* i386.c (notice_update_cc): Remove bogus pentium GCC code.
[official-gcc.git] / gcc / haifa-sched.c
blob59a1190ccb044b2e418c36e387b359a64d2d42eb
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 This file is part of GNU CC.
8 GNU CC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
13 GNU CC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to the Free
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
24 /* Instruction scheduling pass.
26 This pass implements list scheduling within basic blocks. It is
27 run twice: (1) after flow analysis, but before register allocation,
28 and (2) after register allocation.
30 The first run performs interblock scheduling, moving insns between
31 different blocks in the same "region", and the second runs only
32 basic block scheduling.
34 Interblock motions performed are useful motions and speculative
35 motions, including speculative loads. Motions requiring code
36 duplication are not supported. The identification of motion type
37 and the check for validity of speculative motions requires
38 construction and analysis of the function's control flow graph.
39 The scheduler works as follows:
41 We compute insn priorities based on data dependencies. Flow
42 analysis only creates a fraction of the data-dependencies we must
43 observe: namely, only those dependencies which the combiner can be
44 expected to use. For this pass, we must therefore create the
45 remaining dependencies we need to observe: register dependencies,
46 memory dependencies, dependencies to keep function calls in order,
47 and the dependence between a conditional branch and the setting of
48 condition codes are all dealt with here.
50 The scheduler first traverses the data flow graph, starting with
51 the last instruction, and proceeding to the first, assigning values
52 to insn_priority as it goes. This sorts the instructions
53 topologically by data dependence.
55 Once priorities have been established, we order the insns using
56 list scheduling. This works as follows: starting with a list of
57 all the ready insns, and sorted according to priority number, we
58 schedule the insn from the end of the list by placing its
59 predecessors in the list according to their priority order. We
60 consider this insn scheduled by setting the pointer to the "end" of
61 the list to point to the previous insn. When an insn has no
62 predecessors, we either queue it until sufficient time has elapsed
63 or add it to the ready list. As the instructions are scheduled or
64 when stalls are introduced, the queue advances and dumps insns into
65 the ready list. When all insns down to the lowest priority have
66 been scheduled, the critical path of the basic block has been made
67 as short as possible. The remaining insns are then scheduled in
68 remaining slots.
70 Function unit conflicts are resolved during forward list scheduling
71 by tracking the time when each insn is committed to the schedule
72 and from that, the time the function units it uses must be free.
73 As insns on the ready list are considered for scheduling, those
74 that would result in a blockage of the already committed insns are
75 queued until no blockage will result.
77 The following list shows the order in which we want to break ties
78 among insns in the ready list:
80 1. choose insn with the longest path to end of bb, ties
81 broken by
82 2. choose insn with least contribution to register pressure,
83 ties broken by
84 3. prefer in-block upon interblock motion, ties broken by
85 4. prefer useful upon speculative motion, ties broken by
86 5. choose insn with largest control flow probability, ties
87 broken by
88 6. choose insn with the least dependences upon the previously
89 scheduled insn, or finally
90 7. choose insn with lowest UID.
92 Memory references complicate matters. Only if we can be certain
93 that memory references are not part of the data dependency graph
94 (via true, anti, or output dependence), can we move operations past
95 memory references. To first approximation, reads can be done
96 independently, while writes introduce dependencies. Better
97 approximations will yield fewer dependencies.
99 Before reload, an extended analysis of interblock data dependences
100 is required for interblock scheduling. This is performed in
101 compute_block_backward_dependences ().
103 Dependencies set up by memory references are treated in exactly the
104 same way as other dependencies, by using LOG_LINKS backward
105 dependences. LOG_LINKS are translated into INSN_DEPEND forward
106 dependences for the purpose of forward list scheduling.
108 Having optimized the critical path, we may have also unduly
109 extended the lifetimes of some registers. If an operation requires
110 that constants be loaded into registers, it is certainly desirable
111 to load those constants as early as necessary, but no earlier.
112 I.e., it will not do to load up a bunch of registers at the
113 beginning of a basic block only to use them at the end, if they
114 could be loaded later, since this may result in excessive register
115 utilization.
117 Note that since branches are never in basic blocks, but only end
118 basic blocks, this pass will not move branches. But that is ok,
119 since we can use GNU's delayed branch scheduling pass to take care
120 of this case.
122 Also note that no further optimizations based on algebraic
123 identities are performed, so this pass would be a good one to
124 perform instruction splitting, such as breaking up a multiply
125 instruction into shifts and adds where that is profitable.
127 Given the memory aliasing analysis that this pass should perform,
128 it should be possible to remove redundant stores to memory, and to
129 load values from registers instead of hitting memory.
131 Before reload, speculative insns are moved only if a 'proof' exists
132 that no exception will be caused by this, and if no live registers
133 exist that inhibit the motion (live registers constraints are not
134 represented by data dependence edges).
136 This pass must update information that subsequent passes expect to
137 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
138 reg_n_calls_crossed, and reg_live_length. Also, basic_block_head,
139 basic_block_end.
141 The information in the line number notes is carefully retained by
142 this pass. Notes that refer to the starting and ending of
143 exception regions are also carefully retained by this pass. All
144 other NOTE insns are grouped in their same relative order at the
145 beginning of basic blocks and regions that have been scheduled.
147 The main entry point for this pass is schedule_insns(), called for
148 each function. The work of the scheduler is organized in three
149 levels: (1) function level: insns are subject to splitting,
150 control-flow-graph is constructed, regions are computed (after
151 reload, each region is of one block), (2) region level: control
152 flow graph attributes required for interblock scheduling are
153 computed (dominators, reachability, etc.), data dependences and
154 priorities are computed, and (3) block level: insns in the block
155 are actually scheduled. */
157 #include <stdio.h>
158 #include "config.h"
159 #include "rtl.h"
160 #include "basic-block.h"
161 #include "regs.h"
162 #include "hard-reg-set.h"
163 #include "flags.h"
164 #include "insn-config.h"
165 #include "insn-attr.h"
166 #include "except.h"
168 extern char *reg_known_equiv_p;
169 extern rtx *reg_known_value;
171 #ifdef INSN_SCHEDULING
173 /* enable interblock scheduling code */
175 /* define INTERBLOCK_DEBUG for using the -fsched-max debugging facility */
176 /* #define INTERBLOCK_DEBUG */
178 /* target_units bitmask has 1 for each unit in the cpu. It should be
179 possible to compute this variable from the machine description.
180 But currently it is computed by examinning the insn list. Since
181 this is only needed for visualization, it seems an acceptable
182 solution. (For understanding the mapping of bits to units, see
183 definition of function_units[] in "insn-attrtab.c") */
185 static int target_units = 0;
187 /* issue_rate is the number of insns that can be scheduled in the same
188 machine cycle. It can be defined in the config/mach/mach.h file,
189 otherwise we set it to 1. */
191 static int issue_rate;
193 #ifndef ISSUE_RATE
194 #define ISSUE_RATE 1
195 #endif
197 /* sched_debug_count is used for debugging the scheduler by limiting
198 the number of scheduled insns. It is controlled by the option
199 -fsched-max-N (N is a number).
201 sched-verbose controls the amount of debugging output the
202 scheduler prints. It is controlled by -fsched-verbose-N:
203 N>0 and no -DSR : the output is directed to stderr.
204 N>=10 will direct the printouts to stderr (regardless of -dSR).
205 N=1: same as -dSR.
206 N=2: bb's probabilities, detailed ready list info, unit/insn info.
207 N=3: rtl at abort point, control-flow, regions info.
208 N=5: dependences info.
210 max_rgn_blocks and max_region_insns limit region size for
211 interblock scheduling. They are controlled by
212 -fsched-interblock-max-blocks-N, -fsched-interblock-max-insns-N */
214 #define MAX_RGN_BLOCKS 10
215 #define MAX_RGN_INSNS 100
217 static int sched_debug_count = -1;
218 static int sched_verbose_param = 0;
219 static int sched_verbose = 0;
220 static int max_rgn_blocks = MAX_RGN_BLOCKS;
221 static int max_rgn_insns = MAX_RGN_INSNS;
223 /* nr_inter/spec counts interblock/speculative motion for the function */
224 static int nr_inter, nr_spec;
227 /* debugging file. all printouts are sent to dump, which is always set,
228 either to stderr, or to the dump listing file (-dRS). */
229 static FILE *dump = 0;
231 /* fix_sched_param() is called from toplev.c upon detection
232 of the -fsched-***-N options. */
234 void
235 fix_sched_param (param, val)
236 char *param, *val;
238 if (!strcmp (param, "max"))
239 sched_debug_count = ((sched_debug_count == -1) ?
240 atoi (val) : sched_debug_count);
241 else if (!strcmp (param, "verbose"))
242 sched_verbose_param = atoi (val);
243 else if (!strcmp (param, "interblock-max-blocks"))
244 max_rgn_blocks = atoi (val);
245 else if (!strcmp (param, "interblock-max-insns"))
246 max_rgn_insns = atoi (val);
247 else
248 warning ("fix_sched_param: unknown param: %s", param);
252 /* Arrays set up by scheduling for the same respective purposes as
253 similar-named arrays set up by flow analysis. We work with these
254 arrays during the scheduling pass so we can compare values against
255 unscheduled code.
257 Values of these arrays are copied at the end of this pass into the
258 arrays set up by flow analysis. */
259 static int *sched_reg_n_calls_crossed;
260 static int *sched_reg_live_length;
261 static int *sched_reg_basic_block;
263 /* We need to know the current block number during the post scheduling
264 update of live register information so that we can also update
265 REG_BASIC_BLOCK if a register changes blocks. */
266 static int current_block_num;
268 /* Element N is the next insn that sets (hard or pseudo) register
269 N within the current basic block; or zero, if there is no
270 such insn. Needed for new registers which may be introduced
271 by splitting insns. */
272 static rtx *reg_last_uses;
273 static rtx *reg_last_sets;
274 static regset reg_pending_sets;
275 static int reg_pending_sets_all;
277 /* Vector indexed by INSN_UID giving the original ordering of the insns. */
278 static int *insn_luid;
279 #define INSN_LUID(INSN) (insn_luid[INSN_UID (INSN)])
281 /* Vector indexed by INSN_UID giving each instruction a priority. */
282 static int *insn_priority;
283 #define INSN_PRIORITY(INSN) (insn_priority[INSN_UID (INSN)])
285 static short *insn_costs;
286 #define INSN_COST(INSN) insn_costs[INSN_UID (INSN)]
288 /* Vector indexed by INSN_UID giving an encoding of the function units
289 used. */
290 static short *insn_units;
291 #define INSN_UNIT(INSN) insn_units[INSN_UID (INSN)]
293 /* Vector indexed by INSN_UID giving each instruction a register-weight.
294 This weight is an estimation of the insn contribution to registers pressure. */
295 static int *insn_reg_weight;
296 #define INSN_REG_WEIGHT(INSN) (insn_reg_weight[INSN_UID (INSN)])
298 /* Vector indexed by INSN_UID giving list of insns which
299 depend upon INSN. Unlike LOG_LINKS, it represents forward dependences. */
300 static rtx *insn_depend;
301 #define INSN_DEPEND(INSN) insn_depend[INSN_UID (INSN)]
303 /* Vector indexed by INSN_UID. Initialized to the number of incoming
304 edges in forward dependence graph (= number of LOG_LINKS). As
305 scheduling procedes, dependence counts are decreased. An
306 instruction moves to the ready list when its counter is zero. */
307 static int *insn_dep_count;
308 #define INSN_DEP_COUNT(INSN) (insn_dep_count[INSN_UID (INSN)])
310 /* Vector indexed by INSN_UID giving an encoding of the blockage range
311 function. The unit and the range are encoded. */
312 static unsigned int *insn_blockage;
313 #define INSN_BLOCKAGE(INSN) insn_blockage[INSN_UID (INSN)]
314 #define UNIT_BITS 5
315 #define BLOCKAGE_MASK ((1 << BLOCKAGE_BITS) - 1)
316 #define ENCODE_BLOCKAGE(U, R) \
317 ((((U) << UNIT_BITS) << BLOCKAGE_BITS \
318 | MIN_BLOCKAGE_COST (R)) << BLOCKAGE_BITS \
319 | MAX_BLOCKAGE_COST (R))
320 #define UNIT_BLOCKED(B) ((B) >> (2 * BLOCKAGE_BITS))
321 #define BLOCKAGE_RANGE(B) \
322 (((((B) >> BLOCKAGE_BITS) & BLOCKAGE_MASK) << (HOST_BITS_PER_INT / 2)) \
323 | (B) & BLOCKAGE_MASK)
325 /* Encodings of the `<name>_unit_blockage_range' function. */
326 #define MIN_BLOCKAGE_COST(R) ((R) >> (HOST_BITS_PER_INT / 2))
327 #define MAX_BLOCKAGE_COST(R) ((R) & ((1 << (HOST_BITS_PER_INT / 2)) - 1))
329 #define DONE_PRIORITY -1
330 #define MAX_PRIORITY 0x7fffffff
331 #define TAIL_PRIORITY 0x7ffffffe
332 #define LAUNCH_PRIORITY 0x7f000001
333 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
334 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
336 /* Vector indexed by INSN_UID giving number of insns referring to this insn. */
337 static int *insn_ref_count;
338 #define INSN_REF_COUNT(INSN) (insn_ref_count[INSN_UID (INSN)])
340 /* Vector indexed by INSN_UID giving line-number note in effect for each
341 insn. For line-number notes, this indicates whether the note may be
342 reused. */
343 static rtx *line_note;
344 #define LINE_NOTE(INSN) (line_note[INSN_UID (INSN)])
346 /* Vector indexed by basic block number giving the starting line-number
347 for each basic block. */
348 static rtx *line_note_head;
350 /* List of important notes we must keep around. This is a pointer to the
351 last element in the list. */
352 static rtx note_list;
354 /* Regsets telling whether a given register is live or dead before the last
355 scheduled insn. Must scan the instructions once before scheduling to
356 determine what registers are live or dead at the end of the block. */
357 static regset bb_live_regs;
359 /* Regset telling whether a given register is live after the insn currently
360 being scheduled. Before processing an insn, this is equal to bb_live_regs
361 above. This is used so that we can find registers that are newly born/dead
362 after processing an insn. */
363 static regset old_live_regs;
365 /* The chain of REG_DEAD notes. REG_DEAD notes are removed from all insns
366 during the initial scan and reused later. If there are not exactly as
367 many REG_DEAD notes in the post scheduled code as there were in the
368 prescheduled code then we trigger an abort because this indicates a bug. */
369 static rtx dead_notes;
371 /* Queues, etc. */
373 /* An instruction is ready to be scheduled when all insns preceding it
374 have already been scheduled. It is important to ensure that all
375 insns which use its result will not be executed until its result
376 has been computed. An insn is maintained in one of four structures:
378 (P) the "Pending" set of insns which cannot be scheduled until
379 their dependencies have been satisfied.
380 (Q) the "Queued" set of insns that can be scheduled when sufficient
381 time has passed.
382 (R) the "Ready" list of unscheduled, uncommitted insns.
383 (S) the "Scheduled" list of insns.
385 Initially, all insns are either "Pending" or "Ready" depending on
386 whether their dependencies are satisfied.
388 Insns move from the "Ready" list to the "Scheduled" list as they
389 are committed to the schedule. As this occurs, the insns in the
390 "Pending" list have their dependencies satisfied and move to either
391 the "Ready" list or the "Queued" set depending on whether
392 sufficient time has passed to make them ready. As time passes,
393 insns move from the "Queued" set to the "Ready" list. Insns may
394 move from the "Ready" list to the "Queued" set if they are blocked
395 due to a function unit conflict.
397 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
398 insns, i.e., those that are ready, queued, and pending.
399 The "Queued" set (Q) is implemented by the variable `insn_queue'.
400 The "Ready" list (R) is implemented by the variables `ready' and
401 `n_ready'.
402 The "Scheduled" list (S) is the new insn chain built by this pass.
404 The transition (R->S) is implemented in the scheduling loop in
405 `schedule_block' when the best insn to schedule is chosen.
406 The transition (R->Q) is implemented in `queue_insn' when an
407 insn is found to to have a function unit conflict with the already
408 committed insns.
409 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
410 insns move from the ready list to the scheduled list.
411 The transition (Q->R) is implemented in 'queue_to_insn' as time
412 passes or stalls are introduced. */
414 /* Implement a circular buffer to delay instructions until sufficient
415 time has passed. INSN_QUEUE_SIZE is a power of two larger than
416 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
417 longest time an isnsn may be queued. */
418 static rtx insn_queue[INSN_QUEUE_SIZE];
419 static int q_ptr = 0;
420 static int q_size = 0;
421 #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
422 #define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
424 /* Vector indexed by INSN_UID giving the minimum clock tick at which
425 the insn becomes ready. This is used to note timing constraints for
426 insns in the pending list. */
427 static int *insn_tick;
428 #define INSN_TICK(INSN) (insn_tick[INSN_UID (INSN)])
430 /* Data structure for keeping track of register information
431 during that register's life. */
433 struct sometimes
435 int regno;
436 int live_length;
437 int calls_crossed;
440 /* Forward declarations. */
441 static void add_dependence PROTO ((rtx, rtx, enum reg_note));
442 static void remove_dependence PROTO ((rtx, rtx));
443 static rtx find_insn_list PROTO ((rtx, rtx));
444 static int insn_unit PROTO ((rtx));
445 static unsigned int blockage_range PROTO ((int, rtx));
446 static void clear_units PROTO ((void));
447 static int actual_hazard_this_instance PROTO ((int, int, rtx, int, int));
448 static void schedule_unit PROTO ((int, rtx, int));
449 static int actual_hazard PROTO ((int, rtx, int, int));
450 static int potential_hazard PROTO ((int, rtx, int));
451 static int insn_cost PROTO ((rtx, rtx, rtx));
452 static int priority PROTO ((rtx));
453 static void free_pending_lists PROTO ((void));
454 static void add_insn_mem_dependence PROTO ((rtx *, rtx *, rtx, rtx));
455 static void flush_pending_lists PROTO ((rtx, int));
456 static void sched_analyze_1 PROTO ((rtx, rtx));
457 static void sched_analyze_2 PROTO ((rtx, rtx));
458 static void sched_analyze_insn PROTO ((rtx, rtx, rtx));
459 static void sched_analyze PROTO ((rtx, rtx));
460 static void sched_note_set PROTO ((int, rtx, int));
461 static int rank_for_schedule PROTO ((rtx *, rtx *));
462 static void swap_sort PROTO ((rtx *, int));
463 static void queue_insn PROTO ((rtx, int));
464 static int schedule_insn PROTO ((rtx, rtx *, int, int));
465 static void create_reg_dead_note PROTO ((rtx, rtx));
466 static void attach_deaths PROTO ((rtx, rtx, int));
467 static void attach_deaths_insn PROTO ((rtx));
468 static int new_sometimes_live PROTO ((struct sometimes *, int, int));
469 static void finish_sometimes_live PROTO ((struct sometimes *, int));
470 static int schedule_block PROTO ((int, int, int));
471 static rtx regno_use_in PROTO ((int, rtx));
472 static void split_hard_reg_notes PROTO ((rtx, rtx, rtx, rtx));
473 static void new_insn_dead_notes PROTO ((rtx, rtx, rtx, rtx));
474 static void update_n_sets PROTO ((rtx, int));
475 static void update_flow_info PROTO ((rtx, rtx, rtx, rtx));
477 /* Main entry point of this file. */
478 void schedule_insns PROTO ((FILE *));
480 /* Mapping of insns to their original block prior to scheduling. */
481 static int *insn_orig_block;
482 #define INSN_BLOCK(insn) (insn_orig_block[INSN_UID (insn)])
484 /* Some insns (e.g. call) are not allowed to move across blocks. */
485 static char *cant_move;
486 #define CANT_MOVE(insn) (cant_move[INSN_UID (insn)])
488 /* Control flow graph edges are kept in circular lists. */
489 typedef struct
491 int from_block;
492 int to_block;
493 int next_in;
494 int next_out;
496 edge;
497 static edge *edge_table;
499 #define NEXT_IN(edge) (edge_table[edge].next_in)
500 #define NEXT_OUT(edge) (edge_table[edge].next_out)
501 #define FROM_BLOCK(edge) (edge_table[edge].from_block)
502 #define TO_BLOCK(edge) (edge_table[edge].to_block)
504 /* Number of edges in the control flow graph. (in fact larger than
505 that by 1, since edge 0 is unused.) */
506 static int nr_edges;
508 /* Circular list of incoming/outgoing edges of a block */
509 static int *in_edges;
510 static int *out_edges;
512 #define IN_EDGES(block) (in_edges[block])
513 #define OUT_EDGES(block) (out_edges[block])
515 /* List of labels which cannot be deleted, needed for control
516 flow graph construction. */
517 extern rtx forced_labels;
520 static char is_cfg_nonregular PROTO ((void));
521 static int uses_reg_or_mem PROTO ((rtx));
522 void debug_control_flow PROTO ((void));
523 static void build_control_flow PROTO ((void));
524 static void build_jmp_edges PROTO ((rtx, int));
525 static void new_edge PROTO ((int, int));
528 /* A region is the main entity for interblock scheduling: insns
529 are allowed to move between blocks in the same region, along
530 control flow graph edges, in the 'up' direction. */
531 typedef struct
533 int rgn_nr_blocks; /* number of blocks in region */
534 int rgn_blocks; /* blocks in the region (actually index in rgn_bb_table) */
536 region;
538 /* Number of regions in the procedure */
539 static int nr_regions;
541 /* Table of region descriptions */
542 static region *rgn_table;
544 /* Array of lists of regions' blocks */
545 static int *rgn_bb_table;
547 /* Topological order of blocks in the region (if b2 is reachable from
548 b1, block_to_bb[b2] > block_to_bb[b1]).
549 Note: A basic block is always referred to by either block or b,
550 while its topological order name (in the region) is refered to by
553 static int *block_to_bb;
555 /* The number of the region containing a block. */
556 static int *containing_rgn;
558 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
559 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
560 #define BLOCK_TO_BB(block) (block_to_bb[block])
561 #define CONTAINING_RGN(block) (containing_rgn[block])
563 void debug_regions PROTO ((void));
564 static void find_single_block_region PROTO ((void));
565 static void find_rgns PROTO ((void));
566 static int too_large PROTO ((int, int *, int *));
568 extern void debug_live PROTO ((int, int));
570 /* Blocks of the current region being scheduled. */
571 static int current_nr_blocks;
572 static int current_blocks;
574 /* The mapping from bb to block */
575 #define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
578 /* Bit vectors and bitset operations are needed for computations on
579 the control flow graph. */
581 typedef unsigned HOST_WIDE_INT *bitset;
582 typedef struct
584 int *first_member; /* pointer to the list start in bitlst_table. */
585 int nr_members; /* the number of members of the bit list. */
587 bitlst;
589 static int bitlst_table_last;
590 static int bitlst_table_size;
591 static int *bitlst_table;
593 static char bitset_member PROTO ((bitset, int, int));
594 static void extract_bitlst PROTO ((bitset, int, bitlst *));
596 /* target info declarations.
598 The block currently being scheduled is referred to as the "target" block,
599 while other blocks in the region from which insns can be moved to the
600 target are called "source" blocks. The candidate structure holds info
601 about such sources: are they valid? Speculative? Etc. */
602 typedef bitlst bblst;
603 typedef struct
605 char is_valid;
606 char is_speculative;
607 int src_prob;
608 bblst split_bbs;
609 bblst update_bbs;
611 candidate;
613 static candidate *candidate_table;
615 /* A speculative motion requires checking live information on the path
616 from 'source' to 'target'. The split blocks are those to be checked.
617 After a speculative motion, live information should be modified in
618 the 'update' blocks.
620 Lists of split and update blocks for each candidate of the current
621 target are in array bblst_table */
622 static int *bblst_table, bblst_size, bblst_last;
624 #define IS_VALID(src) ( candidate_table[src].is_valid )
625 #define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
626 #define SRC_PROB(src) ( candidate_table[src].src_prob )
628 /* The bb being currently scheduled. */
629 static int target_bb;
631 /* List of edges. */
632 typedef bitlst edgelst;
634 /* target info functions */
635 static void split_edges PROTO ((int, int, edgelst *));
636 static void compute_trg_info PROTO ((int));
637 void debug_candidate PROTO ((int));
638 void debug_candidates PROTO ((int));
641 /* Bit-set of bbs, where bit 'i' stands for bb 'i'. */
642 typedef bitset bbset;
644 /* Number of words of the bbset. */
645 static int bbset_size;
647 /* Dominators array: dom[i] contains the bbset of dominators of
648 bb i in the region. */
649 static bbset *dom;
651 /* bb 0 is the only region entry */
652 #define IS_RGN_ENTRY(bb) (!bb)
654 /* Is bb_src dominated by bb_trg. */
655 #define IS_DOMINATED(bb_src, bb_trg) \
656 ( bitset_member (dom[bb_src], bb_trg, bbset_size) )
658 /* Probability: Prob[i] is a float in [0, 1] which is the probability
659 of bb i relative to the region entry. */
660 static float *prob;
662 /* The probability of bb_src, relative to bb_trg. Note, that while the
663 'prob[bb]' is a float in [0, 1], this macro returns an integer
664 in [0, 100]. */
665 #define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
666 prob[bb_trg])))
668 /* Bit-set of edges, where bit i stands for edge i. */
669 typedef bitset edgeset;
671 /* Number of edges in the region. */
672 static int rgn_nr_edges;
674 /* Array of size rgn_nr_edges. */
675 static int *rgn_edges;
677 /* Number of words in an edgeset. */
678 static int edgeset_size;
680 /* Mapping from each edge in the graph to its number in the rgn. */
681 static int *edge_to_bit;
682 #define EDGE_TO_BIT(edge) (edge_to_bit[edge])
684 /* The split edges of a source bb is different for each target
685 bb. In order to compute this efficiently, the 'potential-split edges'
686 are computed for each bb prior to scheduling a region. This is actually
687 the split edges of each bb relative to the region entry.
689 pot_split[bb] is the set of potential split edges of bb. */
690 static edgeset *pot_split;
692 /* For every bb, a set of its ancestor edges. */
693 static edgeset *ancestor_edges;
695 static void compute_dom_prob_ps PROTO ((int));
697 #define ABS_VALUE(x) (((x)<0)?(-(x)):(x))
698 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (INSN_BLOCK (INSN))))
699 #define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (INSN_BLOCK (INSN))))
700 #define INSN_BB(INSN) (BLOCK_TO_BB (INSN_BLOCK (INSN)))
702 /* parameters affecting the decision of rank_for_schedule() */
703 #define MIN_DIFF_PRIORITY 2
704 #define MIN_PROBABILITY 40
705 #define MIN_PROB_DIFF 10
707 /* speculative scheduling functions */
708 static int check_live_1 PROTO ((int, rtx));
709 static void update_live_1 PROTO ((int, rtx));
710 static int check_live PROTO ((rtx, int, int));
711 static void update_live PROTO ((rtx, int, int));
712 static void set_spec_fed PROTO ((rtx));
713 static int is_pfree PROTO ((rtx, int, int));
714 static int find_conditional_protection PROTO ((rtx, int));
715 static int is_conditionally_protected PROTO ((rtx, int, int));
716 static int may_trap_exp PROTO ((rtx, int));
717 static int classify_insn PROTO ((rtx));
718 static int is_exception_free PROTO ((rtx, int, int));
720 static char find_insn_mem_list PROTO ((rtx, rtx, rtx, rtx));
721 static void compute_block_forward_dependences PROTO ((int));
722 static void init_rgn_data_dependences PROTO ((int));
723 static void add_branch_dependences PROTO ((rtx, rtx));
724 static void compute_block_backward_dependences PROTO ((int));
725 void debug_dependencies PROTO ((void));
727 /* Notes handling mechanism:
728 =========================
729 Generally, NOTES are saved before scheduling and restored after scheduling.
730 The scheduler distinguishes between three types of notes:
732 (1) LINE_NUMBER notes, generated and used for debugging. Here,
733 before scheduling a region, a pointer to the LINE_NUMBER note is
734 added to the insn following it (in save_line_notes()), and the note
735 is removed (in rm_line_notes() and unlink_line_notes()). After
736 scheduling the region, this pointer is used for regeneration of
737 the LINE_NUMBER note (in restore_line_notes()).
739 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
740 Before scheduling a region, a pointer to the note is added to the insn
741 that follows or precedes it. (This happens as part of the data dependence
742 computation). After scheduling an insn, the pointer contained in it is
743 used for regenerating the corresponding note (in reemit_notes).
745 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
746 these notes are put in a list (in rm_other_notes() and
747 unlink_other_notes ()). After scheduling the block, these notes are
748 inserted at the beginning of the block (in schedule_block()). */
750 static rtx unlink_other_notes PROTO ((rtx, rtx));
751 static rtx unlink_line_notes PROTO ((rtx, rtx));
752 static void rm_line_notes PROTO ((int));
753 static void save_line_notes PROTO ((int));
754 static void restore_line_notes PROTO ((int));
755 static void rm_redundant_line_notes PROTO ((void));
756 static void rm_other_notes PROTO ((rtx, rtx));
757 static rtx reemit_notes PROTO ((rtx, rtx));
759 static void get_block_head_tail PROTO ((int, rtx *, rtx *));
761 static void find_pre_sched_live PROTO ((int));
762 static void find_post_sched_live PROTO ((int));
763 static void update_reg_usage PROTO ((void));
765 void debug_ready_list PROTO ((rtx[], int));
766 static void init_target_units PROTO (());
767 static void insn_print_units PROTO ((rtx));
768 static int get_visual_tbl_length PROTO (());
769 static void init_block_visualization PROTO (());
770 static void print_block_visualization PROTO ((int, char *));
771 static void visualize_scheduled_insns PROTO ((int, int));
772 static void visualize_no_unit PROTO ((rtx));
773 static void visualize_stall_cycles PROTO ((int, int));
774 static void print_exp PROTO ((char *, rtx, int));
775 static void print_value PROTO ((char *, rtx, int));
776 static void print_pattern PROTO ((char *, rtx, int));
777 static void print_insn PROTO ((char *, rtx, int));
778 void debug_reg_vector PROTO ((regset));
780 static rtx move_insn1 PROTO ((rtx, rtx));
781 static rtx move_insn PROTO ((rtx, rtx));
782 static rtx group_leader PROTO ((rtx));
783 static int set_priorities PROTO ((int));
784 static void init_rtx_vector PROTO ((rtx **, rtx *, int, int));
785 static void schedule_region PROTO ((int));
786 static void split_block_insns PROTO ((int));
788 #endif /* INSN_SCHEDULING */
790 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
792 /* Helper functions for instruction scheduling. */
794 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
795 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
796 of dependence that this link represents. */
798 static void
799 add_dependence (insn, elem, dep_type)
800 rtx insn;
801 rtx elem;
802 enum reg_note dep_type;
804 rtx link, next;
806 /* Don't depend an insn on itself. */
807 if (insn == elem)
808 return;
810 /* If elem is part of a sequence that must be scheduled together, then
811 make the dependence point to the last insn of the sequence.
812 When HAVE_cc0, it is possible for NOTEs to exist between users and
813 setters of the condition codes, so we must skip past notes here.
814 Otherwise, NOTEs are impossible here. */
816 next = NEXT_INSN (elem);
818 #ifdef HAVE_cc0
819 while (next && GET_CODE (next) == NOTE)
820 next = NEXT_INSN (next);
821 #endif
823 if (next && SCHED_GROUP_P (next)
824 && GET_CODE (next) != CODE_LABEL)
826 /* Notes will never intervene here though, so don't bother checking
827 for them. */
828 /* We must reject CODE_LABELs, so that we don't get confused by one
829 that has LABEL_PRESERVE_P set, which is represented by the same
830 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
831 SCHED_GROUP_P. */
832 while (NEXT_INSN (next) && SCHED_GROUP_P (NEXT_INSN (next))
833 && GET_CODE (NEXT_INSN (next)) != CODE_LABEL)
834 next = NEXT_INSN (next);
836 /* Again, don't depend an insn on itself. */
837 if (insn == next)
838 return;
840 /* Make the dependence to NEXT, the last insn of the group, instead
841 of the original ELEM. */
842 elem = next;
845 #ifdef INSN_SCHEDULING
846 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
847 No need for interblock dependences with calls, since
848 calls are not moved between blocks. Note: the edge where
849 elem is a CALL is still required. */
850 if (GET_CODE (insn) == CALL_INSN
851 && (INSN_BB (elem) != INSN_BB (insn)))
852 return;
854 #endif
856 /* Check that we don't already have this dependence. */
857 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
858 if (XEXP (link, 0) == elem)
860 /* If this is a more restrictive type of dependence than the existing
861 one, then change the existing dependence to this type. */
862 if ((int) dep_type < (int) REG_NOTE_KIND (link))
863 PUT_REG_NOTE_KIND (link, dep_type);
864 return;
866 /* Might want to check one level of transitivity to save conses. */
868 link = rtx_alloc (INSN_LIST);
869 /* Insn dependency, not data dependency. */
870 PUT_REG_NOTE_KIND (link, dep_type);
871 XEXP (link, 0) = elem;
872 XEXP (link, 1) = LOG_LINKS (insn);
873 LOG_LINKS (insn) = link;
876 /* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
877 of INSN. Abort if not found. */
879 static void
880 remove_dependence (insn, elem)
881 rtx insn;
882 rtx elem;
884 rtx prev, link;
885 int found = 0;
887 for (prev = 0, link = LOG_LINKS (insn); link;
888 prev = link, link = XEXP (link, 1))
890 if (XEXP (link, 0) == elem)
892 if (prev)
893 XEXP (prev, 1) = XEXP (link, 1);
894 else
895 LOG_LINKS (insn) = XEXP (link, 1);
896 found = 1;
900 if (!found)
901 abort ();
902 return;
905 #ifndef INSN_SCHEDULING
906 void
907 schedule_insns (dump_file)
908 FILE *dump_file;
911 #else
912 #ifndef __GNUC__
913 #define __inline
914 #endif
916 /* Computation of memory dependencies. */
918 /* The *_insns and *_mems are paired lists. Each pending memory operation
919 will have a pointer to the MEM rtx on one list and a pointer to the
920 containing insn on the other list in the same place in the list. */
922 /* We can't use add_dependence like the old code did, because a single insn
923 may have multiple memory accesses, and hence needs to be on the list
924 once for each memory access. Add_dependence won't let you add an insn
925 to a list more than once. */
927 /* An INSN_LIST containing all insns with pending read operations. */
928 static rtx pending_read_insns;
930 /* An EXPR_LIST containing all MEM rtx's which are pending reads. */
931 static rtx pending_read_mems;
933 /* An INSN_LIST containing all insns with pending write operations. */
934 static rtx pending_write_insns;
936 /* An EXPR_LIST containing all MEM rtx's which are pending writes. */
937 static rtx pending_write_mems;
939 /* Indicates the combined length of the two pending lists. We must prevent
940 these lists from ever growing too large since the number of dependencies
941 produced is at least O(N*N), and execution time is at least O(4*N*N), as
942 a function of the length of these pending lists. */
944 static int pending_lists_length;
946 /* An INSN_LIST containing all INSN_LISTs allocated but currently unused. */
948 static rtx unused_insn_list;
950 /* An EXPR_LIST containing all EXPR_LISTs allocated but currently unused. */
952 static rtx unused_expr_list;
954 /* The last insn upon which all memory references must depend.
