* gcc.dg/20020312-1.c: New test case.
[official-gcc.git] / gcc / reload1.c
bloba3519efe3c40b18ea1867d892d10f0b1dfa6d88f
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "regs.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "recog.h"
39 #include "output.h"
40 #include "cselib.h"
41 #include "real.h"
42 #include "toplev.h"
43 #include "except.h"
45 /* This file contains the reload pass of the compiler, which is
46 run after register allocation has been done. It checks that
47 each insn is valid (operands required to be in registers really
48 are in registers of the proper class) and fixes up invalid ones
49 by copying values temporarily into registers for the insns
50 that need them.
52 The results of register allocation are described by the vector
53 reg_renumber; the insns still contain pseudo regs, but reg_renumber
54 can be used to find which hard reg, if any, a pseudo reg is in.
56 The technique we always use is to free up a few hard regs that are
57 called ``reload regs'', and for each place where a pseudo reg
58 must be in a hard reg, copy it temporarily into one of the reload regs.
60 Reload regs are allocated locally for every instruction that needs
61 reloads. When there are pseudos which are allocated to a register that
62 has been chosen as a reload reg, such pseudos must be ``spilled''.
63 This means that they go to other hard regs, or to stack slots if no other
64 available hard regs can be found. Spilling can invalidate more
65 insns, requiring additional need for reloads, so we must keep checking
66 until the process stabilizes.
68 For machines with different classes of registers, we must keep track
69 of the register class needed for each reload, and make sure that
70 we allocate enough reload registers of each class.
72 The file reload.c contains the code that checks one insn for
73 validity and reports the reloads that it needs. This file
74 is in charge of scanning the entire rtl code, accumulating the
75 reload needs, spilling, assigning reload registers to use for
76 fixing up each insn, and generating the new insns to copy values
77 into the reload registers. */
79 #ifndef REGISTER_MOVE_COST
80 #define REGISTER_MOVE_COST(m, x, y) 2
81 #endif
83 #ifndef LOCAL_REGNO
84 #define LOCAL_REGNO(REGNO) 0
85 #endif
87 /* During reload_as_needed, element N contains a REG rtx for the hard reg
88 into which reg N has been reloaded (perhaps for a previous insn). */
89 static rtx *reg_last_reload_reg;
91 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
92 for an output reload that stores into reg N. */
93 static char *reg_has_output_reload;
95 /* Indicates which hard regs are reload-registers for an output reload
96 in the current insn. */
97 static HARD_REG_SET reg_is_output_reload;
99 /* Element N is the constant value to which pseudo reg N is equivalent,
100 or zero if pseudo reg N is not equivalent to a constant.
101 find_reloads looks at this in order to replace pseudo reg N
102 with the constant it stands for. */
103 rtx *reg_equiv_constant;
105 /* Element N is a memory location to which pseudo reg N is equivalent,
106 prior to any register elimination (such as frame pointer to stack
107 pointer). Depending on whether or not it is a valid address, this value
108 is transferred to either reg_equiv_address or reg_equiv_mem. */
109 rtx *reg_equiv_memory_loc;
111 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
112 This is used when the address is not valid as a memory address
113 (because its displacement is too big for the machine.) */
114 rtx *reg_equiv_address;
116 /* Element N is the memory slot to which pseudo reg N is equivalent,
117 or zero if pseudo reg N is not equivalent to a memory slot. */
118 rtx *reg_equiv_mem;
120 /* Widest width in which each pseudo reg is referred to (via subreg). */
121 static unsigned int *reg_max_ref_width;
123 /* Element N is the list of insns that initialized reg N from its equivalent
124 constant or memory slot. */
125 static rtx *reg_equiv_init;
127 /* Vector to remember old contents of reg_renumber before spilling. */
128 static short *reg_old_renumber;
130 /* During reload_as_needed, element N contains the last pseudo regno reloaded
131 into hard register N. If that pseudo reg occupied more than one register,
132 reg_reloaded_contents points to that pseudo for each spill register in
133 use; all of these must remain set for an inheritance to occur. */
134 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
136 /* During reload_as_needed, element N contains the insn for which
137 hard register N was last used. Its contents are significant only
138 when reg_reloaded_valid is set for this register. */
139 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
141 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid */
142 static HARD_REG_SET reg_reloaded_valid;
143 /* Indicate if the register was dead at the end of the reload.
144 This is only valid if reg_reloaded_contents is set and valid. */
145 static HARD_REG_SET reg_reloaded_dead;
147 /* Number of spill-regs so far; number of valid elements of spill_regs. */
148 static int n_spills;
150 /* In parallel with spill_regs, contains REG rtx's for those regs.
151 Holds the last rtx used for any given reg, or 0 if it has never
152 been used for spilling yet. This rtx is reused, provided it has
153 the proper mode. */
154 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
156 /* In parallel with spill_regs, contains nonzero for a spill reg
157 that was stored after the last time it was used.
158 The precise value is the insn generated to do the store. */
159 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
161 /* This is the register that was stored with spill_reg_store. This is a
162 copy of reload_out / reload_out_reg when the value was stored; if
163 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
164 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
166 /* This table is the inverse mapping of spill_regs:
167 indexed by hard reg number,
168 it contains the position of that reg in spill_regs,
169 or -1 for something that is not in spill_regs.
171 ?!? This is no longer accurate. */
172 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
174 /* This reg set indicates registers that can't be used as spill registers for
175 the currently processed insn. These are the hard registers which are live
176 during the insn, but not allocated to pseudos, as well as fixed
177 registers. */
178 static HARD_REG_SET bad_spill_regs;
180 /* These are the hard registers that can't be used as spill register for any
181 insn. This includes registers used for user variables and registers that
182 we can't eliminate. A register that appears in this set also can't be used
183 to retry register allocation. */
184 static HARD_REG_SET bad_spill_regs_global;
186 /* Describes order of use of registers for reloading
187 of spilled pseudo-registers. `n_spills' is the number of
188 elements that are actually valid; new ones are added at the end.
190 Both spill_regs and spill_reg_order are used on two occasions:
191 once during find_reload_regs, where they keep track of the spill registers
192 for a single insn, but also during reload_as_needed where they show all
193 the registers ever used by reload. For the latter case, the information
194 is calculated during finish_spills. */
195 static short spill_regs[FIRST_PSEUDO_REGISTER];
197 /* This vector of reg sets indicates, for each pseudo, which hard registers
198 may not be used for retrying global allocation because the register was
199 formerly spilled from one of them. If we allowed reallocating a pseudo to
200 a register that it was already allocated to, reload might not
201 terminate. */
202 static HARD_REG_SET *pseudo_previous_regs;
204 /* This vector of reg sets indicates, for each pseudo, which hard
205 registers may not be used for retrying global allocation because they
206 are used as spill registers during one of the insns in which the
207 pseudo is live. */
208 static HARD_REG_SET *pseudo_forbidden_regs;
210 /* All hard regs that have been used as spill registers for any insn are
211 marked in this set. */
212 static HARD_REG_SET used_spill_regs;
214 /* Index of last register assigned as a spill register. We allocate in
215 a round-robin fashion. */
216 static int last_spill_reg;
218 /* Nonzero if indirect addressing is supported on the machine; this means
219 that spilling (REG n) does not require reloading it into a register in
220 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
221 value indicates the level of indirect addressing supported, e.g., two
222 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
223 a hard register. */
224 static char spill_indirect_levels;
226 /* Nonzero if indirect addressing is supported when the innermost MEM is
227 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
228 which these are valid is the same as spill_indirect_levels, above. */
229 char indirect_symref_ok;
231 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
232 char double_reg_address_ok;
234 /* Record the stack slot for each spilled hard register. */
235 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
237 /* Width allocated so far for that stack slot. */
238 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
240 /* Record which pseudos needed to be spilled. */
241 static regset_head spilled_pseudos;
243 /* Used for communication between order_regs_for_reload and count_pseudo.
244 Used to avoid counting one pseudo twice. */
245 static regset_head pseudos_counted;
247 /* First uid used by insns created by reload in this function.
248 Used in find_equiv_reg. */
249 int reload_first_uid;
251 /* Flag set by local-alloc or global-alloc if anything is live in
252 a call-clobbered reg across calls. */
253 int caller_save_needed;
255 /* Set to 1 while reload_as_needed is operating.
256 Required by some machines to handle any generated moves differently. */
257 int reload_in_progress = 0;
259 /* These arrays record the insn_code of insns that may be needed to
260 perform input and output reloads of special objects. They provide a
261 place to pass a scratch register. */
262 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
263 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
265 /* This obstack is used for allocation of rtl during register elimination.
266 The allocated storage can be freed once find_reloads has processed the
267 insn. */
268 struct obstack reload_obstack;
270 /* Points to the beginning of the reload_obstack. All insn_chain structures
271 are allocated first. */
272 char *reload_startobj;
274 /* The point after all insn_chain structures. Used to quickly deallocate
275 memory allocated in copy_reloads during calculate_needs_all_insns. */
276 char *reload_firstobj;
278 /* This points before all local rtl generated by register elimination.
279 Used to quickly free all memory after processing one insn. */
280 static char *reload_insn_firstobj;
282 #define obstack_chunk_alloc xmalloc
283 #define obstack_chunk_free free
285 /* List of insn_chain instructions, one for every insn that reload needs to
286 examine. */
287 struct insn_chain *reload_insn_chain;
289 #ifdef TREE_CODE
290 extern tree current_function_decl;
291 #else
292 extern union tree_node *current_function_decl;
293 #endif
295 /* List of all insns needing reloads. */
296 static struct insn_chain *insns_need_reload;
298 /* This structure is used to record information about register eliminations.
299 Each array entry describes one possible way of eliminating a register
300 in favor of another. If there is more than one way of eliminating a
301 particular register, the most preferred should be specified first. */
303 struct elim_table
305 int from; /* Register number to be eliminated. */
306 int to; /* Register number used as replacement. */
307 int initial_offset; /* Initial difference between values. */
308 int can_eliminate; /* Non-zero if this elimination can be done. */
309 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
310 insns made by reload. */
311 int offset; /* Current offset between the two regs. */
312 int previous_offset; /* Offset at end of previous insn. */
313 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
314 rtx from_rtx; /* REG rtx for the register to be eliminated.
315 We cannot simply compare the number since
316 we might then spuriously replace a hard
317 register corresponding to a pseudo
318 assigned to the reg to be eliminated. */
319 rtx to_rtx; /* REG rtx for the replacement. */
322 static struct elim_table *reg_eliminate = 0;
324 /* This is an intermediate structure to initialize the table. It has
325 exactly the members provided by ELIMINABLE_REGS. */
326 static const struct elim_table_1
328 const int from;
329 const int to;
330 } reg_eliminate_1[] =
332 /* If a set of eliminable registers was specified, define the table from it.
333 Otherwise, default to the normal case of the frame pointer being
334 replaced by the stack pointer. */
336 #ifdef ELIMINABLE_REGS
337 ELIMINABLE_REGS;
338 #else
339 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
340 #endif
342 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
344 /* Record the number of pending eliminations that have an offset not equal
345 to their initial offset. If non-zero, we use a new copy of each
346 replacement result in any insns encountered. */
347 int num_not_at_initial_offset;
349 /* Count the number of registers that we may be able to eliminate. */
350 static int num_eliminable;
351 /* And the number of registers that are equivalent to a constant that
352 can be eliminated to frame_pointer / arg_pointer + constant. */
353 static int num_eliminable_invariants;
355 /* For each label, we record the offset of each elimination. If we reach
356 a label by more than one path and an offset differs, we cannot do the
357 elimination. This information is indexed by the number of the label.
358 The first table is an array of flags that records whether we have yet
359 encountered a label and the second table is an array of arrays, one
360 entry in the latter array for each elimination. */
362 static char *offsets_known_at;
363 static int (*offsets_at)[NUM_ELIMINABLE_REGS];
365 /* Number of labels in the current function. */
367 static int num_labels;
369 static void replace_pseudos_in_call_usage PARAMS ((rtx *,
370 enum machine_mode,
371 rtx));
372 static void maybe_fix_stack_asms PARAMS ((void));
373 static void copy_reloads PARAMS ((struct insn_chain *));
374 static void calculate_needs_all_insns PARAMS ((int));
375 static int find_reg PARAMS ((struct insn_chain *, int));
376 static void find_reload_regs PARAMS ((struct insn_chain *));
377 static void select_reload_regs PARAMS ((void));
378 static void delete_caller_save_insns PARAMS ((void));
380 static void spill_failure PARAMS ((rtx, enum reg_class));
381 static void count_spilled_pseudo PARAMS ((int, int, int));
382 static void delete_dead_insn PARAMS ((rtx));
383 static void alter_reg PARAMS ((int, int));
384 static void set_label_offsets PARAMS ((rtx, rtx, int));
385 static void check_eliminable_occurrences PARAMS ((rtx));
386 static void elimination_effects PARAMS ((rtx, enum machine_mode));
387 static int eliminate_regs_in_insn PARAMS ((rtx, int));
388 static void update_eliminable_offsets PARAMS ((void));
389 static void mark_not_eliminable PARAMS ((rtx, rtx, void *));
390 static void set_initial_elim_offsets PARAMS ((void));
391 static void verify_initial_elim_offsets PARAMS ((void));
392 static void set_initial_label_offsets PARAMS ((void));
393 static void set_offsets_for_label PARAMS ((rtx));
394 static void init_elim_table PARAMS ((void));
395 static void update_eliminables PARAMS ((HARD_REG_SET *));
396 static void spill_hard_reg PARAMS ((unsigned int, int));
397 static int finish_spills PARAMS ((int));
398 static void ior_hard_reg_set PARAMS ((HARD_REG_SET *, HARD_REG_SET *));
399 static void scan_paradoxical_subregs PARAMS ((rtx));
400 static void count_pseudo PARAMS ((int));
401 static void order_regs_for_reload PARAMS ((struct insn_chain *));
402 static void reload_as_needed PARAMS ((int));
403 static void forget_old_reloads_1 PARAMS ((rtx, rtx, void *));
404 static int reload_reg_class_lower PARAMS ((const PTR, const PTR));
405 static void mark_reload_reg_in_use PARAMS ((unsigned int, int,
406 enum reload_type,
407 enum machine_mode));
408 static void clear_reload_reg_in_use PARAMS ((unsigned int, int,
409 enum reload_type,
410 enum machine_mode));
411 static int reload_reg_free_p PARAMS ((unsigned int, int,
412 enum reload_type));
413 static int reload_reg_free_for_value_p PARAMS ((int, int, int,
414 enum reload_type,
415 rtx, rtx, int, int));
416 static int free_for_value_p PARAMS ((int, enum machine_mode, int,
417 enum reload_type, rtx, rtx,
418 int, int));
419 static int reload_reg_reaches_end_p PARAMS ((unsigned int, int,
420 enum reload_type));
421 static int allocate_reload_reg PARAMS ((struct insn_chain *, int,
422 int));
423 static int conflicts_with_override PARAMS ((rtx));
424 static void failed_reload PARAMS ((rtx, int));
425 static int set_reload_reg PARAMS ((int, int));
426 static void choose_reload_regs_init PARAMS ((struct insn_chain *, rtx *));
427 static void choose_reload_regs PARAMS ((struct insn_chain *));
428 static void merge_assigned_reloads PARAMS ((rtx));
429 static void emit_input_reload_insns PARAMS ((struct insn_chain *,
430 struct reload *, rtx, int));
431 static void emit_output_reload_insns PARAMS ((struct insn_chain *,
432 struct reload *, int));
433 static void do_input_reload PARAMS ((struct insn_chain *,
434 struct reload *, int));
435 static void do_output_reload PARAMS ((struct insn_chain *,
436 struct reload *, int));
437 static void emit_reload_insns PARAMS ((struct insn_chain *));
438 static void delete_output_reload PARAMS ((rtx, int, int));
439 static void delete_address_reloads PARAMS ((rtx, rtx));
440 static void delete_address_reloads_1 PARAMS ((rtx, rtx, rtx));
441 static rtx inc_for_reload PARAMS ((rtx, rtx, rtx, int));
442 static int constraint_accepts_reg_p PARAMS ((const char *, rtx));
443 static void reload_cse_regs_1 PARAMS ((rtx));
444 static int reload_cse_noop_set_p PARAMS ((rtx));
445 static int reload_cse_simplify_set PARAMS ((rtx, rtx));
446 static int reload_cse_simplify_operands PARAMS ((rtx));
447 static void reload_combine PARAMS ((void));
448 static void reload_combine_note_use PARAMS ((rtx *, rtx));
449 static void reload_combine_note_store PARAMS ((rtx, rtx, void *));
450 static void reload_cse_move2add PARAMS ((rtx));
451 static void move2add_note_store PARAMS ((rtx, rtx, void *));
452 #ifdef AUTO_INC_DEC
453 static void add_auto_inc_notes PARAMS ((rtx, rtx));
454 #endif
455 static void copy_eh_notes PARAMS ((rtx, rtx));
456 static HOST_WIDE_INT sext_for_mode PARAMS ((enum machine_mode,
457 HOST_WIDE_INT));
458 static void failed_reload PARAMS ((rtx, int));
459 static int set_reload_reg PARAMS ((int, int));
460 static void reload_cse_delete_noop_set PARAMS ((rtx, rtx));
461 static void reload_cse_simplify PARAMS ((rtx));
462 void fixup_abnormal_edges PARAMS ((void));
463 extern void dump_needs PARAMS ((struct insn_chain *));
465 /* Initialize the reload pass once per compilation. */
467 void
468 init_reload ()
470 int i;
472 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
473 Set spill_indirect_levels to the number of levels such addressing is
474 permitted, zero if it is not permitted at all. */
476 rtx tem
477 = gen_rtx_MEM (Pmode,
478 gen_rtx_PLUS (Pmode,
479 gen_rtx_REG (Pmode,
480 LAST_VIRTUAL_REGISTER + 1),
481 GEN_INT (4)));
482 spill_indirect_levels = 0;
484 while (memory_address_p (QImode, tem))
486 spill_indirect_levels++;
487 tem = gen_rtx_MEM (Pmode, tem);
490 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
492 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
493 indirect_symref_ok = memory_address_p (QImode, tem);
495 /* See if reg+reg is a valid (and offsettable) address. */
497 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
499 tem = gen_rtx_PLUS (Pmode,
500 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
501 gen_rtx_REG (Pmode, i));
503 /* This way, we make sure that reg+reg is an offsettable address. */
504 tem = plus_constant (tem, 4);
506 if (memory_address_p (QImode, tem))
508 double_reg_address_ok = 1;
509 break;
513 /* Initialize obstack for our rtl allocation. */
514 gcc_obstack_init (&reload_obstack);
515 reload_startobj = (char *) obstack_alloc (&reload_obstack, 0);
517 INIT_REG_SET (&spilled_pseudos);
518 INIT_REG_SET (&pseudos_counted);
521 /* List of insn chains that are currently unused. */
522 static struct insn_chain *unused_insn_chains = 0;
524 /* Allocate an empty insn_chain structure. */
525 struct insn_chain *
526 new_insn_chain ()
528 struct insn_chain *c;
530 if (unused_insn_chains == 0)
532 c = (struct insn_chain *)
533 obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
534 INIT_REG_SET (&c->live_throughout);
535 INIT_REG_SET (&c->dead_or_set);
537 else
539 c = unused_insn_chains;
540 unused_insn_chains = c->next;
542 c->is_caller_save_insn = 0;
543 c->need_operand_change = 0;
544 c->need_reload = 0;
545 c->need_elim = 0;
546 return c;
549 /* Small utility function to set all regs in hard reg set TO which are
550 allocated to pseudos in regset FROM. */
552 void
553 compute_use_by_pseudos (to, from)
554 HARD_REG_SET *to;
555 regset from;
557 unsigned int regno;
559 EXECUTE_IF_SET_IN_REG_SET
560 (from, FIRST_PSEUDO_REGISTER, regno,
562 int r = reg_renumber[regno];
563 int nregs;
565 if (r < 0)
567 /* reload_combine uses the information from
568 BASIC_BLOCK->global_live_at_start, which might still
569 contain registers that have not actually been allocated
570 since they have an equivalence. */
571 if (! reload_completed)
572 abort ();
574 else
576 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (regno));
577 while (nregs-- > 0)
578 SET_HARD_REG_BIT (*to, r + nregs);
583 /* Replace all pseudos found in LOC with their corresponding
584 equivalences. */
586 static void
587 replace_pseudos_in_call_usage (loc, mem_mode, usage)
588 rtx *loc;
589 enum machine_mode mem_mode;
590 rtx usage;
592 rtx x = *loc;
593 enum rtx_code code;
594 const char *fmt;
595 int i, j;
597 if (! x)
598 return;
600 code = GET_CODE (x);
601 if (code == REG)
603 unsigned int regno = REGNO (x);
605 if (regno < FIRST_PSEUDO_REGISTER)
606 return;
608 x = eliminate_regs (x, mem_mode, usage);
609 if (x != *loc)
611 *loc = x;
612 replace_pseudos_in_call_usage (loc, mem_mode, usage);
613 return;
616 if (reg_equiv_constant[regno])
617 *loc = reg_equiv_constant[regno];
618 else if (reg_equiv_mem[regno])
619 *loc = reg_equiv_mem[regno];
620 else if (reg_equiv_address[regno])
621 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
622 else if (GET_CODE (regno_reg_rtx[regno]) != REG
623 || REGNO (regno_reg_rtx[regno]) != regno)
624 *loc = regno_reg_rtx[regno];
625 else
626 abort ();
628 return;
630 else if (code == MEM)
632 replace_pseudos_in_call_usage (& XEXP (x, 0), GET_MODE (x), usage);
633 return;
636 /* Process each of our operands recursively. */
637 fmt = GET_RTX_FORMAT (code);
638 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
639 if (*fmt == 'e')
640 replace_pseudos_in_call_usage (&XEXP (x, i), mem_mode, usage);
641 else if (*fmt == 'E')
642 for (j = 0; j < XVECLEN (x, i); j++)
643 replace_pseudos_in_call_usage (& XVECEXP (x, i, j), mem_mode, usage);
647 /* Global variables used by reload and its subroutines. */
649 /* Set during calculate_needs if an insn needs register elimination. */
650 static int something_needs_elimination;
651 /* Set during calculate_needs if an insn needs an operand changed. */
652 int something_needs_operands_changed;
654 /* Nonzero means we couldn't get enough spill regs. */
655 static int failure;
657 /* Main entry point for the reload pass.
659 FIRST is the first insn of the function being compiled.
661 GLOBAL nonzero means we were called from global_alloc
662 and should attempt to reallocate any pseudoregs that we
663 displace from hard regs we will use for reloads.
664 If GLOBAL is zero, we do not have enough information to do that,
665 so any pseudo reg that is spilled must go to the stack.
667 Return value is nonzero if reload failed
668 and we must not do any more for this function. */
671 reload (first, global)
672 rtx first;
673 int global;
675 int i;
676 rtx insn;
677 struct elim_table *ep;
679 /* The two pointers used to track the true location of the memory used
680 for label offsets. */
681 char *real_known_ptr = NULL;
682 int (*real_at_ptr)[NUM_ELIMINABLE_REGS];
684 /* Make sure even insns with volatile mem refs are recognizable. */
685 init_recog ();
687 failure = 0;
689 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
691 /* Make sure that the last insn in the chain
692 is not something that needs reloading. */
693 emit_note (NULL, NOTE_INSN_DELETED);
695 /* Enable find_equiv_reg to distinguish insns made by reload. */
696 reload_first_uid = get_max_uid ();
698 #ifdef SECONDARY_MEMORY_NEEDED
699 /* Initialize the secondary memory table. */
700 clear_secondary_mem ();
701 #endif
703 /* We don't have a stack slot for any spill reg yet. */
704 memset ((char *) spill_stack_slot, 0, sizeof spill_stack_slot);
705 memset ((char *) spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
707 /* Initialize the save area information for caller-save, in case some
708 are needed. */
709 init_save_areas ();
711 /* Compute which hard registers are now in use
712 as homes for pseudo registers.
713 This is done here rather than (eg) in global_alloc
714 because this point is reached even if not optimizing. */
715 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
716 mark_home_live (i);
718 /* A function that receives a nonlocal goto must save all call-saved
719 registers. */
720 if (current_function_has_nonlocal_label)
721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
722 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
723 regs_ever_live[i] = 1;
725 /* Find all the pseudo registers that didn't get hard regs
726 but do have known equivalent constants or memory slots.
727 These include parameters (known equivalent to parameter slots)
728 and cse'd or loop-moved constant memory addresses.
730 Record constant equivalents in reg_equiv_constant
731 so they will be substituted by find_reloads.
732 Record memory equivalents in reg_mem_equiv so they can
733 be substituted eventually by altering the REG-rtx's. */
735 reg_equiv_constant = (rtx *) xcalloc (max_regno, sizeof (rtx));
736 reg_equiv_mem = (rtx *) xcalloc (max_regno, sizeof (rtx));
737 reg_equiv_init = (rtx *) xcalloc (max_regno, sizeof (rtx));
738 reg_equiv_address = (rtx *) xcalloc (max_regno, sizeof (rtx));
739 reg_max_ref_width = (unsigned int *) xcalloc (max_regno, sizeof (int));
740 reg_old_renumber = (short *) xcalloc (max_regno, sizeof (short));
741 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
742 pseudo_forbidden_regs
743 = (HARD_REG_SET *) xmalloc (max_regno * sizeof (HARD_REG_SET));
744 pseudo_previous_regs
745 = (HARD_REG_SET *) xcalloc (max_regno, sizeof (HARD_REG_SET));
747 CLEAR_HARD_REG_SET (bad_spill_regs_global);
749 /* Look for REG_EQUIV notes; record what each pseudo is equivalent to.
750 Also find all paradoxical subregs and find largest such for each pseudo.
751 On machines with small register classes, record hard registers that
752 are used for user variables. These can never be used for spills.
753 Also look for a "constant" REG_SETJMP. This means that all
754 caller-saved registers must be marked live. */
756 num_eliminable_invariants = 0;
757 for (insn = first; insn; insn = NEXT_INSN (insn))
759 rtx set = single_set (insn);
761 /* We may introduce USEs that we want to remove at the end, so
762 we'll mark them with QImode. Make sure there are no
763 previously-marked insns left by say regmove. */
764 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
765 && GET_MODE (insn) != VOIDmode)
766 PUT_MODE (insn, VOIDmode);
768 if (GET_CODE (insn) == CALL_INSN
769 && find_reg_note (insn, REG_SETJMP, NULL))
770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
771 if (! call_used_regs[i])
772 regs_ever_live[i] = 1;
774 if (set != 0 && GET_CODE (SET_DEST (set)) == REG)
776 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
777 if (note
778 #ifdef LEGITIMATE_PIC_OPERAND_P
779 && (! function_invariant_p (XEXP (note, 0))
780 || ! flag_pic
781 /* A function invariant is often CONSTANT_P but may
782 include a register. We promise to only pass
783 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
784 || (CONSTANT_P (XEXP (note, 0))
785 && LEGITIMATE_PIC_OPERAND_P (XEXP (note, 0))))
786 #endif
789 rtx x = XEXP (note, 0);
790 i = REGNO (SET_DEST (set));
791 if (i > LAST_VIRTUAL_REGISTER)
793 if (GET_CODE (x) == MEM)
795 /* Always unshare the equivalence, so we can
796 substitute into this insn without touching the
797 equivalence. */
798 reg_equiv_memory_loc[i] = copy_rtx (x);
800 else if (function_invariant_p (x))
802 if (GET_CODE (x) == PLUS)
804 /* This is PLUS of frame pointer and a constant,
805 and might be shared. Unshare it. */
806 reg_equiv_constant[i] = copy_rtx (x);
807 num_eliminable_invariants++;
809 else if (x == frame_pointer_rtx
810 || x == arg_pointer_rtx)
812 reg_equiv_constant[i] = x;
813 num_eliminable_invariants++;
815 else if (LEGITIMATE_CONSTANT_P (x))
816 reg_equiv_constant[i] = x;
817 else
818 reg_equiv_memory_loc[i]
819 = force_const_mem (GET_MODE (SET_DEST (set)), x);
821 else
822 continue;
824 /* If this register is being made equivalent to a MEM
825 and the MEM is not SET_SRC, the equivalencing insn
826 is one with the MEM as a SET_DEST and it occurs later.
827 So don't mark this insn now. */
828 if (GET_CODE (x) != MEM
829 || rtx_equal_p (SET_SRC (set), x))
830 reg_equiv_init[i]
831 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[i]);
836 /* If this insn is setting a MEM from a register equivalent to it,
837 this is the equivalencing insn. */
838 else if (set && GET_CODE (SET_DEST (set)) == MEM
839 && GET_CODE (SET_SRC (set)) == REG
840 && reg_equiv_memory_loc[REGNO (SET_SRC (set))]
841 && rtx_equal_p (SET_DEST (set),
842 reg_equiv_memory_loc[REGNO (SET_SRC (set))]))
843 reg_equiv_init[REGNO (SET_SRC (set))]
844 = gen_rtx_INSN_LIST (VOIDmode, insn,
845 reg_equiv_init[REGNO (SET_SRC (set))]);
847 if (INSN_P (insn))
848 scan_paradoxical_subregs (PATTERN (insn));
851 init_elim_table ();
853 num_labels = max_label_num () - get_first_label_num ();
855 /* Allocate the tables used to store offset information at labels. */
856 /* We used to use alloca here, but the size of what it would try to
857 allocate would occasionally cause it to exceed the stack limit and
858 cause a core dump. */
859 real_known_ptr = xmalloc (num_labels);
860 real_at_ptr
861 = (int (*)[NUM_ELIMINABLE_REGS])
862 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (int));
864 offsets_known_at = real_known_ptr - get_first_label_num ();
865 offsets_at
866 = (int (*)[NUM_ELIMINABLE_REGS]) (real_at_ptr - get_first_label_num ());
868 /* Alter each pseudo-reg rtx to contain its hard reg number.
869 Assign stack slots to the pseudos that lack hard regs or equivalents.
870 Do not touch virtual registers. */
872 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
873 alter_reg (i, -1);
875 /* If we have some registers we think can be eliminated, scan all insns to
876 see if there is an insn that sets one of these registers to something
877 other than itself plus a constant. If so, the register cannot be
878 eliminated. Doing this scan here eliminates an extra pass through the
879 main reload loop in the most common case where register elimination
880 cannot be done. */
881 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
882 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
883 || GET_CODE (insn) == CALL_INSN)
884 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
886 maybe_fix_stack_asms ();
888 insns_need_reload = 0;
889 something_needs_elimination = 0;
891 /* Initialize to -1, which means take the first spill register. */
892 last_spill_reg = -1;
894 /* Spill any hard regs that we know we can't eliminate. */
895 CLEAR_HARD_REG_SET (used_spill_regs);
896 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
897 if (! ep->can_eliminate)
898 spill_hard_reg (ep->from, 1);
900 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
901 if (frame_pointer_needed)
902 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
903 #endif
904 finish_spills (global);
906 /* From now on, we may need to generate moves differently. We may also
907 allow modifications of insns which cause them to not be recognized.
908 Any such modifications will be cleaned up during reload itself. */
909 reload_in_progress = 1;
911 /* This loop scans the entire function each go-round
912 and repeats until one repetition spills no additional hard regs. */
913 for (;;)
915 int something_changed;
916 int did_spill;
918 HOST_WIDE_INT starting_frame_size;
920 /* Round size of stack frame to stack_alignment_needed. This must be done
921 here because the stack size may be a part of the offset computation
922 for register elimination, and there might have been new stack slots
923 created in the last iteration of this loop. */
924 if (cfun->stack_alignment_needed)
925 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
927 starting_frame_size = get_frame_size ();
929 set_initial_elim_offsets ();
930 set_initial_label_offsets ();
932 /* For each pseudo register that has an equivalent location defined,
933 try to eliminate any eliminable registers (such as the frame pointer)
934 assuming initial offsets for the replacement register, which
935 is the normal case.
937 If the resulting location is directly addressable, substitute
938 the MEM we just got directly for the old REG.
940 If it is not addressable but is a constant or the sum of a hard reg
941 and constant, it is probably not addressable because the constant is
942 out of range, in that case record the address; we will generate
943 hairy code to compute the address in a register each time it is
944 needed. Similarly if it is a hard register, but one that is not
945 valid as an address register.
947 If the location is not addressable, but does not have one of the
948 above forms, assign a stack slot. We have to do this to avoid the
949 potential of producing lots of reloads if, e.g., a location involves
950 a pseudo that didn't get a hard register and has an equivalent memory
951 location that also involves a pseudo that didn't get a hard register.
953 Perhaps at some point we will improve reload_when_needed handling
954 so this problem goes away. But that's very hairy. */
956 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
957 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
959 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
961 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
962 XEXP (x, 0)))
963 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
964 else if (CONSTANT_P (XEXP (x, 0))
965 || (GET_CODE (XEXP (x, 0)) == REG
966 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
967 || (GET_CODE (XEXP (x, 0)) == PLUS
968 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
969 && (REGNO (XEXP (XEXP (x, 0), 0))
970 < FIRST_PSEUDO_REGISTER)
971 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
972 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
973 else
975 /* Make a new stack slot. Then indicate that something
976 changed so we go back and recompute offsets for
977 eliminable registers because the allocation of memory
978 below might change some offset. reg_equiv_{mem,address}
979 will be set up for this pseudo on the next pass around
980 the loop. */
981 reg_equiv_memory_loc[i] = 0;
982 reg_equiv_init[i] = 0;
983 alter_reg (i, -1);
987 if (caller_save_needed)
988 setup_save_areas ();
990 /* If we allocated another stack slot, redo elimination bookkeeping. */
991 if (starting_frame_size != get_frame_size ())
992 continue;
994 if (caller_save_needed)
996 save_call_clobbered_regs ();
997 /* That might have allocated new insn_chain structures. */
998 reload_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1001 calculate_needs_all_insns (global);
1003 CLEAR_REG_SET (&spilled_pseudos);
1004 did_spill = 0;
1006 something_changed = 0;
1008 /* If we allocated any new memory locations, make another pass
1009 since it might have changed elimination offsets. */
1010 if (starting_frame_size != get_frame_size ())
1011 something_changed = 1;
1014 HARD_REG_SET to_spill;
1015 CLEAR_HARD_REG_SET (to_spill);
1016 update_eliminables (&to_spill);
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (TEST_HARD_REG_BIT (to_spill, i))
1020 spill_hard_reg (i, 1);
1021 did_spill = 1;
1023 /* Regardless of the state of spills, if we previously had
1024 a register that we thought we could eliminate, but no can
1025 not eliminate, we must run another pass.
