2011-11-29 Dodji Seketeli <dodji@redhat.com>
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobaf4f1a740811a85a7a66721ce968f0469a336ebf
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
41 /*************************************************************************
42 Simple Loop Peeling Utilities
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
48 /* Renames the use *OP_P. */
50 static void
51 rename_use_op (use_operand_p op_p)
53 tree new_name;
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
58 new_name = get_current_def (USE_FROM_PTR (op_p));
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
64 /* An ordinary ssa name defined in the loop. */
66 SET_USE (op_p, new_name);
70 /* Renames the variables in basic block BB. */
72 void
73 rename_variables_in_bb (basic_block bb)
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
90 FOR_EACH_EDGE (e, ei, bb->succs)
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
100 /* Renames variables in new generated LOOP. */
102 void
103 rename_variables_in_loop (struct loop *loop)
105 unsigned i;
106 basic_block *bbs;
108 bbs = get_loop_body (loop);
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
113 free (bbs);
116 typedef struct
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132 static VEC(adjust_info, stack) *adjust_vec;
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
154 use_operand_p use_p;
155 basic_block bbuse;
157 if (!is_gimple_debug (stmt))
158 continue;
160 gcc_assert (gimple_debug_bind_p (stmt));
162 bbuse = gimple_bb (stmt);
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
181 /* Adjust debug stmts as scheduled before. */
183 static void
184 adjust_vec_debug_stmts (void)
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
189 gcc_assert (adjust_vec);
191 while (!VEC_empty (adjust_info, adjust_vec))
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
197 VEC_free (adjust_info, stack, adjust_vec);
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
208 adjust_info ai;
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
242 /* Update the PHI nodes of NEW_LOOP.
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
272 step 3. Update the phis in the successor block of NEW_LOOP.
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
327 /* step 3 (case 1). */
328 if (!after)
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
337 /* Update PHI nodes for a guard of the LOOP.
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
392 There are two flavors to this function:
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
404 I.E., the overall structure is:
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
464 /* Function slpeel_update_phi_nodes_for_guard1
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
471 In the context of the overall structure, we have:
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
516 source_location loop_locus, guard_locus;;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
520 /** 1. Handle new-merge-point phis **/
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
547 /** 2. Handle loop-closed-ssa-form phis **/
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
594 /* Function slpeel_update_phi_nodes_for_guard2
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
599 In the context of the overall structure, we have:
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
653 /** 1. Handle new-merge-point phis **/
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
673 if (is_new_loop)
675 guard_arg = orig_def;
676 loop_arg = new_name;
678 else
680 guard_arg = new_name;
681 loop_arg = orig_def;
683 if (new_name2)
684 guard_arg = new_name2;
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
695 /** 2. Handle loop-closed-ssa-form phis **/
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
802 loop->nb_iterations = niters;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
826 bbs = get_loop_body (loop);
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
831 free (bbs);
832 return NULL;
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
839 free (bbs);
840 return NULL;
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
863 edge new_loop_exit_edge;
864 source_location locus;
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
876 if (at_exit) /* Add the loop copy at exit. */
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
884 else /* Add the copy at entry. */
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
919 free (new_bbs);
920 free (bbs);
922 return new_loop;
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
981 if (need_ssa_update_p (cfun))
982 return false;
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
996 return true;
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1031 #endif
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
1105 first_niters = PHI_RESULT (newphi);
1108 /* Function slpeel_tree_peel_loop_to_edge.
1110 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1111 that is placed on the entry (exit) edge E of LOOP. After this transformation
1112 we have two loops one after the other - first-loop iterates FIRST_NITERS
1113 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1114 If the cost model indicates that it is profitable to emit a scalar
1115 loop instead of the vector one, then the prolog (epilog) loop will iterate
1116 for the entire unchanged scalar iterations of the loop.
1118 Input:
1119 - LOOP: the loop to be peeled.
1120 - E: the exit or entry edge of LOOP.
1121 If it is the entry edge, we peel the first iterations of LOOP. In this
1122 case first-loop is LOOP, and second-loop is the newly created loop.
1123 If it is the exit edge, we peel the last iterations of LOOP. In this
1124 case, first-loop is the newly created loop, and second-loop is LOOP.
1125 - NITERS: the number of iterations that LOOP iterates.
1126 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1127 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1128 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1129 is false, the caller of this function may want to take care of this
1130 (this can be useful if we don't want new stmts added to first-loop).
1131 - TH: cost model profitability threshold of iterations for vectorization.
1132 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1133 during versioning and hence needs to occur during
1134 prologue generation or whether cost model check
1135 has not occurred during prologue generation and hence
1136 needs to occur during epilogue generation.
1139 Output:
1140 The function returns a pointer to the new loop-copy, or NULL if it failed
1141 to perform the transformation.
1143 The function generates two if-then-else guards: one before the first loop,
1144 and the other before the second loop:
1145 The first guard is:
1146 if (FIRST_NITERS == 0) then skip the first loop,
1147 and go directly to the second loop.
1148 The second guard is:
1149 if (FIRST_NITERS == NITERS) then skip the second loop.
1151 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1152 then the generated condition is combined with COND_EXPR and the
1153 statements in COND_EXPR_STMT_LIST are emitted together with it.
1155 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1156 FORNOW the resulting code will not be in loop-closed-ssa form.
