2011-11-29 Dodji Seketeli <dodji@redhat.com>
[official-gcc.git] / gcc / ira-emit.c
blob01a94420aa8e50ba6d0c2b3d0f45b6b5ce08c2e2
1 /* Integrated Register Allocator. Changing code and generating moves.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* When we have more one region, we need to change the original RTL
23 code after coloring. Let us consider two allocnos representing the
24 same pseudo-register outside and inside a region respectively.
25 They can get different hard-registers. The reload pass works on
26 pseudo registers basis and there is no way to say the reload that
27 pseudo could be in different registers and it is even more
28 difficult to say in what places of the code the pseudo should have
29 particular hard-registers. So in this case IRA has to create and
30 use a new pseudo-register inside the region and adds code to move
31 allocno values on the region's borders. This is done by the code
32 in this file.
34 The code makes top-down traversal of the regions and generate new
35 pseudos and the move code on the region borders. In some
36 complicated cases IRA can create a new pseudo used temporarily to
37 move allocno values when a swap of values stored in two
38 hard-registers is needed (e.g. two allocnos representing different
39 pseudos outside region got respectively hard registers 1 and 2 and
40 the corresponding allocnos inside the region got respectively hard
41 registers 2 and 1). At this stage, the new pseudo is marked as
42 spilled.
44 IRA still creates the pseudo-register and the moves on the region
45 borders even when the both corresponding allocnos were assigned to
46 the same hard-register. It is done because, if the reload pass for
47 some reason spills a pseudo-register representing the original
48 pseudo outside or inside the region, the effect will be smaller
49 because another pseudo will still be in the hard-register. In most
50 cases, this is better then spilling the original pseudo in its
51 whole live-range. If reload does not change the allocation for the
52 two pseudo-registers, the trivial move will be removed by
53 post-reload optimizations.
55 IRA does not generate a new pseudo and moves for the allocno values
56 if the both allocnos representing an original pseudo inside and
57 outside region assigned to the same hard register when the register
58 pressure in the region for the corresponding pressure class is less
59 than number of available hard registers for given pressure class.
61 IRA also does some optimizations to remove redundant moves which is
62 transformed into stores by the reload pass on CFG edges
63 representing exits from the region.
65 IRA tries to reduce duplication of code generated on CFG edges
66 which are enters and exits to/from regions by moving some code to
67 the edge sources or destinations when it is possible. */
69 #include "config.h"
70 #include "system.h"
71 #include "coretypes.h"
72 #include "tm.h"
73 #include "regs.h"
74 #include "rtl.h"
75 #include "tm_p.h"
76 #include "target.h"
77 #include "flags.h"
78 #include "obstack.h"
79 #include "bitmap.h"
80 #include "hard-reg-set.h"
81 #include "basic-block.h"
82 #include "expr.h"
83 #include "recog.h"
84 #include "params.h"
85 #include "timevar.h"
86 #include "tree-pass.h"
87 #include "output.h"
88 #include "reload.h"
89 #include "df.h"
90 #include "ira-int.h"
93 /* Data used to emit live range split insns and to flattening IR. */
94 ira_emit_data_t ira_allocno_emit_data;
96 /* Definitions for vectors of pointers. */
97 typedef void *void_p;
98 DEF_VEC_P (void_p);
99 DEF_VEC_ALLOC_P (void_p,heap);
101 /* Pointers to data allocated for allocnos being created during
102 emitting. Usually there are quite few such allocnos because they
103 are created only for resolving loop in register shuffling. */
104 static VEC(void_p, heap) *new_allocno_emit_data_vec;
106 /* Allocate and initiate the emit data. */
107 void
108 ira_initiate_emit_data (void)
110 ira_allocno_t a;
111 ira_allocno_iterator ai;
113 ira_allocno_emit_data
114 = (ira_emit_data_t) ira_allocate (ira_allocnos_num
115 * sizeof (struct ira_emit_data));
116 memset (ira_allocno_emit_data, 0,
117 ira_allocnos_num * sizeof (struct ira_emit_data));
118 FOR_EACH_ALLOCNO (a, ai)
119 ALLOCNO_ADD_DATA (a) = ira_allocno_emit_data + ALLOCNO_NUM (a);
120 new_allocno_emit_data_vec = VEC_alloc (void_p, heap, 50);
124 /* Free the emit data. */
125 void
126 ira_finish_emit_data (void)
128 void_p p;
129 ira_allocno_t a;
130 ira_allocno_iterator ai;
132 ira_free (ira_allocno_emit_data);
133 FOR_EACH_ALLOCNO (a, ai)
134 ALLOCNO_ADD_DATA (a) = NULL;
135 for (;VEC_length (void_p, new_allocno_emit_data_vec) != 0;)
137 p = VEC_pop (void_p, new_allocno_emit_data_vec);
138 ira_free (p);
140 VEC_free (void_p, heap, new_allocno_emit_data_vec);
143 /* Create and return a new allocno with given REGNO and
144 LOOP_TREE_NODE. Allocate emit data for it. */
145 static ira_allocno_t
146 create_new_allocno (int regno, ira_loop_tree_node_t loop_tree_node)
148 ira_allocno_t a;
150 a = ira_create_allocno (regno, false, loop_tree_node);
151 ALLOCNO_ADD_DATA (a) = ira_allocate (sizeof (struct ira_emit_data));
152 memset (ALLOCNO_ADD_DATA (a), 0, sizeof (struct ira_emit_data));
153 VEC_safe_push (void_p, heap, new_allocno_emit_data_vec, ALLOCNO_ADD_DATA (a));
154 return a;
159 /* See comments below. */
160 typedef struct move *move_t;
162 /* The structure represents an allocno move. Both allocnos have the
163 same origional regno but different allocation. */
164 struct move
166 /* The allocnos involved in the move. */
167 ira_allocno_t from, to;
168 /* The next move in the move sequence. */
169 move_t next;
170 /* Used for finding dependencies. */
171 bool visited_p;
172 /* The size of the following array. */
173 int deps_num;
174 /* Moves on which given move depends on. Dependency can be cyclic.