955 This is an insn which flushed the pending lists, creating a dependency
956 between it and all previously pending memory references. This creates
957 a barrier (or a checkpoint) which no memory reference is allowed to cross.
959 This includes all non constant CALL_INSNs. When we do interprocedural
960 alias analysis, this restriction can be relaxed.
961 This may also be an INSN that writes memory if the pending lists grow
962 too large. */
964 static rtx last_pending_memory_flush;
966 /* The last function call we have seen. All hard regs, and, of course,
967 the last function call, must depend on this. */
969 static rtx last_function_call;
971 /* The LOG_LINKS field of this is a list of insns which use a pseudo register
972 that does not already cross a call. We create dependencies between each
973 of those insn and the next call insn, to ensure that they won't cross a call
974 after scheduling is done. */
976 static rtx sched_before_next_call;
978 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
979 so that insns independent of the last scheduled insn will be preferred
980 over dependent instructions. */
982 static rtx last_scheduled_insn;
984 /* Data structures for the computation of data dependences in a regions. We
985 keep one copy of each of the declared above variables for each bb in the
986 region. Before analyzing the data dependences for a bb, its variables
987 are initialized as a function of the variables of its predecessors. When
988 the analysis for a bb completes, we save the contents of each variable X
989 to a corresponding bb_X[bb] variable. For example, pending_read_insns is
990 copied to bb_pending_read_insns[bb]. Another change is that few
991 variables are now a list of insns rather than a single insn:
992 last_pending_memory_flash, last_function_call, reg_last_sets. The
993 manipulation of these variables was changed appropriately. */
995 static rtx **bb_reg_last_uses;
996 static rtx **bb_reg_last_sets;
998 static rtx *bb_pending_read_insns;
999 static rtx *bb_pending_read_mems;
1000 static rtx *bb_pending_write_insns;
1001 static rtx *bb_pending_write_mems;
1002 static int *bb_pending_lists_length;
1004 static rtx *bb_last_pending_memory_flush;
1005 static rtx *bb_last_function_call;
1006 static rtx *bb_sched_before_next_call;
1008 /* functions for construction of the control flow graph. */
1010 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
1011 Estimate in nr_edges the number of edges on the graph.
1012 We decide not to build the control flow graph if there is possibly more
1013 than one entry to the function, or if computed branches exist. */
1015 static char
1016 is_cfg_nonregular ()
1018 int b;
1019 rtx insn;
1020 RTX_CODE code;
1022 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
1024 /* check for non local labels */
1025 if (nonlocal_label_list)
1027 return 1;
1030 /* check for labels which cannot be deleted */
1031 if (forced_labels)
1033 return 1;
1036 /* check for labels which probably cannot be deleted */
1037 if (exception_handler_labels)
1039 return 1;
1042 /* check for labels referred to other thn by jumps */
1043 for (b = 0; b < n_basic_blocks; b++)
1044 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
1046 code = GET_CODE (insn);
1047 if (GET_RTX_CLASS (code) == 'i')
1049 rtx note;
1051 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1052 if (REG_NOTE_KIND (note) == REG_LABEL)
1054 return 1;
1058 if (insn == basic_block_end[b])
1059 break;
1062 nr_edges = 0;
1064 /* check for computed branches */
1065 for (b = 0; b < n_basic_blocks; b++)
1067 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
1070 if (GET_CODE (insn) == JUMP_INSN)
1072 rtx pat = PATTERN (insn);
1073 int i;
1075 if (GET_CODE (pat) == PARALLEL)
1077 int len = XVECLEN (pat, 0);
1078 int has_use_labelref = 0;
1080 for (i = len - 1; i >= 0; i--)
1081 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
1082 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
1083 == LABEL_REF))
1085 nr_edges++;
1086 has_use_labelref = 1;
1089 if (!has_use_labelref)
1090 for (i = len - 1; i >= 0; i--)
1091 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
1092 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
1093 && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
1095 return 1;
1098 /* check for branch table */
1099 else if (GET_CODE (pat) == ADDR_VEC
1100 || GET_CODE (pat) == ADDR_DIFF_VEC)
1102 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1103 int len = XVECLEN (pat, diff_vec_p);
1105 nr_edges += len;
1107 else
1109 /* check for computed branch */
1110 if (GET_CODE (pat) == SET
1111 && SET_DEST (pat) == pc_rtx
1112 && uses_reg_or_mem (SET_SRC (pat)))
1114 return 1;
1119 if (insn == basic_block_end[b])
1120 break;
1124 /* count for the fallthrough edges */
1125 for (b = 0; b < n_basic_blocks; b++)
1127 for (insn = PREV_INSN (basic_block_head[b]);
1128 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
1131 if (!insn && b != 0)
1132 nr_edges++;
1133 else if (insn && GET_CODE (insn) != BARRIER)
1134 nr_edges++;
1137 nr_edges++;
1139 return 0;
1143 /* Returns 1 if x uses a reg or a mem (function was taken from flow.c).
1144 x is a target of a jump. Used for the detection of computed
1145 branches. For each label seen, updates the edges estimation
1146 counter nr_edges. */
1148 static int
1149 uses_reg_or_mem (x)
1150 rtx x;
1152 enum rtx_code code = GET_CODE (x);
1153 int i, j;
1154 char *fmt;
1156 if (code == REG)
1157 return 1;
1159 if (code == MEM
1160 && !(GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1161 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0))))
1162 return 1;
1164 if (code == IF_THEN_ELSE)
1166 if (uses_reg_or_mem (XEXP (x, 1))
1167 || uses_reg_or_mem (XEXP (x, 2)))
1168 return 1;
1169 else
1170 return 0;
1173 if (code == LABEL_REF)
1175 nr_edges++;
1177 return 0;
1180 fmt = GET_RTX_FORMAT (code);
1181 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1183 if (fmt[i] == 'e'
1184 && uses_reg_or_mem (XEXP (x, i)))
1185 return 1;
1187 if (fmt[i] == 'E')
1188 for (j = 0; j < XVECLEN (x, i); j++)
1189 if (uses_reg_or_mem (XVECEXP (x, i, j)))
1190 return 1;
1193 return 0;
1197 /* Print the control flow graph, for debugging purposes.
1198 Callable from the debugger. */
1200 void
1201 debug_control_flow ()
1203 int i, e, next;
1205 fprintf (dump, ";; --------- CONTROL FLOW GRAPH --------- \n\n");
1207 for (i = 0; i < n_basic_blocks; i++)
1209 fprintf (dump, ";;\tBasic block %d: first insn %d, last %d.\n",
1211 INSN_UID (basic_block_head[i]),
1212 INSN_UID (basic_block_end[i]));
1214 fprintf (dump, ";;\tPredecessor blocks:");
1215 for (e = IN_EDGES (i); e; e = next)
1217 fprintf (dump, " %d", FROM_BLOCK (e));
1219 next = NEXT_IN (e);
1221 if (next == IN_EDGES (i))
1222 break;
1225 fprintf (dump, "\n;;\tSuccesor blocks:");
1226 for (e = OUT_EDGES (i); e; e = next)
1228 fprintf (dump, " %d", TO_BLOCK (e));
1230 next = NEXT_OUT (e);
1232 if (next == OUT_EDGES (i))
1233 break;
1236 fprintf (dump, " \n\n");
1242 /* build the control flow graph. (also set nr_edges accurately) */
1244 static void
1245 build_control_flow ()
1247 int i;
1249 nr_edges = 0;
1250 for (i = 0; i < n_basic_blocks; i++)
1252 rtx insn;
1254 insn = basic_block_end[i];
1255 if (GET_CODE (insn) == JUMP_INSN)
1257 build_jmp_edges (PATTERN (insn), i);
1260 for (insn = PREV_INSN (basic_block_head[i]);
1261 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
1264 /* build fallthrough edges */
1265 if (!insn && i != 0)
1266 new_edge (i - 1, i);
1267 else if (insn && GET_CODE (insn) != BARRIER)
1268 new_edge (i - 1, i);
1271 /* increment by 1, since edge 0 is unused. */
1272 nr_edges++;
1277 /* construct edges in the control flow graph, from 'source' block, to
1278 blocks refered to by 'pattern'. */
1280 static
1281 void
1282 build_jmp_edges (pattern, source)
1283 rtx pattern;
1284 int source;
1286 register RTX_CODE code;
1287 register int i;
1288 register char *fmt;
1290 code = GET_CODE (pattern);
1292 if (code == LABEL_REF)
1294 register rtx label = XEXP (pattern, 0);
1295 register int target;
1297 /* This can happen as a result of a syntax error
1298 and a diagnostic has already been printed. */
1299 if (INSN_UID (label) == 0)
1300 return;
1302 target = INSN_BLOCK (label);
1303 new_edge (source, target);
1305 return;
1308 /* proper handling of ADDR_DIFF_VEC: do not add a non-existing edge
1309 from the block containing the branch-on-table, to itself. */
1310 if (code == ADDR_VEC
1311 || code == ADDR_DIFF_VEC)
1313 int diff_vec_p = GET_CODE (pattern) == ADDR_DIFF_VEC;
1314 int len = XVECLEN (pattern, diff_vec_p);
1315 int k;
1317 for (k = 0; k < len; k++)
1319 rtx tem = XVECEXP (pattern, diff_vec_p, k);
1321 build_jmp_edges (tem, source);
1325 fmt = GET_RTX_FORMAT (code);
1326 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1328 if (fmt[i] == 'e')
1329 build_jmp_edges (XEXP (pattern, i), source);
1330 if (fmt[i] == 'E')
1332 register int j;
1333 for (j = 0; j < XVECLEN (pattern, i); j++)
1334 build_jmp_edges (XVECEXP (pattern, i, j), source);
1340 /* construct an edge in the control flow graph, from 'source' to 'target'. */
1342 static void
1343 new_edge (source, target)
1344 int source, target;
1346 int e, next_edge;
1347 int curr_edge, fst_edge;
1349 /* check for duplicates */
1350 fst_edge = curr_edge = OUT_EDGES (source);
1351 while (curr_edge)
1353 if (FROM_BLOCK (curr_edge) == source
1354 && TO_BLOCK (curr_edge) == target)
1356 return;
1359 curr_edge = NEXT_OUT (curr_edge);
1361 if (fst_edge == curr_edge)
1362 break;
1365 e = ++nr_edges;
1367 FROM_BLOCK (e) = source;
1368 TO_BLOCK (e) = target;
1370 if (OUT_EDGES (source))
1372 next_edge = NEXT_OUT (OUT_EDGES (source));
1373 NEXT_OUT (OUT_EDGES (source)) = e;
1374 NEXT_OUT (e) = next_edge;
1376 else
1378 OUT_EDGES (source) = e;
1379 NEXT_OUT (e) = e;
1382 if (IN_EDGES (target))
1384 next_edge = NEXT_IN (IN_EDGES (target));
1385 NEXT_IN (IN_EDGES (target)) = e;
1386 NEXT_IN (e) = next_edge;
1388 else
1390 IN_EDGES (target) = e;
1391 NEXT_IN (e) = e;
1396 /* BITSET macros for operations on the control flow graph. */
1398 /* Compute bitwise union of two bitsets. */
1399 #define BITSET_UNION(set1, set2, len) \
1400 do { register bitset tp = set1, sp = set2; \
1401 register int i; \
1402 for (i = 0; i < len; i++) \
1403 *(tp++) |= *(sp++); } while (0)
1405 /* Compute bitwise intersection of two bitsets. */
1406 #define BITSET_INTER(set1, set2, len) \
1407 do { register bitset tp = set1, sp = set2; \
1408 register int i; \
1409 for (i = 0; i < len; i++) \
1410 *(tp++) &= *(sp++); } while (0)
1412 /* Compute bitwise difference of two bitsets. */
1413 #define BITSET_DIFFER(set1, set2, len) \
1414 do { register bitset tp = set1, sp = set2; \
1415 register int i; \
1416 for (i = 0; i < len; i++) \
1417 *(tp++) &= ~*(sp++); } while (0)
1419 /* Inverts every bit of bitset 'set' */
1420 #define BITSET_INVERT(set, len) \
1421 do { register bitset tmpset = set; \
1422 register int i; \
1423 for (i = 0; i < len; i++, tmpset++) \
1424 *tmpset = ~*tmpset; } while (0)
1426 /* Turn on the index'th bit in bitset set. */
1427 #define BITSET_ADD(set, index, len) \
1429 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1430 abort (); \
1431 else \
1432 set[index/HOST_BITS_PER_WIDE_INT] |= \
1433 1 << (index % HOST_BITS_PER_WIDE_INT); \
1436 /* Turn off the index'th bit in set. */
1437 #define BITSET_REMOVE(set, index, len) \
1439 if (index >= HOST_BITS_PER_WIDE_INT * len) \
1440 abort (); \
1441 else \
1442 set[index/HOST_BITS_PER_WIDE_INT] &= \
1443 ~(1 << (index%HOST_BITS_PER_WIDE_INT)); \
1447 /* Check if the index'th bit in bitset set is on. */
1449 static char
1450 bitset_member (set, index, len)
1451 bitset set;
1452 int index, len;
1454 if (index >= HOST_BITS_PER_WIDE_INT * len)
1455 abort ();
1456 return (set[index / HOST_BITS_PER_WIDE_INT] &
1457 1 << (index % HOST_BITS_PER_WIDE_INT)) ? 1 : 0;
1461 /* Translate a bit-set SET to a list BL of the bit-set members. */
1463 static void
1464 extract_bitlst (set, len, bl)
1465 bitset set;
1466 int len;
1467 bitlst *bl;
1469 int i, j, offset;
1470 unsigned HOST_WIDE_INT word;
1472 /* bblst table space is reused in each call to extract_bitlst */
1473 bitlst_table_last = 0;
1475 bl->first_member = &bitlst_table[bitlst_table_last];
1476 bl->nr_members = 0;
1478 for (i = 0; i < len; i++)
1480 word = set[i];
1481 offset = i * HOST_BITS_PER_WIDE_INT;
1482 for (j = 0; word; j++)
1484 if (word & 1)
1486 bitlst_table[bitlst_table_last++] = offset;
1487 (bl->nr_members)++;
1489 word >>= 1;
1490 ++offset;
1497 /* functions for the construction of regions */
1499 /* Print the regions, for debugging purposes. Callable from debugger. */
1501 void
1502 debug_regions ()
1504 int rgn, bb;
1506 fprintf (dump, "\n;; ------------ REGIONS ----------\n\n");
1507 for (rgn = 0; rgn < nr_regions; rgn++)
1509 fprintf (dump, ";;\trgn %d nr_blocks %d:\n", rgn,
1510 rgn_table[rgn].rgn_nr_blocks);
1511 fprintf (dump, ";;\tbb/block: ");
1513 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
1515 current_blocks = RGN_BLOCKS (rgn);
1517 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
1518 abort ();
1520 fprintf (dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
1523 fprintf (dump, "\n\n");
1528 /* Build a single block region for each basic block in the function.
1529 This allows for using the same code for interblock and basic block
1530 scheduling. */
1532 static void
1533 find_single_block_region ()
1535 int i;
1537 for (i = 0; i < n_basic_blocks; i++)
1539 rgn_bb_table[i] = i;
1540 RGN_NR_BLOCKS (i) = 1;
1541 RGN_BLOCKS (i) = i;
1542 CONTAINING_RGN (i) = i;
1543 BLOCK_TO_BB (i) = 0;
1545 nr_regions = n_basic_blocks;
1549 /* Update number of blocks and the estimate for number of insns
1550 in the region. Return 1 if the region is "too large" for interblock
1551 scheduling (compile time considerations), otherwise return 0. */
1553 static int
1554 too_large (block, num_bbs, num_insns)
1555 int block, *num_bbs, *num_insns;
1557 (*num_bbs)++;
1558 (*num_insns) += (INSN_LUID (basic_block_end[block]) -
1559 INSN_LUID (basic_block_head[block]));
1560 if ((*num_bbs > max_rgn_blocks) || (*num_insns > max_rgn_insns))
1561 return 1;
1562 else
1563 return 0;
1567 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
1568 is still an inner loop. Put in max_hdr[blk] the header of the most inner
1569 loop containing blk. */
1570 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
1572 if (max_hdr[blk] == -1) \
1573 max_hdr[blk] = hdr; \
1574 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
1575 inner[hdr] = 0; \
1576 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
1578 inner[max_hdr[blk]] = 0; \
1579 max_hdr[blk] = hdr; \
1584 /* Find regions for interblock scheduling: a loop-free procedure, a reducible
1585 inner loop, or a basic block not contained in any other region.
1586 The procedures control flow graph is traversed twice.
1587 First traversal, a DFS, finds the headers of inner loops in the graph,
1588 and verifies that there are no unreacable blocks.
1589 Second traversal processes headers of inner loops, checking that the
1590 loop is reducible. The loop blocks that form a region are put into the
1591 region's blocks list in topological order.
1593 The following variables are changed by the function: rgn_nr, rgn_table,
1594 rgn_bb_table, block_to_bb and containing_rgn. */
1596 static void
1597 find_rgns ()
1599 int *max_hdr, *dfs_nr, *stack, *queue, *degree;
1600 char *header, *inner, *passed, *in_stack, *in_queue, no_loops = 1;
1601 int node, child, loop_head, i, j, fst_edge, head, tail;
1602 int count = 0, sp, idx = 0, current_edge = out_edges[0];
1603 int num_bbs, num_insns;
1604 int too_large_failure;
1605 char *reachable;
1608 The following data structures are computed by the first traversal and
1609 are used by the second traversal:
1610 header[i] - flag set if the block i is the header of a loop.
1611 inner[i] - initially set. It is reset if the the block i is the header
1612 of a non-inner loop.
1613 max_hdr[i] - the header of the inner loop containing block i.
1614 (for a block i not in an inner loop it may be -1 or the
1615 header of the most inner loop containing the block).
1617 These data structures are used by the first traversal only:
1618 stack - non-recursive DFS implementation which uses a stack of edges.
1619 sp - top of the stack of edges
1620 dfs_nr[i] - the DFS ordering of block i.
1621 in_stack[i] - flag set if the block i is in the DFS stack.
1623 These data structures are used by the second traversal only:
1624 queue - queue containing the blocks of the current region.
1625 head and tail - queue boundaries.
1626 in_queue[i] - flag set if the block i is in queue */
1628 /* function's inner arrays allocation and initialization */
1629 max_hdr = (int *) alloca (n_basic_blocks * sizeof (int));
1630 dfs_nr = (int *) alloca (n_basic_blocks * sizeof (int));
1631 bzero ((char *) dfs_nr, n_basic_blocks * sizeof (int));
1632 stack = (int *) alloca (nr_edges * sizeof (int));
1633 queue = (int *) alloca (n_basic_blocks * sizeof (int));
1635 inner = (char *) alloca (n_basic_blocks * sizeof (char));
1636 header = (char *) alloca (n_basic_blocks * sizeof (char));
1637 bzero ((char *) header, n_basic_blocks * sizeof (char));
1638 passed = (char *) alloca (nr_edges * sizeof (char));
1639 bzero ((char *) passed, nr_edges * sizeof (char));
1640 in_stack = (char *) alloca (nr_edges * sizeof (char));
1641 bzero ((char *) in_stack, nr_edges * sizeof (char));
1642 reachable = (char *) alloca (n_basic_blocks * sizeof (char));
1643 bzero ((char *) reachable, n_basic_blocks * sizeof (char));
1645 in_queue = (char *) alloca (n_basic_blocks * sizeof (char));
1647 for (i = 0; i < n_basic_blocks; i++)
1649 inner[i] = 1;
1650 max_hdr[i] = -1;
1653 /* First traversal: DFS, finds inner loops in control flow graph */
1655 reachable[0] = 1;
1656 sp = -1;
1657 while (1)
1659 if (current_edge == 0 || passed[current_edge])
1661 /* Here, if current_edge < 0, this is a leaf block.
1662 Otherwise current_edge was already passed. Note that in
1663 the latter case, not only current_edge but also all its
1664 NEXT_OUT edges are also passed. We have to "climb up on
1665 edges in the stack", looking for the first (already
1666 passed) edge whose NEXT_OUT was not passed yet. */
1668 while (sp >= 0 && (current_edge == 0 || passed[current_edge]))
1670 current_edge = stack[sp--];
1671 node = FROM_BLOCK (current_edge);
1672 child = TO_BLOCK (current_edge);
1673 in_stack[child] = 0;
1674 if (max_hdr[child] >= 0 && in_stack[max_hdr[child]])
1675 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
1676 current_edge = NEXT_OUT (current_edge);
1679 /* stack empty - the whole graph is traversed. */
1680 if (sp < 0 && passed[current_edge])
1681 break;
1682 continue;
1685 node = FROM_BLOCK (current_edge);
1686 dfs_nr[node] = ++count;
1687 in_stack[node] = 1;
1688 child = TO_BLOCK (current_edge);
1689 reachable[child] = 1;
1691 /* found a loop header */
1692 if (in_stack[child])
1694 no_loops = 0;
1695 header[child] = 1;
1696 max_hdr[child] = child;
1697 UPDATE_LOOP_RELATIONS (node, child);
1698 passed[current_edge] = 1;
1699 current_edge = NEXT_OUT (current_edge);
1700 continue;
1703 /* the child was already visited once, no need to go down from
1704 it, everything is traversed there. */
1705 if (dfs_nr[child])
1707 if (max_hdr[child] >= 0 && in_stack[max_hdr[child]])
1708 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
1709 passed[current_edge] = 1;
1710 current_edge = NEXT_OUT (current_edge);
1711 continue;
1714 /* this is a step down in the dfs traversal */
1715 stack[++sp] = current_edge;
1716 passed[current_edge] = 1;
1717 current_edge = OUT_EDGES (child);
1718 } /* while (1); */
1720 /* if there are unreachable blocks, or more than one entry to
1721 the subroutine, give up on interblock scheduling */
1722 for (i = 1; i < n_basic_blocks; i++)
1724 if (reachable[i] == 0)
1726 find_single_block_region ();
1727 if (sched_verbose >= 3)
1728 fprintf (stderr, "sched: warning: found an unreachable block %d \n", i);
1729 return;
1733 /* Second travsersal: find reducible inner loops, and sort
1734 topologically the blocks of each region */
1735 degree = dfs_nr; /* reuse dfs_nr array - it is not needed anymore */
1736 bzero ((char *) in_queue, n_basic_blocks * sizeof (char));
1738 if (no_loops)
1739 header[0] = 1;
1741 /* compute the in-degree of every block in the graph */
1742 for (i = 0; i < n_basic_blocks; i++)
1744 fst_edge = IN_EDGES (i);
1745 if (fst_edge > 0)
1747 degree[i] = 1;
1748 current_edge = NEXT_IN (fst_edge);
1749 while (fst_edge != current_edge)
1751 ++degree[i];
1752 current_edge = NEXT_IN (current_edge);
1755 else
1756 degree[i] = 0;
1759 /* pass through all graph blocks, looking for headers of inner loops */
1760 for (i = 0; i < n_basic_blocks; i++)
1763 if (header[i] && inner[i])
1766 /* i is a header of a potentially reducible inner loop, or
1767 block 0 in a subroutine with no loops at all */
1768 head = tail = -1;
1769 too_large_failure = 0;
1770 loop_head = max_hdr[i];
1772 /* decrease in_degree of all i's successors, (this is needed
1773 for the topological ordering) */
1774 fst_edge = current_edge = OUT_EDGES (i);
1775 if (fst_edge > 0)
1779 --degree[TO_BLOCK (current_edge)];
1780 current_edge = NEXT_OUT (current_edge);
1782 while (fst_edge != current_edge);
1785 /* estimate # insns, and count # blocks in the region. */
1786 num_bbs = 1;
1787 num_insns = INSN_LUID (basic_block_end[i]) - INSN_LUID (basic_block_head[i]);
1790 /* find all loop latches, if it is a true loop header, or
1791 all leaves if the graph has no loops at all */
1792 if (no_loops)
1794 for (j = 0; j < n_basic_blocks; j++)
1795 if (out_edges[j] == 0) /* a leaf */
1797 queue[++tail] = j;
1798 in_queue[j] = 1;
1800 if (too_large (j, &num_bbs, &num_insns))
1802 too_large_failure = 1;
1803 break;
1807 else
1809 fst_edge = current_edge = IN_EDGES (i);
1812 node = FROM_BLOCK (current_edge);
1813 if (max_hdr[node] == loop_head && node != i) /* a latch */
1815 queue[++tail] = node;
1816 in_queue[node] = 1;
1818 if (too_large (node, &num_bbs, &num_insns))
1820 too_large_failure = 1;
1821 break;
1824 current_edge = NEXT_IN (current_edge);
1826 while (fst_edge != current_edge);
1829 /* Put in queue[] all blocks that belong to the loop. Check
1830 that the loop is reducible, traversing back from the loop
1831 latches up to the loop header. */
1832 while (head < tail && !too_large_failure)
1834 child = queue[++head];
1835 fst_edge = current_edge = IN_EDGES (child);
1838 node = FROM_BLOCK (current_edge);
1840 if (max_hdr[node] != loop_head)
1841 { /* another entry to loop, it is irreducible */
1842 tail = -1;
1843 break;
1845 else if (!in_queue[node] && node != i)
1847 queue[++tail] = node;
1848 in_queue[node] = 1;
1850 if (too_large (node, &num_bbs, &num_insns))
1852 too_large_failure = 1;
1853 break;
1856 current_edge = NEXT_IN (current_edge);
1858 while (fst_edge != current_edge);
1861 if (tail >= 0 && !too_large_failure)
1863 /* Place the loop header into list of region blocks */
1864 degree[i] = -1;
1865 rgn_bb_table[idx] = i;
1866 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1867 RGN_BLOCKS (nr_regions) = idx++;
1868 CONTAINING_RGN (i) = nr_regions;
1869 BLOCK_TO_BB (i) = count = 0;
1871 /* remove blocks from queue[], (in topological order), when
1872 their in_degree becomes 0. We scan the queue over and
1873 over again until it is empty. Note: there may be a more
1874 efficient way to do it. */
1875 while (tail >= 0)
1877 if (head < 0)
1878 head = tail;
1879 child = queue[head];
1880 if (degree[child] == 0)
1882 degree[child] = -1;
1883 rgn_bb_table[idx++] = child;
1884 BLOCK_TO_BB (child) = ++count;
1885 CONTAINING_RGN (child) = nr_regions;
1886 queue[head] = queue[tail--];
1887 fst_edge = current_edge = OUT_EDGES (child);
1889 if (fst_edge > 0)
1893 --degree[TO_BLOCK (current_edge)];
1894 current_edge = NEXT_OUT (current_edge);
1896 while (fst_edge != current_edge);
1899 else
1900 --head;
1902 ++nr_regions;
1907 /* define each of all other blocks as a region itself */
1908 for (i = 0; i < n_basic_blocks; i++)
1909 if (degree[i] >= 0)
1911 rgn_bb_table[idx] = i;
1912 RGN_NR_BLOCKS (nr_regions) = 1;
1913 RGN_BLOCKS (nr_regions) = idx++;
1914 CONTAINING_RGN (i) = nr_regions++;
1915 BLOCK_TO_BB (i) = 0;
1918 } /* find_rgns */
1921 /* functions for regions scheduling information */
1923 /* Compute dominators, probability, and potential-split-edges of bb.
1924 Assume that these values were already computed for bb's predecessors. */
1926 static void
1927 compute_dom_prob_ps (bb)
1928 int bb;
1930 int nxt_in_edge, fst_in_edge, pred;
1931 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1933 prob[bb] = 0.0;
1934 if (IS_RGN_ENTRY (bb))
1936 BITSET_ADD (dom[bb], 0, bbset_size);
1937 prob[bb] = 1.0;
1938 return;
1941 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1943 /* intialize dom[bb] to '111..1' */
1944 BITSET_INVERT (dom[bb], bbset_size);
1948 pred = FROM_BLOCK (nxt_in_edge);
1949 BITSET_INTER (dom[bb], dom[BLOCK_TO_BB (pred)], bbset_size);
1951 BITSET_UNION (ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)],
1952 edgeset_size);
1954 BITSET_ADD (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge), edgeset_size);
1956 nr_out_edges = 1;
1957 nr_rgn_out_edges = 0;
1958 fst_out_edge = OUT_EDGES (pred);
1959 nxt_out_edge = NEXT_OUT (fst_out_edge);
1960 BITSET_UNION (pot_split[bb], pot_split[BLOCK_TO_BB (pred)],
1961 edgeset_size);
1963 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (fst_out_edge), edgeset_size);
1965 /* the successor doesn't belong the region? */
1966 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1967 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1968 ++nr_rgn_out_edges;
1970 while (fst_out_edge != nxt_out_edge)
1972 ++nr_out_edges;
1973 /* the successor doesn't belong the region? */
1974 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1975 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1976 ++nr_rgn_out_edges;
1977 BITSET_ADD (pot_split[bb], EDGE_TO_BIT (nxt_out_edge), edgeset_size);
1978 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1982 /* now nr_rgn_out_edges is the number of region-exit edges from pred,
1983 and nr_out_edges will be the number of pred out edges not leaving
1984 the region. */
1985 nr_out_edges -= nr_rgn_out_edges;
1986 if (nr_rgn_out_edges > 0)
1987 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1988 else
1989 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1990 nxt_in_edge = NEXT_IN (nxt_in_edge);
1992 while (fst_in_edge != nxt_in_edge);
1994 BITSET_ADD (dom[bb], bb, bbset_size);
1995 BITSET_DIFFER (pot_split[bb], ancestor_edges[bb], edgeset_size);
1997 if (sched_verbose >= 2)
1998 fprintf (dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb), (int) (100.0 * prob[bb]));
1999 } /* compute_dom_prob_ps */
2001 /* functions for target info */
2003 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
2004 Note that bb_trg dominates bb_src. */
2006 static void
2007 split_edges (bb_src, bb_trg, bl)
2008 int bb_src;
2009 int bb_trg;
2010 edgelst *bl;
2012 int es = edgeset_size;
2013 edgeset src = (edgeset) alloca (es * sizeof (HOST_WIDE_INT));
2015 while (es--)
2016 src[es] = (pot_split[bb_src])[es];
2017 BITSET_DIFFER (src, pot_split[bb_trg], edgeset_size);
2018 extract_bitlst (src, edgeset_size, bl);
2022 /* Find the valid candidate-source-blocks for the target block TRG, compute
2023 their probability, and check if they are speculative or not.