1159 static struct loop*
1160 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1161 edge e, tree first_niters,
1162 tree niters, bool update_first_loop_count,
1163 unsigned int th, bool check_profitability,
1164 tree cond_expr, gimple_seq cond_expr_stmt_list)
1166 struct loop *new_loop = NULL, *first_loop, *second_loop;
1167 edge skip_e;
1168 tree pre_condition = NULL_TREE;
1169 bitmap definitions;
1170 basic_block bb_before_second_loop, bb_after_second_loop;
1171 basic_block bb_before_first_loop;
1172 basic_block bb_between_loops;
1173 basic_block new_exit_bb;
1174 edge exit_e = single_exit (loop);
1175 LOC loop_loc;
1176 tree cost_pre_condition = NULL_TREE;
1178 if (!slpeel_can_duplicate_loop_p (loop, e))
1179 return NULL;
1181 /* We have to initialize cfg_hooks. Then, when calling
1182 cfg_hooks->split_edge, the function tree_split_edge
1183 is actually called and, when calling cfg_hooks->duplicate_block,
1184 the function tree_duplicate_bb is called. */
1185 gimple_register_cfg_hooks ();
1188 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1189 Resulting CFG would be:
1191 first_loop:
1192 do {
1193 } while ...
1195 second_loop:
1196 do {
1197 } while ...
1199 orig_exit_bb:
1202 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1204 loop_loc = find_loop_location (loop);
1205 if (dump_file && (dump_flags & TDF_DETAILS))
1207 if (loop_loc != UNKNOWN_LOC)
1208 fprintf (dump_file, "\n%s:%d: note: ",
1209 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1210 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1212 return NULL;
1215 if (MAY_HAVE_DEBUG_STMTS)
1217 gcc_assert (!adjust_vec);
1218 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1221 if (e == exit_e)
1223 /* NEW_LOOP was placed after LOOP. */
1224 first_loop = loop;
1225 second_loop = new_loop;
1227 else
1229 /* NEW_LOOP was placed before LOOP. */
1230 first_loop = new_loop;
1231 second_loop = loop;
1234 definitions = ssa_names_to_replace ();
1235 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1236 rename_variables_in_loop (new_loop);
1239 /* 2. Add the guard code in one of the following ways:
1241 2.a Add the guard that controls whether the first loop is executed.
1242 This occurs when this function is invoked for prologue or epilogue
1243 generation and when the cost model check can be done at compile time.
1245 Resulting CFG would be:
1247 bb_before_first_loop:
1248 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1249 GOTO first-loop
1251 first_loop:
1252 do {
1253 } while ...
1255 bb_before_second_loop:
1257 second_loop:
1258 do {
1259 } while ...
1261 orig_exit_bb:
1263 2.b Add the cost model check that allows the prologue
1264 to iterate for the entire unchanged scalar
1265 iterations of the loop in the event that the cost
1266 model indicates that the scalar loop is more
1267 profitable than the vector one. This occurs when
1268 this function is invoked for prologue generation
1269 and the cost model check needs to be done at run
1270 time.
1272 Resulting CFG after prologue peeling would be:
1274 if (scalar_loop_iterations <= th)
1275 FIRST_NITERS = scalar_loop_iterations
1277 bb_before_first_loop:
1278 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1279 GOTO first-loop
1281 first_loop:
1282 do {
1283 } while ...
1285 bb_before_second_loop:
1287 second_loop:
1288 do {
1289 } while ...
1291 orig_exit_bb:
1293 2.c Add the cost model check that allows the epilogue
1294 to iterate for the entire unchanged scalar
1295 iterations of the loop in the event that the cost
1296 model indicates that the scalar loop is more
1297 profitable than the vector one. This occurs when
1298 this function is invoked for epilogue generation
1299 and the cost model check needs to be done at run
1300 time. This check is combined with any pre-existing
1301 check in COND_EXPR to avoid versioning.
1303 Resulting CFG after prologue peeling would be:
1305 bb_before_first_loop:
1306 if ((scalar_loop_iterations <= th)
1308 FIRST_NITERS == 0) GOTO bb_before_second_loop
1309 GOTO first-loop
1311 first_loop:
1312 do {
1313 } while ...
1315 bb_before_second_loop:
1317 second_loop:
1318 do {
1319 } while ...
1321 orig_exit_bb:
1324 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1325 bb_before_second_loop = split_edge (single_exit (first_loop));
1327 /* Epilogue peeling. */
1328 if (!update_first_loop_count)
1330 pre_condition =
1331 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1332 build_int_cst (TREE_TYPE (first_niters), 0));
1333 if (check_profitability)
1335 tree scalar_loop_iters
1336 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1337 (loop_vec_info_for_loop (loop)));
1338 cost_pre_condition =
1339 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1340 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1342 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1343 cost_pre_condition, pre_condition);
1345 if (cond_expr)
1347 pre_condition =
1348 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1349 pre_condition,
1350 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1351 cond_expr));
1355 /* Prologue peeling. */
1356 else
1358 if (check_profitability)
1359 set_prologue_iterations (bb_before_first_loop, first_niters,
1360 loop, th);
1362 pre_condition =
1363 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1364 build_int_cst (TREE_TYPE (first_niters), 0));
1367 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1368 cond_expr_stmt_list,
1369 bb_before_second_loop, bb_before_first_loop);
1370 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1371 first_loop == new_loop,
1372 &new_exit_bb, &definitions);
1375 /* 3. Add the guard that controls whether the second loop is executed.
