2011-11-29 Dodji Seketeli <dodji@redhat.com>
[official-gcc.git] / gcc / postreload-gcse.c
blob64f100697d4e17599bec7604aeb5f35437e12aad
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2010, 2011
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "basic-block.h"
36 #include "output.h"
37 #include "function.h"
38 #include "expr.h"
39 #include "except.h"
40 #include "intl.h"
41 #include "obstack.h"
42 #include "hashtab.h"
43 #include "params.h"
44 #include "target.h"
45 #include "timevar.h"
46 #include "tree-pass.h"
47 #include "dbgcnt.h"
49 /* The following code implements gcse after reload, the purpose of this
50 pass is to cleanup redundant loads generated by reload and other
51 optimizations that come after gcse. It searches for simple inter-block
52 redundancies and tries to eliminate them by adding moves and loads
53 in cold places.
55 Perform partially redundant load elimination, try to eliminate redundant
56 loads created by the reload pass. We try to look for full or partial
57 redundant loads fed by one or more loads/stores in predecessor BBs,
58 and try adding loads to make them fully redundant. We also check if
59 it's worth adding loads to be able to delete the redundant load.
61 Algorithm:
62 1. Build available expressions hash table:
63 For each load/store instruction, if the loaded/stored memory didn't
64 change until the end of the basic block add this memory expression to
65 the hash table.
66 2. Perform Redundancy elimination:
67 For each load instruction do the following:
68 perform partial redundancy elimination, check if it's worth adding
69 loads to make the load fully redundant. If so add loads and
70 register copies and delete the load.
71 3. Delete instructions made redundant in step 2.
73 Future enhancement:
74 If the loaded register is used/defined between load and some store,
75 look for some other free register between load and all its stores,
76 and replace the load with a copy from this register to the loaded
77 register.
81 /* Keep statistics of this pass. */
82 static struct
84 int moves_inserted;
85 int copies_inserted;
86 int insns_deleted;
87 } stats;
89 /* We need to keep a hash table of expressions. The table entries are of
90 type 'struct expr', and for each expression there is a single linked
91 list of occurrences. */
93 /* The table itself. */
94 static htab_t expr_table;
96 /* Expression elements in the hash table. */
97 struct expr
99 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
100 rtx expr;
102 /* The same hash for this entry. */
103 hashval_t hash;
105 /* List of available occurrence in basic blocks in the function. */
106 struct occr *avail_occr;
109 static struct obstack expr_obstack;
111 /* Occurrence of an expression.
112 There is at most one occurrence per basic block. If a pattern appears
113 more than once, the last appearance is used. */
115 struct occr
117 /* Next occurrence of this expression. */
118 struct occr *next;
119 /* The insn that computes the expression. */
120 rtx insn;
121 /* Nonzero if this [anticipatable] occurrence has been deleted. */
122 char deleted_p;
125 static struct obstack occr_obstack;
127 /* The following structure holds the information about the occurrences of
128 the redundant instructions. */
129 struct unoccr
131 struct unoccr *next;
132 edge pred;
133 rtx insn;
136 static struct obstack unoccr_obstack;
138 /* Array where each element is the CUID if the insn that last set the hard
139 register with the number of the element, since the start of the current
140 basic block.
142 This array is used during the building of the hash table (step 1) to
143 determine if a reg is killed before the end of a basic block.
145 It is also used when eliminating partial redundancies (step 2) to see
146 if a reg was modified since the start of a basic block. */
147 static int *reg_avail_info;
149 /* A list of insns that may modify memory within the current basic block. */
150 struct modifies_mem
152 rtx insn;
153 struct modifies_mem *next;
155 static struct modifies_mem *modifies_mem_list;
157 /* The modifies_mem structs also go on an obstack, only this obstack is
158 freed each time after completing the analysis or transformations on
159 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
160 object on the obstack to keep track of the bottom of the obstack. */
161 static struct obstack modifies_mem_obstack;
162 static struct modifies_mem *modifies_mem_obstack_bottom;
164 /* Mapping of insn UIDs to CUIDs.