175 It means we need a temporary to generates the moves. Sequence
176 A1->A2, B1->B2 where A1 and B2 are assigned to reg R1 and A2 and
177 B1 are assigned to reg R2 is an example of the cyclic
178 dependencies. */
179 move_t *deps;
180 /* First insn generated for the move. */
181 rtx insn;
184 /* Array of moves (indexed by BB index) which should be put at the
185 start/end of the corresponding basic blocks. */
186 static move_t *at_bb_start, *at_bb_end;
188 /* Max regno before renaming some pseudo-registers. For example, the
189 same pseudo-register can be renamed in a loop if its allocation is
190 different outside the loop. */
191 static int max_regno_before_changing;
193 /* Return new move of allocnos TO and FROM. */
194 static move_t
195 create_move (ira_allocno_t to, ira_allocno_t from)
197 move_t move;
199 move = (move_t) ira_allocate (sizeof (struct move));
200 move->deps = NULL;
201 move->deps_num = 0;
202 move->to = to;
203 move->from = from;
204 move->next = NULL;
205 move->insn = NULL_RTX;
206 move->visited_p = false;
207 return move;
210 /* Free memory for MOVE and its dependencies. */
211 static void
212 free_move (move_t move)
214 if (move->deps != NULL)
215 ira_free (move->deps);
216 ira_free (move);
219 /* Free memory for list of the moves given by its HEAD. */
220 static void
221 free_move_list (move_t head)
223 move_t next;
225 for (; head != NULL; head = next)
227 next = head->next;
228 free_move (head);
232 /* Return TRUE if the move list LIST1 and LIST2 are equal (two
233 moves are equal if they involve the same allocnos). */
234 static bool
235 eq_move_lists_p (move_t list1, move_t list2)
237 for (; list1 != NULL && list2 != NULL;
238 list1 = list1->next, list2 = list2->next)
239 if (list1->from != list2->from || list1->to != list2->to)
240 return false;
241 return list1 == list2;
244 /* Print move list LIST into file F. */
245 static void
246 print_move_list (FILE *f, move_t list)
248 for (; list != NULL; list = list->next)
249 fprintf (f, " a%dr%d->a%dr%d",
250 ALLOCNO_NUM (list->from), ALLOCNO_REGNO (list->from),
251 ALLOCNO_NUM (list->to), ALLOCNO_REGNO (list->to));
252 fprintf (f, "\n");
255 extern void ira_debug_move_list (move_t list);
257 /* Print move list LIST into stderr. */
258 void
259 ira_debug_move_list (move_t list)
261 print_move_list (stderr, list);
264 /* This recursive function changes pseudo-registers in *LOC if it is
265 necessary. The function returns TRUE if a change was done. */
266 static bool
267 change_regs (rtx *loc)
269 int i, regno, result = false;
270 const char *fmt;
271 enum rtx_code code;
272 rtx reg;
274 if (*loc == NULL_RTX)
275 return false;
276 code = GET_CODE (*loc);
277 if (code == REG)
279 regno = REGNO (*loc);
280 if (regno < FIRST_PSEUDO_REGISTER)
281 return false;
282 if (regno >= max_regno_before_changing)
283 /* It is a shared register which was changed already. */
284 return false;
285 if (ira_curr_regno_allocno_map[regno] == NULL)
286 return false;
287 reg = allocno_emit_reg (ira_curr_regno_allocno_map[regno]);
288 if (reg == *loc)
289 return false;
290 *loc = reg;
291 return true;
294 fmt = GET_RTX_FORMAT (code);
295 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
297 if (fmt[i] == 'e')
298 result = change_regs (&XEXP (*loc, i)) || result;
299 else if (fmt[i] == 'E')
301 int j;
303 for (j = XVECLEN (*loc, i) - 1; j >= 0; j--)
304 result = change_regs (&XVECEXP (*loc, i, j)) || result;
307 return result;
310 /* Attach MOVE to the edge E. The move is attached to the head of the
311 list if HEAD_P is TRUE. */
312 static void
313 add_to_edge_list (edge e, move_t move, bool head_p)
315 move_t last;
317 if (head_p || e->aux == NULL)
319 move->next = (move_t) e->aux;
320 e->aux = move;
322 else
324 for (last = (move_t) e->aux; last->next != NULL; last = last->next)
326 last->next = move;
327 move->next = NULL;
331 /* Create and return new pseudo-register with the same attributes as
332 ORIGINAL_REG. */
333 static rtx
334 create_new_reg (rtx original_reg)
336 rtx new_reg;
338 new_reg = gen_reg_rtx (GET_MODE (original_reg));
339 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original_reg);
340 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original_reg);
341 REG_POINTER (new_reg) = REG_POINTER (original_reg);
342 REG_ATTRS (new_reg) = REG_ATTRS (original_reg);
343 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
344 fprintf (ira_dump_file, " Creating newreg=%i from oldreg=%i\n",
345 REGNO (new_reg), REGNO (original_reg));
346 return new_reg;
349 /* Return TRUE if loop given by SUBNODE inside the loop given by
350 NODE. */
351 static bool
352 subloop_tree_node_p (ira_loop_tree_node_t subnode, ira_loop_tree_node_t node)
354 for (; subnode != NULL; subnode = subnode->parent)
355 if (subnode == node)
356 return true;
357 return false;
360 /* Set up member `reg' to REG for allocnos which has the same regno as
361 ALLOCNO and which are inside the loop corresponding to ALLOCNO. */
362 static void