1376 Resulting CFG would be:
1378 bb_before_first_loop:
1379 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1380 GOTO first-loop
1382 first_loop:
1383 do {
1384 } while ...
1386 bb_between_loops:
1387 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1388 GOTO bb_before_second_loop
1390 bb_before_second_loop:
1392 second_loop:
1393 do {
1394 } while ...
1396 bb_after_second_loop:
1398 orig_exit_bb:
1401 bb_between_loops = new_exit_bb;
1402 bb_after_second_loop = split_edge (single_exit (second_loop));
1404 pre_condition =
1405 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1406 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1407 bb_after_second_loop, bb_before_first_loop);
1408 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1409 second_loop == new_loop, &new_exit_bb);
1411 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1413 if (update_first_loop_count)
1414 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1416 BITMAP_FREE (definitions);
1417 delete_update_ssa ();
1419 adjust_vec_debug_stmts ();
1421 return new_loop;
1424 /* Function vect_get_loop_location.
1426 Extract the location of the loop in the source code.
1427 If the loop is not well formed for vectorization, an estimated
1428 location is calculated.
1429 Return the loop location if succeed and NULL if not. */
1432 find_loop_location (struct loop *loop)
1434 gimple stmt = NULL;
1435 basic_block bb;
1436 gimple_stmt_iterator si;
1438 if (!loop)
1439 return UNKNOWN_LOC;
1441 stmt = get_loop_exit_condition (loop);
1443 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1444 return gimple_location (stmt);
1446 /* If we got here the loop is probably not "well formed",
1447 try to estimate the loop location */
1449 if (!loop->header)
1450 return UNKNOWN_LOC;
1452 bb = loop->header;
1454 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1456 stmt = gsi_stmt (si);
1457 if (gimple_location (stmt) != UNKNOWN_LOC)
1458 return gimple_location (stmt);
1461 return UNKNOWN_LOC;
1465 /* This function builds ni_name = number of iterations loop executes
1466 on the loop preheader. If SEQ is given the stmt is instead emitted
1467 there. */
1469 static tree
1470 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1472 tree ni_name, var;
1473 gimple_seq stmts = NULL;
1474 edge pe;
1475 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1476 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1478 var = create_tmp_var (TREE_TYPE (ni), "niters");
1479 add_referenced_var (var);
1480 ni_name = force_gimple_operand (ni, &stmts, false, var);
1482 pe = loop_preheader_edge (loop);
1483 if (stmts)
1485 if (seq)
1486 gimple_seq_add_seq (&seq, stmts);
1487 else
1489 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1490 gcc_assert (!new_bb);
1494 return ni_name;
1498 /* This function generates the following statements:
1500 ni_name = number of iterations loop executes
1501 ratio = ni_name / vf
1502 ratio_mult_vf_name = ratio * vf
1504 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1505 if that is non-NULL. */
1507 static void
1508 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1509 tree *ni_name_ptr,
1510 tree *ratio_mult_vf_name_ptr,
1511 tree *ratio_name_ptr,
1512 gimple_seq cond_expr_stmt_list)
1515 edge pe;
1516 basic_block new_bb;
1517 gimple_seq stmts;
1518 tree ni_name, ni_minus_gap_name;
1519 tree var;
1520 tree ratio_name;
1521 tree ratio_mult_vf_name;
1522 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1523 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1524 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1525 tree log_vf;
1527 pe = loop_preheader_edge (loop);
1529 /* Generate temporary variable that contains
1530 number of iterations loop executes. */
1532 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1533 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1535 /* If epilogue loop is required because of data accesses with gaps, we
1536 subtract one iteration from the total number of iterations here for
1537 correct calculation of RATIO. */
1538 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1540 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1541 ni_name,
1542 build_one_cst (TREE_TYPE (ni_name)));
1543 if (!is_gimple_val (ni_minus_gap_name))
1545 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1546 add_referenced_var (var);
1548 stmts = NULL;
1549 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1550 true, var);
1551 if (cond_expr_stmt_list)
1552 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1553 else
1555 pe = loop_preheader_edge (loop);
1556 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1557 gcc_assert (!new_bb);
1561 else
1562 ni_minus_gap_name = ni_name;
1564 /* Create: ratio = ni >> log2(vf) */
1566 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1567 ni_minus_gap_name, log_vf);
1568 if (!is_gimple_val (ratio_name))
1570 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1571 add_referenced_var (var);
1573 stmts = NULL;
1574 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1575 if (cond_expr_stmt_list)
1576 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1577 else
1579 pe = loop_preheader_edge (loop);
1580 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1581 gcc_assert (!new_bb);
1585 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1587 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1588 ratio_name, log_vf);
1589 if (!is_gimple_val (ratio_mult_vf_name))
1591 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1592 add_referenced_var (var);
1594 stmts = NULL;
1595 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1596 true, var);
1597 if (cond_expr_stmt_list)
1598 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1599 else
1601 pe = loop_preheader_edge (loop);
1602 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1603 gcc_assert (!new_bb);
1607 *ni_name_ptr = ni_name;
1608 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1609 *ratio_name_ptr = ratio_name;
1611 return;
1614 /* Function vect_can_advance_ivs_p
1616 In case the number of iterations that LOOP iterates is unknown at compile
1617 time, an epilog loop will be generated, and the loop induction variables
1618 (IVs) will be "advanced" to the value they are supposed to take just before
1619 the epilog loop. Here we check that the access function of the loop IVs
1620 and the expression that represents the loop bound are simple enough.