1027 Consider pseudos which have an entry in reg_equiv_* which
1028 reference an eliminable register. We must make another pass
1029 to update reg_equiv_* so that we do not substitute in the
1030 old value from when we thought the elimination could be
1031 performed. */
1032 something_changed = 1;
1036 select_reload_regs ();
1037 if (failure)
1038 goto failed;
1040 if (insns_need_reload != 0 || did_spill)
1041 something_changed |= finish_spills (global);
1043 if (! something_changed)
1044 break;
1046 if (caller_save_needed)
1047 delete_caller_save_insns ();
1049 obstack_free (&reload_obstack, reload_firstobj);
1052 /* If global-alloc was run, notify it of any register eliminations we have
1053 done. */
1054 if (global)
1055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1056 if (ep->can_eliminate)
1057 mark_elimination (ep->from, ep->to);
1059 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1060 If that insn didn't set the register (i.e., it copied the register to
1061 memory), just delete that insn instead of the equivalencing insn plus
1062 anything now dead. If we call delete_dead_insn on that insn, we may
1063 delete the insn that actually sets the register if the register dies
1064 there and that is incorrect. */
1066 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1068 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1070 rtx list;
1071 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1073 rtx equiv_insn = XEXP (list, 0);
1075 /* If we already deleted the insn or if it may trap, we can't
1076 delete it. The latter case shouldn't happen, but can
1077 if an insn has a variable address, gets a REG_EH_REGION
1078 note added to it, and then gets converted into an load
1079 from a constant address. */
1080 if (GET_CODE (equiv_insn) == NOTE
1081 || can_throw_internal (equiv_insn))
1083 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1084 delete_dead_insn (equiv_insn);
1085 else
1087 PUT_CODE (equiv_insn, NOTE);
1088 NOTE_SOURCE_FILE (equiv_insn) = 0;
1089 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1095 /* Use the reload registers where necessary
1096 by generating move instructions to move the must-be-register
1097 values into or out of the reload registers. */
1099 if (insns_need_reload != 0 || something_needs_elimination
1100 || something_needs_operands_changed)
1102 HOST_WIDE_INT old_frame_size = get_frame_size ();
1104 reload_as_needed (global);
1106 if (old_frame_size != get_frame_size ())
1107 abort ();
1109 if (num_eliminable)
1110 verify_initial_elim_offsets ();
1113 /* If we were able to eliminate the frame pointer, show that it is no
1114 longer live at the start of any basic block. If it ls live by
1115 virtue of being in a pseudo, that pseudo will be marked live
1116 and hence the frame pointer will be known to be live via that
1117 pseudo. */
1119 if (! frame_pointer_needed)
1120 for (i = 0; i < n_basic_blocks; i++)
1121 CLEAR_REGNO_REG_SET (BASIC_BLOCK (i)->global_live_at_start,
1122 HARD_FRAME_POINTER_REGNUM);
1124 /* Come here (with failure set nonzero) if we can't get enough spill regs
1125 and we decide not to abort about it. */
1126 failed:
1128 CLEAR_REG_SET (&spilled_pseudos);
1129 reload_in_progress = 0;
1131 /* Now eliminate all pseudo regs by modifying them into
1132 their equivalent memory references.
1133 The REG-rtx's for the pseudos are modified in place,
1134 so all insns that used to refer to them now refer to memory.
1136 For a reg that has a reg_equiv_address, all those insns
1137 were changed by reloading so that no insns refer to it any longer;
1138 but the DECL_RTL of a variable decl may refer to it,
1139 and if so this causes the debugging info to mention the variable. */
1141 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1143 rtx addr = 0;
1145 if (reg_equiv_mem[i])
1146 addr = XEXP (reg_equiv_mem[i], 0);
1148 if (reg_equiv_address[i])
1149 addr = reg_equiv_address[i];
1151 if (addr)
1153 if (reg_renumber[i] < 0)
1155 rtx reg = regno_reg_rtx[i];
1157 PUT_CODE (reg, MEM);
1158 XEXP (reg, 0) = addr;
1159 REG_USERVAR_P (reg) = 0;
1160 if (reg_equiv_memory_loc[i])
1161 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1162 else
1164 RTX_UNCHANGING_P (reg) = MEM_IN_STRUCT_P (reg)
1165 = MEM_SCALAR_P (reg) = 0;
1166 MEM_ATTRS (reg) = 0;
1169 else if (reg_equiv_mem[i])
1170 XEXP (reg_equiv_mem[i], 0) = addr;
1174 /* We must set reload_completed now since the cleanup_subreg_operands call
1175 below will re-recognize each insn and reload may have generated insns
1176 which are only valid during and after reload. */
1177 reload_completed = 1;
1179 /* Make a pass over all the insns and delete all USEs which we inserted
1180 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1181 notes. Delete all CLOBBER insns that don't refer to the return value
1182 and simplify (subreg (reg)) operands. Also remove all REG_RETVAL and
1183 REG_LIBCALL notes since they are no longer useful or accurate. Strip
1184 and regenerate REG_INC notes that may have been moved around. */
1186 for (insn = first; insn; insn = NEXT_INSN (insn))
1187 if (INSN_P (insn))
1189 rtx *pnote;
1191 if (GET_CODE (insn) == CALL_INSN)
1192 replace_pseudos_in_call_usage (& CALL_INSN_FUNCTION_USAGE (insn),
1193 VOIDmode,
1194 CALL_INSN_FUNCTION_USAGE (insn));
1196 if ((GET_CODE (PATTERN (insn)) == USE
1197 /* We mark with QImode USEs introduced by reload itself. */
1198 && (GET_MODE (insn) == QImode
1199 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1200 || (GET_CODE (PATTERN (insn)) == CLOBBER
1201 && (GET_CODE (XEXP (PATTERN (insn), 0)) != REG
1202 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1204 delete_insn (insn);
1205 continue;
1208 pnote = &REG_NOTES (insn);
1209 while (*pnote != 0)
1211 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1212 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1213 || REG_NOTE_KIND (*pnote) == REG_INC
1214 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1215 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1216 *pnote = XEXP (*pnote, 1);
1217 else
1218 pnote = &XEXP (*pnote, 1);
1221 #ifdef AUTO_INC_DEC
1222 add_auto_inc_notes (insn, PATTERN (insn));
1223 #endif
1225 /* And simplify (subreg (reg)) if it appears as an operand. */
1226 cleanup_subreg_operands (insn);
1229 /* If we are doing stack checking, give a warning if this function's
1230 frame size is larger than we expect. */
1231 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1233 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1234 static int verbose_warned = 0;
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1238 size += UNITS_PER_WORD;
1240 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1242 warning ("frame size too large for reliable stack checking");
1243 if (! verbose_warned)
1245 warning ("try reducing the number of local variables");
1246 verbose_warned = 1;
1251 /* Indicate that we no longer have known memory locations or constants. */
1252 if (reg_equiv_constant)
1253 free (reg_equiv_constant);
1254 reg_equiv_constant = 0;
1255 if (reg_equiv_memory_loc)
1256 free (reg_equiv_memory_loc);
1257 reg_equiv_memory_loc = 0;
1259 if (real_known_ptr)
1260 free (real_known_ptr);
1261 if (real_at_ptr)
1262 free (real_at_ptr);
1264 free (reg_equiv_mem);
1265 free (reg_equiv_init);
1266 free (reg_equiv_address);
1267 free (reg_max_ref_width);
1268 free (reg_old_renumber);
1269 free (pseudo_previous_regs);
1270 free (pseudo_forbidden_regs);
1272 CLEAR_HARD_REG_SET (used_spill_regs);
1273 for (i = 0; i < n_spills; i++)
1274 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1276 /* Free all the insn_chain structures at once. */
1277 obstack_free (&reload_obstack, reload_startobj);
1278 unused_insn_chains = 0;
1279 fixup_abnormal_edges ();
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1286 return failure;
1289 /* Yet another special case. Unfortunately, reg-stack forces people to
1290 write incorrect clobbers in asm statements. These clobbers must not
1291 cause the register to appear in bad_spill_regs, otherwise we'll call
1292 fatal_insn later. We clear the corresponding regnos in the live
1293 register sets to avoid this.
1294 The whole thing is rather sick, I'm afraid. */
1296 static void
1297 maybe_fix_stack_asms ()
1299 #ifdef STACK_REGS
1300 const char *constraints[MAX_RECOG_OPERANDS];
1301 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1302 struct insn_chain *chain;
1304 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1306 int i, noperands;
1307 HARD_REG_SET clobbered, allowed;
1308 rtx pat;
1310 if (! INSN_P (chain->insn)
1311 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1312 continue;
1313 pat = PATTERN (chain->insn);
1314 if (GET_CODE (pat) != PARALLEL)
1315 continue;
1317 CLEAR_HARD_REG_SET (clobbered);
1318 CLEAR_HARD_REG_SET (allowed);
1320 /* First, make a mask of all stack regs that are clobbered. */
1321 for (i = 0; i < XVECLEN (pat, 0); i++)
1323 rtx t = XVECEXP (pat, 0, i);
1324 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1325 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1328 /* Get the operand values and constraints out of the insn. */
1329 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1330 constraints, operand_mode);
1332 /* For every operand, see what registers are allowed. */
1333 for (i = 0; i < noperands; i++)
1335 const char *p = constraints[i];
1336 /* For every alternative, we compute the class of registers allowed
1337 for reloading in CLS, and merge its contents into the reg set
1338 ALLOWED. */
1339 int cls = (int) NO_REGS;
1341 for (;;)
1343 char c = *p++;
1345 if (c == '\0' || c == ',' || c == '#')
1347 /* End of one alternative - mark the regs in the current
1348 class, and reset the class. */
1349 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1350 cls = NO_REGS;
1351 if (c == '#')
1352 do {
1353 c = *p++;
1354 } while (c != '\0' && c != ',');
1355 if (c == '\0')
1356 break;
1357 continue;
1360 switch (c)
1362 case '=': case '+': case '*': case '%': case '?': case '!':
1363 case '0': case '1': case '2': case '3': case '4': case 'm':
1364 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1365 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1366 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1367 case 'P':
1368 break;
1370 case 'p':
1371 cls = (int) reg_class_subunion[cls]
1372 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1373 break;
1375 case 'g':
1376 case 'r':
1377 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1378 break;
1380 default:
1381 cls = (int) reg_class_subunion[cls][(int) REG_CLASS_FROM_LETTER (c)];
1386 /* Those of the registers which are clobbered, but allowed by the
1387 constraints, must be usable as reload registers. So clear them
1388 out of the life information. */
1389 AND_HARD_REG_SET (allowed, clobbered);
1390 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1391 if (TEST_HARD_REG_BIT (allowed, i))
1393 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1394 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1398 #endif
1401 /* Copy the global variables n_reloads and rld into the corresponding elts
1402 of CHAIN. */
1403 static void
1404 copy_reloads (chain)
1405 struct insn_chain *chain;
1407 chain->n_reloads = n_reloads;
1408 chain->rld
1409 = (struct reload *) obstack_alloc (&reload_obstack,
1410 n_reloads * sizeof (struct reload));
1411 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1412 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1415 /* Walk the chain of insns, and determine for each whether it needs reloads
1416 and/or eliminations. Build the corresponding insns_need_reload list, and
1417 set something_needs_elimination as appropriate. */
1418 static void
1419 calculate_needs_all_insns (global)
1420 int global;
1422 struct insn_chain **pprev_reload = &insns_need_reload;
1423 struct insn_chain *chain, *next = 0;
1425 something_needs_elimination = 0;
1427 reload_insn_firstobj = (char *) obstack_alloc (&reload_obstack, 0);
1428 for (chain = reload_insn_chain; chain != 0; chain = next)
1430 rtx insn = chain->insn;
1432 next = chain->next;
1434 /* Clear out the shortcuts. */
1435 chain->n_reloads = 0;
1436 chain->need_elim = 0;
1437 chain->need_reload = 0;
1438 chain->need_operand_change = 0;
1440 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1441 include REG_LABEL), we need to see what effects this has on the
1442 known offsets at labels. */
1444 if (GET_CODE (insn) == CODE_LABEL || GET_CODE (insn) == JUMP_INSN
1445 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1446 set_label_offsets (insn, insn, 0);
1448 if (INSN_P (insn))
1450 rtx old_body = PATTERN (insn);
1451 int old_code = INSN_CODE (insn);
1452 rtx old_notes = REG_NOTES (insn);
1453 int did_elimination = 0;
1454 int operands_changed = 0;
1455 rtx set = single_set (insn);
1457 /* Skip insns that only set an equivalence. */
1458 if (set && GET_CODE (SET_DEST (set)) == REG
1459 && reg_renumber[REGNO (SET_DEST (set))] < 0
1460 && reg_equiv_constant[REGNO (SET_DEST (set))])
1461 continue;
1463 /* If needed, eliminate any eliminable registers. */
1464 if (num_eliminable || num_eliminable_invariants)
1465 did_elimination = eliminate_regs_in_insn (insn, 0);
1467 /* Analyze the instruction. */
1468 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1469 global, spill_reg_order);
1471 /* If a no-op set needs more than one reload, this is likely
1472 to be something that needs input address reloads. We
1473 can't get rid of this cleanly later, and it is of no use
1474 anyway, so discard it now.
1475 We only do this when expensive_optimizations is enabled,
1476 since this complements reload inheritance / output
1477 reload deletion, and it can make debugging harder. */
1478 if (flag_expensive_optimizations && n_reloads > 1)
1480 rtx set = single_set (insn);
1481 if (set
1482 && SET_SRC (set) == SET_DEST (set)
1483 && GET_CODE (SET_SRC (set)) == REG
1484 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1486 delete_insn (insn);
1487 /* Delete it from the reload chain */
1488 if (chain->prev)
1489 chain->prev->next = next;
1490 else
1491 reload_insn_chain = next;
1492 if (next)
1493 next->prev = chain->prev;
1494 chain->next = unused_insn_chains;
1495 unused_insn_chains = chain;
1496 continue;
1499 if (num_eliminable)
1500 update_eliminable_offsets ();
1502 /* Remember for later shortcuts which insns had any reloads or
1503 register eliminations. */
1504 chain->need_elim = did_elimination;
1505 chain->need_reload = n_reloads > 0;
1506 chain->need_operand_change = operands_changed;
1508 /* Discard any register replacements done. */
1509 if (did_elimination)
1511 obstack_free (&reload_obstack, reload_insn_firstobj);
1512 PATTERN (insn) = old_body;
1513 INSN_CODE (insn) = old_code;
1514 REG_NOTES (insn) = old_notes;
1515 something_needs_elimination = 1;
1518 something_needs_operands_changed |= operands_changed;
1520 if (n_reloads != 0)
1522 copy_reloads (chain);
1523 *pprev_reload = chain;
1524 pprev_reload = &chain->next_need_reload;
1528 *pprev_reload = 0;
1531 /* Comparison function for qsort to decide which of two reloads
1532 should be handled first. *P1 and *P2 are the reload numbers. */
1534 static int
1535 reload_reg_class_lower (r1p, r2p)
1536 const PTR r1p;
1537 const PTR r2p;
1539 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1540 int t;
1542 /* Consider required reloads before optional ones. */
1543 t = rld[r1].optional - rld[r2].optional;
1544 if (t != 0)
1545 return t;
1547 /* Count all solitary classes before non-solitary ones. */
1548 t = ((reg_class_size[(int) rld[r2].class] == 1)
1549 - (reg_class_size[(int) rld[r1].class] == 1));
1550 if (t != 0)
1551 return t;
1553 /* Aside from solitaires, consider all multi-reg groups first. */
1554 t = rld[r2].nregs - rld[r1].nregs;
1555 if (t != 0)
1556 return t;
1558 /* Consider reloads in order of increasing reg-class number. */
1559 t = (int) rld[r1].class - (int) rld[r2].class;
1560 if (t != 0)
1561 return t;
1563 /* If reloads are equally urgent, sort by reload number,
1564 so that the results of qsort leave nothing to chance. */
1565 return r1 - r2;
1568 /* The cost of spilling each hard reg. */
1569 static int spill_cost[FIRST_PSEUDO_REGISTER];
1571 /* When spilling multiple hard registers, we use SPILL_COST for the first
1572 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1573 only the first hard reg for a multi-reg pseudo. */
1574 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1576 /* Update the spill cost arrays, considering that pseudo REG is live. */
1578 static void
1579 count_pseudo (reg)
1580 int reg;
1582 int freq = REG_FREQ (reg);
1583 int r = reg_renumber[reg];
1584 int nregs;
1586 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1587 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1588 return;
1590 SET_REGNO_REG_SET (&pseudos_counted, reg);
1592 if (r < 0)
1593 abort ();
1595 spill_add_cost[r] += freq;
1597 nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1598 while (nregs-- > 0)
1599 spill_cost[r + nregs] += freq;
1602 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1603 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1605 static void
1606 order_regs_for_reload (chain)
1607 struct insn_chain *chain;
1609 int i;
1610 HARD_REG_SET used_by_pseudos;
1611 HARD_REG_SET used_by_pseudos2;
1613 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1615 memset (spill_cost, 0, sizeof spill_cost);
1616 memset (spill_add_cost, 0, sizeof spill_add_cost);
1618 /* Count number of uses of each hard reg by pseudo regs allocated to it
1619 and then order them by decreasing use. First exclude hard registers
1620 that are live in or across this insn. */
1622 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1623 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1624 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1625 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1627 /* Now find out which pseudos are allocated to it, and update
1628 hard_reg_n_uses. */
1629 CLEAR_REG_SET (&pseudos_counted);
1631 EXECUTE_IF_SET_IN_REG_SET
1632 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
1634 count_pseudo (i);
1636 EXECUTE_IF_SET_IN_REG_SET
1637 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
1639 count_pseudo (i);
1641 CLEAR_REG_SET (&pseudos_counted);
1644 /* Vector of reload-numbers showing the order in which the reloads should
1645 be processed. */
1646 static short reload_order[MAX_RELOADS];
1648 /* This is used to keep track of the spill regs used in one insn. */
1649 static HARD_REG_SET used_spill_regs_local;
1651 /* We decided to spill hard register SPILLED, which has a size of
1652 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1653 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1654 update SPILL_COST/SPILL_ADD_COST. */
1656 static void
1657 count_spilled_pseudo (spilled, spilled_nregs, reg)
1658 int spilled, spilled_nregs, reg;
1660 int r = reg_renumber[reg];
1661 int nregs = HARD_REGNO_NREGS (r, PSEUDO_REGNO_MODE (reg));
1663 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1664 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1665 return;
1667 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1669 spill_add_cost[r] -= REG_FREQ (reg);
1670 while (nregs-- > 0)
1671 spill_cost[r + nregs] -= REG_FREQ (reg);
1674 /* Find reload register to use for reload number ORDER. */
1676 static int
1677 find_reg (chain, order)
1678 struct insn_chain *chain;
1679 int order;
1681 int rnum = reload_order[order];
1682 struct reload *rl = rld + rnum;
1683 int best_cost = INT_MAX;
1684 int best_reg = -1;
1685 unsigned int i, j;
1686 int k;
1687 HARD_REG_SET not_usable;
1688 HARD_REG_SET used_by_other_reload;
1690 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1691 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1692 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1694 CLEAR_HARD_REG_SET (used_by_other_reload);
1695 for (k = 0; k < order; k++)
1697 int other = reload_order[k];
1699 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1700 for (j = 0; j < rld[other].nregs; j++)
1701 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1704 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1706 unsigned int regno = i;
1708 if (! TEST_HARD_REG_BIT (not_usable, regno)
1709 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1710 && HARD_REGNO_MODE_OK (regno, rl->mode))
1712 int this_cost = spill_cost[regno];
1713 int ok = 1;
1714 unsigned int this_nregs = HARD_REGNO_NREGS (regno, rl->mode);
1716 for (j = 1; j < this_nregs; j++)
1718 this_cost += spill_add_cost[regno + j];
1719 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1720 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1721 ok = 0;
1723 if (! ok)
1724 continue;
1725 if (rl->in && GET_CODE (rl->in) == REG && REGNO (rl->in) == regno)
1726 this_cost--;
1727 if (rl->out && GET_CODE (rl->out) == REG && REGNO (rl->out) == regno)
1728 this_cost--;
1729 if (this_cost < best_cost
1730 /* Among registers with equal cost, prefer caller-saved ones, or
1731 use REG_ALLOC_ORDER if it is defined. */
1732 || (this_cost == best_cost
1733 #ifdef REG_ALLOC_ORDER
1734 && (inv_reg_alloc_order[regno]
1735 < inv_reg_alloc_order[best_reg])
1736 #else
1737 && call_used_regs[regno]
1738 && ! call_used_regs[best_reg]
1739 #endif
1742 best_reg = regno;
1743 best_cost = this_cost;
1747 if (best_reg == -1)
1748 return 0;
1750 if (rtl_dump_file)
1751 fprintf (rtl_dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1753 rl->nregs = HARD_REGNO_NREGS (best_reg, rl->mode);
1754 rl->regno = best_reg;
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j,
1759 count_spilled_pseudo (best_reg, rl->nregs, j);
1762 EXECUTE_IF_SET_IN_REG_SET
1763 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j,
1765 count_spilled_pseudo (best_reg, rl->nregs, j);
1768 for (i = 0; i < rl->nregs; i++)
1770 if (spill_cost[best_reg + i] != 0
1771 || spill_add_cost[best_reg + i] != 0)
1772 abort ();
1773 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1775 return 1;
1778 /* Find more reload regs to satisfy the remaining need of an insn, which
1779 is given by CHAIN.
1780 Do it by ascending class number, since otherwise a reg
1781 might be spilled for a big class and might fail to count
1782 for a smaller class even though it belongs to that class. */
1784 static void
1785 find_reload_regs (chain)
1786 struct insn_chain *chain;
1788 int i;
1790 /* In order to be certain of getting the registers we need,
1791 we must sort the reloads into order of increasing register class.
1792 Then our grabbing of reload registers will parallel the process
1793 that provided the reload registers. */
1794 for (i = 0; i < chain->n_reloads; i++)
1796 /* Show whether this reload already has a hard reg. */
1797 if (chain->rld[i].reg_rtx)
1799 int regno = REGNO (chain->rld[i].reg_rtx);
1800 chain->rld[i].regno = regno;
1801 chain->rld[i].nregs
1802 = HARD_REGNO_NREGS (regno, GET_MODE (chain->rld[i].reg_rtx));
1804 else
1805 chain->rld[i].regno = -1;
1806 reload_order[i] = i;
1809 n_reloads = chain->n_reloads;
1810 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1812 CLEAR_HARD_REG_SET (used_spill_regs_local);
1814 if (rtl_dump_file)
1815 fprintf (rtl_dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1817 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1819 /* Compute the order of preference for hard registers to spill. */
1821 order_regs_for_reload (chain);
1823 for (i = 0; i < n_reloads; i++)
1825 int r = reload_order[i];
1827 /* Ignore reloads that got marked inoperative. */
1828 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1829 && ! rld[r].optional
1830 && rld[r].regno == -1)
1831 if (! find_reg (chain, i))
1833 spill_failure (chain->insn, rld[r].class);
1834 failure = 1;
1835 return;
1839 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1840 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1842 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1845 static void
1846 select_reload_regs ()
1848 struct insn_chain *chain;
1850 /* Try to satisfy the needs for each insn. */
1851 for (chain = insns_need_reload; chain != 0;
1852 chain = chain->next_need_reload)
1853 find_reload_regs (chain);
1856 /* Delete all insns that were inserted by emit_caller_save_insns during
1857 this iteration. */
1858 static void
1859 delete_caller_save_insns ()
1861 struct insn_chain *c = reload_insn_chain;
1863 while (c != 0)
1865 while (c != 0 && c->is_caller_save_insn)
1867 struct insn_chain *next = c->next;
1868 rtx insn = c->insn;
1870 if (c == reload_insn_chain)
1871 reload_insn_chain = next;
1872 delete_insn (insn);
1874 if (next)
1875 next->prev = c->prev;
1876 if (c->prev)
1877 c->prev->next = next;
1878 c->next = unused_insn_chains;
1879 unused_insn_chains = c;
1880 c = next;
1882 if (c != 0)
1883 c = c->next;
1887 /* Handle the failure to find a register to spill.
1888 INSN should be one of the insns which needed this particular spill reg. */
1890 static void
1891 spill_failure (insn, class)
1892 rtx insn;
1893 enum reg_class class;
1895 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1896 if (asm_noperands (PATTERN (insn)) >= 0)
1897 error_for_asm (insn, "can't find a register in class `%s' while reloading `asm'",
1898 reg_class_names[class]);
1899 else
1901 error ("unable to find a register to spill in class `%s'",
1902 reg_class_names[class]);
1903 fatal_insn ("this is the insn:", insn);
1907 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1908 data that is dead in INSN. */
1910 static void
1911 delete_dead_insn (insn)
1912 rtx insn;
1914 rtx prev = prev_real_insn (insn);
1915 rtx prev_dest;
1917 /* If the previous insn sets a register that dies in our insn, delete it
1918 too. */
1919 if (prev && GET_CODE (PATTERN (prev)) == SET
1920 && (prev_dest = SET_DEST (PATTERN (prev)), GET_CODE (prev_dest) == REG)
1921 && reg_mentioned_p (prev_dest, PATTERN (insn))
1922 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1923 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1924 delete_dead_insn (prev);
1926 PUT_CODE (insn, NOTE);
1927 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1928 NOTE_SOURCE_FILE (insn) = 0;
1931 /* Modify the home of pseudo-reg I.
1932 The new home is present in reg_renumber[I].
1934 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1935 or it may be -1, meaning there is none or it is not relevant.
1936 This is used so that all pseudos spilled from a given hard reg
1937 can share one stack slot. */
1939 static void
1940 alter_reg (i, from_reg)
1941 int i;
1942 int from_reg;
1944 /* When outputting an inline function, this can happen
1945 for a reg that isn't actually used. */
1946 if (regno_reg_rtx[i] == 0)
1947 return;
1949 /* If the reg got changed to a MEM at rtl-generation time,
1950 ignore it. */
1951 if (GET_CODE (regno_reg_rtx[i]) != REG)
1952 return;
1954 /* Modify the reg-rtx to contain the new hard reg
1955 number or else to contain its pseudo reg number. */
1956 REGNO (regno_reg_rtx[i])
1957 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1959 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1960 allocate a stack slot for it. */
1962 if (reg_renumber[i] < 0
1963 && REG_N_REFS (i) > 0
1964 && reg_equiv_constant[i] == 0
1965 && reg_equiv_memory_loc[i] == 0)
1967 rtx x;
1968 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1969 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1970 int adjust = 0;
1972 /* Each pseudo reg has an inherent size which comes from its own mode,
1973 and a total size which provides room for paradoxical subregs
1974 which refer to the pseudo reg in wider modes.
1976 We can use a slot already allocated if it provides both
1977 enough inherent space and enough total space.
1978 Otherwise, we allocate a new slot, making sure that it has no less
1979 inherent space, and no less total space, then the previous slot. */
1980 if (from_reg == -1)
1982 /* No known place to spill from => no slot to reuse. */
1983 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1984 inherent_size == total_size ? 0 : -1);
1985 if (BYTES_BIG_ENDIAN)
1986 /* Cancel the big-endian correction done in assign_stack_local.
1987 Get the address of the beginning of the slot.
1988 This is so we can do a big-endian correction unconditionally
1989 below. */
1990 adjust = inherent_size - total_size;
1992 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (regno_reg_rtx[i]);
1994 /* Nothing can alias this slot except this pseudo. */
1995 set_mem_alias_set (x, new_alias_set ());
1998 /* Reuse a stack slot if possible. */
1999 else if (spill_stack_slot[from_reg] != 0
2000 && spill_stack_slot_width[from_reg] >= total_size
2001 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2002 >= inherent_size))
2003 x = spill_stack_slot[from_reg];
2005 /* Allocate a bigger slot. */
2006 else
2008 /* Compute maximum size needed, both for inherent size
2009 and for total size. */
2010 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2011 rtx stack_slot;
2013 if (spill_stack_slot[from_reg])
2015 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2016 > inherent_size)
2017 mode = GET_MODE (spill_stack_slot[from_reg]);
2018 if (spill_stack_slot_width[from_reg] > total_size)
2019 total_size = spill_stack_slot_width[from_reg];
2022 /* Make a slot with that size. */
2023 x = assign_stack_local (mode, total_size,
2024 inherent_size == total_size ? 0 : -1);
2025 stack_slot = x;
2027 /* All pseudos mapped to this slot can alias each other. */
2028 if (spill_stack_slot[from_reg])
2029 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2030 else
2031 set_mem_alias_set (x, new_alias_set ());
2033 if (BYTES_BIG_ENDIAN)
2035 /* Cancel the big-endian correction done in assign_stack_local.
2036 Get the address of the beginning of the slot.
2037 This is so we can do a big-endian correction unconditionally
2038 below. */
2039 adjust = GET_MODE_SIZE (mode) - total_size;
2040 if (adjust)
2041 stack_slot
2042 = adjust_address_nv (x, mode_for_size (total_size
2043 * BITS_PER_UNIT,
2044 MODE_INT, 1),
2045 adjust);
2048 spill_stack_slot[from_reg] = stack_slot;
2049 spill_stack_slot_width[from_reg] = total_size;
2052 /* On a big endian machine, the "address" of the slot
2053 is the address of the low part that fits its inherent mode. */
2054 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2055 adjust += (total_size - inherent_size);
2057 /* If we have any adjustment to make, or if the stack slot is the
2058 wrong mode, make a new stack slot. */
2059 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2061 /* If we have a decl for the original register, set it for the
2062 memory. If this is a shared MEM, make a copy. */
2063 if (REGNO_DECL (i))
2065 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2066 x = copy_rtx (x);
2068 set_mem_expr (x, REGNO_DECL (i));
2071 /* Save the stack slot for later. */
2072 reg_equiv_memory_loc[i] = x;
2076 /* Mark the slots in regs_ever_live for the hard regs
2077 used by pseudo-reg number REGNO. */
2079 void
2080 mark_home_live (regno)
2081 int regno;
2083 int i, lim;
2085 i = reg_renumber[regno];
2086 if (i < 0)
2087 return;
2088 lim = i + HARD_REGNO_NREGS (i, PSEUDO_REGNO_MODE (regno));
2089 while (i < lim)
2090 regs_ever_live[i++] = 1;
2093 /* This function handles the tracking of elimination offsets around branches.
2095 X is a piece of RTL being scanned.
2097 INSN is the insn that it came from, if any.
2099 INITIAL_P is non-zero if we are to set the offset to be the initial
2100 offset and zero if we are setting the offset of the label to be the
2101 current offset. */
2103 static void
2104 set_label_offsets (x, insn, initial_p)
2105 rtx x;
2106 rtx insn;
2107 int initial_p;
2109 enum rtx_code code = GET_CODE (x);
2110 rtx tem;
2111 unsigned int i;
2112 struct elim_table *p;
2114 switch (code)
2116 case LABEL_REF:
2117 if (LABEL_REF_NONLOCAL_P (x))
2118 return;
2120 x = XEXP (x, 0);
2122 /* ... fall through ... */
2124 case CODE_LABEL:
2125 /* If we know nothing about this label, set the desired offsets. Note
2126 that this sets the offset at a label to be the offset before a label
2127 if we don't know anything about the label. This is not correct for
2128 the label after a BARRIER, but is the best guess we can make. If
2129 we guessed wrong, we will suppress an elimination that might have
2130 been possible had we been able to guess correctly. */
2132 if (! offsets_known_at[CODE_LABEL_NUMBER (x)])
2134 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2135 offsets_at[CODE_LABEL_NUMBER (x)][i]
2136 = (initial_p ? reg_eliminate[i].initial_offset
2137 : reg_eliminate[i].offset);
2138 offsets_known_at[CODE_LABEL_NUMBER (x)] = 1;
2141 /* Otherwise, if this is the definition of a label and it is
2142 preceded by a BARRIER, set our offsets to the known offset of
2143 that label. */
2145 else if (x == insn
2146 && (tem = prev_nonnote_insn (insn)) != 0
2147 && GET_CODE (tem) == BARRIER)
2148 set_offsets_for_label (insn);
2149 else
2150 /* If neither of the above cases is true, compare each offset
2151 with those previously recorded and suppress any eliminations
2152 where the offsets disagree. */
2154 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2155 if (offsets_at[CODE_LABEL_NUMBER (x)][i]
2156 != (initial_p ? reg_eliminate[i].initial_offset
2157 : reg_eliminate[i].offset))
2158 reg_eliminate[i].can_eliminate = 0;
2160 return;
2162 case JUMP_INSN:
2163 set_label_offsets (PATTERN (insn), insn, initial_p);
2165 /* ... fall through ... */
2167 case INSN:
2168 case CALL_INSN:
2169 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2170 and hence must have all eliminations at their initial offsets. */
2171 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2172 if (REG_NOTE_KIND (tem) == REG_LABEL)
2173 set_label_offsets (XEXP (tem, 0), insn, 1);
2174 return;
2176 case PARALLEL:
2177 case ADDR_VEC:
2178 case ADDR_DIFF_VEC:
2179 /* Each of the labels in the parallel or address vector must be
2180 at their initial offsets. We want the first field for PARALLEL
2181 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2183 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2184 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2185 insn, initial_p);
2186 return;
2188 case SET:
2189 /* We only care about setting PC. If the source is not RETURN,
2190 IF_THEN_ELSE, or a label, disable any eliminations not at
2191 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2192 isn't one of those possibilities. For branches to a label,
2193 call ourselves recursively.
2195 Note that this can disable elimination unnecessarily when we have
2196 a non-local goto since it will look like a non-constant jump to
2197 someplace in the current function. This isn't a significant
2198 problem since such jumps will normally be when all elimination
2199 pairs are back to their initial offsets. */
2201 if (SET_DEST (x) != pc_rtx)
2202 return;
2204 switch (GET_CODE (SET_SRC (x)))
2206 case PC:
2207 case RETURN:
2208 return;
2210 case LABEL_REF:
2211 set_label_offsets (XEXP (SET_SRC (x), 0), insn, initial_p);
2212 return;
2214 case IF_THEN_ELSE:
2215 tem = XEXP (SET_SRC (x), 1);
2216 if (GET_CODE (tem) == LABEL_REF)
2217 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2218 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2219 break;
2221 tem = XEXP (SET_SRC (x), 2);
2222 if (GET_CODE (tem) == LABEL_REF)
2223 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2224 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2225 break;
2226 return;
2228 default:
2229 break;
2232 /* If we reach here, all eliminations must be at their initial
2233 offset because we are doing a jump to a variable address. */
2234 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2235 if (p->offset != p->initial_offset)
2236 p->can_eliminate = 0;
2237 break;
2239 default:
2240 break;
2244 /* Scan X and replace any eliminable registers (such as fp) with a
2245 replacement (such as sp), plus an offset.
2247 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2248 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2249 MEM, we are allowed to replace a sum of a register and the constant zero
2250 with the register, which we cannot do outside a MEM. In addition, we need
2251 to record the fact that a register is referenced outside a MEM.
2253 If INSN is an insn, it is the insn containing X. If we replace a REG
2254 in a SET_DEST with an equivalent MEM and INSN is non-zero, write a
2255 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2256 the REG is being modified.
2258 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2259 That's used when we eliminate in expressions stored in notes.
2260 This means, do not set ref_outside_mem even if the reference
2261 is outside of MEMs.
2263 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2264 replacements done assuming all offsets are at their initial values. If
2265 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2266 encounter, return the actual location so that find_reloads will do
2267 the proper thing. */
2270 eliminate_regs (x, mem_mode, insn)
2271 rtx x;
2272 enum machine_mode mem_mode;
2273 rtx insn;
2275 enum rtx_code code = GET_CODE (x);
2276 struct elim_table *ep;
2277 int regno;
2278 rtx new;
2279 int i, j;
2280 const char *fmt;
2281 int copied = 0;
2283 if (! current_function_decl)
2284 return x;
2286 switch (code)
2288 case CONST_INT:
2289 case CONST_DOUBLE:
2290 case CONST_VECTOR:
2291 case CONST:
2292 case SYMBOL_REF:
2293 case CODE_LABEL:
2294 case PC:
2295 case CC0:
2296 case ASM_INPUT:
2297 case ADDR_VEC:
2298 case ADDR_DIFF_VEC:
2299 case RETURN:
2300 return x;
2302 case ADDRESSOF:
2303 /* This is only for the benefit of the debugging backends, which call
2304 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2305 removed after CSE. */
2306 new = eliminate_regs (XEXP (x, 0), 0, insn);
2307 if (GET_CODE (new) == MEM)
2308 return XEXP (new, 0);
2309 return x;
2311 case REG:
2312 regno = REGNO (x);
2314 /* First handle the case where we encounter a bare register that
2315 is eliminable. Replace it with a PLUS. */
2316 if (regno < FIRST_PSEUDO_REGISTER)
2318 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2319 ep++)
2320 if (ep->from_rtx == x && ep->can_eliminate)
2321 return plus_constant (ep->to_rtx, ep->previous_offset);
2324 else if (reg_renumber && reg_renumber[regno] < 0
2325 && reg_equiv_constant && reg_equiv_constant[regno]
2326 && ! CONSTANT_P (reg_equiv_constant[regno]))
2327 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2328 mem_mode, insn);
2329 return x;
2331 /* You might think handling MINUS in a manner similar to PLUS is a
2332 good idea. It is not. It has been tried multiple times and every
2333 time the change has had to have been reverted.
