overflow_infinity (val2))
1194 return is_positive_overflow_infinity (val) ? 0 : 1;
1196 return 0;
1199 /* Compare two values VAL1 and VAL2. Return
1201 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1202 -1 if VAL1 < VAL2,
1203 0 if VAL1 == VAL2,
1204 +1 if VAL1 > VAL2, and
1205 +2 if VAL1 != VAL2
1207 This is similar to tree_int_cst_compare but supports pointer values
1208 and values that cannot be compared at compile time.
1210 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1211 true if the return value is only valid if we assume that signed
1212 overflow is undefined. */
1214 static int
1215 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1217 if (val1 == val2)
1218 return 0;
1220 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1221 both integers. */
1222 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1223 == POINTER_TYPE_P (TREE_TYPE (val2)));
1225 /* Convert the two values into the same type. This is needed because
1226 sizetype causes sign extension even for unsigned types. */
1227 val2 = fold_convert (TREE_TYPE (val1), val2);
1228 STRIP_USELESS_TYPE_CONVERSION (val2);
1230 const bool overflow_undefined
1231 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1232 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1233 tree inv1, inv2;
1234 bool neg1, neg2;
1235 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1236 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1238 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1239 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1240 if (sym1 && sym2)
1242 /* Both values must use the same name with the same sign. */
1243 if (sym1 != sym2 || neg1 != neg2)
1244 return -2;
1246 /* [-]NAME + CST == [-]NAME + CST. */
1247 if (inv1 == inv2)
1248 return 0;
1250 /* If overflow is defined we cannot simplify more. */
1251 if (!overflow_undefined)
1252 return -2;
1254 if (strict_overflow_p != NULL
1255 && (!inv1 || !TREE_NO_WARNING (val1))
1256 && (!inv2 || !TREE_NO_WARNING (val2)))
1257 *strict_overflow_p = true;
1259 if (!inv1)
1260 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1261 if (!inv2)
1262 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1264 return compare_values_warnv (inv1, inv2, strict_overflow_p);
1267 const bool cst1 = is_gimple_min_invariant (val1);
1268 const bool cst2 = is_gimple_min_invariant (val2);
1270 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1271 it might be possible to say something depending on the constants. */
1272 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1274 if (!overflow_undefined)
1275 return -2;
1277 if (strict_overflow_p != NULL
1278 && (!sym1 || !TREE_NO_WARNING (val1))
1279 && (!sym2 || !TREE_NO_WARNING (val2)))
1280 *strict_overflow_p = true;
1282 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1283 tree cst = cst1 ? val1 : val2;
1284 tree inv = cst1 ? inv2 : inv1;
1286 /* Compute the difference between the constants. If it overflows or
1287 underflows, this means that we can trivially compare the NAME with
1288 it and, consequently, the two values with each other. */
1289 wide_int diff = wi::sub (cst, inv);
1290 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1292 const int res = wi::cmp (cst, inv, sgn);
1293 return cst1 ? res : -res;
1296 return -2;
1299 /* We cannot say anything more for non-constants. */
1300 if (!cst1 || !cst2)
1301 return -2;
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1305 /* We cannot compare overflowed values, except for overflow
1306 infinities. */
1307 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1309 if (strict_overflow_p != NULL)
1310 *strict_overflow_p = true;
1311 if (is_negative_overflow_infinity (val1))
1312 return is_negative_overflow_infinity (val2) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2))
1314 return 1;
1315 else if (is_positive_overflow_infinity (val1))
1316 return is_positive_overflow_infinity (val2) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2))
1318 return -1;
1319 return -2;
1322 return tree_int_cst_compare (val1, val2);
1324 else
1326 tree t;
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1330 return 0;
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1, val2) == 1)
1334 return -1;
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2, val1) == 1)
1338 return 1;
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1) != INTEGER_CST
1345 || TREE_CODE (val2) != INTEGER_CST)
1347 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1348 if (t && integer_onep (t))
1349 return 2;
1352 return -2;
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1359 static int
1360 compare_values (tree val1, tree val2)
1362 bool sop;
1363 int ret;
1365 sop = false;
1366 ret = compare_values_warnv (val1, val2, &sop);
1367 if (sop
1368 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1369 ret = -2;
1370 return ret;
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1379 function. */
1381 static inline int
1382 value_inside_range (tree val, tree min, tree max)
1384 int cmp1, cmp2;
1386 cmp1 = operand_less_p (val, min);
1387 if (cmp1 == -2)
1388 return -2;
1389 if (cmp1 == 1)
1390 return 0;
1392 cmp2 = operand_less_p (max, val);
1393 if (cmp2 == -2)
1394 return -2;
1396 return !cmp2;
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1401 intersection.
1403 Benchmark compile/20001226-1.c compilation time after changing this
1404 function.
1407 static inline bool
1408 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0->max, vr1->min) != 0)
1414 return false;
1415 if (operand_less_p (vr1->max, vr0->min) != 0)
1416 return false;
1417 return true;
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1424 static inline int
1425 range_includes_zero_p (tree min, tree max)
1427 tree zero = build_int_cst (TREE_TYPE (min), 0);
1428 return value_inside_range (zero, min, max);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1433 static inline bool
1434 value_range_nonnegative_p (value_range *vr)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1438 VR_RANGE. */
1439 if (vr->type == VR_RANGE)
1441 int result = compare_values (vr->min, integer_zero_node);
1442 return (result == 0 || result == 1);
1445 return false;
1448 /* If *VR has a value rante that is a single constant value return that,
1449 otherwise return NULL_TREE. */
1451 static tree
1452 value_range_constant_singleton (value_range *vr)
1454 if (vr->type == VR_RANGE
1455 && vrp_operand_equal_p (vr->min, vr->max)
1456 && is_gimple_min_invariant (vr->min))
1457 return vr->min;
1459 return NULL_TREE;
1462 /* If OP has a value range with a single constant value return that,
1463 otherwise return NULL_TREE. This returns OP itself if OP is a
1464 constant. */
1466 static tree
1467 op_with_constant_singleton_value_range (tree op)
1469 if (is_gimple_min_invariant (op))
1470 return op;
1472 if (TREE_CODE (op) != SSA_NAME)
1473 return NULL_TREE;
1475 return value_range_constant_singleton (get_value_range (op));
1478 /* Return true if op is in a boolean [0, 1] value-range. */
1480 static bool
1481 op_with_boolean_value_range_p (tree op)
1483 value_range *vr;
1485 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1486 return true;
1488 if (integer_zerop (op)
1489 || integer_onep (op))
1490 return true;
1492 if (TREE_CODE (op) != SSA_NAME)
1493 return false;
1495 vr = get_value_range (op);
1496 return (vr->type == VR_RANGE
1497 && integer_zerop (vr->min)
1498 && integer_onep (vr->max));
1501 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1502 true and store it in *VR_P. */
1504 static void
1505 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1506 tree op, tree limit,
1507 value_range *vr_p)
1509 tree min, max, type;
1510 value_range *limit_vr;
1511 limit = avoid_overflow_infinity (limit);
1512 type = TREE_TYPE (var);
1513 gcc_assert (limit != var);
1515 /* For pointer arithmetic, we only keep track of pointer equality
1516 and inequality. */
1517 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1519 set_value_range_to_varying (vr_p);
1520 return;
1523 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1524 try to use LIMIT's range to avoid creating symbolic ranges
1525 unnecessarily. */
1526 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1528 /* LIMIT's range is only interesting if it has any useful information. */
1529 if (! limit_vr
1530 || limit_vr->type == VR_UNDEFINED
1531 || limit_vr->type == VR_VARYING
1532 || (symbolic_range_p (limit_vr)
1533 && ! (limit_vr->type == VR_RANGE
1534 && (limit_vr->min == limit_vr->max
1535 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1536 limit_vr = NULL;
1538 /* Initially, the new range has the same set of equivalences of
1539 VAR's range. This will be revised before returning the final
1540 value. Since assertions may be chained via mutually exclusive
1541 predicates, we will need to trim the set of equivalences before
1542 we are done. */
1543 gcc_assert (vr_p->equiv == NULL);
1544 add_equivalence (&vr_p->equiv, var);
1546 /* Extract a new range based on the asserted comparison for VAR and
1547 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1548 will only use it for equality comparisons (EQ_EXPR). For any
1549 other kind of assertion, we cannot derive a range from LIMIT's
1550 anti-range that can be used to describe the new range. For
1551 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1552 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1553 no single range for x_2 that could describe LE_EXPR, so we might
1554 as well build the range [b_4, +INF] for it.
1555 One special case we handle is extracting a range from a
1556 range test encoded as (unsigned)var + CST <= limit. */
1557 if (TREE_CODE (op) == NOP_EXPR
1558 || TREE_CODE (op) == PLUS_EXPR)
1560 if (TREE_CODE (op) == PLUS_EXPR)
1562 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1563 TREE_OPERAND (op, 1));
1564 max = int_const_binop (PLUS_EXPR, limit, min);
1565 op = TREE_OPERAND (op, 0);
1567 else
1569 min = build_int_cst (TREE_TYPE (var), 0);
1570 max = limit;
1573 /* Make sure to not set TREE_OVERFLOW on the final type
1574 conversion. We are willingly interpreting large positive
1575 unsigned values as negative signed values here. */
1576 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1577 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1579 /* We can transform a max, min range to an anti-range or
1580 vice-versa. Use set_and_canonicalize_value_range which does
1581 this for us. */
1582 if (cond_code == LE_EXPR)
1583 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1584 min, max, vr_p->equiv);
1585 else if (cond_code == GT_EXPR)
1586 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1587 min, max, vr_p->equiv);
1588 else
1589 gcc_unreachable ();
1591 else if (cond_code == EQ_EXPR)
1593 enum value_range_type range_type;
1595 if (limit_vr)
1597 range_type = limit_vr->type;
1598 min = limit_vr->min;
1599 max = limit_vr->max;
1601 else
1603 range_type = VR_RANGE;
1604 min = limit;
1605 max = limit;
1608 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1610 /* When asserting the equality VAR == LIMIT and LIMIT is another
1611 SSA name, the new range will also inherit the equivalence set
1612 from LIMIT. */
1613 if (TREE_CODE (limit) == SSA_NAME)
1614 add_equivalence (&vr_p->equiv, limit);
1616 else if (cond_code == NE_EXPR)
1618 /* As described above, when LIMIT's range is an anti-range and
1619 this assertion is an inequality (NE_EXPR), then we cannot
1620 derive anything from the anti-range. For instance, if
1621 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1622 not imply that VAR's range is [0, 0]. So, in the case of
1623 anti-ranges, we just assert the inequality using LIMIT and
1624 not its anti-range.
1626 If LIMIT_VR is a range, we can only use it to build a new
1627 anti-range if LIMIT_VR is a single-valued range. For
1628 instance, if LIMIT_VR is [0, 1], the predicate
1629 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1630 Rather, it means that for value 0 VAR should be ~[0, 0]
1631 and for value 1, VAR should be ~[1, 1]. We cannot
1632 represent these ranges.
1634 The only situation in which we can build a valid
1635 anti-range is when LIMIT_VR is a single-valued range
1636 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1637 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1638 if (limit_vr
1639 && limit_vr->type == VR_RANGE
1640 && compare_values (limit_vr->min, limit_vr->max) == 0)
1642 min = limit_vr->min;
1643 max = limit_vr->max;
1645 else
1647 /* In any other case, we cannot use LIMIT's range to build a
1648 valid anti-range. */
1649 min = max = limit;
1652 /* If MIN and MAX cover the whole range for their type, then
1653 just use the original LIMIT. */
1654 if (INTEGRAL_TYPE_P (type)
1655 && vrp_val_is_min (min)
1656 && vrp_val_is_max (max))
1657 min = max = limit;
1659 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1660 min, max, vr_p->equiv);
1662 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1664 min = TYPE_MIN_VALUE (type);
1666 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1667 max = limit;
1668 else
1670 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1672 LT_EXPR. */
1673 max = limit_vr->max;
1676 /* If the maximum value forces us to be out of bounds, simply punt.
1677 It would be pointless to try and do anything more since this
1678 all should be optimized away above us. */
1679 if ((cond_code == LT_EXPR
1680 && compare_values (max, min) == 0)
1681 || is_overflow_infinity (max))
1682 set_value_range_to_varying (vr_p);
1683 else
1685 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1686 if (cond_code == LT_EXPR)
1688 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1689 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1690 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1691 build_int_cst (TREE_TYPE (max), -1));
1692 else
1693 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1694 build_int_cst (TREE_TYPE (max), 1));
1695 if (EXPR_P (max))
1696 TREE_NO_WARNING (max) = 1;
1699 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1702 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1704 max = TYPE_MAX_VALUE (type);
1706 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1707 min = limit;
1708 else
1710 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1711 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1712 GT_EXPR. */
1713 min = limit_vr->min;
1716 /* If the minimum value forces us to be out of bounds, simply punt.
1717 It would be pointless to try and do anything more since this
1718 all should be optimized away above us. */
1719 if ((cond_code == GT_EXPR
1720 && compare_values (min, max) == 0)
1721 || is_overflow_infinity (min))
1722 set_value_range_to_varying (vr_p);
1723 else
1725 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1726 if (cond_code == GT_EXPR)
1728 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1729 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1730 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1731 build_int_cst (TREE_TYPE (min), -1));
1732 else
1733 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1734 build_int_cst (TREE_TYPE (min), 1));
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1742 else
1743 gcc_unreachable ();
1745 /* Finally intersect the new range with what we already know about var. */
1746 vrp_intersect_ranges (vr_p, get_value_range (var));
1749 /* Extract value range information from an ASSERT_EXPR EXPR and store
1750 it in *VR_P. */
1752 static void
1753 extract_range_from_assert (value_range *vr_p, tree expr)
1755 tree var = ASSERT_EXPR_VAR (expr);
1756 tree cond = ASSERT_EXPR_COND (expr);
1757 tree limit, op;
1758 enum tree_code cond_code;
1759 gcc_assert (COMPARISON_CLASS_P (cond));
1761 /* Find VAR in the ASSERT_EXPR conditional. */
1762 if (var == TREE_OPERAND (cond, 0)
1763 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1764 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1766 /* If the predicate is of the form VAR COMP LIMIT, then we just
1767 take LIMIT from the RHS and use the same comparison code. */
1768 cond_code = TREE_CODE (cond);
1769 limit = TREE_OPERAND (cond, 1);
1770 op = TREE_OPERAND (cond, 0);
1772 else
1774 /* If the predicate is of the form LIMIT COMP VAR, then we need
1775 to flip around the comparison code to create the proper range
1776 for VAR. */
1777 cond_code = swap_tree_comparison (TREE_CODE (cond));
1778 limit = TREE_OPERAND (cond, 0);
1779 op = TREE_OPERAND (cond, 1);
1781 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1782 limit, vr_p);
1785 /* Extract range information from SSA name VAR and store it in VR. If
1786 VAR has an interesting range, use it. Otherwise, create the
1787 range [VAR, VAR] and return it. This is useful in situations where
1788 we may have conditionals testing values of VARYING names. For
1789 instance,
1791 x_3 = y_5;
1792 if (x_3 > y_5)
1795 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1796 always false. */
1798 static void
1799 extract_range_from_ssa_name (value_range *vr, tree var)
1801 value_range *var_vr = get_value_range (var);
1803 if (var_vr->type != VR_VARYING)
1804 copy_value_range (vr, var_vr);
1805 else
1806 set_value_range (vr, VR_RANGE, var, var, NULL);
1808 add_equivalence (&vr->equiv, var);
1812 /* Wrapper around int_const_binop. If the operation overflows and we
1813 are not using wrapping arithmetic, then adjust the result to be
1814 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1815 NULL_TREE if we need to use an overflow infinity representation but
1816 the type does not support it. */
1818 static tree
1819 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1821 tree res;
1823 res = int_const_binop (code, val1, val2);
1825 /* If we are using unsigned arithmetic, operate symbolically
1826 on -INF and +INF as int_const_binop only handles signed overflow. */
1827 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1829 int checkz = compare_values (res, val1);
1830 bool overflow = false;
1832 /* Ensure that res = val1 [+*] val2 >= val1
1833 or that res = val1 - val2 <= val1. */
1834 if ((code == PLUS_EXPR
1835 && !(checkz == 1 || checkz == 0))
1836 || (code == MINUS_EXPR
1837 && !(checkz == 0 || checkz == -1)))
1839 overflow = true;
1841 /* Checking for multiplication overflow is done by dividing the
1842 output of the multiplication by the first input of the
1843 multiplication. If the result of that division operation is
1844 not equal to the second input of the multiplication, then the
1845 multiplication overflowed. */
1846 else if (code == MULT_EXPR && !integer_zerop (val1))
1848 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1849 res,
1850 val1);
1851 int check = compare_values (tmp, val2);
1853 if (check != 0)
1854 overflow = true;
1857 if (overflow)
1859 res = copy_node (res);
1860 TREE_OVERFLOW (res) = 1;
1864 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1865 /* If the singed operation wraps then int_const_binop has done
1866 everything we want. */
1868 /* Signed division of -1/0 overflows and by the time it gets here
1869 returns NULL_TREE. */
1870 else if (!res)
1871 return NULL_TREE;
1872 else if ((TREE_OVERFLOW (res)
1873 && !TREE_OVERFLOW (val1)
1874 && !TREE_OVERFLOW (val2))
1875 || is_overflow_infinity (val1)
1876 || is_overflow_infinity (val2))
1878 /* If the operation overflowed but neither VAL1 nor VAL2 are
1879 overflown, return -INF or +INF depending on the operation
1880 and the combination of signs of the operands. */
1881 int sgn1 = tree_int_cst_sgn (val1);
1882 int sgn2 = tree_int_cst_sgn (val2);
1884 if (needs_overflow_infinity (TREE_TYPE (res))
1885 && !supports_overflow_infinity (TREE_TYPE (res)))
1886 return NULL_TREE;
1888 /* We have to punt on adding infinities of different signs,
1889 since we can't tell what the sign of the result should be.
1890 Likewise for subtracting infinities of the same sign. */
1891 if (((code == PLUS_EXPR && sgn1 != sgn2)
1892 || (code == MINUS_EXPR && sgn1 == sgn2))
1893 && is_overflow_infinity (val1)
1894 && is_overflow_infinity (val2))
1895 return NULL_TREE;
1897 /* Don't try to handle division or shifting of infinities. */
1898 if ((code == TRUNC_DIV_EXPR
1899 || code == FLOOR_DIV_EXPR
1900 || code == CEIL_DIV_EXPR
1901 || code == EXACT_DIV_EXPR
1902 || code == ROUND_DIV_EXPR
1903 || code == RSHIFT_EXPR)
1904 && (is_overflow_infinity (val1)
1905 || is_overflow_infinity (val2)))
1906 return NULL_TREE;
1908 /* Notice that we only need to handle the restricted set of
1909 operations handled by extract_range_from_binary_expr.
1910 Among them, only multiplication, addition and subtraction
1911 can yield overflow without overflown operands because we
1912 are working with integral types only... except in the
1913 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1914 for division too. */
1916 /* For multiplication, the sign of the overflow is given
1917 by the comparison of the signs of the operands. */
1918 if ((code == MULT_EXPR && sgn1 == sgn2)
1919 /* For addition, the operands must be of the same sign
1920 to yield an overflow. Its sign is therefore that
1921 of one of the operands, for example the first. For
1922 infinite operands X + -INF is negative, not positive. */
1923 || (code == PLUS_EXPR
1924 && (sgn1 >= 0
1925 ? !is_negative_overflow_infinity (val2)
1926 : is_positive_overflow_infinity (val2)))
1927 /* For subtraction, non-infinite operands must be of
1928 different signs to yield an overflow. Its sign is
1929 therefore that of the first operand or the opposite of
1930 that of the second operand. A first operand of 0 counts
1931 as positive here, for the corner case 0 - (-INF), which
1932 overflows, but must yield +INF. For infinite operands 0
1933 - INF is negative, not positive. */
1934 || (code == MINUS_EXPR
1935 && (sgn1 >= 0
1936 ? !is_positive_overflow_infinity (val2)
1937 : is_negative_overflow_infinity (val2)))
1938 /* We only get in here with positive shift count, so the
1939 overflow direction is the same as the sign of val1.
1940 Actually rshift does not overflow at all, but we only
1941 handle the case of shifting overflowed -INF and +INF. */
1942 || (code == RSHIFT_EXPR
1943 && sgn1 >= 0)
1944 /* For division, the only case is -INF / -1 = +INF. */
1945 || code == TRUNC_DIV_EXPR
1946 || code == FLOOR_DIV_EXPR
1947 || code == CEIL_DIV_EXPR
1948 || code == EXACT_DIV_EXPR
1949 || code == ROUND_DIV_EXPR)
1950 return (needs_overflow_infinity (TREE_TYPE (res))
1951 ? positive_overflow_infinity (TREE_TYPE (res))
1952 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1953 else
1954 return (needs_overflow_infinity (TREE_TYPE (res))
1955 ? negative_overflow_infinity (TREE_TYPE (res))
1956 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1959 return res;
1963 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1964 bitmask if some bit is unset, it means for all numbers in the range
1965 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1966 bitmask if some bit is set, it means for all numbers in the range
1967 the bit is 1, otherwise it might be 0 or 1. */
1969 static bool
1970 zero_nonzero_bits_from_vr (const tree expr_type,
1971 value_range *vr,
1972 wide_int *may_be_nonzero,
1973 wide_int *must_be_nonzero)
1975 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1976 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1977 if (!range_int_cst_p (vr)
1978 || is_overflow_infinity (vr->min)
1979 || is_overflow_infinity (vr->max))
1980 return false;
1982 if (range_int_cst_singleton_p (vr))
1984 *may_be_nonzero = vr->min;
1985 *must_be_nonzero = *may_be_nonzero;
1987 else if (tree_int_cst_sgn (vr->min) >= 0
1988 || tree_int_cst_sgn (vr->max) < 0)
1990 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1991 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1992 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1993 if (xor_mask != 0)
1995 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1996 may_be_nonzero->get_precision ());
1997 *may_be_nonzero = *may_be_nonzero | mask;
1998 *must_be_nonzero = must_be_nonzero->and_not (mask);
2002 return true;
2005 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2006 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2007 false otherwise. If *AR can be represented with a single range
2008 *VR1 will be VR_UNDEFINED. */
2010 static bool
2011 ranges_from_anti_range (value_range *ar,
2012 value_range *vr0, value_range *vr1)
2014 tree type = TREE_TYPE (ar->min);
2016 vr0->type = VR_UNDEFINED;
2017 vr1->type = VR_UNDEFINED;
2019 if (ar->type != VR_ANTI_RANGE
2020 || TREE_CODE (ar->min) != INTEGER_CST
2021 || TREE_CODE (ar->max) != INTEGER_CST
2022 || !vrp_val_min (type)
2023 || !vrp_val_max (type))
2024 return false;
2026 if (!vrp_val_is_min (ar->min))
2028 vr0->type = VR_RANGE;
2029 vr0->min = vrp_val_min (type);
2030 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2032 if (!vrp_val_is_max (ar->max))
2034 vr1->type = VR_RANGE;
2035 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2036 vr1->max = vrp_val_max (type);
2038 if (vr0->type == VR_UNDEFINED)
2040 *vr0 = *vr1;
2041 vr1->type = VR_UNDEFINED;
2044 return vr0->type != VR_UNDEFINED;
2047 /* Helper to extract a value-range *VR for a multiplicative operation
2048 *VR0 CODE *VR1. */
2050 static void
2051 extract_range_from_multiplicative_op_1 (value_range *vr,
2052 enum tree_code code,
2053 value_range *vr0, value_range *vr1)
2055 enum value_range_type type;
2056 tree val[4];
2057 size_t i;
2058 tree min, max;
2059 bool sop;
2060 int cmp;
2062 /* Multiplications, divisions and shifts are a bit tricky to handle,
2063 depending on the mix of signs we have in the two ranges, we
2064 need to operate on different values to get the minimum and
2065 maximum values for the new range. One approach is to figure
2066 out all the variations of range combinations and do the
2067 operations.
2069 However, this involves several calls to compare_values and it
2070 is pretty convoluted. It's simpler to do the 4 operations
2071 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2072 MAX1) and then figure the smallest and largest values to form
2073 the new range. */
2074 gcc_assert (code == MULT_EXPR
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR
2080 || code == RSHIFT_EXPR
2081 || code == LSHIFT_EXPR);
2082 gcc_assert ((vr0->type == VR_RANGE
2083 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2084 && vr0->type == vr1->type);
2086 type = vr0->type;
2088 /* Compute the 4 cross operations. */
2089 sop = false;
2090 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2091 if (val[0] == NULL_TREE)
2092 sop = true;
2094 if (vr1->max == vr1->min)
2095 val[1] = NULL_TREE;
2096 else
2098 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2099 if (val[1] == NULL_TREE)
2100 sop = true;
2103 if (vr0->max == vr0->min)
2104 val[2] = NULL_TREE;
2105 else
2107 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2108 if (val[2] == NULL_TREE)
2109 sop = true;
2112 if (vr0->min == vr0->max || vr1->min == vr1->max)
2113 val[3] = NULL_TREE;
2114 else
2116 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2117 if (val[3] == NULL_TREE)
2118 sop = true;
2121 if (sop)
2123 set_value_range_to_varying (vr);
2124 return;
2127 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2128 of VAL[i]. */
2129 min = val[0];
2130 max = val[0];
2131 for (i = 1; i < 4; i++)
2133 if (!is_gimple_min_invariant (min)
2134 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2135 || !is_gimple_min_invariant (max)
2136 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2137 break;
2139 if (val[i])
2141 if (!is_gimple_min_invariant (val[i])
2142 || (TREE_OVERFLOW (val[i])
2143 && !is_overflow_infinity (val[i])))
2145 /* If we found an overflowed value, set MIN and MAX
2146 to it so that we set the resulting range to
2147 VARYING. */
2148 min = max = val[i];
2149 break;
2152 if (compare_values (val[i], min) == -1)
2153 min = val[i];
2155 if (compare_values (val[i], max) == 1)
2156 max = val[i];
2160 /* If either MIN or MAX overflowed, then set the resulting range to
2161 VARYING. But we do accept an overflow infinity
2162 representation. */
2163 if (min == NULL_TREE
2164 || !is_gimple_min_invariant (min)
2165 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2166 || max == NULL_TREE
2167 || !is_gimple_min_invariant (max)
2168 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2170 set_value_range_to_varying (vr);
2171 return;
2174 /* We punt if:
2175 1) [-INF, +INF]
2176 2) [-INF, +-INF(OVF)]
2177 3) [+-INF(OVF), +INF]
2178 4) [+-INF(OVF), +-INF(OVF)]
2179 We learn nothing when we have INF and INF(OVF) on both sides.
2180 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2181 overflow. */
2182 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2183 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2185 set_value_range_to_varying (vr);
2186 return;
2189 cmp = compare_values (min, max);
2190 if (cmp == -2 || cmp == 1)
2192 /* If the new range has its limits swapped around (MIN > MAX),
2193 then the operation caused one of them to wrap around, mark
2194 the new range VARYING. */
2195 set_value_range_to_varying (vr);
2197 else
2198 set_value_range (vr, type, min, max, NULL);
2201 /* Extract range information from a binary operation CODE based on
2202 the ranges of each of its operands *VR0 and *VR1 with resulting
2203 type EXPR_TYPE. The resulting range is stored in *VR. */
2205 static void
2206 extract_range_from_binary_expr_1 (value_range *vr,
2207 enum tree_code code, tree expr_type,
2208 value_range *vr0_, value_range *vr1_)
2210 value_range vr0 = *vr0_, vr1 = *vr1_;
2211 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2212 enum value_range_type type;
2213 tree min = NULL_TREE, max = NULL_TREE;
2214 int cmp;
2216 if (!INTEGRAL_TYPE_P (expr_type)
2217 && !POINTER_TYPE_P (expr_type))
2219 set_value_range_to_varying (vr);
2220 return;
2223 /* Not all binary expressions can be applied to ranges in a
2224 meaningful way. Handle only arithmetic operations. */
2225 if (code != PLUS_EXPR
2226 && code != MINUS_EXPR
2227 && code != POINTER_PLUS_EXPR
2228 && code != MULT_EXPR
2229 && code != TRUNC_DIV_EXPR
2230 && code != FLOOR_DIV_EXPR
2231 && code != CEIL_DIV_EXPR
2232 && code != EXACT_DIV_EXPR
2233 && code != ROUND_DIV_EXPR
2234 && code != TRUNC_MOD_EXPR
2235 && code != RSHIFT_EXPR
2236 && code != LSHIFT_EXPR
2237 && code != MIN_EXPR
2238 && code != MAX_EXPR
2239 && code != BIT_AND_EXPR
2240 && code != BIT_IOR_EXPR
2241 && code != BIT_XOR_EXPR)
2243 set_value_range_to_varying (vr);
2244 return;
2247 /* If both ranges are UNDEFINED, so is the result. */
2248 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2250 set_value_range_to_undefined (vr);
2251 return;
2253 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2254 code. At some point we may want to special-case operations that
2255 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2256 operand. */
2257 else if (vr0.type == VR_UNDEFINED)
2258 set_value_range_to_varying (&vr0);
2259 else if (vr1.type == VR_UNDEFINED)
2260 set_value_range_to_varying (&vr1);
2262 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2263 and express ~[] op X as ([]' op X) U ([]'' op X). */
2264 if (vr0.type == VR_ANTI_RANGE
2265 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2267 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2268 if (vrtem1.type != VR_UNDEFINED)
2270 value_range vrres = VR_INITIALIZER;
2271 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2272 &vrtem1, vr1_);
2273 vrp_meet (vr, &vrres);
2275 return;
2277 /* Likewise for X op ~[]. */
2278 if (vr1.type == VR_ANTI_RANGE
2279 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2281 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2282 if (vrtem1.type != VR_UNDEFINED)
2284 value_range vrres = VR_INITIALIZER;
2285 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2286 vr0_, &vrtem1);
2287 vrp_meet (vr, &vrres);
2289 return;
2292 /* The type of the resulting value range defaults to VR0.TYPE. */
2293 type = vr0.type;
2295 /* Refuse to operate on VARYING ranges, ranges of different kinds
2296 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2297 because we may be able to derive a useful range even if one of
2298 the operands is VR_VARYING or symbolic range. Similarly for
2299 divisions, MIN/MAX and PLUS/MINUS.
2301 TODO, we may be able to derive anti-ranges in some cases. */
2302 if (code != BIT_AND_EXPR
2303 && code != BIT_IOR_EXPR
2304 && code != TRUNC_DIV_EXPR
2305 && code != FLOOR_DIV_EXPR
2306 && code != CEIL_DIV_EXPR
2307 && code != EXACT_DIV_EXPR
2308 && code != ROUND_DIV_EXPR
2309 && code != TRUNC_MOD_EXPR
2310 && code != MIN_EXPR
2311 && code != MAX_EXPR
2312 && code != PLUS_EXPR
2313 && code != MINUS_EXPR
2314 && code != RSHIFT_EXPR
2315 && (vr0.type == VR_VARYING
2316 || vr1.type == VR_VARYING
2317 || vr0.type != vr1.type
2318 || symbolic_range_p (&vr0)
2319 || symbolic_range_p (&vr1)))
2321 set_value_range_to_varying (vr);
2322 return;
2325 /* Now evaluate the expression to determine the new range. */
2326 if (POINTER_TYPE_P (expr_type))
2328 if (code == MIN_EXPR || code == MAX_EXPR)
2330 /* For MIN/MAX expressions with pointers, we only care about
2331 nullness, if both are non null, then the result is nonnull.
2332 If both are null, then the result is null. Otherwise they
2333 are varying. */
2334 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2335 set_value_range_to_nonnull (vr, expr_type);
2336 else if (range_is_null (&vr0) && range_is_null (&vr1))
2337 set_value_range_to_null (vr, expr_type);
2338 else
2339 set_value_range_to_varying (vr);
2341 else if (code == POINTER_PLUS_EXPR)
2343 /* For pointer types, we are really only interested in asserting
2344 whether the expression evaluates to non-NULL. */
2345 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2346 set_value_range_to_nonnull (vr, expr_type);
2347 else if (range_is_null (&vr0) && range_is_null (&vr1))
2348 set_value_range_to_null (vr, expr_type);
2349 else
2350 set_value_range_to_varying (vr);
2352 else if (code == BIT_AND_EXPR)
2354 /* For pointer types, we are really only interested in asserting
2355 whether the expression evaluates to non-NULL. */
2356 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2357 set_value_range_to_nonnull (vr, expr_type);
2358 else if (range_is_null (&vr0) || range_is_null (&vr1))
2359 set_value_range_to_null (vr, expr_type);
2360 else
2361 set_value_range_to_varying (vr);
2363 else
2364 set_value_range_to_varying (vr);
2366 return;
2369 /* For integer ranges, apply the operation to each end of the
2370 range and see what we end up with. */
2371 if (code == PLUS_EXPR || code == MINUS_EXPR)
2373 const bool minus_p = (code == MINUS_EXPR);
2374 tree min_op0 = vr0.min;
2375 tree min_op1 = minus_p ? vr1.max : vr1.min;
2376 tree max_op0 = vr0.max;
2377 tree max_op1 = minus_p ? vr1.min : vr1.max;
2378 tree sym_min_op0 = NULL_TREE;
2379 tree sym_min_op1 = NULL_TREE;
2380 tree sym_max_op0 = NULL_TREE;
2381 tree sym_max_op1 = NULL_TREE;
2382 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2384 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2385 single-symbolic ranges, try to compute the precise resulting range,
2386 but only if we know that this resulting range will also be constant
2387 or single-symbolic. */
2388 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2389 && (TREE_CODE (min_op0) == INTEGER_CST
2390 || (sym_min_op0
2391 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2392 && (TREE_CODE (min_op1) == INTEGER_CST
2393 || (sym_min_op1
2394 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2395 && (!(sym_min_op0 && sym_min_op1)
2396 || (sym_min_op0 == sym_min_op1
2397 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2398 && (TREE_CODE (max_op0) == INTEGER_CST
2399 || (sym_max_op0
2400 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2401 && (TREE_CODE (max_op1) == INTEGER_CST
2402 || (sym_max_op1
2403 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2404 && (!(sym_max_op0 && sym_max_op1)
2405 || (sym_max_op0 == sym_max_op1
2406 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2408 const signop sgn = TYPE_SIGN (expr_type);
2409 const unsigned int prec = TYPE_PRECISION (expr_type);
2410 wide_int type_min, type_max, wmin, wmax;
2411 int min_ovf = 0;
2412 int max_ovf = 0;
2414 /* Get the lower and upper bounds of the type. */
2415 if (TYPE_OVERFLOW_WRAPS (expr_type))
2417 type_min = wi::min_value (prec, sgn);
2418 type_max = wi::max_value (prec, sgn);
2420 else
2422 type_min = vrp_val_min (expr_type);
2423 type_max = vrp_val_max (expr_type);
2426 /* Combine the lower bounds, if any. */
2427 if (min_op0 && min_op1)
2429 if (minus_p)
2431 wmin = wi::sub (min_op0, min_op1);
2433 /* Check for overflow. */
2434 if (wi::cmp (0, min_op1, sgn)
2435 != wi::cmp (wmin, min_op0, sgn))
2436 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2438 else
2440 wmin = wi::add (min_op0, min_op1);
2442 /* Check for overflow. */
2443 if (wi::cmp (min_op1, 0, sgn)
2444 != wi::cmp (wmin, min_op0, sgn))
2445 min_ovf = wi::cmp (min_op0, wmin, sgn);
2448 else if (min_op0)
2449 wmin = min_op0;
2450 else if (min_op1)
2451 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2452 else
2453 wmin = wi::shwi (0, prec);
2455 /* Combine the upper bounds, if any. */
2456 if (max_op0 && max_op1)
2458 if (minus_p)
2460 wmax = wi::sub (max_op0, max_op1);
2462 /* Check for overflow. */
2463 if (wi::cmp (0, max_op1, sgn)
2464 != wi::cmp (wmax, max_op0, sgn))
2465 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2467 else
2469 wmax = wi::add (max_op0, max_op1);
2471 if (wi::cmp (max_op1, 0, sgn)
2472 != wi::cmp (wmax, max_op0, sgn))
2473 max_ovf = wi::cmp (max_op0, wmax, sgn);
2476 else if (max_op0)
2477 wmax = max_op0;
2478 else if (max_op1)
2479 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2480 else
2481 wmax = wi::shwi (0, prec);
2483 /* Check for type overflow. */
2484 if (min_ovf == 0)
2486 if (wi::cmp (wmin, type_min, sgn) == -1)
2487 min_ovf = -1;
2488 else if (wi::cmp (wmin, type_max, sgn) == 1)
2489 min_ovf = 1;
2491 if (max_ovf == 0)
2493 if (wi::cmp (wmax, type_min, sgn) == -1)
2494 max_ovf = -1;
2495 else if (wi::cmp (wmax, type_max, sgn) == 1)
2496 max_ovf = 1;
2499 /* If we have overflow for the constant part and the resulting
2500 range will be symbolic, drop to VR_VARYING. */
2501 if ((min_ovf && sym_min_op0 != sym_min_op1)
2502 || (max_ovf && sym_max_op0 != sym_max_op1))
2504 set_value_range_to_varying (vr);
2505 return;
2508 if (TYPE_OVERFLOW_WRAPS (expr_type))
2510 /* If overflow wraps, truncate the values and adjust the
2511 range kind and bounds appropriately. */
2512 wide_int tmin = wide_int::from (wmin, prec, sgn);
2513 wide_int tmax = wide_int::from (wmax, prec, sgn);
2514 if (min_ovf == max_ovf)
2516 /* No overflow or both overflow or underflow. The
2517 range kind stays VR_RANGE. */
2518 min = wide_int_to_tree (expr_type, tmin);
2519 max = wide_int_to_tree (expr_type, tmax);
2521 else if ((min_ovf == -1 && max_ovf == 0)
2522 || (max_ovf == 1 && min_ovf == 0))
2524 /* Min underflow or max overflow. The range kind
2525 changes to VR_ANTI_RANGE. */
2526 bool covers = false;
2527 wide_int tem = tmin;
2528 type = VR_ANTI_RANGE;
2529 tmin = tmax + 1;
2530 if (wi::cmp (tmin, tmax, sgn) < 0)
2531 covers = true;
2532 tmax = tem - 1;
2533 if (wi::cmp (tmax, tem, sgn) > 0)
2534 covers = true;
2535 /* If the anti-range would cover nothing, drop to varying.