1621 These restrictions will be relaxed in the future. */
1623 bool
1624 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1626 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1627 basic_block bb = loop->header;
1628 gimple phi;
1629 gimple_stmt_iterator gsi;
1631 /* Analyze phi functions of the loop header. */
1633 if (vect_print_dump_info (REPORT_DETAILS))
1634 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1636 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1638 tree access_fn = NULL;
1639 tree evolution_part;
1641 phi = gsi_stmt (gsi);
1642 if (vect_print_dump_info (REPORT_DETAILS))
1644 fprintf (vect_dump, "Analyze phi: ");
1645 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1648 /* Skip virtual phi's. The data dependences that are associated with
1649 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1651 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1653 if (vect_print_dump_info (REPORT_DETAILS))
1654 fprintf (vect_dump, "virtual phi. skip.");
1655 continue;
1658 /* Skip reduction phis. */
1660 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1662 if (vect_print_dump_info (REPORT_DETAILS))
1663 fprintf (vect_dump, "reduc phi. skip.");
1664 continue;
1667 /* Analyze the evolution function. */
1669 access_fn = instantiate_parameters
1670 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1672 if (!access_fn)
1674 if (vect_print_dump_info (REPORT_DETAILS))
1675 fprintf (vect_dump, "No Access function.");
1676 return false;
1679 if (vect_print_dump_info (REPORT_DETAILS))
1681 fprintf (vect_dump, "Access function of PHI: ");
1682 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1685 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1687 if (evolution_part == NULL_TREE)
1689 if (vect_print_dump_info (REPORT_DETAILS))
1690 fprintf (vect_dump, "No evolution.");
1691 return false;
1694 /* FORNOW: We do not transform initial conditions of IVs
1695 which evolution functions are a polynomial of degree >= 2. */
1697 if (tree_is_chrec (evolution_part))
1698 return false;
1701 return true;
1705 /* Function vect_update_ivs_after_vectorizer.
1707 "Advance" the induction variables of LOOP to the value they should take
1708 after the execution of LOOP. This is currently necessary because the
1709 vectorizer does not handle induction variables that are used after the
1710 loop. Such a situation occurs when the last iterations of LOOP are
1711 peeled, because:
1712 1. We introduced new uses after LOOP for IVs that were not originally used
1713 after LOOP: the IVs of LOOP are now used by an epilog loop.
1714 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1715 times, whereas the loop IVs should be bumped N times.
1717 Input:
1718 - LOOP - a loop that is going to be vectorized. The last few iterations
1719 of LOOP were peeled.
1720 - NITERS - the number of iterations that LOOP executes (before it is
1721 vectorized). i.e, the number of times the ivs should be bumped.
1722 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1723 coming out from LOOP on which there are uses of the LOOP ivs
1724 (this is the path from LOOP->exit to epilog_loop->preheader).
1726 The new definitions of the ivs are placed in LOOP->exit.
1727 The phi args associated with the edge UPDATE_E in the bb
1728 UPDATE_E->dest are updated accordingly.
1730 Assumption 1: Like the rest of the vectorizer, this function assumes
1731 a single loop exit that has a single predecessor.
1733 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1734 organized in the same order.
1736 Assumption 3: The access function of the ivs is simple enough (see
1737 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1739 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1740 coming out of LOOP on which the ivs of LOOP are used (this is the path
1741 that leads to the epilog loop; other paths skip the epilog loop). This
1742 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1743 needs to have its phis updated.
1746 static void
1747 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1748 edge update_e)
1750 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1751 basic_block exit_bb = single_exit (loop)->dest;
1752 gimple phi, phi1;
1753 gimple_stmt_iterator gsi, gsi1;
1754 basic_block update_bb = update_e->dest;
1756 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1758 /* Make sure there exists a single-predecessor exit bb: */
1759 gcc_assert (single_pred_p (exit_bb));
1761 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1762 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1763 gsi_next (&gsi), gsi_next (&gsi1))
1765 tree access_fn = NULL;
1766 tree evolution_part;
1767 tree init_expr;
1768 tree step_expr, off;
1769 tree type;
1770 tree var, ni, ni_name;
1771 gimple_stmt_iterator last_gsi;
1773 phi = gsi_stmt (gsi);
1774 phi1 = gsi_stmt (gsi1);
1775 if (vect_print_dump_info (REPORT_DETAILS))
1777 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1778 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1781 /* Skip virtual phi's. */
1782 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1784 if (vect_print_dump_info (REPORT_DETAILS))
1785 fprintf (vect_dump, "virtual phi. skip.");
1786 continue;
1789 /* Skip reduction phis. */
1790 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1792 if (vect_print_dump_info (REPORT_DETAILS))
1793 fprintf (vect_dump, "reduc phi. skip.");
1794 continue;
1797 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1798 gcc_assert (access_fn);
1799 /* We can end up with an access_fn like
1800 (short int) {(short unsigned int) i_49, +, 1}_1
1801 for further analysis we need to strip the outer cast but we
1802 need to preserve the original type. */
1803 type = TREE_TYPE (access_fn);
1804 STRIP_NOPS (access_fn);
1805 evolution_part =
1806 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1807 gcc_assert (evolution_part != NULL_TREE);
1809 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1810 of degree >= 2 or exponential. */
1811 gcc_assert (!tree_is_chrec (evolution_part));
1813 step_expr = evolution_part;
1814 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1815 loop->num));
1816 init_expr = fold_convert (type, init_expr);
1818 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1819 fold_convert (TREE_TYPE (step_expr), niters),
1820 step_expr);
1821 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1822 ni = fold_build_pointer_plus (init_expr, off);
1823 else
1824 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1825 init_expr,
1826 fold_convert (TREE_TYPE (init_expr), off));
1828 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1829 add_referenced_var (var);
1831 last_gsi = gsi_last_bb (exit_bb);
1832 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1833 true, GSI_SAME_STMT);
1835 /* Fix phi expressions in the successor bb. */
1836 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1840 /* Return the more conservative threshold between the
1841 min_profitable_iters returned by the cost model and the user
1842 specified threshold, if provided. */
1844 static unsigned int
1845 conservative_cost_threshold (loop_vec_info loop_vinfo,
1846 int min_profitable_iters)
1848 unsigned int th;
1849 int min_scalar_loop_bound;
1851 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1852 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1854 /* Use the cost model only if it is more conservative than user specified
1855 threshold. */
1856 th = (unsigned) min_scalar_loop_bound;
1857 if (min_profitable_iters
1858 && (!min_scalar_loop_bound
1859 || min_profitable_iters > min_scalar_loop_bound))
1860 th = (unsigned) min_profitable_iters;
1862 if (th && vect_print_dump_info (REPORT_COST))
1863 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1865 return th;