2024 For speculative sources, compute their update-blocks and split-blocks. */
2026 static void
2027 compute_trg_info (trg)
2028 int trg;
2030 register candidate *sp;
2031 edgelst el;
2032 int check_block, update_idx;
2033 int i, j, k, fst_edge, nxt_edge;
2035 /* define some of the fields for the target bb as well */
2036 sp = candidate_table + trg;
2037 sp->is_valid = 1;
2038 sp->is_speculative = 0;
2039 sp->src_prob = 100;
2041 for (i = trg + 1; i < current_nr_blocks; i++)
2043 sp = candidate_table + i;
2045 sp->is_valid = IS_DOMINATED (i, trg);
2046 if (sp->is_valid)
2048 sp->src_prob = GET_SRC_PROB (i, trg);
2049 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
2052 if (sp->is_valid)
2054 split_edges (i, trg, &el);
2055 sp->is_speculative = (el.nr_members) ? 1 : 0;
2056 if (sp->is_speculative && !flag_schedule_speculative)
2057 sp->is_valid = 0;
2060 if (sp->is_valid)
2062 sp->split_bbs.first_member = &bblst_table[bblst_last];
2063 sp->split_bbs.nr_members = el.nr_members;
2064 for (j = 0; j < el.nr_members; bblst_last++, j++)
2065 bblst_table[bblst_last] =
2066 TO_BLOCK (rgn_edges[el.first_member[j]]);
2067 sp->update_bbs.first_member = &bblst_table[bblst_last];
2068 update_idx = 0;
2069 for (j = 0; j < el.nr_members; j++)
2071 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
2072 fst_edge = nxt_edge = OUT_EDGES (check_block);
2075 for (k = 0; k < el.nr_members; k++)
2076 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
2077 break;
2079 if (k >= el.nr_members)
2081 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
2082 update_idx++;
2085 nxt_edge = NEXT_OUT (nxt_edge);
2087 while (fst_edge != nxt_edge);
2089 sp->update_bbs.nr_members = update_idx;
2092 else
2094 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
2096 sp->is_speculative = 0;
2097 sp->src_prob = 0;
2100 } /* compute_trg_info */
2103 /* Print candidates info, for debugging purposes. Callable from debugger. */
2105 void
2106 debug_candidate (i)
2107 int i;
2109 if (!candidate_table[i].is_valid)
2110 return;
2112 if (candidate_table[i].is_speculative)
2114 int j;
2115 fprintf (dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
2117 fprintf (dump, "split path: ");
2118 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
2120 int b = candidate_table[i].split_bbs.first_member[j];
2122 fprintf (dump, " %d ", b);
2124 fprintf (dump, "\n");
2126 fprintf (dump, "update path: ");
2127 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
2129 int b = candidate_table[i].update_bbs.first_member[j];
2131 fprintf (dump, " %d ", b);
2133 fprintf (dump, "\n");
2135 else
2137 fprintf (dump, " src %d equivalent\n", BB_TO_BLOCK (i));
2142 /* Print candidates info, for debugging purposes. Callable from debugger. */
2144 void
2145 debug_candidates (trg)
2146 int trg;
2148 int i;
2150 fprintf (dump, "----------- candidate table: target: b=%d bb=%d ---\n",
2151 BB_TO_BLOCK (trg), trg);
2152 for (i = trg + 1; i < current_nr_blocks; i++)
2153 debug_candidate (i);
2157 /* functions for speculative scheduing */
2159 /* Return 0 if x is a set of a register alive in the beginning of one
2160 of the split-blocks of src, otherwise return 1. */
2162 static int
2163 check_live_1 (src, x)
2164 int src;
2165 rtx x;
2167 register i;
2168 register int regno;
2169 register rtx reg = SET_DEST (x);
2171 if (reg == 0)
2172 return 1;
2174 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2175 || GET_CODE (reg) == SIGN_EXTRACT
2176 || GET_CODE (reg) == STRICT_LOW_PART)
2177 reg = XEXP (reg, 0);
2179 if (GET_CODE (reg) != REG)
2180 return 1;
2182 regno = REGNO (reg);
2184 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2186 /* Global registers are assumed live */
2187 return 0;
2189 else
2191 if (regno < FIRST_PSEUDO_REGISTER)
2193 /* check for hard registers */
2194 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2195 while (--j >= 0)
2197 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2199 int b = candidate_table[src].split_bbs.first_member[i];
2201 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno + j))
2203 return 0;
2208 else
2210 /* check for psuedo registers */
2211 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
2213 int b = candidate_table[src].split_bbs.first_member[i];
2215 if (REGNO_REG_SET_P (basic_block_live_at_start[b], regno))
2217 return 0;
2223 return 1;
2227 /* If x is a set of a register R, mark that R is alive in the beginning
2228 of every update-block of src. */
2230 static void
2231 update_live_1 (src, x)
2232 int src;
2233 rtx x;
2235 register i;
2236 register int regno;
2237 register rtx reg = SET_DEST (x);
2239 if (reg == 0)
2240 return;
2242 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2243 || GET_CODE (reg) == SIGN_EXTRACT
2244 || GET_CODE (reg) == STRICT_LOW_PART)
2245 reg = XEXP (reg, 0);
2247 if (GET_CODE (reg) != REG)
2248 return;
2250 /* Global registers are always live, so the code below does not apply
2251 to them. */
2253 regno = REGNO (reg);
2255 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
2257 if (regno < FIRST_PSEUDO_REGISTER)
2259 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2260 while (--j >= 0)
2262 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2264 int b = candidate_table[src].update_bbs.first_member[i];
2266 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno + j);
2270 else
2272 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
2274 int b = candidate_table[src].update_bbs.first_member[i];
2276 SET_REGNO_REG_SET (basic_block_live_at_start[b], regno);
2283 /* Return 1 if insn can be speculatively moved from block src to trg,
2284 otherwise return 0. Called before first insertion of insn to
2285 ready-list or before the scheduling. */
2287 static int
2288 check_live (insn, src, trg)
2289 rtx insn;
2290 int src;
2291 int trg;
2293 /* find the registers set by instruction */
2294 if (GET_CODE (PATTERN (insn)) == SET
2295 || GET_CODE (PATTERN (insn)) == CLOBBER)
2296 return check_live_1 (src, PATTERN (insn));
2297 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2299 int j;
2300 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2301 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2302 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2303 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
2304 return 0;
2306 return 1;
2309 return 1;
2313 /* Update the live registers info after insn was moved speculatively from
2314 block src to trg. */
2316 static void
2317 update_live (insn, src, trg)
2318 rtx insn;
2319 int src, trg;
2321 /* find the registers set by instruction */
2322 if (GET_CODE (PATTERN (insn)) == SET
2323 || GET_CODE (PATTERN (insn)) == CLOBBER)
2324 update_live_1 (src, PATTERN (insn));
2325 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2327 int j;
2328 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
2329 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
2330 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
2331 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
2335 /* Exception Free Loads:
2337 We define five classes of speculative loads: IFREE, IRISKY,
2338 PFREE, PRISKY, and MFREE.
2340 IFREE loads are loads that are proved to be exception-free, just
2341 by examining the load insn. Examples for such loads are loads
2342 from TOC and loads of global data.
2344 IRISKY loads are loads that are proved to be exception-risky,
2345 just by examining the load insn. Examples for such loads are
2346 volatile loads and loads from shared memory.
2348 PFREE loads are loads for which we can prove, by examining other
2349 insns, that they are exception-free. Currently, this class consists
2350 of loads for which we are able to find a "similar load", either in
2351 the target block, or, if only one split-block exists, in that split
2352 block. Load2 is similar to load1 if both have same single base
2353 register. We identify only part of the similar loads, by finding
2354 an insn upon which both load1 and load2 have a DEF-USE dependence.
2356 PRISKY loads are loads for which we can prove, by examining other
2357 insns, that they are exception-risky. Currently we have two proofs for
2358 such loads. The first proof detects loads that are probably guarded by a
2359 test on the memory address. This proof is based on the
2360 backward and forward data dependence information for the region.
2361 Let load-insn be the examined load.
2362 Load-insn is PRISKY iff ALL the following hold:
2364 - insn1 is not in the same block as load-insn
2365 - there is a DEF-USE dependence chain (insn1, ..., load-insn)
2366 - test-insn is either a compare or a branch, not in the same block as load-insn
2367 - load-insn is reachable from test-insn
2368 - there is a DEF-USE dependence chain (insn1, ..., test-insn)
2370 This proof might fail when the compare and the load are fed
2371 by an insn not in the region. To solve this, we will add to this
2372 group all loads that have no input DEF-USE dependence.
2374 The second proof detects loads that are directly or indirectly
2375 fed by a speculative load. This proof is affected by the
2376 scheduling process. We will use the flag fed_by_spec_load.
2377 Initially, all insns have this flag reset. After a speculative
2378 motion of an insn, if insn is either a load, or marked as
2379 fed_by_spec_load, we will also mark as fed_by_spec_load every
2380 insn1 for which a DEF-USE dependence (insn, insn1) exists. A
2381 load which is fed_by_spec_load is also PRISKY.
2383 MFREE (maybe-free) loads are all the remaining loads. They may be
2384 exception-free, but we cannot prove it.
2386 Now, all loads in IFREE and PFREE classes are considered
2387 exception-free, while all loads in IRISKY and PRISKY classes are
2388 considered exception-risky. As for loads in the MFREE class,
2389 these are considered either exception-free or exception-risky,
2390 depending on whether we are pessimistic or optimistic. We have
2391 to take the pessimistic approach to assure the safety of
2392 speculative scheduling, but we can take the optimistic approach
2393 by invoking the -fsched_spec_load_dangerous option. */
2395 enum INSN_TRAP_CLASS
2397 TRAP_FREE = 0, IFREE = 1, PFREE_CANDIDATE = 2,
2398 PRISKY_CANDIDATE = 3, IRISKY = 4, TRAP_RISKY = 5
2401 #define WORST_CLASS(class1, class2) \
2402 ((class1 > class2) ? class1 : class2)
2404 /* Indexed by INSN_UID, and set if there's DEF-USE dependence between */
2405 /* some speculatively moved load insn and this one. */
2406 char *fed_by_spec_load;
2407 char *is_load_insn;
2409 /* Non-zero if block bb_to is equal to, or reachable from block bb_from. */
2410 #define IS_REACHABLE(bb_from, bb_to) \
2411 (bb_from == bb_to \
2412 || IS_RGN_ENTRY (bb_from) \
2413 || (bitset_member (ancestor_edges[bb_to], \
2414 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))), \
2415 edgeset_size)))
2416 #define FED_BY_SPEC_LOAD(insn) (fed_by_spec_load[INSN_UID (insn)])
2417 #define IS_LOAD_INSN(insn) (is_load_insn[INSN_UID (insn)])
2419 /* Non-zero iff the address is comprised from at most 1 register */
2420 #define CONST_BASED_ADDRESS_P(x) \
2421 (GET_CODE (x) == REG \
2422 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
2423 || (GET_CODE (x) == LO_SUM)) \
2424 && (GET_CODE (XEXP (x, 0)) == CONST_INT \
2425 || GET_CODE (XEXP (x, 1)) == CONST_INT)))
2427 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
2429 static void
2430 set_spec_fed (load_insn)
2431 rtx load_insn;
2433 rtx link;
2435 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
2436 if (GET_MODE (link) == VOIDmode)
2437 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
2438 } /* set_spec_fed */
2440 /* On the path from the insn to load_insn_bb, find a conditional branch */
2441 /* depending on insn, that guards the speculative load. */
2443 static int
2444 find_conditional_protection (insn, load_insn_bb)
2445 rtx insn;
2446 int load_insn_bb;
2448 rtx link;
2450 /* iterate through DEF-USE forward dependences */
2451 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2453 rtx next = XEXP (link, 0);
2454 if ((CONTAINING_RGN (INSN_BLOCK (next)) ==
2455 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
2456 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
2457 && load_insn_bb != INSN_BB (next)
2458 && GET_MODE (link) == VOIDmode
2459 && (GET_CODE (next) == JUMP_INSN
2460 || find_conditional_protection (next, load_insn_bb)))
2461 return 1;
2463 return 0;
2464 } /* find_conditional_protection */
2466 /* Returns 1 if the same insn1 that participates in the computation
2467 of load_insn's address is feeding a conditional branch that is
2468 guarding on load_insn. This is true if we find a the two DEF-USE
2469 chains:
2470 insn1 -> ... -> conditional-branch
2471 insn1 -> ... -> load_insn,
2472 and if a flow path exist:
2473 insn1 -> ... -> conditional-branch -> ... -> load_insn,
2474 and if insn1 is on the path
2475 region-entry -> ... -> bb_trg -> ... load_insn.
2477 Locate insn1 by climbing on LOG_LINKS from load_insn.
2478 Locate the branch by following INSN_DEPEND from insn1. */
2480 static int
2481 is_conditionally_protected (load_insn, bb_src, bb_trg)
2482 rtx load_insn;
2483 int bb_src, bb_trg;
2485 rtx link;
2487 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
2489 rtx insn1 = XEXP (link, 0);
2491 /* must be a DEF-USE dependence upon non-branch */
2492 if (GET_MODE (link) != VOIDmode
2493 || GET_CODE (insn1) == JUMP_INSN)
2494 continue;
2496 /* must exist a path: region-entry -> ... -> bb_trg -> ... load_insn */
2497 if (INSN_BB (insn1) == bb_src
2498 || (CONTAINING_RGN (INSN_BLOCK (insn1))
2499 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
2500 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
2501 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
2502 continue;
2504 /* now search for the conditional-branch */
2505 if (find_conditional_protection (insn1, bb_src))
2506 return 1;
2508 /* recursive step: search another insn1, "above" current insn1. */
2509 return is_conditionally_protected (insn1, bb_src, bb_trg);
2512 /* the chain does not exsist */
2513 return 0;
2514 } /* is_conditionally_protected */
2516 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
2517 load_insn can move speculatively from bb_src to bb_trg. All the
2518 following must hold:
2520 (1) both loads have 1 base register (PFREE_CANDIDATEs).
2521 (2) load_insn and load1 have a def-use dependence upon
2522 the same insn 'insn1'.
2523 (3) either load2 is in bb_trg, or:
2524 - there's only one split-block, and
2525 - load1 is on the escape path, and
2527 From all these we can conclude that the two loads access memory
2528 addresses that differ at most by a constant, and hence if moving
2529 load_insn would cause an exception, it would have been caused by
2530 load2 anyhow. */
2532 static int
2533 is_pfree (load_insn, bb_src, bb_trg)
2534 rtx load_insn;
2535 int bb_src, bb_trg;
2537 rtx back_link;
2538 register candidate *candp = candidate_table + bb_src;
2540 if (candp->split_bbs.nr_members != 1)
2541 /* must have exactly one escape block */
2542 return 0;
2544 for (back_link = LOG_LINKS (load_insn);
2545 back_link; back_link = XEXP (back_link, 1))
2547 rtx insn1 = XEXP (back_link, 0);
2549 if (GET_MODE (back_link) == VOIDmode)
2551 /* found a DEF-USE dependence (insn1, load_insn) */
2552 rtx fore_link;
2554 for (fore_link = INSN_DEPEND (insn1);
2555 fore_link; fore_link = XEXP (fore_link, 1))
2557 rtx insn2 = XEXP (fore_link, 0);
2558 if (GET_MODE (fore_link) == VOIDmode)
2560 /* found a DEF-USE dependence (insn1, insn2) */
2561 if (classify_insn (insn2) != PFREE_CANDIDATE)
2562 /* insn2 not guaranteed to be a 1 base reg load */
2563 continue;
2565 if (INSN_BB (insn2) == bb_trg)
2566 /* insn2 is the similar load, in the target block */
2567 return 1;
2569 if (*(candp->split_bbs.first_member) == INSN_BLOCK (insn2))
2570 /* insn2 is a similar load, in a split-block */
2571 return 1;
2577 /* couldn't find a similar load */
2578 return 0;
2579 } /* is_pfree */
2581 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
2582 as found by analyzing insn's expression. */
2584 static int
2585 may_trap_exp (x, is_store)
2586 rtx x;
2587 int is_store;
2589 enum rtx_code code;
2591 if (x == 0)
2592 return TRAP_FREE;
2593 code = GET_CODE (x);
2594 if (is_store)
2596 if (code == MEM)
2597 return TRAP_RISKY;
2598 else
2599 return TRAP_FREE;
2601 if (code == MEM)
2603 /* The insn uses memory */
2604 /* a volatile load */
2605 if (MEM_VOLATILE_P (x))
2606 return IRISKY;
2607 /* an exception-free load */
2608 if (!may_trap_p (x))
2609 return IFREE;
2610 /* a load with 1 base register, to be further checked */
2611 if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
2612 return PFREE_CANDIDATE;
2613 /* no info on the load, to be further checked */
2614 return PRISKY_CANDIDATE;
2616 else
2618 char *fmt;
2619 int i, insn_class = TRAP_FREE;
2621 /* neither store nor load, check if it may cause a trap */
2622 if (may_trap_p (x))
2623 return TRAP_RISKY;
2624 /* recursive step: walk the insn... */
2625 fmt = GET_RTX_FORMAT (code);
2626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2628 if (fmt[i] == 'e')
2630 int tmp_class = may_trap_exp (XEXP (x, i), is_store);
2631 insn_class = WORST_CLASS (insn_class, tmp_class);
2633 else if (fmt[i] == 'E')
2635 int j;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2638 int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
2639 insn_class = WORST_CLASS (insn_class, tmp_class);
2640 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2641 break;
2644 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2645 break;
2647 return insn_class;
2649 } /* may_trap_exp */
2652 /* Classifies insn for the purpose of verifying that it can be
2653 moved speculatively, by examining it's patterns, returning:
2654 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
2655 TRAP_FREE: non-load insn.
2656 IFREE: load from a globaly safe location.
2657 IRISKY: volatile load.
2658 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
2659 being either PFREE or PRISKY. */
2661 static int
2662 classify_insn (insn)
2663 rtx insn;
2665 rtx pat = PATTERN (insn);
2666 int tmp_class = TRAP_FREE;
2667 int insn_class = TRAP_FREE;
2668 enum rtx_code code;
2670 if (GET_CODE (pat) == PARALLEL)
2672 int i, len = XVECLEN (pat, 0);
2674 for (i = len - 1; i >= 0; i--)
2676 code = GET_CODE (XVECEXP (pat, 0, i));
2677 switch (code)
2679 case CLOBBER:
2680 /* test if it is a 'store' */
2681 tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
2682 break;
2683 case SET:
2684 /* test if it is a store */
2685 tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
2686 if (tmp_class == TRAP_RISKY)
2687 break;
2688 /* test if it is a load */
2689 tmp_class =
2690 WORST_CLASS (tmp_class,
2691 may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)), 0));
2692 default:;
2694 insn_class = WORST_CLASS (insn_class, tmp_class);
2695 if (insn_class == TRAP_RISKY || insn_class == IRISKY)
2696 break;
2699 else
2701 code = GET_CODE (pat);
2702 switch (code)
2704 case CLOBBER:
2705 /* test if it is a 'store' */
2706 tmp_class = may_trap_exp (XEXP (pat, 0), 1);
2707 break;
2708 case SET:
2709 /* test if it is a store */
2710 tmp_class = may_trap_exp (SET_DEST (pat), 1);
2711 if (tmp_class == TRAP_RISKY)
2712 break;
2713 /* test if it is a load */
2714 tmp_class =
2715 WORST_CLASS (tmp_class,
2716 may_trap_exp (SET_SRC (pat), 0));
2717 default:;
2719 insn_class = tmp_class;
2722 return insn_class;
2724 } /* classify_insn */
2726 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2727 a load moved speculatively, or if load_insn is protected by
2728 a compare on load_insn's address). */
2730 static int
2731 is_prisky (load_insn, bb_src, bb_trg)
2732 rtx load_insn;
2733 int bb_src, bb_trg;
2735 if (FED_BY_SPEC_LOAD (load_insn))
2736 return 1;
2738 if (LOG_LINKS (load_insn) == NULL)
2739 /* dependence may 'hide' out of the region. */
2740 return 1;
2742 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2743 return 1;
2745 return 0;
2746 } /* is_prisky */
2748 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2749 Return 1 if insn is exception-free (and the motion is valid)
2750 and 0 otherwise. */
2752 static int
2753 is_exception_free (insn, bb_src, bb_trg)
2754 rtx insn;
2755 int bb_src, bb_trg;
2757 int insn_class = classify_insn (insn);
2759 /* handle non-load insns */
2760 switch (insn_class)
2762 case TRAP_FREE:
2763 return 1;
2764 case TRAP_RISKY:
2765 return 0;
2766 default:;
2769 /* handle loads */
2770 if (!flag_schedule_speculative_load)
2771 return 0;
2772 IS_LOAD_INSN (insn) = 1;
2773 switch (insn_class)
2775 case IFREE:
2776 return (1);
2777 case IRISKY:
2778 return 0;
2779 case PFREE_CANDIDATE:
2780 if (is_pfree (insn, bb_src, bb_trg))
2781 return 1;
2782 /* don't 'break' here: PFREE-candidate is also PRISKY-candidate */
2783 case PRISKY_CANDIDATE:
2784 if (!flag_schedule_speculative_load_dangerous
2785 || is_prisky (insn, bb_src, bb_trg))
2786 return 0;
2787 break;
2788 default:;
2791 return flag_schedule_speculative_load_dangerous;
2792 } /* is_exception_free */
2795 /* Process an insn's memory dependencies. There are four kinds of
2796 dependencies:
2798 (0) read dependence: read follows read
2799 (1) true dependence: read follows write
2800 (2) anti dependence: write follows read
2801 (3) output dependence: write follows write
2803 We are careful to build only dependencies which actually exist, and
2804 use transitivity to avoid building too many links. */
2806 /* Return the INSN_LIST containing INSN in LIST, or NULL
2807 if LIST does not contain INSN. */
2809 __inline static rtx
2810 find_insn_list (insn, list)
2811 rtx insn;
2812 rtx list;
2814 while (list)
2816 if (XEXP (list, 0) == insn)
2817 return list;
2818 list = XEXP (list, 1);
2820 return 0;
2824 /* Return 1 if the pair (insn, x) is found in (LIST, LIST1), or 0 otherwise. */
2826 __inline static char
2827 find_insn_mem_list (insn, x, list, list1)
2828 rtx insn, x;
2829 rtx list, list1;
2831 while (list)
2833 if (XEXP (list, 0) == insn
2834 && XEXP (list1, 0) == x)
2835 return 1;
2836 list = XEXP (list, 1);
2837 list1 = XEXP (list1, 1);
2839 return 0;
2843 /* Compute the function units used by INSN. This caches the value
2844 returned by function_units_used. A function unit is encoded as the
2845 unit number if the value is non-negative and the compliment of a
2846 mask if the value is negative. A function unit index is the
2847 non-negative encoding. */
2849 __inline static int
2850 insn_unit (insn)
2851 rtx insn;
2853 register int unit = INSN_UNIT (insn);
2855 if (unit == 0)
2857 recog_memoized (insn);
2859 /* A USE insn, or something else we don't need to understand.
2860 We can't pass these directly to function_units_used because it will
2861 trigger a fatal error for unrecognizable insns. */
2862 if (INSN_CODE (insn) < 0)
2863 unit = -1;
2864 else
2866 unit = function_units_used (insn);
2867 /* Increment non-negative values so we can cache zero. */
2868 if (unit >= 0)
2869 unit++;
2871 /* We only cache 16 bits of the result, so if the value is out of
2872 range, don't cache it. */
2873 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
2874 || unit >= 0
2875 || (~unit & ((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
2876 INSN_UNIT (insn) = unit;
2878 return (unit > 0 ? unit - 1 : unit);
2881 /* Compute the blockage range for executing INSN on UNIT. This caches
2882 the value returned by the blockage_range_function for the unit.
2883 These values are encoded in an int where the upper half gives the
2884 minimum value and the lower half gives the maximum value. */
2886 __inline static unsigned int
2887 blockage_range (unit, insn)
2888 int unit;
2889 rtx insn;
2891 unsigned int blockage = INSN_BLOCKAGE (insn);
2892 unsigned int range;
2894 if (UNIT_BLOCKED (blockage) != unit + 1)
2896 range = function_units[unit].blockage_range_function (insn);
2897 /* We only cache the blockage range for one unit and then only if
2898 the values fit. */
2899 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
2900 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
2902 else
2903 range = BLOCKAGE_RANGE (blockage);
2905 return range;
2908 /* A vector indexed by function unit instance giving the last insn to use
2909 the unit. The value of the function unit instance index for unit U
2910 instance I is (U + I * FUNCTION_UNITS_SIZE). */
2911 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2913 /* A vector indexed by function unit instance giving the minimum time when
2914 the unit will unblock based on the maximum blockage cost. */
2915 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
2917 /* A vector indexed by function unit number giving the number of insns
2918 that remain to use the unit. */
2919 static int unit_n_insns[FUNCTION_UNITS_SIZE];
2921 /* Reset the function unit state to the null state. */
2923 static void
2924 clear_units ()
2926 bzero ((char *) unit_last_insn, sizeof (unit_last_insn));
2927 bzero ((char *) unit_tick, sizeof (unit_tick));
2928 bzero ((char *) unit_n_insns, sizeof (unit_n_insns));
2931 /* Return the issue-delay of an insn */
2933 __inline static int
2934 insn_issue_delay (insn)
2935 rtx insn;
2937 rtx link;
2938 int i, delay = 0;
2939 int unit = insn_unit (insn);
2941 /* efficiency note: in fact, we are working 'hard' to compute a
2942 value that was available in md file, and is not available in
2943 function_units[] structure. It would be nice to have this
2944 value there, too. */
2945 if (unit >= 0)
2947 if (function_units[unit].blockage_range_function &&
2948 function_units[unit].blockage_function)
2949 delay = function_units[unit].blockage_function (insn, insn);
2951 else
2952 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
2953 if ((unit & 1) != 0 && function_units[i].blockage_range_function
2954 && function_units[i].blockage_function)
2955 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
2957 return delay;
2960 /* Return the actual hazard cost of executing INSN on the unit UNIT,
2961 instance INSTANCE at time CLOCK if the previous actual hazard cost
2962 was COST. */
2964 __inline static int
2965 actual_hazard_this_instance (unit, instance, insn, clock, cost)
2966 int unit, instance, clock, cost;
2967 rtx insn;
2969 int tick = unit_tick[instance]; /* issue time of the last issued insn */
2971 if (tick - clock > cost)
2973 /* The scheduler is operating forward, so unit's last insn is the
2974 executing insn and INSN is the candidate insn. We want a
2975 more exact measure of the blockage if we execute INSN at CLOCK
2976 given when we committed the execution of the unit's last insn.
2978 The blockage value is given by either the unit's max blockage
2979 constant, blockage range function, or blockage function. Use
2980 the most exact form for the given unit. */
2982 if (function_units[unit].blockage_range_function)
2984 if (function_units[unit].blockage_function)
2985 tick += (function_units[unit].blockage_function
2986 (unit_last_insn[instance], insn)
2987 - function_units[unit].max_blockage);
2988 else
2989 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
2990 - function_units[unit].max_blockage);
2992 if (tick - clock > cost)
2993 cost = tick - clock;
2995 return cost;
2998 /* Record INSN as having begun execution on the units encoded by UNIT at
2999 time CLOCK. */
3001 __inline static void
3002 schedule_unit (unit, insn, clock)
3003 int unit, clock;
3004 rtx insn;
3006 int i;
3008 if (unit >= 0)
3010 int instance = unit;
3011 #if MAX_MULTIPLICITY > 1
3012 /* Find the first free instance of the function unit and use that
3013 one. We assume that one is free. */
3014 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
3016 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
3017 break;
3018 instance += FUNCTION_UNITS_SIZE;
3020 #endif
3021 unit_last_insn[instance] = insn;
3022 unit_tick[instance] = (clock + function_units[unit].max_blockage);
3024 else
3025 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3026 if ((unit & 1) != 0)
3027 schedule_unit (i, insn, clock);
3030 /* Return the actual hazard cost of executing INSN on the units encoded by
3031 UNIT at time CLOCK if the previous actual hazard cost was COST. */
3033 __inline static int
3034 actual_hazard (unit, insn, clock, cost)
3035 int unit, clock, cost;
3036 rtx insn;
3038 int i;
3040 if (unit >= 0)
3042 /* Find the instance of the function unit with the minimum hazard. */
3043 int instance = unit;
3044 int best_cost = actual_hazard_this_instance (unit, instance, insn,
3045 clock, cost);
3046 int this_cost;
3048 #if MAX_MULTIPLICITY > 1
3049 if (best_cost > cost)
3051 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
3053 instance += FUNCTION_UNITS_SIZE;
3054 this_cost = actual_hazard_this_instance (unit, instance, insn,
3055 clock, cost);
3056 if (this_cost < best_cost)
3058 best_cost = this_cost;
3059 if (this_cost <= cost)
3060 break;
3064 #endif
3065 cost = MAX (cost, best_cost);
3067 else
3068 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3069 if ((unit & 1) != 0)
3070 cost = actual_hazard (i, insn, clock, cost);
3072 return cost;
3075 /* Return the potential hazard cost of executing an instruction on the
3076 units encoded by UNIT if the previous potential hazard cost was COST.
3077 An insn with a large blockage time is chosen in preference to one
3078 with a smaller time; an insn that uses a unit that is more likely
3079 to be used is chosen in preference to one with a unit that is less
3080 used. We are trying to minimize a subsequent actual hazard. */
3082 __inline static int
3083 potential_hazard (unit, insn, cost)
3084 int unit, cost;
3085 rtx insn;
3087 int i, ncost;
3088 unsigned int minb, maxb;
3090 if (unit >= 0)
3092 minb = maxb = function_units[unit].max_blockage;
3093 if (maxb > 1)
3095 if (function_units[unit].blockage_range_function)
3097 maxb = minb = blockage_range (unit, insn);
3098 maxb = MAX_BLOCKAGE_COST (maxb);
3099 minb = MIN_BLOCKAGE_COST (minb);
3102 if (maxb > 1)
3104 /* Make the number of instructions left dominate. Make the
3105 minimum delay dominate the maximum delay. If all these
3106 are the same, use the unit number to add an arbitrary
3107 ordering. Other terms can be added. */
3108 ncost = minb * 0x40 + maxb;
3109 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
3110 if (ncost > cost)
3111 cost = ncost;
3115 else
3116 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
3117 if ((unit & 1) != 0)
3118 cost = potential_hazard (i, insn, cost);
3120 return cost;
3123 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
3124 This is the number of cycles between instruction issue and
3125 instruction results. */
3127 __inline static int
3128 insn_cost (insn, link, used)
3129 rtx insn, link, used;
3131 register int cost = INSN_COST (insn);
3133 if (cost == 0)
3135 recog_memoized (insn);
3137 /* A USE insn, or something else we don't need to understand.
3138 We can't pass these directly to result_ready_cost because it will
3139 trigger a fatal error for unrecognizable insns. */
3140 if (INSN_CODE (insn) < 0)
3142 INSN_COST (insn) = 1;
3143 return 1;
3145 else
3147 cost = result_ready_cost (insn);
3149 if (cost < 1)
3150 cost = 1;
3152 INSN_COST (insn) = cost;
3156 /* in this case estimate cost without caring how insn is used. */
3157 if (link == 0 && used == 0)
3158 return cost;
3160 /* A USE insn should never require the value used to be computed. This
3161 allows the computation of a function's result and parameter values to
3162 overlap the return and call. */
3163 recog_memoized (used);
3164 if (INSN_CODE (used) < 0)
3165 LINK_COST_FREE (link) = 1;
3167 /* If some dependencies vary the cost, compute the adjustment. Most
3168 commonly, the adjustment is complete: either the cost is ignored
3169 (in the case of an output- or anti-dependence), or the cost is
3170 unchanged. These values are cached in the link as LINK_COST_FREE
3171 and LINK_COST_ZERO. */
3173 if (LINK_COST_FREE (link))
3174 cost = 1;
3175 #ifdef ADJUST_COST
3176 else if (!LINK_COST_ZERO (link))
3178 int ncost = cost;
3180 ADJUST_COST (used, link, insn, ncost);
3181 if (ncost <= 1)
3182 LINK_COST_FREE (link) = ncost = 1;
3183 if (cost == ncost)
3184 LINK_COST_ZERO (link) = 1;
3185 cost = ncost;
3187 #endif
3188 return cost;
3191 /* Compute the priority number for INSN. */
3193 static int
3194 priority (insn)
3195 rtx insn;
3197 int this_priority;
3198 rtx link;
3200 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
3201 return 0;
3203 if ((this_priority = INSN_PRIORITY (insn)) == 0)
3205 if (INSN_DEPEND (insn) == 0)
3206 this_priority = insn_cost (insn, 0, 0);
3207 else
3208 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
3210 rtx next;
3211 int next_priority;
3213 next = XEXP (link, 0);
3215 /* critical path is meaningful in block boundaries only */
3216 if (INSN_BLOCK (next) != INSN_BLOCK (insn))
3217 continue;
3219 next_priority = insn_cost (insn, link, next) + priority (next);
3220 if (next_priority > this_priority)
3221 this_priority = next_priority;
3223 INSN_PRIORITY (insn) = this_priority;
3225 return this_priority;
3229 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
3230 them to the unused_*_list variables, so that they can be reused. */
3232 __inline static void
3233 free_pnd_lst (listp, unused_listp)
3234 rtx *listp, *unused_listp;
3236 register rtx link, prev_link;
3238 if (*listp == 0)
3239 return;
3241 prev_link = *listp;
3242 link = XEXP (prev_link, 1);
3244 while (link)
3246 prev_link = link;
3247 link = XEXP (link, 1);
3250 XEXP (prev_link, 1) = *unused_listp;
3251 *unused_listp = *listp;
3252 *listp = 0;
3255 static void
3256 free_pending_lists ()
3260 if (current_nr_blocks <= 1)
3262 free_pnd_lst (&pending_read_insns, &unused_insn_list);
3263 free_pnd_lst (&pending_write_insns, &unused_insn_list);
3264 free_pnd_lst (&pending_read_mems, &unused_expr_list);
3265 free_pnd_lst (&pending_write_mems, &unused_expr_list);
3267 else
3269 /* interblock scheduling */
3270 int bb;
3272 for (bb = 0; bb < current_nr_blocks; bb++)
3274 free_pnd_lst (&bb_pending_read_insns[bb], &unused_insn_list);
3275 free_pnd_lst (&bb_pending_write_insns[bb], &unused_insn_list);
3276 free_pnd_lst (&bb_pending_read_mems[bb], &unused_expr_list);
3277 free_pnd_lst (&bb_pending_write_mems[bb], &unused_expr_list);
3282 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
3283 The MEM is a memory reference contained within INSN, which we are saving
3284 so that we can do memory aliasing on it. */
3286 static void
3287 add_insn_mem_dependence (insn_list, mem_list, insn, mem)
3288 rtx *insn_list, *mem_list, insn, mem;
3290 register rtx link;
3292 if (unused_insn_list)
3294 link = unused_insn_list;
3295 unused_insn_list = XEXP (link, 1);
3297 else
3298 link = rtx_alloc (INSN_LIST);
3299 XEXP (link, 0) = insn;
3300 XEXP (link, 1) = *insn_list;
3301 *insn_list = link;
3303 if (unused_expr_list)
3305 link = unused_expr_list;
3306 unused_expr_list = XEXP (link, 1);
3308 else
3309 link = rtx_alloc (EXPR_LIST);
3310 XEXP (link, 0) = mem;
3311 XEXP (link, 1) = *mem_list;
3312 *mem_list = link;
3314 pending_lists_length++;
3318 /* Make a dependency between every memory reference on the pending lists
3319 and INSN, thus flushing the pending lists. If ONLY_WRITE, don't flush
3320 the read list. */
3322 static void
3323 flush_pending_lists (insn, only_write)
3324 rtx insn;
3325 int only_write;
3327 rtx u;
3328 rtx link;
3330 while (pending_read_insns && ! only_write)
3332 add_dependence (insn, XEXP (pending_read_insns, 0), REG_DEP_ANTI);
3334 link = pending_read_insns;
3335 pending_read_insns = XEXP (pending_read_insns, 1);
3336 XEXP (link, 1) = unused_insn_list;
3337 unused_insn_list = link;
3339 link = pending_read_mems;
3340 pending_read_mems = XEXP (pending_read_mems, 1);
3341 XEXP (link, 1) = unused_expr_list;
3342 unused_expr_list = link;
3344 while (pending_write_insns)
3346 add_dependence (insn, XEXP (pending_write_insns, 0), REG_DEP_ANTI);
3348 link = pending_write_insns;
3349 pending_write_insns = XEXP (pending_write_insns, 1);
3350 XEXP (link, 1) = unused_insn_list;
3351 unused_insn_list = link;
3353 link = pending_write_mems;
3354 pending_write_mems = XEXP (pending_write_mems, 1);
3355 XEXP (link, 1) = unused_expr_list;
3356 unused_expr_list = link;
3358 pending_lists_length = 0;
3360 /* last_pending_memory_flush is now a list of insns */
3361 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3362 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3364 last_pending_memory_flush =
3365 gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
3368 /* Analyze a single SET or CLOBBER rtx, X, creating all dependencies generated
3369 by the write to the destination of X, and reads of everything mentioned. */
3371 static void
3372 sched_analyze_1 (x, insn)
3373 rtx x;
3374 rtx insn;
3376 register int regno;
3377 register rtx dest = SET_DEST (x);
3379 if (dest == 0)
3380 return;
3382 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
3383 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3385 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
3387 /* The second and third arguments are values read by this insn. */
3388 sched_analyze_2 (XEXP (dest, 1), insn);
3389 sched_analyze_2 (XEXP (dest, 2), insn);
3391 dest = SUBREG_REG (dest);
3394 if (GET_CODE (dest) == REG)
3396 register int i;
3398 regno = REGNO (dest);
3400 /* A hard reg in a wide mode may really be multiple registers.