2536 Likewise if the anti-range bounds are outside of the
2537 types values. */
2538 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2540 set_value_range_to_varying (vr);
2541 return;
2543 min = wide_int_to_tree (expr_type, tmin);
2544 max = wide_int_to_tree (expr_type, tmax);
2546 else
2548 /* Other underflow and/or overflow, drop to VR_VARYING. */
2549 set_value_range_to_varying (vr);
2550 return;
2553 else
2555 /* If overflow does not wrap, saturate to the types min/max
2556 value. */
2557 if (min_ovf == -1)
2559 if (needs_overflow_infinity (expr_type)
2560 && supports_overflow_infinity (expr_type))
2561 min = negative_overflow_infinity (expr_type);
2562 else
2563 min = wide_int_to_tree (expr_type, type_min);
2565 else if (min_ovf == 1)
2567 if (needs_overflow_infinity (expr_type)
2568 && supports_overflow_infinity (expr_type))
2569 min = positive_overflow_infinity (expr_type);
2570 else
2571 min = wide_int_to_tree (expr_type, type_max);
2573 else
2574 min = wide_int_to_tree (expr_type, wmin);
2576 if (max_ovf == -1)
2578 if (needs_overflow_infinity (expr_type)
2579 && supports_overflow_infinity (expr_type))
2580 max = negative_overflow_infinity (expr_type);
2581 else
2582 max = wide_int_to_tree (expr_type, type_min);
2584 else if (max_ovf == 1)
2586 if (needs_overflow_infinity (expr_type)
2587 && supports_overflow_infinity (expr_type))
2588 max = positive_overflow_infinity (expr_type);
2589 else
2590 max = wide_int_to_tree (expr_type, type_max);
2592 else
2593 max = wide_int_to_tree (expr_type, wmax);
2596 if (needs_overflow_infinity (expr_type)
2597 && supports_overflow_infinity (expr_type))
2599 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2600 || (min_op1
2601 && (minus_p
2602 ? is_positive_overflow_infinity (min_op1)
2603 : is_negative_overflow_infinity (min_op1))))
2604 min = negative_overflow_infinity (expr_type);
2605 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2606 || (max_op1
2607 && (minus_p
2608 ? is_negative_overflow_infinity (max_op1)
2609 : is_positive_overflow_infinity (max_op1))))
2610 max = positive_overflow_infinity (expr_type);
2613 /* If the result lower bound is constant, we're done;
2614 otherwise, build the symbolic lower bound. */
2615 if (sym_min_op0 == sym_min_op1)
2617 else if (sym_min_op0)
2618 min = build_symbolic_expr (expr_type, sym_min_op0,
2619 neg_min_op0, min);
2620 else if (sym_min_op1)
2621 min = build_symbolic_expr (expr_type, sym_min_op1,
2622 neg_min_op1 ^ minus_p, min);
2624 /* Likewise for the upper bound. */
2625 if (sym_max_op0 == sym_max_op1)
2627 else if (sym_max_op0)
2628 max = build_symbolic_expr (expr_type, sym_max_op0,
2629 neg_max_op0, max);
2630 else if (sym_max_op1)
2631 max = build_symbolic_expr (expr_type, sym_max_op1,
2632 neg_max_op1 ^ minus_p, max);
2634 else
2636 /* For other cases, for example if we have a PLUS_EXPR with two
2637 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2638 to compute a precise range for such a case.
2639 ??? General even mixed range kind operations can be expressed
2640 by for example transforming ~[3, 5] + [1, 2] to range-only
2641 operations and a union primitive:
2642 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2643 [-INF+1, 4] U [6, +INF(OVF)]
2644 though usually the union is not exactly representable with
2645 a single range or anti-range as the above is
2646 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2647 but one could use a scheme similar to equivalences for this. */
2648 set_value_range_to_varying (vr);
2649 return;
2652 else if (code == MIN_EXPR
2653 || code == MAX_EXPR)
2655 if (vr0.type == VR_RANGE
2656 && !symbolic_range_p (&vr0))
2658 type = VR_RANGE;
2659 if (vr1.type == VR_RANGE
2660 && !symbolic_range_p (&vr1))
2662 /* For operations that make the resulting range directly
2663 proportional to the original ranges, apply the operation to
2664 the same end of each range. */
2665 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2666 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2668 else if (code == MIN_EXPR)
2670 min = vrp_val_min (expr_type);
2671 max = vr0.max;
2673 else if (code == MAX_EXPR)
2675 min = vr0.min;
2676 max = vrp_val_max (expr_type);
2679 else if (vr1.type == VR_RANGE
2680 && !symbolic_range_p (&vr1))
2682 type = VR_RANGE;
2683 if (code == MIN_EXPR)
2685 min = vrp_val_min (expr_type);
2686 max = vr1.max;
2688 else if (code == MAX_EXPR)
2690 min = vr1.min;
2691 max = vrp_val_max (expr_type);
2694 else
2696 set_value_range_to_varying (vr);
2697 return;
2700 else if (code == MULT_EXPR)
2702 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2703 drop to varying. This test requires 2*prec bits if both
2704 operands are signed and 2*prec + 2 bits if either is not. */
2706 signop sign = TYPE_SIGN (expr_type);
2707 unsigned int prec = TYPE_PRECISION (expr_type);
2709 if (range_int_cst_p (&vr0)
2710 && range_int_cst_p (&vr1)
2711 && TYPE_OVERFLOW_WRAPS (expr_type))
2713 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2714 typedef generic_wide_int
2715 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2716 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2717 vrp_int size = sizem1 + 1;
2719 /* Extend the values using the sign of the result to PREC2.
2720 From here on out, everthing is just signed math no matter
2721 what the input types were. */
2722 vrp_int min0 = vrp_int_cst (vr0.min);
2723 vrp_int max0 = vrp_int_cst (vr0.max);
2724 vrp_int min1 = vrp_int_cst (vr1.min);
2725 vrp_int max1 = vrp_int_cst (vr1.max);
2726 /* Canonicalize the intervals. */
2727 if (sign == UNSIGNED)
2729 if (wi::ltu_p (size, min0 + max0))
2731 min0 -= size;
2732 max0 -= size;
2735 if (wi::ltu_p (size, min1 + max1))
2737 min1 -= size;
2738 max1 -= size;
2742 vrp_int prod0 = min0 * min1;
2743 vrp_int prod1 = min0 * max1;
2744 vrp_int prod2 = max0 * min1;
2745 vrp_int prod3 = max0 * max1;
2747 /* Sort the 4 products so that min is in prod0 and max is in
2748 prod3. */
2749 /* min0min1 > max0max1 */
2750 if (prod0 > prod3)
2751 std::swap (prod0, prod3);
2753 /* min0max1 > max0min1 */
2754 if (prod1 > prod2)
2755 std::swap (prod1, prod2);
2757 if (prod0 > prod1)
2758 std::swap (prod0, prod1);
2760 if (prod2 > prod3)
2761 std::swap (prod2, prod3);
2763 /* diff = max - min. */
2764 prod2 = prod3 - prod0;
2765 if (wi::geu_p (prod2, sizem1))
2767 /* the range covers all values. */
2768 set_value_range_to_varying (vr);
2769 return;
2772 /* The following should handle the wrapping and selecting
2773 VR_ANTI_RANGE for us. */
2774 min = wide_int_to_tree (expr_type, prod0);
2775 max = wide_int_to_tree (expr_type, prod3);
2776 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2777 return;
2780 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2781 drop to VR_VARYING. It would take more effort to compute a
2782 precise range for such a case. For example, if we have
2783 op0 == 65536 and op1 == 65536 with their ranges both being
2784 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2785 we cannot claim that the product is in ~[0,0]. Note that we
2786 are guaranteed to have vr0.type == vr1.type at this
2787 point. */
2788 if (vr0.type == VR_ANTI_RANGE
2789 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2791 set_value_range_to_varying (vr);
2792 return;
2795 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2796 return;
2798 else if (code == RSHIFT_EXPR
2799 || code == LSHIFT_EXPR)
2801 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2802 then drop to VR_VARYING. Outside of this range we get undefined
2803 behavior from the shift operation. We cannot even trust
2804 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2805 shifts, and the operation at the tree level may be widened. */
2806 if (range_int_cst_p (&vr1)
2807 && compare_tree_int (vr1.min, 0) >= 0
2808 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2810 if (code == RSHIFT_EXPR)
2812 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2813 useful ranges just from the shift count. E.g.
2814 x >> 63 for signed 64-bit x is always [-1, 0]. */
2815 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2817 vr0.type = type = VR_RANGE;
2818 vr0.min = vrp_val_min (expr_type);
2819 vr0.max = vrp_val_max (expr_type);
2821 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2822 return;
2824 /* We can map lshifts by constants to MULT_EXPR handling. */
2825 else if (code == LSHIFT_EXPR
2826 && range_int_cst_singleton_p (&vr1))
2828 bool saved_flag_wrapv;
2829 value_range vr1p = VR_INITIALIZER;
2830 vr1p.type = VR_RANGE;
2831 vr1p.min = (wide_int_to_tree
2832 (expr_type,
2833 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2834 TYPE_PRECISION (expr_type))));
2835 vr1p.max = vr1p.min;
2836 /* We have to use a wrapping multiply though as signed overflow
2837 on lshifts is implementation defined in C89. */
2838 saved_flag_wrapv = flag_wrapv;
2839 flag_wrapv = 1;
2840 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2841 &vr0, &vr1p);
2842 flag_wrapv = saved_flag_wrapv;
2843 return;
2845 else if (code == LSHIFT_EXPR
2846 && range_int_cst_p (&vr0))
2848 int prec = TYPE_PRECISION (expr_type);
2849 int overflow_pos = prec;
2850 int bound_shift;
2851 wide_int low_bound, high_bound;
2852 bool uns = TYPE_UNSIGNED (expr_type);
2853 bool in_bounds = false;
2855 if (!uns)
2856 overflow_pos -= 1;
2858 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2859 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2860 overflow. However, for that to happen, vr1.max needs to be
2861 zero, which means vr1 is a singleton range of zero, which
2862 means it should be handled by the previous LSHIFT_EXPR
2863 if-clause. */
2864 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2865 wide_int complement = ~(bound - 1);
2867 if (uns)
2869 low_bound = bound;
2870 high_bound = complement;
2871 if (wi::ltu_p (vr0.max, low_bound))
2873 /* [5, 6] << [1, 2] == [10, 24]. */
2874 /* We're shifting out only zeroes, the value increases
2875 monotonically. */
2876 in_bounds = true;
2878 else if (wi::ltu_p (high_bound, vr0.min))
2880 /* [0xffffff00, 0xffffffff] << [1, 2]
2881 == [0xfffffc00, 0xfffffffe]. */
2882 /* We're shifting out only ones, the value decreases
2883 monotonically. */
2884 in_bounds = true;
2887 else
2889 /* [-1, 1] << [1, 2] == [-4, 4]. */
2890 low_bound = complement;
2891 high_bound = bound;
2892 if (wi::lts_p (vr0.max, high_bound)
2893 && wi::lts_p (low_bound, vr0.min))
2895 /* For non-negative numbers, we're shifting out only
2896 zeroes, the value increases monotonically.
2897 For negative numbers, we're shifting out only ones, the
2898 value decreases monotomically. */
2899 in_bounds = true;
2903 if (in_bounds)
2905 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2906 return;
2910 set_value_range_to_varying (vr);
2911 return;
2913 else if (code == TRUNC_DIV_EXPR
2914 || code == FLOOR_DIV_EXPR
2915 || code == CEIL_DIV_EXPR
2916 || code == EXACT_DIV_EXPR
2917 || code == ROUND_DIV_EXPR)
2919 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2921 /* For division, if op1 has VR_RANGE but op0 does not, something
2922 can be deduced just from that range. Say [min, max] / [4, max]
2923 gives [min / 4, max / 4] range. */
2924 if (vr1.type == VR_RANGE
2925 && !symbolic_range_p (&vr1)
2926 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2928 vr0.type = type = VR_RANGE;
2929 vr0.min = vrp_val_min (expr_type);
2930 vr0.max = vrp_val_max (expr_type);
2932 else
2934 set_value_range_to_varying (vr);
2935 return;
2939 /* For divisions, if flag_non_call_exceptions is true, we must
2940 not eliminate a division by zero. */
2941 if (cfun->can_throw_non_call_exceptions
2942 && (vr1.type != VR_RANGE
2943 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2945 set_value_range_to_varying (vr);
2946 return;
2949 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2950 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2951 include 0. */
2952 if (vr0.type == VR_RANGE
2953 && (vr1.type != VR_RANGE
2954 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2956 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2957 int cmp;
2959 min = NULL_TREE;
2960 max = NULL_TREE;
2961 if (TYPE_UNSIGNED (expr_type)
2962 || value_range_nonnegative_p (&vr1))
2964 /* For unsigned division or when divisor is known
2965 to be non-negative, the range has to cover
2966 all numbers from 0 to max for positive max
2967 and all numbers from min to 0 for negative min. */
2968 cmp = compare_values (vr0.max, zero);
2969 if (cmp == -1)
2971 /* When vr0.max < 0, vr1.min != 0 and value
2972 ranges for dividend and divisor are available. */
2973 if (vr1.type == VR_RANGE
2974 && !symbolic_range_p (&vr0)
2975 && !symbolic_range_p (&vr1)
2976 && compare_values (vr1.min, zero) != 0)
2977 max = int_const_binop (code, vr0.max, vr1.min);
2978 else
2979 max = zero;
2981 else if (cmp == 0 || cmp == 1)
2982 max = vr0.max;
2983 else
2984 type = VR_VARYING;
2985 cmp = compare_values (vr0.min, zero);
2986 if (cmp == 1)
2988 /* For unsigned division when value ranges for dividend
2989 and divisor are available. */
2990 if (vr1.type == VR_RANGE
2991 && !symbolic_range_p (&vr0)
2992 && !symbolic_range_p (&vr1)
2993 && compare_values (vr1.max, zero) != 0)
2994 min = int_const_binop (code, vr0.min, vr1.max);
2995 else
2996 min = zero;
2998 else if (cmp == 0 || cmp == -1)
2999 min = vr0.min;
3000 else
3001 type = VR_VARYING;
3003 else
3005 /* Otherwise the range is -max .. max or min .. -min
3006 depending on which bound is bigger in absolute value,
3007 as the division can change the sign. */
3008 abs_extent_range (vr, vr0.min, vr0.max);
3009 return;
3011 if (type == VR_VARYING)
3013 set_value_range_to_varying (vr);
3014 return;
3017 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3019 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3020 return;
3023 else if (code == TRUNC_MOD_EXPR)
3025 if (range_is_null (&vr1))
3027 set_value_range_to_undefined (vr);
3028 return;
3030 /* ABS (A % B) < ABS (B) and either
3031 0 <= A % B <= A or A <= A % B <= 0. */
3032 type = VR_RANGE;
3033 signop sgn = TYPE_SIGN (expr_type);
3034 unsigned int prec = TYPE_PRECISION (expr_type);
3035 wide_int wmin, wmax, tmp;
3036 wide_int zero = wi::zero (prec);
3037 wide_int one = wi::one (prec);
3038 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3040 wmax = wi::sub (vr1.max, one);
3041 if (sgn == SIGNED)
3043 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3044 wmax = wi::smax (wmax, tmp);
3047 else
3049 wmax = wi::max_value (prec, sgn);
3050 /* X % INT_MIN may be INT_MAX. */
3051 if (sgn == UNSIGNED)
3052 wmax = wmax - one;
3055 if (sgn == UNSIGNED)
3056 wmin = zero;
3057 else
3059 wmin = -wmax;
3060 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3062 tmp = vr0.min;
3063 if (wi::gts_p (tmp, zero))
3064 tmp = zero;
3065 wmin = wi::smax (wmin, tmp);
3069 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3071 tmp = vr0.max;
3072 if (sgn == SIGNED && wi::neg_p (tmp))
3073 tmp = zero;
3074 wmax = wi::min (wmax, tmp, sgn);
3077 min = wide_int_to_tree (expr_type, wmin);
3078 max = wide_int_to_tree (expr_type, wmax);
3080 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3082 bool int_cst_range0, int_cst_range1;
3083 wide_int may_be_nonzero0, may_be_nonzero1;
3084 wide_int must_be_nonzero0, must_be_nonzero1;
3086 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3087 &may_be_nonzero0,
3088 &must_be_nonzero0);
3089 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3090 &may_be_nonzero1,
3091 &must_be_nonzero1);
3093 type = VR_RANGE;
3094 if (code == BIT_AND_EXPR)
3096 min = wide_int_to_tree (expr_type,
3097 must_be_nonzero0 & must_be_nonzero1);
3098 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3099 /* If both input ranges contain only negative values we can
3100 truncate the result range maximum to the minimum of the
3101 input range maxima. */
3102 if (int_cst_range0 && int_cst_range1
3103 && tree_int_cst_sgn (vr0.max) < 0
3104 && tree_int_cst_sgn (vr1.max) < 0)
3106 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3107 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3109 /* If either input range contains only non-negative values
3110 we can truncate the result range maximum to the respective
3111 maximum of the input range. */
3112 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3113 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3114 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3115 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3116 max = wide_int_to_tree (expr_type, wmax);
3117 cmp = compare_values (min, max);
3118 /* PR68217: In case of signed & sign-bit-CST should
3119 result in [-INF, 0] instead of [-INF, INF]. */
3120 if (cmp == -2 || cmp == 1)
3122 wide_int sign_bit
3123 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
3124 TYPE_PRECISION (expr_type));
3125 if (!TYPE_UNSIGNED (expr_type)
3126 && ((value_range_constant_singleton (&vr0)
3127 && !wi::cmps (vr0.min, sign_bit))
3128 || (value_range_constant_singleton (&vr1)
3129 && !wi::cmps (vr1.min, sign_bit))))
3131 min = TYPE_MIN_VALUE (expr_type);
3132 max = build_int_cst (expr_type, 0);
3136 else if (code == BIT_IOR_EXPR)
3138 max = wide_int_to_tree (expr_type,
3139 may_be_nonzero0 | may_be_nonzero1);
3140 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3141 /* If the input ranges contain only positive values we can
3142 truncate the minimum of the result range to the maximum
3143 of the input range minima. */
3144 if (int_cst_range0 && int_cst_range1
3145 && tree_int_cst_sgn (vr0.min) >= 0
3146 && tree_int_cst_sgn (vr1.min) >= 0)
3148 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3149 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3151 /* If either input range contains only negative values
3152 we can truncate the minimum of the result range to the
3153 respective minimum range. */
3154 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3155 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3156 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3157 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3158 min = wide_int_to_tree (expr_type, wmin);
3160 else if (code == BIT_XOR_EXPR)
3162 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3163 | ~(may_be_nonzero0 | may_be_nonzero1));
3164 wide_int result_one_bits
3165 = (must_be_nonzero0.and_not (may_be_nonzero1)
3166 | must_be_nonzero1.and_not (may_be_nonzero0));
3167 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3168 min = wide_int_to_tree (expr_type, result_one_bits);
3169 /* If the range has all positive or all negative values the
3170 result is better than VARYING. */
3171 if (tree_int_cst_sgn (min) < 0
3172 || tree_int_cst_sgn (max) >= 0)
3174 else
3175 max = min = NULL_TREE;
3178 else
3179 gcc_unreachable ();
3181 /* If either MIN or MAX overflowed, then set the resulting range to
3182 VARYING. But we do accept an overflow infinity representation. */
3183 if (min == NULL_TREE
3184 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3185 || max == NULL_TREE
3186 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3188 set_value_range_to_varying (vr);
3189 return;
3192 /* We punt if:
3193 1) [-INF, +INF]
3194 2) [-INF, +-INF(OVF)]
3195 3) [+-INF(OVF), +INF]
3196 4) [+-INF(OVF), +-INF(OVF)]
3197 We learn nothing when we have INF and INF(OVF) on both sides.
3198 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3199 overflow. */
3200 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3201 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3203 set_value_range_to_varying (vr);
3204 return;
3207 cmp = compare_values (min, max);
3208 if (cmp == -2 || cmp == 1)
3210 /* If the new range has its limits swapped around (MIN > MAX),
3211 then the operation caused one of them to wrap around, mark
3212 the new range VARYING. */
3213 set_value_range_to_varying (vr);
3215 else
3216 set_value_range (vr, type, min, max, NULL);
3219 /* Extract range information from a binary expression OP0 CODE OP1 based on
3220 the ranges of each of its operands with resulting type EXPR_TYPE.
3221 The resulting range is stored in *VR. */
3223 static void
3224 extract_range_from_binary_expr (value_range *vr,
3225 enum tree_code code,
3226 tree expr_type, tree op0, tree op1)
3228 value_range vr0 = VR_INITIALIZER;
3229 value_range vr1 = VR_INITIALIZER;
3231 /* Get value ranges for each operand. For constant operands, create
3232 a new value range with the operand to simplify processing. */
3233 if (TREE_CODE (op0) == SSA_NAME)
3234 vr0 = *(get_value_range (op0));
3235 else if (is_gimple_min_invariant (op0))
3236 set_value_range_to_value (&vr0, op0, NULL);
3237 else
3238 set_value_range_to_varying (&vr0);
3240 if (TREE_CODE (op1) == SSA_NAME)
3241 vr1 = *(get_value_range (op1));
3242 else if (is_gimple_min_invariant (op1))
3243 set_value_range_to_value (&vr1, op1, NULL);
3244 else
3245 set_value_range_to_varying (&vr1);
3247 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3249 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3250 and based on the other operand, for example if it was deduced from a
3251 symbolic comparison. When a bound of the range of the first operand
3252 is invariant, we set the corresponding bound of the new range to INF
3253 in order to avoid recursing on the range of the second operand. */
3254 if (vr->type == VR_VARYING
3255 && (code == PLUS_EXPR || code == MINUS_EXPR)
3256 && TREE_CODE (op1) == SSA_NAME
3257 && vr0.type == VR_RANGE
3258 && symbolic_range_based_on_p (&vr0, op1))
3260 const bool minus_p = (code == MINUS_EXPR);
3261 value_range n_vr1 = VR_INITIALIZER;
3263 /* Try with VR0 and [-INF, OP1]. */
3264 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3265 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3267 /* Try with VR0 and [OP1, +INF]. */
3268 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3269 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3271 /* Try with VR0 and [OP1, OP1]. */
3272 else
3273 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3275 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3278 if (vr->type == VR_VARYING
3279 && (code == PLUS_EXPR || code == MINUS_EXPR)
3280 && TREE_CODE (op0) == SSA_NAME
3281 && vr1.type == VR_RANGE
3282 && symbolic_range_based_on_p (&vr1, op0))
3284 const bool minus_p = (code == MINUS_EXPR);
3285 value_range n_vr0 = VR_INITIALIZER;
3287 /* Try with [-INF, OP0] and VR1. */
3288 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3289 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3291 /* Try with [OP0, +INF] and VR1. */
3292 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3293 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3295 /* Try with [OP0, OP0] and VR1. */
3296 else
3297 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3299 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3303 /* Extract range information from a unary operation CODE based on
3304 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3305 The resulting range is stored in *VR. */
3307 void
3308 extract_range_from_unary_expr (value_range *vr,
3309 enum tree_code code, tree type,
3310 value_range *vr0_, tree op0_type)
3312 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3314 /* VRP only operates on integral and pointer types. */
3315 if (!(INTEGRAL_TYPE_P (op0_type)
3316 || POINTER_TYPE_P (op0_type))
3317 || !(INTEGRAL_TYPE_P (type)
3318 || POINTER_TYPE_P (type)))
3320 set_value_range_to_varying (vr);
3321 return;
3324 /* If VR0 is UNDEFINED, so is the result. */
3325 if (vr0.type == VR_UNDEFINED)
3327 set_value_range_to_undefined (vr);
3328 return;
3331 /* Handle operations that we express in terms of others. */
3332 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3334 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3335 copy_value_range (vr, &vr0);
3336 return;
3338 else if (code == NEGATE_EXPR)
3340 /* -X is simply 0 - X, so re-use existing code that also handles
3341 anti-ranges fine. */
3342 value_range zero = VR_INITIALIZER;
3343 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3344 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3345 return;
3347 else if (code == BIT_NOT_EXPR)
3349 /* ~X is simply -1 - X, so re-use existing code that also handles
3350 anti-ranges fine. */
3351 value_range minusone = VR_INITIALIZER;
3352 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3353 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3354 type, &minusone, &vr0);
3355 return;
3358 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3359 and express op ~[] as (op []') U (op []''). */
3360 if (vr0.type == VR_ANTI_RANGE
3361 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3363 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3364 if (vrtem1.type != VR_UNDEFINED)
3366 value_range vrres = VR_INITIALIZER;
3367 extract_range_from_unary_expr (&vrres, code, type,
3368 &vrtem1, op0_type);
3369 vrp_meet (vr, &vrres);
3371 return;
3374 if (CONVERT_EXPR_CODE_P (code))
3376 tree inner_type = op0_type;
3377 tree outer_type = type;
3379 /* If the expression evaluates to a pointer, we are only interested in
3380 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3381 if (POINTER_TYPE_P (type))
3383 if (range_is_nonnull (&vr0))
3384 set_value_range_to_nonnull (vr, type);
3385 else if (range_is_null (&vr0))
3386 set_value_range_to_null (vr, type);
3387 else
3388 set_value_range_to_varying (vr);
3389 return;
3392 /* If VR0 is varying and we increase the type precision, assume
3393 a full range for the following transformation. */
3394 if (vr0.type == VR_VARYING
3395 && INTEGRAL_TYPE_P (inner_type)
3396 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3398 vr0.type = VR_RANGE;
3399 vr0.min = TYPE_MIN_VALUE (inner_type);
3400 vr0.max = TYPE_MAX_VALUE (inner_type);
3403 /* If VR0 is a constant range or anti-range and the conversion is
3404 not truncating we can convert the min and max values and
3405 canonicalize the resulting range. Otherwise we can do the
3406 conversion if the size of the range is less than what the
3407 precision of the target type can represent and the range is
3408 not an anti-range. */
3409 if ((vr0.type == VR_RANGE
3410 || vr0.type == VR_ANTI_RANGE)
3411 && TREE_CODE (vr0.min) == INTEGER_CST
3412 && TREE_CODE (vr0.max) == INTEGER_CST
3413 && (!is_overflow_infinity (vr0.min)
3414 || (vr0.type == VR_RANGE
3415 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3416 && needs_overflow_infinity (outer_type)
3417 && supports_overflow_infinity (outer_type)))
3418 && (!is_overflow_infinity (vr0.max)
3419 || (vr0.type == VR_RANGE
3420 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3421 && needs_overflow_infinity (outer_type)
3422 && supports_overflow_infinity (outer_type)))
3423 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3424 || (vr0.type == VR_RANGE
3425 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3426 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3427 size_int (TYPE_PRECISION (outer_type)))))))
3429 tree new_min, new_max;
3430 if (is_overflow_infinity (vr0.min))
3431 new_min = negative_overflow_infinity (outer_type);
3432 else
3433 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3434 0, false);
3435 if (is_overflow_infinity (vr0.max))
3436 new_max = positive_overflow_infinity (outer_type);
3437 else
3438 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3439 0, false);
3440 set_and_canonicalize_value_range (vr, vr0.type,
3441 new_min, new_max, NULL);
3442 return;
3445 set_value_range_to_varying (vr);
3446 return;
3448 else if (code == ABS_EXPR)
3450 tree min, max;
3451 int cmp;
3453 /* Pass through vr0 in the easy cases. */
3454 if (TYPE_UNSIGNED (type)
3455 || value_range_nonnegative_p (&vr0))
3457 copy_value_range (vr, &vr0);
3458 return;
3461 /* For the remaining varying or symbolic ranges we can't do anything
3462 useful. */
3463 if (vr0.type == VR_VARYING
3464 || symbolic_range_p (&vr0))
3466 set_value_range_to_varying (vr);
3467 return;
3470 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3471 useful range. */
3472 if (!TYPE_OVERFLOW_UNDEFINED (type)
3473 && ((vr0.type == VR_RANGE
3474 && vrp_val_is_min (vr0.min))
3475 || (vr0.type == VR_ANTI_RANGE
3476 && !vrp_val_is_min (vr0.min))))
3478 set_value_range_to_varying (vr);
3479 return;
3482 /* ABS_EXPR may flip the range around, if the original range
3483 included negative values. */
3484 if (is_overflow_infinity (vr0.min))
3485 min = positive_overflow_infinity (type);
3486 else if (!vrp_val_is_min (vr0.min))
3487 min = fold_unary_to_constant (code, type, vr0.min);
3488 else if (!needs_overflow_infinity (type))
3489 min = TYPE_MAX_VALUE (type);
3490 else if (supports_overflow_infinity (type))
3491 min = positive_overflow_infinity (type);
3492 else
3494 set_value_range_to_varying (vr);
3495 return;
3498 if (is_overflow_infinity (vr0.max))
3499 max = positive_overflow_infinity (type);
3500 else if (!vrp_val_is_min (vr0.max))
3501 max = fold_unary_to_constant (code, type, vr0.max);
3502 else if (!needs_overflow_infinity (type))
3503 max = TYPE_MAX_VALUE (type);
3504 else if (supports_overflow_infinity (type)
3505 /* We shouldn't generate [+INF, +INF] as set_value_range
3506 doesn't like this and ICEs. */
3507 && !is_positive_overflow_infinity (min))
3508 max = positive_overflow_infinity (type);
3509 else
3511 set_value_range_to_varying (vr);
3512 return;
3515 cmp = compare_values (min, max);
3517 /* If a VR_ANTI_RANGEs contains zero, then we have
3518 ~[-INF, min(MIN, MAX)]. */
3519 if (vr0.type == VR_ANTI_RANGE)
3521 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3523 /* Take the lower of the two values. */
3524 if (cmp != 1)
3525 max = min;
3527 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3528 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3529 flag_wrapv is set and the original anti-range doesn't include
3530 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3531 if (TYPE_OVERFLOW_WRAPS (type))
3533 tree type_min_value = TYPE_MIN_VALUE (type);
3535 min = (vr0.min != type_min_value
3536 ? int_const_binop (PLUS_EXPR, type_min_value,
3537 build_int_cst (TREE_TYPE (type_min_value), 1))
3538 : type_min_value);
3540 else
3542 if (overflow_infinity_range_p (&vr0))
3543 min = negative_overflow_infinity (type);
3544 else
3545 min = TYPE_MIN_VALUE (type);
3548 else
3550 /* All else has failed, so create the range [0, INF], even for
3551 flag_wrapv since TYPE_MIN_VALUE is in the original
3552 anti-range. */
3553 vr0.type = VR_RANGE;
3554 min = build_int_cst (type, 0);
3555 if (needs_overflow_infinity (type))
3557 if (supports_overflow_infinity (type))
3558 max = positive_overflow_infinity (type);
3559 else
3561 set_value_range_to_varying (vr);
3562 return;
3565 else
3566 max = TYPE_MAX_VALUE (type);
3570 /* If the range contains zero then we know that the minimum value in the
3571 range will be zero. */
3572 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3574 if (cmp == 1)
3575 max = min;
3576 min = build_int_cst (type, 0);
3578 else
3580 /* If the range was reversed, swap MIN and MAX. */
3581 if (cmp == 1)
3582 std::swap (min, max);
3585 cmp = compare_values (min, max);
3586 if (cmp == -2 || cmp == 1)
3588 /* If the new range has its limits swapped around (MIN > MAX),
3589 then the operation caused one of them to wrap around, mark
3590 the new range VARYING. */
3591 set_value_range_to_varying (vr);
3593 else
3594 set_value_range (vr, vr0.type, min, max, NULL);
3595 return;
3598 /* For unhandled operations fall back to varying. */
3599 set_value_range_to_varying (vr);
3600 return;
3604 /* Extract range information from a unary expression CODE OP0 based on
3605 the range of its operand with resulting type TYPE.
3606 The resulting range is stored in *VR. */
3608 static void
3609 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3610 tree type, tree op0)
3612 value_range vr0 = VR_INITIALIZER;
3614 /* Get value ranges for the operand. For constant operands, create
3615 a new value range with the operand to simplify processing. */
3616 if (TREE_CODE (op0) == SSA_NAME)
3617 vr0 = *(get_value_range (op0));
3618 else if (is_gimple_min_invariant (op0))
3619 set_value_range_to_value (&vr0, op0, NULL);
3620 else
3621 set_value_range_to_varying (&vr0);
3623 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3627 /* Extract range information from a conditional expression STMT based on
3628 the ranges of each of its operands and the expression code. */
3630 static void
3631 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3633 tree op0, op1;
3634 value_range vr0 = VR_INITIALIZER;
3635 value_range vr1 = VR_INITIALIZER;
3637 /* Get value ranges for each operand. For constant operands, create
3638 a new value range with the operand to simplify processing. */
3639 op0 = gimple_assign_rhs2 (stmt);
3640 if (TREE_CODE (op0) == SSA_NAME)
3641 vr0 = *(get_value_range (op0));
3642 else if (is_gimple_min_invariant (op0))
3643 set_value_range_to_value (&vr0, op0, NULL);
3644 else
3645 set_value_range_to_varying (&vr0);
3647 op1 = gimple_assign_rhs3 (stmt);
3648 if (TREE_CODE (op1) == SSA_NAME)
3649 vr1 = *(get_value_range (op1));
3650 else if (is_gimple_min_invariant (op1))
3651 set_value_range_to_value (&vr1, op1, NULL);
3652 else
3653 set_value_range_to_varying (&vr1);
3655 /* The resulting value range is the union of the operand ranges */
3656 copy_value_range (vr, &vr0);
3657 vrp_meet (vr, &vr1);
3661 /* Extract range information from a comparison expression EXPR based
3662 on the range of its operand and the expression code. */
3664 static void
3665 extract_range_from_comparison (value_range *vr, enum tree_code code,
3666 tree type, tree op0, tree op1)
3668 bool sop = false;
3669 tree val;
3671 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3672 NULL);
3674 /* A disadvantage of using a special infinity as an overflow
3675 representation is that we lose the ability to record overflow
3676 when we don't have an infinity. So we have to ignore a result
3677 which relies on overflow. */
3679 if (val && !is_overflow_infinity (val) && !sop)
3681 /* Since this expression was found on the RHS of an assignment,
3682 its type may be different from _Bool. Convert VAL to EXPR's
3683 type. */
3684 val = fold_convert (type, val);
3685 if (is_gimple_min_invariant (val))
3686 set_value_range_to_value (vr, val, vr->equiv);
3687 else
3688 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3690 else
3691 /* The result of a comparison is always true or false. */
3692 set_value_range_to_truthvalue (vr, type);
3695 /* Helper function for simplify_internal_call_using_ranges and
3696 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3697 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3698 always overflow. Set *OVF to true if it is known to always
3699 overflow. */
3701 static bool
3702 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3703 tree op0, tree op1, bool *ovf)
3705 value_range vr0 = VR_INITIALIZER;
3706 value_range vr1 = VR_INITIALIZER;
3707 if (TREE_CODE (op0) == SSA_NAME)
3708 vr0 = *get_value_range (op0);
3709 else if (TREE_CODE (op0) == INTEGER_CST)
3710 set_value_range_to_value (&vr0, op0, NULL);
3711 else
3712 set_value_range_to_varying (&vr0);
3714 if (TREE_CODE (op1) == SSA_NAME)
3715 vr1 = *get_value_range (op1);
3716 else if (TREE_CODE (op1) == INTEGER_CST)
3717 set_value_range_to_value (&vr1, op1, NULL);
3718 else
3719 set_value_range_to_varying (&vr1);
3721 if (!range_int_cst_p (&vr0)
3722 || TREE_OVERFLOW (vr0.min)
3723 || TREE_OVERFLOW (vr0.max))
3725 vr0.min = vrp_val_min (TREE_TYPE (op0));
3726 vr0.max = vrp_val_max (TREE_TYPE (op0));
3728 if (!range_int_cst_p (&vr1)
3729 || TREE_OVERFLOW (vr1.min)
3730 || TREE_OVERFLOW (vr1.max))
3732 vr1.min = vrp_val_min (TREE_TYPE (op1));
3733 vr1.max = vrp_val_max (TREE_TYPE (op1));
3735 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3736 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3737 if (arith_overflowed_p (subcode, type, vr0.max,
3738 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3739 return false;
3740 if (subcode == MULT_EXPR)
3742 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3743 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3744 return false;
3746 if (*ovf)
3748 /* So far we found that there is an overflow on the boundaries.