1868 /* Function vect_do_peeling_for_loop_bound
1870 Peel the last iterations of the loop represented by LOOP_VINFO.
1871 The peeled iterations form a new epilog loop. Given that the loop now
1872 iterates NITERS times, the new epilog loop iterates
1873 NITERS % VECTORIZATION_FACTOR times.
1875 The original loop will later be made to iterate
1876 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1878 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1879 test. */
1881 void
1882 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1883 tree cond_expr, gimple_seq cond_expr_stmt_list)
1885 tree ni_name, ratio_mult_vf_name;
1886 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1887 struct loop *new_loop;
1888 edge update_e;
1889 basic_block preheader;
1890 int loop_num;
1891 bool check_profitability = false;
1892 unsigned int th = 0;
1893 int min_profitable_iters;
1895 if (vect_print_dump_info (REPORT_DETAILS))
1896 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1898 initialize_original_copy_tables ();
1900 /* Generate the following variables on the preheader of original loop:
1902 ni_name = number of iteration the original loop executes
1903 ratio = ni_name / vf
1904 ratio_mult_vf_name = ratio * vf */
1905 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1906 &ratio_mult_vf_name, ratio,
1907 cond_expr_stmt_list);
1909 loop_num = loop->num;
1911 /* If cost model check not done during versioning and
1912 peeling for alignment. */
1913 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1914 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1915 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1916 && !cond_expr)
1918 check_profitability = true;
1920 /* Get profitability threshold for vectorized loop. */
1921 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1923 th = conservative_cost_threshold (loop_vinfo,
1924 min_profitable_iters);
1927 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1928 ratio_mult_vf_name, ni_name, false,
1929 th, check_profitability,
1930 cond_expr, cond_expr_stmt_list);
1931 gcc_assert (new_loop);
1932 gcc_assert (loop_num == loop->num);
1933 #ifdef ENABLE_CHECKING
1934 slpeel_verify_cfg_after_peeling (loop, new_loop);
1935 #endif
1937 /* A guard that controls whether the new_loop is to be executed or skipped
1938 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1939 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1940 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1941 is on the path where the LOOP IVs are used and need to be updated. */
1943 preheader = loop_preheader_edge (new_loop)->src;
1944 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1945 update_e = EDGE_PRED (preheader, 0);
1946 else
1947 update_e = EDGE_PRED (preheader, 1);
1949 /* Update IVs of original loop as if they were advanced
1950 by ratio_mult_vf_name steps. */
1951 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1953 /* After peeling we have to reset scalar evolution analyzer. */
1954 scev_reset ();
1956 free_original_copy_tables ();
1960 /* Function vect_gen_niters_for_prolog_loop
1962 Set the number of iterations for the loop represented by LOOP_VINFO
1963 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1964 and the misalignment of DR - the data reference recorded in
1965 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1966 this loop, the data reference DR will refer to an aligned location.
1968 The following computation is generated:
1970 If the misalignment of DR is known at compile time:
1971 addr_mis = int mis = DR_MISALIGNMENT (dr);
1972 Else, compute address misalignment in bytes:
1973 addr_mis = addr & (vectype_size - 1)
1975 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1977 (elem_size = element type size; an element is the scalar element whose type
1978 is the inner type of the vectype)
1980 When the step of the data-ref in the loop is not 1 (as in interleaved data
1981 and SLP), the number of iterations of the prolog must be divided by the step
1982 (which is equal to the size of interleaved group).
1984 The above formulas assume that VF == number of elements in the vector. This
1985 may not hold when there are multiple-types in the loop.