363 set_allocno_reg (ira_allocno_t allocno, rtx reg)
365 int regno;
366 ira_allocno_t a;
367 ira_loop_tree_node_t node;
369 node = ALLOCNO_LOOP_TREE_NODE (allocno);
370 for (a = ira_regno_allocno_map[ALLOCNO_REGNO (allocno)];
371 a != NULL;
372 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
373 if (subloop_tree_node_p (ALLOCNO_LOOP_TREE_NODE (a), node))
374 ALLOCNO_EMIT_DATA (a)->reg = reg;
375 for (a = ALLOCNO_CAP (allocno); a != NULL; a = ALLOCNO_CAP (a))
376 ALLOCNO_EMIT_DATA (a)->reg = reg;
377 regno = ALLOCNO_REGNO (allocno);
378 for (a = allocno;;)
380 if (a == NULL || (a = ALLOCNO_CAP (a)) == NULL)
382 node = node->parent;
383 if (node == NULL)
384 break;
385 a = node->regno_allocno_map[regno];
387 if (a == NULL)
388 continue;
389 if (ALLOCNO_EMIT_DATA (a)->child_renamed_p)
390 break;
391 ALLOCNO_EMIT_DATA (a)->child_renamed_p = true;
395 /* Return true if there is an entry to given loop not from its parent
396 (or grandparent) block. For example, it is possible for two
397 adjacent loops inside another loop. */
398 static bool
399 entered_from_non_parent_p (ira_loop_tree_node_t loop_node)
401 ira_loop_tree_node_t bb_node, src_loop_node, parent;
402 edge e;
403 edge_iterator ei;
405 for (bb_node = loop_node->children;
406 bb_node != NULL;
407 bb_node = bb_node->next)
408 if (bb_node->bb != NULL)
410 FOR_EACH_EDGE (e, ei, bb_node->bb->preds)
411 if (e->src != ENTRY_BLOCK_PTR
412 && (src_loop_node = IRA_BB_NODE (e->src)->parent) != loop_node)
414 for (parent = src_loop_node->parent;
415 parent != NULL;
416 parent = parent->parent)
417 if (parent == loop_node)
418 break;
419 if (parent != NULL)
420 /* That is an exit from a nested loop -- skip it. */
421 continue;
422 for (parent = loop_node->parent;
423 parent != NULL;
424 parent = parent->parent)
425 if (src_loop_node == parent)
426 break;
427 if (parent == NULL)
428 return true;
431 return false;
434 /* Set up ENTERED_FROM_NON_PARENT_P for each loop region. */
435 static void
436 setup_entered_from_non_parent_p (void)
438 unsigned int i;
439 loop_p loop;
441 FOR_EACH_VEC_ELT (loop_p, ira_loops.larray, i, loop)
442 if (ira_loop_nodes[i].regno_allocno_map != NULL)
443 ira_loop_nodes[i].entered_from_non_parent_p
444 = entered_from_non_parent_p (&ira_loop_nodes[i]);
447 /* Return TRUE if move of SRC_ALLOCNO (assigned to hard register) to
448 DEST_ALLOCNO (assigned to memory) can be removed beacuse it does
449 not change value of the destination. One possible reason for this
450 is the situation when SRC_ALLOCNO is not modified in the
451 corresponding loop. */
452 static bool
453 store_can_be_removed_p (ira_allocno_t src_allocno, ira_allocno_t dest_allocno)
455 int regno, orig_regno;
456 ira_allocno_t a;
457 ira_loop_tree_node_t node;
459 ira_assert (ALLOCNO_CAP_MEMBER (src_allocno) == NULL
460 && ALLOCNO_CAP_MEMBER (dest_allocno) == NULL);
461 orig_regno = ALLOCNO_REGNO (src_allocno);
462 regno = REGNO (allocno_emit_reg (dest_allocno));
463 for (node = ALLOCNO_LOOP_TREE_NODE (src_allocno);
464 node != NULL;
465 node = node->parent)
467 a = node->regno_allocno_map[orig_regno];
468 ira_assert (a != NULL);
469 if (REGNO (allocno_emit_reg (a)) == (unsigned) regno)
470 /* We achieved the destination and everything is ok. */
471 return true;
472 else if (bitmap_bit_p (node->modified_regnos, orig_regno))
473 return false;
474 else if (node->entered_from_non_parent_p)
475 /* If there is a path from a destination loop block to the
476 source loop header containing basic blocks of non-parents
477 (grandparents) of the source loop, we should have checked
478 modifications of the pseudo on this path too to decide
479 about possibility to remove the store. It could be done by
480 solving a data-flow problem. Unfortunately such global
481 solution would complicate IR flattening. Therefore we just
482 prohibit removal of the store in such complicated case. */
483 return false;
485 /* It is actually a loop entry -- do not remove the store. */
486 return false;
489 /* Generate and attach moves to the edge E. This looks at the final
490 regnos of allocnos living on the edge with the same original regno
491 to figure out when moves should be generated. */
492 static void
493 generate_edge_moves (edge e)
495 ira_loop_tree_node_t src_loop_node, dest_loop_node;
496 unsigned int regno;
497 bitmap_iterator bi;
498 ira_allocno_t src_allocno, dest_allocno, *src_map, *dest_map;
499 move_t move;
501 src_loop_node = IRA_BB_NODE (e->src)->parent;
502 dest_loop_node = IRA_BB_NODE (e->dest)->parent;
503 e->aux = NULL;
504 if (src_loop_node == dest_loop_node)
505 return;
506 src_map = src_loop_node->regno_allocno_map;
507 dest_map = dest_loop_node->regno_allocno_map;
508 EXECUTE_IF_SET_IN_REG_SET (DF_LR_IN (e->dest),
509 FIRST_PSEUDO_REGISTER, regno, bi)
510 if (bitmap_bit_p (DF_LR_OUT (e->src), regno))
512 src_allocno = src_map[regno];
513 dest_allocno = dest_map[regno];
514 if (REGNO (allocno_emit_reg (src_allocno))
515 == REGNO (allocno_emit_reg (dest_allocno)))