165 CUIDs are like UIDs except they increase monotonically in each basic
166 block, have no gaps, and only apply to real insns. */
167 static int *uid_cuid;
168 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
171 /* Helpers for memory allocation/freeing. */
172 static void alloc_mem (void);
173 static void free_mem (void);
175 /* Support for hash table construction and transformations. */
176 static bool oprs_unchanged_p (rtx, rtx, bool);
177 static void record_last_reg_set_info (rtx, rtx);
178 static void record_last_reg_set_info_regno (rtx, int);
179 static void record_last_mem_set_info (rtx);
180 static void record_last_set_info (rtx, const_rtx, void *);
181 static void record_opr_changes (rtx);
183 static void find_mem_conflicts (rtx, const_rtx, void *);
184 static int load_killed_in_block_p (int, rtx, bool);
185 static void reset_opr_set_tables (void);
187 /* Hash table support. */
188 static hashval_t hash_expr (rtx, int *);
189 static hashval_t hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx, rtx);
192 static struct expr *lookup_expr_in_table (rtx);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
196 /* Helpers for eliminate_partially_redundant_load. */
197 static bool reg_killed_on_edge (rtx, edge);
198 static bool reg_used_on_edge (rtx, edge);
200 static rtx get_avail_load_store_reg (rtx);
202 static bool bb_has_well_behaved_predecessors (basic_block);
203 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
204 static void hash_scan_set (rtx);
205 static void compute_hash_table (void);
207 /* The work horses of this pass. */
208 static void eliminate_partially_redundant_load (basic_block,
209 rtx,
210 struct expr *);
211 static void eliminate_partially_redundant_loads (void);
214 /* Allocate memory for the CUID mapping array and register/memory
215 tracking tables. */
217 static void
218 alloc_mem (void)
220 int i;
221 basic_block bb;
222 rtx insn;
224 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
225 uid_cuid = XCNEWVEC (int, get_max_uid () + 1);
226 i = 1;
227 FOR_EACH_BB (bb)
228 FOR_BB_INSNS (bb, insn)
230 if (INSN_P (insn))
231 uid_cuid[INSN_UID (insn)] = i++;
232 else
233 uid_cuid[INSN_UID (insn)] = i;
236 /* Allocate the available expressions hash table. We don't want to
237 make the hash table too small, but unnecessarily making it too large
238 also doesn't help. The i/4 is a gcse.c relic, and seems like a
239 reasonable choice. */
240 expr_table = htab_create (MAX (i / 4, 13),
241 hash_expr_for_htab, expr_equiv_p, NULL);
243 /* We allocate everything on obstacks because we often can roll back
244 the whole obstack to some point. Freeing obstacks is very fast. */
245 gcc_obstack_init (&expr_obstack);
246 gcc_obstack_init (&occr_obstack);
247 gcc_obstack_init (&unoccr_obstack);
248 gcc_obstack_init (&modifies_mem_obstack);
250 /* Working array used to track the last set for each register
251 in the current block. */
252 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
254 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
255 can roll it back in reset_opr_set_tables. */
256 modifies_mem_obstack_bottom =
257 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
258 sizeof (struct modifies_mem));
261 /* Free memory allocated by alloc_mem. */
263 static void
264 free_mem (void)
266 free (uid_cuid);
268 htab_delete (expr_table);
270 obstack_free (&expr_obstack, NULL);
271 obstack_free (&occr_obstack, NULL);
272 obstack_free (&unoccr_obstack, NULL);
273 obstack_free (&modifies_mem_obstack, NULL);
275 free (reg_avail_info);
279 /* Hash expression X.
280 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
281 or if the expression contains something we don't want to insert in the
282 table. */
284 static hashval_t
285 hash_expr (rtx x, int *do_not_record_p)
287 *do_not_record_p = 0;
288 return hash_rtx (x, GET_MODE (x), do_not_record_p,
289 NULL, /*have_reg_qty=*/false);
292 /* Callback for hashtab.
293 Return the hash value for expression EXP. We don't actually hash
294 here, we just return the cached hash value. */
296 static hashval_t
297 hash_expr_for_htab (const void *expp)
299 const struct expr *const exp = (const struct expr *) expp;
300 return exp->hash;
303 /* Callback for hashtab.
304 Return nonzero if exp1 is equivalent to exp2. */
306 static int
307 expr_equiv_p (const void *exp1p, const void *exp2p)
309 const struct expr *const exp1 = (const struct expr *) exp1p;
310 const struct expr *const exp2 = (const struct expr *) exp2p;
311 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
313 gcc_assert (!equiv_p || exp1->hash == exp2->hash);
314 return equiv_p;
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
330 hash = hash_expr (x, &do_not_record_p);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr
366 && BLOCK_FOR_INSN (avail_occr->insn) != BLOCK_FOR_INSN (insn))
368 /* If an occurrence isn't found, save a pointer to the end of
369 the list. */
370 last_occr = avail_occr;
371 avail_occr = avail_occr->next;
374 if (avail_occr)
375 /* Found another instance of the expression in the same basic block.