1986 In this case, for some data-references in the loop the VF does not represent
1987 the number of elements that fit in the vector. Therefore, instead of VF we
1988 use TYPE_VECTOR_SUBPARTS. */
1990 static tree
1991 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
1992 tree *wide_prolog_niters)
1994 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1995 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1996 tree var;
1997 gimple_seq stmts;
1998 tree iters, iters_name;
1999 edge pe;
2000 basic_block new_bb;
2001 gimple dr_stmt = DR_STMT (dr);
2002 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2003 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2004 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2005 tree niters_type = TREE_TYPE (loop_niters);
2006 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2008 pe = loop_preheader_edge (loop);
2010 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2012 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2014 if (vect_print_dump_info (REPORT_DETAILS))
2015 fprintf (vect_dump, "known peeling = %d.", npeel);
2017 iters = build_int_cst (niters_type, npeel);
2019 else
2021 gimple_seq new_stmts = NULL;
2022 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2023 tree offset = negative
2024 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2025 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2026 &new_stmts, offset, loop);
2027 tree ptr_type = TREE_TYPE (start_addr);
2028 tree size = TYPE_SIZE (ptr_type);
2029 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2030 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2031 tree elem_size_log =
2032 build_int_cst (type, exact_log2 (vectype_align/nelements));
2033 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2034 tree nelements_tree = build_int_cst (type, nelements);
2035 tree byte_misalign;
2036 tree elem_misalign;
2038 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2039 gcc_assert (!new_bb);
2041 /* Create: byte_misalign = addr & (vectype_size - 1) */
2042 byte_misalign =
2043 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2044 vectype_size_minus_1);
2046 /* Create: elem_misalign = byte_misalign / element_size */
2047 elem_misalign =
2048 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2050 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2051 if (negative)
2052 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2053 else
2054 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2055 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2056 iters = fold_convert (niters_type, iters);
2059 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2060 /* If the loop bound is known at compile time we already verified that it is
2061 greater than vf; since the misalignment ('iters') is at most vf, there's
2062 no need to generate the MIN_EXPR in this case. */
2063 if (TREE_CODE (loop_niters) != INTEGER_CST)
2064 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2066 if (vect_print_dump_info (REPORT_DETAILS))
2068 fprintf (vect_dump, "niters for prolog loop: ");
2069 print_generic_expr (vect_dump, iters, TDF_SLIM);
2072 var = create_tmp_var (niters_type, "prolog_loop_niters");
2073 add_referenced_var (var);
2074 stmts = NULL;
2075 iters_name = force_gimple_operand (iters, &stmts, false, var);
2076 if (types_compatible_p (sizetype, niters_type))
2077 *wide_prolog_niters = iters_name;
2078 else
2080 gimple_seq seq = NULL;
2081 tree wide_iters = fold_convert (sizetype, iters);
2082 var = create_tmp_var (sizetype, "prolog_loop_niters");
2083 add_referenced_var (var);
2084 *wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2085 var);
2086 if (seq)
2087 gimple_seq_add_seq (&stmts, seq);
2090 /* Insert stmt on loop preheader edge. */
2091 if (stmts)
2093 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2094 gcc_assert (!new_bb);
2097 return iters_name;
2101 /* Function vect_update_init_of_dr
2103 NITERS iterations were peeled from LOOP. DR represents a data reference
2104 in LOOP. This function updates the information recorded in DR to
2105 account for the fact that the first NITERS iterations had already been
2106 executed. Specifically, it updates the OFFSET field of DR. */
2108 static void
2109 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2111 tree offset = DR_OFFSET (dr);
2113 niters = fold_build2 (MULT_EXPR, sizetype,
2114 fold_convert (sizetype, niters),
2115 fold_convert (sizetype, DR_STEP (dr)));
2116 offset = fold_build2 (PLUS_EXPR, sizetype,
2117 fold_convert (sizetype, offset), niters);
2118 DR_OFFSET (dr) = offset;
2122 /* Function vect_update_inits_of_drs
2124 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2125 This function updates the information recorded for the data references in
2126 the loop to account for the fact that the first NITERS iterations had
2127 already been executed. Specifically, it updates the initial_condition of
2128 the access_function of all the data_references in the loop. */
2130 static void
2131 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2133 unsigned int i;
2134 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2135 struct data_reference *dr;
2137 if (vect_print_dump_info (REPORT_DETAILS))
2138 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2140 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2141 vect_update_init_of_dr (dr, niters);
2145 /* Function vect_do_peeling_for_alignment
2147 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2148 'niters' is set to the misalignment of one of the data references in the
2149 loop, thereby forcing it to refer to an aligned location at the beginning
2150 of the execution of this loop. The data reference for which we are
2151 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2153 void
2154 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2156 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2157 tree niters_of_prolog_loop, ni_name;
2158 tree n_iters;
2159 tree wide_prolog_niters;
2160 struct loop *new_loop;
2161 unsigned int th = 0;
2162 int min_profitable_iters;
2164 if (vect_print_dump_info (REPORT_DETAILS))
2165 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2167 initialize_original_copy_tables ();
2169 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2170 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
2171 &wide_prolog_niters);
2174 /* Get profitability threshold for vectorized loop. */
2175 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2176 th = conservative_cost_threshold (loop_vinfo,
2177 min_profitable_iters);
2179 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2180 new_loop =
2181 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2182 niters_of_prolog_loop, ni_name, true,
2183 th, true, NULL_TREE, NULL);
2185 gcc_assert (new_loop);
2186 #ifdef ENABLE_CHECKING
2187 slpeel_verify_cfg_after_peeling (new_loop, loop);
2188 #endif
2190 /* Update number of times loop executes. */
2191 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2192 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2193 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2195 /* Update the init conditions of the access functions of all data refs. */
2196 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2198 /* After peeling we have to reset scalar evolution analyzer. */
2199 scev_reset ();
2201 free_original_copy_tables ();
2205 /* Function vect_create_cond_for_align_checks.