2335 Other parts of reload know a PLUS is special (gen_reload for example)
2336 and require special code to handle code a reloaded PLUS operand.
2338 Also consider backends where the flags register is clobbered by a
2339 MINUS, but we can emit a PLUS that does not clobber flags (ia32,
2340 lea instruction comes to mind). If we try to reload a MINUS, we
2341 may kill the flags register that was holding a useful value.
2343 So, please before trying to handle MINUS, consider reload as a
2344 whole instead of this little section as well as the backend issues. */
2345 case PLUS:
2346 /* If this is the sum of an eliminable register and a constant, rework
2347 the sum. */
2348 if (GET_CODE (XEXP (x, 0)) == REG
2349 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2350 && CONSTANT_P (XEXP (x, 1)))
2352 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2353 ep++)
2354 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2356 /* The only time we want to replace a PLUS with a REG (this
2357 occurs when the constant operand of the PLUS is the negative
2358 of the offset) is when we are inside a MEM. We won't want
2359 to do so at other times because that would change the
2360 structure of the insn in a way that reload can't handle.
2361 We special-case the commonest situation in
2362 eliminate_regs_in_insn, so just replace a PLUS with a
2363 PLUS here, unless inside a MEM. */
2364 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2365 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2366 return ep->to_rtx;
2367 else
2368 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2369 plus_constant (XEXP (x, 1),
2370 ep->previous_offset));
2373 /* If the register is not eliminable, we are done since the other
2374 operand is a constant. */
2375 return x;
2378 /* If this is part of an address, we want to bring any constant to the
2379 outermost PLUS. We will do this by doing register replacement in
2380 our operands and seeing if a constant shows up in one of them.
2382 Note that there is no risk of modifying the structure of the insn,
2383 since we only get called for its operands, thus we are either
2384 modifying the address inside a MEM, or something like an address
2385 operand of a load-address insn. */
2388 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2389 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2391 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2393 /* If one side is a PLUS and the other side is a pseudo that
2394 didn't get a hard register but has a reg_equiv_constant,
2395 we must replace the constant here since it may no longer
2396 be in the position of any operand. */
2397 if (GET_CODE (new0) == PLUS && GET_CODE (new1) == REG
2398 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2399 && reg_renumber[REGNO (new1)] < 0
2400 && reg_equiv_constant != 0
2401 && reg_equiv_constant[REGNO (new1)] != 0)
2402 new1 = reg_equiv_constant[REGNO (new1)];
2403 else if (GET_CODE (new1) == PLUS && GET_CODE (new0) == REG
2404 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2405 && reg_renumber[REGNO (new0)] < 0
2406 && reg_equiv_constant[REGNO (new0)] != 0)
2407 new0 = reg_equiv_constant[REGNO (new0)];
2409 new = form_sum (new0, new1);
2411 /* As above, if we are not inside a MEM we do not want to
2412 turn a PLUS into something else. We might try to do so here
2413 for an addition of 0 if we aren't optimizing. */
2414 if (! mem_mode && GET_CODE (new) != PLUS)
2415 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2416 else
2417 return new;
2420 return x;
2422 case MULT:
2423 /* If this is the product of an eliminable register and a
2424 constant, apply the distribute law and move the constant out
2425 so that we have (plus (mult ..) ..). This is needed in order
2426 to keep load-address insns valid. This case is pathological.
2427 We ignore the possibility of overflow here. */
2428 if (GET_CODE (XEXP (x, 0)) == REG
2429 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2430 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2431 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2432 ep++)
2433 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2435 if (! mem_mode
2436 /* Refs inside notes don't count for this purpose. */
2437 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2438 || GET_CODE (insn) == INSN_LIST)))
2439 ep->ref_outside_mem = 1;
2441 return
2442 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2443 ep->previous_offset * INTVAL (XEXP (x, 1)));
2446 /* ... fall through ... */
2448 case CALL:
2449 case COMPARE:
2450 /* See comments before PLUS about handling MINUS. */
2451 case MINUS:
2452 case DIV: case UDIV:
2453 case MOD: case UMOD:
2454 case AND: case IOR: case XOR:
2455 case ROTATERT: case ROTATE:
2456 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2457 case NE: case EQ:
2458 case GE: case GT: case GEU: case GTU:
2459 case LE: case LT: case LEU: case LTU:
2461 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2462 rtx new1
2463 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2465 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2466 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2468 return x;
2470 case EXPR_LIST:
2471 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2472 if (XEXP (x, 0))
2474 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2475 if (new != XEXP (x, 0))
2477 /* If this is a REG_DEAD note, it is not valid anymore.
2478 Using the eliminated version could result in creating a
2479 REG_DEAD note for the stack or frame pointer. */
2480 if (GET_MODE (x) == REG_DEAD)
2481 return (XEXP (x, 1)
2482 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2483 : NULL_RTX);
2485 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2489 /* ... fall through ... */
2491 case INSN_LIST:
2492 /* Now do eliminations in the rest of the chain. If this was
2493 an EXPR_LIST, this might result in allocating more memory than is
2494 strictly needed, but it simplifies the code. */
2495 if (XEXP (x, 1))
2497 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2498 if (new != XEXP (x, 1))
2499 return
2500 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2502 return x;
2504 case PRE_INC:
2505 case POST_INC:
2506 case PRE_DEC:
2507 case POST_DEC:
2508 case STRICT_LOW_PART:
2509 case NEG: case NOT:
2510 case SIGN_EXTEND: case ZERO_EXTEND:
2511 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2512 case FLOAT: case FIX:
2513 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2514 case ABS:
2515 case SQRT:
2516 case FFS:
2517 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2518 if (new != XEXP (x, 0))
2519 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2520 return x;
2522 case SUBREG:
2523 /* Similar to above processing, but preserve SUBREG_BYTE.
2524 Convert (subreg (mem)) to (mem) if not paradoxical.
2525 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2526 pseudo didn't get a hard reg, we must replace this with the
2527 eliminated version of the memory location because push_reloads
2528 may do the replacement in certain circumstances. */
2529 if (GET_CODE (SUBREG_REG (x)) == REG
2530 && (GET_MODE_SIZE (GET_MODE (x))
2531 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2532 && reg_equiv_memory_loc != 0
2533 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2535 new = SUBREG_REG (x);
2537 else
2538 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2540 if (new != SUBREG_REG (x))
2542 int x_size = GET_MODE_SIZE (GET_MODE (x));
2543 int new_size = GET_MODE_SIZE (GET_MODE (new));
2545 if (GET_CODE (new) == MEM
2546 && ((x_size < new_size
2547 #ifdef WORD_REGISTER_OPERATIONS
2548 /* On these machines, combine can create rtl of the form
2549 (set (subreg:m1 (reg:m2 R) 0) ...)
2550 where m1 < m2, and expects something interesting to
2551 happen to the entire word. Moreover, it will use the
2552 (reg:m2 R) later, expecting all bits to be preserved.
2553 So if the number of words is the same, preserve the
2554 subreg so that push_reloads can see it. */
2555 && ! ((x_size - 1) / UNITS_PER_WORD
2556 == (new_size -1 ) / UNITS_PER_WORD)
2557 #endif
2559 || x_size == new_size)
2561 return adjust_address_nv (x, GET_MODE (x), SUBREG_BYTE (x));
2562 else
2563 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2566 return x;
2568 case MEM:
2569 /* This is only for the benefit of the debugging backends, which call
2570 eliminate_regs on DECL_RTL; any ADDRESSOFs in the actual insns are
2571 removed after CSE. */
2572 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2573 return eliminate_regs (XEXP (XEXP (x, 0), 0), 0, insn);
2575 /* Our only special processing is to pass the mode of the MEM to our
2576 recursive call and copy the flags. While we are here, handle this
2577 case more efficiently. */
2578 return
2579 replace_equiv_address_nv (x,
2580 eliminate_regs (XEXP (x, 0),
2581 GET_MODE (x), insn));
2583 case USE:
2584 /* Handle insn_list USE that a call to a pure function may generate. */
2585 new = eliminate_regs (XEXP (x, 0), 0, insn);
2586 if (new != XEXP (x, 0))
2587 return gen_rtx_USE (GET_MODE (x), new);
2588 return x;
2590 case CLOBBER:
2591 case ASM_OPERANDS:
2592 case SET:
2593 abort ();
2595 default:
2596 break;
2599 /* Process each of our operands recursively. If any have changed, make a
2600 copy of the rtx. */
2601 fmt = GET_RTX_FORMAT (code);
2602 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2604 if (*fmt == 'e')
2606 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2607 if (new != XEXP (x, i) && ! copied)
2609 rtx new_x = rtx_alloc (code);
2610 memcpy (new_x, x,
2611 (sizeof (*new_x) - sizeof (new_x->fld)
2612 + sizeof (new_x->fld[0]) * GET_RTX_LENGTH (code)));
2613 x = new_x;
2614 copied = 1;
2616 XEXP (x, i) = new;
2618 else if (*fmt == 'E')
2620 int copied_vec = 0;
2621 for (j = 0; j < XVECLEN (x, i); j++)
2623 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2624 if (new != XVECEXP (x, i, j) && ! copied_vec)
2626 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2627 XVEC (x, i)->elem);
2628 if (! copied)
2630 rtx new_x = rtx_alloc (code);
2631 memcpy (new_x, x,
2632 (sizeof (*new_x) - sizeof (new_x->fld)
2633 + (sizeof (new_x->fld[0])
2634 * GET_RTX_LENGTH (code))));
2635 x = new_x;
2636 copied = 1;
2638 XVEC (x, i) = new_v;
2639 copied_vec = 1;
2641 XVECEXP (x, i, j) = new;
2646 return x;
2649 /* Scan rtx X for modifications of elimination target registers. Update
2650 the table of eliminables to reflect the changed state. MEM_MODE is
2651 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2653 static void
2654 elimination_effects (x, mem_mode)
2655 rtx x;
2656 enum machine_mode mem_mode;
2659 enum rtx_code code = GET_CODE (x);
2660 struct elim_table *ep;
2661 int regno;
2662 int i, j;
2663 const char *fmt;
2665 switch (code)
2667 case CONST_INT:
2668 case CONST_DOUBLE:
2669 case CONST_VECTOR:
2670 case CONST:
2671 case SYMBOL_REF:
2672 case CODE_LABEL:
2673 case PC:
2674 case CC0:
2675 case ASM_INPUT:
2676 case ADDR_VEC:
2677 case ADDR_DIFF_VEC:
2678 case RETURN:
2679 return;
2681 case ADDRESSOF:
2682 abort ();
2684 case REG:
2685 regno = REGNO (x);
2687 /* First handle the case where we encounter a bare register that
2688 is eliminable. Replace it with a PLUS. */
2689 if (regno < FIRST_PSEUDO_REGISTER)
2691 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2692 ep++)
2693 if (ep->from_rtx == x && ep->can_eliminate)
2695 if (! mem_mode)
2696 ep->ref_outside_mem = 1;
2697 return;
2701 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2702 && reg_equiv_constant[regno]
2703 && ! function_invariant_p (reg_equiv_constant[regno]))
2704 elimination_effects (reg_equiv_constant[regno], mem_mode);
2705 return;
2707 case PRE_INC:
2708 case POST_INC:
2709 case PRE_DEC:
2710 case POST_DEC:
2711 case POST_MODIFY:
2712 case PRE_MODIFY:
2713 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2714 if (ep->to_rtx == XEXP (x, 0))
2716 int size = GET_MODE_SIZE (mem_mode);
2718 /* If more bytes than MEM_MODE are pushed, account for them. */
2719 #ifdef PUSH_ROUNDING
2720 if (ep->to_rtx == stack_pointer_rtx)
2721 size = PUSH_ROUNDING (size);
2722 #endif
2723 if (code == PRE_DEC || code == POST_DEC)
2724 ep->offset += size;
2725 else if (code == PRE_INC || code == POST_INC)
2726 ep->offset -= size;
2727 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2728 && GET_CODE (XEXP (x, 1)) == PLUS
2729 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2730 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2731 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2734 /* These two aren't unary operators. */
2735 if (code == POST_MODIFY || code == PRE_MODIFY)
2736 break;
2738 /* Fall through to generic unary operation case. */
2739 case STRICT_LOW_PART:
2740 case NEG: case NOT:
2741 case SIGN_EXTEND: case ZERO_EXTEND:
2742 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2743 case FLOAT: case FIX:
2744 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2745 case ABS:
2746 case SQRT:
2747 case FFS:
2748 elimination_effects (XEXP (x, 0), mem_mode);
2749 return;
2751 case SUBREG:
2752 if (GET_CODE (SUBREG_REG (x)) == REG
2753 && (GET_MODE_SIZE (GET_MODE (x))
2754 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2755 && reg_equiv_memory_loc != 0
2756 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2757 return;
2759 elimination_effects (SUBREG_REG (x), mem_mode);
2760 return;
2762 case USE:
2763 /* If using a register that is the source of an eliminate we still
2764 think can be performed, note it cannot be performed since we don't
2765 know how this register is used. */
2766 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2767 if (ep->from_rtx == XEXP (x, 0))
2768 ep->can_eliminate = 0;
2770 elimination_effects (XEXP (x, 0), mem_mode);
2771 return;
2773 case CLOBBER:
2774 /* If clobbering a register that is the replacement register for an
2775 elimination we still think can be performed, note that it cannot
2776 be performed. Otherwise, we need not be concerned about it. */
2777 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2778 if (ep->to_rtx == XEXP (x, 0))
2779 ep->can_eliminate = 0;
2781 elimination_effects (XEXP (x, 0), mem_mode);
2782 return;
2784 case SET:
2785 /* Check for setting a register that we know about. */
2786 if (GET_CODE (SET_DEST (x)) == REG)
2788 /* See if this is setting the replacement register for an
2789 elimination.
2791 If DEST is the hard frame pointer, we do nothing because we
2792 assume that all assignments to the frame pointer are for
2793 non-local gotos and are being done at a time when they are valid
2794 and do not disturb anything else. Some machines want to
2795 eliminate a fake argument pointer (or even a fake frame pointer)
2796 with either the real frame or the stack pointer. Assignments to
2797 the hard frame pointer must not prevent this elimination. */
2799 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2800 ep++)
2801 if (ep->to_rtx == SET_DEST (x)
2802 && SET_DEST (x) != hard_frame_pointer_rtx)
2804 /* If it is being incremented, adjust the offset. Otherwise,
2805 this elimination can't be done. */
2806 rtx src = SET_SRC (x);
2808 if (GET_CODE (src) == PLUS
2809 && XEXP (src, 0) == SET_DEST (x)
2810 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2811 ep->offset -= INTVAL (XEXP (src, 1));
2812 else
2813 ep->can_eliminate = 0;
2817 elimination_effects (SET_DEST (x), 0);
2818 elimination_effects (SET_SRC (x), 0);
2819 return;
2821 case MEM:
2822 if (GET_CODE (XEXP (x, 0)) == ADDRESSOF)
2823 abort ();
2825 /* Our only special processing is to pass the mode of the MEM to our
2826 recursive call. */
2827 elimination_effects (XEXP (x, 0), GET_MODE (x));
2828 return;
2830 default:
2831 break;
2834 fmt = GET_RTX_FORMAT (code);
2835 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2837 if (*fmt == 'e')
2838 elimination_effects (XEXP (x, i), mem_mode);
2839 else if (*fmt == 'E')
2840 for (j = 0; j < XVECLEN (x, i); j++)
2841 elimination_effects (XVECEXP (x, i, j), mem_mode);
2845 /* Descend through rtx X and verify that no references to eliminable registers
2846 remain. If any do remain, mark the involved register as not
2847 eliminable. */
2849 static void
2850 check_eliminable_occurrences (x)
2851 rtx x;
2853 const char *fmt;
2854 int i;
2855 enum rtx_code code;
2857 if (x == 0)
2858 return;
2860 code = GET_CODE (x);
2862 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2864 struct elim_table *ep;
2866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2867 if (ep->from_rtx == x && ep->can_eliminate)
2868 ep->can_eliminate = 0;
2869 return;
2872 fmt = GET_RTX_FORMAT (code);
2873 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2875 if (*fmt == 'e')
2876 check_eliminable_occurrences (XEXP (x, i));
2877 else if (*fmt == 'E')
2879 int j;
2880 for (j = 0; j < XVECLEN (x, i); j++)
2881 check_eliminable_occurrences (XVECEXP (x, i, j));
2886 /* Scan INSN and eliminate all eliminable registers in it.
2888 If REPLACE is nonzero, do the replacement destructively. Also
2889 delete the insn as dead it if it is setting an eliminable register.
2891 If REPLACE is zero, do all our allocations in reload_obstack.
2893 If no eliminations were done and this insn doesn't require any elimination
2894 processing (these are not identical conditions: it might be updating sp,
2895 but not referencing fp; this needs to be seen during reload_as_needed so
2896 that the offset between fp and sp can be taken into consideration), zero
2897 is returned. Otherwise, 1 is returned. */
2899 static int
2900 eliminate_regs_in_insn (insn, replace)
2901 rtx insn;
2902 int replace;
2904 int icode = recog_memoized (insn);
2905 rtx old_body = PATTERN (insn);
2906 int insn_is_asm = asm_noperands (old_body) >= 0;
2907 rtx old_set = single_set (insn);
2908 rtx new_body;
2909 int val = 0;
2910 int i, any_changes;
2911 rtx substed_operand[MAX_RECOG_OPERANDS];
2912 rtx orig_operand[MAX_RECOG_OPERANDS];
2913 struct elim_table *ep;
2915 if (! insn_is_asm && icode < 0)
2917 if (GET_CODE (PATTERN (insn)) == USE
2918 || GET_CODE (PATTERN (insn)) == CLOBBER
2919 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2920 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2921 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
2922 return 0;
2923 abort ();
2926 if (old_set != 0 && GET_CODE (SET_DEST (old_set)) == REG
2927 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2929 /* Check for setting an eliminable register. */
2930 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2931 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2933 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2934 /* If this is setting the frame pointer register to the
2935 hardware frame pointer register and this is an elimination
2936 that will be done (tested above), this insn is really
2937 adjusting the frame pointer downward to compensate for
2938 the adjustment done before a nonlocal goto. */
2939 if (ep->from == FRAME_POINTER_REGNUM
2940 && ep->to == HARD_FRAME_POINTER_REGNUM)
2942 rtx base = SET_SRC (old_set);
2943 rtx base_insn = insn;
2944 int offset = 0;
2946 while (base != ep->to_rtx)
2948 rtx prev_insn, prev_set;
2950 if (GET_CODE (base) == PLUS
2951 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2953 offset += INTVAL (XEXP (base, 1));
2954 base = XEXP (base, 0);
2956 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2957 && (prev_set = single_set (prev_insn)) != 0
2958 && rtx_equal_p (SET_DEST (prev_set), base))
2960 base = SET_SRC (prev_set);
2961 base_insn = prev_insn;
2963 else
2964 break;
2967 if (base == ep->to_rtx)
2969 rtx src
2970 = plus_constant (ep->to_rtx, offset - ep->offset);
2972 new_body = old_body;
2973 if (! replace)
2975 new_body = copy_insn (old_body);
2976 if (REG_NOTES (insn))
2977 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2979 PATTERN (insn) = new_body;
2980 old_set = single_set (insn);
2982 /* First see if this insn remains valid when we
2983 make the change. If not, keep the INSN_CODE
2984 the same and let reload fit it up. */
2985 validate_change (insn, &SET_SRC (old_set), src, 1);
2986 validate_change (insn, &SET_DEST (old_set),
2987 ep->to_rtx, 1);
2988 if (! apply_change_group ())
2990 SET_SRC (old_set) = src;
2991 SET_DEST (old_set) = ep->to_rtx;
2994 val = 1;
2995 goto done;
2998 #endif
3000 /* In this case this insn isn't serving a useful purpose. We
3001 will delete it in reload_as_needed once we know that this
3002 elimination is, in fact, being done.
3004 If REPLACE isn't set, we can't delete this insn, but needn't
3005 process it since it won't be used unless something changes. */
3006 if (replace)
3008 delete_dead_insn (insn);
3009 return 1;
3011 val = 1;
3012 goto done;
3016 /* We allow one special case which happens to work on all machines we
3017 currently support: a single set with the source being a PLUS of an
3018 eliminable register and a constant. */
3019 if (old_set
3020 && GET_CODE (SET_DEST (old_set)) == REG
3021 && GET_CODE (SET_SRC (old_set)) == PLUS
3022 && GET_CODE (XEXP (SET_SRC (old_set), 0)) == REG
3023 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
3024 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
3026 rtx reg = XEXP (SET_SRC (old_set), 0);
3027 int offset = INTVAL (XEXP (SET_SRC (old_set), 1));
3029 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 if (ep->from_rtx == reg && ep->can_eliminate)
3032 offset += ep->offset;
3034 if (offset == 0)
3036 int num_clobbers;
3037 /* We assume here that if we need a PARALLEL with
3038 CLOBBERs for this assignment, we can do with the
3039 MATCH_SCRATCHes that add_clobbers allocates.
3040 There's not much we can do if that doesn't work. */
3041 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3042 SET_DEST (old_set),
3043 ep->to_rtx);
3044 num_clobbers = 0;
3045 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3046 if (num_clobbers)
3048 rtvec vec = rtvec_alloc (num_clobbers + 1);
3050 vec->elem[0] = PATTERN (insn);
3051 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3052 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3054 if (INSN_CODE (insn) < 0)
3055 abort ();
3057 else
3059 new_body = old_body;
3060 if (! replace)
3062 new_body = copy_insn (old_body);
3063 if (REG_NOTES (insn))
3064 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3066 PATTERN (insn) = new_body;
3067 old_set = single_set (insn);
3069 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3070 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3072 val = 1;
3073 /* This can't have an effect on elimination offsets, so skip right
3074 to the end. */
3075 goto done;
3079 /* Determine the effects of this insn on elimination offsets. */
3080 elimination_effects (old_body, 0);
3082 /* Eliminate all eliminable registers occurring in operands that
3083 can be handled by reload. */
3084 extract_insn (insn);
3085 any_changes = 0;
3086 for (i = 0; i < recog_data.n_operands; i++)
3088 orig_operand[i] = recog_data.operand[i];
3089 substed_operand[i] = recog_data.operand[i];
3091 /* For an asm statement, every operand is eliminable. */
3092 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3094 /* Check for setting a register that we know about. */
3095 if (recog_data.operand_type[i] != OP_IN
3096 && GET_CODE (orig_operand[i]) == REG)
3098 /* If we are assigning to a register that can be eliminated, it
3099 must be as part of a PARALLEL, since the code above handles
3100 single SETs. We must indicate that we can no longer
3101 eliminate this reg. */
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3103 ep++)
3104 if (ep->from_rtx == orig_operand[i] && ep->can_eliminate)
3105 ep->can_eliminate = 0;
3108 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3109 replace ? insn : NULL_RTX);
3110 if (substed_operand[i] != orig_operand[i])
3111 val = any_changes = 1;
3112 /* Terminate the search in check_eliminable_occurrences at
3113 this point. */
3114 *recog_data.operand_loc[i] = 0;
3116 /* If an output operand changed from a REG to a MEM and INSN is an
3117 insn, write a CLOBBER insn. */
3118 if (recog_data.operand_type[i] != OP_IN
3119 && GET_CODE (orig_operand[i]) == REG
3120 && GET_CODE (substed_operand[i]) == MEM
3121 && replace)
3122 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3123 insn);
3127 for (i = 0; i < recog_data.n_dups; i++)
3128 *recog_data.dup_loc[i]
3129 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3131 /* If any eliminable remain, they aren't eliminable anymore. */
3132 check_eliminable_occurrences (old_body);
3134 /* Substitute the operands; the new values are in the substed_operand
3135 array. */
3136 for (i = 0; i < recog_data.n_operands; i++)
3137 *recog_data.operand_loc[i] = substed_operand[i];
3138 for (i = 0; i < recog_data.n_dups; i++)
3139 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3141 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3142 re-recognize the insn. We do this in case we had a simple addition
3143 but now can do this as a load-address. This saves an insn in this
3144 common case.
3145 If re-recognition fails, the old insn code number will still be used,
3146 and some register operands may have changed into PLUS expressions.
3147 These will be handled by find_reloads by loading them into a register
3148 again. */
3150 if (val)
3152 /* If we aren't replacing things permanently and we changed something,
3153 make another copy to ensure that all the RTL is new. Otherwise
3154 things can go wrong if find_reload swaps commutative operands
3155 and one is inside RTL that has been copied while the other is not. */
3156 new_body = old_body;
3157 if (! replace)
3159 new_body = copy_insn (old_body);
3160 if (REG_NOTES (insn))
3161 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3163 PATTERN (insn) = new_body;
3165 /* If we had a move insn but now we don't, rerecognize it. This will
3166 cause spurious re-recognition if the old move had a PARALLEL since
3167 the new one still will, but we can't call single_set without
3168 having put NEW_BODY into the insn and the re-recognition won't
3169 hurt in this rare case. */
3170 /* ??? Why this huge if statement - why don't we just rerecognize the
3171 thing always? */
3172 if (! insn_is_asm
3173 && old_set != 0
3174 && ((GET_CODE (SET_SRC (old_set)) == REG
3175 && (GET_CODE (new_body) != SET
3176 || GET_CODE (SET_SRC (new_body)) != REG))
3177 /* If this was a load from or store to memory, compare
3178 the MEM in recog_data.operand to the one in the insn.
3179 If they are not equal, then rerecognize the insn. */
3180 || (old_set != 0
3181 && ((GET_CODE (SET_SRC (old_set)) == MEM
3182 && SET_SRC (old_set) != recog_data.operand[1])
3183 || (GET_CODE (SET_DEST (old_set)) == MEM
3184 && SET_DEST (old_set) != recog_data.operand[0])))
3185 /* If this was an add insn before, rerecognize. */
3186 || GET_CODE (SET_SRC (old_set)) == PLUS))
3188 int new_icode = recog (PATTERN (insn), insn, 0);
3189 if (new_icode < 0)
3190 INSN_CODE (insn) = icode;
3194 /* Restore the old body. If there were any changes to it, we made a copy
3195 of it while the changes were still in place, so we'll correctly return
3196 a modified insn below. */
3197 if (! replace)
3199 /* Restore the old body. */
3200 for (i = 0; i < recog_data.n_operands; i++)
3201 *recog_data.operand_loc[i] = orig_operand[i];
3202 for (i = 0; i < recog_data.n_dups; i++)
3203 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3206 /* Update all elimination pairs to reflect the status after the current
3207 insn. The changes we make were determined by the earlier call to
3208 elimination_effects.
3210 We also detect a cases where register elimination cannot be done,
3211 namely, if a register would be both changed and referenced outside a MEM
3212 in the resulting insn since such an insn is often undefined and, even if
3213 not, we cannot know what meaning will be given to it. Note that it is
3214 valid to have a register used in an address in an insn that changes it
3215 (presumably with a pre- or post-increment or decrement).
3217 If anything changes, return nonzero. */
3219 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3221 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3222 ep->can_eliminate = 0;
3224 ep->ref_outside_mem = 0;
3226 if (ep->previous_offset != ep->offset)
3227 val = 1;
3230 done:
3231 /* If we changed something, perform elimination in REG_NOTES. This is
3232 needed even when REPLACE is zero because a REG_DEAD note might refer
3233 to a register that we eliminate and could cause a different number
3234 of spill registers to be needed in the final reload pass than in
3235 the pre-passes. */
3236 if (val && REG_NOTES (insn) != 0)
3237 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3239 return val;
3242 /* Loop through all elimination pairs.
3243 Recalculate the number not at initial offset.
3245 Compute the maximum offset (minimum offset if the stack does not
3246 grow downward) for each elimination pair. */
3248 static void
3249 update_eliminable_offsets ()
3251 struct elim_table *ep;
3253 num_not_at_initial_offset = 0;
3254 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3256 ep->previous_offset = ep->offset;
3257 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3258 num_not_at_initial_offset++;
3262 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3263 replacement we currently believe is valid, mark it as not eliminable if X
3264 modifies DEST in any way other than by adding a constant integer to it.
3266 If DEST is the frame pointer, we do nothing because we assume that
3267 all assignments to the hard frame pointer are nonlocal gotos and are being
3268 done at a time when they are valid and do not disturb anything else.
3269 Some machines want to eliminate a fake argument pointer with either the
3270 frame or stack pointer. Assignments to the hard frame pointer must not
3271 prevent this elimination.
3273 Called via note_stores from reload before starting its passes to scan
3274 the insns of the function. */
3276 static void
3277 mark_not_eliminable (dest, x, data)
3278 rtx dest;
3279 rtx x;
3280 void *data ATTRIBUTE_UNUSED;
3282 unsigned int i;
3284 /* A SUBREG of a hard register here is just changing its mode. We should
3285 not see a SUBREG of an eliminable hard register, but check just in
3286 case. */
3287 if (GET_CODE (dest) == SUBREG)
3288 dest = SUBREG_REG (dest);
3290 if (dest == hard_frame_pointer_rtx)
3291 return;
3293 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3294 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3295 && (GET_CODE (x) != SET
3296 || GET_CODE (SET_SRC (x)) != PLUS
3297 || XEXP (SET_SRC (x), 0) != dest
3298 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3300 reg_eliminate[i].can_eliminate_previous
3301 = reg_eliminate[i].can_eliminate = 0;
3302 num_eliminable--;
3306 /* Verify that the initial elimination offsets did not change since the
3307 last call to set_initial_elim_offsets. This is used to catch cases
3308 where something illegal happened during reload_as_needed that could
3309 cause incorrect code to be generated if we did not check for it. */
3311 static void
3312 verify_initial_elim_offsets ()
3314 int t;
3316 #ifdef ELIMINABLE_REGS
3317 struct elim_table *ep;
3319 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3321 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3322 if (t != ep->initial_offset)
3323 abort ();
3325 #else
3326 INITIAL_FRAME_POINTER_OFFSET (t);
3327 if (t != reg_eliminate[0].initial_offset)
3328 abort ();
3329 #endif
3332 /* Reset all offsets on eliminable registers to their initial values. */
3334 static void
3335 set_initial_elim_offsets ()
3337 struct elim_table *ep = reg_eliminate;
3339 #ifdef ELIMINABLE_REGS
3340 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3342 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3343 ep->previous_offset = ep->offset = ep->initial_offset;
3345 #else
3346 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3347 ep->previous_offset = ep->offset = ep->initial_offset;
3348 #endif
3350 num_not_at_initial_offset = 0;
3353 /* Initialize the known label offsets.
3354 Set a known offset for each forced label to be at the initial offset
3355 of each elimination. We do this because we assume that all
3356 computed jumps occur from a location where each elimination is
3357 at its initial offset.
3358 For all other labels, show that we don't know the offsets. */
3360 static void
3361 set_initial_label_offsets ()
3363 rtx x;
3364 memset ((char *) &offsets_known_at[get_first_label_num ()], 0, num_labels);
3366 for (x = forced_labels; x; x = XEXP (x, 1))
3367 if (XEXP (x, 0))
3368 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3371 /* Set all elimination offsets to the known values for the code label given
3372 by INSN. */
3374 static void
3375 set_offsets_for_label (insn)
3376 rtx insn;
3378 unsigned int i;
3379 int label_nr = CODE_LABEL_NUMBER (insn);
3380 struct elim_table *ep;
3382 num_not_at_initial_offset = 0;
3383 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3385 ep->offset = ep->previous_offset = offsets_at[label_nr][i];
3386 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3387 num_not_at_initial_offset++;
3391 /* See if anything that happened changes which eliminations are valid.
3392 For example, on the Sparc, whether or not the frame pointer can
3393 be eliminated can depend on what registers have been used. We need
3394 not check some conditions again (such as flag_omit_frame_pointer)
3395 since they can't have changed. */
3397 static void
3398 update_eliminables (pset)
3399 HARD_REG_SET *pset;
3401 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3402 int previous_frame_pointer_needed = frame_pointer_needed;
3403 #endif
3404 struct elim_table *ep;
3406 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3407 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3408 #ifdef ELIMINABLE_REGS
3409 || ! CAN_ELIMINATE (ep->from, ep->to)
3410 #endif
3412 ep->can_eliminate = 0;
3414 /* Look for the case where we have discovered that we can't replace
3415 register A with register B and that means that we will now be
3416 trying to replace register A with register C. This means we can
3417 no longer replace register C with register B and we need to disable
3418 such an elimination, if it exists. This occurs often with A == ap,
3419 B == sp, and C == fp. */
3421 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3423 struct elim_table *op;
3424 int new_to = -1;
3426 if (! ep->can_eliminate && ep->can_eliminate_previous)
3428 /* Find the current elimination for ep->from, if there is a
3429 new one. */
3430 for (op = reg_eliminate;
3431 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3432 if (op->from == ep->from && op->can_eliminate)
3434 new_to = op->to;
3435 break;
3438 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3439 disable it. */
3440 for (op = reg_eliminate;
3441 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3442 if (op->from == new_to && op->to == ep->to)
3443 op->can_eliminate = 0;
3447 /* See if any registers that we thought we could eliminate the previous
3448 time are no longer eliminable. If so, something has changed and we
3449 must spill the register. Also, recompute the number of eliminable
3450 registers and see if the frame pointer is needed; it is if there is
3451 no elimination of the frame pointer that we can perform. */
3453 frame_pointer_needed = 1;
3454 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3456 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3457 && ep->to != HARD_FRAME_POINTER_REGNUM)
3458 frame_pointer_needed = 0;
3460 if (! ep->can_eliminate && ep->can_eliminate_previous)
3462 ep->can_eliminate_previous = 0;
3463 SET_HARD_REG_BIT (*pset, ep->from);
3464 num_eliminable--;
3468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3469 /* If we didn't need a frame pointer last time, but we do now, spill
3470 the hard frame pointer. */
3471 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3472 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3473 #endif
3476 /* Initialize the table of registers to eliminate. */
3478 static void
3479 init_elim_table ()
3481 struct elim_table *ep;
3482 #ifdef ELIMINABLE_REGS
3483 const struct elim_table_1 *ep1;
3484 #endif
3486 if (!reg_eliminate)
3487 reg_eliminate = (struct elim_table *)
3488 xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3490 /* Does this function require a frame pointer? */
3492 frame_pointer_needed = (! flag_omit_frame_pointer
3493 #ifdef EXIT_IGNORE_STACK
3494 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3495 and restore sp for alloca. So we can't eliminate
3496 the frame pointer in that case. At some point,
3497 we should improve this by emitting the
3498 sp-adjusting insns for this case. */
3499 || (current_function_calls_alloca
3500 && EXIT_IGNORE_STACK)
3501 #endif
3502 || FRAME_POINTER_REQUIRED);
3504 num_eliminable = 0;
3506 #ifdef ELIMINABLE_REGS
3507 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3508 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3510 ep->from = ep1->from;
3511 ep->to = ep1->to;
3512 ep->can_eliminate = ep->can_eliminate_previous
3513 = (CAN_ELIMINATE (ep->from, ep->to)
3514 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3516 #else
3517 reg_eliminate[0].from = reg_eliminate_1[0].from;
3518 reg_eliminate[0].to = reg_eliminate_1[0].to;
3519 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3520 = ! frame_pointer_needed;
3521 #endif
3523 /* Count the number of eliminable registers and build the FROM and TO
3524 REG rtx's. Note that code in gen_rtx will cause, e.g.,
3525 gen_rtx (REG, Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3526 We depend on this. */
3527 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3529 num_eliminable += ep->can_eliminate;
3530 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3531 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3535 /* Kick all pseudos out of hard register REGNO.
3537 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3538 because we found we can't eliminate some register. In the case, no pseudos
3539 are allowed to be in the register, even if they are only in a block that
3540 doesn't require spill registers, unlike the case when we are spilling this
3541 hard reg to produce another spill register.