376 Prefer this occurrence to the currently recorded one. We want
377 the last one in the block and the block is scanned from start
378 to end. */
379 avail_occr->insn = insn;
380 else
382 /* First occurrence of this expression in this basic block. */
383 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
384 sizeof (struct occr));
386 /* First occurrence of this expression in any block? */
387 if (cur_expr->avail_occr == NULL)
388 cur_expr->avail_occr = avail_occr;
389 else
390 last_occr->next = avail_occr;
392 avail_occr->insn = insn;
393 avail_occr->next = NULL;
394 avail_occr->deleted_p = 0;
399 /* Lookup pattern PAT in the expression hash table.
400 The result is a pointer to the table entry, or NULL if not found. */
402 static struct expr *
403 lookup_expr_in_table (rtx pat)
405 int do_not_record_p;
406 struct expr **slot, *tmp_expr;
407 hashval_t hash = hash_expr (pat, &do_not_record_p);
409 if (do_not_record_p)
410 return NULL;
412 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
413 sizeof (struct expr));
414 tmp_expr->expr = pat;
415 tmp_expr->hash = hash;
416 tmp_expr->avail_occr = NULL;
418 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
419 hash, INSERT);
420 obstack_free (&expr_obstack, tmp_expr);
422 if (!slot)
423 return NULL;
424 else
425 return (*slot);
429 /* Dump all expressions and occurrences that are currently in the
430 expression hash table to FILE. */
432 /* This helper is called via htab_traverse. */
433 static int
434 dump_hash_table_entry (void **slot, void *filep)
436 struct expr *expr = (struct expr *) *slot;
437 FILE *file = (FILE *) filep;
438 struct occr *occr;
440 fprintf (file, "expr: ");
441 print_rtl (file, expr->expr);
442 fprintf (file,"\nhashcode: %u\n", expr->hash);
443 fprintf (file,"list of occurrences:\n");
444 occr = expr->avail_occr;
445 while (occr)
447 rtx insn = occr->insn;
448 print_rtl_single (file, insn);
449 fprintf (file, "\n");
450 occr = occr->next;
452 fprintf (file, "\n");
453 return 1;
456 static void
457 dump_hash_table (FILE *file)
459 fprintf (file, "\n\nexpression hash table\n");
460 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
461 (long) htab_size (expr_table),
462 (long) htab_elements (expr_table),
463 htab_collisions (expr_table));
464 if (htab_elements (expr_table) > 0)
466 fprintf (file, "\n\ntable entries:\n");
467 htab_traverse (expr_table, dump_hash_table_entry, file);
469 fprintf (file, "\n");
472 /* Return true if register X is recorded as being set by an instruction
473 whose CUID is greater than the one given. */
475 static bool
476 reg_changed_after_insn_p (rtx x, int cuid)
478 unsigned int regno, end_regno;
480 regno = REGNO (x);
481 end_regno = END_HARD_REGNO (x);
483 if (reg_avail_info[regno] > cuid)
484 return true;
485 while (++regno < end_regno);
486 return false;
489 /* Return nonzero if the operands of expression X are unchanged
490 1) from the start of INSN's basic block up to but not including INSN
491 if AFTER_INSN is false, or
492 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
494 static bool
495 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
497 int i, j;
498 enum rtx_code code;
499 const char *fmt;
501 if (x == 0)
502 return 1;
504 code = GET_CODE (x);
505 switch (code)
507 case REG:
508 /* We are called after register allocation. */
509 gcc_assert (REGNO (x) < FIRST_PSEUDO_REGISTER);
510 if (after_insn)
511 return !reg_changed_after_insn_p (x, INSN_CUID (insn) - 1);
512 else
513 return !reg_changed_after_insn_p (x, 0);
515 case MEM:
516 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
517 return 0;
518 else
519 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
521 case PC:
522 case CC0: /*FIXME*/
523 case CONST:
524 case CONST_INT:
525 case CONST_DOUBLE:
526 case CONST_FIXED:
527 case CONST_VECTOR:
528 case SYMBOL_REF:
529 case LABEL_REF:
530 case ADDR_VEC:
531 case ADDR_DIFF_VEC:
532 return 1;
534 case PRE_DEC:
535 case PRE_INC:
536 case POST_DEC:
537 case POST_INC:
538 case PRE_MODIFY:
539 case POST_MODIFY:
540 if (after_insn)
541 return 0;
542 break;
544 default:
545 break;
548 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
553 return 0;
555 else if (fmt[i] == 'E')
556 for (j = 0; j < XVECLEN (x, i); j++)
557 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
558 return 0;
561 return 1;
565 /* Used for communication between find_mem_conflicts and
566 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
567 conflict between two memory references.