2207 Create a conditional expression that represents the alignment checks for
2208 all of data references (array element references) whose alignment must be
2209 checked at runtime.
2211 Input:
2212 COND_EXPR - input conditional expression. New conditions will be chained
2213 with logical AND operation.
2214 LOOP_VINFO - two fields of the loop information are used.
2215 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2216 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2218 Output:
2219 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2220 expression.
2221 The returned value is the conditional expression to be used in the if
2222 statement that controls which version of the loop gets executed at runtime.
2224 The algorithm makes two assumptions:
2225 1) The number of bytes "n" in a vector is a power of 2.
2226 2) An address "a" is aligned if a%n is zero and that this
2227 test can be done as a&(n-1) == 0. For example, for 16
2228 byte vectors the test is a&0xf == 0. */
2230 static void
2231 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2232 tree *cond_expr,
2233 gimple_seq *cond_expr_stmt_list)
2235 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2236 VEC(gimple,heap) *may_misalign_stmts
2237 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2238 gimple ref_stmt;
2239 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2240 tree mask_cst;
2241 unsigned int i;
2242 tree psize;
2243 tree int_ptrsize_type;
2244 char tmp_name[20];
2245 tree or_tmp_name = NULL_TREE;
2246 tree and_tmp, and_tmp_name;
2247 gimple and_stmt;
2248 tree ptrsize_zero;
2249 tree part_cond_expr;
2251 /* Check that mask is one less than a power of 2, i.e., mask is
2252 all zeros followed by all ones. */
2253 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2255 /* CHECKME: what is the best integer or unsigned type to use to hold a
2256 cast from a pointer value? */
2257 psize = TYPE_SIZE (ptr_type_node);
2258 int_ptrsize_type
2259 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2261 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2262 of the first vector of the i'th data reference. */
2264 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2266 gimple_seq new_stmt_list = NULL;
2267 tree addr_base;
2268 tree addr_tmp, addr_tmp_name;
2269 tree or_tmp, new_or_tmp_name;
2270 gimple addr_stmt, or_stmt;
2271 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2272 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2273 bool negative = tree_int_cst_compare
2274 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2275 tree offset = negative
2276 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2278 /* create: addr_tmp = (int)(address_of_first_vector) */
2279 addr_base =
2280 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2281 offset, loop);
2282 if (new_stmt_list != NULL)
2283 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2285 sprintf (tmp_name, "%s%d", "addr2int", i);
2286 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2287 add_referenced_var (addr_tmp);
2288 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2289 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2290 addr_base, NULL_TREE);
2291 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2292 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2294 /* The addresses are OR together. */
2296 if (or_tmp_name != NULL_TREE)
2298 /* create: or_tmp = or_tmp | addr_tmp */
2299 sprintf (tmp_name, "%s%d", "orptrs", i);
2300 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2301 add_referenced_var (or_tmp);
2302 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2303 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2304 new_or_tmp_name,
2305 or_tmp_name, addr_tmp_name);
2306 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2307 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2308 or_tmp_name = new_or_tmp_name;
2310 else
2311 or_tmp_name = addr_tmp_name;
2313 } /* end for i */
2315 mask_cst = build_int_cst (int_ptrsize_type, mask);
2317 /* create: and_tmp = or_tmp & mask */
2318 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2319 add_referenced_var (and_tmp);
2320 and_tmp_name = make_ssa_name (and_tmp, NULL);
2322 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2323 or_tmp_name, mask_cst);
2324 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2325 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2327 /* Make and_tmp the left operand of the conditional test against zero.
2328 if and_tmp has a nonzero bit then some address is unaligned. */
2329 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2330 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2331 and_tmp_name, ptrsize_zero);
2332 if (*cond_expr)
2333 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2334 *cond_expr, part_cond_expr);
2335 else
2336 *cond_expr = part_cond_expr;
2340 /* Function vect_vfa_segment_size.
2342 Create an expression that computes the size of segment
2343 that will be accessed for a data reference. The functions takes into
2344 account that realignment loads may access one more vector.
2346 Input:
2347 DR: The data reference.
2348 LENGTH_FACTOR: segment length to consider.
2350 Return an expression whose value is the size of segment which will be
2351 accessed by DR. */
2353 static tree
2354 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2356 tree segment_length;
2358 if (!compare_tree_int (DR_STEP (dr), 0))
2359 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2360 else
2361 segment_length = size_binop (MULT_EXPR,
2362 fold_convert (sizetype, DR_STEP (dr)),
2363 fold_convert (sizetype, length_factor));
2365 if (vect_supportable_dr_alignment (dr, false)
2366 == dr_explicit_realign_optimized)
2368 tree vector_size = TYPE_SIZE_UNIT
2369 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2371 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2373 return segment_length;
2377 /* Function vect_create_cond_for_alias_checks.
2379 Create a conditional expression that represents the run-time checks for
2380 overlapping of address ranges represented by a list of data references
2381 relations passed as input.
2383 Input:
2384 COND_EXPR - input conditional expression. New conditions will be chained
2385 with logical AND operation.
2386 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2387 to be checked.
2389 Output:
2390 COND_EXPR - conditional expression.
2391 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2392 expression.
2395 The returned value is the conditional expression to be used in the if
2396 statement that controls which version of the loop gets executed at runtime.