3401 If so, mark all of them just like the first. */
3402 if (regno < FIRST_PSEUDO_REGISTER)
3404 i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
3405 while (--i >= 0)
3407 rtx u;
3409 for (u = reg_last_uses[regno + i]; u; u = XEXP (u, 1))
3410 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3411 reg_last_uses[regno + i] = 0;
3413 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3414 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3416 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
3418 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3419 /* Function calls clobber all call_used regs. */
3420 for (u = last_function_call; u; u = XEXP (u, 1))
3421 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3424 else
3426 rtx u;
3428 for (u = reg_last_uses[regno]; u; u = XEXP (u, 1))
3429 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3430 reg_last_uses[regno] = 0;
3432 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3433 add_dependence (insn, XEXP (u, 0), REG_DEP_OUTPUT);
3435 SET_REGNO_REG_SET (reg_pending_sets, regno);
3437 /* Pseudos that are REG_EQUIV to something may be replaced
3438 by that during reloading. We need only add dependencies for
3439 the address in the REG_EQUIV note. */
3440 if (!reload_completed
3441 && reg_known_equiv_p[regno]
3442 && GET_CODE (reg_known_value[regno]) == MEM)
3443 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3445 /* Don't let it cross a call after scheduling if it doesn't
3446 already cross one. */
3448 if (REG_N_CALLS_CROSSED (regno) == 0)
3449 for (u = last_function_call; u; u = XEXP (u, 1))
3450 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3453 else if (GET_CODE (dest) == MEM)
3455 /* Writing memory. */
3457 if (pending_lists_length > 32)
3459 /* Flush all pending reads and writes to prevent the pending lists
3460 from getting any larger. Insn scheduling runs too slowly when
3461 these lists get long. The number 32 was chosen because it
3462 seems like a reasonable number. When compiling GCC with itself,
3463 this flush occurs 8 times for sparc, and 10 times for m88k using
3464 the number 32. */
3465 flush_pending_lists (insn, 0);
3467 else
3469 rtx u;
3470 rtx pending, pending_mem;
3472 pending = pending_read_insns;
3473 pending_mem = pending_read_mems;
3474 while (pending)
3476 /* If a dependency already exists, don't create a new one. */
3477 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3478 if (anti_dependence (XEXP (pending_mem, 0), dest))
3479 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3481 pending = XEXP (pending, 1);
3482 pending_mem = XEXP (pending_mem, 1);
3485 pending = pending_write_insns;
3486 pending_mem = pending_write_mems;
3487 while (pending)
3489 /* If a dependency already exists, don't create a new one. */
3490 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3491 if (output_dependence (XEXP (pending_mem, 0), dest))
3492 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3494 pending = XEXP (pending, 1);
3495 pending_mem = XEXP (pending_mem, 1);
3498 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3499 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3501 add_insn_mem_dependence (&pending_write_insns, &pending_write_mems,
3502 insn, dest);
3504 sched_analyze_2 (XEXP (dest, 0), insn);
3507 /* Analyze reads. */
3508 if (GET_CODE (x) == SET)
3509 sched_analyze_2 (SET_SRC (x), insn);
3512 /* Analyze the uses of memory and registers in rtx X in INSN. */
3514 static void
3515 sched_analyze_2 (x, insn)
3516 rtx x;
3517 rtx insn;
3519 register int i;
3520 register int j;
3521 register enum rtx_code code;
3522 register char *fmt;
3524 if (x == 0)
3525 return;
3527 code = GET_CODE (x);
3529 switch (code)
3531 case CONST_INT:
3532 case CONST_DOUBLE:
3533 case SYMBOL_REF:
3534 case CONST:
3535 case LABEL_REF:
3536 /* Ignore constants. Note that we must handle CONST_DOUBLE here
3537 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
3538 this does not mean that this insn is using cc0. */
3539 return;
3541 #ifdef HAVE_cc0
3542 case CC0:
3544 rtx link, prev;
3546 /* User of CC0 depends on immediately preceding insn. */
3547 SCHED_GROUP_P (insn) = 1;
3549 /* There may be a note before this insn now, but all notes will
3550 be removed before we actually try to schedule the insns, so
3551 it won't cause a problem later. We must avoid it here though. */
3552 prev = prev_nonnote_insn (insn);
3554 /* Make a copy of all dependencies on the immediately previous insn,
3555 and add to this insn. This is so that all the dependencies will
3556 apply to the group. Remove an explicit dependence on this insn
3557 as SCHED_GROUP_P now represents it. */
3559 if (find_insn_list (prev, LOG_LINKS (insn)))
3560 remove_dependence (insn, prev);
3562 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
3563 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3565 return;
3567 #endif
3569 case REG:
3571 rtx u;
3572 int regno = REGNO (x);
3573 if (regno < FIRST_PSEUDO_REGISTER)
3575 int i;
3577 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
3578 while (--i >= 0)
3580 reg_last_uses[regno + i]
3581 = gen_rtx (INSN_LIST, VOIDmode,
3582 insn, reg_last_uses[regno + i]);
3584 for (u = reg_last_sets[regno + i]; u; u = XEXP (u, 1))
3585 add_dependence (insn, XEXP (u, 0), 0);
3587 if ((call_used_regs[regno + i] || global_regs[regno + i]))
3588 /* Function calls clobber all call_used regs. */
3589 for (u = last_function_call; u; u = XEXP (u, 1))
3590 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3593 else
3595 reg_last_uses[regno]
3596 = gen_rtx (INSN_LIST, VOIDmode, insn, reg_last_uses[regno]);
3598 for (u = reg_last_sets[regno]; u; u = XEXP (u, 1))
3599 add_dependence (insn, XEXP (u, 0), 0);
3601 /* Pseudos that are REG_EQUIV to something may be replaced
3602 by that during reloading. We need only add dependencies for
3603 the address in the REG_EQUIV note. */
3604 if (!reload_completed
3605 && reg_known_equiv_p[regno]
3606 && GET_CODE (reg_known_value[regno]) == MEM)
3607 sched_analyze_2 (XEXP (reg_known_value[regno], 0), insn);
3609 /* If the register does not already cross any calls, then add this
3610 insn to the sched_before_next_call list so that it will still
3611 not cross calls after scheduling. */
3612 if (REG_N_CALLS_CROSSED (regno) == 0)
3613 add_dependence (sched_before_next_call, insn, REG_DEP_ANTI);
3615 return;
3618 case MEM:
3620 /* Reading memory. */
3621 rtx u;
3622 rtx pending, pending_mem;
3624 pending = pending_read_insns;
3625 pending_mem = pending_read_mems;
3626 while (pending)
3628 /* If a dependency already exists, don't create a new one. */
3629 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3630 if (read_dependence (XEXP (pending_mem, 0), x))
3631 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
3633 pending = XEXP (pending, 1);
3634 pending_mem = XEXP (pending_mem, 1);
3637 pending = pending_write_insns;
3638 pending_mem = pending_write_mems;
3639 while (pending)
3641 /* If a dependency already exists, don't create a new one. */
3642 if (!find_insn_list (XEXP (pending, 0), LOG_LINKS (insn)))
3643 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
3644 x, rtx_varies_p))
3645 add_dependence (insn, XEXP (pending, 0), 0);
3647 pending = XEXP (pending, 1);
3648 pending_mem = XEXP (pending_mem, 1);
3651 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
3652 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3654 /* Always add these dependencies to pending_reads, since
3655 this insn may be followed by a write. */
3656 add_insn_mem_dependence (&pending_read_insns, &pending_read_mems,
3657 insn, x);
3659 /* Take advantage of tail recursion here. */
3660 sched_analyze_2 (XEXP (x, 0), insn);
3661 return;
3664 case ASM_OPERANDS:
3665 case ASM_INPUT:
3666 case UNSPEC_VOLATILE:
3667 case TRAP_IF:
3669 rtx u;
3671 /* Traditional and volatile asm instructions must be considered to use
3672 and clobber all hard registers, all pseudo-registers and all of
3673 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3675 Consider for instance a volatile asm that changes the fpu rounding
3676 mode. An insn should not be moved across this even if it only uses
3677 pseudo-regs because it might give an incorrectly rounded result. */
3678 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3680 int max_reg = max_reg_num ();
3681 for (i = 0; i < max_reg; i++)
3683 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3684 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3685 reg_last_uses[i] = 0;
3687 /* reg_last_sets[r] is now a list of insns */
3688 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3689 add_dependence (insn, XEXP (u, 0), 0);
3691 reg_pending_sets_all = 1;
3693 flush_pending_lists (insn, 0);
3696 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3697 We can not just fall through here since then we would be confused
3698 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3699 traditional asms unlike their normal usage. */
3701 if (code == ASM_OPERANDS)
3703 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3704 sched_analyze_2 (ASM_OPERANDS_INPUT (x, j), insn);
3705 return;
3707 break;
3710 case PRE_DEC:
3711 case POST_DEC:
3712 case PRE_INC:
3713 case POST_INC:
3714 /* These both read and modify the result. We must handle them as writes
3715 to get proper dependencies for following instructions. We must handle
3716 them as reads to get proper dependencies from this to previous
3717 instructions. Thus we need to pass them to both sched_analyze_1
3718 and sched_analyze_2. We must call sched_analyze_2 first in order
3719 to get the proper antecedent for the read. */
3720 sched_analyze_2 (XEXP (x, 0), insn);
3721 sched_analyze_1 (x, insn);
3722 return;
3725 /* Other cases: walk the insn. */
3726 fmt = GET_RTX_FORMAT (code);
3727 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3729 if (fmt[i] == 'e')
3730 sched_analyze_2 (XEXP (x, i), insn);
3731 else if (fmt[i] == 'E')
3732 for (j = 0; j < XVECLEN (x, i); j++)
3733 sched_analyze_2 (XVECEXP (x, i, j), insn);
3737 /* Analyze an INSN with pattern X to find all dependencies. */
3739 static void
3740 sched_analyze_insn (x, insn, loop_notes)
3741 rtx x, insn;
3742 rtx loop_notes;
3744 register RTX_CODE code = GET_CODE (x);
3745 rtx link;
3746 int maxreg = max_reg_num ();
3747 int i;
3749 if (code == SET || code == CLOBBER)
3750 sched_analyze_1 (x, insn);
3751 else if (code == PARALLEL)
3753 register int i;
3754 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
3756 code = GET_CODE (XVECEXP (x, 0, i));
3757 if (code == SET || code == CLOBBER)
3758 sched_analyze_1 (XVECEXP (x, 0, i), insn);
3759 else
3760 sched_analyze_2 (XVECEXP (x, 0, i), insn);
3763 else
3764 sched_analyze_2 (x, insn);
3766 /* Mark registers CLOBBERED or used by called function. */
3767 if (GET_CODE (insn) == CALL_INSN)
3768 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
3770 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
3771 sched_analyze_1 (XEXP (link, 0), insn);
3772 else
3773 sched_analyze_2 (XEXP (link, 0), insn);
3776 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic block, then
3777 we must be sure that no instructions are scheduled across it.
3778 Otherwise, the reg_n_refs info (which depends on loop_depth) would
3779 become incorrect. */
3781 if (loop_notes)
3783 int max_reg = max_reg_num ();
3784 rtx link;
3786 for (i = 0; i < max_reg; i++)
3788 rtx u;
3789 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3790 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3791 reg_last_uses[i] = 0;
3793 /* reg_last_sets[r] is now a list of insns */
3794 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3795 add_dependence (insn, XEXP (u, 0), 0);
3797 reg_pending_sets_all = 1;
3799 flush_pending_lists (insn, 0);
3801 link = loop_notes;
3802 while (XEXP (link, 1))
3803 link = XEXP (link, 1);
3804 XEXP (link, 1) = REG_NOTES (insn);
3805 REG_NOTES (insn) = loop_notes;
3808 /* After reload, it is possible for an instruction to have a REG_DEAD note
3809 for a register that actually dies a few instructions earlier. For
3810 example, this can happen with SECONDARY_MEMORY_NEEDED reloads.
3811 In this case, we must consider the insn to use the register mentioned
3812 in the REG_DEAD note. Otherwise, we may accidentally move this insn
3813 after another insn that sets the register, thus getting obviously invalid
3814 rtl. This confuses reorg which believes that REG_DEAD notes are still
3815 meaningful.
3817 ??? We would get better code if we fixed reload to put the REG_DEAD
3818 notes in the right places, but that may not be worth the effort. */
3820 if (reload_completed)
3822 rtx note;
3824 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3825 if (REG_NOTE_KIND (note) == REG_DEAD)
3826 sched_analyze_2 (XEXP (note, 0), insn);
3829 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
3831 /* reg_last_sets[r] is now a list of insns */
3832 reg_last_sets[i]
3833 = gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
3835 CLEAR_REG_SET (reg_pending_sets);
3837 if (reg_pending_sets_all)
3839 for (i = 0; i < maxreg; i++)
3841 /* reg_last_sets[r] is now a list of insns */
3842 reg_last_sets[i]
3843 = gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
3845 reg_pending_sets_all = 0;
3848 /* Handle function calls and function returns created by the epilogue
3849 threading code. */
3850 if (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3852 rtx dep_insn;
3853 rtx prev_dep_insn;
3855 /* When scheduling instructions, we make sure calls don't lose their
3856 accompanying USE insns by depending them one on another in order.
3858 Also, we must do the same thing for returns created by the epilogue
3859 threading code. Note this code works only in this special case,
3860 because other passes make no guarantee that they will never emit
3861 an instruction between a USE and a RETURN. There is such a guarantee
3862 for USE instructions immediately before a call. */
3864 prev_dep_insn = insn;
3865 dep_insn = PREV_INSN (insn);
3866 while (GET_CODE (dep_insn) == INSN
3867 && GET_CODE (PATTERN (dep_insn)) == USE
3868 && GET_CODE (XEXP (PATTERN (dep_insn), 0)) == REG)
3870 SCHED_GROUP_P (prev_dep_insn) = 1;
3872 /* Make a copy of all dependencies on dep_insn, and add to insn.
3873 This is so that all of the dependencies will apply to the
3874 group. */
3876 for (link = LOG_LINKS (dep_insn); link; link = XEXP (link, 1))
3877 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
3879 prev_dep_insn = dep_insn;
3880 dep_insn = PREV_INSN (dep_insn);
3885 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
3886 for every dependency. */
3888 static void
3889 sched_analyze (head, tail)
3890 rtx head, tail;
3892 register rtx insn;
3893 register rtx u;
3894 rtx loop_notes = 0;
3896 for (insn = head;; insn = NEXT_INSN (insn))
3898 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
3900 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3901 loop_notes = 0;
3903 else if (GET_CODE (insn) == CALL_INSN)
3905 rtx x;
3906 register int i;
3908 CANT_MOVE (insn) = 1;
3910 /* Any instruction using a hard register which may get clobbered
3911 by a call needs to be marked as dependent on this call.
3912 This prevents a use of a hard return reg from being moved
3913 past a void call (i.e. it does not explicitly set the hard
3914 return reg). */
3916 /* If this call is followed by a NOTE_INSN_SETJMP, then assume that
3917 all registers, not just hard registers, may be clobbered by this
3918 call. */
3920 /* Insn, being a CALL_INSN, magically depends on
3921 `last_function_call' already. */
3923 if (NEXT_INSN (insn) && GET_CODE (NEXT_INSN (insn)) == NOTE
3924 && NOTE_LINE_NUMBER (NEXT_INSN (insn)) == NOTE_INSN_SETJMP)
3926 int max_reg = max_reg_num ();
3927 for (i = 0; i < max_reg; i++)
3929 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3930 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3932 reg_last_uses[i] = 0;
3934 /* reg_last_sets[r] is now a list of insns */
3935 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3936 add_dependence (insn, XEXP (u, 0), 0);
3938 reg_pending_sets_all = 1;
3940 /* Add a pair of fake REG_NOTE which we will later
3941 convert back into a NOTE_INSN_SETJMP note. See
3942 reemit_notes for why we use a pair of NOTEs. */
3943 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
3944 GEN_INT (0),
3945 REG_NOTES (insn));
3946 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_DEAD,
3947 GEN_INT (NOTE_INSN_SETJMP),
3948 REG_NOTES (insn));
3950 else
3952 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3953 if (call_used_regs[i] || global_regs[i])
3955 for (u = reg_last_uses[i]; u; u = XEXP (u, 1))
3956 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3957 reg_last_uses[i] = 0;
3959 /* reg_last_sets[r] is now a list of insns */
3960 for (u = reg_last_sets[i]; u; u = XEXP (u, 1))
3961 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3963 SET_REGNO_REG_SET (reg_pending_sets, i);
3967 /* For each insn which shouldn't cross a call, add a dependence
3968 between that insn and this call insn. */
3969 x = LOG_LINKS (sched_before_next_call);
3970 while (x)
3972 add_dependence (insn, XEXP (x, 0), REG_DEP_ANTI);
3973 x = XEXP (x, 1);
3975 LOG_LINKS (sched_before_next_call) = 0;
3977 sched_analyze_insn (PATTERN (insn), insn, loop_notes);
3978 loop_notes = 0;
3980 /* In the absence of interprocedural alias analysis, we must flush
3981 all pending reads and writes, and start new dependencies starting
3982 from here. But only flush writes for constant calls (which may
3983 be passed a pointer to something we haven't written yet). */
3984 flush_pending_lists (insn, CONST_CALL_P (insn));
3986 /* Depend this function call (actually, the user of this
3987 function call) on all hard register clobberage. */
3989 /* last_function_call is now a list of insns */
3990 last_function_call
3991 = gen_rtx (INSN_LIST, VOIDmode, insn, NULL_RTX);
3994 /* See comments on reemit_notes as to why we do this. */
3995 else if (GET_CODE (insn) == NOTE
3996 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
3997 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
3998 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
3999 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END
4000 || (NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP
4001 && GET_CODE (PREV_INSN (insn)) != CALL_INSN)))
4003 loop_notes = gen_rtx (EXPR_LIST, REG_DEAD,
4004 GEN_INT (NOTE_BLOCK_NUMBER (insn)), loop_notes);
4005 loop_notes = gen_rtx (EXPR_LIST, REG_DEAD,
4006 GEN_INT (NOTE_LINE_NUMBER (insn)), loop_notes);
4007 CONST_CALL_P (loop_notes) = CONST_CALL_P (insn);
4010 if (insn == tail)
4011 return;
4013 abort ();
4016 /* Called when we see a set of a register. If death is true, then we are
4017 scanning backwards. Mark that register as unborn. If nobody says
4018 otherwise, that is how things will remain. If death is false, then we
4019 are scanning forwards. Mark that register as being born. */
4021 static void
4022 sched_note_set (b, x, death)
4023 int b;
4024 rtx x;
4025 int death;
4027 register int regno;
4028 register rtx reg = SET_DEST (x);
4029 int subreg_p = 0;
4031 if (reg == 0)
4032 return;
4034 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == STRICT_LOW_PART
4035 || GET_CODE (reg) == SIGN_EXTRACT || GET_CODE (reg) == ZERO_EXTRACT)
4037 /* Must treat modification of just one hardware register of a multi-reg
4038 value or just a byte field of a register exactly the same way that
4039 mark_set_1 in flow.c does, i.e. anything except a paradoxical subreg
4040 does not kill the entire register. */
4041 if (GET_CODE (reg) != SUBREG
4042 || REG_SIZE (SUBREG_REG (reg)) > REG_SIZE (reg))
4043 subreg_p = 1;
4045 reg = SUBREG_REG (reg);
4048 if (GET_CODE (reg) != REG)
4049 return;
4051 /* Global registers are always live, so the code below does not apply
4052 to them. */
4054 regno = REGNO (reg);
4055 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
4057 if (death)
4059 /* If we only set part of the register, then this set does not
4060 kill it. */
4061 if (subreg_p)
4062 return;
4064 /* Try killing this register. */
4065 if (regno < FIRST_PSEUDO_REGISTER)
4067 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4068 while (--j >= 0)
4070 CLEAR_REGNO_REG_SET (bb_live_regs, regno + j);
4073 else
4075 /* Recompute REG_BASIC_BLOCK as we update all the other
4076 dataflow information. */
4077 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4078 sched_reg_basic_block[regno] = current_block_num;
4079 else if (sched_reg_basic_block[regno] != current_block_num)
4080 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4082 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
4085 else
4087 /* Make the register live again. */
4088 if (regno < FIRST_PSEUDO_REGISTER)
4090 int j = HARD_REGNO_NREGS (regno, GET_MODE (reg));
4091 while (--j >= 0)
4093 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4096 else
4098 SET_REGNO_REG_SET (bb_live_regs, regno);
4104 /* Macros and functions for keeping the priority queue sorted, and
4105 dealing with queueing and dequeueing of instructions. */
4107 #define SCHED_SORT(READY, N_READY) \
4108 do { if ((N_READY) == 2) \
4109 swap_sort (READY, N_READY); \
4110 else if ((N_READY) > 2) \
4111 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
4112 while (0)
4114 /* Returns a positive value if x is preferred; returns a negative value if
4115 y is preferred. Should never return 0, since that will make the sort
4116 unstable. */
4118 static int
4119 rank_for_schedule (x, y)
4120 rtx *x, *y;
4122 rtx tmp = *y;
4123 rtx tmp2 = *x;
4124 rtx link;
4125 int tmp_class, tmp2_class;
4126 int val, priority_val, spec_val, prob_val, weight_val;
4129 /* schedule reverse is a stress test of the scheduler correctness,
4130 controlled by -fsched-reverse option. */
4131 if ((reload_completed && flag_schedule_reverse_after_reload) ||
4132 (!reload_completed && flag_schedule_reverse_before_reload))
4133 return INSN_LUID (tmp2) - INSN_LUID (tmp);
4135 /* prefer insn with higher priority */
4136 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
4137 if (priority_val)
4138 return priority_val;
4140 /* prefer an insn with smaller contribution to registers-pressure */
4141 if (!reload_completed &&
4142 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
4143 return (weight_val);
4145 /* some comparison make sense in interblock scheduling only */
4146 if (INSN_BB (tmp) != INSN_BB (tmp2))
4148 /* prefer an inblock motion on an interblock motion */
4149 if ((INSN_BB (tmp2) == target_bb) && (INSN_BB (tmp) != target_bb))
4150 return 1;
4151 if ((INSN_BB (tmp) == target_bb) && (INSN_BB (tmp2) != target_bb))
4152 return -1;
4154 /* prefer a useful motion on a speculative one */
4155 if ((spec_val = IS_SPECULATIVE_INSN (tmp) - IS_SPECULATIVE_INSN (tmp2)))
4156 return (spec_val);
4158 /* prefer a more probable (speculative) insn */
4159 prob_val = INSN_PROBABILITY (tmp2) - INSN_PROBABILITY (tmp);
4160 if (prob_val)
4161 return (prob_val);
4164 /* compare insns based on their relation to the last-scheduled-insn */
4165 if (last_scheduled_insn)
4167 /* Classify the instructions into three classes:
4168 1) Data dependent on last schedule insn.
4169 2) Anti/Output dependent on last scheduled insn.
4170 3) Independent of last scheduled insn, or has latency of one.
4171 Choose the insn from the highest numbered class if different. */
4172 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
4173 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
4174 tmp_class = 3;
4175 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4176 tmp_class = 1;
4177 else
4178 tmp_class = 2;
4180 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
4181 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
4182 tmp2_class = 3;
4183 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
4184 tmp2_class = 1;
4185 else
4186 tmp2_class = 2;
4188 if ((val = tmp2_class - tmp_class))
4189 return val;
4192 /* If insns are equally good, sort by INSN_LUID (original insn order),
4193 so that we make the sort stable. This minimizes instruction movement,
4194 thus minimizing sched's effect on debugging and cross-jumping. */
4195 return INSN_LUID (tmp) - INSN_LUID (tmp2);
4198 /* Resort the array A in which only element at index N may be out of order. */
4200 __inline static void
4201 swap_sort (a, n)
4202 rtx *a;
4203 int n;
4205 rtx insn = a[n - 1];
4206 int i = n - 2;
4208 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
4210 a[i + 1] = a[i];
4211 i -= 1;
4213 a[i + 1] = insn;
4216 static int max_priority;
4218 /* Add INSN to the insn queue so that it can be executed at least
4219 N_CYCLES after the currently executing insn. Preserve insns
4220 chain for debugging purposes. */
4222 __inline static void
4223 queue_insn (insn, n_cycles)
4224 rtx insn;
4225 int n_cycles;
4227 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
4228 rtx link = rtx_alloc (INSN_LIST);
4229 XEXP (link, 0) = insn;
4230 XEXP (link, 1) = insn_queue[next_q];
4231 insn_queue[next_q] = link;
4232 q_size += 1;
4234 if (sched_verbose >= 2)
4236 fprintf (dump, ";;\t\tReady-->Q: insn %d: ", INSN_UID (insn));
4238 if (INSN_BB (insn) != target_bb)
4239 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
4241 fprintf (dump, "queued for %d cycles.\n", n_cycles);
4246 /* Return nonzero if PAT is the pattern of an insn which makes a
4247 register live. */
4249 __inline static int
4250 birthing_insn_p (pat)
4251 rtx pat;
4253 int j;
4255 if (reload_completed == 1)
4256 return 0;
4258 if (GET_CODE (pat) == SET
4259 && GET_CODE (SET_DEST (pat)) == REG)
4261 rtx dest = SET_DEST (pat);
4262 int i = REGNO (dest);
4264 /* It would be more accurate to use refers_to_regno_p or
4265 reg_mentioned_p to determine when the dest is not live before this
4266 insn. */
4268 if (REGNO_REG_SET_P (bb_live_regs, i))
4269 return (REG_N_SETS (i) == 1);
4271 return 0;
4273 if (GET_CODE (pat) == PARALLEL)
4275 for (j = 0; j < XVECLEN (pat, 0); j++)
4276 if (birthing_insn_p (XVECEXP (pat, 0, j)))
4277 return 1;
4279 return 0;
4282 /* PREV is an insn that is ready to execute. Adjust its priority if that
4283 will help shorten register lifetimes. */
4285 __inline static void
4286 adjust_priority (prev)
4287 rtx prev;
4289 /* Trying to shorten register lives after reload has completed
4290 is useless and wrong. It gives inaccurate schedules. */
4291 if (reload_completed == 0)
4293 rtx note;
4294 int n_deaths = 0;
4296 /* ??? This code has no effect, because REG_DEAD notes are removed
4297 before we ever get here. */
4298 for (note = REG_NOTES (prev); note; note = XEXP (note, 1))
4299 if (REG_NOTE_KIND (note) == REG_DEAD)
4300 n_deaths += 1;
4302 /* Defer scheduling insns which kill registers, since that
4303 shortens register lives. Prefer scheduling insns which
4304 make registers live for the same reason. */
4305 switch (n_deaths)
4307 default:
4308 INSN_PRIORITY (prev) >>= 3;
4309 break;
4310 case 3:
4311 INSN_PRIORITY (prev) >>= 2;
4312 break;
4313 case 2:
4314 case 1:
4315 INSN_PRIORITY (prev) >>= 1;
4316 break;
4317 case 0:
4318 if (birthing_insn_p (PATTERN (prev)))
4320 int max = max_priority;
4322 if (max > INSN_PRIORITY (prev))
4323 INSN_PRIORITY (prev) = max;
4325 break;
4327 #ifdef ADJUST_PRIORITY
4328 ADJUST_PRIORITY (prev);
4329 #endif
4333 /* INSN is the "currently executing insn". Launch each insn which was
4334 waiting on INSN. READY is a vector of insns which are ready to fire.
4335 N_READY is the number of elements in READY. CLOCK is the current
4336 cycle. */
4338 static int
4339 schedule_insn (insn, ready, n_ready, clock)
4340 rtx insn;
4341 rtx *ready;
4342 int n_ready;
4343 int clock;
4345 rtx link;
4346 int unit;
4348 unit = insn_unit (insn);
4350 if (sched_verbose >= 2)
4352 fprintf (dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ", INSN_UID (insn));
4353 insn_print_units (insn);
4354 fprintf (dump, "\n");
4357 if (sched_verbose && unit == -1)
4358 visualize_no_unit (insn);
4360 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
4361 schedule_unit (unit, insn, clock);
4363 if (INSN_DEPEND (insn) == 0)
4364 return n_ready;
4366 /* This is used by the function adjust_priority above. */
4367 if (n_ready > 0)
4368 max_priority = MAX (INSN_PRIORITY (ready[0]), INSN_PRIORITY (insn));
4369 else
4370 max_priority = INSN_PRIORITY (insn);
4372 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
4374 rtx next = XEXP (link, 0);
4375 int cost = insn_cost (insn, link, next);
4377 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
4379 if ((INSN_DEP_COUNT (next) -= 1) == 0)
4381 int effective_cost = INSN_TICK (next) - clock;
4383 /* For speculative insns, before inserting to ready/queue,
4384 check live, exception-free, and issue-delay */
4385 if (INSN_BB (next) != target_bb
4386 && (!IS_VALID (INSN_BB (next))
4387 || CANT_MOVE (next)
4388 || (IS_SPECULATIVE_INSN (next)
4389 && (insn_issue_delay (next) > 3
4390 || !check_live (next, INSN_BB (next), target_bb)
4391 || !is_exception_free (next, INSN_BB (next), target_bb)))))
4392 continue;
4394 if (sched_verbose >= 2)
4396 fprintf (dump, ";;\t\tdependences resolved: insn %d ", INSN_UID (next));
4398 if (current_nr_blocks > 1 && INSN_BB (next) != target_bb)
4399 fprintf (dump, "/b%d ", INSN_BLOCK (next));
4401 if (effective_cost <= 1)
4402 fprintf (dump, "into ready\n");
4403 else
4404 fprintf (dump, "into queue with cost=%d\n", effective_cost);
4407 /* Adjust the priority of NEXT and either put it on the ready
4408 list or queue it. */
4409 adjust_priority (next);
4410 if (effective_cost <= 1)
4411 ready[n_ready++] = next;
4412 else
4413 queue_insn (next, effective_cost);
4417 return n_ready;
4421 /* Add a REG_DEAD note for REG to INSN, reusing a REG_DEAD note from the
4422 dead_notes list. */
4424 static void
4425 create_reg_dead_note (reg, insn)
4426 rtx reg, insn;
4428 rtx link;
4430 /* The number of registers killed after scheduling must be the same as the
4431 number of registers killed before scheduling. The number of REG_DEAD
4432 notes may not be conserved, i.e. two SImode hard register REG_DEAD notes
4433 might become one DImode hard register REG_DEAD note, but the number of
4434 registers killed will be conserved.