568 This is a bit of a hack to work around the limitations of note_stores. */
569 static int mems_conflict_p;
571 /* DEST is the output of an instruction. If it is a memory reference, and
572 possibly conflicts with the load found in DATA, then set mems_conflict_p
573 to a nonzero value. */
575 static void
576 find_mem_conflicts (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
577 void *data)
579 rtx mem_op = (rtx) data;
581 while (GET_CODE (dest) == SUBREG
582 || GET_CODE (dest) == ZERO_EXTRACT
583 || GET_CODE (dest) == STRICT_LOW_PART)
584 dest = XEXP (dest, 0);
586 /* If DEST is not a MEM, then it will not conflict with the load. Note
587 that function calls are assumed to clobber memory, but are handled
588 elsewhere. */
589 if (! MEM_P (dest))
590 return;
592 if (true_dependence (dest, GET_MODE (dest), mem_op,
593 rtx_addr_varies_p))
594 mems_conflict_p = 1;
598 /* Return nonzero if the expression in X (a memory reference) is killed
599 in the current basic block before (if AFTER_INSN is false) or after
600 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
602 This function assumes that the modifies_mem table is flushed when
603 the hash table construction or redundancy elimination phases start
604 processing a new basic block. */
606 static int
607 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
609 struct modifies_mem *list_entry = modifies_mem_list;
611 while (list_entry)
613 rtx setter = list_entry->insn;
615 /* Ignore entries in the list that do not apply. */
616 if ((after_insn
617 && INSN_CUID (setter) < uid_limit)
618 || (! after_insn
619 && INSN_CUID (setter) > uid_limit))
621 list_entry = list_entry->next;
622 continue;
625 /* If SETTER is a call everything is clobbered. Note that calls
626 to pure functions are never put on the list, so we need not
627 worry about them. */
628 if (CALL_P (setter))
629 return 1;
631 /* SETTER must be an insn of some kind that sets memory. Call
632 note_stores to examine each hunk of memory that is modified.
633 It will set mems_conflict_p to nonzero if there may be a
634 conflict between X and SETTER. */
635 mems_conflict_p = 0;
636 note_stores (PATTERN (setter), find_mem_conflicts, x);
637 if (mems_conflict_p)
638 return 1;
640 list_entry = list_entry->next;
642 return 0;
646 /* Record register first/last/block set information for REGNO in INSN. */
648 static inline void
649 record_last_reg_set_info (rtx insn, rtx reg)
651 unsigned int regno, end_regno;
653 regno = REGNO (reg);
654 end_regno = END_HARD_REGNO (reg);
656 reg_avail_info[regno] = INSN_CUID (insn);
657 while (++regno < end_regno);
660 static inline void
661 record_last_reg_set_info_regno (rtx insn, int regno)
663 reg_avail_info[regno] = INSN_CUID (insn);
667 /* Record memory modification information for INSN. We do not actually care
668 about the memory location(s) that are set, or even how they are set (consider
669 a CALL_INSN). We merely need to record which insns modify memory. */
671 static void
672 record_last_mem_set_info (rtx insn)
674 struct modifies_mem *list_entry;
676 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
677 sizeof (struct modifies_mem));
678 list_entry->insn = insn;
679 list_entry->next = modifies_mem_list;
680 modifies_mem_list = list_entry;
683 /* Called from compute_hash_table via note_stores to handle one
684 SET or CLOBBER in an insn. DATA is really the instruction in which
685 the SET is taking place. */
687 static void
688 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
690 rtx last_set_insn = (rtx) data;
692 if (GET_CODE (dest) == SUBREG)
693 dest = SUBREG_REG (dest);
695 if (REG_P (dest))
696 record_last_reg_set_info (last_set_insn, dest);
697 else if (MEM_P (dest))
699 /* Ignore pushes, they don't clobber memory. They may still
700 clobber the stack pointer though. Some targets do argument
701 pushes without adding REG_INC notes. See e.g. PR25196,
702 where a pushsi2 on i386 doesn't have REG_INC notes. Note
703 such changes here too. */
704 if (! push_operand (dest, GET_MODE (dest)))
705 record_last_mem_set_info (last_set_insn);
706 else
707 record_last_reg_set_info_regno (last_set_insn, STACK_POINTER_REGNUM);
712 /* Reset tables used to keep track of what's still available since the
713 start of the block. */
715 static void
716 reset_opr_set_tables (void)
718 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
719 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
720 modifies_mem_list = NULL;
724 /* Record things set by INSN.