3749 That doesn't prove that there is an overflow even for all values
3750 in between the boundaries. For that compute widest_int range
3751 of the result and see if it doesn't overlap the range of
3752 type. */
3753 widest_int wmin, wmax;
3754 widest_int w[4];
3755 int i;
3756 w[0] = wi::to_widest (vr0.min);
3757 w[1] = wi::to_widest (vr0.max);
3758 w[2] = wi::to_widest (vr1.min);
3759 w[3] = wi::to_widest (vr1.max);
3760 for (i = 0; i < 4; i++)
3762 widest_int wt;
3763 switch (subcode)
3765 case PLUS_EXPR:
3766 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3767 break;
3768 case MINUS_EXPR:
3769 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3770 break;
3771 case MULT_EXPR:
3772 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3773 break;
3774 default:
3775 gcc_unreachable ();
3777 if (i == 0)
3779 wmin = wt;
3780 wmax = wt;
3782 else
3784 wmin = wi::smin (wmin, wt);
3785 wmax = wi::smax (wmax, wt);
3788 /* The result of op0 CODE op1 is known to be in range
3789 [wmin, wmax]. */
3790 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3791 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3792 /* If all values in [wmin, wmax] are smaller than
3793 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3794 the arithmetic operation will always overflow. */
3795 if (wmax < wtmin || wmin > wtmax)
3796 return true;
3797 return false;
3799 return true;
3802 /* Try to derive a nonnegative or nonzero range out of STMT relying
3803 primarily on generic routines in fold in conjunction with range data.
3804 Store the result in *VR */
3806 static void
3807 extract_range_basic (value_range *vr, gimple *stmt)
3809 bool sop = false;
3810 tree type = gimple_expr_type (stmt);
3812 if (is_gimple_call (stmt))
3814 tree arg;
3815 int mini, maxi, zerov = 0, prec;
3816 enum tree_code subcode = ERROR_MARK;
3817 combined_fn cfn = gimple_call_combined_fn (stmt);
3819 switch (cfn)
3821 case CFN_BUILT_IN_CONSTANT_P:
3822 /* If the call is __builtin_constant_p and the argument is a
3823 function parameter resolve it to false. This avoids bogus
3824 array bound warnings.
3825 ??? We could do this as early as inlining is finished. */
3826 arg = gimple_call_arg (stmt, 0);
3827 if (TREE_CODE (arg) == SSA_NAME
3828 && SSA_NAME_IS_DEFAULT_DEF (arg)
3829 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3830 && cfun->after_inlining)
3832 set_value_range_to_null (vr, type);
3833 return;
3835 break;
3836 /* Both __builtin_ffs* and __builtin_popcount return
3837 [0, prec]. */
3838 CASE_CFN_FFS:
3839 CASE_CFN_POPCOUNT:
3840 arg = gimple_call_arg (stmt, 0);
3841 prec = TYPE_PRECISION (TREE_TYPE (arg));
3842 mini = 0;
3843 maxi = prec;
3844 if (TREE_CODE (arg) == SSA_NAME)
3846 value_range *vr0 = get_value_range (arg);
3847 /* If arg is non-zero, then ffs or popcount
3848 are non-zero. */
3849 if (((vr0->type == VR_RANGE
3850 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3851 || (vr0->type == VR_ANTI_RANGE
3852 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3853 && !is_overflow_infinity (vr0->min)
3854 && !is_overflow_infinity (vr0->max))
3855 mini = 1;
3856 /* If some high bits are known to be zero,
3857 we can decrease the maximum. */
3858 if (vr0->type == VR_RANGE
3859 && TREE_CODE (vr0->max) == INTEGER_CST
3860 && !operand_less_p (vr0->min,
3861 build_zero_cst (TREE_TYPE (vr0->min)))
3862 && !is_overflow_infinity (vr0->max))
3863 maxi = tree_floor_log2 (vr0->max) + 1;
3865 goto bitop_builtin;
3866 /* __builtin_parity* returns [0, 1]. */
3867 CASE_CFN_PARITY:
3868 mini = 0;
3869 maxi = 1;
3870 goto bitop_builtin;
3871 /* __builtin_c[lt]z* return [0, prec-1], except for
3872 when the argument is 0, but that is undefined behavior.
3873 On many targets where the CLZ RTL or optab value is defined
3874 for 0 the value is prec, so include that in the range
3875 by default. */
3876 CASE_CFN_CLZ:
3877 arg = gimple_call_arg (stmt, 0);
3878 prec = TYPE_PRECISION (TREE_TYPE (arg));
3879 mini = 0;
3880 maxi = prec;
3881 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3882 != CODE_FOR_nothing
3883 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3884 zerov)
3885 /* Handle only the single common value. */
3886 && zerov != prec)
3887 /* Magic value to give up, unless vr0 proves
3888 arg is non-zero. */
3889 mini = -2;
3890 if (TREE_CODE (arg) == SSA_NAME)
3892 value_range *vr0 = get_value_range (arg);
3893 /* From clz of VR_RANGE minimum we can compute
3894 result maximum. */
3895 if (vr0->type == VR_RANGE
3896 && TREE_CODE (vr0->min) == INTEGER_CST
3897 && !is_overflow_infinity (vr0->min))
3899 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3900 if (maxi != prec)
3901 mini = 0;
3903 else if (vr0->type == VR_ANTI_RANGE
3904 && integer_zerop (vr0->min)
3905 && !is_overflow_infinity (vr0->min))
3907 maxi = prec - 1;
3908 mini = 0;
3910 if (mini == -2)
3911 break;
3912 /* From clz of VR_RANGE maximum we can compute
3913 result minimum. */
3914 if (vr0->type == VR_RANGE
3915 && TREE_CODE (vr0->max) == INTEGER_CST
3916 && !is_overflow_infinity (vr0->max))
3918 mini = prec - 1 - tree_floor_log2 (vr0->max);
3919 if (mini == prec)
3920 break;
3923 if (mini == -2)
3924 break;
3925 goto bitop_builtin;
3926 /* __builtin_ctz* return [0, prec-1], except for
3927 when the argument is 0, but that is undefined behavior.
3928 If there is a ctz optab for this mode and
3929 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3930 otherwise just assume 0 won't be seen. */
3931 CASE_CFN_CTZ:
3932 arg = gimple_call_arg (stmt, 0);
3933 prec = TYPE_PRECISION (TREE_TYPE (arg));
3934 mini = 0;
3935 maxi = prec - 1;
3936 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3937 != CODE_FOR_nothing
3938 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3939 zerov))
3941 /* Handle only the two common values. */
3942 if (zerov == -1)
3943 mini = -1;
3944 else if (zerov == prec)
3945 maxi = prec;
3946 else
3947 /* Magic value to give up, unless vr0 proves
3948 arg is non-zero. */
3949 mini = -2;
3951 if (TREE_CODE (arg) == SSA_NAME)
3953 value_range *vr0 = get_value_range (arg);
3954 /* If arg is non-zero, then use [0, prec - 1]. */
3955 if (((vr0->type == VR_RANGE
3956 && integer_nonzerop (vr0->min))
3957 || (vr0->type == VR_ANTI_RANGE
3958 && integer_zerop (vr0->min)))
3959 && !is_overflow_infinity (vr0->min))
3961 mini = 0;
3962 maxi = prec - 1;
3964 /* If some high bits are known to be zero,
3965 we can decrease the result maximum. */
3966 if (vr0->type == VR_RANGE
3967 && TREE_CODE (vr0->max) == INTEGER_CST
3968 && !is_overflow_infinity (vr0->max))
3970 maxi = tree_floor_log2 (vr0->max);
3971 /* For vr0 [0, 0] give up. */
3972 if (maxi == -1)
3973 break;
3976 if (mini == -2)
3977 break;
3978 goto bitop_builtin;
3979 /* __builtin_clrsb* returns [0, prec-1]. */
3980 CASE_CFN_CLRSB:
3981 arg = gimple_call_arg (stmt, 0);
3982 prec = TYPE_PRECISION (TREE_TYPE (arg));
3983 mini = 0;
3984 maxi = prec - 1;
3985 goto bitop_builtin;
3986 bitop_builtin:
3987 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3988 build_int_cst (type, maxi), NULL);
3989 return;
3990 case CFN_UBSAN_CHECK_ADD:
3991 subcode = PLUS_EXPR;
3992 break;
3993 case CFN_UBSAN_CHECK_SUB:
3994 subcode = MINUS_EXPR;
3995 break;
3996 case CFN_UBSAN_CHECK_MUL:
3997 subcode = MULT_EXPR;
3998 break;
3999 case CFN_GOACC_DIM_SIZE:
4000 case CFN_GOACC_DIM_POS:
4001 /* Optimizing these two internal functions helps the loop
4002 optimizer eliminate outer comparisons. Size is [1,N]
4003 and pos is [0,N-1]. */
4005 bool is_pos = cfn == CFN_GOACC_DIM_POS;
4006 int axis = oacc_get_ifn_dim_arg (stmt);
4007 int size = oacc_get_fn_dim_size (current_function_decl, axis);
4009 if (!size)
4010 /* If it's dynamic, the backend might know a hardware
4011 limitation. */
4012 size = targetm.goacc.dim_limit (axis);
4014 tree type = TREE_TYPE (gimple_call_lhs (stmt));
4015 set_value_range (vr, VR_RANGE,
4016 build_int_cst (type, is_pos ? 0 : 1),
4017 size ? build_int_cst (type, size - is_pos)
4018 : vrp_val_max (type), NULL);
4020 return;
4021 case CFN_BUILT_IN_STRLEN:
4022 if (tree lhs = gimple_call_lhs (stmt))
4023 if (ptrdiff_type_node
4024 && (TYPE_PRECISION (ptrdiff_type_node)
4025 == TYPE_PRECISION (TREE_TYPE (lhs))))
4027 tree type = TREE_TYPE (lhs);
4028 tree max = vrp_val_max (ptrdiff_type_node);
4029 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
4030 tree range_min = build_zero_cst (type);
4031 tree range_max = wide_int_to_tree (type, wmax - 1);
4032 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
4033 return;
4035 break;
4036 default:
4037 break;
4039 if (subcode != ERROR_MARK)
4041 bool saved_flag_wrapv = flag_wrapv;
4042 /* Pretend the arithmetics is wrapping. If there is
4043 any overflow, we'll complain, but will actually do
4044 wrapping operation. */
4045 flag_wrapv = 1;
4046 extract_range_from_binary_expr (vr, subcode, type,
4047 gimple_call_arg (stmt, 0),
4048 gimple_call_arg (stmt, 1));
4049 flag_wrapv = saved_flag_wrapv;
4051 /* If for both arguments vrp_valueize returned non-NULL,
4052 this should have been already folded and if not, it
4053 wasn't folded because of overflow. Avoid removing the
4054 UBSAN_CHECK_* calls in that case. */
4055 if (vr->type == VR_RANGE
4056 && (vr->min == vr->max
4057 || operand_equal_p (vr->min, vr->max, 0)))
4058 set_value_range_to_varying (vr);
4059 return;
4062 /* Handle extraction of the two results (result of arithmetics and
4063 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4064 internal function. */
4065 else if (is_gimple_assign (stmt)
4066 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4067 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4068 && INTEGRAL_TYPE_P (type))
4070 enum tree_code code = gimple_assign_rhs_code (stmt);
4071 tree op = gimple_assign_rhs1 (stmt);
4072 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4074 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4075 if (is_gimple_call (g) && gimple_call_internal_p (g))
4077 enum tree_code subcode = ERROR_MARK;
4078 switch (gimple_call_internal_fn (g))
4080 case IFN_ADD_OVERFLOW:
4081 subcode = PLUS_EXPR;
4082 break;
4083 case IFN_SUB_OVERFLOW:
4084 subcode = MINUS_EXPR;
4085 break;
4086 case IFN_MUL_OVERFLOW:
4087 subcode = MULT_EXPR;
4088 break;
4089 default:
4090 break;
4092 if (subcode != ERROR_MARK)
4094 tree op0 = gimple_call_arg (g, 0);
4095 tree op1 = gimple_call_arg (g, 1);
4096 if (code == IMAGPART_EXPR)
4098 bool ovf = false;
4099 if (check_for_binary_op_overflow (subcode, type,
4100 op0, op1, &ovf))
4101 set_value_range_to_value (vr,
4102 build_int_cst (type, ovf),
4103 NULL);
4104 else if (TYPE_PRECISION (type) == 1
4105 && !TYPE_UNSIGNED (type))
4106 set_value_range_to_varying (vr);
4107 else
4108 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4109 build_int_cst (type, 1), NULL);
4111 else if (types_compatible_p (type, TREE_TYPE (op0))
4112 && types_compatible_p (type, TREE_TYPE (op1)))
4114 bool saved_flag_wrapv = flag_wrapv;
4115 /* Pretend the arithmetics is wrapping. If there is
4116 any overflow, IMAGPART_EXPR will be set. */
4117 flag_wrapv = 1;
4118 extract_range_from_binary_expr (vr, subcode, type,
4119 op0, op1);
4120 flag_wrapv = saved_flag_wrapv;
4122 else
4124 value_range vr0 = VR_INITIALIZER;
4125 value_range vr1 = VR_INITIALIZER;
4126 bool saved_flag_wrapv = flag_wrapv;
4127 /* Pretend the arithmetics is wrapping. If there is
4128 any overflow, IMAGPART_EXPR will be set. */
4129 flag_wrapv = 1;
4130 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4131 type, op0);
4132 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4133 type, op1);
4134 extract_range_from_binary_expr_1 (vr, subcode, type,
4135 &vr0, &vr1);
4136 flag_wrapv = saved_flag_wrapv;
4138 return;
4143 if (INTEGRAL_TYPE_P (type)
4144 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4145 set_value_range_to_nonnegative (vr, type,
4146 sop || stmt_overflow_infinity (stmt));
4147 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4148 && !sop)
4149 set_value_range_to_nonnull (vr, type);
4150 else
4151 set_value_range_to_varying (vr);
4155 /* Try to compute a useful range out of assignment STMT and store it
4156 in *VR. */
4158 static void
4159 extract_range_from_assignment (value_range *vr, gassign *stmt)
4161 enum tree_code code = gimple_assign_rhs_code (stmt);
4163 if (code == ASSERT_EXPR)
4164 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4165 else if (code == SSA_NAME)
4166 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4167 else if (TREE_CODE_CLASS (code) == tcc_binary)
4168 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4169 gimple_expr_type (stmt),
4170 gimple_assign_rhs1 (stmt),
4171 gimple_assign_rhs2 (stmt));
4172 else if (TREE_CODE_CLASS (code) == tcc_unary)
4173 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4174 gimple_expr_type (stmt),
4175 gimple_assign_rhs1 (stmt));
4176 else if (code == COND_EXPR)
4177 extract_range_from_cond_expr (vr, stmt);
4178 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4179 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4180 gimple_expr_type (stmt),
4181 gimple_assign_rhs1 (stmt),
4182 gimple_assign_rhs2 (stmt));
4183 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4184 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4185 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4186 else
4187 set_value_range_to_varying (vr);
4189 if (vr->type == VR_VARYING)
4190 extract_range_basic (vr, stmt);
4193 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4194 would be profitable to adjust VR using scalar evolution information
4195 for VAR. If so, update VR with the new limits. */
4197 static void
4198 adjust_range_with_scev (value_range *vr, struct loop *loop,
4199 gimple *stmt, tree var)
4201 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4202 enum ev_direction dir;
4204 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4205 better opportunities than a regular range, but I'm not sure. */
4206 if (vr->type == VR_ANTI_RANGE)
4207 return;
4209 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4211 /* Like in PR19590, scev can return a constant function. */
4212 if (is_gimple_min_invariant (chrec))
4214 set_value_range_to_value (vr, chrec, vr->equiv);
4215 return;
4218 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4219 return;
4221 init = initial_condition_in_loop_num (chrec, loop->num);
4222 tem = op_with_constant_singleton_value_range (init);
4223 if (tem)
4224 init = tem;
4225 step = evolution_part_in_loop_num (chrec, loop->num);
4226 tem = op_with_constant_singleton_value_range (step);
4227 if (tem)
4228 step = tem;
4230 /* If STEP is symbolic, we can't know whether INIT will be the
4231 minimum or maximum value in the range. Also, unless INIT is
4232 a simple expression, compare_values and possibly other functions
4233 in tree-vrp won't be able to handle it. */
4234 if (step == NULL_TREE
4235 || !is_gimple_min_invariant (step)
4236 || !valid_value_p (init))
4237 return;
4239 dir = scev_direction (chrec);
4240 if (/* Do not adjust ranges if we do not know whether the iv increases
4241 or decreases, ... */
4242 dir == EV_DIR_UNKNOWN
4243 /* ... or if it may wrap. */
4244 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4245 get_chrec_loop (chrec), true))
4246 return;
4248 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4249 negative_overflow_infinity and positive_overflow_infinity,
4250 because we have concluded that the loop probably does not
4251 wrap. */
4253 type = TREE_TYPE (var);
4254 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4255 tmin = lower_bound_in_type (type, type);
4256 else
4257 tmin = TYPE_MIN_VALUE (type);
4258 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4259 tmax = upper_bound_in_type (type, type);
4260 else
4261 tmax = TYPE_MAX_VALUE (type);
4263 /* Try to use estimated number of iterations for the loop to constrain the
4264 final value in the evolution. */
4265 if (TREE_CODE (step) == INTEGER_CST
4266 && is_gimple_val (init)
4267 && (TREE_CODE (init) != SSA_NAME
4268 || get_value_range (init)->type == VR_RANGE))
4270 widest_int nit;
4272 /* We are only entering here for loop header PHI nodes, so using
4273 the number of latch executions is the correct thing to use. */
4274 if (max_loop_iterations (loop, &nit))
4276 value_range maxvr = VR_INITIALIZER;
4277 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4278 bool overflow;
4280 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4281 &overflow);
4282 /* If the multiplication overflowed we can't do a meaningful
4283 adjustment. Likewise if the result doesn't fit in the type
4284 of the induction variable. For a signed type we have to
4285 check whether the result has the expected signedness which
4286 is that of the step as number of iterations is unsigned. */
4287 if (!overflow
4288 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4289 && (sgn == UNSIGNED
4290 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4292 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4293 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4294 TREE_TYPE (init), init, tem);
4295 /* Likewise if the addition did. */
4296 if (maxvr.type == VR_RANGE)
4298 value_range initvr = VR_INITIALIZER;
4300 if (TREE_CODE (init) == SSA_NAME)
4301 initvr = *(get_value_range (init));
4302 else if (is_gimple_min_invariant (init))
4303 set_value_range_to_value (&initvr, init, NULL);
4304 else
4305 return;
4307 /* Check if init + nit * step overflows. Though we checked
4308 scev {init, step}_loop doesn't wrap, it is not enough
4309 because the loop may exit immediately. Overflow could
4310 happen in the plus expression in this case. */
4311 if ((dir == EV_DIR_DECREASES
4312 && (is_negative_overflow_infinity (maxvr.min)
4313 || compare_values (maxvr.min, initvr.min) != -1))
4314 || (dir == EV_DIR_GROWS
4315 && (is_positive_overflow_infinity (maxvr.max)
4316 || compare_values (maxvr.max, initvr.max) != 1)))
4317 return;
4319 tmin = maxvr.min;
4320 tmax = maxvr.max;
4326 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4328 min = tmin;
4329 max = tmax;
4331 /* For VARYING or UNDEFINED ranges, just about anything we get
4332 from scalar evolutions should be better. */
4334 if (dir == EV_DIR_DECREASES)
4335 max = init;
4336 else
4337 min = init;
4339 else if (vr->type == VR_RANGE)
4341 min = vr->min;
4342 max = vr->max;
4344 if (dir == EV_DIR_DECREASES)
4346 /* INIT is the maximum value. If INIT is lower than VR->MAX
4347 but no smaller than VR->MIN, set VR->MAX to INIT. */
4348 if (compare_values (init, max) == -1)
4349 max = init;
4351 /* According to the loop information, the variable does not
4352 overflow. If we think it does, probably because of an
4353 overflow due to arithmetic on a different INF value,
4354 reset now. */
4355 if (is_negative_overflow_infinity (min)
4356 || compare_values (min, tmin) == -1)
4357 min = tmin;
4360 else
4362 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4363 if (compare_values (init, min) == 1)
4364 min = init;
4366 if (is_positive_overflow_infinity (max)
4367 || compare_values (tmax, max) == -1)
4368 max = tmax;
4371 else
4372 return;
4374 /* If we just created an invalid range with the minimum
4375 greater than the maximum, we fail conservatively.
4376 This should happen only in unreachable
4377 parts of code, or for invalid programs. */
4378 if (compare_values (min, max) == 1
4379 || (is_negative_overflow_infinity (min)
4380 && is_positive_overflow_infinity (max)))
4381 return;
4383 /* Even for valid range info, sometimes overflow flag will leak in.
4384 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4385 drop them except for +-overflow_infinity which still need special
4386 handling in vrp pass. */
4387 if (TREE_OVERFLOW_P (min)
4388 && ! is_negative_overflow_infinity (min))
4389 min = drop_tree_overflow (min);
4390 if (TREE_OVERFLOW_P (max)
4391 && ! is_positive_overflow_infinity (max))
4392 max = drop_tree_overflow (max);
4394 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4398 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4400 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4401 all the values in the ranges.
4403 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4405 - Return NULL_TREE if it is not always possible to determine the
4406 value of the comparison.
4408 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4409 overflow infinity was used in the test. */
4412 static tree
4413 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4414 bool *strict_overflow_p)
4416 /* VARYING or UNDEFINED ranges cannot be compared. */
4417 if (vr0->type == VR_VARYING
4418 || vr0->type == VR_UNDEFINED
4419 || vr1->type == VR_VARYING
4420 || vr1->type == VR_UNDEFINED)
4421 return NULL_TREE;
4423 /* Anti-ranges need to be handled separately. */
4424 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4426 /* If both are anti-ranges, then we cannot compute any
4427 comparison. */
4428 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4429 return NULL_TREE;
4431 /* These comparisons are never statically computable. */
4432 if (comp == GT_EXPR
4433 || comp == GE_EXPR
4434 || comp == LT_EXPR
4435 || comp == LE_EXPR)
4436 return NULL_TREE;
4438 /* Equality can be computed only between a range and an
4439 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4440 if (vr0->type == VR_RANGE)
4442 /* To simplify processing, make VR0 the anti-range. */
4443 value_range *tmp = vr0;
4444 vr0 = vr1;
4445 vr1 = tmp;
4448 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4450 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4451 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4452 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4454 return NULL_TREE;
4457 if (!usable_range_p (vr0, strict_overflow_p)
4458 || !usable_range_p (vr1, strict_overflow_p))
4459 return NULL_TREE;
4461 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4462 operands around and change the comparison code. */
4463 if (comp == GT_EXPR || comp == GE_EXPR)
4465 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4466 std::swap (vr0, vr1);
4469 if (comp == EQ_EXPR)
4471 /* Equality may only be computed if both ranges represent
4472 exactly one value. */
4473 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4474 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4476 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4477 strict_overflow_p);
4478 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4479 strict_overflow_p);
4480 if (cmp_min == 0 && cmp_max == 0)
4481 return boolean_true_node;
4482 else if (cmp_min != -2 && cmp_max != -2)
4483 return boolean_false_node;
4485 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4486 else if (compare_values_warnv (vr0->min, vr1->max,
4487 strict_overflow_p) == 1
4488 || compare_values_warnv (vr1->min, vr0->max,
4489 strict_overflow_p) == 1)
4490 return boolean_false_node;
4492 return NULL_TREE;
4494 else if (comp == NE_EXPR)
4496 int cmp1, cmp2;
4498 /* If VR0 is completely to the left or completely to the right
4499 of VR1, they are always different. Notice that we need to
4500 make sure that both comparisons yield similar results to
4501 avoid comparing values that cannot be compared at
4502 compile-time. */
4503 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4504 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4505 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4506 return boolean_true_node;
4508 /* If VR0 and VR1 represent a single value and are identical,
4509 return false. */
4510 else if (compare_values_warnv (vr0->min, vr0->max,
4511 strict_overflow_p) == 0
4512 && compare_values_warnv (vr1->min, vr1->max,
4513 strict_overflow_p) == 0
4514 && compare_values_warnv (vr0->min, vr1->min,
4515 strict_overflow_p) == 0
4516 && compare_values_warnv (vr0->max, vr1->max,
4517 strict_overflow_p) == 0)
4518 return boolean_false_node;
4520 /* Otherwise, they may or may not be different. */
4521 else
4522 return NULL_TREE;
4524 else if (comp == LT_EXPR || comp == LE_EXPR)
4526 int tst;
4528 /* If VR0 is to the left of VR1, return true. */
4529 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4530 if ((comp == LT_EXPR && tst == -1)
4531 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4533 if (overflow_infinity_range_p (vr0)
4534 || overflow_infinity_range_p (vr1))
4535 *strict_overflow_p = true;
4536 return boolean_true_node;
4539 /* If VR0 is to the right of VR1, return false. */
4540 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4541 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4542 || (comp == LE_EXPR && tst == 1))
4544 if (overflow_infinity_range_p (vr0)
4545 || overflow_infinity_range_p (vr1))
4546 *strict_overflow_p = true;
4547 return boolean_false_node;
4550 /* Otherwise, we don't know. */
4551 return NULL_TREE;
4554 gcc_unreachable ();
4558 /* Given a value range VR, a value VAL and a comparison code COMP, return
4559 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4560 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4561 always returns false. Return NULL_TREE if it is not always
4562 possible to determine the value of the comparison. Also set
4563 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4564 infinity was used in the test. */
4566 static tree
4567 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4568 bool *strict_overflow_p)
4570 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4571 return NULL_TREE;
4573 /* Anti-ranges need to be handled separately. */
4574 if (vr->type == VR_ANTI_RANGE)
4576 /* For anti-ranges, the only predicates that we can compute at
4577 compile time are equality and inequality. */
4578 if (comp == GT_EXPR
4579 || comp == GE_EXPR
4580 || comp == LT_EXPR
4581 || comp == LE_EXPR)
4582 return NULL_TREE;
4584 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4585 if (value_inside_range (val, vr->min, vr->max) == 1)
4586 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4588 return NULL_TREE;
4591 if (!usable_range_p (vr, strict_overflow_p))
4592 return NULL_TREE;
4594 if (comp == EQ_EXPR)
4596 /* EQ_EXPR may only be computed if VR represents exactly
4597 one value. */
4598 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4600 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4601 if (cmp == 0)
4602 return boolean_true_node;
4603 else if (cmp == -1 || cmp == 1 || cmp == 2)
4604 return boolean_false_node;
4606 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4607 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4608 return boolean_false_node;
4610 return NULL_TREE;
4612 else if (comp == NE_EXPR)
4614 /* If VAL is not inside VR, then they are always different. */
4615 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4616 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4617 return boolean_true_node;
4619 /* If VR represents exactly one value equal to VAL, then return
4620 false. */
4621 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4622 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4623 return boolean_false_node;
4625 /* Otherwise, they may or may not be different. */
4626 return NULL_TREE;
4628 else if (comp == LT_EXPR || comp == LE_EXPR)
4630 int tst;
4632 /* If VR is to the left of VAL, return true. */
4633 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4634 if ((comp == LT_EXPR && tst == -1)
4635 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4637 if (overflow_infinity_range_p (vr))
4638 *strict_overflow_p = true;
4639 return boolean_true_node;
4642 /* If VR is to the right of VAL, return false. */
4643 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4644 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4645 || (comp == LE_EXPR && tst == 1))
4647 if (overflow_infinity_range_p (vr))
4648 *strict_overflow_p = true;
4649 return boolean_false_node;
4652 /* Otherwise, we don't know. */
4653 return NULL_TREE;
4655 else if (comp == GT_EXPR || comp == GE_EXPR)
4657 int tst;
4659 /* If VR is to the right of VAL, return true. */
4660 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4661 if ((comp == GT_EXPR && tst == 1)
4662 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4664 if (overflow_infinity_range_p (vr))
4665 *strict_overflow_p = true;
4666 return boolean_true_node;
4669 /* If VR is to the left of VAL, return false. */
4670 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4671 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4672 || (comp == GE_EXPR && tst == -1))
4674 if (overflow_infinity_range_p (vr))
4675 *strict_overflow_p = true;
4676 return boolean_false_node;
4679 /* Otherwise, we don't know. */
4680 return NULL_TREE;
4683 gcc_unreachable ();
4687 /* Debugging dumps. */
4689 void dump_value_range (FILE *, const value_range *);
4690 void debug_value_range (value_range *);
4691 void dump_all_value_ranges (FILE *);
4692 void debug_all_value_ranges (void);
4693 void dump_vr_equiv (FILE *, bitmap);
4694 void debug_vr_equiv (bitmap);
4697 /* Dump value range VR to FILE. */
4699 void
4700 dump_value_range (FILE *file, const value_range *vr)
4702 if (vr == NULL)
4703 fprintf (file, "[]");
4704 else if (vr->type == VR_UNDEFINED)
4705 fprintf (file, "UNDEFINED");
4706 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4708 tree type = TREE_TYPE (vr->min);
4710 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4712 if (is_negative_overflow_infinity (vr->min))
4713 fprintf (file, "-INF(OVF)");
4714 else if (INTEGRAL_TYPE_P (type)
4715 && !TYPE_UNSIGNED (type)
4716 && vrp_val_is_min (vr->min))
4717 fprintf (file, "-INF");
4718 else
4719 print_generic_expr (file, vr->min, 0);
4721 fprintf (file, ", ");
4723 if (is_positive_overflow_infinity (vr->max))
4724 fprintf (file, "+INF(OVF)");
4725 else if (INTEGRAL_TYPE_P (type)
4726 && vrp_val_is_max (vr->max))
4727 fprintf (file, "+INF");
4728 else
4729 print_generic_expr (file, vr->max, 0);
4731 fprintf (file, "]");
4733 if (vr->equiv)
4735 bitmap_iterator bi;
4736 unsigned i, c = 0;
4738 fprintf (file, " EQUIVALENCES: { ");
4740 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4742 print_generic_expr (file, ssa_name (i), 0);
4743 fprintf (file, " ");
4744 c++;
4747 fprintf (file, "} (%u elements)", c);
4750 else if (vr->type == VR_VARYING)
4751 fprintf (file, "VARYING");
4752 else
4753 fprintf (file, "INVALID RANGE");
4757 /* Dump value range VR to stderr. */
4759 DEBUG_FUNCTION void
4760 debug_value_range (value_range *vr)
4762 dump_value_range (stderr, vr);
4763 fprintf (stderr, "\n");
4767 /* Dump value ranges of all SSA_NAMEs to FILE. */
4769 void
4770 dump_all_value_ranges (FILE *file)
4772 size_t i;
4774 for (i = 0; i < num_vr_values; i++)
4776 if (vr_value[i])
4778 print_generic_expr (file, ssa_name (i), 0);
4779 fprintf (file, ": ");
4780 dump_value_range (file, vr_value[i]);
4781 fprintf (file, "\n");
4785 fprintf (file, "\n");
4789 /* Dump all value ranges to stderr. */
4791 DEBUG_FUNCTION void
4792 debug_all_value_ranges (void)
4794 dump_all_value_ranges (stderr);
4798 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4799 create a new SSA name N and return the assertion assignment
4800 'N = ASSERT_EXPR <V, V OP W>'. */
4802 static gimple *
4803 build_assert_expr_for (tree cond, tree v)
4805 tree a;
4806 gassign *assertion;
4808 gcc_assert (TREE_CODE (v) == SSA_NAME
4809 && COMPARISON_CLASS_P (cond));
4811 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4812 assertion = gimple_build_assign (NULL_TREE, a);
4814 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4815 operand of the ASSERT_EXPR. Create it so the new name and the old one
4816 are registered in the replacement table so that we can fix the SSA web
4817 after adding all the ASSERT_EXPRs. */
4818 create_new_def_for (v, assertion, NULL);
4820 return assertion;
4824 /* Return false if EXPR is a predicate expression involving floating
4825 point values. */
4827 static inline bool
4828 fp_predicate (gimple *stmt)
4830 GIMPLE_CHECK (stmt, GIMPLE_COND);
4832 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4835 /* If the range of values taken by OP can be inferred after STMT executes,
4836 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4837 describes the inferred range. Return true if a range could be
4838 inferred. */
4840 static bool
4841 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4843 *val_p = NULL_TREE;
4844 *comp_code_p = ERROR_MARK;
4846 /* Do not attempt to infer anything in names that flow through
4847 abnormal edges. */
4848 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4849 return false;
4851 /* If STMT is the last statement of a basic block with no normal
4852 successors, there is no point inferring anything about any of its
4853 operands. We would not be able to find a proper insertion point
4854 for the assertion, anyway. */
4855 if (stmt_ends_bb_p (stmt))
4857 edge_iterator ei;
4858 edge e;
4860 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4861 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4862 break;
4863 if (e == NULL)
4864 return false;
4867 if (infer_nonnull_range (stmt, op))
4869 *val_p = build_int_cst (TREE_TYPE (op), 0);
4870 *comp_code_p = NE_EXPR;
4871 return true;
4874 return false;
4878 void dump_asserts_for (FILE *, tree);
4879 void debug_asserts_for (tree);
4880 void dump_all_asserts (FILE *);
4881 void debug_all_asserts (void);
4883 /* Dump all the registered assertions for NAME to FILE. */
4885 void
4886 dump_asserts_for (FILE *file, tree name)
4888 assert_locus *loc;
4890 fprintf (file, "Assertions to be inserted for ");
4891 print_generic_expr (file, name, 0);
4892 fprintf (file, "\n");
4894 loc = asserts_for[SSA_NAME_VERSION (name)];
4895 while (loc)
4897 fprintf (file, "\t");
4898 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4899 fprintf (file, "\n\tBB #%d", loc->bb->index);
4900 if (loc->e)
4902 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4903 loc->e->dest->index);
4904 dump_edge_info (file, loc->e, dump_flags, 0);
4906 fprintf (file, "\n\tPREDICATE: ");
4907 print_generic_expr (file, loc->expr, 0);
4908 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4909 print_generic_expr (file, loc->val, 0);
4910 fprintf (file, "\n\n");
4911 loc = loc->next;
4914 fprintf (file, "\n");
4918 /* Dump all the registered assertions for NAME to stderr. */
4920 DEBUG_FUNCTION void
4921 debug_asserts_for (tree name)
4923 dump_asserts_for (stderr, name);
4927 /* Dump all the registered assertions for all the names to FILE. */
4929 void
4930 dump_all_asserts (FILE *file)
4932 unsigned i;
4933 bitmap_iterator bi;
4935 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4936 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4937 dump_asserts_for (file, ssa_name (i));
4938 fprintf (file, "\n");
4942 /* Dump all the registered assertions for all the names to stderr. */
4944 DEBUG_FUNCTION void
4945 debug_all_asserts (void)
4947 dump_all_asserts (stderr);
4951 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4952 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4953 E->DEST, then register this location as a possible insertion point
4954 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4956 BB, E and SI provide the exact insertion point for the new
4957 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4958 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4959 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4960 must not be NULL. */
4962 static void
4963 register_new_assert_for (tree name, tree expr,
4964 enum tree_code comp_code,
4965 tree val,
4966 basic_block bb,
4967 edge e,
4968 gimple_stmt_iterator si)
4970 assert_locus *n, *loc, *last_loc;
4971 basic_block dest_bb;
4973 gcc_checking_assert (bb == NULL || e == NULL);
4975 if (e == NULL)
4976 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4977 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4979 /* Never build an assert comparing against an integer constant with
4980 TREE_OVERFLOW set. This confuses our undefined overflow warning
4981 machinery. */
4982 if (TREE_OVERFLOW_P (val))
4983 val = drop_tree_overflow (val);
4985 /* The new assertion A will be inserted at BB or E. We need to
4986 determine if the new location is dominated by a previously
4987 registered location for A. If we are doing an edge insertion,
4988 assume that A will be inserted at E->DEST. Note that this is not
4989 necessarily true.