4436 We carefully remove REG_DEAD notes from the dead_notes list, so that
4437 there will be none left at the end. If we run out early, then there
4438 is a bug somewhere in flow, combine and/or sched. */
4440 if (dead_notes == 0)
4442 if (current_nr_blocks <= 1)
4443 abort ();
4444 else
4446 link = rtx_alloc (EXPR_LIST);
4447 PUT_REG_NOTE_KIND (link, REG_DEAD);
4450 else
4452 /* Number of regs killed by REG. */
4453 int regs_killed = (REGNO (reg) >= FIRST_PSEUDO_REGISTER ? 1
4454 : HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)));
4455 /* Number of regs killed by REG_DEAD notes taken off the list. */
4456 int reg_note_regs;
4458 link = dead_notes;
4459 reg_note_regs = (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4460 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4461 GET_MODE (XEXP (link, 0))));
4462 while (reg_note_regs < regs_killed)
4464 link = XEXP (link, 1);
4465 reg_note_regs += (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
4466 : HARD_REGNO_NREGS (REGNO (XEXP (link, 0)),
4467 GET_MODE (XEXP (link, 0))));
4469 dead_notes = XEXP (link, 1);
4471 /* If we took too many regs kills off, put the extra ones back. */
4472 while (reg_note_regs > regs_killed)
4474 rtx temp_reg, temp_link;
4476 temp_reg = gen_rtx (REG, word_mode, 0);
4477 temp_link = rtx_alloc (EXPR_LIST);
4478 PUT_REG_NOTE_KIND (temp_link, REG_DEAD);
4479 XEXP (temp_link, 0) = temp_reg;
4480 XEXP (temp_link, 1) = dead_notes;
4481 dead_notes = temp_link;
4482 reg_note_regs--;
4486 XEXP (link, 0) = reg;
4487 XEXP (link, 1) = REG_NOTES (insn);
4488 REG_NOTES (insn) = link;
4491 /* Subroutine on attach_deaths_insn--handles the recursive search
4492 through INSN. If SET_P is true, then x is being modified by the insn. */
4494 static void
4495 attach_deaths (x, insn, set_p)
4496 rtx x;
4497 rtx insn;
4498 int set_p;
4500 register int i;
4501 register int j;
4502 register enum rtx_code code;
4503 register char *fmt;
4505 if (x == 0)
4506 return;
4508 code = GET_CODE (x);
4510 switch (code)
4512 case CONST_INT:
4513 case CONST_DOUBLE:
4514 case LABEL_REF:
4515 case SYMBOL_REF:
4516 case CONST:
4517 case CODE_LABEL:
4518 case PC:
4519 case CC0:
4520 /* Get rid of the easy cases first. */
4521 return;
4523 case REG:
4525 /* If the register dies in this insn, queue that note, and mark
4526 this register as needing to die. */
4527 /* This code is very similar to mark_used_1 (if set_p is false)
4528 and mark_set_1 (if set_p is true) in flow.c. */
4530 register int regno;
4531 int some_needed;
4532 int all_needed;
4534 if (set_p)
4535 return;
4537 regno = REGNO (x);
4538 all_needed = some_needed = REGNO_REG_SET_P (old_live_regs, regno);
4539 if (regno < FIRST_PSEUDO_REGISTER)
4541 int n;
4543 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4544 while (--n > 0)
4546 int needed = (REGNO_REG_SET_P (old_live_regs, regno + n));
4547 some_needed |= needed;
4548 all_needed &= needed;
4552 /* If it wasn't live before we started, then add a REG_DEAD note.
4553 We must check the previous lifetime info not the current info,
4554 because we may have to execute this code several times, e.g.
4555 once for a clobber (which doesn't add a note) and later
4556 for a use (which does add a note).
4558 Always make the register live. We must do this even if it was
4559 live before, because this may be an insn which sets and uses
4560 the same register, in which case the register has already been
4561 killed, so we must make it live again.
4563 Global registers are always live, and should never have a REG_DEAD
4564 note added for them, so none of the code below applies to them. */
4566 if (regno >= FIRST_PSEUDO_REGISTER || ! global_regs[regno])
4568 /* Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
4569 STACK_POINTER_REGNUM, since these are always considered to be
4570 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
4571 if (regno != FRAME_POINTER_REGNUM
4572 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4573 && ! (regno == HARD_FRAME_POINTER_REGNUM)
4574 #endif
4575 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
4576 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4577 #endif
4578 && regno != STACK_POINTER_REGNUM)
4580 /* ??? It is perhaps a dead_or_set_p bug that it does
4581 not check for REG_UNUSED notes itself. This is necessary
4582 for the case where the SET_DEST is a subreg of regno, as
4583 dead_or_set_p handles subregs specially. */
4584 if (! all_needed && ! dead_or_set_p (insn, x)
4585 && ! find_reg_note (insn, REG_UNUSED, x))
4587 /* Check for the case where the register dying partially
4588 overlaps the register set by this insn. */
4589 if (regno < FIRST_PSEUDO_REGISTER
4590 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
4592 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
4593 while (--n >= 0)
4594 some_needed |= dead_or_set_regno_p (insn, regno + n);
4597 /* If none of the words in X is needed, make a REG_DEAD
4598 note. Otherwise, we must make partial REG_DEAD
4599 notes. */
4600 if (! some_needed)
4601 create_reg_dead_note (x, insn);
4602 else
4604 int i;
4606 /* Don't make a REG_DEAD note for a part of a
4607 register that is set in the insn. */
4608 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
4609 i >= 0; i--)
4610 if (! REGNO_REG_SET_P (old_live_regs, regno+i)
4611 && ! dead_or_set_regno_p (insn, regno + i))
4612 create_reg_dead_note (gen_rtx (REG,
4613 reg_raw_mode[regno + i],
4614 regno + i),
4615 insn);
4620 if (regno < FIRST_PSEUDO_REGISTER)
4622 int j = HARD_REGNO_NREGS (regno, GET_MODE (x));
4623 while (--j >= 0)
4625 SET_REGNO_REG_SET (bb_live_regs, regno + j);
4628 else
4630 /* Recompute REG_BASIC_BLOCK as we update all the other
4631 dataflow information. */
4632 if (sched_reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
4633 sched_reg_basic_block[regno] = current_block_num;
4634 else if (sched_reg_basic_block[regno] != current_block_num)
4635 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
4637 SET_REGNO_REG_SET (bb_live_regs, regno);
4640 return;
4643 case MEM:
4644 /* Handle tail-recursive case. */
4645 attach_deaths (XEXP (x, 0), insn, 0);
4646 return;
4648 case SUBREG:
4649 case STRICT_LOW_PART:
4650 /* These two cases preserve the value of SET_P, so handle them
4651 separately. */
4652 attach_deaths (XEXP (x, 0), insn, set_p);
4653 return;
4655 case ZERO_EXTRACT:
4656 case SIGN_EXTRACT:
4657 /* This case preserves the value of SET_P for the first operand, but
4658 clears it for the other two. */
4659 attach_deaths (XEXP (x, 0), insn, set_p);
4660 attach_deaths (XEXP (x, 1), insn, 0);
4661 attach_deaths (XEXP (x, 2), insn, 0);
4662 return;
4664 default:
4665 /* Other cases: walk the insn. */
4666 fmt = GET_RTX_FORMAT (code);
4667 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4669 if (fmt[i] == 'e')
4670 attach_deaths (XEXP (x, i), insn, 0);
4671 else if (fmt[i] == 'E')
4672 for (j = 0; j < XVECLEN (x, i); j++)
4673 attach_deaths (XVECEXP (x, i, j), insn, 0);
4678 /* After INSN has executed, add register death notes for each register
4679 that is dead after INSN. */
4681 static void
4682 attach_deaths_insn (insn)
4683 rtx insn;
4685 rtx x = PATTERN (insn);
4686 register RTX_CODE code = GET_CODE (x);
4687 rtx link;
4689 if (code == SET)
4691 attach_deaths (SET_SRC (x), insn, 0);
4693 /* A register might die here even if it is the destination, e.g.
4694 it is the target of a volatile read and is otherwise unused.
4695 Hence we must always call attach_deaths for the SET_DEST. */
4696 attach_deaths (SET_DEST (x), insn, 1);
4698 else if (code == PARALLEL)
4700 register int i;
4701 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4703 code = GET_CODE (XVECEXP (x, 0, i));
4704 if (code == SET)
4706 attach_deaths (SET_SRC (XVECEXP (x, 0, i)), insn, 0);
4708 attach_deaths (SET_DEST (XVECEXP (x, 0, i)), insn, 1);
4710 /* Flow does not add REG_DEAD notes to registers that die in
4711 clobbers, so we can't either. */
4712 else if (code != CLOBBER)
4713 attach_deaths (XVECEXP (x, 0, i), insn, 0);
4716 /* If this is a CLOBBER, only add REG_DEAD notes to registers inside a
4717 MEM being clobbered, just like flow. */
4718 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == MEM)
4719 attach_deaths (XEXP (XEXP (x, 0), 0), insn, 0);
4720 /* Otherwise don't add a death note to things being clobbered. */
4721 else if (code != CLOBBER)
4722 attach_deaths (x, insn, 0);
4724 /* Make death notes for things used in the called function. */
4725 if (GET_CODE (insn) == CALL_INSN)
4726 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
4727 attach_deaths (XEXP (XEXP (link, 0), 0), insn,
4728 GET_CODE (XEXP (link, 0)) == CLOBBER);
4731 /* functions for handlnig of notes */
4733 /* Delete notes beginning with INSN and put them in the chain
4734 of notes ended by NOTE_LIST.
4735 Returns the insn following the notes. */
4737 static rtx
4738 unlink_other_notes (insn, tail)
4739 rtx insn, tail;
4741 rtx prev = PREV_INSN (insn);
4743 while (insn != tail && GET_CODE (insn) == NOTE)
4745 rtx next = NEXT_INSN (insn);
4746 /* Delete the note from its current position. */
4747 if (prev)
4748 NEXT_INSN (prev) = next;
4749 if (next)
4750 PREV_INSN (next) = prev;
4752 /* Don't save away NOTE_INSN_SETJMPs, because they must remain
4753 immediately after the call they follow. We use a fake
4754 (REG_DEAD (const_int -1)) note to remember them.
4755 Likewise with NOTE_INSN_{LOOP,EHREGION}_{BEG, END}. */
4756 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
4757 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
4758 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
4759 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
4760 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
4762 /* Insert the note at the end of the notes list. */
4763 PREV_INSN (insn) = note_list;
4764 if (note_list)
4765 NEXT_INSN (note_list) = insn;
4766 note_list = insn;
4769 insn = next;
4771 return insn;
4774 /* Delete line notes beginning with INSN. Record line-number notes so
4775 they can be reused. Returns the insn following the notes. */
4777 static rtx
4778 unlink_line_notes (insn, tail)
4779 rtx insn, tail;
4781 rtx prev = PREV_INSN (insn);
4783 while (insn != tail && GET_CODE (insn) == NOTE)
4785 rtx next = NEXT_INSN (insn);
4787 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
4789 /* Delete the note from its current position. */
4790 if (prev)
4791 NEXT_INSN (prev) = next;
4792 if (next)
4793 PREV_INSN (next) = prev;
4795 /* Record line-number notes so they can be reused. */
4796 LINE_NOTE (insn) = insn;
4798 else
4799 prev = insn;
4801 insn = next;
4803 return insn;
4806 /* Return the head and tail pointers of BB. */
4808 __inline static void
4809 get_block_head_tail (bb, headp, tailp)
4810 int bb;
4811 rtx *headp;
4812 rtx *tailp;
4815 rtx head;
4816 rtx tail;
4817 int b;
4819 b = BB_TO_BLOCK (bb);
4821 /* HEAD and TAIL delimit the basic block being scheduled. */
4822 head = basic_block_head[b];
4823 tail = basic_block_end[b];
4825 /* Don't include any notes or labels at the beginning of the
4826 basic block, or notes at the ends of basic blocks. */
4827 while (head != tail)
4829 if (GET_CODE (head) == NOTE)
4830 head = NEXT_INSN (head);
4831 else if (GET_CODE (tail) == NOTE)
4832 tail = PREV_INSN (tail);
4833 else if (GET_CODE (head) == CODE_LABEL)
4834 head = NEXT_INSN (head);
4835 else
4836 break;
4839 *headp = head;
4840 *tailp = tail;
4843 /* Delete line notes from bb. Save them so they can be later restored
4844 (in restore_line_notes ()). */
4846 static void
4847 rm_line_notes (bb)
4848 int bb;
4850 rtx next_tail;
4851 rtx tail;
4852 rtx head;
4853 rtx insn;
4855 get_block_head_tail (bb, &head, &tail);
4857 if (head == tail
4858 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
4859 return;
4861 next_tail = NEXT_INSN (tail);
4862 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4864 rtx prev;
4866 /* Farm out notes, and maybe save them in NOTE_LIST.
4867 This is needed to keep the debugger from
4868 getting completely deranged. */
4869 if (GET_CODE (insn) == NOTE)
4871 prev = insn;
4872 insn = unlink_line_notes (insn, next_tail);
4874 if (prev == tail)
4875 abort ();
4876 if (prev == head)
4877 abort ();
4878 if (insn == next_tail)
4879 abort ();
4884 /* Save line number notes for each insn in bb. */
4886 static void
4887 save_line_notes (bb)
4888 int bb;
4890 rtx head, tail;
4891 rtx next_tail;
4893 /* We must use the true line number for the first insn in the block
4894 that was computed and saved at the start of this pass. We can't
4895 use the current line number, because scheduling of the previous
4896 block may have changed the current line number. */
4898 rtx line = line_note_head[BB_TO_BLOCK (bb)];
4899 rtx insn;
4901 get_block_head_tail (bb, &head, &tail);
4902 next_tail = NEXT_INSN (tail);
4904 for (insn = basic_block_head[BB_TO_BLOCK (bb)];
4905 insn != next_tail;
4906 insn = NEXT_INSN (insn))
4907 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4908 line = insn;
4909 else
4910 LINE_NOTE (insn) = line;
4914 /* After bb was scheduled, insert line notes into the insns list. */
4916 static void
4917 restore_line_notes (bb)
4918 int bb;
4920 rtx line, note, prev, new;
4921 int added_notes = 0;
4922 int b;
4923 rtx head, next_tail, insn;
4925 b = BB_TO_BLOCK (bb);
4927 head = basic_block_head[b];
4928 next_tail = NEXT_INSN (basic_block_end[b]);
4930 /* Determine the current line-number. We want to know the current
4931 line number of the first insn of the block here, in case it is
4932 different from the true line number that was saved earlier. If
4933 different, then we need a line number note before the first insn
4934 of this block. If it happens to be the same, then we don't want to
4935 emit another line number note here. */
4936 for (line = head; line; line = PREV_INSN (line))
4937 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
4938 break;
4940 /* Walk the insns keeping track of the current line-number and inserting
4941 the line-number notes as needed. */
4942 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4943 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4944 line = insn;
4945 /* This used to emit line number notes before every non-deleted note.
4946 However, this confuses a debugger, because line notes not separated
4947 by real instructions all end up at the same address. I can find no
4948 use for line number notes before other notes, so none are emitted. */
4949 else if (GET_CODE (insn) != NOTE
4950 && (note = LINE_NOTE (insn)) != 0
4951 && note != line
4952 && (line == 0
4953 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
4954 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
4956 line = note;
4957 prev = PREV_INSN (insn);
4958 if (LINE_NOTE (note))
4960 /* Re-use the original line-number note. */
4961 LINE_NOTE (note) = 0;
4962 PREV_INSN (note) = prev;
4963 NEXT_INSN (prev) = note;
4964 PREV_INSN (insn) = note;
4965 NEXT_INSN (note) = insn;
4967 else
4969 added_notes++;
4970 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
4971 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
4972 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
4975 if (sched_verbose && added_notes)
4976 fprintf (dump, ";; added %d line-number notes\n", added_notes);
4979 /* After scheduling the function, delete redundant line notes from the
4980 insns list. */
4982 static void
4983 rm_redundant_line_notes ()
4985 rtx line = 0;
4986 rtx insn = get_insns ();
4987 int active_insn = 0;
4988 int notes = 0;
4990 /* Walk the insns deleting redundant line-number notes. Many of these
4991 are already present. The remainder tend to occur at basic
4992 block boundaries. */
4993 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
4994 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
4996 /* If there are no active insns following, INSN is redundant. */
4997 if (active_insn == 0)
4999 notes++;
5000 NOTE_SOURCE_FILE (insn) = 0;
5001 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
5003 /* If the line number is unchanged, LINE is redundant. */
5004 else if (line
5005 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
5006 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
5008 notes++;
5009 NOTE_SOURCE_FILE (line) = 0;
5010 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
5011 line = insn;
5013 else
5014 line = insn;
5015 active_insn = 0;
5017 else if (!((GET_CODE (insn) == NOTE
5018 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
5019 || (GET_CODE (insn) == INSN
5020 && (GET_CODE (PATTERN (insn)) == USE
5021 || GET_CODE (PATTERN (insn)) == CLOBBER))))
5022 active_insn++;
5024 if (sched_verbose && notes)
5025 fprintf (dump, ";; deleted %d line-number notes\n", notes);
5028 /* Delete notes between head and tail and put them in the chain
5029 of notes ended by NOTE_LIST. */
5031 static void
5032 rm_other_notes (head, tail)
5033 rtx head;
5034 rtx tail;
5036 rtx next_tail;
5037 rtx insn;
5039 if (head == tail
5040 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
5041 return;
5043 next_tail = NEXT_INSN (tail);
5044 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5046 rtx prev;
5048 /* Farm out notes, and maybe save them in NOTE_LIST.
5049 This is needed to keep the debugger from
5050 getting completely deranged. */
5051 if (GET_CODE (insn) == NOTE)
5053 prev = insn;
5055 insn = unlink_other_notes (insn, next_tail);
5057 if (prev == tail)
5058 abort ();
5059 if (prev == head)
5060 abort ();
5061 if (insn == next_tail)
5062 abort ();
5067 /* Constructor for `sometimes' data structure. */
5069 static int
5070 new_sometimes_live (regs_sometimes_live, regno, sometimes_max)
5071 struct sometimes *regs_sometimes_live;
5072 int regno;
5073 int sometimes_max;
5075 register struct sometimes *p;
5077 /* There should never be a register greater than max_regno here. If there
5078 is, it means that a define_split has created a new pseudo reg. This
5079 is not allowed, since there will not be flow info available for any
5080 new register, so catch the error here. */
5081 if (regno >= max_regno)
5082 abort ();
5084 p = &regs_sometimes_live[sometimes_max];
5085 p->regno = regno;
5086 p->live_length = 0;
5087 p->calls_crossed = 0;
5088 sometimes_max++;
5089 return sometimes_max;
5092 /* Count lengths of all regs we are currently tracking,
5093 and find new registers no longer live. */
5095 static void
5096 finish_sometimes_live (regs_sometimes_live, sometimes_max)
5097 struct sometimes *regs_sometimes_live;
5098 int sometimes_max;
5100 int i;
5102 for (i = 0; i < sometimes_max; i++)
5104 register struct sometimes *p = &regs_sometimes_live[i];
5105 int regno = p->regno;
5107 sched_reg_live_length[regno] += p->live_length;
5108 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5112 /* functions for computation of registers live/usage info */
5114 /* It is assumed that prior to scheduling basic_block_live_at_start (b)
5115 contains the registers that are alive at the entry to b.
5117 Two passes follow: The first pass is performed before the scheduling
5118 of a region. It scans each block of the region forward, computing
5119 the set of registers alive at the end of the basic block and
5120 discard REG_DEAD notes (done by find_pre_sched_live ()).
5122 The second path is invoked after scheduling all region blocks.
5123 It scans each block of the region backward, a block being traversed
5124 only after its succesors in the region. When the set of registers
5125 live at the end of a basic block may be changed by the scheduling
5126 (this may happen for multiple blocks region), it is computed as
5127 the union of the registers live at the start of its succesors.
5128 The last-use information is updated by inserting REG_DEAD notes.
5129 (done by find_post_sched_live ()) */
5131 /* Scan all the insns to be scheduled, removing register death notes.
5132 Register death notes end up in DEAD_NOTES.
5133 Recreate the register life information for the end of this basic
5134 block. */
5136 static void
5137 find_pre_sched_live (bb)
5138 int bb;
5140 rtx insn, next_tail, head, tail;
5141 int b = BB_TO_BLOCK (bb);
5143 get_block_head_tail (bb, &head, &tail);
5144 COPY_REG_SET (bb_live_regs, basic_block_live_at_start[b]);
5145 next_tail = NEXT_INSN (tail);
5147 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
5149 rtx prev, next, link;
5150 int reg_weight = 0;
5152 /* Handle register life information. */
5153 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
5155 /* See if the register gets born here. */
5156 /* We must check for registers being born before we check for
5157 registers dying. It is possible for a register to be born and
5158 die in the same insn, e.g. reading from a volatile memory
5159 location into an otherwise unused register. Such a register
5160 must be marked as dead after this insn. */
5161 if (GET_CODE (PATTERN (insn)) == SET
5162 || GET_CODE (PATTERN (insn)) == CLOBBER)
5164 sched_note_set (b, PATTERN (insn), 0);
5165 reg_weight++;
5168 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5170 int j;
5171 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5172 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5173 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5175 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
5176 reg_weight++;
5179 /* ??? This code is obsolete and should be deleted. It
5180 is harmless though, so we will leave it in for now. */
5181 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5182 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == USE)
5183 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 0);
5186 /* Each call cobbers (makes live) all call-clobbered regs
5187 that are not global or fixed. Note that the function-value
5188 reg is a call_clobbered reg. */
5189 if (GET_CODE (insn) == CALL_INSN)
5191 int j;
5192 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
5193 if (call_used_regs[j] && !global_regs[j]
5194 && ! fixed_regs[j])
5196 SET_REGNO_REG_SET (bb_live_regs, j);
5200 /* Need to know what registers this insn kills. */
5201 for (prev = 0, link = REG_NOTES (insn); link; link = next)
5203 next = XEXP (link, 1);
5204 if ((REG_NOTE_KIND (link) == REG_DEAD
5205 || REG_NOTE_KIND (link) == REG_UNUSED)
5206 /* Verify that the REG_NOTE has a valid value. */
5207 && GET_CODE (XEXP (link, 0)) == REG)
5209 register int regno = REGNO (XEXP (link, 0));
5211 reg_weight--;
5213 /* Only unlink REG_DEAD notes; leave REG_UNUSED notes
5214 alone. */
5215 if (REG_NOTE_KIND (link) == REG_DEAD)
5217 if (prev)
5218 XEXP (prev, 1) = next;
5219 else
5220 REG_NOTES (insn) = next;
5221 XEXP (link, 1) = dead_notes;
5222 dead_notes = link;
5224 else
5225 prev = link;
5227 if (regno < FIRST_PSEUDO_REGISTER)
5229 int j = HARD_REGNO_NREGS (regno,
5230 GET_MODE (XEXP (link, 0)));
5231 while (--j >= 0)
5233 CLEAR_REGNO_REG_SET (bb_live_regs, regno+j);
5236 else
5238 CLEAR_REGNO_REG_SET (bb_live_regs, regno);
5241 else
5242 prev = link;
5246 INSN_REG_WEIGHT (insn) = reg_weight;
5250 /* Update register life and usage information for block bb
5251 after scheduling. Put register dead notes back in the code. */
5253 static void
5254 find_post_sched_live (bb)
5255 int bb;
5257 int sometimes_max;
5258 int j, i;
5259 int b;
5260 rtx insn;
5261 rtx head, tail, prev_head, next_tail;
5263 register struct sometimes *regs_sometimes_live;
5265 b = BB_TO_BLOCK (bb);
5267 /* compute live regs at the end of bb as a function of its successors. */
5268 if (current_nr_blocks > 1)
5270 int e;
5271 int first_edge;
5273 first_edge = e = OUT_EDGES (b);
5274 CLEAR_REG_SET (bb_live_regs);
5276 if (e)
5279 int b_succ;
5281 b_succ = TO_BLOCK (e);
5282 IOR_REG_SET (bb_live_regs, basic_block_live_at_start[b_succ]);
5283 e = NEXT_OUT (e);
5285 while (e != first_edge);
5288 get_block_head_tail (bb, &head, &tail);
5289 next_tail = NEXT_INSN (tail);
5290 prev_head = PREV_INSN (head);
5292 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
5293 if (REGNO_REG_SET_P (bb_live_regs, i))
5294 sched_reg_basic_block[i] = REG_BLOCK_GLOBAL;
5296 /* if the block is empty, same regs are alive at its end and its start.
5297 since this is not guaranteed after interblock scheduling, make sure they
5298 are truly identical. */
5299 if (NEXT_INSN (prev_head) == tail
5300 && (GET_RTX_CLASS (GET_CODE (tail)) != 'i'))
5302 if (current_nr_blocks > 1)
5303 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5305 return;
5308 b = BB_TO_BLOCK (bb);
5309 current_block_num = b;
5311 /* Keep track of register lives. */
5312 old_live_regs = ALLOCA_REG_SET ();
5313 regs_sometimes_live
5314 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
5315 sometimes_max = 0;
5317 /* initiate "sometimes" data, starting with registers live at end */
5318 sometimes_max = 0;
5319 COPY_REG_SET (old_live_regs, bb_live_regs);
5320 EXECUTE_IF_SET_IN_REG_SET (bb_live_regs, 0, j,
5322 sometimes_max
5323 = new_sometimes_live (regs_sometimes_live,
5324 j, sometimes_max);
5327 /* scan insns back, computing regs live info */
5328 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
5330 /* First we kill registers set by this insn, and then we
5331 make registers used by this insn live. This is the opposite
5332 order used above because we are traversing the instructions
5333 backwards. */
5335 /* Strictly speaking, we should scan REG_UNUSED notes and make
5336 every register mentioned there live, however, we will just
5337 kill them again immediately below, so there doesn't seem to
5338 be any reason why we bother to do this. */
5340 /* See if this is the last notice we must take of a register. */
5341 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5342 continue;
5344 if (GET_CODE (PATTERN (insn)) == SET
5345 || GET_CODE (PATTERN (insn)) == CLOBBER)
5346 sched_note_set (b, PATTERN (insn), 1);
5347 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
5349 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
5350 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
5351 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
5352 sched_note_set (b, XVECEXP (PATTERN (insn), 0, j), 1);
5355 /* This code keeps life analysis information up to date. */
5356 if (GET_CODE (insn) == CALL_INSN)
5358 register struct sometimes *p;
5360 /* A call kills all call used registers that are not
5361 global or fixed, except for those mentioned in the call
5362 pattern which will be made live again later. */
5363 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5364 if (call_used_regs[i] && ! global_regs[i]
5365 && ! fixed_regs[i])
5367 CLEAR_REGNO_REG_SET (bb_live_regs, i);
5370 /* Regs live at the time of a call instruction must not
5371 go in a register clobbered by calls. Record this for
5372 all regs now live. Note that insns which are born or
5373 die in a call do not cross a call, so this must be done
5374 after the killings (above) and before the births
5375 (below). */
5376 p = regs_sometimes_live;
5377 for (i = 0; i < sometimes_max; i++, p++)
5378 if (REGNO_REG_SET_P (bb_live_regs, p->regno))
5379 p->calls_crossed += 1;
5382 /* Make every register used live, and add REG_DEAD notes for
5383 registers which were not live before we started. */
5384 attach_deaths_insn (insn);
5386 /* Find registers now made live by that instruction. */
5387 EXECUTE_IF_AND_COMPL_IN_REG_SET (bb_live_regs, old_live_regs, 0, j,
5389 sometimes_max
5390 = new_sometimes_live (regs_sometimes_live,
5391 j, sometimes_max);
5393 IOR_REG_SET (old_live_regs, bb_live_regs);
5395 /* Count lengths of all regs we are worrying about now,
5396 and handle registers no longer live. */
5398 for (i = 0; i < sometimes_max; i++)
5400 register struct sometimes *p = &regs_sometimes_live[i];
5401 int regno = p->regno;
5403 p->live_length += 1;
5405 if (!REGNO_REG_SET_P (bb_live_regs, regno))
5407 /* This is the end of one of this register's lifetime
5408 segments. Save the lifetime info collected so far,
5409 and clear its bit in the old_live_regs entry. */
5410 sched_reg_live_length[regno] += p->live_length;
5411 sched_reg_n_calls_crossed[regno] += p->calls_crossed;
5412 CLEAR_REGNO_REG_SET (old_live_regs, p->regno);
5414 /* Delete the reg_sometimes_live entry for this reg by
5415 copying the last entry over top of it. */
5416 *p = regs_sometimes_live[--sometimes_max];
5417 /* ...and decrement i so that this newly copied entry
5418 will be processed. */
5419 i--;
5424 finish_sometimes_live (regs_sometimes_live, sometimes_max);
5426 /* In interblock scheduling, basic_block_live_at_start may have changed. */
5427 if (current_nr_blocks > 1)
5428 COPY_REG_SET (basic_block_live_at_start[b], bb_live_regs);
5431 FREE_REG_SET (old_live_regs);
5432 } /* find_post_sched_live */
5434 /* After scheduling the subroutine, restore information about uses of
5435 registers. */
5437 static void
5438 update_reg_usage ()
5440 int regno;
5442 if (n_basic_blocks > 0)
5443 for (regno = FIRST_PSEUDO_REGISTER; regno < max_regno; regno++)
5444 if (REGNO_REG_SET_P (basic_block_live_at_start[0], regno))
5445 sched_reg_basic_block[regno] = REG_BLOCK_GLOBAL;
5447 for (regno = 0; regno < max_regno; regno++)
5448 if (sched_reg_live_length[regno])
5450 if (sched_verbose)
5452 if (REG_LIVE_LENGTH (regno) > sched_reg_live_length[regno])
5453 fprintf (dump,
5454 ";; register %d life shortened from %d to %d\n",
5455 regno, REG_LIVE_LENGTH (regno),
5456 sched_reg_live_length[regno]);
5457 /* Negative values are special; don't overwrite the current
5458 reg_live_length value if it is negative. */
5459 else if (REG_LIVE_LENGTH (regno) < sched_reg_live_length[regno]
5460 && REG_LIVE_LENGTH (regno) >= 0)
5461 fprintf (dump,
5462 ";; register %d life extended from %d to %d\n",
5463 regno, REG_LIVE_LENGTH (regno),
5464 sched_reg_live_length[regno]);
5466 if (!REG_N_CALLS_CROSSED (regno)
5467 && sched_reg_n_calls_crossed[regno])
5468 fprintf (dump,
5469 ";; register %d now crosses calls\n", regno);
5470 else if (REG_N_CALLS_CROSSED (regno)
5471 && !sched_reg_n_calls_crossed[regno]
5472 && REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5473 fprintf (dump,
5474 ";; register %d no longer crosses calls\n", regno);
5476 if (REG_BASIC_BLOCK (regno) != sched_reg_basic_block[regno]
5477 && sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5478 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5479 fprintf (dump,
5480 ";; register %d changed basic block from %d to %d\n",
5481 regno, REG_BASIC_BLOCK(regno),
5482 sched_reg_basic_block[regno]);
5485 /* Negative values are special; don't overwrite the current
5486 reg_live_length value if it is negative. */
5487 if (REG_LIVE_LENGTH (regno) >= 0)
5488 REG_LIVE_LENGTH (regno) = sched_reg_live_length[regno];
5490 if (sched_reg_basic_block[regno] != REG_BLOCK_UNKNOWN
5491 && REG_BASIC_BLOCK(regno) != REG_BLOCK_UNKNOWN)
5492 REG_BASIC_BLOCK(regno) = sched_reg_basic_block[regno];
5494 /* We can't change the value of reg_n_calls_crossed to zero for
5495 pseudos which are live in more than one block.
5497 This is because combine might have made an optimization which
5498 invalidated basic_block_live_at_start and reg_n_calls_crossed,
5499 but it does not update them. If we update reg_n_calls_crossed
5500 here, the two variables are now inconsistent, and this might
5501 confuse the caller-save code into saving a register that doesn't
5502 need to be saved. This is only a problem when we zero calls
5503 crossed for a pseudo live in multiple basic blocks.
5505 Alternatively, we could try to correctly update basic block live
5506 at start here in sched, but that seems complicated.
5508 Note: it is possible that a global register became local, as result
5509 of interblock motion, but will remain marked as a global register. */
5510 if (sched_reg_n_calls_crossed[regno]
5511 || REG_BASIC_BLOCK (regno) != REG_BLOCK_GLOBAL)
5512 REG_N_CALLS_CROSSED (regno) = sched_reg_n_calls_crossed[regno];
5517 /* Scheduling clock, modified in schedule_block() and queue_to_ready () */
5518 static int clock_var;
5520 /* Move insns that became ready to fire from queue to ready list. */
5522 static int
5523 queue_to_ready (ready, n_ready)
5524 rtx ready[];
5525 int n_ready;
5527 rtx insn;
5528 rtx link;
5530 q_ptr = NEXT_Q (q_ptr);
5532 /* Add all pending insns that can be scheduled without stalls to the
5533 ready list. */
5534 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
5537 insn = XEXP (link, 0);
5538 q_size -= 1;
5540 if (sched_verbose >= 2)
5541 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5543 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5544 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5546 ready[n_ready++] = insn;
5547 if (sched_verbose >= 2)
5548 fprintf (dump, "moving to ready without stalls\n");
5550 insn_queue[q_ptr] = 0;
5552 /* If there are no ready insns, stall until one is ready and add all
5553 of the pending insns at that point to the ready list. */
5554 if (n_ready == 0)
5556 register int stalls;
5558 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
5560 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
5562 for (; link; link = XEXP (link, 1))
5564 insn = XEXP (link, 0);
5565 q_size -= 1;
5567 if (sched_verbose >= 2)
5568 fprintf (dump, ";;\t\tQ-->Ready: insn %d: ", INSN_UID (insn));
5570 if (sched_verbose >= 2 && INSN_BB (insn) != target_bb)
5571 fprintf (dump, "(b%d) ", INSN_BLOCK (insn));
5573 ready[n_ready++] = insn;
5574 if (sched_verbose >= 2)
5575 fprintf (dump, "moving to ready with %d stalls\n", stalls);
5577 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
5579 if (n_ready)
5580 break;
5584 if (sched_verbose && stalls)
5585 visualize_stall_cycles (BB_TO_BLOCK (target_bb), stalls);
5586 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
5587 clock_var += stalls;
5589 return n_ready;
5592 /* Print the ready list for debugging purposes. Callable from debugger. */
5594 extern void
5595 debug_ready_list (ready, n_ready)
5596 rtx ready[];
5597 int n_ready;
5599 int i;
5601 for (i = 0; i < n_ready; i++)
5603 fprintf (dump, " %d", INSN_UID (ready[i]));
5604 if (current_nr_blocks > 1 && INSN_BB (ready[i]) != target_bb)
5605 fprintf (dump, "/b%d", INSN_BLOCK (ready[i]));
5607 fprintf (dump, "\n");
5610 /* Print names of units on which insn can/should execute, for debugging. */
5612 static void
5613 insn_print_units (insn)
5614 rtx insn;
5616 int i;
5617 int unit = insn_unit (insn);
5619 if (unit == -1)
5620 fprintf (dump, "none");
5621 else if (unit >= 0)
5622 fprintf (dump, "%s", function_units[unit].name);
5623 else
5625 fprintf (dump, "[");
5626 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
5627 if (unit & 1)
5629 fprintf (dump, "%s", function_units[i].name);
5630 if (unit != 1)
5631 fprintf (dump, " ");
5633 fprintf (dump, "]");
5637 /* MAX_VISUAL_LINES is the maximum number of lines in visualization table
5638 of a basic block. If more lines are needed, table is splitted to two.