516 continue;
517 /* Remove unnecessary stores at the region exit. We should do
518 this for readonly memory for sure and this is guaranteed by
519 that we never generate moves on region borders (see
520 checking ira_reg_equiv_invariant_p in function
521 change_loop). */
522 if (ALLOCNO_HARD_REGNO (dest_allocno) < 0
523 && ALLOCNO_HARD_REGNO (src_allocno) >= 0
524 && store_can_be_removed_p (src_allocno, dest_allocno))
526 ALLOCNO_EMIT_DATA (src_allocno)->mem_optimized_dest = dest_allocno;
527 ALLOCNO_EMIT_DATA (dest_allocno)->mem_optimized_dest_p = true;
528 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
529 fprintf (ira_dump_file, " Remove r%d:a%d->a%d(mem)\n",
530 regno, ALLOCNO_NUM (src_allocno),
531 ALLOCNO_NUM (dest_allocno));
532 continue;
534 move = create_move (dest_allocno, src_allocno);
535 add_to_edge_list (e, move, true);
539 /* Bitmap of allocnos local for the current loop. */
540 static bitmap local_allocno_bitmap;
542 /* This bitmap is used to find that we need to generate and to use a
543 new pseudo-register when processing allocnos with the same original
544 regno. */
545 static bitmap used_regno_bitmap;
547 /* This bitmap contains regnos of allocnos which were renamed locally
548 because the allocnos correspond to disjoint live ranges in loops
549 with a common parent. */
550 static bitmap renamed_regno_bitmap;
552 /* Change (if necessary) pseudo-registers inside loop given by loop
553 tree node NODE. */
554 static void
555 change_loop (ira_loop_tree_node_t node)
557 bitmap_iterator bi;
558 unsigned int i;
559 int regno;
560 bool used_p;
561 ira_allocno_t allocno, parent_allocno, *map;
562 rtx insn, original_reg;
563 enum reg_class aclass, pclass;
564 ira_loop_tree_node_t parent;
566 if (node != ira_loop_tree_root)
569 if (node->bb != NULL)
571 FOR_BB_INSNS (node->bb, insn)
572 if (INSN_P (insn) && change_regs (&insn))
574 df_insn_rescan (insn);
575 df_notes_rescan (insn);
577 return;
580 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
581 fprintf (ira_dump_file,
582 " Changing RTL for loop %d (header bb%d)\n",
583 node->loop->num, node->loop->header->index);
585 parent = ira_curr_loop_tree_node->parent;
586 map = parent->regno_allocno_map;
587 EXECUTE_IF_SET_IN_REG_SET (ira_curr_loop_tree_node->border_allocnos,
588 0, i, bi)
590 allocno = ira_allocnos[i];
591 regno = ALLOCNO_REGNO (allocno);
592 aclass = ALLOCNO_CLASS (allocno);
593 pclass = ira_pressure_class_translate[aclass];
594 parent_allocno = map[regno];
595 ira_assert (regno < ira_reg_equiv_len);
596 /* We generate the same hard register move because the
597 reload pass can put an allocno into memory in this case
598 we will have live range splitting. If it does not happen
599 such the same hard register moves will be removed. The
600 worst case when the both allocnos are put into memory by
601 the reload is very rare. */
602 if (parent_allocno != NULL
603 && (ALLOCNO_HARD_REGNO (allocno)
604 == ALLOCNO_HARD_REGNO (parent_allocno))
605 && (ALLOCNO_HARD_REGNO (allocno) < 0
606 || (parent->reg_pressure[pclass] + 1
607 <= ira_available_class_regs[pclass])
608 || TEST_HARD_REG_BIT (ira_prohibited_mode_move_regs
609 [ALLOCNO_MODE (allocno)],
610 ALLOCNO_HARD_REGNO (allocno))
611 /* don't create copies because reload can spill an
612 allocno set by copy although the allocno will not
613 get memory slot. */
614 || ira_reg_equiv_invariant_p[regno]
615 || ira_reg_equiv_const[regno] != NULL_RTX))
616 continue;
617 original_reg = allocno_emit_reg (allocno);
618 if (parent_allocno == NULL
619 || (REGNO (allocno_emit_reg (parent_allocno))
620 == REGNO (original_reg)))
622 if (internal_flag_ira_verbose > 3 && ira_dump_file)
623 fprintf (ira_dump_file, " %i vs parent %i:",
624 ALLOCNO_HARD_REGNO (allocno),
625 ALLOCNO_HARD_REGNO (parent_allocno));
626 set_allocno_reg (allocno, create_new_reg (original_reg));
630 /* Rename locals: Local allocnos with same regno in different loops
631 might get the different hard register. So we need to change
632 ALLOCNO_REG. */
633 bitmap_and_compl (local_allocno_bitmap,
634 ira_curr_loop_tree_node->all_allocnos,
635 ira_curr_loop_tree_node->border_allocnos);
636 EXECUTE_IF_SET_IN_REG_SET (local_allocno_bitmap, 0, i, bi)
638 allocno = ira_allocnos[i];
639 regno = ALLOCNO_REGNO (allocno);
640 if (ALLOCNO_CAP_MEMBER (allocno) != NULL)
641 continue;
642 used_p = !bitmap_set_bit (used_regno_bitmap, regno);
643 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
644 if (! used_p)
645 continue;
646 bitmap_set_bit (renamed_regno_bitmap, regno);
647 set_allocno_reg (allocno, create_new_reg (allocno_emit_reg (allocno)));
651 /* Process to set up flag somewhere_renamed_p. */
652 static void
653 set_allocno_somewhere_renamed_p (void)
655 unsigned int regno;
656 ira_allocno_t allocno;
657 ira_allocno_iterator ai;
659 FOR_EACH_ALLOCNO (allocno, ai)
661 regno = ALLOCNO_REGNO (allocno);
662 if (bitmap_bit_p (renamed_regno_bitmap, regno)
663 && REGNO (allocno_emit_reg (allocno)) == regno)