725 This data is used by oprs_unchanged_p. */
727 static void
728 record_opr_changes (rtx insn)
730 rtx note;
732 /* Find all stores and record them. */
733 note_stores (PATTERN (insn), record_last_set_info, insn);
735 /* Also record autoincremented REGs for this insn as changed. */
736 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
737 if (REG_NOTE_KIND (note) == REG_INC)
738 record_last_reg_set_info (insn, XEXP (note, 0));
740 /* Finally, if this is a call, record all call clobbers. */
741 if (CALL_P (insn))
743 unsigned int regno;
744 rtx link, x;
746 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
747 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
748 record_last_reg_set_info_regno (insn, regno);
750 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
751 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
753 x = XEXP (XEXP (link, 0), 0);
754 if (REG_P (x))
756 gcc_assert (HARD_REGISTER_P (x));
757 record_last_reg_set_info (insn, x);
761 if (! RTL_CONST_OR_PURE_CALL_P (insn))
762 record_last_mem_set_info (insn);
767 /* Scan the pattern of INSN and add an entry to the hash TABLE.
768 After reload we are interested in loads/stores only. */
770 static void
771 hash_scan_set (rtx insn)
773 rtx pat = PATTERN (insn);
774 rtx src = SET_SRC (pat);
775 rtx dest = SET_DEST (pat);
777 /* We are only interested in loads and stores. */
778 if (! MEM_P (src) && ! MEM_P (dest))
779 return;
781 /* Don't mess with jumps and nops. */
782 if (JUMP_P (insn) || set_noop_p (pat))
783 return;
785 if (REG_P (dest))
787 if (/* Don't CSE something if we can't do a reg/reg copy. */
788 can_copy_p (GET_MODE (dest))
789 /* Is SET_SRC something we want to gcse? */
790 && general_operand (src, GET_MODE (src))
791 #ifdef STACK_REGS
792 /* Never consider insns touching the register stack. It may
793 create situations that reg-stack cannot handle (e.g. a stack
794 register live across an abnormal edge). */
795 && (REGNO (dest) < FIRST_STACK_REG || REGNO (dest) > LAST_STACK_REG)
796 #endif
797 /* An expression is not available if its operands are
798 subsequently modified, including this insn. */
799 && oprs_unchanged_p (src, insn, true))
801 insert_expr_in_table (src, insn);
804 else if (REG_P (src))
806 /* Only record sets of pseudo-regs in the hash table. */
807 if (/* Don't CSE something if we can't do a reg/reg copy. */
808 can_copy_p (GET_MODE (src))
809 /* Is SET_DEST something we want to gcse? */
810 && general_operand (dest, GET_MODE (dest))
811 #ifdef STACK_REGS
812 /* As above for STACK_REGS. */
813 && (REGNO (src) < FIRST_STACK_REG || REGNO (src) > LAST_STACK_REG)
814 #endif
815 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
816 /* Check if the memory expression is killed after insn. */
817 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
818 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
820 insert_expr_in_table (dest, insn);
826 /* Create hash table of memory expressions available at end of basic
827 blocks. Basically you should think of this hash table as the
828 representation of AVAIL_OUT. This is the set of expressions that
829 is generated in a basic block and not killed before the end of the
830 same basic block. Notice that this is really a local computation. */
832 static void
833 compute_hash_table (void)
835 basic_block bb;
837 FOR_EACH_BB (bb)
839 rtx insn;
841 /* First pass over the instructions records information used to
842 determine when registers and memory are last set.
843 Since we compute a "local" AVAIL_OUT, reset the tables that
844 help us keep track of what has been modified since the start
845 of the block. */
846 reset_opr_set_tables ();
847 FOR_BB_INSNS (bb, insn)
849 if (INSN_P (insn))
850 record_opr_changes (insn);
853 /* The next pass actually builds the hash table. */
854 FOR_BB_INSNS (bb, insn)
855 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
856 hash_scan_set (insn);
861 /* Check if register REG is killed in any insn waiting to be inserted on
862 edge E. This function is required to check that our data flow analysis
863 is still valid prior to commit_edge_insertions. */
865 static bool
866 reg_killed_on_edge (rtx reg, edge e)
868 rtx insn;
870 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
871 if (INSN_P (insn) && reg_set_p (reg, insn))
872 return true;
874 return false;
877 /* Similar to above - check if register REG is used in any insn waiting
878 to be inserted on edge E.