5639 n_visual_lines is the number of lines printed so far for a block.
5640 visual_tbl contains the block visualization info.
5641 vis_no_unit holds insns in a cycle that are not mapped to any unit. */
5642 #define MAX_VISUAL_LINES 100
5643 #define INSN_LEN 30
5644 int n_visual_lines;
5645 char *visual_tbl;
5646 int n_vis_no_unit;
5647 rtx vis_no_unit[10];
5649 /* Finds units that are in use in this fuction. Required only
5650 for visualization. */
5652 static void
5653 init_target_units ()
5655 rtx insn;
5656 int unit;
5658 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5660 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
5661 continue;
5663 unit = insn_unit (insn);
5665 if (unit < 0)
5666 target_units |= ~unit;
5667 else
5668 target_units |= (1 << unit);
5672 /* Return the length of the visualization table */
5674 static int
5675 get_visual_tbl_length ()
5677 int unit, i;
5678 int n, n1;
5679 char *s;
5681 /* compute length of one field in line */
5682 s = (char *) alloca (INSN_LEN + 5);
5683 sprintf (s, " %33s", "uname");
5684 n1 = strlen (s);
5686 /* compute length of one line */
5687 n = strlen (";; ");
5688 n += n1;
5689 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
5690 if (function_units[unit].bitmask & target_units)
5691 for (i = 0; i < function_units[unit].multiplicity; i++)
5692 n += n1;
5693 n += n1;
5694 n += strlen ("\n") + 2;
5696 /* compute length of visualization string */
5697 return (MAX_VISUAL_LINES * n);
5700 /* Init block visualization debugging info */
5702 static void
5703 init_block_visualization ()
5705 strcpy (visual_tbl, "");
5706 n_visual_lines = 0;
5707 n_vis_no_unit = 0;
5710 #define BUF_LEN 256
5712 /* This recognizes rtx, I classified as expressions. These are always */
5713 /* represent some action on values or results of other expression, */
5714 /* that may be stored in objects representing values. */
5716 static void
5717 print_exp (buf, x, verbose)
5718 char *buf;
5719 rtx x;
5720 int verbose;
5722 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
5724 switch (GET_CODE (x))
5726 case PLUS:
5727 print_value (t1, XEXP (x, 0), verbose);
5728 print_value (t2, XEXP (x, 1), verbose);
5729 sprintf (buf, "%s+%s", t1, t2);
5730 break;
5731 case LO_SUM:
5732 print_value (t1, XEXP (x, 0), verbose);
5733 print_value (t2, XEXP (x, 1), verbose);
5734 sprintf (buf, "%sl+%s", t1, t2);
5735 break;
5736 case MINUS:
5737 print_value (t1, XEXP (x, 0), verbose);
5738 print_value (t2, XEXP (x, 1), verbose);
5739 sprintf (buf, "%s-%s", t1, t2);
5740 break;
5741 case COMPARE:
5742 print_value (t1, XEXP (x, 0), verbose);
5743 print_value (t2, XEXP (x, 1), verbose);
5744 sprintf (buf, "%s??%s", t1, t2);
5745 break;
5746 case NEG:
5747 print_value (t1, XEXP (x, 0), verbose);
5748 sprintf (buf, "-%s", t1);
5749 break;
5750 case MULT:
5751 print_value (t1, XEXP (x, 0), verbose);
5752 print_value (t2, XEXP (x, 1), verbose);
5753 sprintf (buf, "%s*%s", t1, t2);
5754 break;
5755 case DIV:
5756 print_value (t1, XEXP (x, 0), verbose);
5757 print_value (t2, XEXP (x, 1), verbose);
5758 sprintf (buf, "%s/%s", t1, t2);
5759 break;
5760 case UDIV:
5761 print_value (t1, XEXP (x, 0), verbose);
5762 print_value (t2, XEXP (x, 1), verbose);
5763 sprintf (buf, "%su/%s", t1, t2);
5764 break;
5765 case MOD:
5766 print_value (t1, XEXP (x, 0), verbose);
5767 print_value (t2, XEXP (x, 1), verbose);
5768 sprintf (buf, "%s%%%s", t1, t2);
5769 break;
5770 case UMOD:
5771 print_value (t1, XEXP (x, 0), verbose);
5772 print_value (t2, XEXP (x, 1), verbose);
5773 sprintf (buf, "%su%%%s", t1, t2);
5774 break;
5775 case SMIN:
5776 print_value (t1, XEXP (x, 0), verbose);
5777 print_value (t2, XEXP (x, 1), verbose);
5778 sprintf (buf, "smin (%s, %s)", t1, t2);
5779 break;
5780 case SMAX:
5781 print_value (t1, XEXP (x, 0), verbose);
5782 print_value (t2, XEXP (x, 1), verbose);
5783 sprintf (buf, "smax(%s,%s)", t1, t2);
5784 break;
5785 case UMIN:
5786 print_value (t1, XEXP (x, 0), verbose);
5787 print_value (t2, XEXP (x, 1), verbose);
5788 sprintf (buf, "umin (%s, %s)", t1, t2);
5789 break;
5790 case UMAX:
5791 print_value (t1, XEXP (x, 0), verbose);
5792 print_value (t2, XEXP (x, 1), verbose);
5793 sprintf (buf, "umax(%s,%s)", t1, t2);
5794 break;
5795 case NOT:
5796 print_value (t1, XEXP (x, 0), verbose);
5797 sprintf (buf, "!%s", t1);
5798 break;
5799 case AND:
5800 print_value (t1, XEXP (x, 0), verbose);
5801 print_value (t2, XEXP (x, 1), verbose);
5802 sprintf (buf, "%s&%s", t1, t2);
5803 break;
5804 case IOR:
5805 print_value (t1, XEXP (x, 0), verbose);
5806 print_value (t2, XEXP (x, 1), verbose);
5807 sprintf (buf, "%s|%s", t1, t2);
5808 break;
5809 case XOR:
5810 print_value (t1, XEXP (x, 0), verbose);
5811 print_value (t2, XEXP (x, 1), verbose);
5812 sprintf (buf, "%s^%s", t1, t2);
5813 break;
5814 case ASHIFT:
5815 print_value (t1, XEXP (x, 0), verbose);
5816 print_value (t2, XEXP (x, 1), verbose);
5817 sprintf (buf, "%s<<%s", t1, t2);
5818 break;
5819 case LSHIFTRT:
5820 print_value (t1, XEXP (x, 0), verbose);
5821 print_value (t2, XEXP (x, 1), verbose);
5822 sprintf (buf, "%s0>%s", t1, t2);
5823 break;
5824 case ASHIFTRT:
5825 print_value (t1, XEXP (x, 0), verbose);
5826 print_value (t2, XEXP (x, 1), verbose);
5827 sprintf (buf, "%s>>%s", t1, t2);
5828 break;
5829 case ROTATE:
5830 print_value (t1, XEXP (x, 0), verbose);
5831 print_value (t2, XEXP (x, 1), verbose);
5832 sprintf (buf, "%s<-<%s", t1, t2);
5833 break;
5834 case ROTATERT:
5835 print_value (t1, XEXP (x, 0), verbose);
5836 print_value (t2, XEXP (x, 1), verbose);
5837 sprintf (buf, "%s>->%s", t1, t2);
5838 break;
5839 case ABS:
5840 print_value (t1, XEXP (x, 0), verbose);
5841 sprintf (buf, "abs(%s)", t1);
5842 break;
5843 case SQRT:
5844 print_value (t1, XEXP (x, 0), verbose);
5845 sprintf (buf, "sqrt(%s)", t1);
5846 break;
5847 case FFS:
5848 print_value (t1, XEXP (x, 0), verbose);
5849 sprintf (buf, "ffs(%s)", t1);
5850 break;
5851 case EQ:
5852 print_value (t1, XEXP (x, 0), verbose);
5853 print_value (t2, XEXP (x, 1), verbose);
5854 sprintf (buf, "%s == %s", t1, t2);
5855 break;
5856 case NE:
5857 print_value (t1, XEXP (x, 0), verbose);
5858 print_value (t2, XEXP (x, 1), verbose);
5859 sprintf (buf, "%s!=%s", t1, t2);
5860 break;
5861 case GT:
5862 print_value (t1, XEXP (x, 0), verbose);
5863 print_value (t2, XEXP (x, 1), verbose);
5864 sprintf (buf, "%s>%s", t1, t2);
5865 break;
5866 case GTU:
5867 print_value (t1, XEXP (x, 0), verbose);
5868 print_value (t2, XEXP (x, 1), verbose);
5869 sprintf (buf, "%s>u%s", t1, t2);
5870 break;
5871 case LT:
5872 print_value (t1, XEXP (x, 0), verbose);
5873 print_value (t2, XEXP (x, 1), verbose);
5874 sprintf (buf, "%s<%s", t1, t2);
5875 break;
5876 case LTU:
5877 print_value (t1, XEXP (x, 0), verbose);
5878 print_value (t2, XEXP (x, 1), verbose);
5879 sprintf (buf, "%s<u%s", t1, t2);
5880 break;
5881 case GE:
5882 print_value (t1, XEXP (x, 0), verbose);
5883 print_value (t2, XEXP (x, 1), verbose);
5884 sprintf (buf, "%s>=%s", t1, t2);
5885 break;
5886 case GEU:
5887 print_value (t1, XEXP (x, 0), verbose);
5888 print_value (t2, XEXP (x, 1), verbose);
5889 sprintf (buf, "%s>=u%s", t1, t2);
5890 break;
5891 case LE:
5892 print_value (t1, XEXP (x, 0), verbose);
5893 print_value (t2, XEXP (x, 1), verbose);
5894 sprintf (buf, "%s<=%s", t1, t2);
5895 break;
5896 case LEU:
5897 print_value (t1, XEXP (x, 0), verbose);
5898 print_value (t2, XEXP (x, 1), verbose);
5899 sprintf (buf, "%s<=u%s", t1, t2);
5900 break;
5901 case SIGN_EXTRACT:
5902 print_value (t1, XEXP (x, 0), verbose);
5903 print_value (t2, XEXP (x, 1), verbose);
5904 print_value (t3, XEXP (x, 2), verbose);
5905 if (verbose)
5906 sprintf (buf, "sign_extract(%s,%s,%s)", t1, t2, t3);
5907 else
5908 sprintf (buf, "sxt(%s,%s,%s)", t1, t2, t3);
5909 break;
5910 case ZERO_EXTRACT:
5911 print_value (t1, XEXP (x, 0), verbose);
5912 print_value (t2, XEXP (x, 1), verbose);
5913 print_value (t3, XEXP (x, 2), verbose);
5914 if (verbose)
5915 sprintf (buf, "zero_extract(%s,%s,%s)", t1, t2, t3);
5916 else
5917 sprintf (buf, "zxt(%s,%s,%s)", t1, t2, t3);
5918 break;
5919 case SIGN_EXTEND:
5920 print_value (t1, XEXP (x, 0), verbose);
5921 if (verbose)
5922 sprintf (buf, "sign_extend(%s)", t1);
5923 else
5924 sprintf (buf, "sxn(%s)", t1);
5925 break;
5926 case ZERO_EXTEND:
5927 print_value (t1, XEXP (x, 0), verbose);
5928 if (verbose)
5929 sprintf (buf, "zero_extend(%s)", t1);
5930 else
5931 sprintf (buf, "zxn(%s)", t1);
5932 break;
5933 case FLOAT_EXTEND:
5934 print_value (t1, XEXP (x, 0), verbose);
5935 if (verbose)
5936 sprintf (buf, "float_extend(%s)", t1);
5937 else
5938 sprintf (buf, "fxn(%s)", t1);
5939 break;
5940 case TRUNCATE:
5941 print_value (t1, XEXP (x, 0), verbose);
5942 if (verbose)
5943 sprintf (buf, "trunc(%s)", t1);
5944 else
5945 sprintf (buf, "trn(%s)", t1);
5946 break;
5947 case FLOAT_TRUNCATE:
5948 print_value (t1, XEXP (x, 0), verbose);
5949 if (verbose)
5950 sprintf (buf, "float_trunc(%s)", t1);
5951 else
5952 sprintf (buf, "ftr(%s)", t1);
5953 break;
5954 case FLOAT:
5955 print_value (t1, XEXP (x, 0), verbose);
5956 if (verbose)
5957 sprintf (buf, "float(%s)", t1);
5958 else
5959 sprintf (buf, "flt(%s)", t1);
5960 break;
5961 case UNSIGNED_FLOAT:
5962 print_value (t1, XEXP (x, 0), verbose);
5963 if (verbose)
5964 sprintf (buf, "uns_float(%s)", t1);
5965 else
5966 sprintf (buf, "ufl(%s)", t1);
5967 break;
5968 case FIX:
5969 print_value (t1, XEXP (x, 0), verbose);
5970 sprintf (buf, "fix(%s)", t1);
5971 break;
5972 case UNSIGNED_FIX:
5973 print_value (t1, XEXP (x, 0), verbose);
5974 if (verbose)
5975 sprintf (buf, "uns_fix(%s)", t1);
5976 else
5977 sprintf (buf, "ufx(%s)", t1);
5978 break;
5979 case PRE_DEC:
5980 print_value (t1, XEXP (x, 0), verbose);
5981 sprintf (buf, "--%s", t1);
5982 break;
5983 case PRE_INC:
5984 print_value (t1, XEXP (x, 0), verbose);
5985 sprintf (buf, "++%s", t1);
5986 break;
5987 case POST_DEC:
5988 print_value (t1, XEXP (x, 0), verbose);
5989 sprintf (buf, "%s--", t1);
5990 break;
5991 case POST_INC:
5992 print_value (t1, XEXP (x, 0), verbose);
5993 sprintf (buf, "%s++", t1);
5994 break;
5995 case CALL:
5996 print_value (t1, XEXP (x, 0), verbose);
5997 if (verbose)
5999 print_value (t2, XEXP (x, 1), verbose);
6000 sprintf (buf, "call %s argc:%s", t1, t2);
6002 else
6003 sprintf (buf, "call %s", t1);
6004 break;
6005 case IF_THEN_ELSE:
6006 print_exp (t1, XEXP (x, 0), verbose);
6007 print_value (t2, XEXP (x, 1), verbose);
6008 print_value (t3, XEXP (x, 2), verbose);
6009 sprintf (buf, "{(%s)?%s:%s}", t1, t2, t3);
6010 break;
6011 case TRAP_IF:
6012 print_value (t1, TRAP_CONDITION (x), verbose);
6013 sprintf (buf, "trap_if %s", t1);
6014 break;
6015 case UNSPEC:
6017 int i;
6019 sprintf (t1, "unspec{");
6020 for (i = 0; i < XVECLEN (x, 0); i++)
6022 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6023 sprintf (t3, "%s%s;", t1, t2);
6024 strcpy (t1, t3);
6026 sprintf (buf, "%s}", t1);
6028 break;
6029 case UNSPEC_VOLATILE:
6031 int i;
6033 sprintf (t1, "unspec/v{");
6034 for (i = 0; i < XVECLEN (x, 0); i++)
6036 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6037 sprintf (t3, "%s%s;", t1, t2);
6038 strcpy (t1, t3);
6040 sprintf (buf, "%s}", t1);
6042 break;
6043 default:
6044 /* if (verbose) debug_rtx (x); else sprintf (buf, "$$$"); */
6045 sprintf (buf, "$$$");
6047 } /* print_exp */
6049 /* Prints rtxes, i customly classified as values. They're constants, */
6050 /* registers, labels, symbols and memory accesses. */
6052 static void
6053 print_value (buf, x, verbose)
6054 char *buf;
6055 rtx x;
6056 int verbose;
6058 char t[BUF_LEN];
6060 switch (GET_CODE (x))
6062 case CONST_INT:
6063 sprintf (buf, "%Xh", INTVAL (x));
6064 break;
6065 case CONST_DOUBLE:
6066 print_value (t, XEXP (x, 0), verbose);
6067 sprintf (buf, "<%s>", t);
6068 break;
6069 case CONST_STRING:
6070 sprintf (buf, "\"%s\"", (char *) XEXP (x, 0));
6071 break;
6072 case SYMBOL_REF:
6073 sprintf (buf, "`%s'", (char *) XEXP (x, 0));
6074 break;
6075 case LABEL_REF:
6076 sprintf (buf, "L%d", INSN_UID (XEXP (x, 0)));
6077 break;
6078 case CONST:
6079 print_value (buf, XEXP (x, 0), verbose);
6080 break;
6081 case HIGH:
6082 print_value (buf, XEXP (x, 0), verbose);
6083 break;
6084 case REG:
6085 if (GET_MODE (x) == SFmode
6086 || GET_MODE (x) == DFmode
6087 || GET_MODE (x) == XFmode
6088 || GET_MODE (x) == TFmode)
6089 strcpy (t, "fr");
6090 else
6091 strcpy (t, "r");
6092 sprintf (buf, "%s%d", t, REGNO (x));
6093 break;
6094 case SUBREG:
6095 print_value (t, XEXP (x, 0), verbose);
6096 sprintf (buf, "%s#%d", t, SUBREG_WORD (x));
6097 break;
6098 case SCRATCH:
6099 sprintf (buf, "scratch");
6100 break;
6101 case CC0:
6102 sprintf (buf, "cc0");
6103 break;
6104 case PC:
6105 sprintf (buf, "pc");
6106 break;
6107 case MEM:
6108 print_value (t, XEXP (x, 0), verbose);
6109 sprintf (buf, "[%s]", t);
6110 break;
6111 default:
6112 print_exp (buf, x, verbose);
6114 } /* print_value */
6116 /* The next step in insn detalization, its pattern recognition */
6118 static void
6119 print_pattern (buf, x, verbose)
6120 char *buf;
6121 rtx x;
6122 int verbose;
6124 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
6126 switch (GET_CODE (x))
6128 case SET:
6129 print_value (t1, SET_DEST (x), verbose);
6130 print_value (t2, SET_SRC (x), verbose);
6131 sprintf (buf, "%s=%s", t1, t2);
6132 break;
6133 case RETURN:
6134 sprintf (buf, "return");
6135 break;
6136 case CALL:
6137 print_exp (buf, x, verbose);
6138 break;
6139 case CLOBBER:
6140 print_value (t1, XEXP (x, 0), verbose);
6141 sprintf (buf, "clobber %s", t1);
6142 break;
6143 case USE:
6144 print_value (t1, XEXP (x, 0), verbose);
6145 sprintf (buf, "use %s", t1);
6146 break;
6147 case PARALLEL:
6149 int i;
6151 sprintf (t1, "{");
6152 for (i = 0; i < XVECLEN (x, 0); i++)
6154 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6155 sprintf (t3, "%s%s;", t1, t2);
6156 strcpy (t1, t3);
6158 sprintf (buf, "%s}", t1);
6160 break;
6161 case SEQUENCE:
6163 int i;
6165 sprintf (t1, "%%{");
6166 for (i = 0; i < XVECLEN (x, 0); i++)
6168 print_insn (t2, XVECEXP (x, 0, i), verbose);
6169 sprintf (t3, "%s%s;", t1, t2);
6170 strcpy (t1, t3);
6172 sprintf (buf, "%s%%}", t1);
6174 break;
6175 case ASM_INPUT:
6176 sprintf (buf, "asm {%s}", XEXP (x, 0));
6177 break;
6178 case ADDR_VEC:
6179 break;
6180 case ADDR_DIFF_VEC:
6181 print_value (buf, XEXP (x, 0), verbose);
6182 break;
6183 case TRAP_IF:
6184 print_value (t1, TRAP_CONDITION (x), verbose);
6185 sprintf (buf, "trap_if %s", t1);
6186 break;
6187 case UNSPEC:
6189 int i;
6191 sprintf (t1, "unspec{");
6192 for (i = 0; i < XVECLEN (x, 0); i++)
6194 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6195 sprintf (t3, "%s%s;", t1, t2);
6196 strcpy (t1, t3);
6198 sprintf (buf, "%s}", t1);
6200 break;
6201 case UNSPEC_VOLATILE:
6203 int i;
6205 sprintf (t1, "unspec/v{");
6206 for (i = 0; i < XVECLEN (x, 0); i++)
6208 print_pattern (t2, XVECEXP (x, 0, i), verbose);
6209 sprintf (t3, "%s%s;", t1, t2);
6210 strcpy (t1, t3);
6212 sprintf (buf, "%s}", t1);
6214 break;
6215 default:
6216 print_value (buf, x, verbose);
6218 } /* print_pattern */
6220 /* This is the main function in rtl visualization mechanism. It
6221 accepts an rtx and tries to recognize it as an insn, then prints it
6222 properly in human readable form, resembling assembler mnemonics. */
6223 /* For every insn it prints its UID and BB the insn belongs */
6224 /* too. (probably the last "option" should be extended somehow, since */
6225 /* it depends now on sched.c inner variables ...) */
6227 static void
6228 print_insn (buf, x, verbose)
6229 char *buf;
6230 rtx x;
6231 int verbose;
6233 char t[BUF_LEN];
6234 rtx insn = x;
6236 switch (GET_CODE (x))
6238 case INSN:
6239 print_pattern (t, PATTERN (x), verbose);
6240 if (verbose)
6241 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (x),
6242 INSN_UID (x), t);
6243 else
6244 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6245 break;
6246 case JUMP_INSN:
6247 print_pattern (t, PATTERN (x), verbose);
6248 if (verbose)
6249 sprintf (buf, "b%d: i% 4d: jump %s", INSN_BB (x),
6250 INSN_UID (x), t);
6251 else
6252 sprintf (buf, "%-4d %s", INSN_UID (x), t);
6253 break;
6254 case CALL_INSN:
6255 x = PATTERN (insn);
6256 if (GET_CODE (x) == PARALLEL)
6258 x = XVECEXP (x, 0, 0);
6259 print_pattern (t, x, verbose);
6261 else
6262 strcpy (t, "call <...>");
6263 if (verbose)
6264 sprintf (buf, "b%d: i% 4d: %s", INSN_BB (insn),
6265 INSN_UID (insn), t);
6266 else
6267 sprintf (buf, "%-4d %s", INSN_UID (insn), t);
6268 break;
6269 case CODE_LABEL:
6270 sprintf (buf, "L%d:", INSN_UID (x));
6271 break;
6272 case BARRIER:
6273 sprintf (buf, "i% 4d: barrier", INSN_UID (x));
6274 break;
6275 case NOTE:
6276 if (NOTE_LINE_NUMBER (x) > 0)
6277 sprintf (buf, "%4d note \"%s\" %d", INSN_UID (x),
6278 NOTE_SOURCE_FILE (x), NOTE_LINE_NUMBER (x));
6279 else
6280 sprintf (buf, "%4d %s", INSN_UID (x),
6281 GET_NOTE_INSN_NAME (NOTE_LINE_NUMBER (x)));
6282 break;
6283 default:
6284 if (verbose)
6286 sprintf (buf, "Not an INSN at all\n");
6287 debug_rtx (x);
6289 else
6290 sprintf (buf, "i%-4d <What?>", INSN_UID (x));
6292 } /* print_insn */
6294 void
6295 print_insn_chain (rtx_first)
6296 rtx rtx_first;
6298 register rtx tmp_rtx;
6299 char str[BUF_LEN];
6301 strcpy (str, "(nil)\n");
6302 if (rtx_first != 0)
6303 switch (GET_CODE (rtx_first))
6305 case INSN:
6306 case JUMP_INSN:
6307 case CALL_INSN:
6308 case NOTE:
6309 case CODE_LABEL:
6310 case BARRIER:
6311 for (tmp_rtx = rtx_first; tmp_rtx != NULL;
6312 tmp_rtx = NEXT_INSN (tmp_rtx))
6314 print_insn (str, tmp_rtx, 0);
6315 printf ("%s\n", str);
6317 break;
6318 default:
6319 print_insn (str, rtx_first, 0);
6320 printf ("%s\n", str);
6322 } /* print_insn_chain */
6324 /* Print visualization debugging info */
6326 static void
6327 print_block_visualization (b, s)
6328 int b;
6329 char *s;
6331 int unit, i;
6333 /* print header */
6334 fprintf (dump, "\n;; ==================== scheduling visualization for block %d %s \n", b, s);
6336 /* Print names of units */
6337 fprintf (dump, ";; %-8s", "clock");
6338 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6339 if (function_units[unit].bitmask & target_units)
6340 for (i = 0; i < function_units[unit].multiplicity; i++)
6341 fprintf (dump, " %-33s", function_units[unit].name);
6342 fprintf (dump, " %-8s\n", "no-unit");
6344 fprintf (dump, ";; %-8s", "=====");
6345 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6346 if (function_units[unit].bitmask & target_units)
6347 for (i = 0; i < function_units[unit].multiplicity; i++)
6348 fprintf (dump, " %-33s", "==============================");
6349 fprintf (dump, " %-8s\n", "=======");
6351 /* Print insns in each cycle */
6352 fprintf (dump, "%s\n", visual_tbl);
6355 /* Print insns in the 'no_unit' column of visualization */
6357 static void
6358 visualize_no_unit (insn)
6359 rtx insn;
6361 vis_no_unit[n_vis_no_unit] = insn;
6362 n_vis_no_unit++;
6365 /* Print insns scheduled in clock, for visualization. */
6367 static void
6368 visualize_scheduled_insns (b, clock)
6369 int b, clock;
6371 int i, unit;
6373 /* if no more room, split table into two */
6374 if (n_visual_lines >= MAX_VISUAL_LINES)
6376 print_block_visualization (b, "(incomplete)");
6377 init_block_visualization ();
6380 n_visual_lines++;
6382 sprintf (visual_tbl + strlen (visual_tbl), ";; %-8d", clock);
6383 for (unit = 0; unit < FUNCTION_UNITS_SIZE; unit++)
6384 if (function_units[unit].bitmask & target_units)
6385 for (i = 0; i < function_units[unit].multiplicity; i++)
6387 int instance = unit + i * FUNCTION_UNITS_SIZE;
6388 rtx insn = unit_last_insn[instance];
6390 /* print insns that still keep the unit busy */
6391 if (insn &&
6392 actual_hazard_this_instance (unit, instance, insn, clock, 0))
6394 char str[BUF_LEN];
6395 print_insn (str, insn, 0);
6396 str[INSN_LEN] = '\0';
6397 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", str);
6399 else
6400 sprintf (visual_tbl + strlen (visual_tbl), " %-33s", "------------------------------");
6403 /* print insns that are not assigned to any unit */
6404 for (i = 0; i < n_vis_no_unit; i++)
6405 sprintf (visual_tbl + strlen (visual_tbl), " %-8d",
6406 INSN_UID (vis_no_unit[i]));
6407 n_vis_no_unit = 0;
6409 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6412 /* Print stalled cycles */
6414 static void
6415 visualize_stall_cycles (b, stalls)
6416 int b, stalls;
6418 int i;
6420 /* if no more room, split table into two */
6421 if (n_visual_lines >= MAX_VISUAL_LINES)
6423 print_block_visualization (b, "(incomplete)");
6424 init_block_visualization ();
6427 n_visual_lines++;
6429 sprintf (visual_tbl + strlen (visual_tbl), ";; ");
6430 for (i = 0; i < stalls; i++)
6431 sprintf (visual_tbl + strlen (visual_tbl), ".");
6432 sprintf (visual_tbl + strlen (visual_tbl), "\n");
6435 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn */
6437 static rtx
6438 move_insn1 (insn, last)
6439 rtx insn, last;
6441 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
6442 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
6444 NEXT_INSN (insn) = NEXT_INSN (last);
6445 PREV_INSN (NEXT_INSN (last)) = insn;
6447 NEXT_INSN (last) = insn;
6448 PREV_INSN (insn) = last;
6450 return insn;
6453 /* Search INSN for fake REG_DEAD note pairs for NOTE_INSN_SETJMP,
6454 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
6455 NOTEs. The REG_DEAD note following first one is contains the saved
6456 value for NOTE_BLOCK_NUMBER which is useful for
6457 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
6458 output by the instruction scheduler. Return the new value of LAST. */
6460 static rtx
6461 reemit_notes (insn, last)
6462 rtx insn;
6463 rtx last;
6465 rtx note, retval;
6467 retval = last;
6468 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
6470 if (REG_NOTE_KIND (note) == REG_DEAD
6471 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6473 if (INTVAL (XEXP (note, 0)) == NOTE_INSN_SETJMP)
6475 retval = emit_note_after (INTVAL (XEXP (note, 0)), insn);
6476 CONST_CALL_P (retval) = CONST_CALL_P (note);
6477 remove_note (insn, note);
6478 note = XEXP (note, 1);
6480 else
6482 last = emit_note_before (INTVAL (XEXP (note, 0)), last);
6483 remove_note (insn, note);
6484 note = XEXP (note, 1);
6485 NOTE_BLOCK_NUMBER (last) = INTVAL (XEXP (note, 0));
6487 remove_note (insn, note);
6490 return retval;
6493 /* Move INSN, and all insns which should be issued before it,
6494 due to SCHED_GROUP_P flag. Reemit notes if needed.
6496 Return the last insn emitted by the scheduler, which is the
6497 return value from the first call to reemit_notes. */
6499 static rtx
6500 move_insn (insn, last)
6501 rtx insn, last;
6503 rtx retval = NULL;
6505 /* If INSN has SCHED_GROUP_P set, then issue it and any other
6506 insns with SCHED_GROUP_P set first. */
6507 while (SCHED_GROUP_P (insn))
6509 rtx prev = PREV_INSN (insn);
6511 /* Move a SCHED_GROUP_P insn. */
6512 move_insn1 (insn, last);
6513 /* If this is the first call to reemit_notes, then record
6514 its return value. */
6515 if (retval == NULL_RTX)
6516 retval = reemit_notes (insn, insn);
6517 else
6518 reemit_notes (insn, insn);
6519 insn = prev;
6522 /* Now move the first non SCHED_GROUP_P insn. */
6523 move_insn1 (insn, last);
6525 /* If this is the first call to reemit_notes, then record
6526 its return value. */
6527 if (retval == NULL_RTX)
6528 retval = reemit_notes (insn, insn);
6529 else
6530 reemit_notes (insn, insn);
6532 return retval;
6535 /* Return an insn which represents a SCHED_GROUP, which is
6536 the last insn in the group. */
6538 static rtx
6539 group_leader (insn)
6540 rtx insn;
6542 rtx prev;
6546 prev = insn;
6547 insn = next_nonnote_insn (insn);
6549 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
6551 return prev;
6554 /* Use forward list scheduling to rearrange insns of block BB in region RGN,
6555 possibly bringing insns from subsequent blocks in the same region.
6556 Return number of insns scheduled. */
6558 static int
6559 schedule_block (bb, rgn, rgn_n_insns)
6560 int bb;
6561 int rgn;
6562 int rgn_n_insns;
6564 /* Local variables. */
6565 rtx insn, last;
6566 rtx *ready;
6567 int i;
6568 int n_ready = 0;
6569 int can_issue_more;
6571 /* flow block of this bb */
6572 int b = BB_TO_BLOCK (bb);
6574 /* target_n_insns == number of insns in b before scheduling starts.
6575 sched_target_n_insns == how many of b's insns were scheduled.
6576 sched_n_insns == how many insns were scheduled in b */
6577 int target_n_insns = 0;
6578 int sched_target_n_insns = 0;
6579 int sched_n_insns = 0;
6581 #define NEED_NOTHING 0
6582 #define NEED_HEAD 1
6583 #define NEED_TAIL 2
6584 int new_needs;
6586 /* head/tail info for this block */
6587 rtx prev_head;
6588 rtx next_tail;
6589 rtx head;
6590 rtx tail;
6591 int bb_src;
6593 /* We used to have code to avoid getting parameters moved from hard
6594 argument registers into pseudos.
6596 However, it was removed when it proved to be of marginal benefit
6597 and caused problems because schedule_block and compute_forward_dependences
6598 had different notions of what the "head" insn was. */
6599 get_block_head_tail (bb, &head, &tail);
6601 /* Interblock scheduling could have moved the original head insn from this
6602 block into a proceeding block. This may also cause schedule_block and
6603 compute_forward_dependences to have different notions of what the
6604 "head" insn was.