664 ALLOCNO_EMIT_DATA (allocno)->somewhere_renamed_p = true;
668 /* Return TRUE if move lists on all edges given in vector VEC are
669 equal. */
670 static bool
671 eq_edge_move_lists_p (VEC(edge,gc) *vec)
673 move_t list;
674 int i;
676 list = (move_t) EDGE_I (vec, 0)->aux;
677 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
678 if (! eq_move_lists_p (list, (move_t) EDGE_I (vec, i)->aux))
679 return false;
680 return true;
683 /* Look at all entry edges (if START_P) or exit edges of basic block
684 BB and put move lists at the BB start or end if it is possible. In
685 other words, this decreases code duplication of allocno moves. */
686 static void
687 unify_moves (basic_block bb, bool start_p)
689 int i;
690 edge e;
691 move_t list;
692 VEC(edge,gc) *vec;
694 vec = (start_p ? bb->preds : bb->succs);
695 if (EDGE_COUNT (vec) == 0 || ! eq_edge_move_lists_p (vec))
696 return;
697 e = EDGE_I (vec, 0);
698 list = (move_t) e->aux;
699 if (! start_p && control_flow_insn_p (BB_END (bb)))
700 return;
701 e->aux = NULL;
702 for (i = EDGE_COUNT (vec) - 1; i > 0; i--)
704 e = EDGE_I (vec, i);
705 free_move_list ((move_t) e->aux);
706 e->aux = NULL;
708 if (start_p)
709 at_bb_start[bb->index] = list;
710 else
711 at_bb_end[bb->index] = list;
714 /* Last move (in move sequence being processed) setting up the
715 corresponding hard register. */
716 static move_t hard_regno_last_set[FIRST_PSEUDO_REGISTER];
718 /* If the element value is equal to CURR_TICK then the corresponding
719 element in `hard_regno_last_set' is defined and correct. */
720 static int hard_regno_last_set_check[FIRST_PSEUDO_REGISTER];
722 /* Last move (in move sequence being processed) setting up the
723 corresponding allocno. */
724 static move_t *allocno_last_set;
726 /* If the element value is equal to CURR_TICK then the corresponding
727 element in . `allocno_last_set' is defined and correct. */
728 static int *allocno_last_set_check;
730 /* Definition of vector of moves. */
731 DEF_VEC_P(move_t);
732 DEF_VEC_ALLOC_P(move_t, heap);
734 /* This vec contains moves sorted topologically (depth-first) on their
735 dependency graph. */
736 static VEC(move_t,heap) *move_vec;
738 /* The variable value is used to check correctness of values of
739 elements of arrays `hard_regno_last_set' and
740 `allocno_last_set_check'. */
741 static int curr_tick;
743 /* This recursive function traverses dependencies of MOVE and produces
744 topological sorting (in depth-first order). */
745 static void
746 traverse_moves (move_t move)
748 int i;
750 if (move->visited_p)
751 return;
752 move->visited_p = true;
753 for (i = move->deps_num - 1; i >= 0; i--)
754 traverse_moves (move->deps[i]);
755 VEC_safe_push (move_t, heap, move_vec, move);
758 /* Remove unnecessary moves in the LIST, makes topological sorting,
759 and removes cycles on hard reg dependencies by introducing new
760 allocnos assigned to memory and additional moves. It returns the
761 result move list. */
762 static move_t
763 modify_move_list (move_t list)
765 int i, n, nregs, hard_regno;
766 ira_allocno_t to, from;
767 move_t move, new_move, set_move, first, last;
769 if (list == NULL)
770 return NULL;
771 /* Creat move deps. */
772 curr_tick++;
773 for (move = list; move != NULL; move = move->next)
775 to = move->to;
776 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
777 continue;
778 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
779 for (i = 0; i < nregs; i++)
781 hard_regno_last_set[hard_regno + i] = move;
782 hard_regno_last_set_check[hard_regno + i] = curr_tick;
785 for (move = list; move != NULL; move = move->next)
787 from = move->from;
788 to = move->to;
789 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
791 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
792 for (n = i = 0; i < nregs; i++)
793 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
794 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
795 != ALLOCNO_REGNO (from)))
796 n++;
797 move->deps = (move_t *) ira_allocate (n * sizeof (move_t));
798 for (n = i = 0; i < nregs; i++)
799 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
800 && (ALLOCNO_REGNO (hard_regno_last_set[hard_regno + i]->to)
801 != ALLOCNO_REGNO (from)))
802 move->deps[n++] = hard_regno_last_set[hard_regno + i];
803 move->deps_num = n;
806 /* Toplogical sorting: */
807 VEC_truncate (move_t, move_vec, 0);
808 for (move = list; move != NULL; move = move->next)
809 traverse_moves (move);
810 last = NULL;
811 for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
813 move = VEC_index (move_t, move_vec, i);
814 move->next = NULL;
815 if (last != NULL)
816 last->next = move;
817 last = move;
819 first = VEC_last (move_t, move_vec);
820 /* Removing cycles: */
821 curr_tick++;
822 VEC_truncate (move_t, move_vec, 0);
823 for (move = first; move != NULL; move = move->next)
825 from = move->from;
826 to = move->to;
827 if ((hard_regno = ALLOCNO_HARD_REGNO (from)) >= 0)