3543 Return nonzero if any pseudos needed to be kicked out. */
3545 static void
3546 spill_hard_reg (regno, cant_eliminate)
3547 unsigned int regno;
3548 int cant_eliminate;
3550 int i;
3552 if (cant_eliminate)
3554 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3555 regs_ever_live[regno] = 1;
3558 /* Spill every pseudo reg that was allocated to this reg
3559 or to something that overlaps this reg. */
3561 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3562 if (reg_renumber[i] >= 0
3563 && (unsigned int) reg_renumber[i] <= regno
3564 && ((unsigned int) reg_renumber[i]
3565 + HARD_REGNO_NREGS ((unsigned int) reg_renumber[i],
3566 PSEUDO_REGNO_MODE (i))
3567 > regno))
3568 SET_REGNO_REG_SET (&spilled_pseudos, i);
3571 /* I'm getting weird preprocessor errors if I use IOR_HARD_REG_SET
3572 from within EXECUTE_IF_SET_IN_REG_SET. Hence this awkwardness. */
3574 static void
3575 ior_hard_reg_set (set1, set2)
3576 HARD_REG_SET *set1, *set2;
3578 IOR_HARD_REG_SET (*set1, *set2);
3581 /* After find_reload_regs has been run for all insn that need reloads,
3582 and/or spill_hard_regs was called, this function is used to actually
3583 spill pseudo registers and try to reallocate them. It also sets up the
3584 spill_regs array for use by choose_reload_regs. */
3586 static int
3587 finish_spills (global)
3588 int global;
3590 struct insn_chain *chain;
3591 int something_changed = 0;
3592 int i;
3594 /* Build the spill_regs array for the function. */
3595 /* If there are some registers still to eliminate and one of the spill regs
3596 wasn't ever used before, additional stack space may have to be
3597 allocated to store this register. Thus, we may have changed the offset
3598 between the stack and frame pointers, so mark that something has changed.
3600 One might think that we need only set VAL to 1 if this is a call-used
3601 register. However, the set of registers that must be saved by the
3602 prologue is not identical to the call-used set. For example, the
3603 register used by the call insn for the return PC is a call-used register,
3604 but must be saved by the prologue. */
3606 n_spills = 0;
3607 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3608 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3610 spill_reg_order[i] = n_spills;
3611 spill_regs[n_spills++] = i;
3612 if (num_eliminable && ! regs_ever_live[i])
3613 something_changed = 1;
3614 regs_ever_live[i] = 1;
3616 else
3617 spill_reg_order[i] = -1;
3619 EXECUTE_IF_SET_IN_REG_SET
3620 (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i,
3622 /* Record the current hard register the pseudo is allocated to in
3623 pseudo_previous_regs so we avoid reallocating it to the same
3624 hard reg in a later pass. */
3625 if (reg_renumber[i] < 0)
3626 abort ();
3628 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3629 /* Mark it as no longer having a hard register home. */
3630 reg_renumber[i] = -1;
3631 /* We will need to scan everything again. */
3632 something_changed = 1;
3635 /* Retry global register allocation if possible. */
3636 if (global)
3638 memset ((char *) pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3639 /* For every insn that needs reloads, set the registers used as spill
3640 regs in pseudo_forbidden_regs for every pseudo live across the
3641 insn. */
3642 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3644 EXECUTE_IF_SET_IN_REG_SET
3645 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i,
3647 ior_hard_reg_set (pseudo_forbidden_regs + i,
3648 &chain->used_spill_regs);
3650 EXECUTE_IF_SET_IN_REG_SET
3651 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i,
3653 ior_hard_reg_set (pseudo_forbidden_regs + i,
3654 &chain->used_spill_regs);
3658 /* Retry allocating the spilled pseudos. For each reg, merge the
3659 various reg sets that indicate which hard regs can't be used,
3660 and call retry_global_alloc.
3661 We change spill_pseudos here to only contain pseudos that did not
3662 get a new hard register. */
3663 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3664 if (reg_old_renumber[i] != reg_renumber[i])
3666 HARD_REG_SET forbidden;
3667 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3668 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3669 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3670 retry_global_alloc (i, forbidden);
3671 if (reg_renumber[i] >= 0)
3672 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3676 /* Fix up the register information in the insn chain.
3677 This involves deleting those of the spilled pseudos which did not get
3678 a new hard register home from the live_{before,after} sets. */
3679 for (chain = reload_insn_chain; chain; chain = chain->next)
3681 HARD_REG_SET used_by_pseudos;
3682 HARD_REG_SET used_by_pseudos2;
3684 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3685 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3687 /* Mark any unallocated hard regs as available for spills. That
3688 makes inheritance work somewhat better. */
3689 if (chain->need_reload)
3691 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3692 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3693 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3695 /* Save the old value for the sanity test below. */
3696 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3698 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3699 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3700 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3701 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3703 /* Make sure we only enlarge the set. */
3704 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3705 abort ();
3706 ok:;
3710 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3711 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3713 int regno = reg_renumber[i];
3714 if (reg_old_renumber[i] == regno)
3715 continue;
3717 alter_reg (i, reg_old_renumber[i]);
3718 reg_old_renumber[i] = regno;
3719 if (rtl_dump_file)
3721 if (regno == -1)
3722 fprintf (rtl_dump_file, " Register %d now on stack.\n\n", i);
3723 else
3724 fprintf (rtl_dump_file, " Register %d now in %d.\n\n",
3725 i, reg_renumber[i]);
3729 return something_changed;
3732 /* Find all paradoxical subregs within X and update reg_max_ref_width.
3733 Also mark any hard registers used to store user variables as
3734 forbidden from being used for spill registers. */
3736 static void
3737 scan_paradoxical_subregs (x)
3738 rtx x;
3740 int i;
3741 const char *fmt;
3742 enum rtx_code code = GET_CODE (x);
3744 switch (code)
3746 case REG:
3747 #if 0
3748 if (SMALL_REGISTER_CLASSES && REGNO (x) < FIRST_PSEUDO_REGISTER
3749 && REG_USERVAR_P (x))
3750 SET_HARD_REG_BIT (bad_spill_regs_global, REGNO (x));
3751 #endif
3752 return;
3754 case CONST_INT:
3755 case CONST:
3756 case SYMBOL_REF:
3757 case LABEL_REF:
3758 case CONST_DOUBLE:
3759 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3760 case CC0:
3761 case PC:
3762 case USE:
3763 case CLOBBER:
3764 return;
3766 case SUBREG:
3767 if (GET_CODE (SUBREG_REG (x)) == REG
3768 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3769 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3770 = GET_MODE_SIZE (GET_MODE (x));
3771 return;
3773 default:
3774 break;
3777 fmt = GET_RTX_FORMAT (code);
3778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3780 if (fmt[i] == 'e')
3781 scan_paradoxical_subregs (XEXP (x, i));
3782 else if (fmt[i] == 'E')
3784 int j;
3785 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3786 scan_paradoxical_subregs (XVECEXP (x, i, j));
3791 /* Reload pseudo-registers into hard regs around each insn as needed.
3792 Additional register load insns are output before the insn that needs it
3793 and perhaps store insns after insns that modify the reloaded pseudo reg.
3795 reg_last_reload_reg and reg_reloaded_contents keep track of
3796 which registers are already available in reload registers.
3797 We update these for the reloads that we perform,
3798 as the insns are scanned. */
3800 static void
3801 reload_as_needed (live_known)
3802 int live_known;
3804 struct insn_chain *chain;
3805 #if defined (AUTO_INC_DEC)
3806 int i;
3807 #endif
3808 rtx x;
3810 memset ((char *) spill_reg_rtx, 0, sizeof spill_reg_rtx);
3811 memset ((char *) spill_reg_store, 0, sizeof spill_reg_store);
3812 reg_last_reload_reg = (rtx *) xcalloc (max_regno, sizeof (rtx));
3813 reg_has_output_reload = (char *) xmalloc (max_regno);
3814 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3816 set_initial_elim_offsets ();
3818 for (chain = reload_insn_chain; chain; chain = chain->next)
3820 rtx prev;
3821 rtx insn = chain->insn;
3822 rtx old_next = NEXT_INSN (insn);
3824 /* If we pass a label, copy the offsets from the label information
3825 into the current offsets of each elimination. */
3826 if (GET_CODE (insn) == CODE_LABEL)
3827 set_offsets_for_label (insn);
3829 else if (INSN_P (insn))
3831 rtx oldpat = PATTERN (insn);
3833 /* If this is a USE and CLOBBER of a MEM, ensure that any
3834 references to eliminable registers have been removed. */
3836 if ((GET_CODE (PATTERN (insn)) == USE
3837 || GET_CODE (PATTERN (insn)) == CLOBBER)
3838 && GET_CODE (XEXP (PATTERN (insn), 0)) == MEM)
3839 XEXP (XEXP (PATTERN (insn), 0), 0)
3840 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3841 GET_MODE (XEXP (PATTERN (insn), 0)),
3842 NULL_RTX);
3844 /* If we need to do register elimination processing, do so.
3845 This might delete the insn, in which case we are done. */
3846 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3848 eliminate_regs_in_insn (insn, 1);
3849 if (GET_CODE (insn) == NOTE)
3851 update_eliminable_offsets ();
3852 continue;
3856 /* If need_elim is nonzero but need_reload is zero, one might think
3857 that we could simply set n_reloads to 0. However, find_reloads
3858 could have done some manipulation of the insn (such as swapping
3859 commutative operands), and these manipulations are lost during
3860 the first pass for every insn that needs register elimination.
3861 So the actions of find_reloads must be redone here. */
3863 if (! chain->need_elim && ! chain->need_reload
3864 && ! chain->need_operand_change)
3865 n_reloads = 0;
3866 /* First find the pseudo regs that must be reloaded for this insn.
3867 This info is returned in the tables reload_... (see reload.h).
3868 Also modify the body of INSN by substituting RELOAD
3869 rtx's for those pseudo regs. */
3870 else
3872 memset (reg_has_output_reload, 0, max_regno);
3873 CLEAR_HARD_REG_SET (reg_is_output_reload);
3875 find_reloads (insn, 1, spill_indirect_levels, live_known,
3876 spill_reg_order);
3879 if (n_reloads > 0)
3881 rtx next = NEXT_INSN (insn);
3882 rtx p;
3884 prev = PREV_INSN (insn);
3886 /* Now compute which reload regs to reload them into. Perhaps
3887 reusing reload regs from previous insns, or else output
3888 load insns to reload them. Maybe output store insns too.
3889 Record the choices of reload reg in reload_reg_rtx. */
3890 choose_reload_regs (chain);
3892 /* Merge any reloads that we didn't combine for fear of
3893 increasing the number of spill registers needed but now
3894 discover can be safely merged. */
3895 if (SMALL_REGISTER_CLASSES)
3896 merge_assigned_reloads (insn);
3898 /* Generate the insns to reload operands into or out of
3899 their reload regs. */
3900 emit_reload_insns (chain);
3902 /* Substitute the chosen reload regs from reload_reg_rtx
3903 into the insn's body (or perhaps into the bodies of other
3904 load and store insn that we just made for reloading
3905 and that we moved the structure into). */
3906 subst_reloads (insn);
3908 /* If this was an ASM, make sure that all the reload insns
3909 we have generated are valid. If not, give an error
3910 and delete them. */
3912 if (asm_noperands (PATTERN (insn)) >= 0)
3913 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3914 if (p != insn && INSN_P (p)
3915 && (recog_memoized (p) < 0
3916 || (extract_insn (p), ! constrain_operands (1))))
3918 error_for_asm (insn,
3919 "`asm' operand requires impossible reload");
3920 delete_insn (p);
3924 if (num_eliminable && chain->need_elim)
3925 update_eliminable_offsets ();
3927 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3928 is no longer validly lying around to save a future reload.
3929 Note that this does not detect pseudos that were reloaded
3930 for this insn in order to be stored in
3931 (obeying register constraints). That is correct; such reload
3932 registers ARE still valid. */
3933 note_stores (oldpat, forget_old_reloads_1, NULL);
3935 /* There may have been CLOBBER insns placed after INSN. So scan
3936 between INSN and NEXT and use them to forget old reloads. */
3937 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3938 if (GET_CODE (x) == INSN && GET_CODE (PATTERN (x)) == CLOBBER)
3939 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3941 #ifdef AUTO_INC_DEC
3942 /* Likewise for regs altered by auto-increment in this insn.
3943 REG_INC notes have been changed by reloading:
3944 find_reloads_address_1 records substitutions for them,
3945 which have been performed by subst_reloads above. */
3946 for (i = n_reloads - 1; i >= 0; i--)
3948 rtx in_reg = rld[i].in_reg;
3949 if (in_reg)
3951 enum rtx_code code = GET_CODE (in_reg);
3952 /* PRE_INC / PRE_DEC will have the reload register ending up
3953 with the same value as the stack slot, but that doesn't
3954 hold true for POST_INC / POST_DEC. Either we have to
3955 convert the memory access to a true POST_INC / POST_DEC,
3956 or we can't use the reload register for inheritance. */
3957 if ((code == POST_INC || code == POST_DEC)
3958 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3959 REGNO (rld[i].reg_rtx))
3960 /* Make sure it is the inc/dec pseudo, and not
3961 some other (e.g. output operand) pseudo. */
3962 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3963 == REGNO (XEXP (in_reg, 0))))
3966 rtx reload_reg = rld[i].reg_rtx;
3967 enum machine_mode mode = GET_MODE (reload_reg);
3968 int n = 0;
3969 rtx p;
3971 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3973 /* We really want to ignore REG_INC notes here, so
3974 use PATTERN (p) as argument to reg_set_p . */
3975 if (reg_set_p (reload_reg, PATTERN (p)))
3976 break;
3977 n = count_occurrences (PATTERN (p), reload_reg, 0);
3978 if (! n)
3979 continue;
3980 if (n == 1)
3982 n = validate_replace_rtx (reload_reg,
3983 gen_rtx (code, mode,
3984 reload_reg),
3987 /* We must also verify that the constraints
3988 are met after the replacement. */
3989 extract_insn (p);
3990 if (n)
3991 n = constrain_operands (1);
3992 else
3993 break;
3995 /* If the constraints were not met, then
3996 undo the replacement. */
3997 if (!n)
3999 validate_replace_rtx (gen_rtx (code, mode,
4000 reload_reg),
4001 reload_reg, p);
4002 break;
4006 break;
4008 if (n == 1)
4010 REG_NOTES (p)
4011 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4012 REG_NOTES (p));
4013 /* Mark this as having an output reload so that the
4014 REG_INC processing code below won't invalidate
4015 the reload for inheritance. */
4016 SET_HARD_REG_BIT (reg_is_output_reload,
4017 REGNO (reload_reg));
4018 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4020 else
4021 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4022 NULL);
4024 else if ((code == PRE_INC || code == PRE_DEC)
4025 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4026 REGNO (rld[i].reg_rtx))
4027 /* Make sure it is the inc/dec pseudo, and not
4028 some other (e.g. output operand) pseudo. */
4029 && (reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4030 == REGNO (XEXP (in_reg, 0))))
4032 SET_HARD_REG_BIT (reg_is_output_reload,
4033 REGNO (rld[i].reg_rtx));
4034 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4038 /* If a pseudo that got a hard register is auto-incremented,
4039 we must purge records of copying it into pseudos without
4040 hard registers. */
4041 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4042 if (REG_NOTE_KIND (x) == REG_INC)
4044 /* See if this pseudo reg was reloaded in this insn.
4045 If so, its last-reload info is still valid
4046 because it is based on this insn's reload. */
4047 for (i = 0; i < n_reloads; i++)
4048 if (rld[i].out == XEXP (x, 0))
4049 break;
4051 if (i == n_reloads)
4052 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4054 #endif
4056 /* A reload reg's contents are unknown after a label. */
4057 if (GET_CODE (insn) == CODE_LABEL)
4058 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4060 /* Don't assume a reload reg is still good after a call insn
4061 if it is a call-used reg. */
4062 else if (GET_CODE (insn) == CALL_INSN)
4063 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4066 /* Clean up. */
4067 free (reg_last_reload_reg);
4068 free (reg_has_output_reload);
4071 /* Discard all record of any value reloaded from X,
4072 or reloaded in X from someplace else;
4073 unless X is an output reload reg of the current insn.
4075 X may be a hard reg (the reload reg)
4076 or it may be a pseudo reg that was reloaded from. */
4078 static void
4079 forget_old_reloads_1 (x, ignored, data)
4080 rtx x;
4081 rtx ignored ATTRIBUTE_UNUSED;
4082 void *data ATTRIBUTE_UNUSED;
4084 unsigned int regno;
4085 unsigned int nr;
4086 int offset = 0;
4088 /* note_stores does give us subregs of hard regs,
4089 subreg_regno_offset will abort if it is not a hard reg. */
4090 while (GET_CODE (x) == SUBREG)
4092 offset += subreg_regno_offset (REGNO (SUBREG_REG (x)),
4093 GET_MODE (SUBREG_REG (x)),
4094 SUBREG_BYTE (x),
4095 GET_MODE (x));
4096 x = SUBREG_REG (x);
4099 if (GET_CODE (x) != REG)
4100 return;
4102 regno = REGNO (x) + offset;
4104 if (regno >= FIRST_PSEUDO_REGISTER)
4105 nr = 1;
4106 else
4108 unsigned int i;
4110 nr = HARD_REGNO_NREGS (regno, GET_MODE (x));
4111 /* Storing into a spilled-reg invalidates its contents.
4112 This can happen if a block-local pseudo is allocated to that reg
4113 and it wasn't spilled because this block's total need is 0.
4114 Then some insn might have an optional reload and use this reg. */
4115 for (i = 0; i < nr; i++)
4116 /* But don't do this if the reg actually serves as an output
4117 reload reg in the current instruction. */
4118 if (n_reloads == 0
4119 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4121 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4122 spill_reg_store[regno + i] = 0;
4126 /* Since value of X has changed,
4127 forget any value previously copied from it. */
4129 while (nr-- > 0)
4130 /* But don't forget a copy if this is the output reload
4131 that establishes the copy's validity. */
4132 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4133 reg_last_reload_reg[regno + nr] = 0;
4136 /* The following HARD_REG_SETs indicate when each hard register is
4137 used for a reload of various parts of the current insn. */
4139 /* If reg is unavailable for all reloads. */
4140 static HARD_REG_SET reload_reg_unavailable;
4141 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4142 static HARD_REG_SET reload_reg_used;
4143 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4144 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4145 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4146 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4147 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4148 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4149 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4150 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4151 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4152 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4153 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4154 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4155 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4156 static HARD_REG_SET reload_reg_used_in_op_addr;
4157 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4158 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4159 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4160 static HARD_REG_SET reload_reg_used_in_insn;
4161 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4162 static HARD_REG_SET reload_reg_used_in_other_addr;
4164 /* If reg is in use as a reload reg for any sort of reload. */
4165 static HARD_REG_SET reload_reg_used_at_all;
4167 /* If reg is use as an inherited reload. We just mark the first register
4168 in the group. */
4169 static HARD_REG_SET reload_reg_used_for_inherit;
4171 /* Records which hard regs are used in any way, either as explicit use or
4172 by being allocated to a pseudo during any point of the current insn. */
4173 static HARD_REG_SET reg_used_in_insn;
4175 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4176 TYPE. MODE is used to indicate how many consecutive regs are
4177 actually used. */
4179 static void
4180 mark_reload_reg_in_use (regno, opnum, type, mode)
4181 unsigned int regno;
4182 int opnum;
4183 enum reload_type type;
4184 enum machine_mode mode;
4186 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4187 unsigned int i;
4189 for (i = regno; i < nregs + regno; i++)
4191 switch (type)
4193 case RELOAD_OTHER:
4194 SET_HARD_REG_BIT (reload_reg_used, i);
4195 break;
4197 case RELOAD_FOR_INPUT_ADDRESS:
4198 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4199 break;
4201 case RELOAD_FOR_INPADDR_ADDRESS:
4202 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4203 break;
4205 case RELOAD_FOR_OUTPUT_ADDRESS:
4206 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4207 break;
4209 case RELOAD_FOR_OUTADDR_ADDRESS:
4210 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4211 break;
4213 case RELOAD_FOR_OPERAND_ADDRESS:
4214 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4215 break;
4217 case RELOAD_FOR_OPADDR_ADDR:
4218 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4219 break;
4221 case RELOAD_FOR_OTHER_ADDRESS:
4222 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4223 break;
4225 case RELOAD_FOR_INPUT:
4226 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4227 break;
4229 case RELOAD_FOR_OUTPUT:
4230 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4231 break;
4233 case RELOAD_FOR_INSN:
4234 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4235 break;
4238 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4242 /* Similarly, but show REGNO is no longer in use for a reload. */
4244 static void
4245 clear_reload_reg_in_use (regno, opnum, type, mode)
4246 unsigned int regno;
4247 int opnum;
4248 enum reload_type type;
4249 enum machine_mode mode;
4251 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
4252 unsigned int start_regno, end_regno, r;
4253 int i;
4254 /* A complication is that for some reload types, inheritance might
4255 allow multiple reloads of the same types to share a reload register.
4256 We set check_opnum if we have to check only reloads with the same
4257 operand number, and check_any if we have to check all reloads. */
4258 int check_opnum = 0;
4259 int check_any = 0;
4260 HARD_REG_SET *used_in_set;
4262 switch (type)
4264 case RELOAD_OTHER:
4265 used_in_set = &reload_reg_used;
4266 break;
4268 case RELOAD_FOR_INPUT_ADDRESS:
4269 used_in_set = &reload_reg_used_in_input_addr[opnum];
4270 break;
4272 case RELOAD_FOR_INPADDR_ADDRESS:
4273 check_opnum = 1;
4274 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4275 break;
4277 case RELOAD_FOR_OUTPUT_ADDRESS:
4278 used_in_set = &reload_reg_used_in_output_addr[opnum];
4279 break;
4281 case RELOAD_FOR_OUTADDR_ADDRESS:
4282 check_opnum = 1;
4283 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4284 break;
4286 case RELOAD_FOR_OPERAND_ADDRESS:
4287 used_in_set = &reload_reg_used_in_op_addr;
4288 break;
4290 case RELOAD_FOR_OPADDR_ADDR:
4291 check_any = 1;
4292 used_in_set = &reload_reg_used_in_op_addr_reload;
4293 break;
4295 case RELOAD_FOR_OTHER_ADDRESS:
4296 used_in_set = &reload_reg_used_in_other_addr;
4297 check_any = 1;
4298 break;
4300 case RELOAD_FOR_INPUT:
4301 used_in_set = &reload_reg_used_in_input[opnum];
4302 break;
4304 case RELOAD_FOR_OUTPUT:
4305 used_in_set = &reload_reg_used_in_output[opnum];
4306 break;
4308 case RELOAD_FOR_INSN:
4309 used_in_set = &reload_reg_used_in_insn;
4310 break;
4311 default:
4312 abort ();
4314 /* We resolve conflicts with remaining reloads of the same type by
4315 excluding the intervals of of reload registers by them from the
4316 interval of freed reload registers. Since we only keep track of
4317 one set of interval bounds, we might have to exclude somewhat
4318 more than what would be necessary if we used a HARD_REG_SET here.
4319 But this should only happen very infrequently, so there should
4320 be no reason to worry about it. */
4322 start_regno = regno;
4323 end_regno = regno + nregs;
4324 if (check_opnum || check_any)
4326 for (i = n_reloads - 1; i >= 0; i--)
4328 if (rld[i].when_needed == type
4329 && (check_any || rld[i].opnum == opnum)
4330 && rld[i].reg_rtx)
4332 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4333 unsigned int conflict_end
4334 = (conflict_start
4335 + HARD_REGNO_NREGS (conflict_start, rld[i].mode));
4337 /* If there is an overlap with the first to-be-freed register,
4338 adjust the interval start. */
4339 if (conflict_start <= start_regno && conflict_end > start_regno)
4340 start_regno = conflict_end;
4341 /* Otherwise, if there is a conflict with one of the other
4342 to-be-freed registers, adjust the interval end. */
4343 if (conflict_start > start_regno && conflict_start < end_regno)
4344 end_regno = conflict_start;
4349 for (r = start_regno; r < end_regno; r++)
4350 CLEAR_HARD_REG_BIT (*used_in_set, r);
4353 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4354 specified by OPNUM and TYPE. */
4356 static int
4357 reload_reg_free_p (regno, opnum, type)
4358 unsigned int regno;
4359 int opnum;
4360 enum reload_type type;
4362 int i;
4364 /* In use for a RELOAD_OTHER means it's not available for anything. */
4365 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4366 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4367 return 0;
4369 switch (type)
4371 case RELOAD_OTHER:
4372 /* In use for anything means we can't use it for RELOAD_OTHER. */
4373 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4374 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4375 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4376 return 0;
4378 for (i = 0; i < reload_n_operands; i++)
4379 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4380 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4381 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4382 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4383 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4384 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4385 return 0;
4387 return 1;
4389 case RELOAD_FOR_INPUT:
4390 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4391 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4392 return 0;
4394 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4395 return 0;
4397 /* If it is used for some other input, can't use it. */
4398 for (i = 0; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4400 return 0;
4402 /* If it is used in a later operand's address, can't use it. */
4403 for (i = opnum + 1; i < reload_n_operands; i++)
4404 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4405 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4406 return 0;
4408 return 1;
4410 case RELOAD_FOR_INPUT_ADDRESS:
4411 /* Can't use a register if it is used for an input address for this
4412 operand or used as an input in an earlier one. */
4413 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4414 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4415 return 0;
4417 for (i = 0; i < opnum; i++)
4418 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4419 return 0;
4421 return 1;
4423 case RELOAD_FOR_INPADDR_ADDRESS:
4424 /* Can't use a register if it is used for an input address
4425 for this operand or used as an input in an earlier
4426 one. */
4427 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4428 return 0;
4430 for (i = 0; i < opnum; i++)
4431 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4432 return 0;
4434 return 1;
4436 case RELOAD_FOR_OUTPUT_ADDRESS:
4437 /* Can't use a register if it is used for an output address for this
4438 operand or used as an output in this or a later operand. Note
4439 that multiple output operands are emitted in reverse order, so
4440 the conflicting ones are those with lower indices. */
4441 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4442 return 0;
4444 for (i = 0; i <= opnum; i++)
4445 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4446 return 0;
4448 return 1;
4450 case RELOAD_FOR_OUTADDR_ADDRESS:
4451 /* Can't use a register if it is used for an output address
4452 for this operand or used as an output in this or a
4453 later operand. Note that multiple output operands are
4454 emitted in reverse order, so the conflicting ones are
4455 those with lower indices. */
4456 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4457 return 0;
4459 for (i = 0; i <= opnum; i++)
4460 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4461 return 0;
4463 return 1;
4465 case RELOAD_FOR_OPERAND_ADDRESS:
4466 for (i = 0; i < reload_n_operands; i++)
4467 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4468 return 0;
4470 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4471 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4473 case RELOAD_FOR_OPADDR_ADDR:
4474 for (i = 0; i < reload_n_operands; i++)
4475 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4476 return 0;
4478 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4480 case RELOAD_FOR_OUTPUT:
4481 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4482 outputs, or an operand address for this or an earlier output.
4483 Note that multiple output operands are emitted in reverse order,
4484 so the conflicting ones are those with higher indices. */
4485 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4486 return 0;
4488 for (i = 0; i < reload_n_operands; i++)
4489 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4490 return 0;
4492 for (i = opnum; i < reload_n_operands; i++)
4493 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4494 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4495 return 0;
4497 return 1;
4499 case RELOAD_FOR_INSN:
4500 for (i = 0; i < reload_n_operands; i++)
4501 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4502 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4503 return 0;
4505 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4506 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4508 case RELOAD_FOR_OTHER_ADDRESS:
4509 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4511 abort ();
4514 /* Return 1 if the value in reload reg REGNO, as used by a reload
4515 needed for the part of the insn specified by OPNUM and TYPE,
4516 is still available in REGNO at the end of the insn.
4518 We can assume that the reload reg was already tested for availability
4519 at the time it is needed, and we should not check this again,
4520 in case the reg has already been marked in use. */
4522 static int
4523 reload_reg_reaches_end_p (regno, opnum, type)
4524 unsigned int regno;
4525 int opnum;
4526 enum reload_type type;
4528 int i;
4530 switch (type)
4532 case RELOAD_OTHER:
4533 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4534 its value must reach the end. */
4535 return 1;
4537 /* If this use is for part of the insn,
4538 its value reaches if no subsequent part uses the same register.
4539 Just like the above function, don't try to do this with lots
4540 of fallthroughs. */
4542 case RELOAD_FOR_OTHER_ADDRESS:
4543 /* Here we check for everything else, since these don't conflict
4544 with anything else and everything comes later. */
4546 for (i = 0; i < reload_n_operands; i++)
4547 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4548 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4549 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4550 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4551 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4552 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4553 return 0;
4555 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4556 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4557 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4559 case RELOAD_FOR_INPUT_ADDRESS:
4560 case RELOAD_FOR_INPADDR_ADDRESS:
4561 /* Similar, except that we check only for this and subsequent inputs
4562 and the address of only subsequent inputs and we do not need
4563 to check for RELOAD_OTHER objects since they are known not to
4564 conflict. */
4566 for (i = opnum; i < reload_n_operands; i++)
4567 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4568 return 0;
4570 for (i = opnum + 1; i < reload_n_operands; i++)
4571 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4572 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4573 return 0;
4575 for (i = 0; i < reload_n_operands; i++)
4576 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4577 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4578 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4579 return 0;
4581 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4582 return 0;
4584 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4585 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4586 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4588 case RELOAD_FOR_INPUT:
4589 /* Similar to input address, except we start at the next operand for
4590 both input and input address and we do not check for
4591 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4592 would conflict. */
4594 for (i = opnum + 1; i < reload_n_operands; i++)
4595 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4596 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4597 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4598 return 0;
4600 /* ... fall through ... */
4602 case RELOAD_FOR_OPERAND_ADDRESS:
4603 /* Check outputs and their addresses. */
4605 for (i = 0; i < reload_n_operands; i++)
4606 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4607 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4608 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4609 return 0;
4611 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4613 case RELOAD_FOR_OPADDR_ADDR:
4614 for (i = 0; i < reload_n_operands; i++)
4615 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4616 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4617 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4618 return 0;
4620 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4621 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4622 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4624 case RELOAD_FOR_INSN:
4625 /* These conflict with other outputs with RELOAD_OTHER. So
4626 we need only check for output addresses. */
4628 opnum = reload_n_operands;
4630 /* ... fall through ... */
4632 case RELOAD_FOR_OUTPUT:
4633 case RELOAD_FOR_OUTPUT_ADDRESS:
4634 case RELOAD_FOR_OUTADDR_ADDRESS:
4635 /* We already know these can't conflict with a later output. So the
4636 only thing to check are later output addresses.
4637 Note that multiple output operands are emitted in reverse order,
4638 so the conflicting ones are those with lower indices. */
4639 for (i = 0; i < opnum; i++)
4640 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4641 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4642 return 0;
4644 return 1;
4647 abort ();
4650 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4651 Return 0 otherwise.
4653 This function uses the same algorithm as reload_reg_free_p above. */
4656 reloads_conflict (r1, r2)
4657 int r1, r2;
4659 enum reload_type r1_type = rld[r1].when_needed;
4660 enum reload_type r2_type = rld[r2].when_needed;
4661 int r1_opnum = rld[r1].opnum;
4662 int r2_opnum = rld[r2].opnum;
4664 /* RELOAD_OTHER conflicts with everything. */
4665 if (r2_type == RELOAD_OTHER)
4666 return 1;
4668 /* Otherwise, check conflicts differently for each type. */
4670 switch (r1_type)
4672 case RELOAD_FOR_INPUT:
4673 return (r2_type == RELOAD_FOR_INSN
4674 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4675 || r2_type == RELOAD_FOR_OPADDR_ADDR
4676 || r2_type == RELOAD_FOR_INPUT
4677 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4678 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4679 && r2_opnum > r1_opnum));
4681 case RELOAD_FOR_INPUT_ADDRESS:
4682 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4683 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4685 case RELOAD_FOR_INPADDR_ADDRESS:
4686 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4687 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4689 case RELOAD_FOR_OUTPUT_ADDRESS:
4690 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4691 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4693 case RELOAD_FOR_OUTADDR_ADDRESS:
4694 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4695 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4697 case RELOAD_FOR_OPERAND_ADDRESS:
4698 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4699 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4701 case RELOAD_FOR_OPADDR_ADDR:
4702 return (r2_type == RELOAD_FOR_INPUT
4703 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4705 case RELOAD_FOR_OUTPUT:
4706 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4707 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4708 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4709 && r2_opnum >= r1_opnum));
4711 case RELOAD_FOR_INSN:
4712 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4713 || r2_type == RELOAD_FOR_INSN
4714 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4716 case RELOAD_FOR_OTHER_ADDRESS:
4717 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4719 case RELOAD_OTHER:
4720 return 1;
4722 default:
4723 abort ();
4727 /* Indexed by reload number, 1 if incoming value
4728 inherited from previous insns. */
4729 char reload_inherited[MAX_RELOADS];
4731 /* For an inherited reload, this is the insn the reload was inherited from,
4732 if we know it. Otherwise, this is 0. */
4733 rtx reload_inheritance_insn[MAX_RELOADS];
4735 /* If non-zero, this is a place to get the value of the reload,
4736 rather than using reload_in. */
4737 rtx reload_override_in[MAX_RELOADS];
4739 /* For each reload, the hard register number of the register used,
4740 or -1 if we did not need a register for this reload. */
4741 int reload_spill_index[MAX_RELOADS];
4743 /* Subroutine of free_for_value_p, used to check a single register.
4744 START_REGNO is the starting regno of the full reload register
4745 (possibly comprising multiple hard registers) that we are considering. */
4747 static int
4748 reload_reg_free_for_value_p (start_regno, regno, opnum, type, value, out,
4749 reloadnum, ignore_address_reloads)
4750 int start_regno, regno;
4751 int opnum;
4752 enum reload_type type;
4753 rtx value, out;
4754 int reloadnum;
4755 int ignore_address_reloads;
4757 int time1;
4758 /* Set if we see an input reload that must not share its reload register
4759 with any new earlyclobber, but might otherwise share the reload
4760 register with an output or input-output reload. */
4761 int check_earlyclobber = 0;
4762 int i;
4763 int copy = 0;
4765 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4766 return 0;
4768 if (out == const0_rtx)
4770 copy = 1;
4771 out = NULL_RTX;
4774 /* We use some pseudo 'time' value to check if the lifetimes of the
4775 new register use would overlap with the one of a previous reload
4776 that is not read-only or uses a different value.
4777 The 'time' used doesn't have to be linear in any shape or form, just
4778 monotonic.
4779 Some reload types use different 'buckets' for each operand.
4780 So there are MAX_RECOG_OPERANDS different time values for each
4781 such reload type.
4782 We compute TIME1 as the time when the register for the prospective
4783 new reload ceases to be live, and TIME2 for each existing
4784 reload as the time when that the reload register of that reload
4785 becomes live.