6606 If the interblock movement happened to make this block start with
6607 some notes (LOOP, EH or SETJMP) before the first real insn, then
6608 HEAD will have various special notes attached to it which must be
6609 removed so that we don't end up with extra copies of the notes. */
6610 if (GET_RTX_CLASS (GET_CODE (head)) == 'i')
6612 rtx note;
6614 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
6615 if (REG_NOTE_KIND (note) == REG_DEAD
6616 && GET_CODE (XEXP (note, 0)) == CONST_INT)
6617 remove_note (head, note);
6620 next_tail = NEXT_INSN (tail);
6621 prev_head = PREV_INSN (head);
6623 /* If the only insn left is a NOTE or a CODE_LABEL, then there is no need
6624 to schedule this block. */
6625 if (head == tail
6626 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6627 return (sched_n_insns);
6629 /* debug info */
6630 if (sched_verbose)
6632 fprintf (dump, ";; ======================================================\n");
6633 fprintf (dump,
6634 ";; -- basic block %d from %d to %d -- %s reload\n",
6635 b, INSN_UID (basic_block_head[b]),
6636 INSN_UID (basic_block_end[b]),
6637 (reload_completed ? "after" : "before"));
6638 fprintf (dump, ";; ======================================================\n");
6639 if (sched_debug_count >= 0)
6640 fprintf (dump, ";;\t -- sched_debug_count=%d\n", sched_debug_count);
6641 fprintf (dump, "\n");
6643 visual_tbl = (char *) alloca (get_visual_tbl_length ());
6644 init_block_visualization ();
6647 /* remove remaining note insns from the block, save them in
6648 note_list. These notes are restored at the end of
6649 schedule_block (). */
6650 note_list = 0;
6651 rm_other_notes (head, tail);
6653 target_bb = bb;
6655 /* prepare current target block info */
6656 if (current_nr_blocks > 1)
6658 candidate_table = (candidate *) alloca (current_nr_blocks * sizeof (candidate));
6660 bblst_last = 0;
6661 /* ??? It is not clear why bblst_size is computed this way. The original
6662 number was clearly too small as it resulted in compiler failures.
6663 Multiplying by the original number by 2 (to account for update_bbs
6664 members) seems to be a reasonable solution. */
6665 /* ??? Or perhaps there is a bug somewhere else in this file? */
6666 bblst_size = (current_nr_blocks - bb) * rgn_nr_edges * 2;
6667 bblst_table = (int *) alloca (bblst_size * sizeof (int));
6669 bitlst_table_last = 0;
6670 bitlst_table_size = rgn_nr_edges;
6671 bitlst_table = (int *) alloca (rgn_nr_edges * sizeof (int));
6673 compute_trg_info (bb);
6676 clear_units ();
6678 /* Allocate the ready list */
6679 ready = (rtx *) alloca ((rgn_n_insns + 1) * sizeof (rtx));
6681 /* Print debugging information. */
6682 if (sched_verbose >= 5)
6683 debug_dependencies ();
6686 /* Initialize ready list with all 'ready' insns in target block.
6687 Count number of insns in the target block being scheduled. */
6688 n_ready = 0;
6689 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
6691 rtx next;
6693 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6694 continue;
6695 next = NEXT_INSN (insn);
6697 if (INSN_DEP_COUNT (insn) == 0
6698 && (SCHED_GROUP_P (next) == 0 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6699 ready[n_ready++] = insn;
6700 if (!(SCHED_GROUP_P (insn)))
6701 target_n_insns++;
6704 /* Add to ready list all 'ready' insns in valid source blocks.
6705 For speculative insns, check-live, exception-free, and
6706 issue-delay. */
6707 for (bb_src = bb + 1; bb_src < current_nr_blocks; bb_src++)
6708 if (IS_VALID (bb_src))
6710 rtx src_head;
6711 rtx src_next_tail;
6712 rtx tail, head;
6714 get_block_head_tail (bb_src, &head, &tail);
6715 src_next_tail = NEXT_INSN (tail);
6716 src_head = head;
6718 if (head == tail
6719 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
6720 continue;
6722 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
6724 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6725 continue;
6727 if (!CANT_MOVE (insn)
6728 && (!IS_SPECULATIVE_INSN (insn)
6729 || (insn_issue_delay (insn) <= 3
6730 && check_live (insn, bb_src, target_bb)
6731 && is_exception_free (insn, bb_src, target_bb))))
6734 rtx next;
6736 next = NEXT_INSN (insn);
6737 if (INSN_DEP_COUNT (insn) == 0
6738 && (SCHED_GROUP_P (next) == 0
6739 || GET_RTX_CLASS (GET_CODE (next)) != 'i'))
6740 ready[n_ready++] = insn;
6745 /* no insns scheduled in this block yet */
6746 last_scheduled_insn = 0;
6748 /* Sort the ready list */
6749 SCHED_SORT (ready, n_ready);
6751 if (sched_verbose >= 2)
6753 fprintf (dump, ";;\t\tReady list initially: ");
6754 debug_ready_list (ready, n_ready);
6757 /* Q_SIZE is the total number of insns in the queue. */
6758 q_ptr = 0;
6759 q_size = 0;
6760 clock_var = 0;
6761 bzero ((char *) insn_queue, sizeof (insn_queue));
6763 /* We start inserting insns after PREV_HEAD. */
6764 last = prev_head;
6766 /* Initialize INSN_QUEUE, LIST and NEW_NEEDS. */
6767 new_needs = (NEXT_INSN (prev_head) == basic_block_head[b]
6768 ? NEED_HEAD : NEED_NOTHING);
6769 if (PREV_INSN (next_tail) == basic_block_end[b])
6770 new_needs |= NEED_TAIL;
6772 /* loop until all the insns in BB are scheduled. */
6773 while (sched_target_n_insns < target_n_insns)
6775 int b1;
6777 #ifdef INTERBLOCK_DEBUG
6778 if (sched_debug_count == 0)
6779 break;
6780 #endif
6781 clock_var++;
6783 /* Add to the ready list all pending insns that can be issued now.
6784 If there are no ready insns, increment clock until one
6785 is ready and add all pending insns at that point to the ready
6786 list. */
6787 n_ready = queue_to_ready (ready, n_ready);
6789 if (n_ready == 0)
6790 abort ();
6792 if (sched_verbose >= 2)
6794 fprintf (dump, ";;\t\tReady list after queue_to_ready: ");
6795 debug_ready_list (ready, n_ready);
6798 /* Sort the ready list. */
6799 SCHED_SORT (ready, n_ready);
6801 if (sched_verbose)
6803 fprintf (dump, ";;\tReady list (t =%3d): ", clock_var);
6804 debug_ready_list (ready, n_ready);
6807 /* Issue insns from ready list.
6808 It is important to count down from n_ready, because n_ready may change
6809 as insns are issued. */
6810 can_issue_more = issue_rate;
6811 for (i = n_ready - 1; i >= 0 && can_issue_more; i--)
6813 rtx insn = ready[i];
6814 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
6816 if (cost > 1)
6818 queue_insn (insn, cost);
6819 ready[i] = ready[--n_ready]; /* remove insn from ready list */
6821 else if (cost == 0)
6823 #ifdef INTERBLOCK_DEBUG
6824 if (sched_debug_count == 0)
6825 break;
6826 #endif
6828 /* an interblock motion? */
6829 if (INSN_BB (insn) != target_bb)
6831 rtx temp;
6833 if (IS_SPECULATIVE_INSN (insn))
6836 if (!check_live (insn, INSN_BB (insn), target_bb))
6838 /* speculative motion, live check failed, remove
6839 insn from ready list */
6840 ready[i] = ready[--n_ready];
6841 continue;
6843 update_live (insn, INSN_BB (insn), target_bb);
6845 /* for speculative load, mark insns fed by it. */
6846 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
6847 set_spec_fed (insn);
6849 nr_spec++;
6851 nr_inter++;
6853 temp = insn;
6854 while (SCHED_GROUP_P (temp))
6855 temp = PREV_INSN (temp);
6857 /* Update source block boundaries. */
6858 b1 = INSN_BLOCK (temp);
6859 if (temp == basic_block_head[b1]
6860 && insn == basic_block_end[b1])
6862 /* We moved all the insns in the basic block.
6863 Emit a note after the last insn and update the
6864 begin/end boundaries to point to the note. */
6865 emit_note_after (NOTE_INSN_DELETED, insn);
6866 basic_block_end[b1] = NEXT_INSN (insn);
6867 basic_block_head[b1] = NEXT_INSN (insn);
6869 else if (insn == basic_block_end[b1])
6871 /* We took insns from the end of the basic block,
6872 so update the end of block boundary so that it
6873 points to the first insn we did not move. */
6874 basic_block_end[b1] = PREV_INSN (temp);
6876 else if (temp == basic_block_head[b1])
6878 /* We took insns from the start of the basic block,
6879 so update the start of block boundary so that
6880 it points to the first insn we did not move. */
6881 basic_block_head[b1] = NEXT_INSN (insn);
6884 else
6886 /* in block motion */
6887 sched_target_n_insns++;
6890 last_scheduled_insn = insn;
6891 last = move_insn (insn, last);
6892 sched_n_insns++;
6894 can_issue_more--;
6896 #ifdef INTERBLOCK_DEBUG
6897 if (sched_debug_count > 0)
6898 sched_debug_count--;
6899 #endif
6901 n_ready = schedule_insn (insn, ready, n_ready, clock_var);
6903 /* remove insn from ready list */
6904 ready[i] = ready[--n_ready];
6906 /* close this block after scheduling its jump */
6907 if (GET_CODE (last_scheduled_insn) == JUMP_INSN)
6908 break;
6912 /* debug info */
6913 if (sched_verbose)
6915 visualize_scheduled_insns (b, clock_var);
6916 #ifdef INTERBLOCK_DEBUG
6917 if (sched_debug_count == 0)
6918 fprintf (dump, "........ sched_debug_count == 0 .................\n");
6919 #endif
6923 /* debug info */
6924 if (sched_verbose)
6926 fprintf (dump, ";;\tReady list (final): ");
6927 debug_ready_list (ready, n_ready);
6928 print_block_visualization (b, "");
6931 /* Sanity check -- queue must be empty now. Meaningless if region has
6932 multiple bbs, or if scheduling stopped by sched_debug_count. */
6933 if (current_nr_blocks > 1)
6934 #ifdef INTERBLOCK_DEBUG
6935 if (sched_debug_count != 0)
6936 #endif
6937 if (!flag_schedule_interblock && q_size != 0)
6938 abort ();
6940 /* update head/tail boundaries. */
6941 head = NEXT_INSN (prev_head);
6942 tail = last;
6944 #ifdef INTERBLOCK_DEBUG
6945 if (sched_debug_count == 0)
6946 /* compensate for stopping scheduling prematurely */
6947 for (i = sched_target_n_insns; i < target_n_insns; i++)
6948 tail = move_insn (group_leader (NEXT_INSN (tail)), tail);
6949 #endif
6951 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
6952 previously found among the insns. Insert them at the beginning
6953 of the insns. */
6954 if (note_list != 0)
6956 rtx note_head = note_list;
6958 while (PREV_INSN (note_head))
6960 note_head = PREV_INSN (note_head);
6963 PREV_INSN (note_head) = PREV_INSN (head);
6964 NEXT_INSN (PREV_INSN (head)) = note_head;
6965 PREV_INSN (head) = note_list;
6966 NEXT_INSN (note_list) = head;
6967 head = note_head;
6970 /* update target block boundaries. */
6971 if (new_needs & NEED_HEAD)
6972 basic_block_head[b] = head;
6974 if (new_needs & NEED_TAIL)
6975 basic_block_end[b] = tail;
6977 /* debugging */
6978 if (sched_verbose)
6980 fprintf (dump, ";; total time = %d\n;; new basic block head = %d\n",
6981 clock_var, INSN_UID (basic_block_head[b]));
6982 fprintf (dump, ";; new basic block end = %d\n\n",
6983 INSN_UID (basic_block_end[b]));
6986 return (sched_n_insns);
6987 } /* schedule_block () */
6990 /* print the bit-set of registers, S. callable from debugger */
6992 extern void
6993 debug_reg_vector (s)
6994 regset s;
6996 int regno;
6998 EXECUTE_IF_SET_IN_REG_SET (s, 0, regno,
7000 fprintf (dump, " %d", regno);
7003 fprintf (dump, "\n");
7006 /* Use the backward dependences from LOG_LINKS to build
7007 forward dependences in INSN_DEPEND. */
7009 static void
7010 compute_block_forward_dependences (bb)
7011 int bb;
7013 rtx insn, link;
7014 rtx tail, head;
7015 rtx next_tail;
7016 enum reg_note dep_type;
7018 get_block_head_tail (bb, &head, &tail);
7019 next_tail = NEXT_INSN (tail);
7020 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
7022 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7023 continue;
7025 insn = group_leader (insn);
7027 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
7029 rtx x = group_leader (XEXP (link, 0));
7030 rtx new_link;
7032 if (x != XEXP (link, 0))
7033 continue;
7035 /* Ignore dependences upon deleted insn */
7036 if (GET_CODE (x) == NOTE || INSN_DELETED_P (x))
7037 continue;
7038 if (find_insn_list (insn, INSN_DEPEND (x)))
7039 continue;
7041 new_link = rtx_alloc (INSN_LIST);
7043 dep_type = REG_NOTE_KIND (link);
7044 PUT_REG_NOTE_KIND (new_link, dep_type);
7046 XEXP (new_link, 0) = insn;
7047 XEXP (new_link, 1) = INSN_DEPEND (x);
7049 INSN_DEPEND (x) = new_link;
7050 INSN_DEP_COUNT (insn) += 1;
7055 /* Initialize variables for region data dependence analysis.
7056 n_bbs is the number of region blocks */
7058 __inline static void
7059 init_rgn_data_dependences (n_bbs)
7060 int n_bbs;
7062 int bb;
7064 /* variables for which one copy exists for each block */
7065 bzero ((char *) bb_pending_read_insns, n_bbs * sizeof (rtx));
7066 bzero ((char *) bb_pending_read_mems, n_bbs * sizeof (rtx));
7067 bzero ((char *) bb_pending_write_insns, n_bbs * sizeof (rtx));
7068 bzero ((char *) bb_pending_write_mems, n_bbs * sizeof (rtx));
7069 bzero ((char *) bb_pending_lists_length, n_bbs * sizeof (rtx));
7070 bzero ((char *) bb_last_pending_memory_flush, n_bbs * sizeof (rtx));
7071 bzero ((char *) bb_last_function_call, n_bbs * sizeof (rtx));
7072 bzero ((char *) bb_sched_before_next_call, n_bbs * sizeof (rtx));
7074 /* Create an insn here so that we can hang dependencies off of it later. */
7075 for (bb = 0; bb < n_bbs; bb++)
7077 bb_sched_before_next_call[bb] =
7078 gen_rtx (INSN, VOIDmode, 0, NULL_RTX, NULL_RTX,
7079 NULL_RTX, 0, NULL_RTX, NULL_RTX);
7080 LOG_LINKS (bb_sched_before_next_call[bb]) = 0;
7084 /* Add dependences so that branches are scheduled to run last in their block */
7086 static void
7087 add_branch_dependences (head, tail)
7088 rtx head, tail;
7091 rtx insn, last;
7093 /* For all branches, calls, uses, and cc0 setters, force them to remain
7094 in order at the end of the block by adding dependencies and giving
7095 the last a high priority. There may be notes present, and prev_head
7096 may also be a note.
7098 Branches must obviously remain at the end. Calls should remain at the
7099 end since moving them results in worse register allocation. Uses remain
7100 at the end to ensure proper register allocation. cc0 setters remaim
7101 at the end because they can't be moved away from their cc0 user. */
7102 insn = tail;
7103 last = 0;
7104 while (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
7105 || (GET_CODE (insn) == INSN
7106 && (GET_CODE (PATTERN (insn)) == USE
7107 #ifdef HAVE_cc0
7108 || sets_cc0_p (PATTERN (insn))
7109 #endif
7111 || GET_CODE (insn) == NOTE)
7113 if (GET_CODE (insn) != NOTE)
7115 if (last != 0
7116 && !find_insn_list (insn, LOG_LINKS (last)))
7118 add_dependence (last, insn, REG_DEP_ANTI);
7119 INSN_REF_COUNT (insn)++;
7122 CANT_MOVE (insn) = 1;
7124 last = insn;
7125 /* Skip over insns that are part of a group.
7126 Make each insn explicitly depend on the previous insn.
7127 This ensures that only the group header will ever enter
7128 the ready queue (and, when scheduled, will automatically
7129 schedule the SCHED_GROUP_P block). */
7130 while (SCHED_GROUP_P (insn))
7132 rtx temp = prev_nonnote_insn (insn);
7133 add_dependence (insn, temp, REG_DEP_ANTI);
7134 insn = temp;
7138 /* Don't overrun the bounds of the basic block. */
7139 if (insn == head)
7140 break;
7142 insn = PREV_INSN (insn);
7145 /* make sure these insns are scheduled last in their block */
7146 insn = last;
7147 if (insn != 0)
7148 while (insn != head)
7150 insn = prev_nonnote_insn (insn);
7152 if (INSN_REF_COUNT (insn) != 0)
7153 continue;
7155 if (!find_insn_list (last, LOG_LINKS (insn)))
7156 add_dependence (last, insn, REG_DEP_ANTI);
7157 INSN_REF_COUNT (insn) = 1;
7159 /* Skip over insns that are part of a group. */
7160 while (SCHED_GROUP_P (insn))
7161 insn = prev_nonnote_insn (insn);
7165 /* Compute bacward dependences inside BB. In a multiple blocks region:
7166 (1) a bb is analyzed after its predecessors, and (2) the lists in
7167 effect at the end of bb (after analyzing for bb) are inherited by
7168 bb's successrs.
7170 Specifically for reg-reg data dependences, the block insns are
7171 scanned by sched_analyze () top-to-bottom. Two lists are
7172 naintained by sched_analyze (): reg_last_defs[] for register DEFs,
7173 and reg_last_uses[] for register USEs.
7175 When analysis is completed for bb, we update for its successors:
7176 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
7177 ; - USES[succ] = Union (USES [succ], DEFS [bb])
7179 The mechanism for computing mem-mem data dependence is very
7180 similar, and the result is interblock dependences in the region. */
7182 static void
7183 compute_block_backward_dependences (bb)
7184 int bb;
7186 int b;
7187 rtx x;
7188 rtx head, tail;
7189 int max_reg = max_reg_num ();
7191 b = BB_TO_BLOCK (bb);
7193 if (current_nr_blocks == 1)
7195 reg_last_uses = (rtx *) alloca (max_reg * sizeof (rtx));
7196 reg_last_sets = (rtx *) alloca (max_reg * sizeof (rtx));
7198 bzero ((char *) reg_last_uses, max_reg * sizeof (rtx));
7199 bzero ((char *) reg_last_sets, max_reg * sizeof (rtx));
7201 pending_read_insns = 0;
7202 pending_read_mems = 0;
7203 pending_write_insns = 0;
7204 pending_write_mems = 0;
7205 pending_lists_length = 0;
7206 last_function_call = 0;
7207 last_pending_memory_flush = 0;
7208 sched_before_next_call
7209 = gen_rtx (INSN, VOIDmode, 0, NULL_RTX, NULL_RTX,
7210 NULL_RTX, 0, NULL_RTX, NULL_RTX);
7211 LOG_LINKS (sched_before_next_call) = 0;
7213 else
7215 reg_last_uses = bb_reg_last_uses[bb];
7216 reg_last_sets = bb_reg_last_sets[bb];
7218 pending_read_insns = bb_pending_read_insns[bb];
7219 pending_read_mems = bb_pending_read_mems[bb];
7220 pending_write_insns = bb_pending_write_insns[bb];
7221 pending_write_mems = bb_pending_write_mems[bb];
7222 pending_lists_length = bb_pending_lists_length[bb];
7223 last_function_call = bb_last_function_call[bb];
7224 last_pending_memory_flush = bb_last_pending_memory_flush[bb];
7226 sched_before_next_call = bb_sched_before_next_call[bb];
7229 /* do the analysis for this block */
7230 get_block_head_tail (bb, &head, &tail);
7231 sched_analyze (head, tail);
7232 add_branch_dependences (head, tail);
7234 if (current_nr_blocks > 1)
7236 int e, first_edge;
7237 int b_succ, bb_succ;
7238 int reg;
7239 rtx link_insn, link_mem;
7240 rtx u;
7242 /* these lists should point to the right place, for correct freeing later. */
7243 bb_pending_read_insns[bb] = pending_read_insns;
7244 bb_pending_read_mems[bb] = pending_read_mems;
7245 bb_pending_write_insns[bb] = pending_write_insns;
7246 bb_pending_write_mems[bb] = pending_write_mems;
7248 /* bb's structures are inherited by it's successors */
7249 first_edge = e = OUT_EDGES (b);
7250 if (e > 0)
7253 b_succ = TO_BLOCK (e);
7254 bb_succ = BLOCK_TO_BB (b_succ);
7256 /* only bbs "below" bb, in the same region, are interesting */
7257 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
7258 || bb_succ <= bb)
7260 e = NEXT_OUT (e);
7261 continue;
7264 for (reg = 0; reg < max_reg; reg++)
7267 /* reg-last-uses lists are inherited by bb_succ */
7268 for (u = reg_last_uses[reg]; u; u = XEXP (u, 1))
7270 if (find_insn_list (XEXP (u, 0), (bb_reg_last_uses[bb_succ])[reg]))
7271 continue;
7273 (bb_reg_last_uses[bb_succ])[reg]
7274 = gen_rtx (INSN_LIST, VOIDmode, XEXP (u, 0),
7275 (bb_reg_last_uses[bb_succ])[reg]);
7278 /* reg-last-defs lists are inherited by bb_succ */
7279 for (u = reg_last_sets[reg]; u; u = XEXP (u, 1))
7281 if (find_insn_list (XEXP (u, 0), (bb_reg_last_sets[bb_succ])[reg]))
7282 continue;
7284 (bb_reg_last_sets[bb_succ])[reg]
7285 = gen_rtx (INSN_LIST, VOIDmode, XEXP (u, 0),
7286 (bb_reg_last_sets[bb_succ])[reg]);
7290 /* mem read/write lists are inherited by bb_succ */
7291 link_insn = pending_read_insns;
7292 link_mem = pending_read_mems;
7293 while (link_insn)
7295 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7296 bb_pending_read_insns[bb_succ],
7297 bb_pending_read_mems[bb_succ])))
7298 add_insn_mem_dependence (&bb_pending_read_insns[bb_succ],
7299 &bb_pending_read_mems[bb_succ],
7300 XEXP (link_insn, 0), XEXP (link_mem, 0));
7301 link_insn = XEXP (link_insn, 1);
7302 link_mem = XEXP (link_mem, 1);
7305 link_insn = pending_write_insns;
7306 link_mem = pending_write_mems;
7307 while (link_insn)
7309 if (!(find_insn_mem_list (XEXP (link_insn, 0), XEXP (link_mem, 0),
7310 bb_pending_write_insns[bb_succ],
7311 bb_pending_write_mems[bb_succ])))
7312 add_insn_mem_dependence (&bb_pending_write_insns[bb_succ],
7313 &bb_pending_write_mems[bb_succ],
7314 XEXP (link_insn, 0), XEXP (link_mem, 0));
7316 link_insn = XEXP (link_insn, 1);
7317 link_mem = XEXP (link_mem, 1);
7320 /* last_function_call is inherited by bb_succ */
7321 for (u = last_function_call; u; u = XEXP (u, 1))
7323 if (find_insn_list (XEXP (u, 0), bb_last_function_call[bb_succ]))
7324 continue;
7326 bb_last_function_call[bb_succ]
7327 = gen_rtx (INSN_LIST, VOIDmode, XEXP (u, 0),
7328 bb_last_function_call[bb_succ]);
7331 /* last_pending_memory_flush is inherited by bb_succ */
7332 for (u = last_pending_memory_flush; u; u = XEXP (u, 1))
7334 if (find_insn_list (XEXP (u, 0), bb_last_pending_memory_flush[bb_succ]))
7335 continue;
7337 bb_last_pending_memory_flush[bb_succ]
7338 = gen_rtx (INSN_LIST, VOIDmode, XEXP (u, 0),
7339 bb_last_pending_memory_flush[bb_succ]);
7342 /* sched_before_next_call is inherited by bb_succ */
7343 x = LOG_LINKS (sched_before_next_call);
7344 for (; x; x = XEXP (x, 1))
7345 add_dependence (bb_sched_before_next_call[bb_succ],
7346 XEXP (x, 0), REG_DEP_ANTI);
7348 e = NEXT_OUT (e);
7350 while (e != first_edge);
7354 /* Print dependences for debugging, callable from debugger */
7356 void
7357 debug_dependencies ()
7359 int bb;
7361 fprintf (dump, ";; --------------- forward dependences: ------------ \n");
7362 for (bb = 0; bb < current_nr_blocks; bb++)
7364 if (1)
7366 rtx head, tail;
7367 rtx next_tail;
7368 rtx insn;
7370 get_block_head_tail (bb, &head, &tail);
7371 next_tail = NEXT_INSN (tail);
7372 fprintf (dump, "\n;; --- Region Dependences --- b %d bb %d \n",
7373 BB_TO_BLOCK (bb), bb);
7375 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7376 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
7377 fprintf (dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
7378 "----", "----", "--", "---", "----", "----", "--------", "-----");
7379 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
7381 rtx link;
7382 int unit, range;
7384 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
7386 int n;
7387 fprintf (dump, ";; %6d ", INSN_UID (insn));
7388 if (GET_CODE (insn) == NOTE)
7390 n = NOTE_LINE_NUMBER (insn);
7391 if (n < 0)
7392 fprintf (dump, "%s\n", GET_NOTE_INSN_NAME (n));
7393 else
7394 fprintf (dump, "line %d, file %s\n", n,
7395 NOTE_SOURCE_FILE (insn));
7397 else
7398 fprintf (dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
7399 continue;
7402 unit = insn_unit (insn);
7403 range = (unit < 0
7404 || function_units[unit].blockage_range_function == 0) ? 0 :
7405 function_units[unit].blockage_range_function (insn);
7406 fprintf (dump,
7407 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
7408 (SCHED_GROUP_P (insn) ? "+" : " "),
7409 INSN_UID (insn),
7410 INSN_CODE (insn),
7411 INSN_BB (insn),
7412 INSN_DEP_COUNT (insn),
7413 INSN_PRIORITY (insn),
7414 insn_cost (insn, 0, 0),
7415 (int) MIN_BLOCKAGE_COST (range),
7416 (int) MAX_BLOCKAGE_COST (range));
7417 insn_print_units (insn);
7418 fprintf (dump, "\t: ");
7419 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
7420 fprintf (dump, "%d ", INSN_UID (XEXP (link, 0)));
7421 fprintf (dump, "\n");
7425 fprintf (dump, "\n");
7428 /* Set_priorities: compute priority of each insn in the block */
7430 static int
7431 set_priorities (bb)
7432 int bb;
7434 rtx insn;
7435 int n_insn;
7437 rtx tail;
7438 rtx prev_head;
7439 rtx head;
7441 get_block_head_tail (bb, &head, &tail);
7442 prev_head = PREV_INSN (head);
7444 if (head == tail
7445 && (GET_RTX_CLASS (GET_CODE (head)) != 'i'))
7446 return 0;
7448 n_insn = 0;
7449 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
7452 if (GET_CODE (insn) == NOTE)
7453 continue;
7455 if (!(SCHED_GROUP_P (insn)))
7456 n_insn++;
7457 (void) priority (insn);
7460 return n_insn;
7463 /* Make each element of VECTOR point at an rtx-vector,
7464 taking the space for all those rtx-vectors from SPACE.
7465 SPACE is of type (rtx *), but it is really as long as NELTS rtx-vectors.
7466 BYTES_PER_ELT is the number of bytes in one rtx-vector.
7467 (this is the same as init_regset_vector () in flow.c) */
7469 static void
7470 init_rtx_vector (vector, space, nelts, bytes_per_elt)
7471 rtx **vector;
7472 rtx *space;
7473 int nelts;
7474 int bytes_per_elt;
7476 register int i;
7477 register rtx *p = space;
7479 for (i = 0; i < nelts; i++)
7481 vector[i] = p;
7482 p += bytes_per_elt / sizeof (*p);
7486 /* Schedule a region. A region is either an inner loop, a loop-free
7487 subroutine, or a single basic block. Each bb in the region is
7488 scheduled after its flow predecessors. */
7490 static void
7491 schedule_region (rgn)
7492 int rgn;
7494 int bb;
7495 int rgn_n_insns = 0;
7496 int sched_rgn_n_insns = 0;
7498 /* set variables for the current region */
7499 current_nr_blocks = RGN_NR_BLOCKS (rgn);
7500 current_blocks = RGN_BLOCKS (rgn);
7502 reg_pending_sets = ALLOCA_REG_SET ();
7503 reg_pending_sets_all = 0;
7505 /* initializations for region data dependence analyisis */
7506 if (current_nr_blocks > 1)
7508 rtx *space;
7509 int maxreg = max_reg_num ();
7511 bb_reg_last_uses = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7512 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7513 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7514 init_rtx_vector (bb_reg_last_uses, space, current_nr_blocks, maxreg * sizeof (rtx *));
7516 bb_reg_last_sets = (rtx **) alloca (current_nr_blocks * sizeof (rtx *));
7517 space = (rtx *) alloca (current_nr_blocks * maxreg * sizeof (rtx));
7518 bzero ((char *) space, current_nr_blocks * maxreg * sizeof (rtx));
7519 init_rtx_vector (bb_reg_last_sets, space, current_nr_blocks, maxreg * sizeof (rtx *));
7521 bb_pending_read_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7522 bb_pending_read_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7523 bb_pending_write_insns = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7524 bb_pending_write_mems = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7525 bb_pending_lists_length = (int *) alloca (current_nr_blocks * sizeof (int));
7526 bb_last_pending_memory_flush = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7527 bb_last_function_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7528 bb_sched_before_next_call = (rtx *) alloca (current_nr_blocks * sizeof (rtx));
7530 init_rgn_data_dependences (current_nr_blocks);
7533 /* compute LOG_LINKS */
7534 for (bb = 0; bb < current_nr_blocks; bb++)
7535 compute_block_backward_dependences (bb);
7537 /* compute INSN_DEPEND */
7538 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7539 compute_block_forward_dependences (bb);
7541 /* Delete line notes, compute live-regs at block end, and set priorities. */
7542 dead_notes = 0;
7543 for (bb = 0; bb < current_nr_blocks; bb++)
7545 if (reload_completed == 0)
7546 find_pre_sched_live (bb);
7548 if (write_symbols != NO_DEBUG)
7550 save_line_notes (bb);
7551 rm_line_notes (bb);
7554 rgn_n_insns += set_priorities (bb);
7557 /* compute interblock info: probabilities, split-edges, dominators, etc. */
7558 if (current_nr_blocks > 1)
7560 int i;
7562 prob = (float *) alloca ((current_nr_blocks) * sizeof (float));
7564 bbset_size = current_nr_blocks / HOST_BITS_PER_WIDE_INT + 1;
7565 dom = (bbset *) alloca (current_nr_blocks * sizeof (bbset));
7566 for (i = 0; i < current_nr_blocks; i++)
7568 dom[i] = (bbset) alloca (bbset_size * sizeof (HOST_WIDE_INT));
7569 bzero ((char *) dom[i], bbset_size * sizeof (HOST_WIDE_INT));
7572 /* edge to bit */
7573 rgn_nr_edges = 0;
7574 edge_to_bit = (int *) alloca (nr_edges * sizeof (int));
7575 for (i = 1; i < nr_edges; i++)
7576 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
7577 EDGE_TO_BIT (i) = rgn_nr_edges++;
7578 rgn_edges = (int *) alloca (rgn_nr_edges * sizeof (int));
7580 rgn_nr_edges = 0;
7581 for (i = 1; i < nr_edges; i++)
7582 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
7583 rgn_edges[rgn_nr_edges++] = i;
7585 /* split edges */
7586 edgeset_size = rgn_nr_edges / HOST_BITS_PER_WIDE_INT + 1;
7587 pot_split = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7588 ancestor_edges = (edgeset *) alloca (current_nr_blocks * sizeof (edgeset));
7589 for (i = 0; i < current_nr_blocks; i++)
7591 pot_split[i] =
7592 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7593 bzero ((char *) pot_split[i],
7594 edgeset_size * sizeof (HOST_WIDE_INT));
7595 ancestor_edges[i] =
7596 (edgeset) alloca (edgeset_size * sizeof (HOST_WIDE_INT));
7597 bzero ((char *) ancestor_edges[i],
7598 edgeset_size * sizeof (HOST_WIDE_INT));
7601 /* compute probabilities, dominators, split_edges */
7602 for (bb = 0; bb < current_nr_blocks; bb++)
7603 compute_dom_prob_ps (bb);
7606 /* now we can schedule all blocks */
7607 for (bb = 0; bb < current_nr_blocks; bb++)
7609 sched_rgn_n_insns += schedule_block (bb, rgn, rgn_n_insns);
7611 #ifdef USE_C_ALLOCA
7612 alloca (0);
7613 #endif
7616 #ifdef INTERBLOCK_DEBUG
7617 if (sched_debug_count != 0)
7618 #endif
7619 /* sanity check: verify that all region insns were scheduled */
7620 if (sched_rgn_n_insns != rgn_n_insns)
7621 abort ();
7623 /* update register life and usage information */
7624 if (reload_completed == 0)
7626 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
7627 find_post_sched_live (bb);
7629 if (current_nr_blocks <= 1)
7630 /* Sanity check. There should be no REG_DEAD notes leftover at the end.