829 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (from)];
830 for (i = 0; i < nregs; i++)
831 if (hard_regno_last_set_check[hard_regno + i] == curr_tick
832 && ALLOCNO_HARD_REGNO
833 (hard_regno_last_set[hard_regno + i]->to) >= 0)
835 int n, j;
836 ira_allocno_t new_allocno;
838 set_move = hard_regno_last_set[hard_regno + i];
839 /* It does not matter what loop_tree_node (of TO or
840 FROM) to use for the new allocno because of
841 subsequent IRA internal representation
842 flattening. */
843 new_allocno
844 = create_new_allocno (ALLOCNO_REGNO (set_move->to),
845 ALLOCNO_LOOP_TREE_NODE (set_move->to));
846 ALLOCNO_MODE (new_allocno) = ALLOCNO_MODE (set_move->to);
847 ira_set_allocno_class (new_allocno,
848 ALLOCNO_CLASS (set_move->to));
849 ira_create_allocno_objects (new_allocno);
850 ALLOCNO_ASSIGNED_P (new_allocno) = true;
851 ALLOCNO_HARD_REGNO (new_allocno) = -1;
852 ALLOCNO_EMIT_DATA (new_allocno)->reg
853 = create_new_reg (allocno_emit_reg (set_move->to));
855 /* Make it possibly conflicting with all earlier
856 created allocnos. Cases where temporary allocnos
857 created to remove the cycles are quite rare. */
858 n = ALLOCNO_NUM_OBJECTS (new_allocno);
859 gcc_assert (n == ALLOCNO_NUM_OBJECTS (set_move->to));
860 for (j = 0; j < n; j++)
862 ira_object_t new_obj = ALLOCNO_OBJECT (new_allocno, j);
864 OBJECT_MIN (new_obj) = 0;
865 OBJECT_MAX (new_obj) = ira_objects_num - 1;
868 new_move = create_move (set_move->to, new_allocno);
869 set_move->to = new_allocno;
870 VEC_safe_push (move_t, heap, move_vec, new_move);
871 ira_move_loops_num++;
872 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
873 fprintf (ira_dump_file,
874 " Creating temporary allocno a%dr%d\n",
875 ALLOCNO_NUM (new_allocno),
876 REGNO (allocno_emit_reg (new_allocno)));
879 if ((hard_regno = ALLOCNO_HARD_REGNO (to)) < 0)
880 continue;
881 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (to)];
882 for (i = 0; i < nregs; i++)
884 hard_regno_last_set[hard_regno + i] = move;
885 hard_regno_last_set_check[hard_regno + i] = curr_tick;
888 for (i = (int) VEC_length (move_t, move_vec) - 1; i >= 0; i--)
890 move = VEC_index (move_t, move_vec, i);
891 move->next = NULL;
892 last->next = move;
893 last = move;
895 return first;
898 /* Generate RTX move insns from the move list LIST. This updates
899 allocation cost using move execution frequency FREQ. */
900 static rtx
901 emit_move_list (move_t list, int freq)
903 int cost, regno;
904 rtx result, insn, set, to;
905 enum machine_mode mode;
906 enum reg_class aclass;
908 start_sequence ();
909 for (; list != NULL; list = list->next)
911 start_sequence ();
912 emit_move_insn (allocno_emit_reg (list->to),
913 allocno_emit_reg (list->from));
914 list->insn = get_insns ();
915 end_sequence ();
916 for (insn = list->insn; insn != NULL_RTX; insn = NEXT_INSN (insn))
918 /* The reload needs to have set up insn codes. If the
919 reload sets up insn codes by itself, it may fail because
920 insns will have hard registers instead of pseudos and
921 there may be no machine insn with given hard
922 registers. */
923 recog_memoized (insn);
924 /* Add insn to equiv init insn list if it is necessary.
925 Otherwise reload will not remove this insn if it decides
926 to use the equivalence. */
927 if ((set = single_set (insn)) != NULL_RTX)
929 to = SET_DEST (set);
930 if (GET_CODE (to) == SUBREG)
931 to = SUBREG_REG (to);
932 ira_assert (REG_P (to));
933 regno = REGNO (to);
934 if (regno >= ira_reg_equiv_len
935 || (! ira_reg_equiv_invariant_p[regno]
936 && ira_reg_equiv_const[regno] == NULL_RTX))
937 continue; /* regno has no equivalence. */
938 ira_assert ((int) VEC_length (reg_equivs_t, reg_equivs)
939 >= ira_reg_equiv_len);
940 reg_equiv_init (regno)
941 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init (regno));
944 emit_insn (list->insn);
945 mode = ALLOCNO_MODE (list->to);
946 aclass = ALLOCNO_CLASS (list->to);
947 cost = 0;
948 if (ALLOCNO_HARD_REGNO (list->to) < 0)
950 if (ALLOCNO_HARD_REGNO (list->from) >= 0)
952 cost = ira_memory_move_cost[mode][aclass][0] * freq;
953 ira_store_cost += cost;
956 else if (ALLOCNO_HARD_REGNO (list->from) < 0)
958 if (ALLOCNO_HARD_REGNO (list->to) >= 0)
960 cost = ira_memory_move_cost[mode][aclass][0] * freq;
961 ira_load_cost += cost;
964 else
966 ira_init_register_move_cost_if_necessary (mode);
967 cost = ira_register_move_cost[mode][aclass][aclass] * freq;
968 ira_shuffle_cost += cost;
970 ira_overall_cost += cost;
972 result = get_insns ();
973 end_sequence ();
974 return result;
977 /* Generate RTX move insns from move lists attached to basic blocks
978 and edges. */
979 static void
980 emit_moves (void)
982 basic_block bb;
983 edge_iterator ei;
984 edge e;
985 rtx insns, tmp;
987 FOR_EACH_BB (bb)
989 if (at_bb_start[bb->index] != NULL)
991 at_bb_start[bb->index] = modify_move_list (at_bb_start[bb->index]);
992 insns = emit_move_list (at_bb_start[bb->index],
993 REG_FREQ_FROM_BB (bb));
994 tmp = BB_HEAD (bb);
995 if (LABEL_P (tmp))