4786 Where there is little to be gained by exact lifetime calculations,
4787 we just make conservative assumptions, i.e. a longer lifetime;
4788 this is done in the 'default:' cases. */
4789 switch (type)
4791 case RELOAD_FOR_OTHER_ADDRESS:
4792 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4793 time1 = copy ? 0 : 1;
4794 break;
4795 case RELOAD_OTHER:
4796 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4797 break;
4798 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4799 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4800 respectively, to the time values for these, we get distinct time
4801 values. To get distinct time values for each operand, we have to
4802 multiply opnum by at least three. We round that up to four because
4803 multiply by four is often cheaper. */
4804 case RELOAD_FOR_INPADDR_ADDRESS:
4805 time1 = opnum * 4 + 2;
4806 break;
4807 case RELOAD_FOR_INPUT_ADDRESS:
4808 time1 = opnum * 4 + 3;
4809 break;
4810 case RELOAD_FOR_INPUT:
4811 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4812 executes (inclusive). */
4813 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4814 break;
4815 case RELOAD_FOR_OPADDR_ADDR:
4816 /* opnum * 4 + 4
4817 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4818 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4819 break;
4820 case RELOAD_FOR_OPERAND_ADDRESS:
4821 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4822 is executed. */
4823 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4824 break;
4825 case RELOAD_FOR_OUTADDR_ADDRESS:
4826 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4827 break;
4828 case RELOAD_FOR_OUTPUT_ADDRESS:
4829 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4830 break;
4831 default:
4832 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4835 for (i = 0; i < n_reloads; i++)
4837 rtx reg = rld[i].reg_rtx;
4838 if (reg && GET_CODE (reg) == REG
4839 && ((unsigned) regno - true_regnum (reg)
4840 <= HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg)) - (unsigned) 1)
4841 && i != reloadnum)
4843 rtx other_input = rld[i].in;
4845 /* If the other reload loads the same input value, that
4846 will not cause a conflict only if it's loading it into
4847 the same register. */
4848 if (true_regnum (reg) != start_regno)
4849 other_input = NULL_RTX;
4850 if (! other_input || ! rtx_equal_p (other_input, value)
4851 || rld[i].out || out)
4853 int time2;
4854 switch (rld[i].when_needed)
4856 case RELOAD_FOR_OTHER_ADDRESS:
4857 time2 = 0;
4858 break;
4859 case RELOAD_FOR_INPADDR_ADDRESS:
4860 /* find_reloads makes sure that a
4861 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4862 by at most one - the first -
4863 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4864 address reload is inherited, the address address reload
4865 goes away, so we can ignore this conflict. */
4866 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4867 && ignore_address_reloads
4868 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4869 Then the address address is still needed to store
4870 back the new address. */
4871 && ! rld[reloadnum].out)
4872 continue;
4873 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4874 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4875 reloads go away. */
4876 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4877 && ignore_address_reloads
4878 /* Unless we are reloading an auto_inc expression. */
4879 && ! rld[reloadnum].out)
4880 continue;
4881 time2 = rld[i].opnum * 4 + 2;
4882 break;
4883 case RELOAD_FOR_INPUT_ADDRESS:
4884 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4885 && ignore_address_reloads
4886 && ! rld[reloadnum].out)
4887 continue;
4888 time2 = rld[i].opnum * 4 + 3;
4889 break;
4890 case RELOAD_FOR_INPUT:
4891 time2 = rld[i].opnum * 4 + 4;
4892 check_earlyclobber = 1;
4893 break;
4894 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4895 == MAX_RECOG_OPERAND * 4 */
4896 case RELOAD_FOR_OPADDR_ADDR:
4897 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4898 && ignore_address_reloads
4899 && ! rld[reloadnum].out)
4900 continue;
4901 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4902 break;
4903 case RELOAD_FOR_OPERAND_ADDRESS:
4904 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4905 check_earlyclobber = 1;
4906 break;
4907 case RELOAD_FOR_INSN:
4908 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4909 break;
4910 case RELOAD_FOR_OUTPUT:
4911 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4912 instruction is executed. */
4913 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4914 break;
4915 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4916 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4917 value. */
4918 case RELOAD_FOR_OUTADDR_ADDRESS:
4919 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4920 && ignore_address_reloads
4921 && ! rld[reloadnum].out)
4922 continue;
4923 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4924 break;
4925 case RELOAD_FOR_OUTPUT_ADDRESS:
4926 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4927 break;
4928 case RELOAD_OTHER:
4929 /* If there is no conflict in the input part, handle this
4930 like an output reload. */
4931 if (! rld[i].in || rtx_equal_p (other_input, value))
4933 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4934 /* Earlyclobbered outputs must conflict with inputs. */
4935 if (earlyclobber_operand_p (rld[i].out))
4936 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4938 break;
4940 time2 = 1;
4941 /* RELOAD_OTHER might be live beyond instruction execution,
4942 but this is not obvious when we set time2 = 1. So check
4943 here if there might be a problem with the new reload
4944 clobbering the register used by the RELOAD_OTHER. */
4945 if (out)
4946 return 0;
4947 break;
4948 default:
4949 return 0;
4951 if ((time1 >= time2
4952 && (! rld[i].in || rld[i].out
4953 || ! rtx_equal_p (other_input, value)))
4954 || (out && rld[reloadnum].out_reg
4955 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4956 return 0;
4961 /* Earlyclobbered outputs must conflict with inputs. */
4962 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4963 return 0;
4965 return 1;
4968 /* Return 1 if the value in reload reg REGNO, as used by a reload
4969 needed for the part of the insn specified by OPNUM and TYPE,
4970 may be used to load VALUE into it.
4972 MODE is the mode in which the register is used, this is needed to
4973 determine how many hard regs to test.
4975 Other read-only reloads with the same value do not conflict
4976 unless OUT is non-zero and these other reloads have to live while
4977 output reloads live.
4978 If OUT is CONST0_RTX, this is a special case: it means that the
4979 test should not be for using register REGNO as reload register, but
4980 for copying from register REGNO into the reload register.
4982 RELOADNUM is the number of the reload we want to load this value for;
4983 a reload does not conflict with itself.
4985 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
4986 reloads that load an address for the very reload we are considering.
4988 The caller has to make sure that there is no conflict with the return
4989 register. */
4991 static int
4992 free_for_value_p (regno, mode, opnum, type, value, out, reloadnum,
4993 ignore_address_reloads)
4994 int regno;
4995 enum machine_mode mode;
4996 int opnum;
4997 enum reload_type type;
4998 rtx value, out;
4999 int reloadnum;
5000 int ignore_address_reloads;
5002 int nregs = HARD_REGNO_NREGS (regno, mode);
5003 while (nregs-- > 0)
5004 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5005 value, out, reloadnum,
5006 ignore_address_reloads))
5007 return 0;
5008 return 1;
5011 /* Determine whether the reload reg X overlaps any rtx'es used for
5012 overriding inheritance. Return nonzero if so. */
5014 static int
5015 conflicts_with_override (x)
5016 rtx x;
5018 int i;
5019 for (i = 0; i < n_reloads; i++)
5020 if (reload_override_in[i]
5021 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5022 return 1;
5023 return 0;
5026 /* Give an error message saying we failed to find a reload for INSN,
5027 and clear out reload R. */
5028 static void
5029 failed_reload (insn, r)
5030 rtx insn;
5031 int r;
5033 if (asm_noperands (PATTERN (insn)) < 0)
5034 /* It's the compiler's fault. */
5035 fatal_insn ("could not find a spill register", insn);
5037 /* It's the user's fault; the operand's mode and constraint
5038 don't match. Disable this reload so we don't crash in final. */
5039 error_for_asm (insn,
5040 "`asm' operand constraint incompatible with operand size");
5041 rld[r].in = 0;
5042 rld[r].out = 0;
5043 rld[r].reg_rtx = 0;
5044 rld[r].optional = 1;
5045 rld[r].secondary_p = 1;
5048 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5049 for reload R. If it's valid, get an rtx for it. Return nonzero if
5050 successful. */
5051 static int
5052 set_reload_reg (i, r)
5053 int i, r;
5055 int regno;
5056 rtx reg = spill_reg_rtx[i];
5058 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5059 spill_reg_rtx[i] = reg
5060 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5062 regno = true_regnum (reg);
5064 /* Detect when the reload reg can't hold the reload mode.
5065 This used to be one `if', but Sequent compiler can't handle that. */
5066 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5068 enum machine_mode test_mode = VOIDmode;
5069 if (rld[r].in)
5070 test_mode = GET_MODE (rld[r].in);
5071 /* If rld[r].in has VOIDmode, it means we will load it
5072 in whatever mode the reload reg has: to wit, rld[r].mode.
5073 We have already tested that for validity. */
5074 /* Aside from that, we need to test that the expressions
5075 to reload from or into have modes which are valid for this
5076 reload register. Otherwise the reload insns would be invalid. */
5077 if (! (rld[r].in != 0 && test_mode != VOIDmode
5078 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5079 if (! (rld[r].out != 0
5080 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5082 /* The reg is OK. */
5083 last_spill_reg = i;
5085 /* Mark as in use for this insn the reload regs we use
5086 for this. */
5087 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5088 rld[r].when_needed, rld[r].mode);
5090 rld[r].reg_rtx = reg;
5091 reload_spill_index[r] = spill_regs[i];
5092 return 1;
5095 return 0;
5098 /* Find a spill register to use as a reload register for reload R.
5099 LAST_RELOAD is non-zero if this is the last reload for the insn being
5100 processed.
5102 Set rld[R].reg_rtx to the register allocated.
5104 We return 1 if successful, or 0 if we couldn't find a spill reg and
5105 we didn't change anything. */
5107 static int
5108 allocate_reload_reg (chain, r, last_reload)
5109 struct insn_chain *chain ATTRIBUTE_UNUSED;
5110 int r;
5111 int last_reload;
5113 int i, pass, count;
5115 /* If we put this reload ahead, thinking it is a group,
5116 then insist on finding a group. Otherwise we can grab a
5117 reg that some other reload needs.
5118 (That can happen when we have a 68000 DATA_OR_FP_REG
5119 which is a group of data regs or one fp reg.)
5120 We need not be so restrictive if there are no more reloads
5121 for this insn.
5123 ??? Really it would be nicer to have smarter handling
5124 for that kind of reg class, where a problem like this is normal.
5125 Perhaps those classes should be avoided for reloading
5126 by use of more alternatives. */
5128 int force_group = rld[r].nregs > 1 && ! last_reload;
5130 /* If we want a single register and haven't yet found one,
5131 take any reg in the right class and not in use.
5132 If we want a consecutive group, here is where we look for it.
5134 We use two passes so we can first look for reload regs to
5135 reuse, which are already in use for other reloads in this insn,
5136 and only then use additional registers.
5137 I think that maximizing reuse is needed to make sure we don't
5138 run out of reload regs. Suppose we have three reloads, and
5139 reloads A and B can share regs. These need two regs.
5140 Suppose A and B are given different regs.
5141 That leaves none for C. */
5142 for (pass = 0; pass < 2; pass++)
5144 /* I is the index in spill_regs.
5145 We advance it round-robin between insns to use all spill regs
5146 equally, so that inherited reloads have a chance
5147 of leapfrogging each other. */
5149 i = last_spill_reg;
5151 for (count = 0; count < n_spills; count++)
5153 int class = (int) rld[r].class;
5154 int regnum;
5156 i++;
5157 if (i >= n_spills)
5158 i -= n_spills;
5159 regnum = spill_regs[i];
5161 if ((reload_reg_free_p (regnum, rld[r].opnum,
5162 rld[r].when_needed)
5163 || (rld[r].in
5164 /* We check reload_reg_used to make sure we
5165 don't clobber the return register. */
5166 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5167 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5168 rld[r].when_needed, rld[r].in,
5169 rld[r].out, r, 1)))
5170 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5171 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5172 /* Look first for regs to share, then for unshared. But
5173 don't share regs used for inherited reloads; they are
5174 the ones we want to preserve. */
5175 && (pass
5176 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5177 regnum)
5178 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5179 regnum))))
5181 int nr = HARD_REGNO_NREGS (regnum, rld[r].mode);
5182 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5183 (on 68000) got us two FP regs. If NR is 1,
5184 we would reject both of them. */
5185 if (force_group)
5186 nr = rld[r].nregs;
5187 /* If we need only one reg, we have already won. */
5188 if (nr == 1)
5190 /* But reject a single reg if we demand a group. */
5191 if (force_group)
5192 continue;
5193 break;
5195 /* Otherwise check that as many consecutive regs as we need
5196 are available here. */
5197 while (nr > 1)
5199 int regno = regnum + nr - 1;
5200 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5201 && spill_reg_order[regno] >= 0
5202 && reload_reg_free_p (regno, rld[r].opnum,
5203 rld[r].when_needed)))
5204 break;
5205 nr--;
5207 if (nr == 1)
5208 break;
5212 /* If we found something on pass 1, omit pass 2. */
5213 if (count < n_spills)
5214 break;
5217 /* We should have found a spill register by now. */
5218 if (count >= n_spills)
5219 return 0;
5221 /* I is the index in SPILL_REG_RTX of the reload register we are to
5222 allocate. Get an rtx for it and find its register number. */
5224 return set_reload_reg (i, r);
5227 /* Initialize all the tables needed to allocate reload registers.
5228 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5229 is the array we use to restore the reg_rtx field for every reload. */
5231 static void
5232 choose_reload_regs_init (chain, save_reload_reg_rtx)
5233 struct insn_chain *chain;
5234 rtx *save_reload_reg_rtx;
5236 int i;
5238 for (i = 0; i < n_reloads; i++)
5239 rld[i].reg_rtx = save_reload_reg_rtx[i];
5241 memset (reload_inherited, 0, MAX_RELOADS);
5242 memset ((char *) reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5243 memset ((char *) reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5245 CLEAR_HARD_REG_SET (reload_reg_used);
5246 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5247 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5248 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5249 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5250 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5252 CLEAR_HARD_REG_SET (reg_used_in_insn);
5254 HARD_REG_SET tmp;
5255 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5256 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5257 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5258 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5259 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5260 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5263 for (i = 0; i < reload_n_operands; i++)
5265 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5266 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5267 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5268 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5269 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5270 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5273 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5275 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5277 for (i = 0; i < n_reloads; i++)
5278 /* If we have already decided to use a certain register,
5279 don't use it in another way. */
5280 if (rld[i].reg_rtx)
5281 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5282 rld[i].when_needed, rld[i].mode);
5285 /* Assign hard reg targets for the pseudo-registers we must reload
5286 into hard regs for this insn.
5287 Also output the instructions to copy them in and out of the hard regs.
5289 For machines with register classes, we are responsible for
5290 finding a reload reg in the proper class. */
5292 static void
5293 choose_reload_regs (chain)
5294 struct insn_chain *chain;
5296 rtx insn = chain->insn;
5297 int i, j;
5298 unsigned int max_group_size = 1;
5299 enum reg_class group_class = NO_REGS;
5300 int pass, win, inheritance;
5302 rtx save_reload_reg_rtx[MAX_RELOADS];
5304 /* In order to be certain of getting the registers we need,
5305 we must sort the reloads into order of increasing register class.
5306 Then our grabbing of reload registers will parallel the process
5307 that provided the reload registers.
5309 Also note whether any of the reloads wants a consecutive group of regs.
5310 If so, record the maximum size of the group desired and what
5311 register class contains all the groups needed by this insn. */
5313 for (j = 0; j < n_reloads; j++)
5315 reload_order[j] = j;
5316 reload_spill_index[j] = -1;
5318 if (rld[j].nregs > 1)
5320 max_group_size = MAX (rld[j].nregs, max_group_size);
5321 group_class
5322 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5325 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5328 if (n_reloads > 1)
5329 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5331 /* If -O, try first with inheritance, then turning it off.
5332 If not -O, don't do inheritance.
5333 Using inheritance when not optimizing leads to paradoxes
5334 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5335 because one side of the comparison might be inherited. */
5336 win = 0;
5337 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5339 choose_reload_regs_init (chain, save_reload_reg_rtx);
5341 /* Process the reloads in order of preference just found.
5342 Beyond this point, subregs can be found in reload_reg_rtx.
5344 This used to look for an existing reloaded home for all of the
5345 reloads, and only then perform any new reloads. But that could lose
5346 if the reloads were done out of reg-class order because a later
5347 reload with a looser constraint might have an old home in a register
5348 needed by an earlier reload with a tighter constraint.
5350 To solve this, we make two passes over the reloads, in the order
5351 described above. In the first pass we try to inherit a reload
5352 from a previous insn. If there is a later reload that needs a
5353 class that is a proper subset of the class being processed, we must
5354 also allocate a spill register during the first pass.
5356 Then make a second pass over the reloads to allocate any reloads
5357 that haven't been given registers yet. */
5359 for (j = 0; j < n_reloads; j++)
5361 int r = reload_order[j];
5362 rtx search_equiv = NULL_RTX;
5364 /* Ignore reloads that got marked inoperative. */
5365 if (rld[r].out == 0 && rld[r].in == 0
5366 && ! rld[r].secondary_p)
5367 continue;
5369 /* If find_reloads chose to use reload_in or reload_out as a reload
5370 register, we don't need to chose one. Otherwise, try even if it
5371 found one since we might save an insn if we find the value lying
5372 around.
5373 Try also when reload_in is a pseudo without a hard reg. */
5374 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5375 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5376 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5377 && GET_CODE (rld[r].in) != MEM
5378 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5379 continue;
5381 #if 0 /* No longer needed for correct operation.
5382 It might give better code, or might not; worth an experiment? */
5383 /* If this is an optional reload, we can't inherit from earlier insns
5384 until we are sure that any non-optional reloads have been allocated.
5385 The following code takes advantage of the fact that optional reloads
5386 are at the end of reload_order. */
5387 if (rld[r].optional != 0)
5388 for (i = 0; i < j; i++)
5389 if ((rld[reload_order[i]].out != 0
5390 || rld[reload_order[i]].in != 0
5391 || rld[reload_order[i]].secondary_p)
5392 && ! rld[reload_order[i]].optional
5393 && rld[reload_order[i]].reg_rtx == 0)
5394 allocate_reload_reg (chain, reload_order[i], 0);
5395 #endif
5397 /* First see if this pseudo is already available as reloaded
5398 for a previous insn. We cannot try to inherit for reloads
5399 that are smaller than the maximum number of registers needed
5400 for groups unless the register we would allocate cannot be used
5401 for the groups.
5403 We could check here to see if this is a secondary reload for
5404 an object that is already in a register of the desired class.
5405 This would avoid the need for the secondary reload register.
5406 But this is complex because we can't easily determine what
5407 objects might want to be loaded via this reload. So let a
5408 register be allocated here. In `emit_reload_insns' we suppress
5409 one of the loads in the case described above. */
5411 if (inheritance)
5413 int byte = 0;
5414 int regno = -1;
5415 enum machine_mode mode = VOIDmode;
5417 if (rld[r].in == 0)
5419 else if (GET_CODE (rld[r].in) == REG)
5421 regno = REGNO (rld[r].in);
5422 mode = GET_MODE (rld[r].in);
5424 else if (GET_CODE (rld[r].in_reg) == REG)
5426 regno = REGNO (rld[r].in_reg);
5427 mode = GET_MODE (rld[r].in_reg);
5429 else if (GET_CODE (rld[r].in_reg) == SUBREG
5430 && GET_CODE (SUBREG_REG (rld[r].in_reg)) == REG)
5432 byte = SUBREG_BYTE (rld[r].in_reg);
5433 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5434 if (regno < FIRST_PSEUDO_REGISTER)
5435 regno = subreg_regno (rld[r].in_reg);
5436 mode = GET_MODE (rld[r].in_reg);
5438 #ifdef AUTO_INC_DEC
5439 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5440 || GET_CODE (rld[r].in_reg) == PRE_DEC
5441 || GET_CODE (rld[r].in_reg) == POST_INC
5442 || GET_CODE (rld[r].in_reg) == POST_DEC)
5443 && GET_CODE (XEXP (rld[r].in_reg, 0)) == REG)
5445 regno = REGNO (XEXP (rld[r].in_reg, 0));
5446 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5447 rld[r].out = rld[r].in;
5449 #endif
5450 #if 0
5451 /* This won't work, since REGNO can be a pseudo reg number.
5452 Also, it takes much more hair to keep track of all the things
5453 that can invalidate an inherited reload of part of a pseudoreg. */
5454 else if (GET_CODE (rld[r].in) == SUBREG
5455 && GET_CODE (SUBREG_REG (rld[r].in)) == REG)
5456 regno = subreg_regno (rld[r].in);
5457 #endif
5459 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5461 enum reg_class class = rld[r].class, last_class;
5462 rtx last_reg = reg_last_reload_reg[regno];
5463 enum machine_mode need_mode;
5465 i = REGNO (last_reg);
5466 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5467 last_class = REGNO_REG_CLASS (i);
5469 if (byte == 0)
5470 need_mode = mode;
5471 else
5472 need_mode
5473 = smallest_mode_for_size (GET_MODE_SIZE (mode) + byte,
5474 GET_MODE_CLASS (mode));
5476 if (
5477 #ifdef CLASS_CANNOT_CHANGE_MODE
5478 (TEST_HARD_REG_BIT
5479 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE], i)
5480 ? ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (last_reg),
5481 need_mode)
5482 : (GET_MODE_SIZE (GET_MODE (last_reg))
5483 >= GET_MODE_SIZE (need_mode)))
5484 #else
5485 (GET_MODE_SIZE (GET_MODE (last_reg))
5486 >= GET_MODE_SIZE (need_mode))
5487 #endif
5488 && reg_reloaded_contents[i] == regno
5489 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5490 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5491 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5492 /* Even if we can't use this register as a reload
5493 register, we might use it for reload_override_in,
5494 if copying it to the desired class is cheap
5495 enough. */
5496 || ((REGISTER_MOVE_COST (mode, last_class, class)
5497 < MEMORY_MOVE_COST (mode, class, 1))
5498 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5499 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5500 last_reg)
5501 == NO_REGS)
5502 #endif
5503 #ifdef SECONDARY_MEMORY_NEEDED
5504 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5505 mode)
5506 #endif
5509 && (rld[r].nregs == max_group_size
5510 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5512 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5513 rld[r].when_needed, rld[r].in,
5514 const0_rtx, r, 1))
5516 /* If a group is needed, verify that all the subsequent
5517 registers still have their values intact. */
5518 int nr = HARD_REGNO_NREGS (i, rld[r].mode);
5519 int k;
5521 for (k = 1; k < nr; k++)
5522 if (reg_reloaded_contents[i + k] != regno
5523 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5524 break;
5526 if (k == nr)
5528 int i1;
5529 int bad_for_class;
5531 last_reg = (GET_MODE (last_reg) == mode
5532 ? last_reg : gen_rtx_REG (mode, i));
5534 bad_for_class = 0;
5535 for (k = 0; k < nr; k++)
5536 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5537 i+k);
5539 /* We found a register that contains the
5540 value we need. If this register is the
5541 same as an `earlyclobber' operand of the
5542 current insn, just mark it as a place to
5543 reload from since we can't use it as the
5544 reload register itself. */
5546 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5547 if (reg_overlap_mentioned_for_reload_p
5548 (reg_last_reload_reg[regno],
5549 reload_earlyclobbers[i1]))
5550 break;
5552 if (i1 != n_earlyclobbers
5553 || ! (free_for_value_p (i, rld[r].mode,
5554 rld[r].opnum,
5555 rld[r].when_needed, rld[r].in,
5556 rld[r].out, r, 1))
5557 /* Don't use it if we'd clobber a pseudo reg. */
5558 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5559 && rld[r].out
5560 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5561 /* Don't clobber the frame pointer. */
5562 || (i == HARD_FRAME_POINTER_REGNUM
5563 && rld[r].out)
5564 /* Don't really use the inherited spill reg
5565 if we need it wider than we've got it. */
5566 || (GET_MODE_SIZE (rld[r].mode)
5567 > GET_MODE_SIZE (mode))
5568 || bad_for_class
5570 /* If find_reloads chose reload_out as reload
5571 register, stay with it - that leaves the
5572 inherited register for subsequent reloads. */
5573 || (rld[r].out && rld[r].reg_rtx
5574 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5576 if (! rld[r].optional)
5578 reload_override_in[r] = last_reg;
5579 reload_inheritance_insn[r]
5580 = reg_reloaded_insn[i];
5583 else
5585 int k;
5586 /* We can use this as a reload reg. */
5587 /* Mark the register as in use for this part of
5588 the insn. */
5589 mark_reload_reg_in_use (i,
5590 rld[r].opnum,
5591 rld[r].when_needed,
5592 rld[r].mode);
5593 rld[r].reg_rtx = last_reg;
5594 reload_inherited[r] = 1;
5595 reload_inheritance_insn[r]
5596 = reg_reloaded_insn[i];
5597 reload_spill_index[r] = i;
5598 for (k = 0; k < nr; k++)
5599 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5600 i + k);
5607 /* Here's another way to see if the value is already lying around. */
5608 if (inheritance
5609 && rld[r].in != 0
5610 && ! reload_inherited[r]
5611 && rld[r].out == 0
5612 && (CONSTANT_P (rld[r].in)
5613 || GET_CODE (rld[r].in) == PLUS
5614 || GET_CODE (rld[r].in) == REG
5615 || GET_CODE (rld[r].in) == MEM)
5616 && (rld[r].nregs == max_group_size
5617 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5618 search_equiv = rld[r].in;
5619 /* If this is an output reload from a simple move insn, look
5620 if an equivalence for the input is available. */
5621 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5623 rtx set = single_set (insn);
5625 if (set
5626 && rtx_equal_p (rld[r].out, SET_DEST (set))
5627 && CONSTANT_P (SET_SRC (set)))
5628 search_equiv = SET_SRC (set);
5631 if (search_equiv)
5633 rtx equiv
5634 = find_equiv_reg (search_equiv, insn, rld[r].class,
5635 -1, NULL, 0, rld[r].mode);
5636 int regno = 0;
5638 if (equiv != 0)
5640 if (GET_CODE (equiv) == REG)
5641 regno = REGNO (equiv);
5642 else if (GET_CODE (equiv) == SUBREG)
5644 /* This must be a SUBREG of a hard register.
5645 Make a new REG since this might be used in an
5646 address and not all machines support SUBREGs
5647 there. */
5648 regno = subreg_regno (equiv);
5649 equiv = gen_rtx_REG (rld[r].mode, regno);
5651 else
5652 abort ();
5655 /* If we found a spill reg, reject it unless it is free
5656 and of the desired class. */
5657 if (equiv != 0
5658 && ((TEST_HARD_REG_BIT (reload_reg_used_at_all, regno)
5659 && ! free_for_value_p (regno, rld[r].mode,
5660 rld[r].opnum, rld[r].when_needed,
5661 rld[r].in, rld[r].out, r, 1))
5662 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5663 regno)))
5664 equiv = 0;
5666 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5667 equiv = 0;
5669 /* We found a register that contains the value we need.
5670 If this register is the same as an `earlyclobber' operand
5671 of the current insn, just mark it as a place to reload from
5672 since we can't use it as the reload register itself. */
5674 if (equiv != 0)
5675 for (i = 0; i < n_earlyclobbers; i++)
5676 if (reg_overlap_mentioned_for_reload_p (equiv,
5677 reload_earlyclobbers[i]))
5679 if (! rld[r].optional)
5680 reload_override_in[r] = equiv;
5681 equiv = 0;
5682 break;
5685 /* If the equiv register we have found is explicitly clobbered
5686 in the current insn, it depends on the reload type if we
5687 can use it, use it for reload_override_in, or not at all.
5688 In particular, we then can't use EQUIV for a
5689 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5691 if (equiv != 0)
5693 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5694 switch (rld[r].when_needed)
5696 case RELOAD_FOR_OTHER_ADDRESS:
5697 case RELOAD_FOR_INPADDR_ADDRESS:
5698 case RELOAD_FOR_INPUT_ADDRESS:
5699 case RELOAD_FOR_OPADDR_ADDR:
5700 break;
5701 case RELOAD_OTHER:
5702 case RELOAD_FOR_INPUT:
5703 case RELOAD_FOR_OPERAND_ADDRESS:
5704 if (! rld[r].optional)
5705 reload_override_in[r] = equiv;
5706 /* Fall through. */
5707 default:
5708 equiv = 0;
5709 break;
5711 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5712 switch (rld[r].when_needed)
5714 case RELOAD_FOR_OTHER_ADDRESS:
5715 case RELOAD_FOR_INPADDR_ADDRESS:
5716 case RELOAD_FOR_INPUT_ADDRESS:
5717 case RELOAD_FOR_OPADDR_ADDR:
5718 case RELOAD_FOR_OPERAND_ADDRESS:
5719 case RELOAD_FOR_INPUT:
5720 break;
5721 case RELOAD_OTHER:
5722 if (! rld[r].optional)
5723 reload_override_in[r] = equiv;
5724 /* Fall through. */
5725 default:
5726 equiv = 0;
5727 break;
5731 /* If we found an equivalent reg, say no code need be generated
5732 to load it, and use it as our reload reg. */
5733 if (equiv != 0 && regno != HARD_FRAME_POINTER_REGNUM)
5735 int nr = HARD_REGNO_NREGS (regno, rld[r].mode);
5736 int k;
5737 rld[r].reg_rtx = equiv;
5738 reload_inherited[r] = 1;
5740 /* If reg_reloaded_valid is not set for this register,
5741 there might be a stale spill_reg_store lying around.
5742 We must clear it, since otherwise emit_reload_insns
5743 might delete the store. */
5744 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5745 spill_reg_store[regno] = NULL_RTX;
5746 /* If any of the hard registers in EQUIV are spill
5747 registers, mark them as in use for this insn. */
5748 for (k = 0; k < nr; k++)
5750 i = spill_reg_order[regno + k];
5751 if (i >= 0)
5753 mark_reload_reg_in_use (regno, rld[r].opnum,
5754 rld[r].when_needed,
5755 rld[r].mode);
5756 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5757 regno + k);
5763 /* If we found a register to use already, or if this is an optional
5764 reload, we are done. */
5765 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5766 continue;
5768 #if 0
5769 /* No longer needed for correct operation. Might or might
5770 not give better code on the average. Want to experiment? */
5772 /* See if there is a later reload that has a class different from our
5773 class that intersects our class or that requires less register
5774 than our reload. If so, we must allocate a register to this
5775 reload now, since that reload might inherit a previous reload
5776 and take the only available register in our class. Don't do this
5777 for optional reloads since they will force all previous reloads
5778 to be allocated. Also don't do this for reloads that have been
5779 turned off. */
5781 for (i = j + 1; i < n_reloads; i++)
5783 int s = reload_order[i];
5785 if ((rld[s].in == 0 && rld[s].out == 0
5786 && ! rld[s].secondary_p)
5787 || rld[s].optional)
5788 continue;
5790 if ((rld[s].class != rld[r].class
5791 && reg_classes_intersect_p (rld[r].class,
5792 rld[s].class))
5793 || rld[s].nregs < rld[r].nregs)
5794 break;
5797 if (i == n_reloads)
5798 continue;
5800 allocate_reload_reg (chain, r, j == n_reloads - 1);
5801 #endif
5804 /* Now allocate reload registers for anything non-optional that
5805 didn't get one yet. */
5806 for (j = 0; j < n_reloads; j++)
5808 int r = reload_order[j];
5810 /* Ignore reloads that got marked inoperative. */
5811 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5812 continue;
5814 /* Skip reloads that already have a register allocated or are
5815 optional. */
5816 if (rld[r].reg_rtx != 0 || rld[r].optional)
5817 continue;
5819 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5820 break;
5823 /* If that loop got all the way, we have won. */
5824 if (j == n_reloads)
5826 win = 1;
5827 break;
5830 /* Loop around and try without any inheritance. */
5833 if (! win)
5835 /* First undo everything done by the failed attempt
5836 to allocate with inheritance. */
5837 choose_reload_regs_init (chain, save_reload_reg_rtx);
5839 /* Some sanity tests to verify that the reloads found in the first
5840 pass are identical to the ones we have now. */
5841 if (chain->n_reloads != n_reloads)
5842 abort ();
5844 for (i = 0; i < n_reloads; i++)
5846 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5847 continue;
5848 if (chain->rld[i].when_needed != rld[i].when_needed)
5849 abort ();
5850 for (j = 0; j < n_spills; j++)
5851 if (spill_regs[j] == chain->rld[i].regno)
5852 if (! set_reload_reg (j, i))
5853 failed_reload (chain->insn, i);
5857 /* If we thought we could inherit a reload, because it seemed that
5858 nothing else wanted the same reload register earlier in the insn,
5859 verify that assumption, now that all reloads have been assigned.
5860 Likewise for reloads where reload_override_in has been set. */
5862 /* If doing expensive optimizations, do one preliminary pass that doesn't
5863 cancel any inheritance, but removes reloads that have been needed only
5864 for reloads that we know can be inherited. */
5865 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5867 for (j = 0; j < n_reloads; j++)
5869 int r = reload_order[j];
5870 rtx check_reg;
5871 if (reload_inherited[r] && rld[r].reg_rtx)
5872 check_reg = rld[r].reg_rtx;
5873 else if (reload_override_in[r]
5874 && (GET_CODE (reload_override_in[r]) == REG
5875 || GET_CODE (reload_override_in[r]) == SUBREG))
5876 check_reg = reload_override_in[r];
5877 else
5878 continue;
5879 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5880 rld[r].opnum, rld[r].when_needed, rld[r].in,
5881 (reload_inherited[r]
5882 ? rld[r].out : const0_rtx),
5883 r, 1))
5885 if (pass)
5886 continue;
5887 reload_inherited[r] = 0;
5888 reload_override_in[r] = 0;
5890 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5891 reload_override_in, then we do not need its related
5892 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5893 likewise for other reload types.
5894 We handle this by removing a reload when its only replacement
5895 is mentioned in reload_in of the reload we are going to inherit.
5896 A special case are auto_inc expressions; even if the input is
5897 inherited, we still need the address for the output. We can
5898 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5899 If we succeeded removing some reload and we are doing a preliminary
5900 pass just to remove such reloads, make another pass, since the
5901 removal of one reload might allow us to inherit another one. */
5902 else if (rld[r].in
5903 && rld[r].out != rld[r].in
5904 && remove_address_replacements (rld[r].in) && pass)
5905 pass = 2;
5909 /* Now that reload_override_in is known valid,
5910 actually override reload_in. */
5911 for (j = 0; j < n_reloads; j++)
5912 if (reload_override_in[j])
5913 rld[j].in = reload_override_in[j];
5915 /* If this reload won't be done because it has been cancelled or is
5916 optional and not inherited, clear reload_reg_rtx so other
5917 routines (such as subst_reloads) don't get confused. */
5918 for (j = 0; j < n_reloads; j++)
5919 if (rld[j].reg_rtx != 0
5920 && ((rld[j].optional && ! reload_inherited[j])
5921 || (rld[j].in == 0 && rld[j].out == 0
5922 && ! rld[j].secondary_p)))
5924 int regno = true_regnum (rld[j].reg_rtx);
5926 if (spill_reg_order[regno] >= 0)
5927 clear_reload_reg_in_use (regno, rld[j].opnum,
5928 rld[j].when_needed, rld[j].mode);
5929 rld[j].reg_rtx = 0;
5930 reload_spill_index[j] = -1;
5933 /* Record which pseudos and which spill regs have output reloads. */
5934 for (j = 0; j < n_reloads; j++)
5936 int r = reload_order[j];
5938 i = reload_spill_index[r];
5940 /* I is nonneg if this reload uses a register.
5941 If rld[r].reg_rtx is 0, this is an optional reload
5942 that we opted to ignore. */
5943 if (rld[r].out_reg != 0 && GET_CODE (rld[r].out_reg) == REG
5944 && rld[r].reg_rtx != 0)
5946 int nregno = REGNO (rld[r].out_reg);
5947 int nr = 1;
5949 if (nregno < FIRST_PSEUDO_REGISTER)
5950 nr = HARD_REGNO_NREGS (nregno, rld[r].mode);
5952 while (--nr >= 0)
5953 reg_has_output_reload[nregno + nr] = 1;
5955 if (i >= 0)
5957 nr = HARD_REGNO_NREGS (i, rld[r].mode);
5958 while (--nr >= 0)
5959 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
5962 if (rld[r].when_needed != RELOAD_OTHER
5963 && rld[r].when_needed != RELOAD_FOR_OUTPUT
5964 && rld[r].when_needed != RELOAD_FOR_INSN)
5965 abort ();
5970 /* Deallocate the reload register for reload R. This is called from
5971 remove_address_replacements. */
5973 void
5974 deallocate_reload_reg (r)
5975 int r;
5977 int regno;
5979 if (! rld[r].reg_rtx)
5980 return;
5981 regno = true_regnum (rld[r].reg_rtx);
5982 rld[r].reg_rtx = 0;
5983 if (spill_reg_order[regno] >= 0)
5984 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
5985 rld[r].mode);
5986 reload_spill_index[r] = -1;
5989 /* If SMALL_REGISTER_CLASSES is non-zero, we may not have merged two
5990 reloads of the same item for fear that we might not have enough reload
5991 registers. However, normally they will get the same reload register
5992 and hence actually need not be loaded twice.
5994 Here we check for the most common case of this phenomenon: when we have
5995 a number of reloads for the same object, each of which were allocated
5996 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
5997 reload, and is not modified in the insn itself. If we find such,
5998 merge all the reloads and set the resulting reload to RELOAD_OTHER.