879 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
880 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
882 static bool
883 reg_used_on_edge (rtx reg, edge e)
885 rtx insn;
887 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
888 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
889 return true;
891 return false;
894 /* Return the loaded/stored register of a load/store instruction. */
896 static rtx
897 get_avail_load_store_reg (rtx insn)
899 if (REG_P (SET_DEST (PATTERN (insn))))
900 /* A load. */
901 return SET_DEST(PATTERN(insn));
902 else
904 /* A store. */
905 gcc_assert (REG_P (SET_SRC (PATTERN (insn))));
906 return SET_SRC (PATTERN (insn));
910 /* Return nonzero if the predecessors of BB are "well behaved". */
912 static bool
913 bb_has_well_behaved_predecessors (basic_block bb)
915 edge pred;
916 edge_iterator ei;
918 if (EDGE_COUNT (bb->preds) == 0)
919 return false;
921 FOR_EACH_EDGE (pred, ei, bb->preds)
923 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
924 return false;
926 if ((pred->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
927 return false;
929 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
930 return false;
932 return true;
936 /* Search for the occurrences of expression in BB. */
938 static struct occr*
939 get_bb_avail_insn (basic_block bb, struct occr *occr)
941 for (; occr != NULL; occr = occr->next)
942 if (BLOCK_FOR_INSN (occr->insn) == bb)
943 return occr;
944 return NULL;
948 /* This handles the case where several stores feed a partially redundant
949 load. It checks if the redundancy elimination is possible and if it's
950 worth it.
952 Redundancy elimination is possible if,
953 1) None of the operands of an insn have been modified since the start
954 of the current basic block.
955 2) In any predecessor of the current basic block, the same expression
956 is generated.
958 See the function body for the heuristics that determine if eliminating
959 a redundancy is also worth doing, assuming it is possible. */
961 static void
962 eliminate_partially_redundant_load (basic_block bb, rtx insn,
963 struct expr *expr)
965 edge pred;
966 rtx avail_insn = NULL_RTX;
967 rtx avail_reg;
968 rtx dest, pat;
969 struct occr *a_occr;
970 struct unoccr *occr, *avail_occrs = NULL;
971 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
972 int npred_ok = 0;
973 gcov_type ok_count = 0; /* Redundant load execution count. */
974 gcov_type critical_count = 0; /* Execution count of critical edges. */
975 edge_iterator ei;
976 bool critical_edge_split = false;
978 /* The execution count of the loads to be added to make the
979 load fully redundant. */
980 gcov_type not_ok_count = 0;
981 basic_block pred_bb;
983 pat = PATTERN (insn);
984 dest = SET_DEST (pat);
986 /* Check that the loaded register is not used, set, or killed from the
987 beginning of the block. */
988 if (reg_changed_after_insn_p (dest, 0)
989 || reg_used_between_p (dest, PREV_INSN (BB_HEAD (bb)), insn))
990 return;
992 /* Check potential for replacing load with copy for predecessors. */
993 FOR_EACH_EDGE (pred, ei, bb->preds)
995 rtx next_pred_bb_end;
997 avail_insn = NULL_RTX;
998 avail_reg = NULL_RTX;
999 pred_bb = pred->src;
1000 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1001 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1002 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1004 /* Check if the loaded register is not used. */
1005 avail_insn = a_occr->insn;
1006 avail_reg = get_avail_load_store_reg (avail_insn);
1007 gcc_assert (avail_reg);
1009 /* Make sure we can generate a move from register avail_reg to
1010 dest. */
1011 extract_insn (gen_move_insn (copy_rtx (dest),
1012 copy_rtx (avail_reg)));
1013 if (! constrain_operands (1)
1014 || reg_killed_on_edge (avail_reg, pred)
1015 || reg_used_on_edge (dest, pred))
1017 avail_insn = NULL;
1018 continue;
1020 if (!reg_set_between_p (avail_reg, avail_insn, next_pred_bb_end))
1021 /* AVAIL_INSN remains non-null. */
1022 break;
1023 else
1024 avail_insn = NULL;
1027 if (EDGE_CRITICAL_P (pred))
1028 critical_count += pred->count;
1030 if (avail_insn != NULL_RTX)
1032 npred_ok++;
1033 ok_count += pred->count;