7631 In practice, this can occur as the result of bugs in flow, combine.c,
7632 and/or sched.c. The values of the REG_DEAD notes remaining are
7633 meaningless, because dead_notes is just used as a free list. */
7634 if (dead_notes != 0)
7635 abort ();
7638 /* restore line notes. */
7639 if (write_symbols != NO_DEBUG)
7641 for (bb = 0; bb < current_nr_blocks; bb++)
7642 restore_line_notes (bb);
7645 /* Done with this region */
7646 free_pending_lists ();
7648 FREE_REG_SET (reg_pending_sets);
7651 /* Subroutine of split_hard_reg_notes. Searches X for any reference to
7652 REGNO, returning the rtx of the reference found if any. Otherwise,
7653 returns 0. */
7655 static rtx
7656 regno_use_in (regno, x)
7657 int regno;
7658 rtx x;
7660 register char *fmt;
7661 int i, j;
7662 rtx tem;
7664 if (GET_CODE (x) == REG && REGNO (x) == regno)
7665 return x;
7667 fmt = GET_RTX_FORMAT (GET_CODE (x));
7668 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
7670 if (fmt[i] == 'e')
7672 if ((tem = regno_use_in (regno, XEXP (x, i))))
7673 return tem;
7675 else if (fmt[i] == 'E')
7676 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7677 if ((tem = regno_use_in (regno, XVECEXP (x, i, j))))
7678 return tem;
7681 return 0;
7684 /* Subroutine of update_flow_info. Determines whether any new REG_NOTEs are
7685 needed for the hard register mentioned in the note. This can happen
7686 if the reference to the hard register in the original insn was split into
7687 several smaller hard register references in the split insns. */
7689 static void
7690 split_hard_reg_notes (note, first, last, orig_insn)
7691 rtx note, first, last, orig_insn;
7693 rtx reg, temp, link;
7694 int n_regs, i, new_reg;
7695 rtx insn;
7697 /* Assume that this is a REG_DEAD note. */
7698 if (REG_NOTE_KIND (note) != REG_DEAD)
7699 abort ();
7701 reg = XEXP (note, 0);
7703 n_regs = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
7705 for (i = 0; i < n_regs; i++)
7707 new_reg = REGNO (reg) + i;
7709 /* Check for references to new_reg in the split insns. */
7710 for (insn = last;; insn = PREV_INSN (insn))
7712 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7713 && (temp = regno_use_in (new_reg, PATTERN (insn))))
7715 /* Create a new reg dead note ere. */
7716 link = rtx_alloc (EXPR_LIST);
7717 PUT_REG_NOTE_KIND (link, REG_DEAD);
7718 XEXP (link, 0) = temp;
7719 XEXP (link, 1) = REG_NOTES (insn);
7720 REG_NOTES (insn) = link;
7722 /* If killed multiple registers here, then add in the excess. */
7723 i += HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) - 1;
7725 break;
7727 /* It isn't mentioned anywhere, so no new reg note is needed for
7728 this register. */
7729 if (insn == first)
7730 break;
7735 /* Subroutine of update_flow_info. Determines whether a SET or CLOBBER in an
7736 insn created by splitting needs a REG_DEAD or REG_UNUSED note added. */
7738 static void
7739 new_insn_dead_notes (pat, insn, last, orig_insn)
7740 rtx pat, insn, last, orig_insn;
7742 rtx dest, tem, set;
7744 /* PAT is either a CLOBBER or a SET here. */
7745 dest = XEXP (pat, 0);
7747 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
7748 || GET_CODE (dest) == STRICT_LOW_PART
7749 || GET_CODE (dest) == SIGN_EXTRACT)
7750 dest = XEXP (dest, 0);
7752 if (GET_CODE (dest) == REG)
7754 for (tem = last; tem != insn; tem = PREV_INSN (tem))
7756 if (GET_RTX_CLASS (GET_CODE (tem)) == 'i'
7757 && reg_overlap_mentioned_p (dest, PATTERN (tem))
7758 && (set = single_set (tem)))
7760 rtx tem_dest = SET_DEST (set);
7762 while (GET_CODE (tem_dest) == ZERO_EXTRACT
7763 || GET_CODE (tem_dest) == SUBREG
7764 || GET_CODE (tem_dest) == STRICT_LOW_PART
7765 || GET_CODE (tem_dest) == SIGN_EXTRACT)
7766 tem_dest = XEXP (tem_dest, 0);
7768 if (!rtx_equal_p (tem_dest, dest))
7770 /* Use the same scheme as combine.c, don't put both REG_DEAD
7771 and REG_UNUSED notes on the same insn. */
7772 if (!find_regno_note (tem, REG_UNUSED, REGNO (dest))
7773 && !find_regno_note (tem, REG_DEAD, REGNO (dest)))
7775 rtx note = rtx_alloc (EXPR_LIST);
7776 PUT_REG_NOTE_KIND (note, REG_DEAD);
7777 XEXP (note, 0) = dest;
7778 XEXP (note, 1) = REG_NOTES (tem);
7779 REG_NOTES (tem) = note;
7781 /* The reg only dies in one insn, the last one that uses
7782 it. */
7783 break;
7785 else if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
7786 /* We found an instruction that both uses the register,
7787 and sets it, so no new REG_NOTE is needed for this set. */
7788 break;
7791 /* If this is a set, it must die somewhere, unless it is the dest of
7792 the original insn, and hence is live after the original insn. Abort
7793 if it isn't supposed to be live after the original insn.
7795 If this is a clobber, then just add a REG_UNUSED note. */
7796 if (tem == insn)
7798 int live_after_orig_insn = 0;
7799 rtx pattern = PATTERN (orig_insn);
7800 int i;
7802 if (GET_CODE (pat) == CLOBBER)
7804 rtx note = rtx_alloc (EXPR_LIST);
7805 PUT_REG_NOTE_KIND (note, REG_UNUSED);
7806 XEXP (note, 0) = dest;
7807 XEXP (note, 1) = REG_NOTES (insn);
7808 REG_NOTES (insn) = note;
7809 return;
7812 /* The original insn could have multiple sets, so search the
7813 insn for all sets. */
7814 if (GET_CODE (pattern) == SET)
7816 if (reg_overlap_mentioned_p (dest, SET_DEST (pattern)))
7817 live_after_orig_insn = 1;
7819 else if (GET_CODE (pattern) == PARALLEL)
7821 for (i = 0; i < XVECLEN (pattern, 0); i++)
7822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET
7823 && reg_overlap_mentioned_p (dest,
7824 SET_DEST (XVECEXP (pattern,
7825 0, i))))
7826 live_after_orig_insn = 1;
7829 if (!live_after_orig_insn)
7830 abort ();
7835 /* Subroutine of update_flow_info. Update the value of reg_n_sets for all
7836 registers modified by X. INC is -1 if the containing insn is being deleted,
7837 and is 1 if the containing insn is a newly generated insn. */
7839 static void
7840 update_n_sets (x, inc)
7841 rtx x;
7842 int inc;
7844 rtx dest = SET_DEST (x);
7846 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
7847 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
7848 dest = SUBREG_REG (dest);
7850 if (GET_CODE (dest) == REG)
7852 int regno = REGNO (dest);
7854 if (regno < FIRST_PSEUDO_REGISTER)
7856 register int i;
7857 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (dest));
7859 for (i = regno; i < endregno; i++)
7860 REG_N_SETS (i) += inc;
7862 else
7863 REG_N_SETS (regno) += inc;
7867 /* Updates all flow-analysis related quantities (including REG_NOTES) for
7868 the insns from FIRST to LAST inclusive that were created by splitting
7869 ORIG_INSN. NOTES are the original REG_NOTES. */
7871 static void
7872 update_flow_info (notes, first, last, orig_insn)
7873 rtx notes;
7874 rtx first, last;
7875 rtx orig_insn;
7877 rtx insn, note;
7878 rtx next;
7879 rtx orig_dest, temp;
7880 rtx set;
7882 /* Get and save the destination set by the original insn. */
7884 orig_dest = single_set (orig_insn);
7885 if (orig_dest)
7886 orig_dest = SET_DEST (orig_dest);
7888 /* Move REG_NOTES from the original insn to where they now belong. */
7890 for (note = notes; note; note = next)
7892 next = XEXP (note, 1);
7893 switch (REG_NOTE_KIND (note))
7895 case REG_DEAD:
7896 case REG_UNUSED:
7897 /* Move these notes from the original insn to the last new insn where
7898 the register is now set. */
7900 for (insn = last;; insn = PREV_INSN (insn))
7902 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7903 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
7905 /* If this note refers to a multiple word hard register, it
7906 may have been split into several smaller hard register
7907 references, so handle it specially. */
7908 temp = XEXP (note, 0);
7909 if (REG_NOTE_KIND (note) == REG_DEAD
7910 && GET_CODE (temp) == REG
7911 && REGNO (temp) < FIRST_PSEUDO_REGISTER
7912 && HARD_REGNO_NREGS (REGNO (temp), GET_MODE (temp)) > 1)
7913 split_hard_reg_notes (note, first, last, orig_insn);
7914 else
7916 XEXP (note, 1) = REG_NOTES (insn);
7917 REG_NOTES (insn) = note;
7920 /* Sometimes need to convert REG_UNUSED notes to REG_DEAD
7921 notes. */
7922 /* ??? This won't handle multiple word registers correctly,
7923 but should be good enough for now. */
7924 if (REG_NOTE_KIND (note) == REG_UNUSED
7925 && GET_CODE (XEXP (note, 0)) != SCRATCH
7926 && !dead_or_set_p (insn, XEXP (note, 0)))
7927 PUT_REG_NOTE_KIND (note, REG_DEAD);
7929 /* The reg only dies in one insn, the last one that uses
7930 it. */
7931 break;
7933 /* It must die somewhere, fail it we couldn't find where it died.
7935 If this is a REG_UNUSED note, then it must be a temporary
7936 register that was not needed by this instantiation of the
7937 pattern, so we can safely ignore it. */
7938 if (insn == first)
7940 /* After reload, REG_DEAD notes come sometimes an
7941 instruction after the register actually dies. */
7942 if (reload_completed && REG_NOTE_KIND (note) == REG_DEAD)
7944 XEXP (note, 1) = REG_NOTES (insn);
7945 REG_NOTES (insn) = note;
7946 break;
7949 if (REG_NOTE_KIND (note) != REG_UNUSED)
7950 abort ();
7952 break;
7955 break;
7957 case REG_WAS_0:
7958 /* This note applies to the dest of the original insn. Find the
7959 first new insn that now has the same dest, and move the note
7960 there. */
7962 if (!orig_dest)
7963 abort ();
7965 for (insn = first;; insn = NEXT_INSN (insn))
7967 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
7968 && (temp = single_set (insn))
7969 && rtx_equal_p (SET_DEST (temp), orig_dest))
7971 XEXP (note, 1) = REG_NOTES (insn);
7972 REG_NOTES (insn) = note;
7973 /* The reg is only zero before one insn, the first that
7974 uses it. */
7975 break;
7977 /* If this note refers to a multiple word hard
7978 register, it may have been split into several smaller
7979 hard register references. We could split the notes,
7980 but simply dropping them is good enough. */
7981 if (GET_CODE (orig_dest) == REG
7982 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
7983 && HARD_REGNO_NREGS (REGNO (orig_dest),
7984 GET_MODE (orig_dest)) > 1)
7985 break;
7986 /* It must be set somewhere, fail if we couldn't find where it
7987 was set. */
7988 if (insn == last)
7989 abort ();
7991 break;
7993 case REG_EQUAL:
7994 case REG_EQUIV:
7995 /* A REG_EQUIV or REG_EQUAL note on an insn with more than one
7996 set is meaningless. Just drop the note. */
7997 if (!orig_dest)
7998 break;
8000 case REG_NO_CONFLICT:
8001 /* These notes apply to the dest of the original insn. Find the last
8002 new insn that now has the same dest, and move the note there. */
8004 if (!orig_dest)
8005 abort ();
8007 for (insn = last;; insn = PREV_INSN (insn))
8009 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8010 && (temp = single_set (insn))
8011 && rtx_equal_p (SET_DEST (temp), orig_dest))
8013 XEXP (note, 1) = REG_NOTES (insn);
8014 REG_NOTES (insn) = note;
8015 /* Only put this note on one of the new insns. */
8016 break;
8019 /* The original dest must still be set someplace. Abort if we
8020 couldn't find it. */
8021 if (insn == first)
8023 /* However, if this note refers to a multiple word hard
8024 register, it may have been split into several smaller
8025 hard register references. We could split the notes,
8026 but simply dropping them is good enough. */
8027 if (GET_CODE (orig_dest) == REG
8028 && REGNO (orig_dest) < FIRST_PSEUDO_REGISTER
8029 && HARD_REGNO_NREGS (REGNO (orig_dest),
8030 GET_MODE (orig_dest)) > 1)
8031 break;
8032 /* Likewise for multi-word memory references. */
8033 if (GET_CODE (orig_dest) == MEM
8034 && SIZE_FOR_MODE (orig_dest) > MOVE_MAX)
8035 break;
8036 abort ();
8039 break;
8041 case REG_LIBCALL:
8042 /* Move a REG_LIBCALL note to the first insn created, and update
8043 the corresponding REG_RETVAL note. */
8044 XEXP (note, 1) = REG_NOTES (first);
8045 REG_NOTES (first) = note;
8047 insn = XEXP (note, 0);
8048 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
8049 if (note)
8050 XEXP (note, 0) = first;
8051 break;
8053 case REG_EXEC_COUNT:
8054 /* Move a REG_EXEC_COUNT note to the first insn created. */
8055 XEXP (note, 1) = REG_NOTES (first);
8056 REG_NOTES (first) = note;
8057 break;
8059 case REG_RETVAL:
8060 /* Move a REG_RETVAL note to the last insn created, and update
8061 the corresponding REG_LIBCALL note. */
8062 XEXP (note, 1) = REG_NOTES (last);
8063 REG_NOTES (last) = note;
8065 insn = XEXP (note, 0);
8066 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
8067 if (note)
8068 XEXP (note, 0) = last;
8069 break;
8071 case REG_NONNEG:
8072 case REG_BR_PROB:
8073 /* This should be moved to whichever instruction is a JUMP_INSN. */
8075 for (insn = last;; insn = PREV_INSN (insn))
8077 if (GET_CODE (insn) == JUMP_INSN)
8079 XEXP (note, 1) = REG_NOTES (insn);
8080 REG_NOTES (insn) = note;
8081 /* Only put this note on one of the new insns. */
8082 break;
8084 /* Fail if we couldn't find a JUMP_INSN. */
8085 if (insn == first)
8086 abort ();
8088 break;
8090 case REG_INC:
8091 /* reload sometimes leaves obsolete REG_INC notes around. */
8092 if (reload_completed)
8093 break;
8094 /* This should be moved to whichever instruction now has the
8095 increment operation. */
8096 abort ();
8098 case REG_LABEL:
8099 /* Should be moved to the new insn(s) which use the label. */
8100 for (insn = first; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
8101 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8102 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
8103 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_LABEL,
8104 XEXP (note, 0), REG_NOTES (insn));
8105 break;
8107 case REG_CC_SETTER:
8108 case REG_CC_USER:
8109 /* These two notes will never appear until after reorg, so we don't
8110 have to handle them here. */
8111 default:
8112 abort ();
8116 /* Each new insn created, except the last, has a new set. If the destination
8117 is a register, then this reg is now live across several insns, whereas
8118 previously the dest reg was born and died within the same insn. To
8119 reflect this, we now need a REG_DEAD note on the insn where this
8120 dest reg dies.
8122 Similarly, the new insns may have clobbers that need REG_UNUSED notes. */
8124 for (insn = first; insn != last; insn = NEXT_INSN (insn))
8126 rtx pat;
8127 int i;
8129 pat = PATTERN (insn);
8130 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
8131 new_insn_dead_notes (pat, insn, last, orig_insn);
8132 else if (GET_CODE (pat) == PARALLEL)
8134 for (i = 0; i < XVECLEN (pat, 0); i++)
8135 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8136 || GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER)
8137 new_insn_dead_notes (XVECEXP (pat, 0, i), insn, last, orig_insn);
8141 /* If any insn, except the last, uses the register set by the last insn,
8142 then we need a new REG_DEAD note on that insn. In this case, there
8143 would not have been a REG_DEAD note for this register in the original
8144 insn because it was used and set within one insn. */
8146 set = single_set (last);
8147 if (set)
8149 rtx dest = SET_DEST (set);
8151 while (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SUBREG
8152 || GET_CODE (dest) == STRICT_LOW_PART
8153 || GET_CODE (dest) == SIGN_EXTRACT)
8154 dest = XEXP (dest, 0);
8156 if (GET_CODE (dest) == REG
8157 /* Global registers are always live, so the code below does not
8158 apply to them. */
8159 && (REGNO (dest) >= FIRST_PSEUDO_REGISTER
8160 || ! global_regs[REGNO (dest)]))
8162 rtx stop_insn = PREV_INSN (first);
8164 /* If the last insn uses the register that it is setting, then
8165 we don't want to put a REG_DEAD note there. Search backwards
8166 to find the first insn that sets but does not use DEST. */
8168 insn = last;
8169 if (reg_overlap_mentioned_p (dest, SET_SRC (set)))
8171 for (insn = PREV_INSN (insn); insn != first;
8172 insn = PREV_INSN (insn))
8174 if ((set = single_set (insn))
8175 && reg_mentioned_p (dest, SET_DEST (set))
8176 && ! reg_overlap_mentioned_p (dest, SET_SRC (set)))
8177 break;
8181 /* Now find the first insn that uses but does not set DEST. */
8183 for (insn = PREV_INSN (insn); insn != stop_insn;
8184 insn = PREV_INSN (insn))
8186 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8187 && reg_mentioned_p (dest, PATTERN (insn))
8188 && (set = single_set (insn)))
8190 rtx insn_dest = SET_DEST (set);
8192 while (GET_CODE (insn_dest) == ZERO_EXTRACT
8193 || GET_CODE (insn_dest) == SUBREG
8194 || GET_CODE (insn_dest) == STRICT_LOW_PART
8195 || GET_CODE (insn_dest) == SIGN_EXTRACT)
8196 insn_dest = XEXP (insn_dest, 0);
8198 if (insn_dest != dest)
8200 note = rtx_alloc (EXPR_LIST);
8201 PUT_REG_NOTE_KIND (note, REG_DEAD);
8202 XEXP (note, 0) = dest;
8203 XEXP (note, 1) = REG_NOTES (insn);
8204 REG_NOTES (insn) = note;
8205 /* The reg only dies in one insn, the last one
8206 that uses it. */
8207 break;
8214 /* If the original dest is modifying a multiple register target, and the
8215 original instruction was split such that the original dest is now set
8216 by two or more SUBREG sets, then the split insns no longer kill the
8217 destination of the original insn.
8219 In this case, if there exists an instruction in the same basic block,
8220 before the split insn, which uses the original dest, and this use is
8221 killed by the original insn, then we must remove the REG_DEAD note on
8222 this insn, because it is now superfluous.
8224 This does not apply when a hard register gets split, because the code
8225 knows how to handle overlapping hard registers properly. */
8226 if (orig_dest && GET_CODE (orig_dest) == REG)
8228 int found_orig_dest = 0;
8229 int found_split_dest = 0;
8231 for (insn = first;; insn = NEXT_INSN (insn))
8233 rtx pat;
8234 int i;
8236 /* I'm not sure if this can happen, but let's be safe. */
8237 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8238 continue;
8240 pat = PATTERN (insn);
8241 i = GET_CODE (pat) == PARALLEL ? XVECLEN (pat, 0) : 0;
8242 set = pat;
8244 for (;;)
8246 if (GET_CODE (set) == SET)
8248 if (GET_CODE (SET_DEST (set)) == REG
8249 && REGNO (SET_DEST (set)) == REGNO (orig_dest))
8251 found_orig_dest = 1;
8252 break;
8254 else if (GET_CODE (SET_DEST (set)) == SUBREG
8255 && SUBREG_REG (SET_DEST (set)) == orig_dest)
8257 found_split_dest = 1;
8258 break;
8261 if (--i < 0)
8262 break;
8263 set = XVECEXP (pat, 0, i);
8266 if (insn == last)
8267 break;
8270 if (found_split_dest)
8272 /* Search backwards from FIRST, looking for the first insn that uses
8273 the original dest. Stop if we pass a CODE_LABEL or a JUMP_INSN.
8274 If we find an insn, and it has a REG_DEAD note, then delete the
8275 note. */
8277 for (insn = first; insn; insn = PREV_INSN (insn))
8279 if (GET_CODE (insn) == CODE_LABEL
8280 || GET_CODE (insn) == JUMP_INSN)
8281 break;
8282 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8283 && reg_mentioned_p (orig_dest, insn))
8285 note = find_regno_note (insn, REG_DEAD, REGNO (orig_dest));
8286 if (note)
8287 remove_note (insn, note);
8291 else if (!found_orig_dest)
8293 /* This should never happen. */
8294 abort ();
8298 /* Update reg_n_sets. This is necessary to prevent local alloc from
8299 converting REG_EQUAL notes to REG_EQUIV when splitting has modified
8300 a reg from set once to set multiple times. */
8303 rtx x = PATTERN (orig_insn);
8304 RTX_CODE code = GET_CODE (x);
8306 if (code == SET || code == CLOBBER)
8307 update_n_sets (x, -1);
8308 else if (code == PARALLEL)
8310 int i;
8311 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8313 code = GET_CODE (XVECEXP (x, 0, i));
8314 if (code == SET || code == CLOBBER)
8315 update_n_sets (XVECEXP (x, 0, i), -1);
8319 for (insn = first;; insn = NEXT_INSN (insn))
8321 x = PATTERN (insn);
8322 code = GET_CODE (x);
8324 if (code == SET || code == CLOBBER)
8325 update_n_sets (x, 1);
8326 else if (code == PARALLEL)
8328 int i;
8329 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8331 code = GET_CODE (XVECEXP (x, 0, i));
8332 if (code == SET || code == CLOBBER)
8333 update_n_sets (XVECEXP (x, 0, i), 1);
8337 if (insn == last)
8338 break;
8343 /* Do the splitting of insns in the block b. */
8345 static void
8346 split_block_insns (b)
8347 int b;
8349 rtx insn, next;
8351 for (insn = basic_block_head[b];; insn = next)
8353 rtx prev;
8354 rtx set;
8356 /* Can't use `next_real_insn' because that
8357 might go across CODE_LABELS and short-out basic blocks. */
8358 next = NEXT_INSN (insn);
8359 if (GET_CODE (insn) != INSN)
8361 if (insn == basic_block_end[b])
8362 break;
8364 continue;
8367 /* Don't split no-op move insns. These should silently disappear
8368 later in final. Splitting such insns would break the code
8369 that handles REG_NO_CONFLICT blocks. */
8370 set = single_set (insn);
8371 if (set && rtx_equal_p (SET_SRC (set), SET_DEST (set)))
8373 if (insn == basic_block_end[b])
8374 break;
8376 /* Nops get in the way while scheduling, so delete them now if
8377 register allocation has already been done. It is too risky
8378 to try to do this before register allocation, and there are
8379 unlikely to be very many nops then anyways. */
8380 if (reload_completed)
8382 PUT_CODE (insn, NOTE);
8383 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8384 NOTE_SOURCE_FILE (insn) = 0;
8387 continue;
8390 /* Split insns here to get max fine-grain parallelism. */
8391 prev = PREV_INSN (insn);
8392 /* It is probably not worthwhile to try to split again in
8393 the second pass. However, if flag_schedule_insns is not set,
8394 the first and only (if any) scheduling pass is after reload. */
8395 if (reload_completed == 0 || ! flag_schedule_insns)
8397 rtx last, first = PREV_INSN (insn);
8398 rtx notes = REG_NOTES (insn);
8399 last = try_split (PATTERN (insn), insn, 1);
8400 if (last != insn)
8402 /* try_split returns the NOTE that INSN became. */
8403 first = NEXT_INSN (first);
8404 update_flow_info (notes, first, last, insn);
8406 PUT_CODE (insn, NOTE);
8407 NOTE_SOURCE_FILE (insn) = 0;
8408 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
8409 if (insn == basic_block_head[b])
8410 basic_block_head[b] = first;
8411 if (insn == basic_block_end[b])
8413 basic_block_end[b] = last;
8414 break;
8419 if (insn == basic_block_end[b])
8420 break;
8424 /* The one entry point in this file. DUMP_FILE is the dump file for
8425 this pass. */
8427 void
8428 schedule_insns (dump_file)
8429 FILE *dump_file;
8432 int max_uid;
8433 int b;
8434 int i;
8435 rtx insn;
8436 int rgn;
8438 int luid;
8440 /* disable speculative loads in their presence if cc0 defined */
8441 #ifdef HAVE_cc0
8442 flag_schedule_speculative_load = 0;
8443 #endif
8445 /* Taking care of this degenerate case makes the rest of
8446 this code simpler. */
8447 if (n_basic_blocks == 0)
8448 return;
8450 /* set dump and sched_verbose for the desired debugging output. If no
8451 dump-file was specified, but -fsched-verbose-N (any N), print to stderr.
8452 For -fsched-verbose-N, N>=10, print everything to stderr. */
8453 sched_verbose = sched_verbose_param;
8454 if (sched_verbose_param == 0 && dump_file)
8455 sched_verbose = 1;
8456 dump = ((sched_verbose_param >= 10 || !dump_file) ? stderr : dump_file);
8458 nr_inter = 0;
8459 nr_spec = 0;
8461 /* Initialize the unused_*_lists. We can't use the ones left over from
8462 the previous function, because gcc has freed that memory. We can use
8463 the ones left over from the first sched pass in the second pass however,
8464 so only clear them on the first sched pass. The first pass is before
8465 reload if flag_schedule_insns is set, otherwise it is afterwards. */
8467 if (reload_completed == 0 || !flag_schedule_insns)
8469 unused_insn_list = 0;
8470 unused_expr_list = 0;
8473 /* initialize issue_rate */
8474 issue_rate = ISSUE_RATE;
8476 /* do the splitting first for all blocks */
8477 for (b = 0; b < n_basic_blocks; b++)
8478 split_block_insns (b);
8480 max_uid = (get_max_uid () + 1);
8482 cant_move = (char *) alloca (max_uid * sizeof (char));
8483 bzero ((char *) cant_move, max_uid * sizeof (char));
8485 fed_by_spec_load = (char *) alloca (max_uid * sizeof (char));
8486 bzero ((char *) fed_by_spec_load, max_uid * sizeof (char));
8488 is_load_insn = (char *) alloca (max_uid * sizeof (char));
8489 bzero ((char *) is_load_insn, max_uid * sizeof (char));
8491 insn_orig_block = (int *) alloca (max_uid * sizeof (int));
8492 insn_luid = (int *) alloca (max_uid * sizeof (int));
8494 luid = 0;
8495 for (b = 0; b < n_basic_blocks; b++)
8496 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8498 INSN_BLOCK (insn) = b;
8499 INSN_LUID (insn) = luid++;
8501 if (insn == basic_block_end[b])
8502 break;
8505 /* after reload, remove inter-blocks dependences computed before reload. */
8506 if (reload_completed)
8508 int b;
8509 rtx insn;
8511 for (b = 0; b < n_basic_blocks; b++)
8512 for (insn = basic_block_head[b];; insn = NEXT_INSN (insn))
8514 rtx link;
8516 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
8518 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
8520 rtx x = XEXP (link, 0);
8522 if (INSN_BLOCK (x) != b)
8523 remove_dependence (insn, x);
8527 if (insn == basic_block_end[b])
8528 break;
8532 nr_regions = 0;
8533 rgn_table = (region *) alloca ((n_basic_blocks) * sizeof (region));
8534 rgn_bb_table = (int *) alloca ((n_basic_blocks) * sizeof (int));
8535 block_to_bb = (int *) alloca ((n_basic_blocks) * sizeof (int));
8536 containing_rgn = (int *) alloca ((n_basic_blocks) * sizeof (int));
8538 /* compute regions for scheduling */
8539 if (reload_completed
8540 || n_basic_blocks == 1
8541 || !flag_schedule_interblock)
8543 find_single_block_region ();
8545 else
8547 /* an estimation for nr_edges is computed in is_cfg_nonregular () */
8548 nr_edges = 0;
8550 /* verify that a 'good' control flow graph can be built */
8551 if (is_cfg_nonregular ()
8552 || nr_edges <= 1)
8554 find_single_block_region ();
8556 else
8558 /* build control flow graph */
8559 in_edges = (int *) alloca (n_basic_blocks * sizeof (int));
8560 out_edges = (int *) alloca (n_basic_blocks * sizeof (int));
8561 bzero ((char *) in_edges, n_basic_blocks * sizeof (int));
8562 bzero ((char *) out_edges, n_basic_blocks * sizeof (int));
8564 edge_table =
8565 (edge *) alloca ((nr_edges) * sizeof (edge));
8566 bzero ((char *) edge_table,
8567 ((nr_edges) * sizeof (edge)));
8568 build_control_flow ();
8570 /* identify reducible inner loops and compute regions */
8571 find_rgns ();
8573 if (sched_verbose >= 3)
8575 debug_control_flow ();
8576 debug_regions ();
8582 /* Allocate data for this pass. See comments, above,
8583 for what these vectors do. */
8584 insn_priority = (int *) alloca (max_uid * sizeof (int));
8585 insn_reg_weight = (int *) alloca (max_uid * sizeof (int));
8586 insn_tick = (int *) alloca (max_uid * sizeof (int));
8587 insn_costs = (short *) alloca (max_uid * sizeof (short));
8588 insn_units = (short *) alloca (max_uid * sizeof (short));
8589 insn_blockage = (unsigned int *) alloca (max_uid * sizeof (unsigned int));
8590 insn_ref_count = (int *) alloca (max_uid * sizeof (int));
8592 /* Allocate for forward dependencies */
8593 insn_dep_count = (int *) alloca (max_uid * sizeof (int));
8594 insn_depend = (rtx *) alloca (max_uid * sizeof (rtx));
8596 if (reload_completed == 0)
8598 int i;
8600 sched_reg_n_calls_crossed = (int *) alloca (max_regno * sizeof (int));
8601 sched_reg_live_length = (int *) alloca (max_regno * sizeof (int));
8602 sched_reg_basic_block = (int *) alloca (max_regno * sizeof (int));
8603 bb_live_regs = ALLOCA_REG_SET ();
8604 bzero ((char *) sched_reg_n_calls_crossed, max_regno * sizeof (int));
8605 bzero ((char *) sched_reg_live_length, max_regno * sizeof (int));
8607 for (i = 0; i < max_regno; i++)
8608 sched_reg_basic_block[i] = REG_BLOCK_UNKNOWN;
8610 else
8612 sched_reg_n_calls_crossed = 0;
8613 sched_reg_live_length = 0;
8614 bb_live_regs = 0;
8616 init_alias_analysis ();
8618 if (write_symbols != NO_DEBUG)
8620 rtx line;
8622 line_note = (rtx *) alloca (max_uid * sizeof (rtx));
8623 bzero ((char *) line_note, max_uid * sizeof (rtx));
8624 line_note_head = (rtx *) alloca (n_basic_blocks * sizeof (rtx));
8625 bzero ((char *) line_note_head, n_basic_blocks * sizeof (rtx));
8627 /* Save-line-note-head:
8628 Determine the line-number at the start of each basic block.
8629 This must be computed and saved now, because after a basic block's
8630 predecessor has been scheduled, it is impossible to accurately
8631 determine the correct line number for the first insn of the block. */
8633 for (b = 0; b < n_basic_blocks; b++)
8634 for (line = basic_block_head[b]; line; line = PREV_INSN (line))
8635 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
8637 line_note_head[b] = line;
8638 break;
8642 bzero ((char *) insn_priority, max_uid * sizeof (int));
8643 bzero ((char *) insn_reg_weight, max_uid * sizeof (int));
8644 bzero ((char *) insn_tick, max_uid * sizeof (int));
8645 bzero ((char *) insn_costs, max_uid * sizeof (short));
8646 bzero ((char *) insn_units, max_uid * sizeof (short));
8647 bzero ((char *) insn_blockage, max_uid * sizeof (unsigned int));
8648 bzero ((char *) insn_ref_count, max_uid * sizeof (int));
8650 /* Initialize for forward dependencies */
8651 bzero ((char *) insn_depend, max_uid * sizeof (rtx));
8652 bzero ((char *) insn_dep_count, max_uid * sizeof (int));
8654 /* Find units used in this fuction, for visualization */
8655 if (sched_verbose)
8656 init_target_units ();
8658 /* ??? Add a NOTE after the last insn of the last basic block. It is not
8659 known why this is done. */
8661 insn = basic_block_end[n_basic_blocks - 1];
8662 if (NEXT_INSN (insn) == 0
8663 || (GET_CODE (insn) != NOTE
8664 && GET_CODE (insn) != CODE_LABEL
8665 /* Don't emit a NOTE if it would end up between an unconditional
8666 jump and a BARRIER. */
8667 && !(GET_CODE (insn) == JUMP_INSN
8668 && GET_CODE (NEXT_INSN (insn)) == BARRIER)))
8669 emit_note_after (NOTE_INSN_DELETED, basic_block_end[n_basic_blocks - 1]);
8671 /* Schedule every region in the subroutine */
8672 for (rgn = 0; rgn < nr_regions; rgn++)
8674 schedule_region (rgn);
8676 #ifdef USE_C_ALLOCA
8677 alloca (0);
8678 #endif
8681 /* Reposition the prologue and epilogue notes in case we moved the
8682 prologue/epilogue insns. */
8683 if (reload_completed)
8684 reposition_prologue_and_epilogue_notes (get_insns ());
8686 /* delete redundant line notes. */
8687 if (write_symbols != NO_DEBUG)
8688 rm_redundant_line_notes ();
8690 /* Update information about uses of registers in the subroutine. */
8691 if (reload_completed == 0)
8692 update_reg_usage ();
8694 if (sched_verbose)
8696 if (reload_completed == 0 && flag_schedule_interblock)
8698 fprintf (dump, "\n;; Procedure interblock/speculative motions == %d/%d \n",
8699 nr_inter, nr_spec);
8701 else
8703 if (nr_inter > 0)
8704 abort ();
8706 fprintf (dump, "\n\n");
8709 if (bb_live_regs)
8710 FREE_REG_SET (bb_live_regs);
8712 #endif /* INSN_SCHEDULING */