5999 This will not increase the number of spill registers needed and will
6000 prevent redundant code. */
6002 static void
6003 merge_assigned_reloads (insn)
6004 rtx insn;
6006 int i, j;
6008 /* Scan all the reloads looking for ones that only load values and
6009 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6010 assigned and not modified by INSN. */
6012 for (i = 0; i < n_reloads; i++)
6014 int conflicting_input = 0;
6015 int max_input_address_opnum = -1;
6016 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6018 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6019 || rld[i].out != 0 || rld[i].reg_rtx == 0
6020 || reg_set_p (rld[i].reg_rtx, insn))
6021 continue;
6023 /* Look at all other reloads. Ensure that the only use of this
6024 reload_reg_rtx is in a reload that just loads the same value
6025 as we do. Note that any secondary reloads must be of the identical
6026 class since the values, modes, and result registers are the
6027 same, so we need not do anything with any secondary reloads. */
6029 for (j = 0; j < n_reloads; j++)
6031 if (i == j || rld[j].reg_rtx == 0
6032 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6033 rld[i].reg_rtx))
6034 continue;
6036 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6037 && rld[j].opnum > max_input_address_opnum)
6038 max_input_address_opnum = rld[j].opnum;
6040 /* If the reload regs aren't exactly the same (e.g, different modes)
6041 or if the values are different, we can't merge this reload.
6042 But if it is an input reload, we might still merge
6043 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6045 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6046 || rld[j].out != 0 || rld[j].in == 0
6047 || ! rtx_equal_p (rld[i].in, rld[j].in))
6049 if (rld[j].when_needed != RELOAD_FOR_INPUT
6050 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6051 || rld[i].opnum > rld[j].opnum)
6052 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6053 break;
6054 conflicting_input = 1;
6055 if (min_conflicting_input_opnum > rld[j].opnum)
6056 min_conflicting_input_opnum = rld[j].opnum;
6060 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6061 we, in fact, found any matching reloads. */
6063 if (j == n_reloads
6064 && max_input_address_opnum <= min_conflicting_input_opnum)
6066 for (j = 0; j < n_reloads; j++)
6067 if (i != j && rld[j].reg_rtx != 0
6068 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6069 && (! conflicting_input
6070 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6071 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6073 rld[i].when_needed = RELOAD_OTHER;
6074 rld[j].in = 0;
6075 reload_spill_index[j] = -1;
6076 transfer_replacements (i, j);
6079 /* If this is now RELOAD_OTHER, look for any reloads that load
6080 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6081 if they were for inputs, RELOAD_OTHER for outputs. Note that
6082 this test is equivalent to looking for reloads for this operand
6083 number. */
6085 if (rld[i].when_needed == RELOAD_OTHER)
6086 for (j = 0; j < n_reloads; j++)
6087 if (rld[j].in != 0
6088 && rld[j].when_needed != RELOAD_OTHER
6089 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6090 rld[i].in))
6091 rld[j].when_needed
6092 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6093 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6094 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6099 /* These arrays are filled by emit_reload_insns and its subroutines. */
6100 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6101 static rtx other_input_address_reload_insns = 0;
6102 static rtx other_input_reload_insns = 0;
6103 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6104 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6105 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6106 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6107 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6108 static rtx operand_reload_insns = 0;
6109 static rtx other_operand_reload_insns = 0;
6110 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6112 /* Values to be put in spill_reg_store are put here first. */
6113 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6114 static HARD_REG_SET reg_reloaded_died;
6116 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6117 has the number J. OLD contains the value to be used as input. */
6119 static void
6120 emit_input_reload_insns (chain, rl, old, j)
6121 struct insn_chain *chain;
6122 struct reload *rl;
6123 rtx old;
6124 int j;
6126 rtx insn = chain->insn;
6127 rtx reloadreg = rl->reg_rtx;
6128 rtx oldequiv_reg = 0;
6129 rtx oldequiv = 0;
6130 int special = 0;
6131 enum machine_mode mode;
6132 rtx *where;
6134 /* Determine the mode to reload in.
6135 This is very tricky because we have three to choose from.
6136 There is the mode the insn operand wants (rl->inmode).
6137 There is the mode of the reload register RELOADREG.
6138 There is the intrinsic mode of the operand, which we could find
6139 by stripping some SUBREGs.
6140 It turns out that RELOADREG's mode is irrelevant:
6141 we can change that arbitrarily.
6143 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6144 then the reload reg may not support QImode moves, so use SImode.
6145 If foo is in memory due to spilling a pseudo reg, this is safe,
6146 because the QImode value is in the least significant part of a
6147 slot big enough for a SImode. If foo is some other sort of
6148 memory reference, then it is impossible to reload this case,
6149 so previous passes had better make sure this never happens.
6151 Then consider a one-word union which has SImode and one of its
6152 members is a float, being fetched as (SUBREG:SF union:SI).
6153 We must fetch that as SFmode because we could be loading into
6154 a float-only register. In this case OLD's mode is correct.
6156 Consider an immediate integer: it has VOIDmode. Here we need
6157 to get a mode from something else.
6159 In some cases, there is a fourth mode, the operand's
6160 containing mode. If the insn specifies a containing mode for
6161 this operand, it overrides all others.
6163 I am not sure whether the algorithm here is always right,
6164 but it does the right things in those cases. */
6166 mode = GET_MODE (old);
6167 if (mode == VOIDmode)
6168 mode = rl->inmode;
6170 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6171 /* If we need a secondary register for this operation, see if
6172 the value is already in a register in that class. Don't
6173 do this if the secondary register will be used as a scratch
6174 register. */
6176 if (rl->secondary_in_reload >= 0
6177 && rl->secondary_in_icode == CODE_FOR_nothing
6178 && optimize)
6179 oldequiv
6180 = find_equiv_reg (old, insn,
6181 rld[rl->secondary_in_reload].class,
6182 -1, NULL, 0, mode);
6183 #endif
6185 /* If reloading from memory, see if there is a register
6186 that already holds the same value. If so, reload from there.
6187 We can pass 0 as the reload_reg_p argument because
6188 any other reload has either already been emitted,
6189 in which case find_equiv_reg will see the reload-insn,
6190 or has yet to be emitted, in which case it doesn't matter
6191 because we will use this equiv reg right away. */
6193 if (oldequiv == 0 && optimize
6194 && (GET_CODE (old) == MEM
6195 || (GET_CODE (old) == REG
6196 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6197 && reg_renumber[REGNO (old)] < 0)))
6198 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6200 if (oldequiv)
6202 unsigned int regno = true_regnum (oldequiv);
6204 /* Don't use OLDEQUIV if any other reload changes it at an
6205 earlier stage of this insn or at this stage. */
6206 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6207 rl->in, const0_rtx, j, 0))
6208 oldequiv = 0;
6210 /* If it is no cheaper to copy from OLDEQUIV into the
6211 reload register than it would be to move from memory,
6212 don't use it. Likewise, if we need a secondary register
6213 or memory. */
6215 if (oldequiv != 0
6216 && ((REGNO_REG_CLASS (regno) != rl->class
6217 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6218 rl->class)
6219 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6220 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6221 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6222 mode, oldequiv)
6223 != NO_REGS)
6224 #endif
6225 #ifdef SECONDARY_MEMORY_NEEDED
6226 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6227 rl->class,
6228 mode)
6229 #endif
6231 oldequiv = 0;
6234 /* delete_output_reload is only invoked properly if old contains
6235 the original pseudo register. Since this is replaced with a
6236 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6237 find the pseudo in RELOAD_IN_REG. */
6238 if (oldequiv == 0
6239 && reload_override_in[j]
6240 && GET_CODE (rl->in_reg) == REG)
6242 oldequiv = old;
6243 old = rl->in_reg;
6245 if (oldequiv == 0)
6246 oldequiv = old;
6247 else if (GET_CODE (oldequiv) == REG)
6248 oldequiv_reg = oldequiv;
6249 else if (GET_CODE (oldequiv) == SUBREG)
6250 oldequiv_reg = SUBREG_REG (oldequiv);
6252 /* If we are reloading from a register that was recently stored in
6253 with an output-reload, see if we can prove there was
6254 actually no need to store the old value in it. */
6256 if (optimize && GET_CODE (oldequiv) == REG
6257 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6258 && spill_reg_store[REGNO (oldequiv)]
6259 && GET_CODE (old) == REG
6260 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6261 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6262 rl->out_reg)))
6263 delete_output_reload (insn, j, REGNO (oldequiv));
6265 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6266 then load RELOADREG from OLDEQUIV. Note that we cannot use
6267 gen_lowpart_common since it can do the wrong thing when
6268 RELOADREG has a multi-word mode. Note that RELOADREG
6269 must always be a REG here. */
6271 if (GET_MODE (reloadreg) != mode)
6272 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6273 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6274 oldequiv = SUBREG_REG (oldequiv);
6275 if (GET_MODE (oldequiv) != VOIDmode
6276 && mode != GET_MODE (oldequiv))
6277 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6279 /* Switch to the right place to emit the reload insns. */
6280 switch (rl->when_needed)
6282 case RELOAD_OTHER:
6283 where = &other_input_reload_insns;
6284 break;
6285 case RELOAD_FOR_INPUT:
6286 where = &input_reload_insns[rl->opnum];
6287 break;
6288 case RELOAD_FOR_INPUT_ADDRESS:
6289 where = &input_address_reload_insns[rl->opnum];
6290 break;
6291 case RELOAD_FOR_INPADDR_ADDRESS:
6292 where = &inpaddr_address_reload_insns[rl->opnum];
6293 break;
6294 case RELOAD_FOR_OUTPUT_ADDRESS:
6295 where = &output_address_reload_insns[rl->opnum];
6296 break;
6297 case RELOAD_FOR_OUTADDR_ADDRESS:
6298 where = &outaddr_address_reload_insns[rl->opnum];
6299 break;
6300 case RELOAD_FOR_OPERAND_ADDRESS:
6301 where = &operand_reload_insns;
6302 break;
6303 case RELOAD_FOR_OPADDR_ADDR:
6304 where = &other_operand_reload_insns;
6305 break;
6306 case RELOAD_FOR_OTHER_ADDRESS:
6307 where = &other_input_address_reload_insns;
6308 break;
6309 default:
6310 abort ();
6313 push_to_sequence (*where);
6315 /* Auto-increment addresses must be reloaded in a special way. */
6316 if (rl->out && ! rl->out_reg)
6318 /* We are not going to bother supporting the case where a
6319 incremented register can't be copied directly from
6320 OLDEQUIV since this seems highly unlikely. */
6321 if (rl->secondary_in_reload >= 0)
6322 abort ();
6324 if (reload_inherited[j])
6325 oldequiv = reloadreg;
6327 old = XEXP (rl->in_reg, 0);
6329 if (optimize && GET_CODE (oldequiv) == REG
6330 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6331 && spill_reg_store[REGNO (oldequiv)]
6332 && GET_CODE (old) == REG
6333 && (dead_or_set_p (insn,
6334 spill_reg_stored_to[REGNO (oldequiv)])
6335 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6336 old)))
6337 delete_output_reload (insn, j, REGNO (oldequiv));
6339 /* Prevent normal processing of this reload. */
6340 special = 1;
6341 /* Output a special code sequence for this case. */
6342 new_spill_reg_store[REGNO (reloadreg)]
6343 = inc_for_reload (reloadreg, oldequiv, rl->out,
6344 rl->inc);
6347 /* If we are reloading a pseudo-register that was set by the previous
6348 insn, see if we can get rid of that pseudo-register entirely
6349 by redirecting the previous insn into our reload register. */
6351 else if (optimize && GET_CODE (old) == REG
6352 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6353 && dead_or_set_p (insn, old)
6354 /* This is unsafe if some other reload
6355 uses the same reg first. */
6356 && ! conflicts_with_override (reloadreg)
6357 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6358 rl->when_needed, old, rl->out, j, 0))
6360 rtx temp = PREV_INSN (insn);
6361 while (temp && GET_CODE (temp) == NOTE)
6362 temp = PREV_INSN (temp);
6363 if (temp
6364 && GET_CODE (temp) == INSN
6365 && GET_CODE (PATTERN (temp)) == SET
6366 && SET_DEST (PATTERN (temp)) == old
6367 /* Make sure we can access insn_operand_constraint. */
6368 && asm_noperands (PATTERN (temp)) < 0
6369 /* This is unsafe if prev insn rejects our reload reg. */
6370 && constraint_accepts_reg_p (insn_data[recog_memoized (temp)].operand[0].constraint,
6371 reloadreg)
6372 /* This is unsafe if operand occurs more than once in current
6373 insn. Perhaps some occurrences aren't reloaded. */
6374 && count_occurrences (PATTERN (insn), old, 0) == 1
6375 /* Don't risk splitting a matching pair of operands. */
6376 && ! reg_mentioned_p (old, SET_SRC (PATTERN (temp))))
6378 /* Store into the reload register instead of the pseudo. */
6379 SET_DEST (PATTERN (temp)) = reloadreg;
6381 /* If the previous insn is an output reload, the source is
6382 a reload register, and its spill_reg_store entry will
6383 contain the previous destination. This is now
6384 invalid. */
6385 if (GET_CODE (SET_SRC (PATTERN (temp))) == REG
6386 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6388 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6389 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6392 /* If these are the only uses of the pseudo reg,
6393 pretend for GDB it lives in the reload reg we used. */
6394 if (REG_N_DEATHS (REGNO (old)) == 1
6395 && REG_N_SETS (REGNO (old)) == 1)
6397 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6398 alter_reg (REGNO (old), -1);
6400 special = 1;
6404 /* We can't do that, so output an insn to load RELOADREG. */
6406 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6407 /* If we have a secondary reload, pick up the secondary register
6408 and icode, if any. If OLDEQUIV and OLD are different or
6409 if this is an in-out reload, recompute whether or not we
6410 still need a secondary register and what the icode should
6411 be. If we still need a secondary register and the class or
6412 icode is different, go back to reloading from OLD if using
6413 OLDEQUIV means that we got the wrong type of register. We
6414 cannot have different class or icode due to an in-out reload
6415 because we don't make such reloads when both the input and
6416 output need secondary reload registers. */
6418 if (! special && rl->secondary_in_reload >= 0)
6420 rtx second_reload_reg = 0;
6421 int secondary_reload = rl->secondary_in_reload;
6422 rtx real_oldequiv = oldequiv;
6423 rtx real_old = old;
6424 rtx tmp;
6425 enum insn_code icode;
6427 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6428 and similarly for OLD.
6429 See comments in get_secondary_reload in reload.c. */
6430 /* If it is a pseudo that cannot be replaced with its
6431 equivalent MEM, we must fall back to reload_in, which
6432 will have all the necessary substitutions registered.
6433 Likewise for a pseudo that can't be replaced with its
6434 equivalent constant.
6436 Take extra care for subregs of such pseudos. Note that
6437 we cannot use reg_equiv_mem in this case because it is
6438 not in the right mode. */
6440 tmp = oldequiv;
6441 if (GET_CODE (tmp) == SUBREG)
6442 tmp = SUBREG_REG (tmp);
6443 if (GET_CODE (tmp) == REG
6444 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6445 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6446 || reg_equiv_constant[REGNO (tmp)] != 0))
6448 if (! reg_equiv_mem[REGNO (tmp)]
6449 || num_not_at_initial_offset
6450 || GET_CODE (oldequiv) == SUBREG)
6451 real_oldequiv = rl->in;
6452 else
6453 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6456 tmp = old;
6457 if (GET_CODE (tmp) == SUBREG)
6458 tmp = SUBREG_REG (tmp);
6459 if (GET_CODE (tmp) == REG
6460 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6461 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6462 || reg_equiv_constant[REGNO (tmp)] != 0))
6464 if (! reg_equiv_mem[REGNO (tmp)]
6465 || num_not_at_initial_offset
6466 || GET_CODE (old) == SUBREG)
6467 real_old = rl->in;
6468 else
6469 real_old = reg_equiv_mem[REGNO (tmp)];
6472 second_reload_reg = rld[secondary_reload].reg_rtx;
6473 icode = rl->secondary_in_icode;
6475 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6476 || (rl->in != 0 && rl->out != 0))
6478 enum reg_class new_class
6479 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6480 mode, real_oldequiv);
6482 if (new_class == NO_REGS)
6483 second_reload_reg = 0;
6484 else
6486 enum insn_code new_icode;
6487 enum machine_mode new_mode;
6489 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6490 REGNO (second_reload_reg)))
6491 oldequiv = old, real_oldequiv = real_old;
6492 else
6494 new_icode = reload_in_optab[(int) mode];
6495 if (new_icode != CODE_FOR_nothing
6496 && ((insn_data[(int) new_icode].operand[0].predicate
6497 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6498 (reloadreg, mode)))
6499 || (insn_data[(int) new_icode].operand[1].predicate
6500 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6501 (real_oldequiv, mode)))))
6502 new_icode = CODE_FOR_nothing;
6504 if (new_icode == CODE_FOR_nothing)
6505 new_mode = mode;
6506 else
6507 new_mode = insn_data[(int) new_icode].operand[2].mode;
6509 if (GET_MODE (second_reload_reg) != new_mode)
6511 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6512 new_mode))
6513 oldequiv = old, real_oldequiv = real_old;
6514 else
6515 second_reload_reg
6516 = gen_rtx_REG (new_mode,
6517 REGNO (second_reload_reg));
6523 /* If we still need a secondary reload register, check
6524 to see if it is being used as a scratch or intermediate
6525 register and generate code appropriately. If we need
6526 a scratch register, use REAL_OLDEQUIV since the form of
6527 the insn may depend on the actual address if it is
6528 a MEM. */
6530 if (second_reload_reg)
6532 if (icode != CODE_FOR_nothing)
6534 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6535 second_reload_reg));
6536 special = 1;
6538 else
6540 /* See if we need a scratch register to load the
6541 intermediate register (a tertiary reload). */
6542 enum insn_code tertiary_icode
6543 = rld[secondary_reload].secondary_in_icode;
6545 if (tertiary_icode != CODE_FOR_nothing)
6547 rtx third_reload_reg
6548 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6550 emit_insn ((GEN_FCN (tertiary_icode)
6551 (second_reload_reg, real_oldequiv,
6552 third_reload_reg)));
6554 else
6555 gen_reload (second_reload_reg, real_oldequiv,
6556 rl->opnum,
6557 rl->when_needed);
6559 oldequiv = second_reload_reg;
6563 #endif
6565 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6567 rtx real_oldequiv = oldequiv;
6569 if ((GET_CODE (oldequiv) == REG
6570 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6571 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6572 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6573 || (GET_CODE (oldequiv) == SUBREG
6574 && GET_CODE (SUBREG_REG (oldequiv)) == REG
6575 && (REGNO (SUBREG_REG (oldequiv))
6576 >= FIRST_PSEUDO_REGISTER)
6577 && ((reg_equiv_memory_loc
6578 [REGNO (SUBREG_REG (oldequiv))] != 0)
6579 || (reg_equiv_constant
6580 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6581 || (CONSTANT_P (oldequiv)
6582 && (PREFERRED_RELOAD_CLASS (oldequiv,
6583 REGNO_REG_CLASS (REGNO (reloadreg)))
6584 == NO_REGS)))
6585 real_oldequiv = rl->in;
6586 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6587 rl->when_needed);
6590 if (flag_non_call_exceptions)
6591 copy_eh_notes (insn, get_insns ());
6593 /* End this sequence. */
6594 *where = get_insns ();
6595 end_sequence ();
6597 /* Update reload_override_in so that delete_address_reloads_1
6598 can see the actual register usage. */
6599 if (oldequiv_reg)
6600 reload_override_in[j] = oldequiv;
6603 /* Generate insns to for the output reload RL, which is for the insn described
6604 by CHAIN and has the number J. */
6605 static void
6606 emit_output_reload_insns (chain, rl, j)
6607 struct insn_chain *chain;
6608 struct reload *rl;
6609 int j;
6611 rtx reloadreg = rl->reg_rtx;
6612 rtx insn = chain->insn;
6613 int special = 0;
6614 rtx old = rl->out;
6615 enum machine_mode mode = GET_MODE (old);
6616 rtx p;
6618 if (rl->when_needed == RELOAD_OTHER)
6619 start_sequence ();
6620 else
6621 push_to_sequence (output_reload_insns[rl->opnum]);
6623 /* Determine the mode to reload in.
6624 See comments above (for input reloading). */
6626 if (mode == VOIDmode)
6628 /* VOIDmode should never happen for an output. */
6629 if (asm_noperands (PATTERN (insn)) < 0)
6630 /* It's the compiler's fault. */
6631 fatal_insn ("VOIDmode on an output", insn);
6632 error_for_asm (insn, "output operand is constant in `asm'");
6633 /* Prevent crash--use something we know is valid. */
6634 mode = word_mode;
6635 old = gen_rtx_REG (mode, REGNO (reloadreg));
6638 if (GET_MODE (reloadreg) != mode)
6639 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6641 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6643 /* If we need two reload regs, set RELOADREG to the intermediate
6644 one, since it will be stored into OLD. We might need a secondary
6645 register only for an input reload, so check again here. */
6647 if (rl->secondary_out_reload >= 0)
6649 rtx real_old = old;
6651 if (GET_CODE (old) == REG && REGNO (old) >= FIRST_PSEUDO_REGISTER
6652 && reg_equiv_mem[REGNO (old)] != 0)
6653 real_old = reg_equiv_mem[REGNO (old)];
6655 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6656 mode, real_old)
6657 != NO_REGS))
6659 rtx second_reloadreg = reloadreg;
6660 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6662 /* See if RELOADREG is to be used as a scratch register
6663 or as an intermediate register. */
6664 if (rl->secondary_out_icode != CODE_FOR_nothing)
6666 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6667 (real_old, second_reloadreg, reloadreg)));
6668 special = 1;
6670 else
6672 /* See if we need both a scratch and intermediate reload
6673 register. */
6675 int secondary_reload = rl->secondary_out_reload;
6676 enum insn_code tertiary_icode
6677 = rld[secondary_reload].secondary_out_icode;
6679 if (GET_MODE (reloadreg) != mode)
6680 reloadreg = gen_rtx_REG (mode, REGNO (reloadreg));
6682 if (tertiary_icode != CODE_FOR_nothing)
6684 rtx third_reloadreg
6685 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6686 rtx tem;
6688 /* Copy primary reload reg to secondary reload reg.
6689 (Note that these have been swapped above, then
6690 secondary reload reg to OLD using our insn.) */
6692 /* If REAL_OLD is a paradoxical SUBREG, remove it
6693 and try to put the opposite SUBREG on
6694 RELOADREG. */
6695 if (GET_CODE (real_old) == SUBREG
6696 && (GET_MODE_SIZE (GET_MODE (real_old))
6697 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6698 && 0 != (tem = gen_lowpart_common
6699 (GET_MODE (SUBREG_REG (real_old)),
6700 reloadreg)))
6701 real_old = SUBREG_REG (real_old), reloadreg = tem;
6703 gen_reload (reloadreg, second_reloadreg,
6704 rl->opnum, rl->when_needed);
6705 emit_insn ((GEN_FCN (tertiary_icode)
6706 (real_old, reloadreg, third_reloadreg)));
6707 special = 1;
6710 else
6711 /* Copy between the reload regs here and then to
6712 OUT later. */
6714 gen_reload (reloadreg, second_reloadreg,
6715 rl->opnum, rl->when_needed);
6719 #endif
6721 /* Output the last reload insn. */
6722 if (! special)
6724 rtx set;
6726 /* Don't output the last reload if OLD is not the dest of
6727 INSN and is in the src and is clobbered by INSN. */
6728 if (! flag_expensive_optimizations
6729 || GET_CODE (old) != REG
6730 || !(set = single_set (insn))
6731 || rtx_equal_p (old, SET_DEST (set))
6732 || !reg_mentioned_p (old, SET_SRC (set))
6733 || !regno_clobbered_p (REGNO (old), insn, rl->mode, 0))
6734 gen_reload (old, reloadreg, rl->opnum,
6735 rl->when_needed);
6738 /* Look at all insns we emitted, just to be safe. */
6739 for (p = get_insns (); p; p = NEXT_INSN (p))
6740 if (INSN_P (p))
6742 rtx pat = PATTERN (p);
6744 /* If this output reload doesn't come from a spill reg,
6745 clear any memory of reloaded copies of the pseudo reg.
6746 If this output reload comes from a spill reg,
6747 reg_has_output_reload will make this do nothing. */
6748 note_stores (pat, forget_old_reloads_1, NULL);
6750 if (reg_mentioned_p (rl->reg_rtx, pat))
6752 rtx set = single_set (insn);
6753 if (reload_spill_index[j] < 0
6754 && set
6755 && SET_SRC (set) == rl->reg_rtx)
6757 int src = REGNO (SET_SRC (set));
6759 reload_spill_index[j] = src;
6760 SET_HARD_REG_BIT (reg_is_output_reload, src);
6761 if (find_regno_note (insn, REG_DEAD, src))
6762 SET_HARD_REG_BIT (reg_reloaded_died, src);
6764 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6766 int s = rl->secondary_out_reload;
6767 set = single_set (p);
6768 /* If this reload copies only to the secondary reload
6769 register, the secondary reload does the actual
6770 store. */
6771 if (s >= 0 && set == NULL_RTX)
6772 /* We can't tell what function the secondary reload
6773 has and where the actual store to the pseudo is
6774 made; leave new_spill_reg_store alone. */
6776 else if (s >= 0
6777 && SET_SRC (set) == rl->reg_rtx
6778 && SET_DEST (set) == rld[s].reg_rtx)
6780 /* Usually the next instruction will be the
6781 secondary reload insn; if we can confirm
6782 that it is, setting new_spill_reg_store to
6783 that insn will allow an extra optimization. */
6784 rtx s_reg = rld[s].reg_rtx;
6785 rtx next = NEXT_INSN (p);
6786 rld[s].out = rl->out;
6787 rld[s].out_reg = rl->out_reg;
6788 set = single_set (next);
6789 if (set && SET_SRC (set) == s_reg
6790 && ! new_spill_reg_store[REGNO (s_reg)])
6792 SET_HARD_REG_BIT (reg_is_output_reload,
6793 REGNO (s_reg));
6794 new_spill_reg_store[REGNO (s_reg)] = next;
6797 else
6798 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6803 if (rl->when_needed == RELOAD_OTHER)
6805 emit_insns (other_output_reload_insns[rl->opnum]);
6806 other_output_reload_insns[rl->opnum] = get_insns ();
6808 else
6809 output_reload_insns[rl->opnum] = get_insns ();
6811 if (flag_non_call_exceptions)
6812 copy_eh_notes (insn, get_insns ());
6814 end_sequence ();
6817 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6818 and has the number J. */
6819 static void
6820 do_input_reload (chain, rl, j)
6821 struct insn_chain *chain;
6822 struct reload *rl;
6823 int j;
6825 int expect_occurrences = 1;
6826 rtx insn = chain->insn;
6827 rtx old = (rl->in && GET_CODE (rl->in) == MEM
6828 ? rl->in_reg : rl->in);
6830 if (old != 0
6831 /* AUTO_INC reloads need to be handled even if inherited. We got an
6832 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6833 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6834 && ! rtx_equal_p (rl->reg_rtx, old)
6835 && rl->reg_rtx != 0)
6836 emit_input_reload_insns (chain, rld + j, old, j);
6838 /* When inheriting a wider reload, we have a MEM in rl->in,
6839 e.g. inheriting a SImode output reload for
6840 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6841 if (optimize && reload_inherited[j] && rl->in
6842 && GET_CODE (rl->in) == MEM
6843 && GET_CODE (rl->in_reg) == MEM
6844 && reload_spill_index[j] >= 0
6845 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6847 expect_occurrences
6848 = count_occurrences (PATTERN (insn), rl->in, 0) == 1 ? 0 : -1;
6849 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6852 /* If we are reloading a register that was recently stored in with an
6853 output-reload, see if we can prove there was
6854 actually no need to store the old value in it. */
6856 if (optimize
6857 && (reload_inherited[j] || reload_override_in[j])
6858 && rl->reg_rtx
6859 && GET_CODE (rl->reg_rtx) == REG
6860 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6861 #if 0
6862 /* There doesn't seem to be any reason to restrict this to pseudos
6863 and doing so loses in the case where we are copying from a
6864 register of the wrong class. */
6865 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6866 >= FIRST_PSEUDO_REGISTER)
6867 #endif
6868 /* The insn might have already some references to stackslots
6869 replaced by MEMs, while reload_out_reg still names the
6870 original pseudo. */
6871 && (dead_or_set_p (insn,
6872 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6873 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6874 rl->out_reg)))
6875 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6878 /* Do output reloading for reload RL, which is for the insn described by
6879 CHAIN and has the number J.
6880 ??? At some point we need to support handling output reloads of
6881 JUMP_INSNs or insns that set cc0. */
6882 static void
6883 do_output_reload (chain, rl, j)
6884 struct insn_chain *chain;
6885 struct reload *rl;
6886 int j;
6888 rtx note, old;
6889 rtx insn = chain->insn;
6890 /* If this is an output reload that stores something that is
6891 not loaded in this same reload, see if we can eliminate a previous
6892 store. */
6893 rtx pseudo = rl->out_reg;
6895 if (pseudo
6896 && GET_CODE (pseudo) == REG
6897 && ! rtx_equal_p (rl->in_reg, pseudo)
6898 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6899 && reg_last_reload_reg[REGNO (pseudo)])
6901 int pseudo_no = REGNO (pseudo);
6902 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6904 /* We don't need to test full validity of last_regno for
6905 inherit here; we only want to know if the store actually
6906 matches the pseudo. */
6907 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6908 && reg_reloaded_contents[last_regno] == pseudo_no
6909 && spill_reg_store[last_regno]
6910 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6911 delete_output_reload (insn, j, last_regno);
6914 old = rl->out_reg;
6915 if (old == 0
6916 || rl->reg_rtx == old
6917 || rl->reg_rtx == 0)
6918 return;
6920 /* An output operand that dies right away does need a reload,
6921 but need not be copied from it. Show the new location in the
6922 REG_UNUSED note. */
6923 if ((GET_CODE (old) == REG || GET_CODE (old) == SCRATCH)
6924 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6926 XEXP (note, 0) = rl->reg_rtx;
6927 return;
6929 /* Likewise for a SUBREG of an operand that dies. */
6930 else if (GET_CODE (old) == SUBREG
6931 && GET_CODE (SUBREG_REG (old)) == REG
6932 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6933 SUBREG_REG (old))))
6935 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6936 rl->reg_rtx);
6937 return;
6939 else if (GET_CODE (old) == SCRATCH)
6940 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6941 but we don't want to make an output reload. */
6942 return;
6944 /* If is a JUMP_INSN, we can't support output reloads yet. */
6945 if (GET_CODE (insn) == JUMP_INSN)
6946 abort ();
6948 emit_output_reload_insns (chain, rld + j, j);
6951 /* Output insns to reload values in and out of the chosen reload regs. */
6953 static void
6954 emit_reload_insns (chain)
6955 struct insn_chain *chain;
6957 rtx insn = chain->insn;
6959 int j;
6961 CLEAR_HARD_REG_SET (reg_reloaded_died);
6963 for (j = 0; j < reload_n_operands; j++)
6964 input_reload_insns[j] = input_address_reload_insns[j]
6965 = inpaddr_address_reload_insns[j]
6966 = output_reload_insns[j] = output_address_reload_insns[j]
6967 = outaddr_address_reload_insns[j]
6968 = other_output_reload_insns[j] = 0;
6969 other_input_address_reload_insns = 0;
6970 other_input_reload_insns = 0;
6971 operand_reload_insns = 0;
6972 other_operand_reload_insns = 0;
6974 /* Dump reloads into the dump file. */
6975 if (rtl_dump_file)
6977 fprintf (rtl_dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
6978 debug_reload_to_stream (rtl_dump_file);
6981 /* Now output the instructions to copy the data into and out of the
6982 reload registers. Do these in the order that the reloads were reported,
6983 since reloads of base and index registers precede reloads of operands
6984 and the operands may need the base and index registers reloaded. */
6986 for (j = 0; j < n_reloads; j++)
6988 if (rld[j].reg_rtx
6989 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
6990 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
6992 do_input_reload (chain, rld + j, j);
6993 do_output_reload (chain, rld + j, j);
6996 /* Now write all the insns we made for reloads in the order expected by
6997 the allocation functions. Prior to the insn being reloaded, we write
6998 the following reloads:
7000 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7002 RELOAD_OTHER reloads.
7004 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7005 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7006 RELOAD_FOR_INPUT reload for the operand.
7008 RELOAD_FOR_OPADDR_ADDRS reloads.
7010 RELOAD_FOR_OPERAND_ADDRESS reloads.
7012 After the insn being reloaded, we write the following:
7014 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7015 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7016 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7017 reloads for the operand. The RELOAD_OTHER output reloads are
7018 output in descending order by reload number. */
7020 emit_insns_before (other_input_address_reload_insns, insn);
7021 emit_insns_before (other_input_reload_insns, insn);
7023 for (j = 0; j < reload_n_operands; j++)
7025 emit_insns_before (inpaddr_address_reload_insns[j], insn);
7026 emit_insns_before (input_address_reload_insns[j], insn);
7027 emit_insns_before (input_reload_insns[j], insn);
7030 emit_insns_before (other_operand_reload_insns, insn);
7031 emit_insns_before (operand_reload_insns, insn);
7033 for (j = 0; j < reload_n_operands; j++)
7035 rtx x = emit_insns_after (outaddr_address_reload_insns[j], insn);
7036 x = emit_insns_after (output_address_reload_insns[j], x);
7037 x = emit_insns_after (output_reload_insns[j], x);
7038 emit_insns_after (other_output_reload_insns[j], x);
7041 /* For all the spill regs newly reloaded in this instruction,
7042 record what they were reloaded from, so subsequent instructions
7043 can inherit the reloads.
7045 Update spill_reg_store for the reloads of this insn.
7046 Copy the elements that were updated in the loop above. */
7048 for (j = 0; j < n_reloads; j++)
7050 int r = reload_order[j];
7051 int i = reload_spill_index[r];
7053 /* If this is a non-inherited input reload from a pseudo, we must
7054 clear any memory of a previous store to the same pseudo. Only do
7055 something if there will not be an output reload for the pseudo
7056 being reloaded. */
7057 if (rld[r].in_reg != 0
7058 && ! (reload_inherited[r] || reload_override_in[r]))
7060 rtx reg = rld[r].in_reg;
7062 if (GET_CODE (reg) == SUBREG)
7063 reg = SUBREG_REG (reg);
7065 if (GET_CODE (reg) == REG
7066 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7067 && ! reg_has_output_reload[REGNO (reg)])
7069 int nregno = REGNO (reg);
7071 if (reg_last_reload_reg[nregno])
7073 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7075 if (reg_reloaded_contents[last_regno] == nregno)
7076 spill_reg_store[last_regno] = 0;
7081 /* I is nonneg if this reload used a register.
7082 If rld[r].reg_rtx is 0, this is an optional reload
7083 that we opted to ignore. */
7085 if (i >= 0 && rld[r].reg_rtx != 0)
7087 int nr = HARD_REGNO_NREGS (i, GET_MODE (rld[r].reg_rtx));
7088 int k;
7089 int part_reaches_end = 0;
7090 int all_reaches_end = 1;
7092 /* For a multi register reload, we need to check if all or part
7093 of the value lives to the end. */
7094 for (k = 0; k < nr; k++)
7096 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7097 rld[r].when_needed))
7098 part_reaches_end = 1;
7099 else
7100 all_reaches_end = 0;
7103 /* Ignore reloads that don't reach the end of the insn in
7104 entirety. */
7105 if (all_reaches_end)
7107 /* First, clear out memory of what used to be in this spill reg.