996 tmp = NEXT_INSN (tmp);
997 if (NOTE_INSN_BASIC_BLOCK_P (tmp))
998 tmp = NEXT_INSN (tmp);
999 if (tmp == BB_HEAD (bb))
1000 emit_insn_before (insns, tmp);
1001 else if (tmp != NULL_RTX)
1002 emit_insn_after (insns, PREV_INSN (tmp));
1003 else
1004 emit_insn_after (insns, get_last_insn ());
1007 if (at_bb_end[bb->index] != NULL)
1009 at_bb_end[bb->index] = modify_move_list (at_bb_end[bb->index]);
1010 insns = emit_move_list (at_bb_end[bb->index], REG_FREQ_FROM_BB (bb));
1011 ira_assert (! control_flow_insn_p (BB_END (bb)));
1012 emit_insn_after (insns, BB_END (bb));
1015 FOR_EACH_EDGE (e, ei, bb->succs)
1017 if (e->aux == NULL)
1018 continue;
1019 ira_assert ((e->flags & EDGE_ABNORMAL) == 0
1020 || ! EDGE_CRITICAL_P (e));
1021 e->aux = modify_move_list ((move_t) e->aux);
1022 insert_insn_on_edge
1023 (emit_move_list ((move_t) e->aux,
1024 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e))),
1026 if (e->src->next_bb != e->dest)
1027 ira_additional_jumps_num++;
1032 /* Update costs of A and corresponding allocnos on upper levels on the
1033 loop tree from reading (if READ_P) or writing A on an execution
1034 path with FREQ. */
1035 static void
1036 update_costs (ira_allocno_t a, bool read_p, int freq)
1038 ira_loop_tree_node_t parent;
1040 for (;;)
1042 ALLOCNO_NREFS (a)++;
1043 ALLOCNO_FREQ (a) += freq;
1044 ALLOCNO_MEMORY_COST (a)
1045 += (ira_memory_move_cost[ALLOCNO_MODE (a)][ALLOCNO_CLASS (a)]
1046 [read_p ? 1 : 0] * freq);
1047 if (ALLOCNO_CAP (a) != NULL)
1048 a = ALLOCNO_CAP (a);
1049 else if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL
1050 || (a = parent->regno_allocno_map[ALLOCNO_REGNO (a)]) == NULL)
1051 break;
1055 /* Process moves from LIST with execution FREQ to add ranges, copies,
1056 and modify costs for allocnos involved in the moves. All regnos
1057 living through the list is in LIVE_THROUGH, and the loop tree node
1058 used to find corresponding allocnos is NODE. */
1059 static void
1060 add_range_and_copies_from_move_list (move_t list, ira_loop_tree_node_t node,
1061 bitmap live_through, int freq)
1063 int start, n;
1064 unsigned int regno;
1065 move_t move;
1066 ira_allocno_t a;
1067 ira_copy_t cp;
1068 live_range_t r;
1069 bitmap_iterator bi;
1070 HARD_REG_SET hard_regs_live;
1072 if (list == NULL)
1073 return;
1074 n = 0;
1075 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1076 n++;
1077 REG_SET_TO_HARD_REG_SET (hard_regs_live, live_through);
1078 /* This is a trick to guarantee that new ranges is not merged with
1079 the old ones. */
1080 ira_max_point++;
1081 start = ira_max_point;
1082 for (move = list; move != NULL; move = move->next)
1084 ira_allocno_t from = move->from;
1085 ira_allocno_t to = move->to;
1086 int nr, i;
1088 bitmap_clear_bit (live_through, ALLOCNO_REGNO (from));
1089 bitmap_clear_bit (live_through, ALLOCNO_REGNO (to));
1091 nr = ALLOCNO_NUM_OBJECTS (to);
1092 for (i = 0; i < nr; i++)
1094 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1095 if (OBJECT_CONFLICT_ARRAY (to_obj) == NULL)
1097 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1098 fprintf (ira_dump_file, " Allocate conflicts for a%dr%d\n",
1099 ALLOCNO_NUM (to), REGNO (allocno_emit_reg (to)));
1100 ira_allocate_object_conflicts (to_obj, n);
1103 ior_hard_reg_conflicts (from, &hard_regs_live);
1104 ior_hard_reg_conflicts (to, &hard_regs_live);
1106 update_costs (from, true, freq);
1107 update_costs (to, false, freq);
1108 cp = ira_add_allocno_copy (from, to, freq, false, move->insn, NULL);
1109 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1110 fprintf (ira_dump_file, " Adding cp%d:a%dr%d-a%dr%d\n",
1111 cp->num, ALLOCNO_NUM (cp->first),
1112 REGNO (allocno_emit_reg (cp->first)),
1113 ALLOCNO_NUM (cp->second),
1114 REGNO (allocno_emit_reg (cp->second)));
1116 nr = ALLOCNO_NUM_OBJECTS (from);
1117 for (i = 0; i < nr; i++)
1119 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
1120 r = OBJECT_LIVE_RANGES (from_obj);
1121 if (r == NULL || r->finish >= 0)
1123 ira_add_live_range_to_object (from_obj, start, ira_max_point);
1124 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1125 fprintf (ira_dump_file,
1126 " Adding range [%d..%d] to allocno a%dr%d\n",
1127 start, ira_max_point, ALLOCNO_NUM (from),
1128 REGNO (allocno_emit_reg (from)));
1130 else
1132 r->finish = ira_max_point;
1133 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1134 fprintf (ira_dump_file,
1135 " Adding range [%d..%d] to allocno a%dr%d\n",
1136 r->start, ira_max_point, ALLOCNO_NUM (from),
1137 REGNO (allocno_emit_reg (from)));
1140 ira_max_point++;
1141 nr = ALLOCNO_NUM_OBJECTS (to);
1142 for (i = 0; i < nr; i++)
1144 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
1145 ira_add_live_range_to_object (to_obj, ira_max_point, -1);
1147 ira_max_point++;
1149 for (move = list; move != NULL; move = move->next)
1151 int nr, i;
1152 nr = ALLOCNO_NUM_OBJECTS (move->to);
1153 for (i = 0; i < nr; i++)
1155 ira_object_t to_obj = ALLOCNO_OBJECT (move->to, i);