1034 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest),
1035 copy_rtx (avail_reg)))))
1037 /* Check if there is going to be a split. */
1038 if (EDGE_CRITICAL_P (pred))
1039 critical_edge_split = true;
1041 else /* Its a dead move no need to generate. */
1042 continue;
1043 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1044 sizeof (struct unoccr));
1045 occr->insn = avail_insn;
1046 occr->pred = pred;
1047 occr->next = avail_occrs;
1048 avail_occrs = occr;
1049 if (! rollback_unoccr)
1050 rollback_unoccr = occr;
1052 else
1054 /* Adding a load on a critical edge will cause a split. */
1055 if (EDGE_CRITICAL_P (pred))
1056 critical_edge_split = true;
1057 not_ok_count += pred->count;
1058 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1059 sizeof (struct unoccr));
1060 unoccr->insn = NULL_RTX;
1061 unoccr->pred = pred;
1062 unoccr->next = unavail_occrs;
1063 unavail_occrs = unoccr;
1064 if (! rollback_unoccr)
1065 rollback_unoccr = unoccr;
1069 if (/* No load can be replaced by copy. */
1070 npred_ok == 0
1071 /* Prevent exploding the code. */
1072 || (optimize_bb_for_size_p (bb) && npred_ok > 1)
1073 /* If we don't have profile information we cannot tell if splitting
1074 a critical edge is profitable or not so don't do it. */
1075 || ((! profile_info || ! flag_branch_probabilities
1076 || targetm.cannot_modify_jumps_p ())
1077 && critical_edge_split))
1078 goto cleanup;
1080 /* Check if it's worth applying the partial redundancy elimination. */
1081 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1082 goto cleanup;
1083 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1084 goto cleanup;
1086 /* Generate moves to the loaded register from where
1087 the memory is available. */
1088 for (occr = avail_occrs; occr; occr = occr->next)
1090 avail_insn = occr->insn;
1091 pred = occr->pred;
1092 /* Set avail_reg to be the register having the value of the
1093 memory. */
1094 avail_reg = get_avail_load_store_reg (avail_insn);
1095 gcc_assert (avail_reg);
1097 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1098 copy_rtx (avail_reg)),
1099 pred);
1100 stats.moves_inserted++;
1102 if (dump_file)
1103 fprintf (dump_file,
1104 "generating move from %d to %d on edge from %d to %d\n",
1105 REGNO (avail_reg),
1106 REGNO (dest),
1107 pred->src->index,
1108 pred->dest->index);
1111 /* Regenerate loads where the memory is unavailable. */
1112 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1114 pred = unoccr->pred;
1115 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1116 stats.copies_inserted++;
1118 if (dump_file)
1120 fprintf (dump_file,
1121 "generating on edge from %d to %d a copy of load: ",
1122 pred->src->index,
1123 pred->dest->index);
1124 print_rtl (dump_file, PATTERN (insn));
1125 fprintf (dump_file, "\n");
1129 /* Delete the insn if it is not available in this block and mark it
1130 for deletion if it is available. If insn is available it may help
1131 discover additional redundancies, so mark it for later deletion. */
1132 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1133 a_occr && (a_occr->insn != insn);
1134 a_occr = get_bb_avail_insn (bb, a_occr->next))
1137 if (!a_occr)
1139 stats.insns_deleted++;
1141 if (dump_file)
1143 fprintf (dump_file, "deleting insn:\n");
1144 print_rtl_single (dump_file, insn);
1145 fprintf (dump_file, "\n");
1147 delete_insn (insn);
1149 else
1150 a_occr->deleted_p = 1;
1152 cleanup:
1153 if (rollback_unoccr)
1154 obstack_free (&unoccr_obstack, rollback_unoccr);
1157 /* Performing the redundancy elimination as described before. */
1159 static void
1160 eliminate_partially_redundant_loads (void)
1162 rtx insn;
1163 basic_block bb;
1165 /* Note we start at block 1. */
1167 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1168 return;
1170 FOR_BB_BETWEEN (bb,
1171 ENTRY_BLOCK_PTR->next_bb->next_bb,
1172 EXIT_BLOCK_PTR,
1173 next_bb)
1175 /* Don't try anything on basic blocks with strange predecessors. */
1176 if (! bb_has_well_behaved_predecessors (bb))
1177 continue;
1179 /* Do not try anything on cold basic blocks. */
1180 if (optimize_bb_for_size_p (bb))
1181 continue;
1183 /* Reset the table of things changed since the start of the current