7108 If consecutive registers are used, clear them all. */
7110 for (k = 0; k < nr; k++)
7111 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7113 /* Maybe the spill reg contains a copy of reload_out. */
7114 if (rld[r].out != 0
7115 && (GET_CODE (rld[r].out) == REG
7116 #ifdef AUTO_INC_DEC
7117 || ! rld[r].out_reg
7118 #endif
7119 || GET_CODE (rld[r].out_reg) == REG))
7121 rtx out = (GET_CODE (rld[r].out) == REG
7122 ? rld[r].out
7123 : rld[r].out_reg
7124 ? rld[r].out_reg
7125 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7126 int nregno = REGNO (out);
7127 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7128 : HARD_REGNO_NREGS (nregno,
7129 GET_MODE (rld[r].reg_rtx)));
7131 spill_reg_store[i] = new_spill_reg_store[i];
7132 spill_reg_stored_to[i] = out;
7133 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7135 /* If NREGNO is a hard register, it may occupy more than
7136 one register. If it does, say what is in the
7137 rest of the registers assuming that both registers
7138 agree on how many words the object takes. If not,
7139 invalidate the subsequent registers. */
7141 if (nregno < FIRST_PSEUDO_REGISTER)
7142 for (k = 1; k < nnr; k++)
7143 reg_last_reload_reg[nregno + k]
7144 = (nr == nnr
7145 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7146 REGNO (rld[r].reg_rtx) + k)
7147 : 0);
7149 /* Now do the inverse operation. */
7150 for (k = 0; k < nr; k++)
7152 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7153 reg_reloaded_contents[i + k]
7154 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7155 ? nregno
7156 : nregno + k);
7157 reg_reloaded_insn[i + k] = insn;
7158 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7162 /* Maybe the spill reg contains a copy of reload_in. Only do
7163 something if there will not be an output reload for
7164 the register being reloaded. */
7165 else if (rld[r].out_reg == 0
7166 && rld[r].in != 0
7167 && ((GET_CODE (rld[r].in) == REG
7168 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7169 && ! reg_has_output_reload[REGNO (rld[r].in)])
7170 || (GET_CODE (rld[r].in_reg) == REG
7171 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7172 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7174 int nregno;
7175 int nnr;
7177 if (GET_CODE (rld[r].in) == REG
7178 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7179 nregno = REGNO (rld[r].in);
7180 else if (GET_CODE (rld[r].in_reg) == REG)
7181 nregno = REGNO (rld[r].in_reg);
7182 else
7183 nregno = REGNO (XEXP (rld[r].in_reg, 0));
7185 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7186 : HARD_REGNO_NREGS (nregno,
7187 GET_MODE (rld[r].reg_rtx)));
7189 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7191 if (nregno < FIRST_PSEUDO_REGISTER)
7192 for (k = 1; k < nnr; k++)
7193 reg_last_reload_reg[nregno + k]
7194 = (nr == nnr
7195 ? gen_rtx_REG (reg_raw_mode[REGNO (rld[r].reg_rtx) + k],
7196 REGNO (rld[r].reg_rtx) + k)
7197 : 0);
7199 /* Unless we inherited this reload, show we haven't
7200 recently done a store.
7201 Previous stores of inherited auto_inc expressions
7202 also have to be discarded. */
7203 if (! reload_inherited[r]
7204 || (rld[r].out && ! rld[r].out_reg))
7205 spill_reg_store[i] = 0;
7207 for (k = 0; k < nr; k++)
7209 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7210 reg_reloaded_contents[i + k]
7211 = (nregno >= FIRST_PSEUDO_REGISTER || nr != nnr
7212 ? nregno
7213 : nregno + k);
7214 reg_reloaded_insn[i + k] = insn;
7215 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7220 /* However, if part of the reload reaches the end, then we must
7221 invalidate the old info for the part that survives to the end. */
7222 else if (part_reaches_end)
7224 for (k = 0; k < nr; k++)
7225 if (reload_reg_reaches_end_p (i + k,
7226 rld[r].opnum,
7227 rld[r].when_needed))
7228 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7232 /* The following if-statement was #if 0'd in 1.34 (or before...).
7233 It's reenabled in 1.35 because supposedly nothing else
7234 deals with this problem. */
7236 /* If a register gets output-reloaded from a non-spill register,
7237 that invalidates any previous reloaded copy of it.
7238 But forget_old_reloads_1 won't get to see it, because
7239 it thinks only about the original insn. So invalidate it here. */
7240 if (i < 0 && rld[r].out != 0
7241 && (GET_CODE (rld[r].out) == REG
7242 || (GET_CODE (rld[r].out) == MEM
7243 && GET_CODE (rld[r].out_reg) == REG)))
7245 rtx out = (GET_CODE (rld[r].out) == REG
7246 ? rld[r].out : rld[r].out_reg);
7247 int nregno = REGNO (out);
7248 if (nregno >= FIRST_PSEUDO_REGISTER)
7250 rtx src_reg, store_insn = NULL_RTX;
7252 reg_last_reload_reg[nregno] = 0;
7254 /* If we can find a hard register that is stored, record
7255 the storing insn so that we may delete this insn with
7256 delete_output_reload. */
7257 src_reg = rld[r].reg_rtx;
7259 /* If this is an optional reload, try to find the source reg
7260 from an input reload. */
7261 if (! src_reg)
7263 rtx set = single_set (insn);
7264 if (set && SET_DEST (set) == rld[r].out)
7266 int k;
7268 src_reg = SET_SRC (set);
7269 store_insn = insn;
7270 for (k = 0; k < n_reloads; k++)
7272 if (rld[k].in == src_reg)
7274 src_reg = rld[k].reg_rtx;
7275 break;
7280 else
7281 store_insn = new_spill_reg_store[REGNO (src_reg)];
7282 if (src_reg && GET_CODE (src_reg) == REG
7283 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7285 int src_regno = REGNO (src_reg);
7286 int nr = HARD_REGNO_NREGS (src_regno, rld[r].mode);
7287 /* The place where to find a death note varies with
7288 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7289 necessarily checked exactly in the code that moves
7290 notes, so just check both locations. */
7291 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7292 if (! note && store_insn)
7293 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7294 while (nr-- > 0)
7296 spill_reg_store[src_regno + nr] = store_insn;
7297 spill_reg_stored_to[src_regno + nr] = out;
7298 reg_reloaded_contents[src_regno + nr] = nregno;
7299 reg_reloaded_insn[src_regno + nr] = store_insn;
7300 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7301 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7302 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7303 if (note)
7304 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7305 else
7306 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7308 reg_last_reload_reg[nregno] = src_reg;
7311 else
7313 int num_regs = HARD_REGNO_NREGS (nregno, GET_MODE (rld[r].out));
7315 while (num_regs-- > 0)
7316 reg_last_reload_reg[nregno + num_regs] = 0;
7320 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7323 /* Emit code to perform a reload from IN (which may be a reload register) to
7324 OUT (which may also be a reload register). IN or OUT is from operand
7325 OPNUM with reload type TYPE.
7327 Returns first insn emitted. */
7330 gen_reload (out, in, opnum, type)
7331 rtx out;
7332 rtx in;
7333 int opnum;
7334 enum reload_type type;
7336 rtx last = get_last_insn ();
7337 rtx tem;
7339 /* If IN is a paradoxical SUBREG, remove it and try to put the
7340 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7341 if (GET_CODE (in) == SUBREG
7342 && (GET_MODE_SIZE (GET_MODE (in))
7343 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7344 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7345 in = SUBREG_REG (in), out = tem;
7346 else if (GET_CODE (out) == SUBREG
7347 && (GET_MODE_SIZE (GET_MODE (out))
7348 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7349 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7350 out = SUBREG_REG (out), in = tem;
7352 /* How to do this reload can get quite tricky. Normally, we are being
7353 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7354 register that didn't get a hard register. In that case we can just
7355 call emit_move_insn.
7357 We can also be asked to reload a PLUS that adds a register or a MEM to
7358 another register, constant or MEM. This can occur during frame pointer
7359 elimination and while reloading addresses. This case is handled by
7360 trying to emit a single insn to perform the add. If it is not valid,
7361 we use a two insn sequence.
7363 Finally, we could be called to handle an 'o' constraint by putting
7364 an address into a register. In that case, we first try to do this
7365 with a named pattern of "reload_load_address". If no such pattern
7366 exists, we just emit a SET insn and hope for the best (it will normally
7367 be valid on machines that use 'o').
7369 This entire process is made complex because reload will never
7370 process the insns we generate here and so we must ensure that
7371 they will fit their constraints and also by the fact that parts of
7372 IN might be being reloaded separately and replaced with spill registers.
7373 Because of this, we are, in some sense, just guessing the right approach
7374 here. The one listed above seems to work.
7376 ??? At some point, this whole thing needs to be rethought. */
7378 if (GET_CODE (in) == PLUS
7379 && (GET_CODE (XEXP (in, 0)) == REG
7380 || GET_CODE (XEXP (in, 0)) == SUBREG
7381 || GET_CODE (XEXP (in, 0)) == MEM)
7382 && (GET_CODE (XEXP (in, 1)) == REG
7383 || GET_CODE (XEXP (in, 1)) == SUBREG
7384 || CONSTANT_P (XEXP (in, 1))
7385 || GET_CODE (XEXP (in, 1)) == MEM))
7387 /* We need to compute the sum of a register or a MEM and another
7388 register, constant, or MEM, and put it into the reload
7389 register. The best possible way of doing this is if the machine
7390 has a three-operand ADD insn that accepts the required operands.
7392 The simplest approach is to try to generate such an insn and see if it
7393 is recognized and matches its constraints. If so, it can be used.
7395 It might be better not to actually emit the insn unless it is valid,
7396 but we need to pass the insn as an operand to `recog' and
7397 `extract_insn' and it is simpler to emit and then delete the insn if
7398 not valid than to dummy things up. */
7400 rtx op0, op1, tem, insn;
7401 int code;
7403 op0 = find_replacement (&XEXP (in, 0));
7404 op1 = find_replacement (&XEXP (in, 1));
7406 /* Since constraint checking is strict, commutativity won't be
7407 checked, so we need to do that here to avoid spurious failure
7408 if the add instruction is two-address and the second operand
7409 of the add is the same as the reload reg, which is frequently
7410 the case. If the insn would be A = B + A, rearrange it so
7411 it will be A = A + B as constrain_operands expects. */
7413 if (GET_CODE (XEXP (in, 1)) == REG
7414 && REGNO (out) == REGNO (XEXP (in, 1)))
7415 tem = op0, op0 = op1, op1 = tem;
7417 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7418 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7420 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7421 code = recog_memoized (insn);
7423 if (code >= 0)
7425 extract_insn (insn);
7426 /* We want constrain operands to treat this insn strictly in
7427 its validity determination, i.e., the way it would after reload
7428 has completed. */
7429 if (constrain_operands (1))
7430 return insn;
7433 delete_insns_since (last);
7435 /* If that failed, we must use a conservative two-insn sequence.
7437 Use a move to copy one operand into the reload register. Prefer
7438 to reload a constant, MEM or pseudo since the move patterns can
7439 handle an arbitrary operand. If OP1 is not a constant, MEM or
7440 pseudo and OP1 is not a valid operand for an add instruction, then
7441 reload OP1.
7443 After reloading one of the operands into the reload register, add
7444 the reload register to the output register.
7446 If there is another way to do this for a specific machine, a
7447 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7448 we emit below. */
7450 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7452 if (CONSTANT_P (op1) || GET_CODE (op1) == MEM || GET_CODE (op1) == SUBREG
7453 || (GET_CODE (op1) == REG
7454 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7455 || (code != CODE_FOR_nothing
7456 && ! ((*insn_data[code].operand[2].predicate)
7457 (op1, insn_data[code].operand[2].mode))))
7458 tem = op0, op0 = op1, op1 = tem;
7460 gen_reload (out, op0, opnum, type);
7462 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7463 This fixes a problem on the 32K where the stack pointer cannot
7464 be used as an operand of an add insn. */
7466 if (rtx_equal_p (op0, op1))
7467 op1 = out;
7469 insn = emit_insn (gen_add2_insn (out, op1));
7471 /* If that failed, copy the address register to the reload register.
7472 Then add the constant to the reload register. */
7474 code = recog_memoized (insn);
7476 if (code >= 0)
7478 extract_insn (insn);
7479 /* We want constrain operands to treat this insn strictly in
7480 its validity determination, i.e., the way it would after reload
7481 has completed. */
7482 if (constrain_operands (1))
7484 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7485 REG_NOTES (insn)
7486 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7487 return insn;
7491 delete_insns_since (last);
7493 gen_reload (out, op1, opnum, type);
7494 insn = emit_insn (gen_add2_insn (out, op0));
7495 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7498 #ifdef SECONDARY_MEMORY_NEEDED
7499 /* If we need a memory location to do the move, do it that way. */
7500 else if (GET_CODE (in) == REG && REGNO (in) < FIRST_PSEUDO_REGISTER
7501 && GET_CODE (out) == REG && REGNO (out) < FIRST_PSEUDO_REGISTER
7502 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
7503 REGNO_REG_CLASS (REGNO (out)),
7504 GET_MODE (out)))
7506 /* Get the memory to use and rewrite both registers to its mode. */
7507 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7509 if (GET_MODE (loc) != GET_MODE (out))
7510 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7512 if (GET_MODE (loc) != GET_MODE (in))
7513 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7515 gen_reload (loc, in, opnum, type);
7516 gen_reload (out, loc, opnum, type);
7518 #endif
7520 /* If IN is a simple operand, use gen_move_insn. */
7521 else if (GET_RTX_CLASS (GET_CODE (in)) == 'o' || GET_CODE (in) == SUBREG)
7522 emit_insn (gen_move_insn (out, in));
7524 #ifdef HAVE_reload_load_address
7525 else if (HAVE_reload_load_address)
7526 emit_insn (gen_reload_load_address (out, in));
7527 #endif
7529 /* Otherwise, just write (set OUT IN) and hope for the best. */
7530 else
7531 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7533 /* Return the first insn emitted.
7534 We can not just return get_last_insn, because there may have
7535 been multiple instructions emitted. Also note that gen_move_insn may
7536 emit more than one insn itself, so we can not assume that there is one
7537 insn emitted per emit_insn_before call. */
7539 return last ? NEXT_INSN (last) : get_insns ();
7542 /* Delete a previously made output-reload whose result we now believe
7543 is not needed. First we double-check.
7545 INSN is the insn now being processed.
7546 LAST_RELOAD_REG is the hard register number for which we want to delete
7547 the last output reload.
7548 J is the reload-number that originally used REG. The caller has made
7549 certain that reload J doesn't use REG any longer for input. */
7551 static void
7552 delete_output_reload (insn, j, last_reload_reg)
7553 rtx insn;
7554 int j;
7555 int last_reload_reg;
7557 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7558 rtx reg = spill_reg_stored_to[last_reload_reg];
7559 int k;
7560 int n_occurrences;
7561 int n_inherited = 0;
7562 rtx i1;
7563 rtx substed;
7565 /* Get the raw pseudo-register referred to. */
7567 while (GET_CODE (reg) == SUBREG)
7568 reg = SUBREG_REG (reg);
7569 substed = reg_equiv_memory_loc[REGNO (reg)];
7571 /* This is unsafe if the operand occurs more often in the current
7572 insn than it is inherited. */
7573 for (k = n_reloads - 1; k >= 0; k--)
7575 rtx reg2 = rld[k].in;
7576 if (! reg2)
7577 continue;
7578 if (GET_CODE (reg2) == MEM || reload_override_in[k])
7579 reg2 = rld[k].in_reg;
7580 #ifdef AUTO_INC_DEC
7581 if (rld[k].out && ! rld[k].out_reg)
7582 reg2 = XEXP (rld[k].in_reg, 0);
7583 #endif
7584 while (GET_CODE (reg2) == SUBREG)
7585 reg2 = SUBREG_REG (reg2);
7586 if (rtx_equal_p (reg2, reg))
7588 if (reload_inherited[k] || reload_override_in[k] || k == j)
7590 n_inherited++;
7591 reg2 = rld[k].out_reg;
7592 if (! reg2)
7593 continue;
7594 while (GET_CODE (reg2) == SUBREG)
7595 reg2 = XEXP (reg2, 0);
7596 if (rtx_equal_p (reg2, reg))
7597 n_inherited++;
7599 else
7600 return;
7603 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7604 if (substed)
7605 n_occurrences += count_occurrences (PATTERN (insn),
7606 eliminate_regs (substed, 0,
7607 NULL_RTX), 0);
7608 if (n_occurrences > n_inherited)
7609 return;
7611 /* If the pseudo-reg we are reloading is no longer referenced
7612 anywhere between the store into it and here,
7613 and no jumps or labels intervene, then the value can get
7614 here through the reload reg alone.
7615 Otherwise, give up--return. */
7616 for (i1 = NEXT_INSN (output_reload_insn);
7617 i1 != insn; i1 = NEXT_INSN (i1))
7619 if (GET_CODE (i1) == CODE_LABEL || GET_CODE (i1) == JUMP_INSN)
7620 return;
7621 if ((GET_CODE (i1) == INSN || GET_CODE (i1) == CALL_INSN)
7622 && reg_mentioned_p (reg, PATTERN (i1)))
7624 /* If this is USE in front of INSN, we only have to check that
7625 there are no more references than accounted for by inheritance. */
7626 while (GET_CODE (i1) == INSN && GET_CODE (PATTERN (i1)) == USE)
7628 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7629 i1 = NEXT_INSN (i1);
7631 if (n_occurrences <= n_inherited && i1 == insn)
7632 break;
7633 return;
7637 /* We will be deleting the insn. Remove the spill reg information. */
7638 for (k = HARD_REGNO_NREGS (last_reload_reg, GET_MODE (reg)); k-- > 0; )
7640 spill_reg_store[last_reload_reg + k] = 0;
7641 spill_reg_stored_to[last_reload_reg + k] = 0;
7644 /* The caller has already checked that REG dies or is set in INSN.
7645 It has also checked that we are optimizing, and thus some
7646 inaccurancies in the debugging information are acceptable.
7647 So we could just delete output_reload_insn. But in some cases
7648 we can improve the debugging information without sacrificing
7649 optimization - maybe even improving the code: See if the pseudo
7650 reg has been completely replaced with reload regs. If so, delete
7651 the store insn and forget we had a stack slot for the pseudo. */
7652 if (rld[j].out != rld[j].in
7653 && REG_N_DEATHS (REGNO (reg)) == 1
7654 && REG_N_SETS (REGNO (reg)) == 1
7655 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7656 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7658 rtx i2;
7660 /* We know that it was used only between here and the beginning of
7661 the current basic block. (We also know that the last use before
7662 INSN was the output reload we are thinking of deleting, but never
7663 mind that.) Search that range; see if any ref remains. */
7664 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7666 rtx set = single_set (i2);
7668 /* Uses which just store in the pseudo don't count,
7669 since if they are the only uses, they are dead. */
7670 if (set != 0 && SET_DEST (set) == reg)
7671 continue;
7672 if (GET_CODE (i2) == CODE_LABEL
7673 || GET_CODE (i2) == JUMP_INSN)
7674 break;
7675 if ((GET_CODE (i2) == INSN || GET_CODE (i2) == CALL_INSN)
7676 && reg_mentioned_p (reg, PATTERN (i2)))
7678 /* Some other ref remains; just delete the output reload we
7679 know to be dead. */
7680 delete_address_reloads (output_reload_insn, insn);
7681 delete_insn (output_reload_insn);
7682 return;
7686 /* Delete the now-dead stores into this pseudo. Note that this
7687 loop also takes care of deleting output_reload_insn. */
7688 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7690 rtx set = single_set (i2);
7692 if (set != 0 && SET_DEST (set) == reg)
7694 delete_address_reloads (i2, insn);
7695 delete_insn (i2);
7697 if (GET_CODE (i2) == CODE_LABEL
7698 || GET_CODE (i2) == JUMP_INSN)
7699 break;
7702 /* For the debugging info, say the pseudo lives in this reload reg. */
7703 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7704 alter_reg (REGNO (reg), -1);
7706 else
7708 delete_address_reloads (output_reload_insn, insn);
7709 delete_insn (output_reload_insn);
7713 /* We are going to delete DEAD_INSN. Recursively delete loads of
7714 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7715 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7716 static void
7717 delete_address_reloads (dead_insn, current_insn)
7718 rtx dead_insn, current_insn;
7720 rtx set = single_set (dead_insn);
7721 rtx set2, dst, prev, next;
7722 if (set)
7724 rtx dst = SET_DEST (set);
7725 if (GET_CODE (dst) == MEM)
7726 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7728 /* If we deleted the store from a reloaded post_{in,de}c expression,
7729 we can delete the matching adds. */
7730 prev = PREV_INSN (dead_insn);
7731 next = NEXT_INSN (dead_insn);
7732 if (! prev || ! next)
7733 return;
7734 set = single_set (next);
7735 set2 = single_set (prev);
7736 if (! set || ! set2
7737 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7738 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7739 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7740 return;
7741 dst = SET_DEST (set);
7742 if (! rtx_equal_p (dst, SET_DEST (set2))
7743 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7744 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7745 || (INTVAL (XEXP (SET_SRC (set), 1))
7746 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7747 return;
7748 delete_related_insns (prev);
7749 delete_related_insns (next);
7752 /* Subfunction of delete_address_reloads: process registers found in X. */
7753 static void
7754 delete_address_reloads_1 (dead_insn, x, current_insn)
7755 rtx dead_insn, x, current_insn;
7757 rtx prev, set, dst, i2;
7758 int i, j;
7759 enum rtx_code code = GET_CODE (x);
7761 if (code != REG)
7763 const char *fmt = GET_RTX_FORMAT (code);
7764 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7766 if (fmt[i] == 'e')
7767 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7768 else if (fmt[i] == 'E')
7770 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7771 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7772 current_insn);
7775 return;
7778 if (spill_reg_order[REGNO (x)] < 0)
7779 return;
7781 /* Scan backwards for the insn that sets x. This might be a way back due
7782 to inheritance. */
7783 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7785 code = GET_CODE (prev);
7786 if (code == CODE_LABEL || code == JUMP_INSN)
7787 return;
7788 if (GET_RTX_CLASS (code) != 'i')
7789 continue;
7790 if (reg_set_p (x, PATTERN (prev)))
7791 break;
7792 if (reg_referenced_p (x, PATTERN (prev)))
7793 return;
7795 if (! prev || INSN_UID (prev) < reload_first_uid)
7796 return;
7797 /* Check that PREV only sets the reload register. */
7798 set = single_set (prev);
7799 if (! set)
7800 return;
7801 dst = SET_DEST (set);
7802 if (GET_CODE (dst) != REG
7803 || ! rtx_equal_p (dst, x))
7804 return;
7805 if (! reg_set_p (dst, PATTERN (dead_insn)))
7807 /* Check if DST was used in a later insn -
7808 it might have been inherited. */
7809 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7811 if (GET_CODE (i2) == CODE_LABEL)
7812 break;
7813 if (! INSN_P (i2))
7814 continue;
7815 if (reg_referenced_p (dst, PATTERN (i2)))
7817 /* If there is a reference to the register in the current insn,
7818 it might be loaded in a non-inherited reload. If no other
7819 reload uses it, that means the register is set before
7820 referenced. */
7821 if (i2 == current_insn)
7823 for (j = n_reloads - 1; j >= 0; j--)
7824 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7825 || reload_override_in[j] == dst)
7826 return;
7827 for (j = n_reloads - 1; j >= 0; j--)
7828 if (rld[j].in && rld[j].reg_rtx == dst)
7829 break;
7830 if (j >= 0)
7831 break;
7833 return;
7835 if (GET_CODE (i2) == JUMP_INSN)
7836 break;
7837 /* If DST is still live at CURRENT_INSN, check if it is used for
7838 any reload. Note that even if CURRENT_INSN sets DST, we still
7839 have to check the reloads. */
7840 if (i2 == current_insn)
7842 for (j = n_reloads - 1; j >= 0; j--)
7843 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7844 || reload_override_in[j] == dst)
7845 return;
7846 /* ??? We can't finish the loop here, because dst might be
7847 allocated to a pseudo in this block if no reload in this
7848 block needs any of the clsses containing DST - see
7849 spill_hard_reg. There is no easy way to tell this, so we
7850 have to scan till the end of the basic block. */
7852 if (reg_set_p (dst, PATTERN (i2)))
7853 break;
7856 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7857 reg_reloaded_contents[REGNO (dst)] = -1;
7858 delete_insn (prev);
7861 /* Output reload-insns to reload VALUE into RELOADREG.
7862 VALUE is an autoincrement or autodecrement RTX whose operand
7863 is a register or memory location;
7864 so reloading involves incrementing that location.
7865 IN is either identical to VALUE, or some cheaper place to reload from.
7867 INC_AMOUNT is the number to increment or decrement by (always positive).
7868 This cannot be deduced from VALUE.
7870 Return the instruction that stores into RELOADREG. */
7872 static rtx
7873 inc_for_reload (reloadreg, in, value, inc_amount)
7874 rtx reloadreg;
7875 rtx in, value;
7876 int inc_amount;
7878 /* REG or MEM to be copied and incremented. */
7879 rtx incloc = XEXP (value, 0);
7880 /* Nonzero if increment after copying. */
7881 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7882 rtx last;
7883 rtx inc;
7884 rtx add_insn;
7885 int code;
7886 rtx store;
7887 rtx real_in = in == value ? XEXP (in, 0) : in;
7889 /* No hard register is equivalent to this register after
7890 inc/dec operation. If REG_LAST_RELOAD_REG were non-zero,
7891 we could inc/dec that register as well (maybe even using it for
7892 the source), but I'm not sure it's worth worrying about. */
7893 if (GET_CODE (incloc) == REG)
7894 reg_last_reload_reg[REGNO (incloc)] = 0;
7896 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7897 inc_amount = -inc_amount;
7899 inc = GEN_INT (inc_amount);
7901 /* If this is post-increment, first copy the location to the reload reg. */
7902 if (post && real_in != reloadreg)
7903 emit_insn (gen_move_insn (reloadreg, real_in));
7905 if (in == value)
7907 /* See if we can directly increment INCLOC. Use a method similar to
7908 that in gen_reload. */
7910 last = get_last_insn ();
7911 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
7912 gen_rtx_PLUS (GET_MODE (incloc),
7913 incloc, inc)));
7915 code = recog_memoized (add_insn);
7916 if (code >= 0)
7918 extract_insn (add_insn);
7919 if (constrain_operands (1))
7921 /* If this is a pre-increment and we have incremented the value
7922 where it lives, copy the incremented value to RELOADREG to
7923 be used as an address. */
7925 if (! post)
7926 emit_insn (gen_move_insn (reloadreg, incloc));
7928 return add_insn;
7931 delete_insns_since (last);
7934 /* If couldn't do the increment directly, must increment in RELOADREG.
7935 The way we do this depends on whether this is pre- or post-increment.
7936 For pre-increment, copy INCLOC to the reload register, increment it
7937 there, then save back. */
7939 if (! post)
7941 if (in != reloadreg)
7942 emit_insn (gen_move_insn (reloadreg, real_in));
7943 emit_insn (gen_add2_insn (reloadreg, inc));
7944 store = emit_insn (gen_move_insn (incloc, reloadreg));
7946 else
7948 /* Postincrement.
7949 Because this might be a jump insn or a compare, and because RELOADREG
7950 may not be available after the insn in an input reload, we must do
7951 the incrementation before the insn being reloaded for.
7953 We have already copied IN to RELOADREG. Increment the copy in
7954 RELOADREG, save that back, then decrement RELOADREG so it has
7955 the original value. */
7957 emit_insn (gen_add2_insn (reloadreg, inc));
7958 store = emit_insn (gen_move_insn (incloc, reloadreg));
7959 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
7962 return store;
7965 /* Return 1 if we are certain that the constraint-string STRING allows
7966 the hard register REG. Return 0 if we can't be sure of this. */
7968 static int
7969 constraint_accepts_reg_p (string, reg)
7970 const char *string;
7971 rtx reg;
7973 int value = 0;
7974 int regno = true_regnum (reg);
7975 int c;
7977 /* Initialize for first alternative. */
7978 value = 0;
7979 /* Check that each alternative contains `g' or `r'. */
7980 while (1)
7981 switch (c = *string++)
7983 case 0:
7984 /* If an alternative lacks `g' or `r', we lose. */
7985 return value;
7986 case ',':
7987 /* If an alternative lacks `g' or `r', we lose. */
7988 if (value == 0)
7989 return 0;
7990 /* Initialize for next alternative. */
7991 value = 0;
7992 break;
7993 case 'g':
7994 case 'r':
7995 /* Any general reg wins for this alternative. */
7996 if (TEST_HARD_REG_BIT (reg_class_contents[(int) GENERAL_REGS], regno))
7997 value = 1;
7998 break;
7999 default:
8000 /* Any reg in specified class wins for this alternative. */
8002 enum reg_class class = REG_CLASS_FROM_LETTER (c);
8004 if (TEST_HARD_REG_BIT (reg_class_contents[(int) class], regno))
8005 value = 1;
8010 /* INSN is a no-op; delete it.
8011 If this sets the return value of the function, we must keep a USE around,
8012 in case this is in a different basic block than the final USE. Otherwise,
8013 we could loose important register lifeness information on
8014 SMALL_REGISTER_CLASSES machines, where return registers might be used as
8015 spills: subsequent passes assume that spill registers are dead at the end
8016 of a basic block.
8017 VALUE must be the return value in such a case, NULL otherwise. */
8018 static void
8019 reload_cse_delete_noop_set (insn, value)
8020 rtx insn, value;
8022 bool purge = BLOCK_FOR_INSN (insn)->end == insn;
8023 if (value)
8025 PATTERN (insn) = gen_rtx_USE (VOIDmode, value);
8026 INSN_CODE (insn) = -1;
8027 REG_NOTES (insn) = NULL_RTX;
8029 else
8030 delete_insn (insn);
8031 if (purge)
8032 purge_dead_edges (BLOCK_FOR_INSN (insn));
8035 /* See whether a single set SET is a noop. */
8036 static int
8037 reload_cse_noop_set_p (set)
8038 rtx set;
8040 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
8043 /* Try to simplify INSN. */
8044 static void
8045 reload_cse_simplify (insn)
8046 rtx insn;
8048 rtx body = PATTERN (insn);
8050 if (GET_CODE (body) == SET)
8052 int count = 0;
8054 /* Simplify even if we may think it is a no-op.
8055 We may think a memory load of a value smaller than WORD_SIZE
8056 is redundant because we haven't taken into account possible
8057 implicit extension. reload_cse_simplify_set() will bring
8058 this out, so it's safer to simplify before we delete. */
8059 count += reload_cse_simplify_set (body, insn);
8061 if (!count && reload_cse_noop_set_p (body))
8063 rtx value = SET_DEST (body);
8064 if (! REG_FUNCTION_VALUE_P (SET_DEST (body)))
8065 value = 0;
8066 reload_cse_delete_noop_set (insn, value);
8067 return;
8070 if (count > 0)
8071 apply_change_group ();
8072 else
8073 reload_cse_simplify_operands (insn);
8075 else if (GET_CODE (body) == PARALLEL)
8077 int i;
8078 int count = 0;
8079 rtx value = NULL_RTX;
8081 /* If every action in a PARALLEL is a noop, we can delete
8082 the entire PARALLEL. */
8083 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8085 rtx part = XVECEXP (body, 0, i);
8086 if (GET_CODE (part) == SET)
8088 if (! reload_cse_noop_set_p (part))
8089 break;
8090 if (REG_FUNCTION_VALUE_P (SET_DEST (part)))
8092 if (value)
8093 break;
8094 value = SET_DEST (part);
8097 else if (GET_CODE (part) != CLOBBER)
8098 break;
8101 if (i < 0)
8103 reload_cse_delete_noop_set (insn, value);
8104 /* We're done with this insn. */
8105 return;
8108 /* It's not a no-op, but we can try to simplify it. */
8109 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
8110 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
8111 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
8113 if (count > 0)
8114 apply_change_group ();
8115 else
8116 reload_cse_simplify_operands (insn);
8120 /* Do a very simple CSE pass over the hard registers.
8122 This function detects no-op moves where we happened to assign two
8123 different pseudo-registers to the same hard register, and then
8124 copied one to the other. Reload will generate a useless
8125 instruction copying a register to itself.
8127 This function also detects cases where we load a value from memory
8128 into two different registers, and (if memory is more expensive than
8129 registers) changes it to simply copy the first register into the
8130 second register.
8132 Another optimization is performed that scans the operands of each
8133 instruction to see whether the value is already available in a
8134 hard register. It then replaces the operand with the hard register
8135 if possible, much like an optional reload would. */
8137 static void
8138 reload_cse_regs_1 (first)
8139 rtx first;
8141 rtx insn;
8143 cselib_init ();
8144 init_alias_analysis ();
8146 for (insn = first; insn; insn = NEXT_INSN (insn))
8148 if (INSN_P (insn))
8149 reload_cse_simplify (insn);
8151 cselib_process_insn (insn);
8154 /* Clean up. */
8155 end_alias_analysis ();
8156 cselib_finish ();
8159 /* Call cse / combine like post-reload optimization phases.
8160 FIRST is the first instruction. */
8161 void
8162 reload_cse_regs (first)
8163 rtx first;
8165 reload_cse_regs_1 (first);
8166 reload_combine ();
8167 reload_cse_move2add (first);
8168 if (flag_expensive_optimizations)
8169 reload_cse_regs_1 (first);
8172 /* Try to simplify a single SET instruction. SET is the set pattern.
8173 INSN is the instruction it came from.
8174 This function only handles one case: if we set a register to a value
8175 which is not a register, we try to find that value in some other register
8176 and change the set into a register copy. */
8178 static int
8179 reload_cse_simplify_set (set, insn)
8180 rtx set;
8181 rtx insn;
8183 int did_change = 0;
8184 int dreg;
8185 rtx src;
8186 enum reg_class dclass;
8187 int old_cost;
8188 cselib_val *val;
8189 struct elt_loc_list *l;
8190 #ifdef LOAD_EXTEND_OP
8191 enum rtx_code extend_op = NIL;
8192 #endif
8194 dreg = true_regnum (SET_DEST (set));
8195 if (dreg < 0)
8196 return 0;
8198 src = SET_SRC (set);
8199 if (side_effects_p (src) || true_regnum (src) >= 0)
8200 return 0;
8202 dclass = REGNO_REG_CLASS (dreg);
8204 #ifdef LOAD_EXTEND_OP
8205 /* When replacing a memory with a register, we need to honor assumptions
8206 that combine made wrt the contents of sign bits. We'll do this by
8207 generating an extend instruction instead of a reg->reg copy. Thus
8208 the destination must be a register that we can widen. */
8209 if (GET_CODE (src) == MEM
8210 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
8211 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
8212 && GET_CODE (SET_DEST (set)) != REG)
8213 return 0;
8214 #endif
8216 /* If memory loads are cheaper than register copies, don't change them. */
8217 if (GET_CODE (src) == MEM)
8218 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
8219 else if (CONSTANT_P (src))
8220 old_cost = rtx_cost (src, SET);
8221 else if (GET_CODE (src) == REG)
8222 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
8223 REGNO_REG_CLASS (REGNO (src)), dclass);
8224 else
8225 /* ??? */
8226 old_cost = rtx_cost (src, SET);
8228 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
8229 if (! val)
8230 return 0;
8231 for (l = val->locs; l; l = l->next)
8233 rtx this_rtx = l->loc;
8234 int this_cost;
8236 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
8238 #ifdef LOAD_EXTEND_OP
8239 if (extend_op != NIL)
8241 HOST_WIDE_INT this_val;
8243 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
8244 constants, such as SYMBOL_REF, cannot be extended. */
8245 if (GET_CODE (this_rtx) != CONST_INT)
8246 continue;
8248 this_val = INTVAL (this_rtx);
8249 switch (extend_op)
8251 case ZERO_EXTEND:
8252 this_val &= GET_MODE_MASK (GET_MODE (src));
8253 break;
8254 case SIGN_EXTEND:
8255 /* ??? In theory we're already extended. */
8256 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
8257 break;
8258 default:
8259 abort ();
8261 this_rtx = GEN_INT (this_val);
8263 #endif
8264 this_cost = rtx_cost (this_rtx, SET);
8266 else if (GET_CODE (this_rtx) == REG)
8268 #ifdef LOAD_EXTEND_OP
8269 if (extend_op != NIL)
8271 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
8272 this_cost = rtx_cost (this_rtx, SET);
8274 else
8275 #endif
8276 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
8277 REGNO_REG_CLASS (REGNO (this_rtx)),
8278 dclass);
8280 else
8281 continue;
8283 /* If equal costs, prefer registers over anything else. That
8284 tends to lead to smaller instructions on some machines. */
8285 if (this_cost < old_cost
8286 || (this_cost == old_cost
8287 && GET_CODE (this_rtx) == REG
8288 && GET_CODE (SET_SRC (set)) != REG))
8290 #ifdef LOAD_EXTEND_OP
8291 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
8292 && extend_op != NIL)
8294 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
8295 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
8296 validate_change (insn, &SET_DEST (set), wide_dest, 1);
8298 #endif
8300 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
8301 old_cost = this_cost, did_change = 1;
8305 return did_change;
8308 /* Try to replace operands in INSN with equivalent values that are already
8309 in registers. This can be viewed as optional reloading.