1156 r = OBJECT_LIVE_RANGES (to_obj);
1157 if (r->finish < 0)
1159 r->finish = ira_max_point - 1;
1160 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1161 fprintf (ira_dump_file,
1162 " Adding range [%d..%d] to allocno a%dr%d\n",
1163 r->start, r->finish, ALLOCNO_NUM (move->to),
1164 REGNO (allocno_emit_reg (move->to)));
1168 EXECUTE_IF_SET_IN_BITMAP (live_through, FIRST_PSEUDO_REGISTER, regno, bi)
1170 ira_allocno_t to;
1171 int nr, i;
1173 a = node->regno_allocno_map[regno];
1174 if ((to = ALLOCNO_EMIT_DATA (a)->mem_optimized_dest) != NULL)
1175 a = to;
1176 nr = ALLOCNO_NUM_OBJECTS (a);
1177 for (i = 0; i < nr; i++)
1179 ira_object_t obj = ALLOCNO_OBJECT (a, i);
1180 ira_add_live_range_to_object (obj, start, ira_max_point - 1);
1182 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1183 fprintf
1184 (ira_dump_file,
1185 " Adding range [%d..%d] to live through %s allocno a%dr%d\n",
1186 start, ira_max_point - 1,
1187 to != NULL ? "upper level" : "",
1188 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
1192 /* Process all move list to add ranges, conflicts, copies, and modify
1193 costs for allocnos involved in the moves. */
1194 static void
1195 add_ranges_and_copies (void)
1197 basic_block bb;
1198 edge_iterator ei;
1199 edge e;
1200 ira_loop_tree_node_t node;
1201 bitmap live_through;
1203 live_through = ira_allocate_bitmap ();
1204 FOR_EACH_BB (bb)
1206 /* It does not matter what loop_tree_node (of source or
1207 destination block) to use for searching allocnos by their
1208 regnos because of subsequent IR flattening. */
1209 node = IRA_BB_NODE (bb)->parent;
1210 bitmap_copy (live_through, DF_LR_IN (bb));
1211 add_range_and_copies_from_move_list
1212 (at_bb_start[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1213 bitmap_copy (live_through, DF_LR_OUT (bb));
1214 add_range_and_copies_from_move_list
1215 (at_bb_end[bb->index], node, live_through, REG_FREQ_FROM_BB (bb));
1216 FOR_EACH_EDGE (e, ei, bb->succs)
1218 bitmap_and (live_through, DF_LR_IN (e->dest), DF_LR_OUT (bb));
1219 add_range_and_copies_from_move_list
1220 ((move_t) e->aux, node, live_through,
1221 REG_FREQ_FROM_EDGE_FREQ (EDGE_FREQUENCY (e)));
1224 ira_free_bitmap (live_through);
1227 /* The entry function changes code and generates shuffling allocnos on
1228 region borders for the regional (LOOPS_P is TRUE in this case)
1229 register allocation. */
1230 void
1231 ira_emit (bool loops_p)
1233 basic_block bb;
1234 rtx insn;
1235 edge_iterator ei;
1236 edge e;
1237 ira_allocno_t a;
1238 ira_allocno_iterator ai;
1240 FOR_EACH_ALLOCNO (a, ai)
1241 ALLOCNO_EMIT_DATA (a)->reg = regno_reg_rtx[ALLOCNO_REGNO (a)];
1242 if (! loops_p)
1243 return;
1244 at_bb_start = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
1245 memset (at_bb_start, 0, sizeof (move_t) * last_basic_block);
1246 at_bb_end = (move_t *) ira_allocate (sizeof (move_t) * last_basic_block);
1247 memset (at_bb_end, 0, sizeof (move_t) * last_basic_block);
1248 local_allocno_bitmap = ira_allocate_bitmap ();
1249 used_regno_bitmap = ira_allocate_bitmap ();
1250 renamed_regno_bitmap = ira_allocate_bitmap ();
1251 max_regno_before_changing = max_reg_num ();
1252 ira_traverse_loop_tree (true, ira_loop_tree_root, change_loop, NULL);
1253 set_allocno_somewhere_renamed_p ();
1254 ira_free_bitmap (used_regno_bitmap);
1255 ira_free_bitmap (renamed_regno_bitmap);
1256 ira_free_bitmap (local_allocno_bitmap);
1257 setup_entered_from_non_parent_p ();
1258 FOR_EACH_BB (bb)
1260 at_bb_start[bb->index] = NULL;
1261 at_bb_end[bb->index] = NULL;
1262 FOR_EACH_EDGE (e, ei, bb->succs)
1263 if (e->dest != EXIT_BLOCK_PTR)
1264 generate_edge_moves (e);
1266 allocno_last_set
1267 = (move_t *) ira_allocate (sizeof (move_t) * max_reg_num ());
1268 allocno_last_set_check
1269 = (int *) ira_allocate (sizeof (int) * max_reg_num ());
1270 memset (allocno_last_set_check, 0, sizeof (int) * max_reg_num ());
1271 memset (hard_regno_last_set_check, 0, sizeof (hard_regno_last_set_check));
1272 curr_tick = 0;
1273 FOR_EACH_BB (bb)
1274 unify_moves (bb, true);
1275 FOR_EACH_BB (bb)
1276 unify_moves (bb, false);
1277 move_vec = VEC_alloc (move_t, heap, ira_allocnos_num);
1278 emit_moves ();
1279 add_ranges_and_copies ();
1280 /* Clean up: */
1281 FOR_EACH_BB (bb)
1283 free_move_list (at_bb_start[bb->index]);
1284 free_move_list (at_bb_end[bb->index]);
1285 FOR_EACH_EDGE (e, ei, bb->succs)
1287 free_move_list ((move_t) e->aux);
1288 e->aux = NULL;
1291 VEC_free (move_t, heap, move_vec);
1292 ira_free (allocno_last_set_check);
1293 ira_free (allocno_last_set);
1294 commit_edge_insertions ();
1295 /* Fix insn codes. It is necessary to do it before reload because
1296 reload assumes initial insn codes defined. The insn codes can be
1297 invalidated by CFG infrastructure for example in jump
1298 redirection. */
1299 FOR_EACH_BB (bb)
1300 FOR_BB_INSNS_REVERSE (bb, insn)
1301 if (INSN_P (insn))
1302 recog_memoized (insn);
1303 ira_free (at_bb_end);
1304 ira_free (at_bb_start);