4991 If E is a critical edge, it will be split. But even if E is
4992 split, the new block will dominate the same set of blocks that
4993 E->DEST dominates.
4995 The reverse, however, is not true, blocks dominated by E->DEST
4996 will not be dominated by the new block created to split E. So,
4997 if the insertion location is on a critical edge, we will not use
4998 the new location to move another assertion previously registered
4999 at a block dominated by E->DEST. */
5000 dest_bb = (bb) ? bb : e->dest;
5002 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5003 VAL at a block dominating DEST_BB, then we don't need to insert a new
5004 one. Similarly, if the same assertion already exists at a block
5005 dominated by DEST_BB and the new location is not on a critical
5006 edge, then update the existing location for the assertion (i.e.,
5007 move the assertion up in the dominance tree).
5009 Note, this is implemented as a simple linked list because there
5010 should not be more than a handful of assertions registered per
5011 name. If this becomes a performance problem, a table hashed by
5012 COMP_CODE and VAL could be implemented. */
5013 loc = asserts_for[SSA_NAME_VERSION (name)];
5014 last_loc = loc;
5015 while (loc)
5017 if (loc->comp_code == comp_code
5018 && (loc->val == val
5019 || operand_equal_p (loc->val, val, 0))
5020 && (loc->expr == expr
5021 || operand_equal_p (loc->expr, expr, 0)))
5023 /* If E is not a critical edge and DEST_BB
5024 dominates the existing location for the assertion, move
5025 the assertion up in the dominance tree by updating its
5026 location information. */
5027 if ((e == NULL || !EDGE_CRITICAL_P (e))
5028 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5030 loc->bb = dest_bb;
5031 loc->e = e;
5032 loc->si = si;
5033 return;
5035 /* If we have the same assertion on all incoming edges of a BB
5036 instead insert it at the beginning of it. */
5037 if (e && loc->e
5038 && e != loc->e
5039 && dest_bb == loc->e->dest
5040 && EDGE_COUNT (dest_bb->preds) == 2)
5042 loc->bb = dest_bb;
5043 loc->e = NULL;
5044 loc->si = gsi_none ();
5045 return;
5049 /* Update the last node of the list and move to the next one. */
5050 last_loc = loc;
5051 loc = loc->next;
5054 /* If we didn't find an assertion already registered for
5055 NAME COMP_CODE VAL, add a new one at the end of the list of
5056 assertions associated with NAME. */
5057 n = XNEW (struct assert_locus);
5058 n->bb = dest_bb;
5059 n->e = e;
5060 n->si = si;
5061 n->comp_code = comp_code;
5062 n->val = val;
5063 n->expr = expr;
5064 n->next = NULL;
5066 if (last_loc)
5067 last_loc->next = n;
5068 else
5069 asserts_for[SSA_NAME_VERSION (name)] = n;
5071 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5074 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5075 Extract a suitable test code and value and store them into *CODE_P and
5076 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5078 If no extraction was possible, return FALSE, otherwise return TRUE.
5080 If INVERT is true, then we invert the result stored into *CODE_P. */
5082 static bool
5083 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5084 tree cond_op0, tree cond_op1,
5085 bool invert, enum tree_code *code_p,
5086 tree *val_p)
5088 enum tree_code comp_code;
5089 tree val;
5091 /* Otherwise, we have a comparison of the form NAME COMP VAL
5092 or VAL COMP NAME. */
5093 if (name == cond_op1)
5095 /* If the predicate is of the form VAL COMP NAME, flip
5096 COMP around because we need to register NAME as the
5097 first operand in the predicate. */
5098 comp_code = swap_tree_comparison (cond_code);
5099 val = cond_op0;
5101 else if (name == cond_op0)
5103 /* The comparison is of the form NAME COMP VAL, so the
5104 comparison code remains unchanged. */
5105 comp_code = cond_code;
5106 val = cond_op1;
5108 else
5109 gcc_unreachable ();
5111 /* Invert the comparison code as necessary. */
5112 if (invert)
5113 comp_code = invert_tree_comparison (comp_code, 0);
5115 /* VRP only handles integral and pointer types. */
5116 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
5117 && ! POINTER_TYPE_P (TREE_TYPE (val)))
5118 return false;
5120 /* Do not register always-false predicates.
5121 FIXME: this works around a limitation in fold() when dealing with
5122 enumerations. Given 'enum { N1, N2 } x;', fold will not
5123 fold 'if (x > N2)' to 'if (0)'. */
5124 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5125 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5127 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5128 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5130 if (comp_code == GT_EXPR
5131 && (!max
5132 || compare_values (val, max) == 0))
5133 return false;
5135 if (comp_code == LT_EXPR
5136 && (!min
5137 || compare_values (val, min) == 0))
5138 return false;
5140 *code_p = comp_code;
5141 *val_p = val;
5142 return true;
5145 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5146 (otherwise return VAL). VAL and MASK must be zero-extended for
5147 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5148 (to transform signed values into unsigned) and at the end xor
5149 SGNBIT back. */
5151 static wide_int
5152 masked_increment (const wide_int &val_in, const wide_int &mask,
5153 const wide_int &sgnbit, unsigned int prec)
5155 wide_int bit = wi::one (prec), res;
5156 unsigned int i;
5158 wide_int val = val_in ^ sgnbit;
5159 for (i = 0; i < prec; i++, bit += bit)
5161 res = mask;
5162 if ((res & bit) == 0)
5163 continue;
5164 res = bit - 1;
5165 res = (val + bit).and_not (res);
5166 res &= mask;
5167 if (wi::gtu_p (res, val))
5168 return res ^ sgnbit;
5170 return val ^ sgnbit;
5173 /* Try to register an edge assertion for SSA name NAME on edge E for
5174 the condition COND contributing to the conditional jump pointed to by BSI.
5175 Invert the condition COND if INVERT is true. */
5177 static void
5178 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5179 enum tree_code cond_code,
5180 tree cond_op0, tree cond_op1, bool invert)
5182 tree val;
5183 enum tree_code comp_code;
5185 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5186 cond_op0,
5187 cond_op1,
5188 invert, &comp_code, &val))
5189 return;
5191 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5192 reachable from E. */
5193 if (live_on_edge (e, name))
5194 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5196 /* In the case of NAME <= CST and NAME being defined as
5197 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5198 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5199 This catches range and anti-range tests. */
5200 if ((comp_code == LE_EXPR
5201 || comp_code == GT_EXPR)
5202 && TREE_CODE (val) == INTEGER_CST
5203 && TYPE_UNSIGNED (TREE_TYPE (val)))
5205 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5206 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5208 /* Extract CST2 from the (optional) addition. */
5209 if (is_gimple_assign (def_stmt)
5210 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5212 name2 = gimple_assign_rhs1 (def_stmt);
5213 cst2 = gimple_assign_rhs2 (def_stmt);
5214 if (TREE_CODE (name2) == SSA_NAME
5215 && TREE_CODE (cst2) == INTEGER_CST)
5216 def_stmt = SSA_NAME_DEF_STMT (name2);
5219 /* Extract NAME2 from the (optional) sign-changing cast. */
5220 if (gimple_assign_cast_p (def_stmt))
5222 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5223 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5224 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5225 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5226 name3 = gimple_assign_rhs1 (def_stmt);
5229 /* If name3 is used later, create an ASSERT_EXPR for it. */
5230 if (name3 != NULL_TREE
5231 && TREE_CODE (name3) == SSA_NAME
5232 && (cst2 == NULL_TREE
5233 || TREE_CODE (cst2) == INTEGER_CST)
5234 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5235 && live_on_edge (e, name3))
5237 tree tmp;
5239 /* Build an expression for the range test. */
5240 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5241 if (cst2 != NULL_TREE)
5242 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5244 if (dump_file)
5246 fprintf (dump_file, "Adding assert for ");
5247 print_generic_expr (dump_file, name3, 0);
5248 fprintf (dump_file, " from ");
5249 print_generic_expr (dump_file, tmp, 0);
5250 fprintf (dump_file, "\n");
5253 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5256 /* If name2 is used later, create an ASSERT_EXPR for it. */
5257 if (name2 != NULL_TREE
5258 && TREE_CODE (name2) == SSA_NAME
5259 && TREE_CODE (cst2) == INTEGER_CST
5260 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5261 && live_on_edge (e, name2))
5263 tree tmp;
5265 /* Build an expression for the range test. */
5266 tmp = name2;
5267 if (TREE_TYPE (name) != TREE_TYPE (name2))
5268 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5269 if (cst2 != NULL_TREE)
5270 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5272 if (dump_file)
5274 fprintf (dump_file, "Adding assert for ");
5275 print_generic_expr (dump_file, name2, 0);
5276 fprintf (dump_file, " from ");
5277 print_generic_expr (dump_file, tmp, 0);
5278 fprintf (dump_file, "\n");
5281 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5285 /* In the case of post-in/decrement tests like if (i++) ... and uses
5286 of the in/decremented value on the edge the extra name we want to
5287 assert for is not on the def chain of the name compared. Instead
5288 it is in the set of use stmts.
5289 Similar cases happen for conversions that were simplified through
5290 fold_{sign_changed,widened}_comparison. */
5291 if ((comp_code == NE_EXPR
5292 || comp_code == EQ_EXPR)
5293 && TREE_CODE (val) == INTEGER_CST)
5295 imm_use_iterator ui;
5296 gimple *use_stmt;
5297 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5299 if (!is_gimple_assign (use_stmt))
5300 continue;
5302 /* Cut off to use-stmts that are dominating the predecessor. */
5303 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5304 continue;
5306 tree name2 = gimple_assign_lhs (use_stmt);
5307 if (TREE_CODE (name2) != SSA_NAME
5308 || !live_on_edge (e, name2))
5309 continue;
5311 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5312 tree cst;
5313 if (code == PLUS_EXPR
5314 || code == MINUS_EXPR)
5316 cst = gimple_assign_rhs2 (use_stmt);
5317 if (TREE_CODE (cst) != INTEGER_CST)
5318 continue;
5319 cst = int_const_binop (code, val, cst);
5321 else if (CONVERT_EXPR_CODE_P (code))
5323 /* For truncating conversions we cannot record
5324 an inequality. */
5325 if (comp_code == NE_EXPR
5326 && (TYPE_PRECISION (TREE_TYPE (name2))
5327 < TYPE_PRECISION (TREE_TYPE (name))))
5328 continue;
5329 cst = fold_convert (TREE_TYPE (name2), val);
5331 else
5332 continue;
5334 if (TREE_OVERFLOW_P (cst))
5335 cst = drop_tree_overflow (cst);
5336 register_new_assert_for (name2, name2, comp_code, cst,
5337 NULL, e, bsi);
5341 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5342 && TREE_CODE (val) == INTEGER_CST)
5344 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5345 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5346 tree val2 = NULL_TREE;
5347 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5348 wide_int mask = wi::zero (prec);
5349 unsigned int nprec = prec;
5350 enum tree_code rhs_code = ERROR_MARK;
5352 if (is_gimple_assign (def_stmt))
5353 rhs_code = gimple_assign_rhs_code (def_stmt);
5355 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5356 assert that A != CST1 -+ CST2. */
5357 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5358 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5360 tree op0 = gimple_assign_rhs1 (def_stmt);
5361 tree op1 = gimple_assign_rhs2 (def_stmt);
5362 if (TREE_CODE (op0) == SSA_NAME
5363 && TREE_CODE (op1) == INTEGER_CST
5364 && live_on_edge (e, op0))
5366 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5367 ? MINUS_EXPR : PLUS_EXPR);
5368 op1 = int_const_binop (reverse_op, val, op1);
5369 if (TREE_OVERFLOW (op1))
5370 op1 = drop_tree_overflow (op1);
5371 register_new_assert_for (op0, op0, comp_code, op1, NULL, e, bsi);
5375 /* Add asserts for NAME cmp CST and NAME being defined
5376 as NAME = (int) NAME2. */
5377 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5378 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5379 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5380 && gimple_assign_cast_p (def_stmt))
5382 name2 = gimple_assign_rhs1 (def_stmt);
5383 if (CONVERT_EXPR_CODE_P (rhs_code)
5384 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5385 && TYPE_UNSIGNED (TREE_TYPE (name2))
5386 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5387 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5388 || !tree_int_cst_equal (val,
5389 TYPE_MIN_VALUE (TREE_TYPE (val))))
5390 && live_on_edge (e, name2))
5392 tree tmp, cst;
5393 enum tree_code new_comp_code = comp_code;
5395 cst = fold_convert (TREE_TYPE (name2),
5396 TYPE_MIN_VALUE (TREE_TYPE (val)));
5397 /* Build an expression for the range test. */
5398 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5399 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5400 fold_convert (TREE_TYPE (name2), val));
5401 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5403 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5404 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5405 build_int_cst (TREE_TYPE (name2), 1));
5408 if (dump_file)
5410 fprintf (dump_file, "Adding assert for ");
5411 print_generic_expr (dump_file, name2, 0);
5412 fprintf (dump_file, " from ");
5413 print_generic_expr (dump_file, tmp, 0);
5414 fprintf (dump_file, "\n");
5417 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5418 e, bsi);
5422 /* Add asserts for NAME cmp CST and NAME being defined as
5423 NAME = NAME2 >> CST2.
5425 Extract CST2 from the right shift. */
5426 if (rhs_code == RSHIFT_EXPR)
5428 name2 = gimple_assign_rhs1 (def_stmt);
5429 cst2 = gimple_assign_rhs2 (def_stmt);
5430 if (TREE_CODE (name2) == SSA_NAME
5431 && tree_fits_uhwi_p (cst2)
5432 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5433 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5434 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5435 && live_on_edge (e, name2))
5437 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5438 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5441 if (val2 != NULL_TREE
5442 && TREE_CODE (val2) == INTEGER_CST
5443 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5444 TREE_TYPE (val),
5445 val2, cst2), val))
5447 enum tree_code new_comp_code = comp_code;
5448 tree tmp, new_val;
5450 tmp = name2;
5451 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5453 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5455 tree type = build_nonstandard_integer_type (prec, 1);
5456 tmp = build1 (NOP_EXPR, type, name2);
5457 val2 = fold_convert (type, val2);
5459 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5460 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5461 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5463 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5465 wide_int minval
5466 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5467 new_val = val2;
5468 if (minval == new_val)
5469 new_val = NULL_TREE;
5471 else
5473 wide_int maxval
5474 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5475 mask |= val2;
5476 if (mask == maxval)
5477 new_val = NULL_TREE;
5478 else
5479 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5482 if (new_val)
5484 if (dump_file)
5486 fprintf (dump_file, "Adding assert for ");
5487 print_generic_expr (dump_file, name2, 0);
5488 fprintf (dump_file, " from ");
5489 print_generic_expr (dump_file, tmp, 0);
5490 fprintf (dump_file, "\n");
5493 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5494 NULL, e, bsi);
5498 /* Add asserts for NAME cmp CST and NAME being defined as
5499 NAME = NAME2 & CST2.
5501 Extract CST2 from the and.
5503 Also handle
5504 NAME = (unsigned) NAME2;
5505 casts where NAME's type is unsigned and has smaller precision
5506 than NAME2's type as if it was NAME = NAME2 & MASK. */
5507 names[0] = NULL_TREE;
5508 names[1] = NULL_TREE;
5509 cst2 = NULL_TREE;
5510 if (rhs_code == BIT_AND_EXPR
5511 || (CONVERT_EXPR_CODE_P (rhs_code)
5512 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5513 && TYPE_UNSIGNED (TREE_TYPE (val))
5514 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5515 > prec))
5517 name2 = gimple_assign_rhs1 (def_stmt);
5518 if (rhs_code == BIT_AND_EXPR)
5519 cst2 = gimple_assign_rhs2 (def_stmt);
5520 else
5522 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5523 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5525 if (TREE_CODE (name2) == SSA_NAME
5526 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5527 && TREE_CODE (cst2) == INTEGER_CST
5528 && !integer_zerop (cst2)
5529 && (nprec > 1
5530 || TYPE_UNSIGNED (TREE_TYPE (val))))
5532 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5533 if (gimple_assign_cast_p (def_stmt2))
5535 names[1] = gimple_assign_rhs1 (def_stmt2);
5536 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5537 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5538 || (TYPE_PRECISION (TREE_TYPE (name2))
5539 != TYPE_PRECISION (TREE_TYPE (names[1])))
5540 || !live_on_edge (e, names[1]))
5541 names[1] = NULL_TREE;
5543 if (live_on_edge (e, name2))
5544 names[0] = name2;
5547 if (names[0] || names[1])
5549 wide_int minv, maxv, valv, cst2v;
5550 wide_int tem, sgnbit;
5551 bool valid_p = false, valn, cst2n;
5552 enum tree_code ccode = comp_code;
5554 valv = wide_int::from (val, nprec, UNSIGNED);
5555 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5556 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5557 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5558 /* If CST2 doesn't have most significant bit set,
5559 but VAL is negative, we have comparison like
5560 if ((x & 0x123) > -4) (always true). Just give up. */
5561 if (!cst2n && valn)
5562 ccode = ERROR_MARK;
5563 if (cst2n)
5564 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5565 else
5566 sgnbit = wi::zero (nprec);
5567 minv = valv & cst2v;
5568 switch (ccode)
5570 case EQ_EXPR:
5571 /* Minimum unsigned value for equality is VAL & CST2
5572 (should be equal to VAL, otherwise we probably should
5573 have folded the comparison into false) and
5574 maximum unsigned value is VAL | ~CST2. */
5575 maxv = valv | ~cst2v;
5576 valid_p = true;
5577 break;
5579 case NE_EXPR:
5580 tem = valv | ~cst2v;
5581 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5582 if (valv == 0)
5584 cst2n = false;
5585 sgnbit = wi::zero (nprec);
5586 goto gt_expr;
5588 /* If (VAL | ~CST2) is all ones, handle it as
5589 (X & CST2) < VAL. */
5590 if (tem == -1)
5592 cst2n = false;
5593 valn = false;
5594 sgnbit = wi::zero (nprec);
5595 goto lt_expr;
5597 if (!cst2n && wi::neg_p (cst2v))
5598 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5599 if (sgnbit != 0)
5601 if (valv == sgnbit)
5603 cst2n = true;
5604 valn = true;
5605 goto gt_expr;
5607 if (tem == wi::mask (nprec - 1, false, nprec))
5609 cst2n = true;
5610 goto lt_expr;
5612 if (!cst2n)
5613 sgnbit = wi::zero (nprec);
5615 break;
5617 case GE_EXPR:
5618 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5619 is VAL and maximum unsigned value is ~0. For signed
5620 comparison, if CST2 doesn't have most significant bit
5621 set, handle it similarly. If CST2 has MSB set,
5622 the minimum is the same, and maximum is ~0U/2. */
5623 if (minv != valv)
5625 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5626 VAL. */
5627 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5628 if (minv == valv)
5629 break;
5631 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5632 valid_p = true;
5633 break;
5635 case GT_EXPR:
5636 gt_expr:
5637 /* Find out smallest MINV where MINV > VAL
5638 && (MINV & CST2) == MINV, if any. If VAL is signed and
5639 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5640 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5641 if (minv == valv)
5642 break;
5643 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5644 valid_p = true;
5645 break;
5647 case LE_EXPR:
5648 /* Minimum unsigned value for <= is 0 and maximum
5649 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5650 Otherwise, find smallest VAL2 where VAL2 > VAL
5651 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5652 as maximum.
5653 For signed comparison, if CST2 doesn't have most
5654 significant bit set, handle it similarly. If CST2 has
5655 MSB set, the maximum is the same and minimum is INT_MIN. */
5656 if (minv == valv)
5657 maxv = valv;
5658 else
5660 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5661 if (maxv == valv)
5662 break;
5663 maxv -= 1;
5665 maxv |= ~cst2v;
5666 minv = sgnbit;
5667 valid_p = true;
5668 break;
5670 case LT_EXPR:
5671 lt_expr:
5672 /* Minimum unsigned value for < is 0 and maximum
5673 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5674 Otherwise, find smallest VAL2 where VAL2 > VAL
5675 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5676 as maximum.
5677 For signed comparison, if CST2 doesn't have most
5678 significant bit set, handle it similarly. If CST2 has
5679 MSB set, the maximum is the same and minimum is INT_MIN. */
5680 if (minv == valv)
5682 if (valv == sgnbit)
5683 break;
5684 maxv = valv;
5686 else
5688 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5689 if (maxv == valv)
5690 break;
5692 maxv -= 1;
5693 maxv |= ~cst2v;
5694 minv = sgnbit;
5695 valid_p = true;
5696 break;
5698 default:
5699 break;
5701 if (valid_p
5702 && (maxv - minv) != -1)
5704 tree tmp, new_val, type;
5705 int i;
5707 for (i = 0; i < 2; i++)
5708 if (names[i])
5710 wide_int maxv2 = maxv;
5711 tmp = names[i];
5712 type = TREE_TYPE (names[i]);
5713 if (!TYPE_UNSIGNED (type))
5715 type = build_nonstandard_integer_type (nprec, 1);
5716 tmp = build1 (NOP_EXPR, type, names[i]);
5718 if (minv != 0)
5720 tmp = build2 (PLUS_EXPR, type, tmp,
5721 wide_int_to_tree (type, -minv));
5722 maxv2 = maxv - minv;
5724 new_val = wide_int_to_tree (type, maxv2);
5726 if (dump_file)
5728 fprintf (dump_file, "Adding assert for ");
5729 print_generic_expr (dump_file, names[i], 0);
5730 fprintf (dump_file, " from ");
5731 print_generic_expr (dump_file, tmp, 0);
5732 fprintf (dump_file, "\n");
5735 register_new_assert_for (names[i], tmp, LE_EXPR,
5736 new_val, NULL, e, bsi);
5743 /* OP is an operand of a truth value expression which is known to have
5744 a particular value. Register any asserts for OP and for any
5745 operands in OP's defining statement.
5747 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5748 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5750 static void
5751 register_edge_assert_for_1 (tree op, enum tree_code code,
5752 edge e, gimple_stmt_iterator bsi)
5754 gimple *op_def;
5755 tree val;
5756 enum tree_code rhs_code;
5758 /* We only care about SSA_NAMEs. */
5759 if (TREE_CODE (op) != SSA_NAME)
5760 return;
5762 /* We know that OP will have a zero or nonzero value. If OP is used
5763 more than once go ahead and register an assert for OP. */
5764 if (live_on_edge (e, op))
5766 val = build_int_cst (TREE_TYPE (op), 0);
5767 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5770 /* Now look at how OP is set. If it's set from a comparison,
5771 a truth operation or some bit operations, then we may be able
5772 to register information about the operands of that assignment. */
5773 op_def = SSA_NAME_DEF_STMT (op);
5774 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5775 return;
5777 rhs_code = gimple_assign_rhs_code (op_def);
5779 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5781 bool invert = (code == EQ_EXPR ? true : false);
5782 tree op0 = gimple_assign_rhs1 (op_def);
5783 tree op1 = gimple_assign_rhs2 (op_def);
5785 if (TREE_CODE (op0) == SSA_NAME)
5786 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5787 if (TREE_CODE (op1) == SSA_NAME)
5788 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5790 else if ((code == NE_EXPR
5791 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5792 || (code == EQ_EXPR
5793 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5795 /* Recurse on each operand. */
5796 tree op0 = gimple_assign_rhs1 (op_def);
5797 tree op1 = gimple_assign_rhs2 (op_def);
5798 if (TREE_CODE (op0) == SSA_NAME
5799 && has_single_use (op0))
5800 register_edge_assert_for_1 (op0, code, e, bsi);
5801 if (TREE_CODE (op1) == SSA_NAME
5802 && has_single_use (op1))
5803 register_edge_assert_for_1 (op1, code, e, bsi);
5805 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5806 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5808 /* Recurse, flipping CODE. */
5809 code = invert_tree_comparison (code, false);
5810 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5812 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5814 /* Recurse through the copy. */
5815 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5817 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5819 /* Recurse through the type conversion, unless it is a narrowing
5820 conversion or conversion from non-integral type. */
5821 tree rhs = gimple_assign_rhs1 (op_def);
5822 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5823 && (TYPE_PRECISION (TREE_TYPE (rhs))
5824 <= TYPE_PRECISION (TREE_TYPE (op))))
5825 register_edge_assert_for_1 (rhs, code, e, bsi);
5829 /* Try to register an edge assertion for SSA name NAME on edge E for
5830 the condition COND contributing to the conditional jump pointed to by
5831 SI. */
5833 static void
5834 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5835 enum tree_code cond_code, tree cond_op0,
5836 tree cond_op1)
5838 tree val;
5839 enum tree_code comp_code;
5840 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5842 /* Do not attempt to infer anything in names that flow through
5843 abnormal edges. */
5844 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5845 return;
5847 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5848 cond_op0, cond_op1,
5849 is_else_edge,
5850 &comp_code, &val))
5851 return;
5853 /* Register ASSERT_EXPRs for name. */
5854 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5855 cond_op1, is_else_edge);
5858 /* If COND is effectively an equality test of an SSA_NAME against
5859 the value zero or one, then we may be able to assert values
5860 for SSA_NAMEs which flow into COND. */
5862 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5863 statement of NAME we can assert both operands of the BIT_AND_EXPR
5864 have nonzero value. */
5865 if (((comp_code == EQ_EXPR && integer_onep (val))
5866 || (comp_code == NE_EXPR && integer_zerop (val))))
5868 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5870 if (is_gimple_assign (def_stmt)
5871 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5873 tree op0 = gimple_assign_rhs1 (def_stmt);
5874 tree op1 = gimple_assign_rhs2 (def_stmt);
5875 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5876 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5880 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5881 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5882 have zero value. */
5883 if (((comp_code == EQ_EXPR && integer_zerop (val))
5884 || (comp_code == NE_EXPR && integer_onep (val))))
5886 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5888 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5889 necessarily zero value, or if type-precision is one. */
5890 if (is_gimple_assign (def_stmt)
5891 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5892 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5893 || comp_code == EQ_EXPR)))
5895 tree op0 = gimple_assign_rhs1 (def_stmt);
5896 tree op1 = gimple_assign_rhs2 (def_stmt);
5897 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5898 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5904 /* Determine whether the outgoing edges of BB should receive an
5905 ASSERT_EXPR for each of the operands of BB's LAST statement.
5906 The last statement of BB must be a COND_EXPR.
5908 If any of the sub-graphs rooted at BB have an interesting use of
5909 the predicate operands, an assert location node is added to the
5910 list of assertions for the corresponding operands. */
5912 static void
5913 find_conditional_asserts (basic_block bb, gcond *last)
5915 gimple_stmt_iterator bsi;
5916 tree op;
5917 edge_iterator ei;
5918 edge e;
5919 ssa_op_iter iter;
5921 bsi = gsi_for_stmt (last);
5923 /* Look for uses of the operands in each of the sub-graphs
5924 rooted at BB. We need to check each of the outgoing edges
5925 separately, so that we know what kind of ASSERT_EXPR to
5926 insert. */
5927 FOR_EACH_EDGE (e, ei, bb->succs)
5929 if (e->dest == bb)
5930 continue;
5932 /* Register the necessary assertions for each operand in the
5933 conditional predicate. */
5934 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5935 register_edge_assert_for (op, e, bsi,
5936 gimple_cond_code (last),
5937 gimple_cond_lhs (last),
5938 gimple_cond_rhs (last));
5942 struct case_info
5944 tree expr;
5945 basic_block bb;
5948 /* Compare two case labels sorting first by the destination bb index
5949 and then by the case value. */
5951 static int
5952 compare_case_labels (const void *p1, const void *p2)
5954 const struct case_info *ci1 = (const struct case_info *) p1;
5955 const struct case_info *ci2 = (const struct case_info *) p2;
5956 int idx1 = ci1->bb->index;
5957 int idx2 = ci2->bb->index;
5959 if (idx1 < idx2)
5960 return -1;
5961 else if (idx1 == idx2)
5963 /* Make sure the default label is first in a group. */
5964 if (!CASE_LOW (ci1->expr))
5965 return -1;
5966 else if (!CASE_LOW (ci2->expr))
5967 return 1;
5968 else
5969 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5970 CASE_LOW (ci2->expr));
5972 else
5973 return 1;
5976 /* Determine whether the outgoing edges of BB should receive an
5977 ASSERT_EXPR for each of the operands of BB's LAST statement.
5978 The last statement of BB must be a SWITCH_EXPR.
5980 If any of the sub-graphs rooted at BB have an interesting use of
5981 the predicate operands, an assert location node is added to the
5982 list of assertions for the corresponding operands. */
5984 static void
5985 find_switch_asserts (basic_block bb, gswitch *last)
5987 gimple_stmt_iterator bsi;
5988 tree op;
5989 edge e;
5990 struct case_info *ci;
5991 size_t n = gimple_switch_num_labels (last);
5992 #if GCC_VERSION >= 4000
5993 unsigned int idx;
5994 #else
5995 /* Work around GCC 3.4 bug (PR 37086). */
5996 volatile unsigned int idx;
5997 #endif
5999 bsi = gsi_for_stmt (last);
6000 op = gimple_switch_index (last);
6001 if (TREE_CODE (op) != SSA_NAME)
6002 return;
6004 /* Build a vector of case labels sorted by destination label. */
6005 ci = XNEWVEC (struct case_info, n);
6006 for (idx = 0; idx < n; ++idx)
6008 ci[idx].expr = gimple_switch_label (last, idx);
6009 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6011 edge default_edge = find_edge (bb, ci[0].bb);
6012 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6014 for (idx = 0; idx < n; ++idx)
6016 tree min, max;
6017 tree cl = ci[idx].expr;
6018 basic_block cbb = ci[idx].bb;
6020 min = CASE_LOW (cl);
6021 max = CASE_HIGH (cl);
6023 /* If there are multiple case labels with the same destination
6024 we need to combine them to a single value range for the edge. */
6025 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6027 /* Skip labels until the last of the group. */
6028 do {
6029 ++idx;
6030 } while (idx < n && cbb == ci[idx].bb);
6031 --idx;
6033 /* Pick up the maximum of the case label range. */
6034 if (CASE_HIGH (ci[idx].expr))
6035 max = CASE_HIGH (ci[idx].expr);
6036 else
6037 max = CASE_LOW (ci[idx].expr);
6040 /* Can't extract a useful assertion out of a range that includes the
6041 default label. */
6042 if (min == NULL_TREE)
6043 continue;
6045 /* Find the edge to register the assert expr on. */
6046 e = find_edge (bb, cbb);
6048 /* Register the necessary assertions for the operand in the
6049 SWITCH_EXPR. */
6050 register_edge_assert_for (op, e, bsi,
6051 max ? GE_EXPR : EQ_EXPR,
6052 op, fold_convert (TREE_TYPE (op), min));
6053 if (max)
6054 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6055 fold_convert (TREE_TYPE (op), max));
6058 XDELETEVEC (ci);
6060 if (!live_on_edge (default_edge, op))
6061 return;
6063 /* Now register along the default label assertions that correspond to the
6064 anti-range of each label. */
6065 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
6066 if (insertion_limit == 0)
6067 return;
6069 /* We can't do this if the default case shares a label with another case. */
6070 tree default_cl = gimple_switch_default_label (last);
6071 for (idx = 1; idx < n; idx++)
6073 tree min, max;
6074 tree cl = gimple_switch_label (last, idx);
6075 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
6076 continue;
6078 min = CASE_LOW (cl);
6079 max = CASE_HIGH (cl);
6081 /* Combine contiguous case ranges to reduce the number of assertions
6082 to insert. */
6083 for (idx = idx + 1; idx < n; idx++)
6085 tree next_min, next_max;
6086 tree next_cl = gimple_switch_label (last, idx);
6087 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6088 break;
6090 next_min = CASE_LOW (next_cl);
6091 next_max = CASE_HIGH (next_cl);
6093 wide_int difference = wi::sub (next_min, max ? max : min);
6094 if (wi::eq_p (difference, 1))
6095 max = next_max ? next_max : next_min;
6096 else
6097 break;
6099 idx--;
6101 if (max == NULL_TREE)
6103 /* Register the assertion OP != MIN. */
6104 min = fold_convert (TREE_TYPE (op), min);
6105 register_edge_assert_for (op, default_edge, bsi, NE_EXPR, op, min);
6107 else
6109 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6110 which will give OP the anti-range ~[MIN,MAX]. */
6111 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6112 min = fold_convert (TREE_TYPE (uop), min);
6113 max = fold_convert (TREE_TYPE (uop), max);
6115 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6116 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6117 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6118 NULL, default_edge, bsi);
6121 if (--insertion_limit == 0)
6122 break;
6127 /* Traverse all the statements in block BB looking for statements that
6128 may generate useful assertions for the SSA names in their operand.
6129 If a statement produces a useful assertion A for name N_i, then the
6130 list of assertions already generated for N_i is scanned to
6131 determine if A is actually needed.
6133 If N_i already had the assertion A at a location dominating the
6134 current location, then nothing needs to be done. Otherwise, the
6135 new location for A is recorded instead.
6137 1- For every statement S in BB, all the variables used by S are
6138 added to bitmap FOUND_IN_SUBGRAPH.
6140 2- If statement S uses an operand N in a way that exposes a known
6141 value range for N, then if N was not already generated by an
6142 ASSERT_EXPR, create a new assert location for N. For instance,
6143 if N is a pointer and the statement dereferences it, we can
6144 assume that N is not NULL.
6146 3- COND_EXPRs are a special case of #2. We can derive range
6147 information from the predicate but need to insert different
6148 ASSERT_EXPRs for each of the sub-graphs rooted at the
6149 conditional block. If the last statement of BB is a conditional
6150 expression of the form 'X op Y', then
6152 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6154 b) If the conditional is the only entry point to the sub-graph
6155 corresponding to the THEN_CLAUSE, recurse into it. On
6156 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6157 an ASSERT_EXPR is added for the corresponding variable.
6159 c) Repeat step (b) on the ELSE_CLAUSE.
6161 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6163 For instance,
6165 if (a == 9)
6166 b = a;
6167 else
6168 b = c + 1;
6170 In this case, an assertion on the THEN clause is useful to
6171 determine that 'a' is always 9 on that edge. However, an assertion
6172 on the ELSE clause would be unnecessary.
6174 4- If BB does not end in a conditional expression, then we recurse
6175 into BB's dominator children.
6177 At the end of the recursive traversal, every SSA name will have a
6178 list of locations where ASSERT_EXPRs should be added. When a new
6179 location for name N is found, it is registered by calling
6180 register_new_assert_for. That function keeps track of all the
6181 registered assertions to prevent adding unnecessary assertions.
6182 For instance, if a pointer P_4 is dereferenced more than once in a
6183 dominator tree, only the location dominating all the dereference of
6184 P_4 will receive an ASSERT_EXPR. */
6186 static void
6187 find_assert_locations_1 (basic_block bb, sbitmap live)
6189 gimple *last;
6191 last = last_stmt (bb);
6193 /* If BB's last statement is a conditional statement involving integer
6194 operands, determine if we need to add ASSERT_EXPRs. */
6195 if (last
6196 && gimple_code (last) == GIMPLE_COND
6197 && !fp_predicate (last)
6198 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6199 find_conditional_asserts (bb, as_a <gcond *> (last));
6201 /* If BB's last statement is a switch statement involving integer
6202 operands, determine if we need to add ASSERT_EXPRs. */
6203 if (last
6204 && gimple_code (last) == GIMPLE_SWITCH
6205 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6206 find_switch_asserts (bb, as_a <gswitch *> (last));
6208 /* Traverse all the statements in BB marking used names and looking
6209 for statements that may infer assertions for their used operands. */
6210 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6211 gsi_prev (&si))
6213 gimple *stmt;
6214 tree op;
6215 ssa_op_iter i;
6217 stmt = gsi_stmt (si);
6219 if (is_gimple_debug (stmt))
6220 continue;
6222 /* See if we can derive an assertion for any of STMT's operands. */
6223 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6225 tree value;
6226 enum tree_code comp_code;
6228 /* If op is not live beyond this stmt, do not bother to insert
6229 asserts for it. */
6230 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6231 continue;
6233 /* If OP is used in such a way that we can infer a value
6234 range for it, and we don't find a previous assertion for
6235 it, create a new assertion location node for OP. */
6236 if (infer_value_range (stmt, op, &comp_code, &value))
6238 /* If we are able to infer a nonzero value range for OP,
6239 then walk backwards through the use-def chain to see if OP
6240 was set via a typecast.
6242 If so, then we can also infer a nonzero value range
6243 for the operand of the NOP_EXPR. */
6244 if (comp_code == NE_EXPR && integer_zerop (value))
6246 tree t = op;
6247 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6249 while (is_gimple_assign (def_stmt)
6250 && CONVERT_EXPR_CODE_P
6251 (gimple_assign_rhs_code (def_stmt))
6252 && TREE_CODE
6253 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6254 && POINTER_TYPE_P
6255 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6257 t = gimple_assign_rhs1 (def_stmt);
6258 def_stmt = SSA_NAME_DEF_STMT (t);
6260 /* Note we want to register the assert for the
6261 operand of the NOP_EXPR after SI, not after the
6262 conversion. */
6263 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6264 register_new_assert_for (t, t, comp_code, value,
6265 bb, NULL, si);
6269 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6273 /* Update live. */
6274 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6275 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6276 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6277 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6280 /* Traverse all PHI nodes in BB, updating live. */
6281 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6282 gsi_next (&si))
6284 use_operand_p arg_p;
6285 ssa_op_iter i;
6286 gphi *phi = si.phi ();
6287 tree res = gimple_phi_result (phi);
6289 if (virtual_operand_p (res))
6290 continue;
6292 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6294 tree arg = USE_FROM_PTR (arg_p);
6295 if (TREE_CODE (arg) == SSA_NAME)
6296 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6299 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6303 /* Do an RPO walk over the function computing SSA name liveness
6304 on-the-fly and deciding on assert expressions to insert. */
6306 static void
6307 find_assert_locations (void)
6309 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6310 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6311 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6312 int rpo_cnt, i;
6314 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6315 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6316 for (i = 0; i < rpo_cnt; ++i)
6317 bb_rpo[rpo[i]] = i;
6319 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6320 the order we compute liveness and insert asserts we otherwise
6321 fail to insert asserts into the loop latch. */
6322 loop_p loop;
6323 FOR_EACH_LOOP (loop, 0)
6325 i = loop->latch->index;
6326 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6327 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6328 !gsi_end_p (gsi); gsi_next (&gsi))
6330 gphi *phi = gsi.phi ();
6331 if (virtual_operand_p (gimple_phi_result (phi)))
6332 continue;
6333 tree arg = gimple_phi_arg_def (phi, j);
6334 if (TREE_CODE (arg) == SSA_NAME)
6336 if (live[i] == NULL)
6338 live[i] = sbitmap_alloc (num_ssa_names);
6339 bitmap_clear (live[i]);
6341 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6346 for (i = rpo_cnt - 1; i >= 0; --i)
6348 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6349 edge e;
6350 edge_iterator ei;
6352 if (!live[rpo[i]])
6354 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6355 bitmap_clear (live[rpo[i]]);
6358 /* Process BB and update the live information with uses in
6359 this block. */
6360 find_assert_locations_1 (bb, live[rpo[i]]);
6362 /* Merge liveness into the predecessor blocks and free it. */
6363 if (!bitmap_empty_p (live[rpo[i]]))
6365 int pred_rpo = i;
6366 FOR_EACH_EDGE (e, ei, bb->preds)
6368 int pred = e->src->index;
6369 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6370 continue;
6372 if (!live[pred])
6374 live[pred] = sbitmap_alloc (num_ssa_names);
6375 bitmap_clear (live[pred]);
6377 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6379 if (bb_rpo[pred] < pred_rpo)
6380 pred_rpo = bb_rpo[pred];
6383 /* Record the RPO number of the last visited block that needs
6384 live information from this block. */
6385 last_rpo[rpo[i]] = pred_rpo;
6387 else
6389 sbitmap_free (live[rpo[i]]);
6390 live[rpo[i]] = NULL;
6393 /* We can free all successors live bitmaps if all their
6394 predecessors have been visited already. */
6395 FOR_EACH_EDGE (e, ei, bb->succs)
6396 if (last_rpo[e->dest->index] == i
6397 && live[e->dest->index])
6399 sbitmap_free (live[e->dest->index]);
6400 live[e->dest->index] = NULL;
6404 XDELETEVEC (rpo);
6405 XDELETEVEC (bb_rpo);
6406 XDELETEVEC (last_rpo);
6407 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6408 if (live[i])
6409 sbitmap_free (live[i]);
6410 XDELETEVEC (live);
6413 /* Create an ASSERT_EXPR for NAME and insert it in the location
6414 indicated by LOC. Return true if we made any edge insertions. */
6416 static bool
6417 process_assert_insertions_for (tree name, assert_locus *loc)
6419 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6420 gimple *stmt;
6421 tree cond;
6422 gimple *assert_stmt;
6423 edge_iterator ei;
6424 edge e;
6426 /* If we have X <=> X do not insert an assert expr for that. */
6427 if (loc->expr == loc->val)
6428 return false;
6430 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6431 assert_stmt = build_assert_expr_for (cond, name);
6432 if (loc->e)
6434 /* We have been asked to insert the assertion on an edge. This
6435 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6436 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6437 || (gimple_code (gsi_stmt (loc->si))
6438 == GIMPLE_SWITCH));
6440 gsi_insert_on_edge (loc->e, assert_stmt);
6441 return true;
6444 /* If the stmt iterator points at the end then this is an insertion
6445 at the beginning of a block. */
6446 if (gsi_end_p (loc->si))
6448 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6449 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6450 return false;
6453 /* Otherwise, we can insert right after LOC->SI iff the
6454 statement must not be the last statement in the block. */
6455 stmt = gsi_stmt (loc->si);
6456 if (!stmt_ends_bb_p (stmt))
6458 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6459 return false;
6462 /* If STMT must be the last statement in BB, we can only insert new
6463 assertions on the non-abnormal edge out of BB. Note that since
6464 STMT is not control flow, there may only be one non-abnormal/eh edge
6465 out of BB. */
6466 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6467 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6469 gsi_insert_on_edge (e, assert_stmt);
6470 return true;
6473 gcc_unreachable ();
6477 /* Process all the insertions registered for every name N_i registered
6478 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6479 found in ASSERTS_FOR[i]. */
6481 static void
6482 process_assert_insertions (void)
6484 unsigned i;
6485 bitmap_iterator bi;
6486 bool update_edges_p = false;
6487 int num_asserts = 0;
6489 if (dump_file && (dump_flags & TDF_DETAILS))
6490 dump_all_asserts (dump_file);
6492 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6494 assert_locus *loc = asserts_for[i];
6495 gcc_assert (loc);
6497 while (loc)
6499 assert_locus *next = loc->next;
6500 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6501 free (loc);
6502 loc = next;
6503 num_asserts++;
6507 if (update_edges_p)
6508 gsi_commit_edge_inserts ();
6510 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6511 num_asserts);
6515 /* Traverse the flowgraph looking for conditional jumps to insert range
6516 expressions. These range expressions are meant to provide information
6517 to optimizations that need to reason in terms of value ranges. They
6518 will not be expanded into RTL. For instance, given:
6520 x = ...
6521 y = ...
6522 if (x < y)
6523 y = x - 2;
6524 else
6525 x = y + 3;
6527 this pass will transform the code into:
6529 x = ...
6530 y = ...
6531 if (x < y)
6533 x = ASSERT_EXPR <x, x < y>
6534 y = x - 2
6536 else
6538 y = ASSERT_EXPR <y, x >= y>
6539 x = y + 3
6542 The idea is that once copy and constant propagation have run, other
6543 optimizations will be able to determine what ranges of values can 'x'
6544 take in different paths of the code, simply by checking the reaching
6545 definition of 'x'. */
6547 static void
6548 insert_range_assertions (void)
6550 need_assert_for = BITMAP_ALLOC (NULL);
6551 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6553 calculate_dominance_info (CDI_DOMINATORS);
6555 find_assert_locations ();
6556 if (!bitmap_empty_p (need_assert_for))
6558 process_assert_insertions ();
6559 update_ssa (TODO_update_ssa_no_phi);
6562 if (dump_file && (dump_flags & TDF_DETAILS))
6564 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6565 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6568 free (asserts_for);
6569 BITMAP_FREE (need_assert_for);
6572 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6573 and "struct" hacks. If VRP can determine that the
6574 array subscript is a constant, check if it is outside valid
6575 range. If the array subscript is a RANGE, warn if it is
6576 non-overlapping with valid range.
6577 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6579 static void
6580 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6582 value_range *vr = NULL;
6583 tree low_sub, up_sub;
6584 tree low_bound, up_bound, up_bound_p1;
6586 if (TREE_NO_WARNING (ref))
6587 return;
6589 low_sub = up_sub = TREE_OPERAND (ref, 1);
6590 up_bound = array_ref_up_bound (ref);
6592 /* Can not check flexible arrays. */
6593 if (!up_bound
6594 || TREE_CODE (up_bound) != INTEGER_CST)
6595 return;
6597 /* Accesses to trailing arrays via pointers may access storage
6598 beyond the types array bounds. */
6599 if (warn_array_bounds < 2
6600 && array_at_struct_end_p (ref))
6601 return;
6603 low_bound = array_ref_low_bound (ref);
6604 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6605 build_int_cst (TREE_TYPE (up_bound), 1));
6607 /* Empty array. */
6608 if (tree_int_cst_equal (low_bound, up_bound_p1))
6610 warning_at (location, OPT_Warray_bounds,
6611 "array subscript is above array bounds");
6612 TREE_NO_WARNING (ref) = 1;
6615 if (TREE_CODE (low_sub) == SSA_NAME)
6617 vr = get_value_range (low_sub);
6618 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6620 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6621 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6625 if (vr && vr->type == VR_ANTI_RANGE)
6627 if (TREE_CODE (up_sub) == INTEGER_CST
6628 && (ignore_off_by_one
6629 ? tree_int_cst_lt (up_bound, up_sub)
6630 : tree_int_cst_le (up_bound, up_sub))
6631 && TREE_CODE (low_sub) == INTEGER_CST
6632 && tree_int_cst_le (low_sub, low_bound))
6634 warning_at (location, OPT_Warray_bounds,
6635 "array subscript is outside array bounds");
6636 TREE_NO_WARNING (ref) = 1;
6639 else if (TREE_CODE (up_sub) == INTEGER_CST
6640 && (ignore_off_by_one
6641 ? !tree_int_cst_le (up_sub, up_bound_p1)
6642 : !tree_int_cst_le (up_sub, up_bound)))
6644 if (dump_file && (dump_flags & TDF_DETAILS))
6646 fprintf (dump_file, "Array bound warning for ");
6647 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6648 fprintf (dump_file, "\n");
6650 warning_at (location, OPT_Warray_bounds,
6651 "array subscript is above array bounds");
6652 TREE_NO_WARNING (ref) = 1;
6654 else if (TREE_CODE (low_sub) == INTEGER_CST
6655 && tree_int_cst_lt (low_sub, low_bound))
6657 if (dump_file && (dump_flags & TDF_DETAILS))
6659 fprintf (dump_file, "Array bound warning for ");
6660 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6661 fprintf (dump_file, "\n");
6663 warning_at (location, OPT_Warray_bounds,
6664 "array subscript is below array bounds");
6665 TREE_NO_WARNING (ref) = 1;
6669 /* Searches if the expr T, located at LOCATION computes
6670 address of an ARRAY_REF, and call check_array_ref on it. */
6672 static void
6673 search_for_addr_array (tree t, location_t location)
6675 /* Check each ARRAY_REFs in the reference chain. */
6678 if (TREE_CODE (t) == ARRAY_REF)
6679 check_array_ref (location, t, true /*ignore_off_by_one*/);
6681 t = TREE_OPERAND (t, 0);
6683 while (handled_component_p (t));
6685 if (TREE_CODE (t) == MEM_REF
6686 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6687 && !TREE_NO_WARNING (t))
6689 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6690 tree low_bound, up_bound, el_sz;
6691 offset_int idx;
6692 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6693 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6694 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6695 return;
6697 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6698 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6699 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6700 if (!low_bound
6701 || TREE_CODE (low_bound) != INTEGER_CST
6702 || !up_bound
6703 || TREE_CODE (up_bound) != INTEGER_CST
6704 || !el_sz
6705 || TREE_CODE (el_sz) != INTEGER_CST)
6706 return;
6708 idx = mem_ref_offset (t);
6709 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6710 if (idx < 0)
6712 if (dump_file && (dump_flags & TDF_DETAILS))
6714 fprintf (dump_file, "Array bound warning for ");
6715 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6716 fprintf (dump_file, "\n");
6718 warning_at (location, OPT_Warray_bounds,
6719 "array subscript is below array bounds");
6720 TREE_NO_WARNING (t) = 1;
6722 else if (idx > (wi::to_offset (up_bound)
6723 - wi::to_offset (low_bound) + 1))
6725 if (dump_file && (dump_flags & TDF_DETAILS))
6727 fprintf (dump_file, "Array bound warning for ");
6728 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6729 fprintf (dump_file, "\n");
6731 warning_at (location, OPT_Warray_bounds,
6732 "array subscript is above array bounds");
6733 TREE_NO_WARNING (t) = 1;
6738 /* walk_tree() callback that checks if *TP is
6739 an ARRAY_REF inside an ADDR_EXPR (in which an array
6740 subscript one outside the valid range is allowed). Call
6741 check_array_ref for each ARRAY_REF found. The location is
6742 passed in DATA. */
6744 static tree
6745 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6747 tree t = *tp;
6748 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6749 location_t location;
6751 if (EXPR_HAS_LOCATION (t))
6752 location = EXPR_LOCATION (t);
6753 else
6755 location_t *locp = (location_t *) wi->info;
6756 location = *locp;
6759 *walk_subtree = TRUE;
6761 if (TREE_CODE (t) == ARRAY_REF)
6762 check_array_ref (location, t, false /*ignore_off_by_one*/);
6764 else if (TREE_CODE (t) == ADDR_EXPR)
6766 search_for_addr_array (t, location);
6767 *walk_subtree = FALSE;
6770 return NULL_TREE;
6773 /* Walk over all statements of all reachable BBs and call check_array_bounds
6774 on them. */
6776 static void
6777 check_all_array_refs (void)
6779 basic_block bb;
6780 gimple_stmt_iterator si;
6782 FOR_EACH_BB_FN (bb, cfun)
6784 edge_iterator ei;
6785 edge e;
6786 bool executable = false;
6788 /* Skip blocks that were found to be unreachable. */
6789 FOR_EACH_EDGE (e, ei, bb->preds)
6790 executable |= !!(e->flags & EDGE_EXECUTABLE);
6791 if (!executable)
6792 continue;
6794 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6796 gimple *stmt = gsi_stmt (si);
6797 struct walk_stmt_info wi;
6798 if (!gimple_has_location (stmt)
6799 || is_gimple_debug (stmt))
6800 continue;
6802 memset (&wi, 0, sizeof (wi));
6804 location_t loc = gimple_location (stmt);
6805 wi.info = &loc;
6807 walk_gimple_op (gsi_stmt (si),
6808 check_array_bounds,
6809 &wi);
6814 /* Return true if all imm uses of VAR are either in STMT, or
6815 feed (optionally through a chain of single imm uses) GIMPLE_COND
6816 in basic block COND_BB. */
6818 static bool
6819 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6821 use_operand_p use_p, use2_p;
6822 imm_use_iterator iter;
6824 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6825 if (USE_STMT (use_p) != stmt)
6827 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6828 if (is_gimple_debug (use_stmt))
6829 continue;
6830 while (is_gimple_assign (use_stmt)
6831 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6832 && single_imm_use (gimple_assign_lhs (use_stmt),
6833 &use2_p, &use_stmt2))
6834 use_stmt = use_stmt2;
6835 if (gimple_code (use_stmt) != GIMPLE_COND
6836 || gimple_bb (use_stmt) != cond_bb)
6837 return false;
6839 return true;
6842 /* Handle
6843 _4 = x_3 & 31;
6844 if (_4 != 0)
6845 goto <bb 6>;
6846 else
6847 goto <bb 7>;
6848 <bb 6>:
6849 __builtin_unreachable ();
6850 <bb 7>:
6851 x_5 = ASSERT_EXPR <x_3, ...>;
6852 If x_3 has no other immediate uses (checked by caller),
6853 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6854 from the non-zero bitmask. */
6856 static void
6857 maybe_set_nonzero_bits (basic_block bb, tree var)
6859 edge e = single_pred_edge (bb);
6860 basic_block cond_bb = e->src;
6861 gimple *stmt = last_stmt (cond_bb);
6862 tree cst;
6864 if (stmt == NULL
6865 || gimple_code (stmt) != GIMPLE_COND
6866 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6867 ? EQ_EXPR : NE_EXPR)
6868 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6869 || !integer_zerop (gimple_cond_rhs (stmt)))
6870 return;
6872 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6873 if (!is_gimple_assign (stmt)
6874 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6875 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6876 return;
6877 if (gimple_assign_rhs1 (stmt) != var)
6879 gimple *stmt2;
6881 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6882 return;
6883 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6884 if (!gimple_assign_cast_p (stmt2)
6885 || gimple_assign_rhs1 (stmt2) != var
6886 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6887 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6888 != TYPE_PRECISION (TREE_TYPE (var))))
6889 return;
6891 cst = gimple_assign_rhs2 (stmt);
6892 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6895 /* Convert range assertion expressions into the implied copies and
6896 copy propagate away the copies. Doing the trivial copy propagation
6897 here avoids the need to run the full copy propagation pass after
6898 VRP.
6900 FIXME, this will eventually lead to copy propagation removing the
6901 names that had useful range information attached to them. For
6902 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6903 then N_i will have the range [3, +INF].
6905 However, by converting the assertion into the implied copy
6906 operation N_i = N_j, we will then copy-propagate N_j into the uses
6907 of N_i and lose the range information. We may want to hold on to
6908 ASSERT_EXPRs a little while longer as the ranges could be used in
6909 things like jump threading.
6911 The problem with keeping ASSERT_EXPRs around is that passes after
6912 VRP need to handle them appropriately.
6914 Another approach would be to make the range information a first
6915 class property of the SSA_NAME so that it can be queried from
6916 any pass. This is made somewhat more complex by the need for
6917 multiple ranges to be associated with one SSA_NAME. */
6919 static void
6920 remove_range_assertions (void)
6922 basic_block bb;
6923 gimple_stmt_iterator si;
6924 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6925 a basic block preceeded by GIMPLE_COND branching to it and
6926 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6927 int is_unreachable;
6929 /* Note that the BSI iterator bump happens at the bottom of the
6930 loop and no bump is necessary if we're removing the statement
6931 referenced by the current BSI. */
6932 FOR_EACH_BB_FN (bb, cfun)
6933 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6935 gimple *stmt = gsi_stmt (si);
6937 if (is_gimple_assign (stmt)
6938 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6940 tree lhs = gimple_assign_lhs (stmt);
6941 tree rhs = gimple_assign_rhs1 (stmt);
6942 tree var;
6944 var = ASSERT_EXPR_VAR (rhs);
6946 if (TREE_CODE (var) == SSA_NAME
6947 && !POINTER_TYPE_P (TREE_TYPE (lhs))
6948 && SSA_NAME_RANGE_INFO (lhs))
6950 if (is_unreachable == -1)
6952 is_unreachable = 0;
6953 if (single_pred_p (bb)
6954 && assert_unreachable_fallthru_edge_p
6955 (single_pred_edge (bb)))
6956 is_unreachable = 1;
6958 /* Handle
6959 if (x_7 >= 10 && x_7 < 20)
6960 __builtin_unreachable ();
6961 x_8 = ASSERT_EXPR <x_7, ...>;
6962 if the only uses of x_7 are in the ASSERT_EXPR and
6963 in the condition. In that case, we can copy the
6964 range info from x_8 computed in this pass also
6965 for x_7. */
6966 if (is_unreachable
6967 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6968 single_pred (bb)))
6970 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6971 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6972 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6973 maybe_set_nonzero_bits (bb, var);
6977 /* Propagate the RHS into every use of the LHS. */
6978 replace_uses_by (lhs, var);
6980 /* And finally, remove the copy, it is not needed. */
6981 gsi_remove (&si, true);
6982 release_defs (stmt);
6984 else
6986 if (!is_gimple_debug (gsi_stmt (si)))
6987 is_unreachable = 0;
6988 gsi_next (&si);
6994 /* Return true if STMT is interesting for VRP. */
6996 static bool
6997 stmt_interesting_for_vrp (gimple *stmt)
6999 if (gimple_code (stmt) == GIMPLE_PHI)
7001 tree res = gimple_phi_result (stmt);
7002 return (!virtual_operand_p (res)
7003 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7004 || POINTER_TYPE_P (TREE_TYPE (res))));
7006 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7008 tree lhs = gimple_get_lhs (stmt);
7010 /* In general, assignments with virtual operands are not useful
7011 for deriving ranges, with the obvious exception of calls to
7012 builtin functions. */
7013 if (lhs && TREE_CODE (lhs) == SSA_NAME
7014 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7015 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7016 && (is_gimple_call (stmt)
7017 || !gimple_vuse (stmt)))
7018 return true;
7019 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7020 switch (gimple_call_internal_fn (stmt))
7022 case IFN_ADD_OVERFLOW:
7023 case IFN_SUB_OVERFLOW:
7024 case IFN_MUL_OVERFLOW:
7025 /* These internal calls return _Complex integer type,
7026 but are interesting to VRP nevertheless. */
7027 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7028 return true;
7029 break;
7030 default:
7031 break;
7034 else if (gimple_code (stmt) == GIMPLE_COND
7035 || gimple_code (stmt) == GIMPLE_SWITCH)
7036 return true;
7038 return false;
7041 /* Initialize VRP lattice. */
7043 static void
7044 vrp_initialize_lattice ()
7046 values_propagated = false;
7047 num_vr_values = num_ssa_names;
7048 vr_value = XCNEWVEC (value_range *, num_vr_values);
7049 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7050 bitmap_obstack_initialize (&vrp_equiv_obstack);
7053 /* Initialization required by ssa_propagate engine. */
7055 static void
7056 vrp_initialize ()
7058 basic_block bb;
7060 FOR_EACH_BB_FN (bb, cfun)
7062 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7063 gsi_next (&si))
7065 gphi *phi = si.phi ();
7066 if (!stmt_interesting_for_vrp (phi))
7068 tree lhs = PHI_RESULT (phi);
7069 set_value_range_to_varying (get_value_range (lhs));
7070 prop_set_simulate_again (phi, false);
7072 else
7073 prop_set_simulate_again (phi, true);
7076 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7077 gsi_next (&si))
7079 gimple *stmt = gsi_stmt (si);
7081 /* If the statement is a control insn, then we do not
7082 want to avoid simulating the statement once. Failure
7083 to do so means that those edges will never get added. */
7084 if (stmt_ends_bb_p (stmt))
7085 prop_set_simulate_again (stmt, true);
7086 else if (!stmt_interesting_for_vrp (stmt))
7088 set_defs_to_varying (stmt);
7089 prop_set_simulate_again (stmt, false);
7091 else
7092 prop_set_simulate_again (stmt, true);
7097 /* Return the singleton value-range for NAME or NAME. */
7099 static inline tree
7100 vrp_valueize (tree name)
7102 if (TREE_CODE (name) == SSA_NAME)
7104 value_range *vr = get_value_range (name);
7105 if (vr->type == VR_RANGE
7106 && (TREE_CODE (vr->min) == SSA_NAME
7107 || is_gimple_min_invariant (vr->min))
7108 && vrp_operand_equal_p (vr->min, vr->max))
7109 return vr->min;
7111 return name;
7114 /* Return the singleton value-range for NAME if that is a constant
7115 but signal to not follow SSA edges. */
7117 static inline tree
7118 vrp_valueize_1 (tree name)
7120 if (TREE_CODE (name) == SSA_NAME)
7122 /* If the definition may be simulated again we cannot follow
7123 this SSA edge as the SSA propagator does not necessarily
7124 re-visit the use. */
7125 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7126 if (!gimple_nop_p (def_stmt)
7127 && prop_simulate_again_p (def_stmt))
7128 return NULL_TREE;
7129 value_range *vr = get_value_range (name);
7130 if (range_int_cst_singleton_p (vr))
7131 return vr->min;
7133 return name;
7136 /* Visit assignment STMT. If it produces an interesting range, record
7137 the range in VR and set LHS to OUTPUT_P. */
7139 static void
7140 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7142 tree lhs;
7143 enum gimple_code code = gimple_code (stmt);
7144 lhs = gimple_get_lhs (stmt);
7145 *output_p = NULL_TREE;
7147 /* We only keep track of ranges in integral and pointer types. */
7148 if (TREE_CODE (lhs) == SSA_NAME
7149 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7150 /* It is valid to have NULL MIN/MAX values on a type. See
7151 build_range_type. */
7152 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7153 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7154 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7156 *output_p = lhs;
7158 /* Try folding the statement to a constant first. */
7159 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7160 vrp_valueize_1);
7161 if (tem)
7163 if (TREE_CODE (tem) == SSA_NAME
7164 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7165 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7167 extract_range_from_ssa_name (vr, tem);
7168 return;
7170 else if (is_gimple_min_invariant (tem))
7172 set_value_range_to_value (vr, tem, NULL);
7173 return;
7176 /* Then dispatch to value-range extracting functions. */
7177 if (code == GIMPLE_CALL)
7178 extract_range_basic (vr, stmt);
7179 else
7180 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7184 /* Helper that gets the value range of the SSA_NAME with version I
7185 or a symbolic range containing the SSA_NAME only if the value range
7186 is varying or undefined. */
7188 static inline value_range
7189 get_vr_for_comparison (int i)
7191 value_range vr = *get_value_range (ssa_name (i));
7193 /* If name N_i does not have a valid range, use N_i as its own
7194 range. This allows us to compare against names that may
7195 have N_i in their ranges. */
7196 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7198 vr.type = VR_RANGE;
7199 vr.min = ssa_name (i);
7200 vr.max = ssa_name (i);
7203 return vr;
7206 /* Compare all the value ranges for names equivalent to VAR with VAL
7207 using comparison code COMP. Return the same value returned by
7208 compare_range_with_value, including the setting of
7209 *STRICT_OVERFLOW_P. */
7211 static tree
7212 compare_name_with_value (enum tree_code comp, tree var, tree val,
7213 bool *strict_overflow_p, bool use_equiv_p)
7215 bitmap_iterator bi;
7216 unsigned i;
7217 bitmap e;
7218 tree retval, t;
7219 int used_strict_overflow;
7220 bool sop;
7221 value_range equiv_vr;
7223 /* Get the set of equivalences for VAR. */
7224 e = get_value_range (var)->equiv;
7226 /* Start at -1. Set it to 0 if we do a comparison without relying
7227 on overflow, or 1 if all comparisons rely on overflow. */
7228 used_strict_overflow = -1;
7230 /* Compare vars' value range with val. */
7231 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7232 sop = false;
7233 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7234 if (retval)
7235 used_strict_overflow = sop ? 1 : 0;
7237 /* If the equiv set is empty we have done all work we need to do. */
7238 if (e == NULL)
7240 if (retval
7241 && used_strict_overflow > 0)
7242 *strict_overflow_p = true;
7243 return retval;
7246 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7248 tree name = ssa_name (i);
7249 if (! name)
7250 continue;
7252 if (! use_equiv_p
7253 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7254 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7255 continue;
7257 equiv_vr = get_vr_for_comparison (i);
7258 sop = false;
7259 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7260 if (t)
7262 /* If we get different answers from different members
7263 of the equivalence set this check must be in a dead
7264 code region. Folding it to a trap representation
7265 would be correct here. For now just return don't-know. */
7266 if (retval != NULL
7267 && t != retval)
7269 retval = NULL_TREE;
7270 break;
7272 retval = t;
7274 if (!sop)
7275 used_strict_overflow = 0;
7276 else if (used_strict_overflow < 0)
7277 used_strict_overflow = 1;
7281 if (retval
7282 && used_strict_overflow > 0)
7283 *strict_overflow_p = true;
7285 return retval;
7289 /* Given a comparison code COMP and names N1 and N2, compare all the
7290 ranges equivalent to N1 against all the ranges equivalent to N2
7291 to determine the value of N1 COMP N2. Return the same value
7292 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7293 whether we relied on an overflow infinity in the comparison. */
7296 static tree
7297 compare_names (enum tree_code comp, tree n1, tree n2,
7298 bool *strict_overflow_p)
7300 tree t, retval;
7301 bitmap e1, e2;
7302 bitmap_iterator bi1, bi2;
7303 unsigned i1, i2;
7304 int used_strict_overflow;
7305 static bitmap_obstack *s_obstack = NULL;
7306 static bitmap s_e1 = NULL, s_e2 = NULL;
7308 /* Compare the ranges of every name equivalent to N1 against the
7309 ranges of every name equivalent to N2. */
7310 e1 = get_value_range (n1)->equiv;
7311 e2 = get_value_range (n2)->equiv;
7313 /* Use the fake bitmaps if e1 or e2 are not available. */
7314 if (s_obstack == NULL)
7316 s_obstack = XNEW (bitmap_obstack);
7317 bitmap_obstack_initialize (s_obstack);
7318 s_e1 = BITMAP_ALLOC (s_obstack);
7319 s_e2 = BITMAP_ALLOC (s_obstack);
7321 if (e1 == NULL)
7322 e1 = s_e1;
7323 if (e2 == NULL)
7324 e2 = s_e2;
7326 /* Add N1 and N2 to their own set of equivalences to avoid
7327 duplicating the body of the loop just to check N1 and N2
7328 ranges. */
7329 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7330 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7332 /* If the equivalence sets have a common intersection, then the two
7333 names can be compared without checking their ranges. */
7334 if (bitmap_intersect_p (e1, e2))
7336 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7337 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7339 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7340 ? boolean_true_node
7341 : boolean_false_node;
7344 /* Start at -1. Set it to 0 if we do a comparison without relying
7345 on overflow, or 1 if all comparisons rely on overflow. */
7346 used_strict_overflow = -1;
7348 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7349 N2 to their own set of equivalences to avoid duplicating the body
7350 of the loop just to check N1 and N2 ranges. */
7351 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7353 if (! ssa_name (i1))
7354 continue;
7356 value_range vr1 = get_vr_for_comparison (i1);
7358 t = retval = NULL_TREE;
7359 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7361 if (! ssa_name (i2))
7362 continue;
7364 bool sop = false;
7366 value_range vr2 = get_vr_for_comparison (i2);
7368 t = compare_ranges (comp, &vr1, &vr2, &sop);
7369 if (t)
7371 /* If we get different answers from different members
7372 of the equivalence set this check must be in a dead
7373 code region. Folding it to a trap representation
7374 would be correct here. For now just return don't-know. */
7375 if (retval != NULL
7376 && t != retval)
7378 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7379 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7380 return NULL_TREE;
7382 retval = t;
7384 if (!sop)
7385 used_strict_overflow = 0;
7386 else if (used_strict_overflow < 0)
7387 used_strict_overflow = 1;
7391 if (retval)
7393 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7394 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7395 if (used_strict_overflow > 0)
7396 *strict_overflow_p = true;
7397 return retval;
7401 /* None of the equivalent ranges are useful in computing this
7402 comparison. */
7403 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7404 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7405 return NULL_TREE;
7408 /* Helper function for vrp_evaluate_conditional_warnv & other
7409 optimizers. */
7411 static tree
7412 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7413 tree op0, tree op1,
7414 bool * strict_overflow_p)
7416 value_range *vr0, *vr1;
7418 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7419 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7421 tree res = NULL_TREE;
7422 if (vr0 && vr1)
7423 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7424 if (!res && vr0)
7425 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7426 if (!res && vr1)
7427 res = (compare_range_with_value
7428 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7429 return res;
7432 /* Helper function for vrp_evaluate_conditional_warnv. */
7434 static tree
7435 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7436 tree op1, bool use_equiv_p,
7437 bool *strict_overflow_p, bool *only_ranges)
7439 tree ret;
7440 if (only_ranges)
7441 *only_ranges = true;
7443 /* We only deal with integral and pointer types. */
7444 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7445 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7446 return NULL_TREE;
7448 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7449 (code, op0, op1, strict_overflow_p)))
7450 return ret;
7451 if (only_ranges)
7452 *only_ranges = false;
7453 /* Do not use compare_names during propagation, it's quadratic. */
7454 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7455 && use_equiv_p)
7456 return compare_names (code, op0, op1, strict_overflow_p);
7457 else if (TREE_CODE (op0) == SSA_NAME)
7458 return compare_name_with_value (code, op0, op1,
7459 strict_overflow_p, use_equiv_p);
7460 else if (TREE_CODE (op1) == SSA_NAME)
7461 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7462 strict_overflow_p, use_equiv_p);
7463 return NULL_TREE;
7466 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7467 information. Return NULL if the conditional can not be evaluated.
7468 The ranges of all the names equivalent with the operands in COND
7469 will be used when trying to compute the value. If the result is
7470 based on undefined signed overflow, issue a warning if
7471 appropriate. */
7473 static tree
7474 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7476 bool sop;
7477 tree ret;
7478 bool only_ranges;
7480 /* Some passes and foldings leak constants with overflow flag set
7481 into the IL. Avoid doing wrong things with these and bail out. */
7482 if ((TREE_CODE (op0) == INTEGER_CST
7483 && TREE_OVERFLOW (op0))
7484 || (TREE_CODE (op1) == INTEGER_CST
7485 && TREE_OVERFLOW (op1)))
7486 return NULL_TREE;
7488 sop = false;
7489 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7490 &only_ranges);
7492 if (ret && sop)
7494 enum warn_strict_overflow_code wc;
7495 const char* warnmsg;
7497 if (is_gimple_min_invariant (ret))
7499 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7500 warnmsg = G_("assuming signed overflow does not occur when "
7501 "simplifying conditional to constant");
7503 else
7505 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7506 warnmsg = G_("assuming signed overflow does not occur when "
7507 "simplifying conditional");
7510 if (issue_strict_overflow_warning (wc))
7512 location_t location;
7514 if (!gimple_has_location (stmt))
7515 location = input_location;
7516 else
7517 location = gimple_location (stmt);
7518 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7522 if (warn_type_limits
7523 && ret && only_ranges
7524 && TREE_CODE_CLASS (code) == tcc_comparison
7525 && TREE_CODE (op0) == SSA_NAME)
7527 /* If the comparison is being folded and the operand on the LHS
7528 is being compared against a constant value that is outside of
7529 the natural range of OP0's type, then the predicate will
7530 always fold regardless of the value of OP0. If -Wtype-limits
7531 was specified, emit a warning. */
7532 tree type = TREE_TYPE (op0);
7533 value_range *vr0 = get_value_range (op0);
7535 if (vr0->type == VR_RANGE
7536 && INTEGRAL_TYPE_P (type)
7537 && vrp_val_is_min (vr0->min)
7538 && vrp_val_is_max (vr0->max)
7539 && is_gimple_min_invariant (op1))
7541 location_t location;
7543 if (!gimple_has_location (stmt))
7544 location = input_location;
7545 else
7546 location = gimple_location (stmt);
7548 warning_at (location, OPT_Wtype_limits,
7549 integer_zerop (ret)
7550 ? G_("comparison always false "
7551 "due to limited range of data type")
7552 : G_("comparison always true "
7553 "due to limited range of data type"));
7557 return ret;
7561 /* Visit conditional statement STMT. If we can determine which edge
7562 will be taken out of STMT's basic block, record it in
7563 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7565 static void
7566 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7568 tree val;
7569 bool sop;
7571 *taken_edge_p = NULL;
7573 if (dump_file && (dump_flags & TDF_DETAILS))
7575 tree use;
7576 ssa_op_iter i;
7578 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7579 print_gimple_stmt (dump_file, stmt, 0, 0);
7580 fprintf (dump_file, "\nWith known ranges\n");
7582 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7584 fprintf (dump_file, "\t");
7585 print_generic_expr (dump_file, use, 0);
7586 fprintf (dump_file, ": ");
7587 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7590 fprintf (dump_file, "\n");
7593 /* Compute the value of the predicate COND by checking the known
7594 ranges of each of its operands.
7596 Note that we cannot evaluate all the equivalent ranges here
7597 because those ranges may not yet be final and with the current
7598 propagation strategy, we cannot determine when the value ranges
7599 of the names in the equivalence set have changed.
7601 For instance, given the following code fragment
7603 i_5 = PHI <8, i_13>
7605 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7606 if (i_14 == 1)
7609 Assume that on the first visit to i_14, i_5 has the temporary
7610 range [8, 8] because the second argument to the PHI function is
7611 not yet executable. We derive the range ~[0, 0] for i_14 and the
7612 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7613 the first time, since i_14 is equivalent to the range [8, 8], we
7614 determine that the predicate is always false.
7616 On the next round of propagation, i_13 is determined to be
7617 VARYING, which causes i_5 to drop down to VARYING. So, another
7618 visit to i_14 is scheduled. In this second visit, we compute the
7619 exact same range and equivalence set for i_14, namely ~[0, 0] and
7620 { i_5 }. But we did not have the previous range for i_5
7621 registered, so vrp_visit_assignment thinks that the range for
7622 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7623 is not visited again, which stops propagation from visiting
7624 statements in the THEN clause of that if().
7626 To properly fix this we would need to keep the previous range
7627 value for the names in the equivalence set. This way we would've
7628 discovered that from one visit to the other i_5 changed from
7629 range [8, 8] to VR_VARYING.
7631 However, fixing this apparent limitation may not be worth the
7632 additional checking. Testing on several code bases (GCC, DLV,
7633 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7634 4 more predicates folded in SPEC. */
7635 sop = false;
7637 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7638 gimple_cond_lhs (stmt),
7639 gimple_cond_rhs (stmt),
7640 false, &sop, NULL);
7641 if (val)
7643 if (!sop)
7644 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7645 else
7647 if (dump_file && (dump_flags & TDF_DETAILS))
7648 fprintf (dump_file,
7649 "\nIgnoring predicate evaluation because "
7650 "it assumes that signed overflow is undefined");
7651 val = NULL_TREE;
7655 if (dump_file && (dump_flags & TDF_DETAILS))
7657 fprintf (dump_file, "\nPredicate evaluates to: ");
7658 if (val == NULL_TREE)
7659 fprintf (dump_file, "DON'T KNOW\n");
7660 else
7661 print_generic_stmt (dump_file, val, 0);
7665 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7666 that includes the value VAL. The search is restricted to the range
7667 [START_IDX, n - 1] where n is the size of VEC.
7669 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7670 returned.
7672 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7673 it is placed in IDX and false is returned.
7675 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7676 returned. */
7678 static bool
7679 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7681 size_t n = gimple_switch_num_labels (stmt);
7682 size_t low, high;
7684 /* Find case label for minimum of the value range or the next one.
7685 At each iteration we are searching in [low, high - 1]. */
7687 for (low = start_idx, high = n; high != low; )
7689 tree t;
7690 int cmp;
7691 /* Note that i != high, so we never ask for n. */
7692 size_t i = (high + low) / 2;
7693 t = gimple_switch_label (stmt, i);
7695 /* Cache the result of comparing CASE_LOW and val. */
7696 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7698 if (cmp == 0)
7700 /* Ranges cannot be empty. */
7701 *idx = i;
7702 return true;
7704 else if (cmp > 0)
7705 high = i;
7706 else
7708 low = i + 1;
7709 if (CASE_HIGH (t) != NULL
7710 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7712 *idx = i;
7713 return true;
7718 *idx = high;
7719 return false;
7722 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7723 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7724 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7725 then MAX_IDX < MIN_IDX.
7726 Returns true if the default label is not needed. */
7728 static bool
7729 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7730 size_t *max_idx)
7732 size_t i, j;
7733 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7734 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7736 if (i == j
7737 && min_take_default
7738 && max_take_default)
7740 /* Only the default case label reached.
7741 Return an empty range. */
7742 *min_idx = 1;
7743 *max_idx = 0;
7744 return false;
7746 else
7748 bool take_default = min_take_default || max_take_default;
7749 tree low, high;
7750 size_t k;
7752 if (max_take_default)
7753 j--;
7755 /* If the case label range is continuous, we do not need
7756 the default case label. Verify that. */
7757 high = CASE_LOW (gimple_switch_label (stmt, i));
7758 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7759 high = CASE_HIGH (gimple_switch_label (stmt, i));
7760 for (k = i + 1; k <= j; ++k)
7762 low = CASE_LOW (gimple_switch_label (stmt, k));
7763 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7765 take_default = true;
7766 break;
7768 high = low;
7769 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7770 high = CASE_HIGH (gimple_switch_label (stmt, k));
7773 *min_idx = i;
7774 *max_idx = j;
7775 return !take_default;
7779 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7780 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7781 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7782 Returns true if the default label is not needed. */
7784 static bool
7785 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7786 size_t *max_idx1, size_t *min_idx2,
7787 size_t *max_idx2)
7789 size_t i, j, k, l;
7790 unsigned int n = gimple_switch_num_labels (stmt);
7791 bool take_default;
7792 tree case_low, case_high;
7793 tree min = vr->min, max = vr->max;
7795 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7797 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7799 /* Set second range to emtpy. */
7800 *min_idx2 = 1;
7801 *max_idx2 = 0;
7803 if (vr->type == VR_RANGE)
7805 *min_idx1 = i;
7806 *max_idx1 = j;
7807 return !take_default;
7810 /* Set first range to all case labels. */
7811 *min_idx1 = 1;
7812 *max_idx1 = n - 1;
7814 if (i > j)
7815 return false;
7817 /* Make sure all the values of case labels [i , j] are contained in
7818 range [MIN, MAX]. */
7819 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7820 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7821 if (tree_int_cst_compare (case_low, min) < 0)
7822 i += 1;
7823 if (case_high != NULL_TREE
7824 && tree_int_cst_compare (max, case_high) < 0)
7825 j -= 1;
7827 if (i > j)
7828 return false;
7830 /* If the range spans case labels [i, j], the corresponding anti-range spans
7831 the labels [1, i - 1] and [j + 1, n - 1]. */
7832 k = j + 1;
7833 l = n - 1;
7834 if (k > l)
7836 k = 1;
7837 l = 0;
7840 j = i - 1;
7841 i = 1;
7842 if (i > j)
7844 i = k;
7845 j = l;
7846 k = 1;
7847 l = 0;
7850 *min_idx1 = i;
7851 *max_idx1 = j;
7852 *min_idx2 = k;
7853 *max_idx2 = l;
7854 return false;
7857 /* Visit switch statement STMT. If we can determine which edge
7858 will be taken out of STMT's basic block, record it in
7859 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7861 static void
7862 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7864 tree op, val;
7865 value_range *vr;
7866 size_t i = 0, j = 0, k, l;
7867 bool take_default;
7869 *taken_edge_p = NULL;
7870 op = gimple_switch_index (stmt);
7871 if (TREE_CODE (op) != SSA_NAME)
7872 return;
7874 vr = get_value_range (op);
7875 if (dump_file && (dump_flags & TDF_DETAILS))
7877 fprintf (dump_file, "\nVisiting switch expression with operand ");
7878 print_generic_expr (dump_file, op, 0);
7879 fprintf (dump_file, " with known range ");
7880 dump_value_range (dump_file, vr);
7881 fprintf (dump_file, "\n");
7884 if ((vr->type != VR_RANGE
7885 && vr->type != VR_ANTI_RANGE)
7886 || symbolic_range_p (vr))
7887 return;
7889 /* Find the single edge that is taken from the switch expression. */
7890 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7892 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7893 label */
7894 if (j < i)
7896 gcc_assert (take_default);
7897 val = gimple_switch_default_label (stmt);
7899 else
7901 /* Check if labels with index i to j and maybe the default label
7902 are all reaching the same label. */
7904 val = gimple_switch_label (stmt, i);
7905 if (take_default
7906 && CASE_LABEL (gimple_switch_default_label (stmt))
7907 != CASE_LABEL (val))
7909 if (dump_file && (dump_flags & TDF_DETAILS))
7910 fprintf (dump_file, " not a single destination for this "
7911 "range\n");
7912 return;
7914 for (++i; i <= j; ++i)
7916 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7918 if (dump_file && (dump_flags & TDF_DETAILS))
7919 fprintf (dump_file, " not a single destination for this "
7920 "range\n");
7921 return;
7924 for (; k <= l; ++k)
7926 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7928 if (dump_file && (dump_flags & TDF_DETAILS))
7929 fprintf (dump_file, " not a single destination for this "
7930 "range\n");
7931 return;
7936 *taken_edge_p = find_edge (gimple_bb (stmt),
7937 label_to_block (CASE_LABEL (val)));
7939 if (dump_file && (dump_flags & TDF_DETAILS))
7941 fprintf (dump_file, " will take edge to ");
7942 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7947 /* Evaluate statement STMT. If the statement produces a useful range,
7948 set VR and corepsponding OUTPUT_P.
7950 If STMT is a conditional branch and we can determine its truth
7951 value, the taken edge is recorded in *TAKEN_EDGE_P. */
7953 static void
7954 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
7955 tree *output_p, value_range *vr)
7958 if (dump_file && (dump_flags & TDF_DETAILS))
7960 fprintf (dump_file, "\nVisiting statement:\n");
7961 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7964 if (!stmt_interesting_for_vrp (stmt))
7965 gcc_assert (stmt_ends_bb_p (stmt));
7966 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7967 vrp_visit_assignment_or_call (stmt, output_p, vr);
7968 else if (gimple_code (stmt) == GIMPLE_COND)
7969 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
7970 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7971 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
7974 /* Evaluate statement STMT. If the statement produces a useful range,
7975 return SSA_PROP_INTERESTING and record the SSA name with the
7976 interesting range into *OUTPUT_P.
7978 If STMT is a conditional branch and we can determine its truth
7979 value, the taken edge is recorded in *TAKEN_EDGE_P.
7981 If STMT produces a varying value, return SSA_PROP_VARYING. */
7983 static enum ssa_prop_result
7984 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
7986 value_range vr = VR_INITIALIZER;
7987 tree lhs = gimple_get_lhs (stmt);
7988 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
7990 if (*output_p)
7992 if (update_value_range (*output_p, &vr))
7994 if (dump_file && (dump_flags & TDF_DETAILS))
7996 fprintf (dump_file, "Found new range for ");
7997 print_generic_expr (dump_file, *output_p, 0);
7998 fprintf (dump_file, ": ");
7999 dump_value_range (dump_file, &vr);
8000 fprintf (dump_file, "\n");
8003 if (vr.type == VR_VARYING)
8004 return SSA_PROP_VARYING;
8006 return SSA_PROP_INTERESTING;
8008 return SSA_PROP_NOT_INTERESTING;
8011 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8012 switch (gimple_call_internal_fn (stmt))
8014 case IFN_ADD_OVERFLOW:
8015 case IFN_SUB_OVERFLOW:
8016 case IFN_MUL_OVERFLOW:
8017 /* These internal calls return _Complex integer type,
8018 which VRP does not track, but the immediate uses
8019 thereof might be interesting. */
8020 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8022 imm_use_iterator iter;
8023 use_operand_p use_p;
8024 enum ssa_prop_result res = SSA_PROP_VARYING;
8026 set_value_range_to_varying (get_value_range (lhs));
8028 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8030 gimple *use_stmt = USE_STMT (use_p);
8031 if (!is_gimple_assign (use_stmt))
8032 continue;
8033 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8034 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8035 continue;
8036 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8037 tree use_lhs = gimple_assign_lhs (use_stmt);
8038 if (TREE_CODE (rhs1) != rhs_code
8039 || TREE_OPERAND (rhs1, 0) != lhs
8040 || TREE_CODE (use_lhs) != SSA_NAME
8041 || !stmt_interesting_for_vrp (use_stmt)
8042 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8043 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8044 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8045 continue;
8047 /* If there is a change in the value range for any of the
8048 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8049 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8050 or IMAGPART_EXPR immediate uses, but none of them have
8051 a change in their value ranges, return
8052 SSA_PROP_NOT_INTERESTING. If there are no
8053 {REAL,IMAG}PART_EXPR uses at all,
8054 return SSA_PROP_VARYING. */
8055 value_range new_vr = VR_INITIALIZER;
8056 extract_range_basic (&new_vr, use_stmt);
8057 value_range *old_vr = get_value_range (use_lhs);
8058 if (old_vr->type != new_vr.type
8059 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8060 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8061 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8062 res = SSA_PROP_INTERESTING;
8063 else
8064 res = SSA_PROP_NOT_INTERESTING;
8065 BITMAP_FREE (new_vr.equiv);
8066 if (res == SSA_PROP_INTERESTING)
8068 *output_p = lhs;
8069 return res;
8073 return res;
8075 break;
8076 default:
8077 break;
8080 /* All other statements produce nothing of interest for VRP, so mark
8081 their outputs varying and prevent further simulation. */
8082 set_defs_to_varying (stmt);
8084 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8087 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8088 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8089 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8090 possible such range. The resulting range is not canonicalized. */
8092 static void
8093 union_ranges (enum value_range_type *vr0type,
8094 tree *vr0min, tree *vr0max,
8095 enum value_range_type vr1type,
8096 tree vr1min, tree vr1max)
8098 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8099 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8101 /* [] is vr0, () is vr1 in the following classification comments. */
8102 if (mineq && maxeq)
8104 /* [( )] */
8105 if (*vr0type == vr1type)
8106 /* Nothing to do for equal ranges. */
8108 else if ((*vr0type == VR_RANGE
8109 && vr1type == VR_ANTI_RANGE)
8110 || (*vr0type == VR_ANTI_RANGE
8111 && vr1type == VR_RANGE))
8113 /* For anti-range with range union the result is varying. */
8114 goto give_up;
8116 else
8117 gcc_unreachable ();
8119 else if (operand_less_p (*vr0max, vr1min) == 1
8120 || operand_less_p (vr1max, *vr0min) == 1)
8122 /* [ ] ( ) or ( ) [ ]
8123 If the ranges have an empty intersection, result of the union
8124 operation is the anti-range or if both are anti-ranges
8125 it covers all. */
8126 if (*vr0type == VR_ANTI_RANGE
8127 && vr1type == VR_ANTI_RANGE)
8128 goto give_up;
8129 else if (*vr0type == VR_ANTI_RANGE
8130 && vr1type == VR_RANGE)
8132 else if (*vr0type == VR_RANGE
8133 && vr1type == VR_ANTI_RANGE)
8135 *vr0type = vr1type;
8136 *vr0min = vr1min;
8137 *vr0max = vr1max;
8139 else if (*vr0type == VR_RANGE
8140 && vr1type == VR_RANGE)
8142 /* The result is the convex hull of both ranges. */
8143 if (operand_less_p (*vr0max, vr1min) == 1)
8145 /* If the result can be an anti-range, create one. */
8146 if (TREE_CODE (*vr0max) == INTEGER_CST
8147 && TREE_CODE (vr1min) == INTEGER_CST
8148 && vrp_val_is_min (*vr0min)
8149 && vrp_val_is_max (vr1max))
8151 tree min = int_const_binop (PLUS_EXPR,
8152 *vr0max,
8153 build_int_cst (TREE_TYPE (*vr0max), 1));
8154 tree max = int_const_binop (MINUS_EXPR,
8155 vr1min,
8156 build_int_cst (TREE_TYPE (vr1min), 1));
8157 if (!operand_less_p (max, min))
8159 *vr0type = VR_ANTI_RANGE;
8160 *vr0min = min;
8161 *vr0max = max;
8163 else
8164 *vr0max = vr1max;
8166 else
8167 *vr0max = vr1max;
8169 else
8171 /* If the result can be an anti-range, create one. */
8172 if (TREE_CODE (vr1max) == INTEGER_CST
8173 && TREE_CODE (*vr0min) == INTEGER_CST
8174 && vrp_val_is_min (vr1min)
8175 && vrp_val_is_max (*vr0max))
8177 tree min = int_const_binop (PLUS_EXPR,
8178 vr1max,
8179 build_int_cst (TREE_TYPE (vr1max), 1));
8180 tree max = int_const_binop (MINUS_EXPR,
8181 *vr0min,
8182 build_int_cst (TREE_TYPE (*vr0min), 1));
8183 if (!operand_less_p (max, min))
8185 *vr0type = VR_ANTI_RANGE;
8186 *vr0min = min;
8187 *vr0max = max;
8189 else
8190 *vr0min = vr1min;
8192 else
8193 *vr0min = vr1min;
8196 else
8197 gcc_unreachable ();
8199 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8200 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8202 /* [ ( ) ] or [( ) ] or [ ( )] */
8203 if (*vr0type == VR_RANGE
8204 && vr1type == VR_RANGE)
8206 else if (*vr0type == VR_ANTI_RANGE
8207 && vr1type == VR_ANTI_RANGE)
8209 *vr0type = vr1type;
8210 *vr0min = vr1min;
8211 *vr0max = vr1max;
8213 else if (*vr0type == VR_ANTI_RANGE
8214 && vr1type == VR_RANGE)
8216 /* Arbitrarily choose the right or left gap. */
8217 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8218 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8219 build_int_cst (TREE_TYPE (vr1min), 1));
8220 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8221 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8222 build_int_cst (TREE_TYPE (vr1max), 1));
8223 else
8224 goto give_up;
8226 else if (*vr0type == VR_RANGE
8227 && vr1type == VR_ANTI_RANGE)
8228 /* The result covers everything. */
8229 goto give_up;
8230 else
8231 gcc_unreachable ();
8233 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8234 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8236 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8237 if (*vr0type == VR_RANGE
8238 && vr1type == VR_RANGE)
8240 *vr0type = vr1type;
8241 *vr0min = vr1min;
8242 *vr0max = vr1max;
8244 else if (*vr0type == VR_ANTI_RANGE
8245 && vr1type == VR_ANTI_RANGE)
8247 else if (*vr0type == VR_RANGE
8248 && vr1type == VR_ANTI_RANGE)
8250 *vr0type = VR_ANTI_RANGE;
8251 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8253 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8254 build_int_cst (TREE_TYPE (*vr0min), 1));
8255 *vr0min = vr1min;
8257 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8259 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8260 build_int_cst (TREE_TYPE (*vr0max), 1));
8261 *vr0max = vr1max;
8263 else
8264 goto give_up;
8266 else if (*vr0type == VR_ANTI_RANGE
8267 && vr1type == VR_RANGE)
8268 /* The result covers everything. */
8269 goto give_up;
8270 else
8271 gcc_unreachable ();
8273 else if ((operand_less_p (vr1min, *vr0max) == 1
8274 || operand_equal_p (vr1min, *vr0max, 0))
8275 && operand_less_p (*vr0min, vr1min) == 1
8276 && operand_less_p (*vr0max, vr1max) == 1)
8278 /* [ ( ] ) or [ ]( ) */
8279 if (*vr0type == VR_RANGE
8280 && vr1type == VR_RANGE)
8281 *vr0max = vr1max;
8282 else if (*vr0type == VR_ANTI_RANGE
8283 && vr1type == VR_ANTI_RANGE)
8284 *vr0min = vr1min;
8285 else if (*vr0type == VR_ANTI_RANGE
8286 && vr1type == VR_RANGE)
8288 if (TREE_CODE (vr1min) == INTEGER_CST)
8289 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8290 build_int_cst (TREE_TYPE (vr1min), 1));
8291 else
8292 goto give_up;
8294 else if (*vr0type == VR_RANGE
8295 && vr1type == VR_ANTI_RANGE)
8297 if (TREE_CODE (*vr0max) == INTEGER_CST)
8299 *vr0type = vr1type;
8300 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8301 build_int_cst (TREE_TYPE (*vr0max), 1));
8302 *vr0max = vr1max;
8304 else
8305 goto give_up;
8307 else
8308 gcc_unreachable ();
8310 else if ((operand_less_p (*vr0min, vr1max) == 1
8311 || operand_equal_p (*vr0min, vr1max, 0))
8312 && operand_less_p (vr1min, *vr0min) == 1
8313 && operand_less_p (vr1max, *vr0max) == 1)
8315 /* ( [ ) ] or ( )[ ] */
8316 if (*vr0type == VR_RANGE
8317 && vr1type == VR_RANGE)
8318 *vr0min = vr1min;
8319 else if (*vr0type == VR_ANTI_RANGE
8320 && vr1type == VR_ANTI_RANGE)
8321 *vr0max = vr1max;
8322 else if (*vr0type == VR_ANTI_RANGE
8323 && vr1type == VR_RANGE)
8325 if (TREE_CODE (vr1max) == INTEGER_CST)
8326 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8327 build_int_cst (TREE_TYPE (vr1max), 1));
8328 else
8329 goto give_up;
8331 else if (*vr0type == VR_RANGE
8332 && vr1type == VR_ANTI_RANGE)
8334 if (TREE_CODE (*vr0min) == INTEGER_CST)
8336 *vr0type = vr1type;
8337 *vr0min = vr1min;
8338 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8339 build_int_cst (TREE_TYPE (*vr0min), 1));
8341 else
8342 goto give_up;
8344 else
8345 gcc_unreachable ();
8347 else
8348 goto give_up;
8350 return;
8352 give_up:
8353 *vr0type = VR_VARYING;
8354 *vr0min = NULL_TREE;
8355 *vr0max = NULL_TREE;
8358 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8359 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8360 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8361 possible such range. The resulting range is not canonicalized. */
8363 static void
8364 intersect_ranges (enum value_range_type *vr0type,
8365 tree *vr0min, tree *vr0max,
8366 enum value_range_type vr1type,
8367 tree vr1min, tree vr1max)
8369 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8370 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8372 /* [] is vr0, () is vr1 in the following classification comments. */
8373 if (mineq && maxeq)
8375 /* [( )] */
8376 if (*vr0type == vr1type)
8377 /* Nothing to do for equal ranges. */
8379 else if ((*vr0type == VR_RANGE
8380 && vr1type == VR_ANTI_RANGE)
8381 || (*vr0type == VR_ANTI_RANGE
8382 && vr1type == VR_RANGE))
8384 /* For anti-range with range intersection the result is empty. */
8385 *vr0type = VR_UNDEFINED;
8386 *vr0min = NULL_TREE;
8387 *vr0max = NULL_TREE;
8389 else
8390 gcc_unreachable ();
8392 else if (operand_less_p (*vr0max, vr1min) == 1
8393 || operand_less_p (vr1max, *vr0min) == 1)
8395 /* [ ] ( ) or ( ) [ ]
8396 If the ranges have an empty intersection, the result of the
8397 intersect operation is the range for intersecting an
8398 anti-range with a range or empty when intersecting two ranges. */
8399 if (*vr0type == VR_RANGE
8400 && vr1type == VR_ANTI_RANGE)
8402 else if (*vr0type == VR_ANTI_RANGE
8403 && vr1type == VR_RANGE)
8405 *vr0type = vr1type;
8406 *vr0min = vr1min;
8407 *vr0max = vr1max;
8409 else if (*vr0type == VR_RANGE
8410 && vr1type == VR_RANGE)
8412 *vr0type = VR_UNDEFINED;
8413 *vr0min = NULL_TREE;
8414 *vr0max = NULL_TREE;
8416 else if (*vr0type == VR_ANTI_RANGE
8417 && vr1type == VR_ANTI_RANGE)
8419 /* If the anti-ranges are adjacent to each other merge them. */
8420 if (TREE_CODE (*vr0max) == INTEGER_CST
8421 && TREE_CODE (vr1min) == INTEGER_CST
8422 && operand_less_p (*vr0max, vr1min) == 1
8423 && integer_onep (int_const_binop (MINUS_EXPR,
8424 vr1min, *vr0max)))
8425 *vr0max = vr1max;
8426 else if (TREE_CODE (vr1max) == INTEGER_CST
8427 && TREE_CODE (*vr0min) == INTEGER_CST
8428 && operand_less_p (vr1max, *vr0min) == 1
8429 && integer_onep (int_const_binop (MINUS_EXPR,
8430 *vr0min, vr1max)))
8431 *vr0min = vr1min;
8432 /* Else arbitrarily take VR0. */
8435 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8436 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8438 /* [ ( ) ] or [( ) ] or [ ( )] */
8439 if (*vr0type == VR_RANGE
8440 && vr1type == VR_RANGE)
8442 /* If both are ranges the result is the inner one. */
8443 *vr0type = vr1type;
8444 *vr0min = vr1min;
8445 *vr0max = vr1max;
8447 else if (*vr0type == VR_RANGE
8448 && vr1type == VR_ANTI_RANGE)
8450 /* Choose the right gap if the left one is empty. */
8451 if (mineq)
8453 if (TREE_CODE (vr1max) == INTEGER_CST)
8454 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8455 build_int_cst (TREE_TYPE (vr1max), 1));
8456 else
8457 *vr0min = vr1max;
8459 /* Choose the left gap if the right one is empty. */
8460 else if (maxeq)
8462 if (TREE_CODE (vr1min) == INTEGER_CST)
8463 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8464 build_int_cst (TREE_TYPE (vr1min), 1));
8465 else
8466 *vr0max = vr1min;
8468 /* Choose the anti-range if the range is effectively varying. */
8469 else if (vrp_val_is_min (*vr0min)
8470 && vrp_val_is_max (*vr0max))
8472 *vr0type = vr1type;
8473 *vr0min = vr1min;
8474 *vr0max = vr1max;
8476 /* Else choose the range. */
8478 else if (*vr0type == VR_ANTI_RANGE
8479 && vr1type == VR_ANTI_RANGE)
8480 /* If both are anti-ranges the result is the outer one. */
8482 else if (*vr0type == VR_ANTI_RANGE
8483 && vr1type == VR_RANGE)
8485 /* The intersection is empty. */
8486 *vr0type = VR_UNDEFINED;
8487 *vr0min = NULL_TREE;
8488 *vr0max = NULL_TREE;
8490 else
8491 gcc_unreachable ();
8493 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8494 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8496 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8497 if (*vr0type == VR_RANGE
8498 && vr1type == VR_RANGE)
8499 /* Choose the inner range. */
8501 else if (*vr0type == VR_ANTI_RANGE
8502 && vr1type == VR_RANGE)
8504 /* Choose the right gap if the left is empty. */
8505 if (mineq)
8507 *vr0type = VR_RANGE;
8508 if (TREE_CODE (*vr0max) == INTEGER_CST)
8509 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8510 build_int_cst (TREE_TYPE (*vr0max), 1));
8511 else
8512 *vr0min = *vr0max;
8513 *vr0max = vr1max;
8515 /* Choose the left gap if the right is empty. */
8516 else if (maxeq)
8518 *vr0type = VR_RANGE;
8519 if (TREE_CODE (*vr0min) == INTEGER_CST)
8520 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8521 build_int_cst (TREE_TYPE (*vr0min), 1));
8522 else
8523 *vr0max = *vr0min;
8524 *vr0min = vr1min;
8526 /* Choose the anti-range if the range is effectively varying. */
8527 else if (vrp_val_is_min (vr1min)
8528 && vrp_val_is_max (vr1max))
8530 /* Else choose the range. */
8531 else
8533 *vr0type = vr1type;
8534 *vr0min = vr1min;
8535 *vr0max = vr1max;
8538 else if (*vr0type == VR_ANTI_RANGE
8539 && vr1type == VR_ANTI_RANGE)
8541 /* If both are anti-ranges the result is the outer one. */
8542 *vr0type = vr1type;
8543 *vr0min = vr1min;
8544 *vr0max = vr1max;
8546 else if (vr1type == VR_ANTI_RANGE
8547 && *vr0type == VR_RANGE)
8549 /* The intersection is empty. */
8550 *vr0type = VR_UNDEFINED;
8551 *vr0min = NULL_TREE;
8552 *vr0max = NULL_TREE;
8554 else
8555 gcc_unreachable ();
8557 else if ((operand_less_p (vr1min, *vr0max) == 1
8558 || operand_equal_p (vr1min, *vr0max, 0))
8559 && operand_less_p (*vr0min, vr1min) == 1)
8561 /* [ ( ] ) or [ ]( ) */
8562 if (*vr0type == VR_ANTI_RANGE
8563 && vr1type == VR_ANTI_RANGE)
8564 *vr0max = vr1max;
8565 else if (*vr0type == VR_RANGE
8566 && vr1type == VR_RANGE)
8567 *vr0min = vr1min;
8568 else if (*vr0type == VR_RANGE
8569 && vr1type == VR_ANTI_RANGE)
8571 if (TREE_CODE (vr1min) == INTEGER_CST)
8572 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8573 build_int_cst (TREE_TYPE (vr1min), 1));
8574 else
8575 *vr0max = vr1min;
8577 else if (*vr0type == VR_ANTI_RANGE
8578 && vr1type == VR_RANGE)
8580 *vr0type = VR_RANGE;
8581 if (TREE_CODE (*vr0max) == INTEGER_CST)
8582 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8583 build_int_cst (TREE_TYPE (*vr0max), 1));
8584 else
8585 *vr0min = *vr0max;
8586 *vr0max = vr1max;
8588 else
8589 gcc_unreachable ();
8591 else if ((operand_less_p (*vr0min, vr1max) == 1
8592 || operand_equal_p (*vr0min, vr1max, 0))
8593 && operand_less_p (vr1min, *vr0min) == 1)
8595 /* ( [ ) ] or ( )[ ] */
8596 if (*vr0type == VR_ANTI_RANGE
8597 && vr1type == VR_ANTI_RANGE)
8598 *vr0min = vr1min;
8599 else if (*vr0type == VR_RANGE
8600 && vr1type == VR_RANGE)
8601 *vr0max = vr1max;
8602 else if (*vr0type == VR_RANGE
8603 && vr1type == VR_ANTI_RANGE)
8605 if (TREE_CODE (vr1max) == INTEGER_CST)
8606 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8607 build_int_cst (TREE_TYPE (vr1max), 1));
8608 else
8609 *vr0min = vr1max;
8611 else if (*vr0type == VR_ANTI_RANGE
8612 && vr1type == VR_RANGE)
8614 *vr0type = VR_RANGE;
8615 if (TREE_CODE (*vr0min) == INTEGER_CST)
8616 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8617 build_int_cst (TREE_TYPE (*vr0min), 1));
8618 else
8619 *vr0max = *vr0min;
8620 *vr0min = vr1min;
8622 else
8623 gcc_unreachable ();
8626 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8627 result for the intersection. That's always a conservative
8628 correct estimate unless VR1 is a constant singleton range
8629 in which case we choose that. */
8630 if (vr1type == VR_RANGE
8631 && is_gimple_min_invariant (vr1min)
8632 && vrp_operand_equal_p (vr1min, vr1max))
8634 *vr0type = vr1type;
8635 *vr0min = vr1min;
8636 *vr0max = vr1max;
8639 return;
8643 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8644 in *VR0. This may not be the smallest possible such range. */
8646 static void
8647 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8649 value_range saved;
8651 /* If either range is VR_VARYING the other one wins. */
8652 if (vr1->type == VR_VARYING)
8653 return;
8654 if (vr0->type == VR_VARYING)
8656 copy_value_range (vr0, vr1);
8657 return;
8660 /* When either range is VR_UNDEFINED the resulting range is
8661 VR_UNDEFINED, too. */
8662 if (vr0->type == VR_UNDEFINED)
8663 return;
8664 if (vr1->type == VR_UNDEFINED)
8666 set_value_range_to_undefined (vr0);
8667 return;
8670 /* Save the original vr0 so we can return it as conservative intersection
8671 result when our worker turns things to varying. */
8672 saved = *vr0;
8673 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8674 vr1->type, vr1->min, vr1->max);
8675 /* Make sure to canonicalize the result though as the inversion of a
8676 VR_RANGE can still be a VR_RANGE. */
8677 set_and_canonicalize_value_range (vr0, vr0->type,
8678 vr0->min, vr0->max, vr0->equiv);
8679 /* If that failed, use the saved original VR0. */
8680 if (vr0->type == VR_VARYING)
8682 *vr0 = saved;
8683 return;
8685 /* If the result is VR_UNDEFINED there is no need to mess with
8686 the equivalencies. */
8687 if (vr0->type == VR_UNDEFINED)
8688 return;
8690 /* The resulting set of equivalences for range intersection is the union of
8691 the two sets. */
8692 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8693 bitmap_ior_into (vr0->equiv, vr1->equiv);
8694 else if (vr1->equiv && !vr0->equiv)
8696 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
8697 bitmap_copy (vr0->equiv, vr1->equiv);
8701 void
8702 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8704 if (dump_file && (dump_flags & TDF_DETAILS))
8706 fprintf (dump_file, "Intersecting\n ");
8707 dump_value_range (dump_file, vr0);
8708 fprintf (dump_file, "\nand\n ");
8709 dump_value_range (dump_file, vr1);
8710 fprintf (dump_file, "\n");
8712 vrp_intersect_ranges_1 (vr0, vr1);
8713 if (dump_file && (dump_flags & TDF_DETAILS))
8715 fprintf (dump_file, "to\n ");
8716 dump_value_range (dump_file, vr0);
8717 fprintf (dump_file, "\n");
8721 /* Meet operation for value ranges. Given two value ranges VR0 and
8722 VR1, store in VR0 a range that contains both VR0 and VR1. This
8723 may not be the smallest possible such range. */
8725 static void
8726 vrp_meet_1 (value_range *vr0, const value_range *vr1)
8728 value_range saved;
8730 if (vr0->type == VR_UNDEFINED)
8732 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8733 return;
8736 if (vr1->type == VR_UNDEFINED)
8738 /* VR0 already has the resulting range. */
8739 return;
8742 if (vr0->type == VR_VARYING)
8744 /* Nothing to do. VR0 already has the resulting range. */
8745 return;
8748 if (vr1->type == VR_VARYING)
8750 set_value_range_to_varying (vr0);
8751 return;
8754 saved = *vr0;
8755 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8756 vr1->type, vr1->min, vr1->max);
8757 if (vr0->type == VR_VARYING)
8759 /* Failed to find an efficient meet. Before giving up and setting
8760 the result to VARYING, see if we can at least derive a useful
8761 anti-range. FIXME, all this nonsense about distinguishing
8762 anti-ranges from ranges is necessary because of the odd
8763 semantics of range_includes_zero_p and friends. */
8764 if (((saved.type == VR_RANGE
8765 && range_includes_zero_p (saved.min, saved.max) == 0)
8766 || (saved.type == VR_ANTI_RANGE
8767 && range_includes_zero_p (saved.min, saved.max) == 1))
8768 && ((vr1->type == VR_RANGE
8769 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8770 || (vr1->type == VR_ANTI_RANGE
8771 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8773 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8775 /* Since this meet operation did not result from the meeting of
8776 two equivalent names, VR0 cannot have any equivalences. */
8777 if (vr0->equiv)
8778 bitmap_clear (vr0->equiv);
8779 return;
8782 set_value_range_to_varying (vr0);
8783 return;
8785 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8786 vr0->equiv);
8787 if (vr0->type == VR_VARYING)
8788 return;
8790 /* The resulting set of equivalences is always the intersection of
8791 the two sets. */
8792 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8793 bitmap_and_into (vr0->equiv, vr1->equiv);
8794 else if (vr0->equiv && !vr1->equiv)
8795 bitmap_clear (vr0->equiv);
8798 void
8799 vrp_meet (value_range *vr0, const value_range *vr1)
8801 if (dump_file && (dump_flags & TDF_DETAILS))
8803 fprintf (dump_file, "Meeting\n ");
8804 dump_value_range (dump_file, vr0);
8805 fprintf (dump_file, "\nand\n ");
8806 dump_value_range (dump_file, vr1);
8807 fprintf (dump_file, "\n");
8809 vrp_meet_1 (vr0, vr1);
8810 if (dump_file && (dump_flags & TDF_DETAILS))
8812 fprintf (dump_file, "to\n ");
8813 dump_value_range (dump_file, vr0);
8814 fprintf (dump_file, "\n");
8819 /* Visit all arguments for PHI node PHI that flow through executable
8820 edges. If a valid value range can be derived from all the incoming
8821 value ranges, set a new range in VR_RESULT. */
8823 static void
8824 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
8826 size_t i;
8827 tree lhs = PHI_RESULT (phi);
8828 value_range *lhs_vr = get_value_range (lhs);
8829 bool first = true;
8830 int edges, old_edges;
8831 struct loop *l;
8833 if (dump_file && (dump_flags & TDF_DETAILS))
8835 fprintf (dump_file, "\nVisiting PHI node: ");
8836 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8839 bool may_simulate_backedge_again = false;
8840 edges = 0;
8841 for (i = 0; i < gimple_phi_num_args (phi); i++)
8843 edge e = gimple_phi_arg_edge (phi, i);
8845 if (dump_file && (dump_flags & TDF_DETAILS))
8847 fprintf (dump_file,
8848 " Argument #%d (%d -> %d %sexecutable)\n",
8849 (int) i, e->src->index, e->dest->index,
8850 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8853 if (e->flags & EDGE_EXECUTABLE)
8855 tree arg = PHI_ARG_DEF (phi, i);
8856 value_range vr_arg;
8858 ++edges;
8860 if (TREE_CODE (arg) == SSA_NAME)
8862 /* See if we are eventually going to change one of the args. */
8863 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
8864 if (! gimple_nop_p (def_stmt)
8865 && prop_simulate_again_p (def_stmt)
8866 && e->flags & EDGE_DFS_BACK)
8867 may_simulate_backedge_again = true;
8869 vr_arg = *(get_value_range (arg));
8870 /* Do not allow equivalences or symbolic ranges to leak in from
8871 backedges. That creates invalid equivalencies.
8872 See PR53465 and PR54767. */
8873 if (e->flags & EDGE_DFS_BACK)
8875 if (vr_arg.type == VR_RANGE
8876 || vr_arg.type == VR_ANTI_RANGE)
8878 vr_arg.equiv = NULL;
8879 if (symbolic_range_p (&vr_arg))
8881 vr_arg.type = VR_VARYING;
8882 vr_arg.min = NULL_TREE;
8883 vr_arg.max = NULL_TREE;
8887 else
8889 /* If the non-backedge arguments range is VR_VARYING then
8890 we can still try recording a simple equivalence. */
8891 if (vr_arg.type == VR_VARYING)
8893 vr_arg.type = VR_RANGE;
8894 vr_arg.min = arg;
8895 vr_arg.max = arg;
8896 vr_arg.equiv = NULL;
8900 else
8902 if (TREE_OVERFLOW_P (arg))
8903 arg = drop_tree_overflow (arg);
8905 vr_arg.type = VR_RANGE;
8906 vr_arg.min = arg;
8907 vr_arg.max = arg;
8908 vr_arg.equiv = NULL;
8911 if (dump_file && (dump_flags & TDF_DETAILS))
8913 fprintf (dump_file, "\t");
8914 print_generic_expr (dump_file, arg, dump_flags);
8915 fprintf (dump_file, ": ");
8916 dump_value_range (dump_file, &vr_arg);
8917 fprintf (dump_file, "\n");
8920 if (first)
8921 copy_value_range (vr_result, &vr_arg);
8922 else
8923 vrp_meet (vr_result, &vr_arg);
8924 first = false;
8926 if (vr_result->type == VR_VARYING)
8927 break;
8931 if (vr_result->type == VR_VARYING)
8932 goto varying;
8933 else if (vr_result->type == VR_UNDEFINED)
8934 goto update_range;
8936 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8937 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8939 /* To prevent infinite iterations in the algorithm, derive ranges
8940 when the new value is slightly bigger or smaller than the
8941 previous one. We don't do this if we have seen a new executable
8942 edge; this helps us avoid an overflow infinity for conditionals
8943 which are not in a loop. If the old value-range was VR_UNDEFINED
8944 use the updated range and iterate one more time. If we will not
8945 simulate this PHI again via the backedge allow us to iterate. */
8946 if (edges > 0
8947 && gimple_phi_num_args (phi) > 1
8948 && edges == old_edges
8949 && lhs_vr->type != VR_UNDEFINED
8950 && may_simulate_backedge_again)
8952 /* Compare old and new ranges, fall back to varying if the
8953 values are not comparable. */
8954 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
8955 if (cmp_min == -2)
8956 goto varying;
8957 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
8958 if (cmp_max == -2)
8959 goto varying;
8961 /* For non VR_RANGE or for pointers fall back to varying if
8962 the range changed. */
8963 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
8964 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8965 && (cmp_min != 0 || cmp_max != 0))
8966 goto varying;
8968 /* If the new minimum is larger than the previous one
8969 retain the old value. If the new minimum value is smaller
8970 than the previous one and not -INF go all the way to -INF + 1.
8971 In the first case, to avoid infinite bouncing between different
8972 minimums, and in the other case to avoid iterating millions of
8973 times to reach -INF. Going to -INF + 1 also lets the following
8974 iteration compute whether there will be any overflow, at the
8975 expense of one additional iteration. */
8976 if (cmp_min < 0)
8977 vr_result->min = lhs_vr->min;
8978 else if (cmp_min > 0
8979 && !vrp_val_is_min (vr_result->min))
8980 vr_result->min
8981 = int_const_binop (PLUS_EXPR,
8982 vrp_val_min (TREE_TYPE (vr_result->min)),
8983 build_int_cst (TREE_TYPE (vr_result->min), 1));
8985 /* Similarly for the maximum value. */
8986 if (cmp_max > 0)
8987 vr_result->max = lhs_vr->max;
8988 else if (cmp_max < 0
8989 && !vrp_val_is_max (vr_result->max))
8990 vr_result->max
8991 = int_const_binop (MINUS_EXPR,
8992 vrp_val_max (TREE_TYPE (vr_result->min)),
8993 build_int_cst (TREE_TYPE (vr_result->min), 1));
8995 /* If we dropped either bound to +-INF then if this is a loop
8996 PHI node SCEV may known more about its value-range. */
8997 if (cmp_min > 0 || cmp_min < 0
8998 || cmp_max < 0 || cmp_max > 0)
8999 goto scev_check;
9001 goto infinite_check;
9004 goto update_range;
9006 varying:
9007 set_value_range_to_varying (vr_result);
9009 scev_check:
9010 /* If this is a loop PHI node SCEV may known more about its value-range.
9011 scev_check can be reached from two paths, one is a fall through from above
9012 "varying" label, the other is direct goto from code block which tries to
9013 avoid infinite simulation. */
9014 if ((l = loop_containing_stmt (phi))
9015 && l->header == gimple_bb (phi))
9016 adjust_range_with_scev (vr_result, l, phi, lhs);
9018 infinite_check:
9019 /* If we will end up with a (-INF, +INF) range, set it to
9020 VARYING. Same if the previous max value was invalid for
9021 the type and we end up with vr_result.min > vr_result.max. */
9022 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9023 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9024 || compare_values (vr_result->min, vr_result->max) > 0))
9026 else
9027 set_value_range_to_varying (vr_result);
9029 /* If the new range is different than the previous value, keep
9030 iterating. */
9031 update_range:
9032 return;
9035 /* Visit all arguments for PHI node PHI that flow through executable
9036 edges. If a valid value range can be derived from all the incoming
9037 value ranges, set a new range for the LHS of PHI. */
9039 static enum ssa_prop_result
9040 vrp_visit_phi_node (gphi *phi)
9042 tree lhs = PHI_RESULT (phi);
9043 value_range vr_result = VR_INITIALIZER;
9044 extract_range_from_phi_node (phi, &vr_result);
9045 if (update_value_range (lhs, &vr_result))
9047 if (dump_file && (dump_flags & TDF_DETAILS))
9049 fprintf (dump_file, "Found new range for ");
9050 print_generic_expr (dump_file, lhs, 0);
9051 fprintf (dump_file, ": ");
9052 dump_value_range (dump_file, &vr_result);
9053 fprintf (dump_file, "\n");
9056 if (vr_result.type == VR_VARYING)
9057 return SSA_PROP_VARYING;
9059 return SSA_PROP_INTERESTING;
9062 /* Nothing changed, don't add outgoing edges. */
9063 return SSA_PROP_NOT_INTERESTING;
9066 /* Simplify boolean operations if the source is known
9067 to be already a boolean. */
9068 static bool
9069 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9071 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9072 tree lhs, op0, op1;
9073 bool need_conversion;
9075 /* We handle only !=/== case here. */
9076 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9078 op0 = gimple_assign_rhs1 (stmt);
9079 if (!op_with_boolean_value_range_p (op0))
9080 return false;
9082 op1 = gimple_assign_rhs2 (stmt);
9083 if (!op_with_boolean_value_range_p (op1))
9084 return false;
9086 /* Reduce number of cases to handle to NE_EXPR. As there is no
9087 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9088 if (rhs_code == EQ_EXPR)
9090 if (TREE_CODE (op1) == INTEGER_CST)
9091 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9092 build_int_cst (TREE_TYPE (op1), 1));
9093 else
9094 return false;
9097 lhs = gimple_assign_lhs (stmt);
9098 need_conversion
9099 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9101 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9102 if (need_conversion
9103 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9104 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9105 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9106 return false;
9108 /* For A != 0 we can substitute A itself. */
9109 if (integer_zerop (op1))
9110 gimple_assign_set_rhs_with_ops (gsi,
9111 need_conversion
9112 ? NOP_EXPR : TREE_CODE (op0), op0);
9113 /* For A != B we substitute A ^ B. Either with conversion. */
9114 else if (need_conversion)
9116 tree tem = make_ssa_name (TREE_TYPE (op0));
9117 gassign *newop
9118 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9119 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9120 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9121 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9122 set_range_info (tem, VR_RANGE,
9123 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9124 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9125 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9127 /* Or without. */
9128 else
9129 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9130 update_stmt (gsi_stmt (*gsi));
9131 fold_stmt (gsi, follow_single_use_edges);
9133 return true;
9136 /* Simplify a division or modulo operator to a right shift or
9137 bitwise and if the first operand is unsigned or is greater
9138 than zero and the second operand is an exact power of two.
9139 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9140 into just op0 if op0's range is known to be a subset of
9141 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9142 modulo. */
9144 static bool
9145 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9147 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9148 tree val = NULL;
9149 tree op0 = gimple_assign_rhs1 (stmt);
9150 tree op1 = gimple_assign_rhs2 (stmt);
9151 value_range *vr = get_value_range (op0);
9153 if (rhs_code == TRUNC_MOD_EXPR
9154 && TREE_CODE (op1) == INTEGER_CST
9155 && tree_int_cst_sgn (op1) == 1
9156 && range_int_cst_p (vr)
9157 && tree_int_cst_lt (vr->max, op1))
9159 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9160 || tree_int_cst_sgn (vr->min) >= 0
9161 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
9162 vr->min))
9164 /* If op0 already has the range op0 % op1 has,
9165 then TRUNC_MOD_EXPR won't change anything. */
9166 gimple_assign_set_rhs_from_tree (gsi, op0);
9167 return true;
9171 if (!integer_pow2p (op1))
9173 /* X % -Y can be only optimized into X % Y either if
9174 X is not INT_MIN, or Y is not -1. Fold it now, as after
9175 remove_range_assertions the range info might be not available
9176 anymore. */
9177 if (rhs_code == TRUNC_MOD_EXPR
9178 && fold_stmt (gsi, follow_single_use_edges))
9179 return true;
9180 return false;
9183 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9184 val = integer_one_node;
9185 else
9187 bool sop = false;
9189 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9191 if (val
9192 && sop
9193 && integer_onep (val)
9194 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9196 location_t location;
9198 if (!gimple_has_location (stmt))
9199 location = input_location;
9200 else
9201 location = gimple_location (stmt);
9202 warning_at (location, OPT_Wstrict_overflow,
9203 "assuming signed overflow does not occur when "
9204 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9208 if (val && integer_onep (val))
9210 tree t;
9212 if (rhs_code == TRUNC_DIV_EXPR)
9214 t = build_int_cst (integer_type_node, tree_log2 (op1));
9215 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9216 gimple_assign_set_rhs1 (stmt, op0);
9217 gimple_assign_set_rhs2 (stmt, t);
9219 else
9221 t = build_int_cst (TREE_TYPE (op1), 1);
9222 t = int_const_binop (MINUS_EXPR, op1, t);
9223 t = fold_convert (TREE_TYPE (op0), t);
9225 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9226 gimple_assign_set_rhs1 (stmt, op0);
9227 gimple_assign_set_rhs2 (stmt, t);
9230 update_stmt (stmt);
9231 fold_stmt (gsi, follow_single_use_edges);
9232 return true;
9235 return false;
9238 /* Simplify a min or max if the ranges of the two operands are
9239 disjoint. Return true if we do simplify. */
9241 static bool
9242 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9244 tree op0 = gimple_assign_rhs1 (stmt);
9245 tree op1 = gimple_assign_rhs2 (stmt);
9246 bool sop = false;
9247 tree val;
9249 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9250 (LE_EXPR, op0, op1, &sop));
9251 if (!val)
9253 sop = false;
9254 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9255 (LT_EXPR, op0, op1, &sop));
9258 if (val)
9260 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9262 location_t location;
9264 if (!gimple_has_location (stmt))
9265 location = input_location;
9266 else
9267 location = gimple_location (stmt);
9268 warning_at (location, OPT_Wstrict_overflow,
9269 "assuming signed overflow does not occur when "
9270 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9273 /* VAL == TRUE -> OP0 < or <= op1
9274 VAL == FALSE -> OP0 > or >= op1. */
9275 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9276 == integer_zerop (val)) ? op0 : op1;
9277 gimple_assign_set_rhs_from_tree (gsi, res);
9278 return true;
9281 return false;
9284 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9285 ABS_EXPR. If the operand is <= 0, then simplify the
9286 ABS_EXPR into a NEGATE_EXPR. */
9288 static bool
9289 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9291 tree op = gimple_assign_rhs1 (stmt);
9292 value_range *vr = get_value_range (op);
9294 if (vr)
9296 tree val = NULL;
9297 bool sop = false;
9299 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9300 if (!val)
9302 /* The range is neither <= 0 nor > 0. Now see if it is
9303 either < 0 or >= 0. */
9304 sop = false;
9305 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9306 &sop);
9309 if (val)
9311 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9313 location_t location;
9315 if (!gimple_has_location (stmt))
9316 location = input_location;
9317 else
9318 location = gimple_location (stmt);
9319 warning_at (location, OPT_Wstrict_overflow,
9320 "assuming signed overflow does not occur when "
9321 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9324 gimple_assign_set_rhs1 (stmt, op);
9325 if (integer_zerop (val))
9326 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9327 else
9328 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9329 update_stmt (stmt);
9330 fold_stmt (gsi, follow_single_use_edges);
9331 return true;
9335 return false;
9338 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9339 If all the bits that are being cleared by & are already
9340 known to be zero from VR, or all the bits that are being
9341 set by | are already known to be one from VR, the bit
9342 operation is redundant. */
9344 static bool
9345 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9347 tree op0 = gimple_assign_rhs1 (stmt);
9348 tree op1 = gimple_assign_rhs2 (stmt);
9349 tree op = NULL_TREE;
9350 value_range vr0 = VR_INITIALIZER;
9351 value_range vr1 = VR_INITIALIZER;
9352 wide_int may_be_nonzero0, may_be_nonzero1;
9353 wide_int must_be_nonzero0, must_be_nonzero1;
9354 wide_int mask;
9356 if (TREE_CODE (op0) == SSA_NAME)
9357 vr0 = *(get_value_range (op0));
9358 else if (is_gimple_min_invariant (op0))
9359 set_value_range_to_value (&vr0, op0, NULL);
9360 else
9361 return false;
9363 if (TREE_CODE (op1) == SSA_NAME)
9364 vr1 = *(get_value_range (op1));
9365 else if (is_gimple_min_invariant (op1))
9366 set_value_range_to_value (&vr1, op1, NULL);
9367 else
9368 return false;
9370 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9371 &must_be_nonzero0))
9372 return false;
9373 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9374 &must_be_nonzero1))
9375 return false;
9377 switch (gimple_assign_rhs_code (stmt))
9379 case BIT_AND_EXPR:
9380 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9381 if (mask == 0)
9383 op = op0;
9384 break;
9386 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9387 if (mask == 0)
9389 op = op1;
9390 break;
9392 break;
9393 case BIT_IOR_EXPR:
9394 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9395 if (mask == 0)
9397 op = op1;
9398 break;
9400 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9401 if (mask == 0)
9403 op = op0;
9404 break;
9406 break;
9407 default:
9408 gcc_unreachable ();
9411 if (op == NULL_TREE)
9412 return false;
9414 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9415 update_stmt (gsi_stmt (*gsi));
9416 return true;
9419 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9420 a known value range VR.
9422 If there is one and only one value which will satisfy the
9423 conditional, then return that value. Else return NULL.
9425 If signed overflow must be undefined for the value to satisfy
9426 the conditional, then set *STRICT_OVERFLOW_P to true. */
9428 static tree
9429 test_for_singularity (enum tree_code cond_code, tree op0,
9430 tree op1, value_range *vr,
9431 bool *strict_overflow_p)
9433 tree min = NULL;
9434 tree max = NULL;
9436 /* Extract minimum/maximum values which satisfy the conditional as it was
9437 written. */
9438 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9440 /* This should not be negative infinity; there is no overflow
9441 here. */
9442 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9444 max = op1;
9445 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9447 tree one = build_int_cst (TREE_TYPE (op0), 1);
9448 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9449 if (EXPR_P (max))
9450 TREE_NO_WARNING (max) = 1;
9453 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9455 /* This should not be positive infinity; there is no overflow
9456 here. */
9457 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9459 min = op1;
9460 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9462 tree one = build_int_cst (TREE_TYPE (op0), 1);
9463 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9464 if (EXPR_P (min))
9465 TREE_NO_WARNING (min) = 1;
9469 /* Now refine the minimum and maximum values using any
9470 value range information we have for op0. */
9471 if (min && max)
9473 if (compare_values (vr->min, min) == 1)
9474 min = vr->min;
9475 if (compare_values (vr->max, max) == -1)
9476 max = vr->max;
9478 /* If the new min/max values have converged to a single value,
9479 then there is only one value which can satisfy the condition,
9480 return that value. */
9481 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9483 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9484 && is_overflow_infinity (vr->max))
9485 *strict_overflow_p = true;
9486 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9487 && is_overflow_infinity (vr->min))
9488 *strict_overflow_p = true;
9490 return min;
9493 return NULL;
9496 /* Return whether the value range *VR fits in an integer type specified
9497 by PRECISION and UNSIGNED_P. */
9499 static bool
9500 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9502 tree src_type;
9503 unsigned src_precision;
9504 widest_int tem;
9505 signop src_sgn;
9507 /* We can only handle integral and pointer types. */
9508 src_type = TREE_TYPE (vr->min);
9509 if (!INTEGRAL_TYPE_P (src_type)
9510 && !POINTER_TYPE_P (src_type))
9511 return false;
9513 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9514 and so is an identity transform. */
9515 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9516 src_sgn = TYPE_SIGN (src_type);
9517 if ((src_precision < dest_precision
9518 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9519 || (src_precision == dest_precision && src_sgn == dest_sgn))
9520 return true;
9522 /* Now we can only handle ranges with constant bounds. */
9523 if (vr->type != VR_RANGE
9524 || TREE_CODE (vr->min) != INTEGER_CST
9525 || TREE_CODE (vr->max) != INTEGER_CST)
9526 return false;
9528 /* For sign changes, the MSB of the wide_int has to be clear.
9529 An unsigned value with its MSB set cannot be represented by
9530 a signed wide_int, while a negative value cannot be represented
9531 by an unsigned wide_int. */
9532 if (src_sgn != dest_sgn
9533 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9534 return false;
9536 /* Then we can perform the conversion on both ends and compare
9537 the result for equality. */
9538 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9539 if (tem != wi::to_widest (vr->min))
9540 return false;
9541 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9542 if (tem != wi::to_widest (vr->max))
9543 return false;
9545 return true;
9548 /* Simplify a conditional using a relational operator to an equality
9549 test if the range information indicates only one value can satisfy
9550 the original conditional. */
9552 static bool
9553 simplify_cond_using_ranges (gcond *stmt)
9555 tree op0 = gimple_cond_lhs (stmt);
9556 tree op1 = gimple_cond_rhs (stmt);
9557 enum tree_code cond_code = gimple_cond_code (stmt);
9559 if (cond_code != NE_EXPR
9560 && cond_code != EQ_EXPR
9561 && TREE_CODE (op0) == SSA_NAME
9562 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9563 && is_gimple_min_invariant (op1))
9565 value_range *vr = get_value_range (op0);
9567 /* If we have range information for OP0, then we might be
9568 able to simplify this conditional. */
9569 if (vr->type == VR_RANGE)
9571 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9572 bool sop = false;
9573 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9575 if (new_tree
9576 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9578 if (dump_file)
9580 fprintf (dump_file, "Simplified relational ");
9581 print_gimple_stmt (dump_file, stmt, 0, 0);
9582 fprintf (dump_file, " into ");
9585 gimple_cond_set_code (stmt, EQ_EXPR);
9586 gimple_cond_set_lhs (stmt, op0);
9587 gimple_cond_set_rhs (stmt, new_tree);
9589 update_stmt (stmt);
9591 if (dump_file)
9593 print_gimple_stmt (dump_file, stmt, 0, 0);
9594 fprintf (dump_file, "\n");
9597 if (sop && issue_strict_overflow_warning (wc))
9599 location_t location = input_location;
9600 if (gimple_has_location (stmt))
9601 location = gimple_location (stmt);
9603 warning_at (location, OPT_Wstrict_overflow,
9604 "assuming signed overflow does not occur when "
9605 "simplifying conditional");
9608 return true;
9611 /* Try again after inverting the condition. We only deal
9612 with integral types here, so no need to worry about
9613 issues with inverting FP comparisons. */
9614 sop = false;
9615 new_tree = test_for_singularity
9616 (invert_tree_comparison (cond_code, false),
9617 op0, op1, vr, &sop);
9619 if (new_tree
9620 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9622 if (dump_file)
9624 fprintf (dump_file, "Simplified relational ");
9625 print_gimple_stmt (dump_file, stmt, 0, 0);
9626 fprintf (dump_file, " into ");
9629 gimple_cond_set_code (stmt, NE_EXPR);
9630 gimple_cond_set_lhs (stmt, op0);
9631 gimple_cond_set_rhs (stmt, new_tree);
9633 update_stmt (stmt);
9635 if (dump_file)
9637 print_gimple_stmt (dump_file, stmt, 0, 0);
9638 fprintf (dump_file, "\n");
9641 if (sop && issue_strict_overflow_warning (wc))
9643 location_t location = input_location;
9644 if (gimple_has_location (stmt))
9645 location = gimple_location (stmt);
9647 warning_at (location, OPT_Wstrict_overflow,
9648 "assuming signed overflow does not occur when "
9649 "simplifying conditional");
9652 return true;
9657 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9658 see if OP0 was set by a type conversion where the source of
9659 the conversion is another SSA_NAME with a range that fits
9660 into the range of OP0's type.
9662 If so, the conversion is redundant as the earlier SSA_NAME can be
9663 used for the comparison directly if we just massage the constant in the
9664 comparison. */
9665 if (TREE_CODE (op0) == SSA_NAME
9666 && TREE_CODE (op1) == INTEGER_CST)
9668 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9669 tree innerop;
9671 if (!is_gimple_assign (def_stmt)
9672 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9673 return false;
9675 innerop = gimple_assign_rhs1 (def_stmt);
9677 if (TREE_CODE (innerop) == SSA_NAME
9678 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9679 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9680 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9682 value_range *vr = get_value_range (innerop);
9684 if (range_int_cst_p (vr)
9685 && range_fits_type_p (vr,
9686 TYPE_PRECISION (TREE_TYPE (op0)),
9687 TYPE_SIGN (TREE_TYPE (op0)))
9688 && int_fits_type_p (op1, TREE_TYPE (innerop))
9689 /* The range must not have overflowed, or if it did overflow
9690 we must not be wrapping/trapping overflow and optimizing
9691 with strict overflow semantics. */
9692 && ((!is_negative_overflow_infinity (vr->min)
9693 && !is_positive_overflow_infinity (vr->max))
9694 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9696 /* If the range overflowed and the user has asked for warnings
9697 when strict overflow semantics were used to optimize code,
9698 issue an appropriate warning. */
9699 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9700 && (is_negative_overflow_infinity (vr->min)
9701 || is_positive_overflow_infinity (vr->max))
9702 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9704 location_t location;
9706 if (!gimple_has_location (stmt))
9707 location = input_location;
9708 else
9709 location = gimple_location (stmt);
9710 warning_at (location, OPT_Wstrict_overflow,
9711 "assuming signed overflow does not occur when "
9712 "simplifying conditional");
9715 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9716 gimple_cond_set_lhs (stmt, innerop);
9717 gimple_cond_set_rhs (stmt, newconst);
9718 return true;
9723 return false;
9726 /* Simplify a switch statement using the value range of the switch
9727 argument. */
9729 static bool
9730 simplify_switch_using_ranges (gswitch *stmt)
9732 tree op = gimple_switch_index (stmt);
9733 value_range *vr = NULL;
9734 bool take_default;
9735 edge e;
9736 edge_iterator ei;
9737 size_t i = 0, j = 0, n, n2;
9738 tree vec2;
9739 switch_update su;
9740 size_t k = 1, l = 0;
9742 if (TREE_CODE (op) == SSA_NAME)
9744 vr = get_value_range (op);
9746 /* We can only handle integer ranges. */
9747 if ((vr->type != VR_RANGE
9748 && vr->type != VR_ANTI_RANGE)
9749 || symbolic_range_p (vr))
9750 return false;
9752 /* Find case label for min/max of the value range. */
9753 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9755 else if (TREE_CODE (op) == INTEGER_CST)
9757 take_default = !find_case_label_index (stmt, 1, op, &i);
9758 if (take_default)
9760 i = 1;
9761 j = 0;
9763 else
9765 j = i;
9768 else
9769 return false;
9771 n = gimple_switch_num_labels (stmt);
9773 /* We can truncate the case label ranges that partially overlap with OP's
9774 value range. */
9775 size_t min_idx = 1, max_idx = 0;
9776 if (vr != NULL)
9777 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
9778 if (min_idx <= max_idx)
9780 tree min_label = gimple_switch_label (stmt, min_idx);
9781 tree max_label = gimple_switch_label (stmt, max_idx);
9783 /* Avoid changing the type of the case labels when truncating. */
9784 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
9785 tree vr_min = fold_convert (case_label_type, vr->min);
9786 tree vr_max = fold_convert (case_label_type, vr->max);
9788 if (vr->type == VR_RANGE)
9790 /* If OP's value range is [2,8] and the low label range is
9791 0 ... 3, truncate the label's range to 2 .. 3. */
9792 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9793 && CASE_HIGH (min_label) != NULL_TREE
9794 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9795 CASE_LOW (min_label) = vr_min;
9797 /* If OP's value range is [2,8] and the high label range is
9798 7 ... 10, truncate the label's range to 7 .. 8. */
9799 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9800 && CASE_HIGH (max_label) != NULL_TREE
9801 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9802 CASE_HIGH (max_label) = vr_max;
9804 else if (vr->type == VR_ANTI_RANGE)
9806 tree one_cst = build_one_cst (case_label_type);
9808 if (min_label == max_label)
9810 /* If OP's value range is ~[7,8] and the label's range is
9811 7 ... 10, truncate the label's range to 9 ... 10. */
9812 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
9813 && CASE_HIGH (min_label) != NULL_TREE
9814 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
9815 CASE_LOW (min_label)
9816 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9818 /* If OP's value range is ~[7,8] and the label's range is
9819 5 ... 8, truncate the label's range to 5 ... 6. */
9820 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9821 && CASE_HIGH (min_label) != NULL_TREE
9822 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
9823 CASE_HIGH (min_label)
9824 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9826 else
9828 /* If OP's value range is ~[2,8] and the low label range is
9829 0 ... 3, truncate the label's range to 0 ... 1. */
9830 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9831 && CASE_HIGH (min_label) != NULL_TREE
9832 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9833 CASE_HIGH (min_label)
9834 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9836 /* If OP's value range is ~[2,8] and the high label range is
9837 7 ... 10, truncate the label's range to 9 ... 10. */
9838 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9839 && CASE_HIGH (max_label) != NULL_TREE
9840 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9841 CASE_LOW (max_label)
9842 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9846 /* Canonicalize singleton case ranges. */
9847 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
9848 CASE_HIGH (min_label) = NULL_TREE;
9849 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
9850 CASE_HIGH (max_label) = NULL_TREE;
9853 /* We can also eliminate case labels that lie completely outside OP's value
9854 range. */
9856 /* Bail out if this is just all edges taken. */
9857 if (i == 1
9858 && j == n - 1
9859 && take_default)
9860 return false;
9862 /* Build a new vector of taken case labels. */
9863 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9864 n2 = 0;
9866 /* Add the default edge, if necessary. */
9867 if (take_default)
9868 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9870 for (; i <= j; ++i, ++n2)
9871 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9873 for (; k <= l; ++k, ++n2)
9874 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9876 /* Mark needed edges. */
9877 for (i = 0; i < n2; ++i)
9879 e = find_edge (gimple_bb (stmt),
9880 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9881 e->aux = (void *)-1;
9884 /* Queue not needed edges for later removal. */
9885 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9887 if (e->aux == (void *)-1)
9889 e->aux = NULL;
9890 continue;
9893 if (dump_file && (dump_flags & TDF_DETAILS))
9895 fprintf (dump_file, "removing unreachable case label\n");
9897 to_remove_edges.safe_push (e);
9898 e->flags &= ~EDGE_EXECUTABLE;
9901 /* And queue an update for the stmt. */
9902 su.stmt = stmt;
9903 su.vec = vec2;
9904 to_update_switch_stmts.safe_push (su);
9905 return false;
9908 /* Simplify an integral conversion from an SSA name in STMT. */
9910 static bool
9911 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9913 tree innerop, middleop, finaltype;
9914 gimple *def_stmt;
9915 signop inner_sgn, middle_sgn, final_sgn;
9916 unsigned inner_prec, middle_prec, final_prec;
9917 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9919 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9920 if (!INTEGRAL_TYPE_P (finaltype))
9921 return false;
9922 middleop = gimple_assign_rhs1 (stmt);
9923 def_stmt = SSA_NAME_DEF_STMT (middleop);
9924 if (!is_gimple_assign (def_stmt)
9925 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9926 return false;
9927 innerop = gimple_assign_rhs1 (def_stmt);
9928 if (TREE_CODE (innerop) != SSA_NAME
9929 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9930 return false;
9932 /* Get the value-range of the inner operand. Use get_range_info in
9933 case innerop was created during substitute-and-fold. */
9934 wide_int imin, imax;
9935 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
9936 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
9937 return false;
9938 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
9939 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
9941 /* Simulate the conversion chain to check if the result is equal if
9942 the middle conversion is removed. */
9943 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9944 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9945 final_prec = TYPE_PRECISION (finaltype);
9947 /* If the first conversion is not injective, the second must not
9948 be widening. */
9949 if (wi::gtu_p (innermax - innermin,
9950 wi::mask <widest_int> (middle_prec, false))
9951 && middle_prec < final_prec)
9952 return false;
9953 /* We also want a medium value so that we can track the effect that
9954 narrowing conversions with sign change have. */
9955 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9956 if (inner_sgn == UNSIGNED)
9957 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9958 else
9959 innermed = 0;
9960 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9961 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9962 innermed = innermin;
9964 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9965 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9966 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9967 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9969 /* Require that the final conversion applied to both the original
9970 and the intermediate range produces the same result. */
9971 final_sgn = TYPE_SIGN (finaltype);
9972 if (wi::ext (middlemin, final_prec, final_sgn)
9973 != wi::ext (innermin, final_prec, final_sgn)
9974 || wi::ext (middlemed, final_prec, final_sgn)
9975 != wi::ext (innermed, final_prec, final_sgn)
9976 || wi::ext (middlemax, final_prec, final_sgn)
9977 != wi::ext (innermax, final_prec, final_sgn))
9978 return false;
9980 gimple_assign_set_rhs1 (stmt, innerop);
9981 fold_stmt (gsi, follow_single_use_edges);
9982 return true;
9985 /* Simplify a conversion from integral SSA name to float in STMT. */
9987 static bool
9988 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
9989 gimple *stmt)
9991 tree rhs1 = gimple_assign_rhs1 (stmt);
9992 value_range *vr = get_value_range (rhs1);
9993 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9994 machine_mode mode;
9995 tree tem;
9996 gassign *conv;
9998 /* We can only handle constant ranges. */
9999 if (vr->type != VR_RANGE
10000 || TREE_CODE (vr->min) != INTEGER_CST
10001 || TREE_CODE (vr->max) != INTEGER_CST)
10002 return false;
10004 /* First check if we can use a signed type in place of an unsigned. */
10005 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10006 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
10007 != CODE_FOR_nothing)
10008 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10009 mode = TYPE_MODE (TREE_TYPE (rhs1));
10010 /* If we can do the conversion in the current input mode do nothing. */
10011 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
10012 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10013 return false;
10014 /* Otherwise search for a mode we can use, starting from the narrowest
10015 integer mode available. */
10016 else
10018 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
10021 /* If we cannot do a signed conversion to float from mode
10022 or if the value-range does not fit in the signed type
10023 try with a wider mode. */
10024 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10025 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10026 break;
10028 mode = GET_MODE_WIDER_MODE (mode);
10029 /* But do not widen the input. Instead leave that to the
10030 optabs expansion code. */
10031 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10032 return false;
10034 while (mode != VOIDmode);
10035 if (mode == VOIDmode)
10036 return false;
10039 /* It works, insert a truncation or sign-change before the
10040 float conversion. */
10041 tem = make_ssa_name (build_nonstandard_integer_type
10042 (GET_MODE_PRECISION (mode), 0));
10043 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10044 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10045 gimple_assign_set_rhs1 (stmt, tem);
10046 fold_stmt (gsi, follow_single_use_edges);
10048 return true;
10051 /* Simplify an internal fn call using ranges if possible. */
10053 static bool
10054 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10056 enum tree_code subcode;
10057 bool is_ubsan = false;
10058 bool ovf = false;
10059 switch (gimple_call_internal_fn (stmt))
10061 case IFN_UBSAN_CHECK_ADD:
10062 subcode = PLUS_EXPR;
10063 is_ubsan = true;
10064 break;
10065 case IFN_UBSAN_CHECK_SUB:
10066 subcode = MINUS_EXPR;
10067 is_ubsan = true;
10068 break;
10069 case IFN_UBSAN_CHECK_MUL:
10070 subcode = MULT_EXPR;
10071 is_ubsan = true;
10072 break;
10073 case IFN_ADD_OVERFLOW:
10074 subcode = PLUS_EXPR;
10075 break;
10076 case IFN_SUB_OVERFLOW:
10077 subcode = MINUS_EXPR;
10078 break;
10079 case IFN_MUL_OVERFLOW:
10080 subcode = MULT_EXPR;
10081 break;
10082 default:
10083 return false;
10086 tree op0 = gimple_call_arg (stmt, 0);
10087 tree op1 = gimple_call_arg (stmt, 1);
10088 tree type;
10089 if (is_ubsan)
10091 type = TREE_TYPE (op0);
10092 if (VECTOR_TYPE_P (type))
10093 return false;
10095 else if (gimple_call_lhs (stmt) == NULL_TREE)
10096 return false;
10097 else
10098 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10099 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10100 || (is_ubsan && ovf))
10101 return false;
10103 gimple *g;
10104 location_t loc = gimple_location (stmt);
10105 if (is_ubsan)
10106 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10107 else
10109 int prec = TYPE_PRECISION (type);
10110 tree utype = type;
10111 if (ovf
10112 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10113 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10114 utype = build_nonstandard_integer_type (prec, 1);
10115 if (TREE_CODE (op0) == INTEGER_CST)
10116 op0 = fold_convert (utype, op0);
10117 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10119 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10120 gimple_set_location (g, loc);
10121 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10122 op0 = gimple_assign_lhs (g);
10124 if (TREE_CODE (op1) == INTEGER_CST)
10125 op1 = fold_convert (utype, op1);
10126 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10128 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10129 gimple_set_location (g, loc);
10130 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10131 op1 = gimple_assign_lhs (g);
10133 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10134 gimple_set_location (g, loc);
10135 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10136 if (utype != type)
10138 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10139 gimple_assign_lhs (g));
10140 gimple_set_location (g, loc);
10141 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10143 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10144 gimple_assign_lhs (g),
10145 build_int_cst (type, ovf));
10147 gimple_set_location (g, loc);
10148 gsi_replace (gsi, g, false);
10149 return true;
10152 /* Return true if VAR is a two-valued variable. Set a and b with the
10153 two-values when it is true. Return false otherwise. */
10155 static bool
10156 two_valued_val_range_p (tree var, tree *a, tree *b)
10158 value_range *vr = get_value_range (var);
10159 if ((vr->type != VR_RANGE
10160 && vr->type != VR_ANTI_RANGE)
10161 || TREE_CODE (vr->min) != INTEGER_CST
10162 || TREE_CODE (vr->max) != INTEGER_CST)
10163 return false;
10165 if (vr->type == VR_RANGE
10166 && wi::sub (vr->max, vr->min) == 1)
10168 *a = vr->min;
10169 *b = vr->max;
10170 return true;
10173 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10174 if (vr->type == VR_ANTI_RANGE
10175 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10176 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10178 *a = vrp_val_min (TREE_TYPE (var));
10179 *b = vrp_val_max (TREE_TYPE (var));
10180 return true;
10183 return false;
10186 /* Simplify STMT using ranges if possible. */
10188 static bool
10189 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10191 gimple *stmt = gsi_stmt (*gsi);
10192 if (is_gimple_assign (stmt))
10194 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10195 tree rhs1 = gimple_assign_rhs1 (stmt);
10196 tree rhs2 = gimple_assign_rhs2 (stmt);
10197 tree lhs = gimple_assign_lhs (stmt);
10198 tree val1 = NULL_TREE, val2 = NULL_TREE;
10199 use_operand_p use_p;
10200 gimple *use_stmt;
10202 /* Convert:
10203 LHS = CST BINOP VAR
10204 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10206 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10208 Also handles:
10209 LHS = VAR BINOP CST
10210 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10212 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10214 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10215 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10216 && ((TREE_CODE (rhs1) == INTEGER_CST
10217 && TREE_CODE (rhs2) == SSA_NAME)
10218 || (TREE_CODE (rhs2) == INTEGER_CST
10219 && TREE_CODE (rhs1) == SSA_NAME))
10220 && single_imm_use (lhs, &use_p, &use_stmt)
10221 && gimple_code (use_stmt) == GIMPLE_COND)
10224 tree new_rhs1 = NULL_TREE;
10225 tree new_rhs2 = NULL_TREE;
10226 tree cmp_var = NULL_TREE;
10228 if (TREE_CODE (rhs2) == SSA_NAME
10229 && two_valued_val_range_p (rhs2, &val1, &val2))
10231 /* Optimize RHS1 OP [VAL1, VAL2]. */
10232 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10233 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10234 cmp_var = rhs2;
10236 else if (TREE_CODE (rhs1) == SSA_NAME
10237 && two_valued_val_range_p (rhs1, &val1, &val2))
10239 /* Optimize [VAL1, VAL2] OP RHS2. */
10240 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10241 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10242 cmp_var = rhs1;
10245 /* If we could not find two-vals or the optimzation is invalid as
10246 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10247 if (new_rhs1 && new_rhs2)
10249 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10250 gimple_assign_set_rhs_with_ops (gsi,
10251 COND_EXPR, cond,
10252 new_rhs1,
10253 new_rhs2);
10254 update_stmt (gsi_stmt (*gsi));
10255 fold_stmt (gsi, follow_single_use_edges);
10256 return true;
10260 switch (rhs_code)
10262 case EQ_EXPR:
10263 case NE_EXPR:
10264 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10265 if the RHS is zero or one, and the LHS are known to be boolean
10266 values. */
10267 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10268 return simplify_truth_ops_using_ranges (gsi, stmt);
10269 break;
10271 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10272 and BIT_AND_EXPR respectively if the first operand is greater
10273 than zero and the second operand is an exact power of two.
10274 Also optimize TRUNC_MOD_EXPR away if the second operand is
10275 constant and the first operand already has the right value
10276 range. */
10277 case TRUNC_DIV_EXPR:
10278 case TRUNC_MOD_EXPR:
10279 if (TREE_CODE (rhs1) == SSA_NAME
10280 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10281 return simplify_div_or_mod_using_ranges (gsi, stmt);
10282 break;
10284 /* Transform ABS (X) into X or -X as appropriate. */
10285 case ABS_EXPR:
10286 if (TREE_CODE (rhs1) == SSA_NAME
10287 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10288 return simplify_abs_using_ranges (gsi, stmt);
10289 break;
10291 case BIT_AND_EXPR:
10292 case BIT_IOR_EXPR:
10293 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10294 if all the bits being cleared are already cleared or
10295 all the bits being set are already set. */
10296 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10297 return simplify_bit_ops_using_ranges (gsi, stmt);
10298 break;
10300 CASE_CONVERT:
10301 if (TREE_CODE (rhs1) == SSA_NAME
10302 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10303 return simplify_conversion_using_ranges (gsi, stmt);
10304 break;
10306 case FLOAT_EXPR:
10307 if (TREE_CODE (rhs1) == SSA_NAME
10308 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10309 return simplify_float_conversion_using_ranges (gsi, stmt);
10310 break;
10312 case MIN_EXPR:
10313 case MAX_EXPR:
10314 return simplify_min_or_max_using_ranges (gsi, stmt);
10316 default:
10317 break;
10320 else if (gimple_code (stmt) == GIMPLE_COND)
10321 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
10322 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10323 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10324 else if (is_gimple_call (stmt)
10325 && gimple_call_internal_p (stmt))
10326 return simplify_internal_call_using_ranges (gsi, stmt);
10328 return false;
10331 /* If the statement pointed by SI has a predicate whose value can be
10332 computed using the value range information computed by VRP, compute
10333 its value and return true. Otherwise, return false. */
10335 static bool
10336 fold_predicate_in (gimple_stmt_iterator *si)
10338 bool assignment_p = false;
10339 tree val;
10340 gimple *stmt = gsi_stmt (*si);
10342 if (is_gimple_assign (stmt)
10343 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10345 assignment_p = true;
10346 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10347 gimple_assign_rhs1 (stmt),
10348 gimple_assign_rhs2 (stmt),
10349 stmt);
10351 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10352 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10353 gimple_cond_lhs (cond_stmt),
10354 gimple_cond_rhs (cond_stmt),
10355 stmt);
10356 else
10357 return false;
10359 if (val)
10361 if (assignment_p)
10362 val = fold_convert (gimple_expr_type (stmt), val);
10364 if (dump_file)
10366 fprintf (dump_file, "Folding predicate ");
10367 print_gimple_expr (dump_file, stmt, 0, 0);
10368 fprintf (dump_file, " to ");
10369 print_generic_expr (dump_file, val, 0);
10370 fprintf (dump_file, "\n");
10373 if (is_gimple_assign (stmt))
10374 gimple_assign_set_rhs_from_tree (si, val);
10375 else
10377 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10378 gcond *cond_stmt = as_a <gcond *> (stmt);
10379 if (integer_zerop (val))
10380 gimple_cond_make_false (cond_stmt);
10381 else if (integer_onep (val))
10382 gimple_cond_make_true (cond_stmt);
10383 else
10384 gcc_unreachable ();
10387 return true;
10390 return false;
10393 /* Callback for substitute_and_fold folding the stmt at *SI. */
10395 static bool
10396 vrp_fold_stmt (gimple_stmt_iterator *si)
10398 if (fold_predicate_in (si))
10399 return true;
10401 return simplify_stmt_using_ranges (si);
10404 /* Unwindable const/copy equivalences. */
10405 const_and_copies *equiv_stack;
10407 /* A trivial wrapper so that we can present the generic jump threading
10408 code with a simple API for simplifying statements. STMT is the
10409 statement we want to simplify, WITHIN_STMT provides the location
10410 for any overflow warnings. */
10412 static tree
10413 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10414 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED)
10416 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10417 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10418 gimple_cond_lhs (cond_stmt),
10419 gimple_cond_rhs (cond_stmt),
10420 within_stmt);
10422 /* We simplify a switch statement by trying to determine which case label
10423 will be taken. If we are successful then we return the corresponding
10424 CASE_LABEL_EXPR. */
10425 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10427 tree op = gimple_switch_index (switch_stmt);
10428 if (TREE_CODE (op) != SSA_NAME)
10429 return NULL_TREE;
10431 value_range *vr = get_value_range (op);
10432 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10433 || symbolic_range_p (vr))
10434 return NULL_TREE;
10436 if (vr->type == VR_RANGE)
10438 size_t i, j;
10439 /* Get the range of labels that contain a part of the operand's
10440 value range. */
10441 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10443 /* Is there only one such label? */
10444 if (i == j)
10446 tree label = gimple_switch_label (switch_stmt, i);
10448 /* The i'th label will be taken only if the value range of the
10449 operand is entirely within the bounds of this label. */
10450 if (CASE_HIGH (label) != NULL_TREE
10451 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10452 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10453 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10454 && tree_int_cst_equal (vr->min, vr->max)))
10455 return label;
10458 /* If there are no such labels then the default label will be
10459 taken. */
10460 if (i > j)
10461 return gimple_switch_label (switch_stmt, 0);
10464 if (vr->type == VR_ANTI_RANGE)
10466 unsigned n = gimple_switch_num_labels (switch_stmt);
10467 tree min_label = gimple_switch_label (switch_stmt, 1);
10468 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10470 /* The default label will be taken only if the anti-range of the
10471 operand is entirely outside the bounds of all the (non-default)
10472 case labels. */
10473 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10474 && (CASE_HIGH (max_label) != NULL_TREE
10475 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10476 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10477 return gimple_switch_label (switch_stmt, 0);
10480 return NULL_TREE;
10483 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10485 value_range new_vr = VR_INITIALIZER;
10486 tree lhs = gimple_assign_lhs (assign_stmt);
10488 if (TREE_CODE (lhs) == SSA_NAME
10489 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10490 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10492 extract_range_from_assignment (&new_vr, assign_stmt);
10493 if (range_int_cst_singleton_p (&new_vr))
10494 return new_vr.min;
10498 return NULL_TREE;
10501 /* Blocks which have more than one predecessor and more than
10502 one successor present jump threading opportunities, i.e.,
10503 when the block is reached from a specific predecessor, we
10504 may be able to determine which of the outgoing edges will
10505 be traversed. When this optimization applies, we are able
10506 to avoid conditionals at runtime and we may expose secondary
10507 optimization opportunities.
10509 This routine is effectively a driver for the generic jump
10510 threading code. It basically just presents the generic code
10511 with edges that may be suitable for jump threading.
10513 Unlike DOM, we do not iterate VRP if jump threading was successful.
10514 While iterating may expose new opportunities for VRP, it is expected
10515 those opportunities would be very limited and the compile time cost
10516 to expose those opportunities would be significant.
10518 As jump threading opportunities are discovered, they are registered
10519 for later realization. */
10521 static void
10522 identify_jump_threads (void)
10524 basic_block bb;
10525 gcond *dummy;
10526 int i;
10527 edge e;
10529 /* Ugh. When substituting values earlier in this pass we can
10530 wipe the dominance information. So rebuild the dominator
10531 information as we need it within the jump threading code. */
10532 calculate_dominance_info (CDI_DOMINATORS);
10534 /* We do not allow VRP information to be used for jump threading
10535 across a back edge in the CFG. Otherwise it becomes too
10536 difficult to avoid eliminating loop exit tests. Of course
10537 EDGE_DFS_BACK is not accurate at this time so we have to
10538 recompute it. */
10539 mark_dfs_back_edges ();
10541 /* Do not thread across edges we are about to remove. Just marking
10542 them as EDGE_IGNORE will do. */
10543 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10544 e->flags |= EDGE_IGNORE;
10546 /* Allocate our unwinder stack to unwind any temporary equivalences
10547 that might be recorded. */
10548 equiv_stack = new const_and_copies ();
10550 /* To avoid lots of silly node creation, we create a single
10551 conditional and just modify it in-place when attempting to
10552 thread jumps. */
10553 dummy = gimple_build_cond (EQ_EXPR,
10554 integer_zero_node, integer_zero_node,
10555 NULL, NULL);
10557 /* Walk through all the blocks finding those which present a
10558 potential jump threading opportunity. We could set this up
10559 as a dominator walker and record data during the walk, but
10560 I doubt it's worth the effort for the classes of jump
10561 threading opportunities we are trying to identify at this
10562 point in compilation. */
10563 FOR_EACH_BB_FN (bb, cfun)
10565 gimple *last;
10567 /* If the generic jump threading code does not find this block
10568 interesting, then there is nothing to do. */
10569 if (! potentially_threadable_block (bb))
10570 continue;
10572 last = last_stmt (bb);
10574 /* We're basically looking for a switch or any kind of conditional with
10575 integral or pointer type arguments. Note the type of the second
10576 argument will be the same as the first argument, so no need to
10577 check it explicitly.
10579 We also handle the case where there are no statements in the
10580 block. This come up with forwarder blocks that are not
10581 optimized away because they lead to a loop header. But we do
10582 want to thread through them as we can sometimes thread to the
10583 loop exit which is obviously profitable. */
10584 if (!last
10585 || gimple_code (last) == GIMPLE_SWITCH
10586 || (gimple_code (last) == GIMPLE_COND
10587 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10588 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10589 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10590 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10591 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10593 edge_iterator ei;
10595 /* We've got a block with multiple predecessors and multiple
10596 successors which also ends in a suitable conditional or
10597 switch statement. For each predecessor, see if we can thread
10598 it to a specific successor. */
10599 FOR_EACH_EDGE (e, ei, bb->preds)
10601 /* Do not thread across edges marked to ignoreor abnormal
10602 edges in the CFG. */
10603 if (e->flags & (EDGE_IGNORE | EDGE_COMPLEX))
10604 continue;
10606 thread_across_edge (dummy, e, true, equiv_stack, NULL,
10607 simplify_stmt_for_jump_threading);
10612 /* Clear EDGE_IGNORE. */
10613 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10614 e->flags &= ~EDGE_IGNORE;
10616 /* We do not actually update the CFG or SSA graphs at this point as
10617 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10618 handle ASSERT_EXPRs gracefully. */
10621 /* We identified all the jump threading opportunities earlier, but could
10622 not transform the CFG at that time. This routine transforms the
10623 CFG and arranges for the dominator tree to be rebuilt if necessary.
10625 Note the SSA graph update will occur during the normal TODO
10626 processing by the pass manager. */
10627 static void
10628 finalize_jump_threads (void)
10630 thread_through_all_blocks (false);
10631 delete equiv_stack;
10634 /* Free VRP lattice. */
10636 static void
10637 vrp_free_lattice ()
10639 /* Free allocated memory. */
10640 free (vr_value);
10641 free (vr_phi_edge_counts);
10642 bitmap_obstack_release (&vrp_equiv_obstack);
10643 vrp_value_range_pool.release ();
10645 /* So that we can distinguish between VRP data being available
10646 and not available. */
10647 vr_value = NULL;
10648 vr_phi_edge_counts = NULL;
10651 /* Traverse all the blocks folding conditionals with known ranges. */
10653 static void
10654 vrp_finalize (bool warn_array_bounds_p)
10656 size_t i;
10658 values_propagated = true;
10660 if (dump_file)
10662 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10663 dump_all_value_ranges (dump_file);
10664 fprintf (dump_file, "\n");
10667 /* Set value range to non pointer SSA_NAMEs. */
10668 for (i = 0; i < num_vr_values; i++)
10669 if (vr_value[i])
10671 tree name = ssa_name (i);
10673 if (!name
10674 || (vr_value[i]->type == VR_VARYING)
10675 || (vr_value[i]->type == VR_UNDEFINED)
10676 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
10677 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
10678 continue;
10680 if (POINTER_TYPE_P (TREE_TYPE (name))
10681 && ((vr_value[i]->type == VR_RANGE
10682 && range_includes_zero_p (vr_value[i]->min,
10683 vr_value[i]->max) == 0)
10684 || (vr_value[i]->type == VR_ANTI_RANGE
10685 && range_includes_zero_p (vr_value[i]->min,
10686 vr_value[i]->max) == 1)))
10687 set_ptr_nonnull (name);
10688 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
10689 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10690 vr_value[i]->max);
10693 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
10695 if (warn_array_bounds && warn_array_bounds_p)
10696 check_all_array_refs ();
10698 /* We must identify jump threading opportunities before we release
10699 the datastructures built by VRP. */
10700 identify_jump_threads ();
10703 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10704 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10705 discover more VRs. */
10707 class evrp_dom_walker : public dom_walker
10709 public:
10710 evrp_dom_walker ()
10711 : dom_walker (CDI_DOMINATORS), stack (10)
10713 need_eh_cleanup = BITMAP_ALLOC (NULL);
10715 ~evrp_dom_walker ()
10717 BITMAP_FREE (need_eh_cleanup);
10719 virtual edge before_dom_children (basic_block);
10720 virtual void after_dom_children (basic_block);
10721 void push_value_range (tree var, value_range *vr);
10722 value_range *pop_value_range (tree var);
10723 value_range *try_find_new_range (tree op, tree_code code, tree limit);
10725 /* Cond_stack holds the old VR. */
10726 auto_vec<std::pair <tree, value_range*> > stack;
10727 bitmap need_eh_cleanup;
10728 auto_vec<gimple *> stmts_to_fixup;
10729 auto_vec<gimple *> stmts_to_remove;
10732 /* Find new range for OP such that (OP CODE LIMIT) is true. */
10734 value_range *
10735 evrp_dom_walker::try_find_new_range (tree op, tree_code code, tree limit)
10737 value_range vr = VR_INITIALIZER;
10738 value_range *old_vr = get_value_range (op);
10740 /* Discover VR when condition is true. */
10741 extract_range_for_var_from_comparison_expr (op, code, op,
10742 limit, &vr);
10743 if (old_vr->type == VR_RANGE || old_vr->type == VR_ANTI_RANGE)
10744 vrp_intersect_ranges (&vr, old_vr);
10745 /* If we found any usable VR, set the VR to ssa_name and create a
10746 PUSH old value in the stack with the old VR. */
10747 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
10749 if (old_vr->type == vr.type
10750 && vrp_operand_equal_p (old_vr->min, vr.min)
10751 && vrp_operand_equal_p (old_vr->max, vr.max))
10752 return NULL;
10753 value_range *new_vr = vrp_value_range_pool.allocate ();
10754 *new_vr = vr;
10755 return new_vr;
10757 return NULL;
10760 /* See if there is any new scope is entered with new VR and set that VR to
10761 ssa_name before visiting the statements in the scope. */
10763 edge
10764 evrp_dom_walker::before_dom_children (basic_block bb)
10766 tree op0 = NULL_TREE;
10767 edge_iterator ei;
10768 edge e;
10770 if (dump_file && (dump_flags & TDF_DETAILS))
10771 fprintf (dump_file, "Visiting BB%d\n", bb->index);
10773 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
10775 edge pred_e = NULL;
10776 FOR_EACH_EDGE (e, ei, bb->preds)
10778 /* Ignore simple backedges from this to allow recording conditions
10779 in loop headers. */
10780 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
10781 continue;
10782 if (! pred_e)
10783 pred_e = e;
10784 else
10786 pred_e = NULL;
10787 break;
10790 if (pred_e)
10792 gimple *stmt = last_stmt (pred_e->src);
10793 if (stmt
10794 && gimple_code (stmt) == GIMPLE_COND
10795 && (op0 = gimple_cond_lhs (stmt))
10796 && TREE_CODE (op0) == SSA_NAME
10797 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
10798 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
10800 if (dump_file && (dump_flags & TDF_DETAILS))
10802 fprintf (dump_file, "Visiting controlling predicate ");
10803 print_gimple_stmt (dump_file, stmt, 0, 0);
10805 /* Entering a new scope. Try to see if we can find a VR
10806 here. */
10807 tree op1 = gimple_cond_rhs (stmt);
10808 tree_code code = gimple_cond_code (stmt);
10810 if (TREE_OVERFLOW_P (op1))
10811 op1 = drop_tree_overflow (op1);
10813 /* If condition is false, invert the cond. */
10814 if (pred_e->flags & EDGE_FALSE_VALUE)
10815 code = invert_tree_comparison (gimple_cond_code (stmt),
10816 HONOR_NANS (op0));
10817 /* Add VR when (OP0 CODE OP1) condition is true. */
10818 value_range *op0_range = try_find_new_range (op0, code, op1);
10820 /* Register ranges for y in x < y where
10821 y might have ranges that are useful. */
10822 tree limit;
10823 tree_code new_code;
10824 if (TREE_CODE (op1) == SSA_NAME
10825 && extract_code_and_val_from_cond_with_ops (op1, code,
10826 op0, op1,
10827 false,
10828 &new_code, &limit))
10830 /* Add VR when (OP1 NEW_CODE LIMIT) condition is true. */
10831 value_range *op1_range = try_find_new_range (op1, new_code, limit);
10832 if (op1_range)
10833 push_value_range (op1, op1_range);
10836 if (op0_range)
10837 push_value_range (op0, op0_range);
10841 /* Visit PHI stmts and discover any new VRs possible. */
10842 bool has_unvisited_preds = false;
10843 FOR_EACH_EDGE (e, ei, bb->preds)
10844 if (e->flags & EDGE_EXECUTABLE
10845 && !(e->src->flags & BB_VISITED))
10847 has_unvisited_preds = true;
10848 break;
10851 for (gphi_iterator gpi = gsi_start_phis (bb);
10852 !gsi_end_p (gpi); gsi_next (&gpi))
10854 gphi *phi = gpi.phi ();
10855 tree lhs = PHI_RESULT (phi);
10856 if (virtual_operand_p (lhs))
10857 continue;
10858 value_range vr_result = VR_INITIALIZER;
10859 bool interesting = stmt_interesting_for_vrp (phi);
10860 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
10862 fprintf (dump_file, "Visiting PHI node ");
10863 print_gimple_stmt (dump_file, phi, 0, 0);
10865 if (!has_unvisited_preds
10866 && interesting)
10867 extract_range_from_phi_node (phi, &vr_result);
10868 else
10870 set_value_range_to_varying (&vr_result);
10871 /* When we have an unvisited executable predecessor we can't
10872 use PHI arg ranges which may be still UNDEFINED but have
10873 to use VARYING for them. But we can still resort to
10874 SCEV for loop header PHIs. */
10875 struct loop *l;
10876 if (interesting
10877 && (l = loop_containing_stmt (phi))
10878 && l->header == gimple_bb (phi))
10879 adjust_range_with_scev (&vr_result, l, phi, lhs);
10881 update_value_range (lhs, &vr_result);
10883 /* Mark PHIs whose lhs we fully propagate for removal. */
10884 tree val = op_with_constant_singleton_value_range (lhs);
10885 if (val && may_propagate_copy (lhs, val))
10887 stmts_to_remove.safe_push (phi);
10888 continue;
10891 /* Set the SSA with the value range. */
10892 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
10894 if ((vr_result.type == VR_RANGE
10895 || vr_result.type == VR_ANTI_RANGE)
10896 && (TREE_CODE (vr_result.min) == INTEGER_CST)
10897 && (TREE_CODE (vr_result.max) == INTEGER_CST))
10898 set_range_info (lhs,
10899 vr_result.type, vr_result.min, vr_result.max);
10901 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
10902 && ((vr_result.type == VR_RANGE
10903 && range_includes_zero_p (vr_result.min,
10904 vr_result.max) == 0)
10905 || (vr_result.type == VR_ANTI_RANGE
10906 && range_includes_zero_p (vr_result.min,
10907 vr_result.max) == 1)))
10908 set_ptr_nonnull (lhs);
10911 edge taken_edge = NULL;
10913 /* Visit all other stmts and discover any new VRs possible. */
10914 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
10915 !gsi_end_p (gsi); gsi_next (&gsi))
10917 gimple *stmt = gsi_stmt (gsi);
10918 tree output = NULL_TREE;
10919 gimple *old_stmt = stmt;
10920 bool was_noreturn = (is_gimple_call (stmt)
10921 && gimple_call_noreturn_p (stmt));
10923 if (dump_file && (dump_flags & TDF_DETAILS))
10925 fprintf (dump_file, "Visiting stmt ");
10926 print_gimple_stmt (dump_file, stmt, 0, 0);
10929 if (gcond *cond = dyn_cast <gcond *> (stmt))
10931 vrp_visit_cond_stmt (cond, &taken_edge);
10932 if (taken_edge)
10934 if (taken_edge->flags & EDGE_TRUE_VALUE)
10935 gimple_cond_make_true (cond);
10936 else if (taken_edge->flags & EDGE_FALSE_VALUE)
10937 gimple_cond_make_false (cond);
10938 else
10939 gcc_unreachable ();
10940 update_stmt (stmt);
10943 else if (stmt_interesting_for_vrp (stmt))
10945 edge taken_edge;
10946 value_range vr = VR_INITIALIZER;
10947 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
10948 if (output
10949 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
10951 update_value_range (output, &vr);
10952 vr = *get_value_range (output);
10954 /* Mark stmts whose output we fully propagate for removal. */
10955 tree val;
10956 if ((val = op_with_constant_singleton_value_range (output))
10957 && may_propagate_copy (output, val)
10958 && !stmt_could_throw_p (stmt)
10959 && !gimple_has_side_effects (stmt))
10961 stmts_to_remove.safe_push (stmt);
10962 continue;
10965 /* Set the SSA with the value range. */
10966 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
10968 if ((vr.type == VR_RANGE
10969 || vr.type == VR_ANTI_RANGE)
10970 && (TREE_CODE (vr.min) == INTEGER_CST)
10971 && (TREE_CODE (vr.max) == INTEGER_CST))
10972 set_range_info (output, vr.type, vr.min, vr.max);
10974 else if (POINTER_TYPE_P (TREE_TYPE (output))
10975 && ((vr.type == VR_RANGE
10976 && range_includes_zero_p (vr.min,
10977 vr.max) == 0)
10978 || (vr.type == VR_ANTI_RANGE
10979 && range_includes_zero_p (vr.min,
10980 vr.max) == 1)))
10981 set_ptr_nonnull (output);
10983 else
10984 set_defs_to_varying (stmt);
10986 else
10987 set_defs_to_varying (stmt);
10989 /* See if we can derive a range for any of STMT's operands. */
10990 tree op;
10991 ssa_op_iter i;
10992 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
10994 tree value;
10995 enum tree_code comp_code;
10997 /* If OP is used in such a way that we can infer a value
10998 range for it, and we don't find a previous assertion for
10999 it, create a new assertion location node for OP. */
11000 if (infer_value_range (stmt, op, &comp_code, &value))
11002 /* If we are able to infer a nonzero value range for OP,
11003 then walk backwards through the use-def chain to see if OP
11004 was set via a typecast.
11005 If so, then we can also infer a nonzero value range
11006 for the operand of the NOP_EXPR. */
11007 if (comp_code == NE_EXPR && integer_zerop (value))
11009 tree t = op;
11010 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11011 while (is_gimple_assign (def_stmt)
11012 && CONVERT_EXPR_CODE_P
11013 (gimple_assign_rhs_code (def_stmt))
11014 && TREE_CODE
11015 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11016 && POINTER_TYPE_P
11017 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11019 t = gimple_assign_rhs1 (def_stmt);
11020 def_stmt = SSA_NAME_DEF_STMT (t);
11022 /* Add VR when (T COMP_CODE value) condition is
11023 true. */
11024 value_range *op_range
11025 = try_find_new_range (t, comp_code, value);
11026 if (op_range)
11027 push_value_range (t, op_range);
11030 /* Add VR when (OP COMP_CODE value) condition is true. */
11031 value_range *op_range = try_find_new_range (op,
11032 comp_code, value);
11033 if (op_range)
11034 push_value_range (op, op_range);
11038 /* Try folding stmts with the VR discovered. */
11039 bool did_replace
11040 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11041 if (fold_stmt (&gsi, follow_single_use_edges)
11042 || did_replace)
11044 stmt = gsi_stmt (gsi);
11045 update_stmt (stmt);
11046 did_replace = true;
11049 if (did_replace)
11051 /* If we cleaned up EH information from the statement,
11052 remove EH edges. */
11053 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11054 bitmap_set_bit (need_eh_cleanup, bb->index);
11056 /* If we turned a not noreturn call into a noreturn one
11057 schedule it for fixup. */
11058 if (!was_noreturn
11059 && is_gimple_call (stmt)
11060 && gimple_call_noreturn_p (stmt))
11061 stmts_to_fixup.safe_push (stmt);
11063 if (gimple_assign_single_p (stmt))
11065 tree rhs = gimple_assign_rhs1 (stmt);
11066 if (TREE_CODE (rhs) == ADDR_EXPR)
11067 recompute_tree_invariant_for_addr_expr (rhs);
11072 /* Visit BB successor PHI nodes and replace PHI args. */
11073 FOR_EACH_EDGE (e, ei, bb->succs)
11075 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11076 !gsi_end_p (gpi); gsi_next (&gpi))
11078 gphi *phi = gpi.phi ();
11079 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11080 tree arg = USE_FROM_PTR (use_p);
11081 if (TREE_CODE (arg) != SSA_NAME
11082 || virtual_operand_p (arg))
11083 continue;
11084 tree val = op_with_constant_singleton_value_range (arg);
11085 if (val && may_propagate_copy (arg, val))
11086 propagate_value (use_p, val);
11090 bb->flags |= BB_VISITED;
11092 return taken_edge;
11095 /* Restore/pop VRs valid only for BB when we leave BB. */
11097 void
11098 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11100 gcc_checking_assert (!stack.is_empty ());
11101 while (stack.last ().first != NULL_TREE)
11102 pop_value_range (stack.last ().first);
11103 stack.pop ();
11106 /* Push the Value Range of VAR to the stack and update it with new VR. */
11108 void
11109 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11111 if (SSA_NAME_VERSION (var) >= num_vr_values)
11112 return;
11113 if (dump_file && (dump_flags & TDF_DETAILS))
11115 fprintf (dump_file, "pushing new range for ");
11116 print_generic_expr (dump_file, var, 0);
11117 fprintf (dump_file, ": ");
11118 dump_value_range (dump_file, vr);
11119 fprintf (dump_file, "\n");
11121 stack.safe_push (std::make_pair (var, get_value_range (var)));
11122 vr_value[SSA_NAME_VERSION (var)] = vr;
11125 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11127 value_range *
11128 evrp_dom_walker::pop_value_range (tree var)
11130 value_range *vr = stack.last ().second;
11131 gcc_checking_assert (var == stack.last ().first);
11132 if (dump_file && (dump_flags & TDF_DETAILS))
11134 fprintf (dump_file, "popping range for ");
11135 print_generic_expr (dump_file, var, 0);
11136 fprintf (dump_file, ", restoring ");
11137 dump_value_range (dump_file, vr);
11138 fprintf (dump_file, "\n");
11140 vr_value[SSA_NAME_VERSION (var)] = vr;
11141 stack.pop ();
11142 return vr;
11146 /* Main entry point for the early vrp pass which is a simplified non-iterative
11147 version of vrp where basic blocks are visited in dominance order. Value
11148 ranges discovered in early vrp will also be used by ipa-vrp. */
11150 static unsigned int
11151 execute_early_vrp ()
11153 edge e;
11154 edge_iterator ei;
11155 basic_block bb;
11157 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11158 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11159 scev_initialize ();
11160 calculate_dominance_info (CDI_DOMINATORS);
11161 FOR_EACH_BB_FN (bb, cfun)
11163 bb->flags &= ~BB_VISITED;
11164 FOR_EACH_EDGE (e, ei, bb->preds)
11165 e->flags |= EDGE_EXECUTABLE;
11167 vrp_initialize_lattice ();
11169 /* Walk stmts in dominance order and propagate VRP. */
11170 evrp_dom_walker walker;
11171 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11173 if (dump_file)
11175 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11176 dump_all_value_ranges (dump_file);
11177 fprintf (dump_file, "\n");
11180 /* Remove stmts in reverse order to make debug stmt creation possible. */
11181 while (! walker.stmts_to_remove.is_empty ())
11183 gimple *stmt = walker.stmts_to_remove.pop ();
11184 if (dump_file && dump_flags & TDF_DETAILS)
11186 fprintf (dump_file, "Removing dead stmt ");
11187 print_gimple_stmt (dump_file, stmt, 0, 0);
11188 fprintf (dump_file, "\n");
11190 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11191 if (gimple_code (stmt) == GIMPLE_PHI)
11192 remove_phi_node (&gsi, true);
11193 else
11195 unlink_stmt_vdef (stmt);
11196 gsi_remove (&gsi, true);
11197 release_defs (stmt);
11201 if (!bitmap_empty_p (walker.need_eh_cleanup))
11202 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11204 /* Fixup stmts that became noreturn calls. This may require splitting
11205 blocks and thus isn't possible during the dominator walk. Do this
11206 in reverse order so we don't inadvertedly remove a stmt we want to
11207 fixup by visiting a dominating now noreturn call first. */
11208 while (!walker.stmts_to_fixup.is_empty ())
11210 gimple *stmt = walker.stmts_to_fixup.pop ();
11211 fixup_noreturn_call (stmt);
11214 vrp_free_lattice ();
11215 scev_finalize ();
11216 loop_optimizer_finalize ();
11217 return 0;
11221 /* Main entry point to VRP (Value Range Propagation). This pass is
11222 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11223 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11224 Programming Language Design and Implementation, pp. 67-78, 1995.
11225 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11227 This is essentially an SSA-CCP pass modified to deal with ranges
11228 instead of constants.
11230 While propagating ranges, we may find that two or more SSA name
11231 have equivalent, though distinct ranges. For instance,
11233 1 x_9 = p_3->a;
11234 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11235 3 if (p_4 == q_2)
11236 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11237 5 endif
11238 6 if (q_2)
11240 In the code above, pointer p_5 has range [q_2, q_2], but from the
11241 code we can also determine that p_5 cannot be NULL and, if q_2 had
11242 a non-varying range, p_5's range should also be compatible with it.
11244 These equivalences are created by two expressions: ASSERT_EXPR and
11245 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11246 result of another assertion, then we can use the fact that p_5 and
11247 p_4 are equivalent when evaluating p_5's range.
11249 Together with value ranges, we also propagate these equivalences
11250 between names so that we can take advantage of information from
11251 multiple ranges when doing final replacement. Note that this
11252 equivalency relation is transitive but not symmetric.
11254 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11255 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11256 in contexts where that assertion does not hold (e.g., in line 6).
11258 TODO, the main difference between this pass and Patterson's is that
11259 we do not propagate edge probabilities. We only compute whether
11260 edges can be taken or not. That is, instead of having a spectrum
11261 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11262 DON'T KNOW. In the future, it may be worthwhile to propagate
11263 probabilities to aid branch prediction. */
11265 static unsigned int
11266 execute_vrp (bool warn_array_bounds_p)
11268 int i;
11269 edge e;
11270 switch_update *su;
11272 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11273 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11274 scev_initialize ();
11276 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11277 Inserting assertions may split edges which will invalidate
11278 EDGE_DFS_BACK. */
11279 insert_range_assertions ();
11281 to_remove_edges.create (10);
11282 to_update_switch_stmts.create (5);
11283 threadedge_initialize_values ();
11285 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11286 mark_dfs_back_edges ();
11288 vrp_initialize_lattice ();
11289 vrp_initialize ();
11290 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11291 vrp_finalize (warn_array_bounds_p);
11292 vrp_free_lattice ();
11294 free_numbers_of_iterations_estimates (cfun);
11296 /* ASSERT_EXPRs must be removed before finalizing jump threads
11297 as finalizing jump threads calls the CFG cleanup code which
11298 does not properly handle ASSERT_EXPRs. */
11299 remove_range_assertions ();
11301 /* If we exposed any new variables, go ahead and put them into
11302 SSA form now, before we handle jump threading. This simplifies
11303 interactions between rewriting of _DECL nodes into SSA form
11304 and rewriting SSA_NAME nodes into SSA form after block
11305 duplication and CFG manipulation. */
11306 update_ssa (TODO_update_ssa);
11308 finalize_jump_threads ();
11310 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11311 CFG in a broken state and requires a cfg_cleanup run. */
11312 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11313 remove_edge (e);
11314 /* Update SWITCH_EXPR case label vector. */
11315 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11317 size_t j;
11318 size_t n = TREE_VEC_LENGTH (su->vec);
11319 tree label;
11320 gimple_switch_set_num_labels (su->stmt, n);
11321 for (j = 0; j < n; j++)
11322 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11323 /* As we may have replaced the default label with a regular one
11324 make sure to make it a real default label again. This ensures
11325 optimal expansion. */
11326 label = gimple_switch_label (su->stmt, 0);
11327 CASE_LOW (label) = NULL_TREE;
11328 CASE_HIGH (label) = NULL_TREE;
11331 if (to_remove_edges.length () > 0)
11333 free_dominance_info (CDI_DOMINATORS);
11334 loops_state_set (LOOPS_NEED_FIXUP);
11337 to_remove_edges.release ();
11338 to_update_switch_stmts.release ();
11339 threadedge_finalize_values ();
11341 scev_finalize ();
11342 loop_optimizer_finalize ();
11343 return 0;
11346 namespace {
11348 const pass_data pass_data_vrp =
11350 GIMPLE_PASS, /* type */
11351 "vrp", /* name */
11352 OPTGROUP_NONE, /* optinfo_flags */
11353 TV_TREE_VRP, /* tv_id */
11354 PROP_ssa, /* properties_required */
11355 0, /* properties_provided */
11356 0, /* properties_destroyed */
11357 0, /* todo_flags_start */
11358 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11361 class pass_vrp : public gimple_opt_pass
11363 public:
11364 pass_vrp (gcc::context *ctxt)
11365 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11368 /* opt_pass methods: */
11369 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11370 void set_pass_param (unsigned int n, bool param)
11372 gcc_assert (n == 0);
11373 warn_array_bounds_p = param;
11375 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11376 virtual unsigned int execute (function *)
11377 { return execute_vrp (warn_array_bounds_p); }
11379 private:
11380 bool warn_array_bounds_p;
11381 }; // class pass_vrp
11383 } // anon namespace
11385 gimple_opt_pass *
11386 make_pass_vrp (gcc::context *ctxt)
11388 return new pass_vrp (ctxt);
11391 namespace {
11393 const pass_data pass_data_early_vrp =
11395 GIMPLE_PASS, /* type */
11396 "evrp", /* name */
11397 OPTGROUP_NONE, /* optinfo_flags */
11398 TV_TREE_EARLY_VRP, /* tv_id */
11399 PROP_ssa, /* properties_required */
11400 0, /* properties_provided */
11401 0, /* properties_destroyed */
11402 0, /* todo_flags_start */
11403 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11406 class pass_early_vrp : public gimple_opt_pass
11408 public:
11409 pass_early_vrp (gcc::context *ctxt)
11410 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11413 /* opt_pass methods: */
11414 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11415 virtual bool gate (function *)
11417 return flag_tree_vrp != 0;
11419 virtual unsigned int execute (function *)
11420 { return execute_early_vrp (); }
11422 }; // class pass_vrp
11423 } // anon namespace
11425 gimple_opt_pass *
11426 make_pass_early_vrp (gcc::context *ctxt)
11428 return new pass_early_vrp (ctxt);