8311 For each non-register operand in the insn, see if any hard regs are
8312 known to be equivalent to that operand. Record the alternatives which
8313 can accept these hard registers. Among all alternatives, select the
8314 ones which are better or equal to the one currently matching, where
8315 "better" is in terms of '?' and '!' constraints. Among the remaining
8316 alternatives, select the one which replaces most operands with
8317 hard registers. */
8319 static int
8320 reload_cse_simplify_operands (insn)
8321 rtx insn;
8323 int i, j;
8325 /* For each operand, all registers that are equivalent to it. */
8326 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
8328 const char *constraints[MAX_RECOG_OPERANDS];
8330 /* Vector recording how bad an alternative is. */
8331 int *alternative_reject;
8332 /* Vector recording how many registers can be introduced by choosing
8333 this alternative. */
8334 int *alternative_nregs;
8335 /* Array of vectors recording, for each operand and each alternative,
8336 which hard register to substitute, or -1 if the operand should be
8337 left as it is. */
8338 int *op_alt_regno[MAX_RECOG_OPERANDS];
8339 /* Array of alternatives, sorted in order of decreasing desirability. */
8340 int *alternative_order;
8341 rtx reg = gen_rtx_REG (VOIDmode, -1);
8343 extract_insn (insn);
8345 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
8346 return 0;
8348 /* Figure out which alternative currently matches. */
8349 if (! constrain_operands (1))
8350 fatal_insn_not_found (insn);
8352 alternative_reject = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8353 alternative_nregs = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8354 alternative_order = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8355 memset ((char *) alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
8356 memset ((char *) alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
8358 /* For each operand, find out which regs are equivalent. */
8359 for (i = 0; i < recog_data.n_operands; i++)
8361 cselib_val *v;
8362 struct elt_loc_list *l;
8364 CLEAR_HARD_REG_SET (equiv_regs[i]);
8366 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
8367 right, so avoid the problem here. Likewise if we have a constant
8368 and the insn pattern doesn't tell us the mode we need. */
8369 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
8370 || (CONSTANT_P (recog_data.operand[i])
8371 && recog_data.operand_mode[i] == VOIDmode))
8372 continue;
8374 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
8375 if (! v)
8376 continue;
8378 for (l = v->locs; l; l = l->next)
8379 if (GET_CODE (l->loc) == REG)
8380 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
8383 for (i = 0; i < recog_data.n_operands; i++)
8385 enum machine_mode mode;
8386 int regno;
8387 const char *p;
8389 op_alt_regno[i] = (int *) alloca (recog_data.n_alternatives * sizeof (int));
8390 for (j = 0; j < recog_data.n_alternatives; j++)
8391 op_alt_regno[i][j] = -1;
8393 p = constraints[i] = recog_data.constraints[i];
8394 mode = recog_data.operand_mode[i];
8396 /* Add the reject values for each alternative given by the constraints
8397 for this operand. */
8398 j = 0;
8399 while (*p != '\0')
8401 char c = *p++;
8402 if (c == ',')
8403 j++;
8404 else if (c == '?')
8405 alternative_reject[j] += 3;
8406 else if (c == '!')
8407 alternative_reject[j] += 300;
8410 /* We won't change operands which are already registers. We
8411 also don't want to modify output operands. */
8412 regno = true_regnum (recog_data.operand[i]);
8413 if (regno >= 0
8414 || constraints[i][0] == '='
8415 || constraints[i][0] == '+')
8416 continue;
8418 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
8420 int class = (int) NO_REGS;
8422 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
8423 continue;
8425 REGNO (reg) = regno;
8426 PUT_MODE (reg, mode);
8428 /* We found a register equal to this operand. Now look for all
8429 alternatives that can accept this register and have not been
8430 assigned a register they can use yet. */
8431 j = 0;
8432 p = constraints[i];
8433 for (;;)
8435 char c = *p++;
8437 switch (c)
8439 case '=': case '+': case '?':
8440 case '#': case '&': case '!':
8441 case '*': case '%':
8442 case '0': case '1': case '2': case '3': case '4':
8443 case '5': case '6': case '7': case '8': case '9':
8444 case 'm': case '<': case '>': case 'V': case 'o':
8445 case 'E': case 'F': case 'G': case 'H':
8446 case 's': case 'i': case 'n':
8447 case 'I': case 'J': case 'K': case 'L':
8448 case 'M': case 'N': case 'O': case 'P':
8449 case 'p': case 'X':
8450 /* These don't say anything we care about. */
8451 break;
8453 case 'g': case 'r':
8454 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
8455 break;
8457 default:
8458 class
8459 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
8460 break;
8462 case ',': case '\0':
8463 /* See if REGNO fits this alternative, and set it up as the
8464 replacement register if we don't have one for this
8465 alternative yet and the operand being replaced is not
8466 a cheap CONST_INT. */
8467 if (op_alt_regno[i][j] == -1
8468 && reg_fits_class_p (reg, class, 0, mode)
8469 && (GET_CODE (recog_data.operand[i]) != CONST_INT
8470 || (rtx_cost (recog_data.operand[i], SET)
8471 > rtx_cost (reg, SET))))
8473 alternative_nregs[j]++;
8474 op_alt_regno[i][j] = regno;
8476 j++;
8477 break;
8480 if (c == '\0')
8481 break;
8486 /* Record all alternatives which are better or equal to the currently
8487 matching one in the alternative_order array. */
8488 for (i = j = 0; i < recog_data.n_alternatives; i++)
8489 if (alternative_reject[i] <= alternative_reject[which_alternative])
8490 alternative_order[j++] = i;
8491 recog_data.n_alternatives = j;
8493 /* Sort it. Given a small number of alternatives, a dumb algorithm
8494 won't hurt too much. */
8495 for (i = 0; i < recog_data.n_alternatives - 1; i++)
8497 int best = i;
8498 int best_reject = alternative_reject[alternative_order[i]];
8499 int best_nregs = alternative_nregs[alternative_order[i]];
8500 int tmp;
8502 for (j = i + 1; j < recog_data.n_alternatives; j++)
8504 int this_reject = alternative_reject[alternative_order[j]];
8505 int this_nregs = alternative_nregs[alternative_order[j]];
8507 if (this_reject < best_reject
8508 || (this_reject == best_reject && this_nregs < best_nregs))
8510 best = j;
8511 best_reject = this_reject;
8512 best_nregs = this_nregs;
8516 tmp = alternative_order[best];
8517 alternative_order[best] = alternative_order[i];
8518 alternative_order[i] = tmp;
8521 /* Substitute the operands as determined by op_alt_regno for the best
8522 alternative. */
8523 j = alternative_order[0];
8525 for (i = 0; i < recog_data.n_operands; i++)
8527 enum machine_mode mode = recog_data.operand_mode[i];
8528 if (op_alt_regno[i][j] == -1)
8529 continue;
8531 validate_change (insn, recog_data.operand_loc[i],
8532 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
8535 for (i = recog_data.n_dups - 1; i >= 0; i--)
8537 int op = recog_data.dup_num[i];
8538 enum machine_mode mode = recog_data.operand_mode[op];
8540 if (op_alt_regno[op][j] == -1)
8541 continue;
8543 validate_change (insn, recog_data.dup_loc[i],
8544 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
8547 return apply_change_group ();
8550 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
8551 addressing now.
8552 This code might also be useful when reload gave up on reg+reg addresssing
8553 because of clashes between the return register and INDEX_REG_CLASS. */
8555 /* The maximum number of uses of a register we can keep track of to
8556 replace them with reg+reg addressing. */
8557 #define RELOAD_COMBINE_MAX_USES 6
8559 /* INSN is the insn where a register has ben used, and USEP points to the
8560 location of the register within the rtl. */
8561 struct reg_use { rtx insn, *usep; };
8563 /* If the register is used in some unknown fashion, USE_INDEX is negative.
8564 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
8565 indicates where it becomes live again.
8566 Otherwise, USE_INDEX is the index of the last encountered use of the
8567 register (which is first among these we have seen since we scan backwards),
8568 OFFSET contains the constant offset that is added to the register in
8569 all encountered uses, and USE_RUID indicates the first encountered, i.e.
8570 last, of these uses.
8571 STORE_RUID is always meaningful if we only want to use a value in a
8572 register in a different place: it denotes the next insn in the insn
8573 stream (i.e. the last ecountered) that sets or clobbers the register. */
8574 static struct
8576 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
8577 int use_index;
8578 rtx offset;
8579 int store_ruid;
8580 int use_ruid;
8581 } reg_state[FIRST_PSEUDO_REGISTER];
8583 /* Reverse linear uid. This is increased in reload_combine while scanning
8584 the instructions from last to first. It is used to set last_label_ruid
8585 and the store_ruid / use_ruid fields in reg_state. */
8586 static int reload_combine_ruid;
8588 #define LABEL_LIVE(LABEL) \
8589 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
8591 static void
8592 reload_combine ()
8594 rtx insn, set;
8595 int first_index_reg = -1;
8596 int last_index_reg = 0;
8597 int i;
8598 unsigned int r;
8599 int last_label_ruid;
8600 int min_labelno, n_labels;
8601 HARD_REG_SET ever_live_at_start, *label_live;
8603 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
8604 reload has already used it where appropriate, so there is no use in
8605 trying to generate it now. */
8606 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
8607 return;
8609 /* To avoid wasting too much time later searching for an index register,
8610 determine the minimum and maximum index register numbers. */
8611 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8612 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
8614 if (first_index_reg == -1)
8615 first_index_reg = r;
8617 last_index_reg = r;
8620 /* If no index register is available, we can quit now. */
8621 if (first_index_reg == -1)
8622 return;
8624 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
8625 information is a bit fuzzy immediately after reload, but it's
8626 still good enough to determine which registers are live at a jump
8627 destination. */
8628 min_labelno = get_first_label_num ();
8629 n_labels = max_label_num () - min_labelno;
8630 label_live = (HARD_REG_SET *) xmalloc (n_labels * sizeof (HARD_REG_SET));
8631 CLEAR_HARD_REG_SET (ever_live_at_start);
8633 for (i = n_basic_blocks - 1; i >= 0; i--)
8635 insn = BLOCK_HEAD (i);
8636 if (GET_CODE (insn) == CODE_LABEL)
8638 HARD_REG_SET live;
8640 REG_SET_TO_HARD_REG_SET (live,
8641 BASIC_BLOCK (i)->global_live_at_start);
8642 compute_use_by_pseudos (&live,
8643 BASIC_BLOCK (i)->global_live_at_start);
8644 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
8645 IOR_HARD_REG_SET (ever_live_at_start, live);
8649 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
8650 last_label_ruid = reload_combine_ruid = 0;
8651 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8653 reg_state[r].store_ruid = reload_combine_ruid;
8654 if (fixed_regs[r])
8655 reg_state[r].use_index = -1;
8656 else
8657 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8660 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
8662 rtx note;
8664 /* We cannot do our optimization across labels. Invalidating all the use
8665 information we have would be costly, so we just note where the label
8666 is and then later disable any optimization that would cross it. */
8667 if (GET_CODE (insn) == CODE_LABEL)
8668 last_label_ruid = reload_combine_ruid;
8669 else if (GET_CODE (insn) == BARRIER)
8670 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8671 if (! fixed_regs[r])
8672 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8674 if (! INSN_P (insn))
8675 continue;
8677 reload_combine_ruid++;
8679 /* Look for (set (REGX) (CONST_INT))
8680 (set (REGX) (PLUS (REGX) (REGY)))
8682 ... (MEM (REGX)) ...
8683 and convert it to
8684 (set (REGZ) (CONST_INT))
8686 ... (MEM (PLUS (REGZ) (REGY)))... .
8688 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
8689 and that we know all uses of REGX before it dies. */
8690 set = single_set (insn);
8691 if (set != NULL_RTX
8692 && GET_CODE (SET_DEST (set)) == REG
8693 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
8694 GET_MODE (SET_DEST (set)))
8695 == 1)
8696 && GET_CODE (SET_SRC (set)) == PLUS
8697 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
8698 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
8699 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
8701 rtx reg = SET_DEST (set);
8702 rtx plus = SET_SRC (set);
8703 rtx base = XEXP (plus, 1);
8704 rtx prev = prev_nonnote_insn (insn);
8705 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
8706 unsigned int regno = REGNO (reg);
8707 rtx const_reg = NULL_RTX;
8708 rtx reg_sum = NULL_RTX;
8710 /* Now, we need an index register.
8711 We'll set index_reg to this index register, const_reg to the
8712 register that is to be loaded with the constant
8713 (denoted as REGZ in the substitution illustration above),
8714 and reg_sum to the register-register that we want to use to
8715 substitute uses of REG (typically in MEMs) with.
8716 First check REG and BASE for being index registers;
8717 we can use them even if they are not dead. */
8718 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
8719 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8720 REGNO (base)))
8722 const_reg = reg;
8723 reg_sum = plus;
8725 else
8727 /* Otherwise, look for a free index register. Since we have
8728 checked above that neiter REG nor BASE are index registers,
8729 if we find anything at all, it will be different from these
8730 two registers. */
8731 for (i = first_index_reg; i <= last_index_reg; i++)
8733 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
8735 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
8736 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
8737 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
8739 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
8741 const_reg = index_reg;
8742 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
8743 break;
8748 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
8749 (REGY), i.e. BASE, is not clobbered before the last use we'll
8750 create. */
8751 if (prev_set != 0
8752 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
8753 && rtx_equal_p (SET_DEST (prev_set), reg)
8754 && reg_state[regno].use_index >= 0
8755 && (reg_state[REGNO (base)].store_ruid
8756 <= reg_state[regno].use_ruid)
8757 && reg_sum != 0)
8759 int i;
8761 /* Change destination register and, if necessary, the
8762 constant value in PREV, the constant loading instruction. */
8763 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
8764 if (reg_state[regno].offset != const0_rtx)
8765 validate_change (prev,
8766 &SET_SRC (prev_set),
8767 GEN_INT (INTVAL (SET_SRC (prev_set))
8768 + INTVAL (reg_state[regno].offset)),
8771 /* Now for every use of REG that we have recorded, replace REG
8772 with REG_SUM. */
8773 for (i = reg_state[regno].use_index;
8774 i < RELOAD_COMBINE_MAX_USES; i++)
8775 validate_change (reg_state[regno].reg_use[i].insn,
8776 reg_state[regno].reg_use[i].usep,
8777 /* Each change must have its own
8778 replacement. */
8779 copy_rtx (reg_sum), 1);
8781 if (apply_change_group ())
8783 rtx *np;
8785 /* Delete the reg-reg addition. */
8786 delete_insn (insn);
8788 if (reg_state[regno].offset != const0_rtx)
8789 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
8790 are now invalid. */
8791 for (np = &REG_NOTES (prev); *np;)
8793 if (REG_NOTE_KIND (*np) == REG_EQUAL
8794 || REG_NOTE_KIND (*np) == REG_EQUIV)
8795 *np = XEXP (*np, 1);
8796 else
8797 np = &XEXP (*np, 1);
8800 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
8801 reg_state[REGNO (const_reg)].store_ruid
8802 = reload_combine_ruid;
8803 continue;
8808 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
8810 if (GET_CODE (insn) == CALL_INSN)
8812 rtx link;
8814 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
8815 if (call_used_regs[r])
8817 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
8818 reg_state[r].store_ruid = reload_combine_ruid;
8821 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
8822 link = XEXP (link, 1))
8824 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
8825 if (GET_CODE (usage_rtx) == REG)
8827 unsigned int i;
8828 unsigned int start_reg = REGNO (usage_rtx);
8829 unsigned int num_regs =
8830 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
8831 unsigned int end_reg = start_reg + num_regs - 1;
8832 for (i = start_reg; i <= end_reg; i++)
8833 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
8835 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8836 reg_state[i].store_ruid = reload_combine_ruid;
8838 else
8839 reg_state[i].use_index = -1;
8844 else if (GET_CODE (insn) == JUMP_INSN
8845 && GET_CODE (PATTERN (insn)) != RETURN)
8847 /* Non-spill registers might be used at the call destination in
8848 some unknown fashion, so we have to mark the unknown use. */
8849 HARD_REG_SET *live;
8851 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
8852 && JUMP_LABEL (insn))
8853 live = &LABEL_LIVE (JUMP_LABEL (insn));
8854 else
8855 live = &ever_live_at_start;
8857 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
8858 if (TEST_HARD_REG_BIT (*live, i))
8859 reg_state[i].use_index = -1;
8862 reload_combine_note_use (&PATTERN (insn), insn);
8863 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
8865 if (REG_NOTE_KIND (note) == REG_INC
8866 && GET_CODE (XEXP (note, 0)) == REG)
8868 int regno = REGNO (XEXP (note, 0));
8870 reg_state[regno].store_ruid = reload_combine_ruid;
8871 reg_state[regno].use_index = -1;
8876 free (label_live);
8879 /* Check if DST is a register or a subreg of a register; if it is,
8880 update reg_state[regno].store_ruid and reg_state[regno].use_index
8881 accordingly. Called via note_stores from reload_combine. */
8883 static void
8884 reload_combine_note_store (dst, set, data)
8885 rtx dst, set;
8886 void *data ATTRIBUTE_UNUSED;
8888 int regno = 0;
8889 int i;
8890 enum machine_mode mode = GET_MODE (dst);
8892 if (GET_CODE (dst) == SUBREG)
8894 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
8895 GET_MODE (SUBREG_REG (dst)),
8896 SUBREG_BYTE (dst),
8897 GET_MODE (dst));
8898 dst = SUBREG_REG (dst);
8900 if (GET_CODE (dst) != REG)
8901 return;
8902 regno += REGNO (dst);
8904 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
8905 careful with registers / register parts that are not full words.
8907 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
8908 if (GET_CODE (set) != SET
8909 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
8910 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
8911 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
8913 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8915 reg_state[i].use_index = -1;
8916 reg_state[i].store_ruid = reload_combine_ruid;
8919 else
8921 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
8923 reg_state[i].store_ruid = reload_combine_ruid;
8924 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
8929 /* XP points to a piece of rtl that has to be checked for any uses of
8930 registers.
8931 *XP is the pattern of INSN, or a part of it.
8932 Called from reload_combine, and recursively by itself. */
8933 static void
8934 reload_combine_note_use (xp, insn)
8935 rtx *xp, insn;
8937 rtx x = *xp;
8938 enum rtx_code code = x->code;
8939 const char *fmt;
8940 int i, j;
8941 rtx offset = const0_rtx; /* For the REG case below. */
8943 switch (code)
8945 case SET:
8946 if (GET_CODE (SET_DEST (x)) == REG)
8948 reload_combine_note_use (&SET_SRC (x), insn);
8949 return;
8951 break;
8953 case USE:
8954 /* If this is the USE of a return value, we can't change it. */
8955 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
8957 /* Mark the return register as used in an unknown fashion. */
8958 rtx reg = XEXP (x, 0);
8959 int regno = REGNO (reg);
8960 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
8962 while (--nregs >= 0)
8963 reg_state[regno + nregs].use_index = -1;
8964 return;
8966 break;
8968 case CLOBBER:
8969 if (GET_CODE (SET_DEST (x)) == REG)
8971 /* No spurious CLOBBERs of pseudo registers may remain. */
8972 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
8973 abort ();
8974 return;
8976 break;
8978 case PLUS:
8979 /* We are interested in (plus (reg) (const_int)) . */
8980 if (GET_CODE (XEXP (x, 0)) != REG
8981 || GET_CODE (XEXP (x, 1)) != CONST_INT)
8982 break;
8983 offset = XEXP (x, 1);
8984 x = XEXP (x, 0);
8985 /* Fall through. */
8986 case REG:
8988 int regno = REGNO (x);
8989 int use_index;
8990 int nregs;
8992 /* No spurious USEs of pseudo registers may remain. */
8993 if (regno >= FIRST_PSEUDO_REGISTER)
8994 abort ();
8996 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
8998 /* We can't substitute into multi-hard-reg uses. */
8999 if (nregs > 1)
9001 while (--nregs >= 0)
9002 reg_state[regno + nregs].use_index = -1;
9003 return;
9006 /* If this register is already used in some unknown fashion, we
9007 can't do anything.
9008 If we decrement the index from zero to -1, we can't store more
9009 uses, so this register becomes used in an unknown fashion. */
9010 use_index = --reg_state[regno].use_index;
9011 if (use_index < 0)
9012 return;
9014 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
9016 /* We have found another use for a register that is already
9017 used later. Check if the offsets match; if not, mark the
9018 register as used in an unknown fashion. */
9019 if (! rtx_equal_p (offset, reg_state[regno].offset))
9021 reg_state[regno].use_index = -1;
9022 return;
9025 else
9027 /* This is the first use of this register we have seen since we
9028 marked it as dead. */
9029 reg_state[regno].offset = offset;
9030 reg_state[regno].use_ruid = reload_combine_ruid;
9032 reg_state[regno].reg_use[use_index].insn = insn;
9033 reg_state[regno].reg_use[use_index].usep = xp;
9034 return;
9037 default:
9038 break;
9041 /* Recursively process the components of X. */
9042 fmt = GET_RTX_FORMAT (code);
9043 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9045 if (fmt[i] == 'e')
9046 reload_combine_note_use (&XEXP (x, i), insn);
9047 else if (fmt[i] == 'E')
9049 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9050 reload_combine_note_use (&XVECEXP (x, i, j), insn);
9055 /* See if we can reduce the cost of a constant by replacing a move
9056 with an add. We track situations in which a register is set to a
9057 constant or to a register plus a constant. */
9058 /* We cannot do our optimization across labels. Invalidating all the
9059 information about register contents we have would be costly, so we
9060 use move2add_last_label_luid to note where the label is and then
9061 later disable any optimization that would cross it.
9062 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
9063 reg_set_luid[n] is greater than last_label_luid[n] . */
9064 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
9066 /* If reg_base_reg[n] is negative, register n has been set to
9067 reg_offset[n] in mode reg_mode[n] .
9068 If reg_base_reg[n] is non-negative, register n has been set to the
9069 sum of reg_offset[n] and the value of register reg_base_reg[n]
9070 before reg_set_luid[n], calculated in mode reg_mode[n] . */
9071 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
9072 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
9073 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
9075 /* move2add_luid is linearily increased while scanning the instructions
9076 from first to last. It is used to set reg_set_luid in
9077 reload_cse_move2add and move2add_note_store. */
9078 static int move2add_luid;
9080 /* move2add_last_label_luid is set whenever a label is found. Labels
9081 invalidate all previously collected reg_offset data. */
9082 static int move2add_last_label_luid;
9084 /* Generate a CONST_INT and force it in the range of MODE. */
9086 static HOST_WIDE_INT
9087 sext_for_mode (mode, value)
9088 enum machine_mode mode;
9089 HOST_WIDE_INT value;
9091 HOST_WIDE_INT cval = value & GET_MODE_MASK (mode);
9092 int width = GET_MODE_BITSIZE (mode);
9094 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative number,
9095 sign extend it. */
9096 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
9097 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
9098 cval |= (HOST_WIDE_INT) -1 << width;
9100 return cval;
9103 /* ??? We don't know how zero / sign extension is handled, hence we
9104 can't go from a narrower to a wider mode. */
9105 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
9106 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
9107 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
9108 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
9109 GET_MODE_BITSIZE (INMODE))))
9111 static void
9112 reload_cse_move2add (first)
9113 rtx first;
9115 int i;
9116 rtx insn;
9118 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9119 reg_set_luid[i] = 0;
9121 move2add_last_label_luid = 0;
9122 move2add_luid = 2;
9123 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
9125 rtx pat, note;
9127 if (GET_CODE (insn) == CODE_LABEL)
9129 move2add_last_label_luid = move2add_luid;
9130 /* We're going to increment move2add_luid twice after a
9131 label, so that we can use move2add_last_label_luid + 1 as
9132 the luid for constants. */
9133 move2add_luid++;
9134 continue;
9136 if (! INSN_P (insn))
9137 continue;
9138 pat = PATTERN (insn);
9139 /* For simplicity, we only perform this optimization on
9140 straightforward SETs. */
9141 if (GET_CODE (pat) == SET
9142 && GET_CODE (SET_DEST (pat)) == REG)
9144 rtx reg = SET_DEST (pat);
9145 int regno = REGNO (reg);
9146 rtx src = SET_SRC (pat);
9148 /* Check if we have valid information on the contents of this
9149 register in the mode of REG. */
9150 if (reg_set_luid[regno] > move2add_last_label_luid
9151 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
9153 /* Try to transform (set (REGX) (CONST_INT A))
9155 (set (REGX) (CONST_INT B))
9157 (set (REGX) (CONST_INT A))
9159 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9161 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
9163 int success = 0;
9164 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9165 INTVAL (src)
9166 - reg_offset[regno]));
9167 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
9168 use (set (reg) (reg)) instead.
9169 We don't delete this insn, nor do we convert it into a
9170 note, to avoid losing register notes or the return
9171 value flag. jump2 already knowns how to get rid of
9172 no-op moves. */
9173 if (new_src == const0_rtx)
9174 success = validate_change (insn, &SET_SRC (pat), reg, 0);
9175 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
9176 && have_add2_insn (reg, new_src))
9177 success = validate_change (insn, &PATTERN (insn),
9178 gen_add2_insn (reg, new_src), 0);
9179 reg_set_luid[regno] = move2add_luid;
9180 reg_mode[regno] = GET_MODE (reg);
9181 reg_offset[regno] = INTVAL (src);
9182 continue;
9185 /* Try to transform (set (REGX) (REGY))
9186 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9188 (set (REGX) (REGY))
9189 (set (REGX) (PLUS (REGX) (CONST_INT B)))
9191 (REGX) (REGY))
9192 (set (REGX) (PLUS (REGX) (CONST_INT A)))
9194 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
9195 else if (GET_CODE (src) == REG
9196 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
9197 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
9198 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
9199 reg_mode[REGNO (src)]))
9201 rtx next = next_nonnote_insn (insn);
9202 rtx set = NULL_RTX;
9203 if (next)
9204 set = single_set (next);
9205 if (set
9206 && SET_DEST (set) == reg
9207 && GET_CODE (SET_SRC (set)) == PLUS
9208 && XEXP (SET_SRC (set), 0) == reg
9209 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
9211 rtx src3 = XEXP (SET_SRC (set), 1);
9212 HOST_WIDE_INT added_offset = INTVAL (src3);
9213 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
9214 HOST_WIDE_INT regno_offset = reg_offset[regno];
9215 rtx new_src = GEN_INT (sext_for_mode (GET_MODE (reg),
9216 added_offset
9217 + base_offset
9218 - regno_offset));
9219 int success = 0;
9221 if (new_src == const0_rtx)
9222 /* See above why we create (set (reg) (reg)) here. */
9223 success
9224 = validate_change (next, &SET_SRC (set), reg, 0);
9225 else if ((rtx_cost (new_src, PLUS)
9226 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
9227 && have_add2_insn (reg, new_src))
9228 success
9229 = validate_change (next, &PATTERN (next),
9230 gen_add2_insn (reg, new_src), 0);
9231 if (success)
9232 delete_insn (insn);
9233 insn = next;
9234 reg_mode[regno] = GET_MODE (reg);
9235 reg_offset[regno] = sext_for_mode (GET_MODE (reg),
9236 added_offset
9237 + base_offset);
9238 continue;
9244 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
9246 if (REG_NOTE_KIND (note) == REG_INC
9247 && GET_CODE (XEXP (note, 0)) == REG)
9249 /* Reset the information about this register. */
9250 int regno = REGNO (XEXP (note, 0));
9251 if (regno < FIRST_PSEUDO_REGISTER)
9252 reg_set_luid[regno] = 0;
9255 note_stores (PATTERN (insn), move2add_note_store, NULL);
9256 /* If this is a CALL_INSN, all call used registers are stored with
9257 unknown values. */
9258 if (GET_CODE (insn) == CALL_INSN)
9260 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
9262 if (call_used_regs[i])
9263 /* Reset the information about this register. */
9264 reg_set_luid[i] = 0;
9270 /* SET is a SET or CLOBBER that sets DST.
9271 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
9272 Called from reload_cse_move2add via note_stores. */
9274 static void
9275 move2add_note_store (dst, set, data)
9276 rtx dst, set;
9277 void *data ATTRIBUTE_UNUSED;
9279 unsigned int regno = 0;
9280 unsigned int i;
9281 enum machine_mode mode = GET_MODE (dst);
9283 if (GET_CODE (dst) == SUBREG)
9285 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
9286 GET_MODE (SUBREG_REG (dst)),
9287 SUBREG_BYTE (dst),
9288 GET_MODE (dst));
9289 dst = SUBREG_REG (dst);
9292 /* Some targets do argument pushes without adding REG_INC notes. */
9294 if (GET_CODE (dst) == MEM)
9296 dst = XEXP (dst, 0);
9297 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
9298 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
9299 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
9300 return;
9302 if (GET_CODE (dst) != REG)
9303 return;
9305 regno += REGNO (dst);
9307 if (HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
9308 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
9309 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
9310 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
9312 rtx src = SET_SRC (set);
9313 rtx base_reg;
9314 HOST_WIDE_INT offset;
9315 int base_regno;
9316 /* This may be different from mode, if SET_DEST (set) is a
9317 SUBREG. */
9318 enum machine_mode dst_mode = GET_MODE (dst);
9320 switch (GET_CODE (src))
9322 case PLUS:
9323 if (GET_CODE (XEXP (src, 0)) == REG)
9325 base_reg = XEXP (src, 0);
9327 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
9328 offset = INTVAL (XEXP (src, 1));
9329 else if (GET_CODE (XEXP (src, 1)) == REG
9330 && (reg_set_luid[REGNO (XEXP (src, 1))]
9331 > move2add_last_label_luid)
9332 && (MODES_OK_FOR_MOVE2ADD
9333 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
9335 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
9336 offset = reg_offset[REGNO (XEXP (src, 1))];
9337 /* Maybe the first register is known to be a
9338 constant. */
9339 else if (reg_set_luid[REGNO (base_reg)]
9340 > move2add_last_label_luid
9341 && (MODES_OK_FOR_MOVE2ADD
9342 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
9343 && reg_base_reg[REGNO (base_reg)] < 0)
9345 offset = reg_offset[REGNO (base_reg)];
9346 base_reg = XEXP (src, 1);
9348 else
9349 goto invalidate;
9351 else
9352 goto invalidate;
9354 break;
9357 goto invalidate;
9359 case REG:
9360 base_reg = src;
9361 offset = 0;
9362 break;
9364 case CONST_INT:
9365 /* Start tracking the register as a constant. */
9366 reg_base_reg[regno] = -1;
9367 reg_offset[regno] = INTVAL (SET_SRC (set));
9368 /* We assign the same luid to all registers set to constants. */
9369 reg_set_luid[regno] = move2add_last_label_luid + 1;
9370 reg_mode[regno] = mode;
9371 return;
9373 default:
9374 invalidate:
9375 /* Invalidate the contents of the register. */
9376 reg_set_luid[regno] = 0;
9377 return;
9380 base_regno = REGNO (base_reg);
9381 /* If information about the base register is not valid, set it
9382 up as a new base register, pretending its value is known
9383 starting from the current insn. */
9384 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
9386 reg_base_reg[base_regno] = base_regno;
9387 reg_offset[base_regno] = 0;
9388 reg_set_luid[base_regno] = move2add_luid;
9389 reg_mode[base_regno] = mode;
9391 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
9392 reg_mode[base_regno]))
9393 goto invalidate;
9395 reg_mode[regno] = mode;
9397 /* Copy base information from our base register. */
9398 reg_set_luid[regno] = reg_set_luid[base_regno];
9399 reg_base_reg[regno] = reg_base_reg[base_regno];
9401 /* Compute the sum of the offsets or constants. */
9402 reg_offset[regno] = sext_for_mode (dst_mode,
9403 offset
9404 + reg_offset[base_regno]);
9406 else
9408 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
9410 for (i = regno; i < endregno; i++)
9411 /* Reset the information about this register. */
9412 reg_set_luid[i] = 0;
9416 #ifdef AUTO_INC_DEC
9417 static void
9418 add_auto_inc_notes (insn, x)
9419 rtx insn;
9420 rtx x;
9422 enum rtx_code code = GET_CODE (x);
9423 const char *fmt;
9424 int i, j;
9426 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9428 REG_NOTES (insn)
9429 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
9430 return;
9433 /* Scan all the operand sub-expressions. */
9434 fmt = GET_RTX_FORMAT (code);
9435 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9437 if (fmt[i] == 'e')
9438 add_auto_inc_notes (insn, XEXP (x, i));
9439 else if (fmt[i] == 'E')
9440 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9441 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9444 #endif
9446 /* Copy EH notes from an insn to its reloads. */
9447 static void
9448 copy_eh_notes (insn, x)
9449 rtx insn;
9450 rtx x;
9452 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
9453 if (eh_note)
9455 for (; x != 0; x = NEXT_INSN (x))
9457 if (may_trap_p (PATTERN (x)))
9458 REG_NOTES (x)
9459 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
9460 REG_NOTES (x));
9465 /* This is used by reload pass, that does emit some instructions after
9466 abnormal calls moving basic block end, but in fact it wants to emit
9467 them on the edge. Looks for abnormal call edges, find backward the
9468 proper call and fix the damage.
9470 Similar handle instructions throwing exceptions internally. */
9471 void
9472 fixup_abnormal_edges ()
9474 int i;
9475 bool inserted = false;
9477 for (i = 0; i < n_basic_blocks; i++)
9479 basic_block bb = BASIC_BLOCK (i);
9480 edge e;
9482 /* Look for cases we are interested in - an calls or instructions causing
9483 exceptions. */
9484 for (e = bb->succ; e; e = e->succ_next)
9486 if (e->flags & EDGE_ABNORMAL_CALL)
9487 break;
9488 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
9489 == (EDGE_ABNORMAL | EDGE_EH))
9490 break;
9492 if (e && GET_CODE (bb->end) != CALL_INSN && !can_throw_internal (bb->end))
9494 rtx insn = bb->end, stop = NEXT_INSN (bb->end);
9495 rtx next;
9496 for (e = bb->succ; e; e = e->succ_next)
9497 if (e->flags & EDGE_FALLTHRU)
9498 break;
9499 /* Get past the new insns generated. Allow notes, as the insns may
9500 be already deleted. */
9501 while ((GET_CODE (insn) == INSN || GET_CODE (insn) == NOTE)
9502 && !can_throw_internal (insn)
9503 && insn != bb->head)
9504 insn = PREV_INSN (insn);
9505 if (GET_CODE (insn) != CALL_INSN && !can_throw_internal (insn))
9506 abort ();
9507 bb->end = insn;
9508 inserted = true;
9509 insn = NEXT_INSN (insn);
9510 while (insn && insn != stop)
9512 next = NEXT_INSN (insn);
9513 if (INSN_P (insn))
9515 insert_insn_on_edge (PATTERN (insn), e);
9516 delete_insn (insn);
9518 insn = next;
9522 if (inserted)
9523 commit_edge_insertions ();