2399 static void
2400 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2401 tree * cond_expr,
2402 gimple_seq * cond_expr_stmt_list)
2404 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2405 VEC (ddr_p, heap) * may_alias_ddrs =
2406 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2407 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2408 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2410 ddr_p ddr;
2411 unsigned int i;
2412 tree part_cond_expr, length_factor;
2414 /* Create expression
2415 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2416 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2420 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2421 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2423 if (VEC_empty (ddr_p, may_alias_ddrs))
2424 return;
2426 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2428 struct data_reference *dr_a, *dr_b;
2429 gimple dr_group_first_a, dr_group_first_b;
2430 tree addr_base_a, addr_base_b;
2431 tree segment_length_a, segment_length_b;
2432 gimple stmt_a, stmt_b;
2433 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2435 dr_a = DDR_A (ddr);
2436 stmt_a = DR_STMT (DDR_A (ddr));
2437 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2438 if (dr_group_first_a)
2440 stmt_a = dr_group_first_a;
2441 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2444 dr_b = DDR_B (ddr);
2445 stmt_b = DR_STMT (DDR_B (ddr));
2446 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2447 if (dr_group_first_b)
2449 stmt_b = dr_group_first_b;
2450 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2453 addr_base_a =
2454 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2455 NULL_TREE, loop);
2456 addr_base_b =
2457 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2458 NULL_TREE, loop);
2460 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2461 length_factor = scalar_loop_iters;
2462 else
2463 length_factor = size_int (vect_factor);
2464 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2465 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2467 if (vect_print_dump_info (REPORT_DR_DETAILS))
2469 fprintf (vect_dump,
2470 "create runtime check for data references ");
2471 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2472 fprintf (vect_dump, " and ");
2473 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2476 seg_a_min = addr_base_a;
2477 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2478 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2479 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2481 seg_b_min = addr_base_b;
2482 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2483 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2484 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2486 part_cond_expr =
2487 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2488 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2489 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2491 if (*cond_expr)
2492 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2493 *cond_expr, part_cond_expr);
2494 else
2495 *cond_expr = part_cond_expr;
2498 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2499 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2500 VEC_length (ddr_p, may_alias_ddrs));
2504 /* Function vect_loop_versioning.
2506 If the loop has data references that may or may not be aligned or/and
2507 has data reference relations whose independence was not proven then
2508 two versions of the loop need to be generated, one which is vectorized
2509 and one which isn't. A test is then generated to control which of the
2510 loops is executed. The test checks for the alignment of all of the
2511 data references that may or may not be aligned. An additional
2512 sequence of runtime tests is generated for each pairs of DDRs whose
2513 independence was not proven. The vectorized version of loop is
2514 executed only if both alias and alignment tests are passed.
2516 The test generated to check which version of loop is executed
2517 is modified to also check for profitability as indicated by the
2518 cost model initially.
2520 The versioning precondition(s) are placed in *COND_EXPR and
2521 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2522 also performed, otherwise only the conditions are generated. */
2524 void
2525 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2526 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2528 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2529 basic_block condition_bb;
2530 gimple_stmt_iterator gsi, cond_exp_gsi;
2531 basic_block merge_bb;
2532 basic_block new_exit_bb;
2533 edge new_exit_e, e;
2534 gimple orig_phi, new_phi;
2535 tree arg;
2536 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2537 gimple_seq gimplify_stmt_list = NULL;
2538 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2539 int min_profitable_iters = 0;
2540 unsigned int th;
2542 /* Get profitability threshold for vectorized loop. */
2543 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2545 th = conservative_cost_threshold (loop_vinfo,
2546 min_profitable_iters);
2548 *cond_expr =
2549 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2550 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2552 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2553 false, NULL_TREE);
2555 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2556 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2557 cond_expr_stmt_list);
2559 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2560 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2561 cond_expr_stmt_list);
2563 *cond_expr =
2564 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2565 *cond_expr =
2566 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2567 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2569 /* If we only needed the extra conditions and a new loop copy
2570 bail out here. */
2571 if (!do_versioning)
2572 return;
2574 initialize_original_copy_tables ();
2575 loop_version (loop, *cond_expr, &condition_bb,
2576 prob, prob, REG_BR_PROB_BASE - prob, true);
2577 free_original_copy_tables();
2579 /* Loop versioning violates an assumption we try to maintain during
2580 vectorization - that the loop exit block has a single predecessor.
2581 After versioning, the exit block of both loop versions is the same
2582 basic block (i.e. it has two predecessors). Just in order to simplify
2583 following transformations in the vectorizer, we fix this situation
2584 here by adding a new (empty) block on the exit-edge of the loop,
2585 with the proper loop-exit phis to maintain loop-closed-form. */
2587 merge_bb = single_exit (loop)->dest;
2588 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2589 new_exit_bb = split_edge (single_exit (loop));
2590 new_exit_e = single_exit (loop);
2591 e = EDGE_SUCC (new_exit_bb, 0);
2593 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2595 orig_phi = gsi_stmt (gsi);
2596 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2597 new_exit_bb);
2598 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2599 add_phi_arg (new_phi, arg, new_exit_e,
2600 gimple_phi_arg_location_from_edge (orig_phi, e));
2601 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2604 /* End loop-exit-fixes after versioning. */
2606 update_ssa (TODO_update_ssa);
2607 if (*cond_expr_stmt_list)
2609 cond_exp_gsi = gsi_last_bb (condition_bb);
2610 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2611 GSI_SAME_STMT);
2612 *cond_expr_stmt_list = NULL;
2614 *cond_expr = NULL_TREE;