1184 basic block. */
1185 reset_opr_set_tables ();
1187 /* Look at all insns in the current basic block and see if there are
1188 any loads in it that we can record. */
1189 FOR_BB_INSNS (bb, insn)
1191 /* Is it a load - of the form (set (reg) (mem))? */
1192 if (NONJUMP_INSN_P (insn)
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && REG_P (SET_DEST (PATTERN (insn)))
1195 && MEM_P (SET_SRC (PATTERN (insn))))
1197 rtx pat = PATTERN (insn);
1198 rtx src = SET_SRC (pat);
1199 struct expr *expr;
1201 if (!MEM_VOLATILE_P (src)
1202 && GET_MODE (src) != BLKmode
1203 && general_operand (src, GET_MODE (src))
1204 /* Are the operands unchanged since the start of the
1205 block? */
1206 && oprs_unchanged_p (src, insn, false)
1207 && !(cfun->can_throw_non_call_exceptions && may_trap_p (src))
1208 && !side_effects_p (src)
1209 /* Is the expression recorded? */
1210 && (expr = lookup_expr_in_table (src)) != NULL)
1212 /* We now have a load (insn) and an available memory at
1213 its BB start (expr). Try to remove the loads if it is
1214 redundant. */
1215 eliminate_partially_redundant_load (bb, insn, expr);
1219 /* Keep track of everything modified by this insn, so that we
1220 know what has been modified since the start of the current
1221 basic block. */
1222 if (INSN_P (insn))
1223 record_opr_changes (insn);
1227 commit_edge_insertions ();
1230 /* Go over the expression hash table and delete insns that were
1231 marked for later deletion. */
1233 /* This helper is called via htab_traverse. */
1234 static int
1235 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1237 struct expr *expr = (struct expr *) *slot;
1238 struct occr *occr;
1240 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1242 if (occr->deleted_p && dbg_cnt (gcse2_delete))
1244 delete_insn (occr->insn);
1245 stats.insns_deleted++;
1247 if (dump_file)
1249 fprintf (dump_file, "deleting insn:\n");
1250 print_rtl_single (dump_file, occr->insn);
1251 fprintf (dump_file, "\n");
1256 return 1;
1259 static void
1260 delete_redundant_insns (void)
1262 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1263 if (dump_file)
1264 fprintf (dump_file, "\n");
1267 /* Main entry point of the GCSE after reload - clean some redundant loads
1268 due to spilling. */
1270 static void
1271 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1274 memset (&stats, 0, sizeof (stats));
1276 /* Allocate memory for this pass.
1277 Also computes and initializes the insns' CUIDs. */
1278 alloc_mem ();
1280 /* We need alias analysis. */
1281 init_alias_analysis ();
1283 compute_hash_table ();
1285 if (dump_file)
1286 dump_hash_table (dump_file);
1288 if (htab_elements (expr_table) > 0)
1290 eliminate_partially_redundant_loads ();
1291 delete_redundant_insns ();
1293 if (dump_file)
1295 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1296 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1297 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1298 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1299 fprintf (dump_file, "\n\n");
1302 statistics_counter_event (cfun, "copies inserted",
1303 stats.copies_inserted);
1304 statistics_counter_event (cfun, "moves inserted",
1305 stats.moves_inserted);
1306 statistics_counter_event (cfun, "insns deleted",
1307 stats.insns_deleted);
1310 /* We are finished with alias. */
1311 end_alias_analysis ();
1313 free_mem ();
1317 static bool
1318 gate_handle_gcse2 (void)
1320 return (optimize > 0 && flag_gcse_after_reload
1321 && optimize_function_for_speed_p (cfun));
1325 static unsigned int
1326 rest_of_handle_gcse2 (void)
1328 gcse_after_reload_main (get_insns ());
1329 rebuild_jump_labels (get_insns ());
1330 return 0;
1333 struct rtl_opt_pass pass_gcse2 =
1336 RTL_PASS,
1337 "gcse2", /* name */
1338 gate_handle_gcse2, /* gate */
1339 rest_of_handle_gcse2, /* execute */
1340 NULL, /* sub */
1341 NULL, /* next */
1342 0, /* static_pass_number */
1343 TV_GCSE_AFTER_RELOAD, /* tv_id */
1344 0, /* properties_required */
1345 0, /* properties_provided */
1346 0, /* properties_destroyed */
1347 0, /* todo_flags_start */
1348 TODO_verify_rtl_sharing
1349 | TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */