1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
43 Here's an example of using the dataflow routines.
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
179 #include "coretypes.h"
183 #include "insn-config.h"
185 #include "function.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
207 static alloc_pool df_ref_pool
;
208 static alloc_pool df_link_pool
;
209 static struct df
*ddf
;
211 static void df_reg_table_realloc (struct df
*, int);
212 static void df_insn_table_realloc (struct df
*, unsigned int);
213 static void df_bb_table_realloc (struct df
*, unsigned int);
214 static void df_bitmaps_alloc (struct df
*, bitmap
, int);
215 static void df_bitmaps_free (struct df
*, int);
216 static void df_free (struct df
*);
217 static void df_alloc (struct df
*, int);
219 static rtx
df_reg_use_gen (unsigned int);
221 static inline struct df_link
*df_link_create (struct ref
*, struct df_link
*);
222 static struct df_link
*df_ref_unlink (struct df_link
**, struct ref
*);
223 static void df_def_unlink (struct df
*, struct ref
*);
224 static void df_use_unlink (struct df
*, struct ref
*);
225 static void df_insn_refs_unlink (struct df
*, basic_block
, rtx
);
227 static void df_bb_refs_unlink (struct df
*, basic_block
);
228 static void df_refs_unlink (struct df
*, bitmap
);
231 static struct ref
*df_ref_create (struct df
*, rtx
, rtx
*, rtx
,
232 enum df_ref_type
, enum df_ref_flags
);
233 static void df_ref_record_1 (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
235 static void df_ref_record (struct df
*, rtx
, rtx
*, rtx
, enum df_ref_type
,
237 static void df_def_record_1 (struct df
*, rtx
, basic_block
, rtx
);
238 static void df_defs_record (struct df
*, rtx
, basic_block
, rtx
);
239 static void df_uses_record (struct df
*, rtx
*, enum df_ref_type
,
240 basic_block
, rtx
, enum df_ref_flags
);
241 static void df_insn_refs_record (struct df
*, basic_block
, rtx
);
242 static void df_bb_refs_record (struct df
*, basic_block
);
243 static void df_refs_record (struct df
*, bitmap
);
245 static void df_bb_reg_def_chain_create (struct df
*, basic_block
);
246 static void df_reg_def_chain_create (struct df
*, bitmap
, bool);
247 static void df_bb_reg_use_chain_create (struct df
*, basic_block
);
248 static void df_reg_use_chain_create (struct df
*, bitmap
, bool);
249 static void df_bb_du_chain_create (struct df
*, basic_block
, bitmap
);
250 static void df_du_chain_create (struct df
*, bitmap
);
251 static void df_bb_ud_chain_create (struct df
*, basic_block
);
252 static void df_ud_chain_create (struct df
*, bitmap
);
253 static void df_bb_rd_local_compute (struct df
*, basic_block
, bitmap
);
254 static void df_rd_local_compute (struct df
*, bitmap
);
255 static void df_bb_ru_local_compute (struct df
*, basic_block
);
256 static void df_ru_local_compute (struct df
*, bitmap
);
257 static void df_bb_lr_local_compute (struct df
*, basic_block
);
258 static void df_lr_local_compute (struct df
*, bitmap
);
259 static void df_bb_reg_info_compute (struct df
*, basic_block
, bitmap
);
260 static void df_reg_info_compute (struct df
*, bitmap
);
262 static int df_bb_luids_set (struct df
*df
, basic_block
);
263 static int df_luids_set (struct df
*df
, bitmap
);
265 static int df_modified_p (struct df
*, bitmap
);
266 static int df_refs_queue (struct df
*);
267 static int df_refs_process (struct df
*);
268 static int df_bb_refs_update (struct df
*, basic_block
);
269 static int df_refs_update (struct df
*, bitmap
);
270 static void df_analyze_1 (struct df
*, bitmap
, int, int);
272 static void df_insns_modify (struct df
*, basic_block
, rtx
, rtx
);
273 static int df_rtx_mem_replace (rtx
*, void *);
274 static int df_rtx_reg_replace (rtx
*, void *);
275 void df_refs_reg_replace (struct df
*, bitmap
, struct df_link
*, rtx
, rtx
);
277 static int df_def_dominates_all_uses_p (struct df
*, struct ref
*def
);
278 static int df_def_dominates_uses_p (struct df
*, struct ref
*def
, bitmap
);
279 static struct ref
*df_bb_insn_regno_last_use_find (struct df
*, basic_block
,
281 static struct ref
*df_bb_insn_regno_first_def_find (struct df
*, basic_block
,
284 static void df_chain_dump (struct df_link
*, FILE *file
);
285 static void df_chain_dump_regno (struct df_link
*, FILE *file
);
286 static void df_regno_debug (struct df
*, unsigned int, FILE *);
287 static void df_ref_debug (struct df
*, struct ref
*, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
294 static void hybrid_search (basic_block
, struct dataflow
*,
295 sbitmap
, sbitmap
, sbitmap
);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
304 df_insn_table_realloc (struct df
*df
, unsigned int size
)
307 if (size
<= df
->insn_size
)
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size
+= df
->insn_size
/ 4;
314 df
->insns
= xrealloc (df
->insns
, size
* sizeof (struct insn_info
));
316 memset (df
->insns
+ df
->insn_size
, 0,
317 (size
- df
->insn_size
) * sizeof (struct insn_info
));
319 df
->insn_size
= size
;
321 if (! df
->insns_modified
)
323 df
->insns_modified
= BITMAP_ALLOC (NULL
);
324 bitmap_zero (df
->insns_modified
);
328 /* Increase the bb info table to have space for at least SIZE + 1
332 df_bb_table_realloc (struct df
*df
, unsigned int size
)
335 if (size
<= df
->n_bbs
)
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size
+= df
->n_bbs
/ 4;
342 df
->bbs
= xrealloc (df
->bbs
, size
* sizeof (struct bb_info
));
344 memset (df
->bbs
+ df
->n_bbs
, 0, (size
- df
->n_bbs
) * sizeof (struct bb_info
));
349 /* Increase the reg info table by SIZE more elements. */
351 df_reg_table_realloc (struct df
*df
, int size
)
353 /* Make table 25 percent larger by default. */
355 size
= df
->reg_size
/ 4;
357 size
+= df
->reg_size
;
358 if (size
< max_reg_num ())
359 size
= max_reg_num ();
361 df
->regs
= xrealloc (df
->regs
, size
* sizeof (struct reg_info
));
362 df
->reg_def_last
= xrealloc (df
->reg_def_last
,
363 size
* sizeof (struct ref
*));
365 /* Zero the new entries. */
366 memset (df
->regs
+ df
->reg_size
, 0,
367 (size
- df
->reg_size
) * sizeof (struct reg_info
));
373 /* Allocate bitmaps for each basic block. */
376 df_bitmaps_alloc (struct df
*df
, bitmap blocks
, int flags
)
380 df
->n_defs
= df
->def_id
;
381 df
->n_uses
= df
->use_id
;
384 blocks
= df
->all_blocks
;
386 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
388 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info
->rd_kill
= BITMAP_ALLOC (NULL
);
396 bb_info
->rd_gen
= BITMAP_ALLOC (NULL
);
397 bb_info
->rd_in
= BITMAP_ALLOC (NULL
);
398 bb_info
->rd_out
= BITMAP_ALLOC (NULL
);
402 bitmap_clear (bb_info
->rd_kill
);
403 bitmap_clear (bb_info
->rd_gen
);
404 bitmap_clear (bb_info
->rd_in
);
405 bitmap_clear (bb_info
->rd_out
);
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info
->ru_kill
= BITMAP_ALLOC (NULL
);
415 bb_info
->ru_gen
= BITMAP_ALLOC (NULL
);
416 bb_info
->ru_in
= BITMAP_ALLOC (NULL
);
417 bb_info
->ru_out
= BITMAP_ALLOC (NULL
);
421 bitmap_clear (bb_info
->ru_kill
);
422 bitmap_clear (bb_info
->ru_gen
);
423 bitmap_clear (bb_info
->ru_in
);
424 bitmap_clear (bb_info
->ru_out
);
432 /* Allocate bitmaps for live variables. */
433 bb_info
->lr_def
= BITMAP_ALLOC (NULL
);
434 bb_info
->lr_use
= BITMAP_ALLOC (NULL
);
435 bb_info
->lr_in
= BITMAP_ALLOC (NULL
);
436 bb_info
->lr_out
= BITMAP_ALLOC (NULL
);
440 bitmap_clear (bb_info
->lr_def
);
441 bitmap_clear (bb_info
->lr_use
);
442 bitmap_clear (bb_info
->lr_in
);
443 bitmap_clear (bb_info
->lr_out
);
450 /* Free bitmaps for each basic block. */
452 df_bitmaps_free (struct df
*df
, int flags
)
456 for (i
= 0; i
< df
->n_bbs
; i
++)
458 struct bb_info
*bb_info
= &df
->bbs
[i
];
460 if ((flags
& DF_RD
) && bb_info
->rd_in
)
462 /* Free bitmaps for reaching definitions. */
463 BITMAP_FREE (bb_info
->rd_kill
);
464 bb_info
->rd_kill
= NULL
;
465 BITMAP_FREE (bb_info
->rd_gen
);
466 bb_info
->rd_gen
= NULL
;
467 BITMAP_FREE (bb_info
->rd_in
);
468 bb_info
->rd_in
= NULL
;
469 BITMAP_FREE (bb_info
->rd_out
);
470 bb_info
->rd_out
= NULL
;
473 if ((flags
& DF_RU
) && bb_info
->ru_in
)
475 /* Free bitmaps for upward exposed uses. */
476 BITMAP_FREE (bb_info
->ru_kill
);
477 bb_info
->ru_kill
= NULL
;
478 BITMAP_FREE (bb_info
->ru_gen
);
479 bb_info
->ru_gen
= NULL
;
480 BITMAP_FREE (bb_info
->ru_in
);
481 bb_info
->ru_in
= NULL
;
482 BITMAP_FREE (bb_info
->ru_out
);
483 bb_info
->ru_out
= NULL
;
486 if ((flags
& DF_LR
) && bb_info
->lr_in
)
488 /* Free bitmaps for live variables. */
489 BITMAP_FREE (bb_info
->lr_def
);
490 bb_info
->lr_def
= NULL
;
491 BITMAP_FREE (bb_info
->lr_use
);
492 bb_info
->lr_use
= NULL
;
493 BITMAP_FREE (bb_info
->lr_in
);
494 bb_info
->lr_in
= NULL
;
495 BITMAP_FREE (bb_info
->lr_out
);
496 bb_info
->lr_out
= NULL
;
499 df
->flags
&= ~(flags
& (DF_RD
| DF_RU
| DF_LR
));
503 /* Allocate and initialize dataflow memory. */
505 df_alloc (struct df
*df
, int n_regs
)
510 df_link_pool
= create_alloc_pool ("df_link pool", sizeof (struct df_link
),
512 df_ref_pool
= create_alloc_pool ("df_ref pool", sizeof (struct ref
), 100);
514 /* Perhaps we should use LUIDs to save memory for the insn_refs
515 table. This is only a small saving; a few pointers. */
516 n_insns
= get_max_uid () + 1;
520 /* Approximate number of defs by number of insns. */
521 df
->def_size
= n_insns
;
522 df
->defs
= xmalloc (df
->def_size
* sizeof (*df
->defs
));
526 /* Approximate number of uses by twice number of insns. */
527 df
->use_size
= n_insns
* 2;
528 df
->uses
= xmalloc (df
->use_size
* sizeof (*df
->uses
));
531 df
->n_bbs
= last_basic_block
;
533 /* Allocate temporary working array used during local dataflow analysis. */
534 df_insn_table_realloc (df
, n_insns
);
536 df_reg_table_realloc (df
, df
->n_regs
);
538 df
->bbs_modified
= BITMAP_ALLOC (NULL
);
539 bitmap_zero (df
->bbs_modified
);
543 df
->bbs
= xcalloc (last_basic_block
, sizeof (struct bb_info
));
545 df
->all_blocks
= BITMAP_ALLOC (NULL
);
547 bitmap_set_bit (df
->all_blocks
, bb
->index
);
551 /* Free all the dataflow info. */
553 df_free (struct df
*df
)
555 df_bitmaps_free (df
, DF_ALL
);
583 BITMAP_FREE (df
->bbs_modified
);
584 df
->bbs_modified
= 0;
586 BITMAP_FREE (df
->insns_modified
);
587 df
->insns_modified
= 0;
589 BITMAP_FREE (df
->all_blocks
);
592 free_alloc_pool (df_ref_pool
);
593 free_alloc_pool (df_link_pool
);
596 /* Local miscellaneous routines. */
598 /* Return a USE for register REGNO. */
599 static rtx
df_reg_use_gen (unsigned int regno
)
604 reg
= regno_reg_rtx
[regno
];
606 use
= gen_rtx_USE (GET_MODE (reg
), reg
);
610 /* Local chain manipulation routines. */
612 /* Create a link in a def-use or use-def chain. */
613 static inline struct df_link
*
614 df_link_create (struct ref
*ref
, struct df_link
*next
)
616 struct df_link
*link
;
618 link
= pool_alloc (df_link_pool
);
624 /* Releases members of the CHAIN. */
627 free_reg_ref_chain (struct df_link
**chain
)
629 struct df_link
*act
, *next
;
631 for (act
= *chain
; act
; act
= next
)
634 pool_free (df_link_pool
, act
);
640 /* Add REF to chain head pointed to by PHEAD. */
641 static struct df_link
*
642 df_ref_unlink (struct df_link
**phead
, struct ref
*ref
)
644 struct df_link
*link
= *phead
;
650 /* Only a single ref. It must be the one we want.
651 If not, the def-use and use-def chains are likely to
653 gcc_assert (link
->ref
== ref
);
655 /* Now have an empty chain. */
660 /* Multiple refs. One of them must be us. */
661 if (link
->ref
== ref
)
666 for (; link
->next
; link
= link
->next
)
668 if (link
->next
->ref
== ref
)
670 /* Unlink from list. */
671 link
->next
= link
->next
->next
;
682 /* Unlink REF from all def-use/use-def chains, etc. */
684 df_ref_remove (struct df
*df
, struct ref
*ref
)
686 if (DF_REF_REG_DEF_P (ref
))
688 df_def_unlink (df
, ref
);
689 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].defs
, ref
);
693 df_use_unlink (df
, ref
);
694 df_ref_unlink (&df
->insns
[DF_REF_INSN_UID (ref
)].uses
, ref
);
700 /* Unlink DEF from use-def and reg-def chains. */
702 df_def_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
704 struct df_link
*du_link
;
705 unsigned int dregno
= DF_REF_REGNO (def
);
707 /* Follow def-use chain to find all the uses of this def. */
708 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
710 struct ref
*use
= du_link
->ref
;
712 /* Unlink this def from the use-def chain. */
713 df_ref_unlink (&DF_REF_CHAIN (use
), def
);
715 DF_REF_CHAIN (def
) = 0;
717 /* Unlink def from reg-def chain. */
718 df_ref_unlink (&df
->regs
[dregno
].defs
, def
);
720 df
->defs
[DF_REF_ID (def
)] = 0;
724 /* Unlink use from def-use and reg-use chains. */
726 df_use_unlink (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*use
)
728 struct df_link
*ud_link
;
729 unsigned int uregno
= DF_REF_REGNO (use
);
731 /* Follow use-def chain to find all the defs of this use. */
732 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
734 struct ref
*def
= ud_link
->ref
;
736 /* Unlink this use from the def-use chain. */
737 df_ref_unlink (&DF_REF_CHAIN (def
), use
);
739 DF_REF_CHAIN (use
) = 0;
741 /* Unlink use from reg-use chain. */
742 df_ref_unlink (&df
->regs
[uregno
].uses
, use
);
744 df
->uses
[DF_REF_ID (use
)] = 0;
747 /* Local routines for recording refs. */
750 /* Create a new ref of type DF_REF_TYPE for register REG at address
751 LOC within INSN of BB. */
753 df_ref_create (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
754 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
756 struct ref
*this_ref
;
758 this_ref
= pool_alloc (df_ref_pool
);
759 DF_REF_REG (this_ref
) = reg
;
760 DF_REF_LOC (this_ref
) = loc
;
761 DF_REF_INSN (this_ref
) = insn
;
762 DF_REF_CHAIN (this_ref
) = 0;
763 DF_REF_TYPE (this_ref
) = ref_type
;
764 DF_REF_FLAGS (this_ref
) = ref_flags
;
765 DF_REF_DATA (this_ref
) = NULL
;
767 if (ref_type
== DF_REF_REG_DEF
)
769 if (df
->def_id
>= df
->def_size
)
771 /* Make table 25 percent larger. */
772 df
->def_size
+= (df
->def_size
/ 4);
773 df
->defs
= xrealloc (df
->defs
,
774 df
->def_size
* sizeof (*df
->defs
));
776 DF_REF_ID (this_ref
) = df
->def_id
;
777 df
->defs
[df
->def_id
++] = this_ref
;
781 if (df
->use_id
>= df
->use_size
)
783 /* Make table 25 percent larger. */
784 df
->use_size
+= (df
->use_size
/ 4);
785 df
->uses
= xrealloc (df
->uses
,
786 df
->use_size
* sizeof (*df
->uses
));
788 DF_REF_ID (this_ref
) = df
->use_id
;
789 df
->uses
[df
->use_id
++] = this_ref
;
795 /* Create a new reference of type DF_REF_TYPE for a single register REG,
796 used inside the LOC rtx of INSN. */
798 df_ref_record_1 (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
799 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
801 df_ref_create (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
805 /* Create new references of type DF_REF_TYPE for each part of register REG
806 at address LOC within INSN of BB. */
808 df_ref_record (struct df
*df
, rtx reg
, rtx
*loc
, rtx insn
,
809 enum df_ref_type ref_type
, enum df_ref_flags ref_flags
)
813 gcc_assert (REG_P (reg
) || GET_CODE (reg
) == SUBREG
);
815 /* For the reg allocator we are interested in some SUBREG rtx's, but not
816 all. Notably only those representing a word extraction from a multi-word
817 reg. As written in the docu those should have the form
818 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
819 XXX Is that true? We could also use the global word_mode variable. */
820 if ((df
->flags
& DF_SUBREGS
) == 0
821 && GET_CODE (reg
) == SUBREG
822 && (GET_MODE_SIZE (GET_MODE (reg
)) < GET_MODE_SIZE (word_mode
)
823 || GET_MODE_SIZE (GET_MODE (reg
))
824 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg
)))))
826 loc
= &SUBREG_REG (reg
);
828 ref_flags
|= DF_REF_STRIPPED
;
831 regno
= REGNO (GET_CODE (reg
) == SUBREG
? SUBREG_REG (reg
) : reg
);
832 if (regno
< FIRST_PSEUDO_REGISTER
)
837 if (! (df
->flags
& DF_HARD_REGS
))
840 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
841 for the mode, because we only want to add references to regs, which
842 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
843 reference the whole reg 0 in DI mode (which would also include
844 reg 1, at least, if 0 and 1 are SImode registers). */
845 endregno
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
846 if (GET_CODE (reg
) == SUBREG
)
847 regno
+= subreg_regno_offset (regno
, GET_MODE (SUBREG_REG (reg
)),
848 SUBREG_BYTE (reg
), GET_MODE (reg
));
851 for (i
= regno
; i
< endregno
; i
++)
852 df_ref_record_1 (df
, regno_reg_rtx
[i
],
853 loc
, insn
, ref_type
, ref_flags
);
857 df_ref_record_1 (df
, reg
, loc
, insn
, ref_type
, ref_flags
);
862 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
863 covered by the outer mode is smaller than that covered by the inner mode,
864 is a read-modify-write operation.
865 This function returns true iff the SUBREG X is such a SUBREG. */
867 read_modify_subreg_p (rtx x
)
869 unsigned int isize
, osize
;
870 if (GET_CODE (x
) != SUBREG
)
872 isize
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
873 osize
= GET_MODE_SIZE (GET_MODE (x
));
874 return (isize
> osize
&& isize
> UNITS_PER_WORD
);
878 /* Process all the registers defined in the rtx, X. */
880 df_def_record_1 (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
884 enum df_ref_flags flags
= 0;
886 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
888 if (GET_CODE (x
) == EXPR_LIST
|| GET_CODE (x
) == CLOBBER
)
894 /* Some targets place small structures in registers for
895 return values of functions. */
896 if (GET_CODE (dst
) == PARALLEL
&& GET_MODE (dst
) == BLKmode
)
900 for (i
= XVECLEN (dst
, 0) - 1; i
>= 0; i
--)
902 rtx temp
= XVECEXP (dst
, 0, i
);
903 if (GET_CODE (temp
) == EXPR_LIST
|| GET_CODE (temp
) == CLOBBER
904 || GET_CODE (temp
) == SET
)
905 df_def_record_1 (df
, temp
, bb
, insn
);
910 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
911 be handy for the reg allocator. */
912 while (GET_CODE (dst
) == STRICT_LOW_PART
913 || GET_CODE (dst
) == ZERO_EXTRACT
914 || read_modify_subreg_p (dst
))
916 /* Strict low part always contains SUBREG, but we do not want to make
917 it appear outside, as whole register is always considered. */
918 if (GET_CODE (dst
) == STRICT_LOW_PART
)
920 loc
= &XEXP (dst
, 0);
923 loc
= &XEXP (dst
, 0);
925 flags
|= DF_REF_READ_WRITE
;
929 || (GET_CODE (dst
) == SUBREG
&& REG_P (SUBREG_REG (dst
))))
930 df_ref_record (df
, dst
, loc
, insn
, DF_REF_REG_DEF
, flags
);
934 /* Process all the registers defined in the pattern rtx, X. */
936 df_defs_record (struct df
*df
, rtx x
, basic_block bb
, rtx insn
)
938 RTX_CODE code
= GET_CODE (x
);
940 if (code
== SET
|| code
== CLOBBER
)
942 /* Mark the single def within the pattern. */
943 df_def_record_1 (df
, x
, bb
, insn
);
945 else if (code
== PARALLEL
)
949 /* Mark the multiple defs within the pattern. */
950 for (i
= XVECLEN (x
, 0) - 1; i
>= 0; i
--)
952 code
= GET_CODE (XVECEXP (x
, 0, i
));
953 if (code
== SET
|| code
== CLOBBER
)
954 df_def_record_1 (df
, XVECEXP (x
, 0, i
), bb
, insn
);
960 /* Process all the registers used in the rtx at address LOC. */
962 df_uses_record (struct df
*df
, rtx
*loc
, enum df_ref_type ref_type
,
963 basic_block bb
, rtx insn
, enum df_ref_flags flags
)
987 /* If we are clobbering a MEM, mark any registers inside the address
989 if (MEM_P (XEXP (x
, 0)))
990 df_uses_record (df
, &XEXP (XEXP (x
, 0), 0),
991 DF_REF_REG_MEM_STORE
, bb
, insn
, flags
);
993 /* If we're clobbering a REG then we have a def so ignore. */
997 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_MEM_LOAD
, bb
, insn
, 0);
1001 /* While we're here, optimize this case. */
1003 /* In case the SUBREG is not of a REG, do not optimize. */
1004 if (!REG_P (SUBREG_REG (x
)))
1006 loc
= &SUBREG_REG (x
);
1007 df_uses_record (df
, loc
, ref_type
, bb
, insn
, flags
);
1010 /* ... Fall through ... */
1013 df_ref_record (df
, x
, loc
, insn
, ref_type
, flags
);
1018 rtx dst
= SET_DEST (x
);
1020 df_uses_record (df
, &SET_SRC (x
), DF_REF_REG_USE
, bb
, insn
, 0);
1022 switch (GET_CODE (dst
))
1025 if (read_modify_subreg_p (dst
))
1027 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1028 insn
, DF_REF_READ_WRITE
);
1039 df_uses_record (df
, &XEXP (dst
, 0),
1040 DF_REF_REG_MEM_STORE
,
1043 case STRICT_LOW_PART
:
1044 /* A strict_low_part uses the whole REG and not just the
1046 dst
= XEXP (dst
, 0);
1047 gcc_assert (GET_CODE (dst
) == SUBREG
);
1048 df_uses_record (df
, &SUBREG_REG (dst
), DF_REF_REG_USE
, bb
,
1049 insn
, DF_REF_READ_WRITE
);
1053 df_uses_record (df
, &XEXP (dst
, 0), DF_REF_REG_USE
, bb
, insn
,
1055 df_uses_record (df
, &XEXP (dst
, 1), DF_REF_REG_USE
, bb
, insn
, 0);
1056 df_uses_record (df
, &XEXP (dst
, 2), DF_REF_REG_USE
, bb
, insn
, 0);
1057 dst
= XEXP (dst
, 0);
1069 case UNSPEC_VOLATILE
:
1073 /* Traditional and volatile asm instructions must be considered to use
1074 and clobber all hard registers, all pseudo-registers and all of
1075 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1077 Consider for instance a volatile asm that changes the fpu rounding
1078 mode. An insn should not be moved across this even if it only uses
1079 pseudo-regs because it might give an incorrectly rounded result.
1081 For now, just mark any regs we can find in ASM_OPERANDS as
1084 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1085 We can not just fall through here since then we would be confused
1086 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1087 traditional asms unlike their normal usage. */
1088 if (code
== ASM_OPERANDS
)
1092 for (j
= 0; j
< ASM_OPERANDS_INPUT_LENGTH (x
); j
++)
1093 df_uses_record (df
, &ASM_OPERANDS_INPUT (x
, j
),
1094 DF_REF_REG_USE
, bb
, insn
, 0);
1106 /* Catch the def of the register being modified. */
1107 df_ref_record (df
, XEXP (x
, 0), &XEXP (x
, 0), insn
, DF_REF_REG_DEF
, DF_REF_READ_WRITE
);
1109 /* ... Fall through to handle uses ... */
1115 /* Recursively scan the operands of this expression. */
1117 const char *fmt
= GET_RTX_FORMAT (code
);
1120 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1124 /* Tail recursive case: save a function call level. */
1130 df_uses_record (df
, &XEXP (x
, i
), ref_type
, bb
, insn
, flags
);
1132 else if (fmt
[i
] == 'E')
1135 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1136 df_uses_record (df
, &XVECEXP (x
, i
, j
), ref_type
,
1144 /* Record all the df within INSN of basic block BB. */
1146 df_insn_refs_record (struct df
*df
, basic_block bb
, rtx insn
)
1154 /* Record register defs. */
1155 df_defs_record (df
, PATTERN (insn
), bb
, insn
);
1157 if (df
->flags
& DF_EQUIV_NOTES
)
1158 for (note
= REG_NOTES (insn
); note
;
1159 note
= XEXP (note
, 1))
1161 switch (REG_NOTE_KIND (note
))
1165 df_uses_record (df
, &XEXP (note
, 0), DF_REF_REG_USE
,
1177 /* Record the registers used to pass arguments. */
1178 for (note
= CALL_INSN_FUNCTION_USAGE (insn
); note
;
1179 note
= XEXP (note
, 1))
1181 if (GET_CODE (XEXP (note
, 0)) == USE
)
1182 df_uses_record (df
, &XEXP (XEXP (note
, 0), 0), DF_REF_REG_USE
,
1186 /* The stack ptr is used (honorarily) by a CALL insn. */
1187 x
= df_reg_use_gen (STACK_POINTER_REGNUM
);
1188 df_uses_record (df
, &XEXP (x
, 0), DF_REF_REG_USE
, bb
, insn
, 0);
1190 if (df
->flags
& DF_HARD_REGS
)
1192 /* Calls may also reference any of the global registers,
1193 so they are recorded as used. */
1194 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1197 x
= df_reg_use_gen (i
);
1198 df_uses_record (df
, &XEXP (x
, 0),
1199 DF_REF_REG_USE
, bb
, insn
, 0);
1204 /* Record the register uses. */
1205 df_uses_record (df
, &PATTERN (insn
),
1206 DF_REF_REG_USE
, bb
, insn
, 0);
1212 /* We do not record hard registers clobbered by the call,
1213 since there are awfully many of them and "defs" created
1214 through them are not interesting (since no use can be legally
1215 reached by them). So we must just make sure we include them when
1216 computing kill bitmaps. */
1218 /* There may be extra registers to be clobbered. */
1219 for (note
= CALL_INSN_FUNCTION_USAGE (insn
);
1221 note
= XEXP (note
, 1))
1222 if (GET_CODE (XEXP (note
, 0)) == CLOBBER
)
1223 df_defs_record (df
, XEXP (note
, 0), bb
, insn
);
1229 /* Record all the refs within the basic block BB. */
1231 df_bb_refs_record (struct df
*df
, basic_block bb
)
1235 /* Scan the block an insn at a time from beginning to end. */
1236 FOR_BB_INSNS (bb
, insn
)
1240 /* Record defs within INSN. */
1241 df_insn_refs_record (df
, bb
, insn
);
1247 /* Record all the refs in the basic blocks specified by BLOCKS. */
1249 df_refs_record (struct df
*df
, bitmap blocks
)
1253 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1255 df_bb_refs_record (df
, bb
);
1259 /* Dataflow analysis routines. */
1261 /* Create reg-def chains for basic block BB. These are a list of
1262 definitions for each register. */
1265 df_bb_reg_def_chain_create (struct df
*df
, basic_block bb
)
1269 /* Perhaps the defs should be sorted using a depth first search
1270 of the CFG (or possibly a breadth first search). */
1272 FOR_BB_INSNS_REVERSE (bb
, insn
)
1274 struct df_link
*link
;
1275 unsigned int uid
= INSN_UID (insn
);
1277 if (! INSN_P (insn
))
1280 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1282 struct ref
*def
= link
->ref
;
1283 unsigned int dregno
= DF_REF_REGNO (def
);
1285 /* Do not add ref's to the chain twice, i.e., only add new
1286 refs. XXX the same could be done by testing if the
1287 current insn is a modified (or a new) one. This would be
1289 if (DF_REF_ID (def
) < df
->def_id_save
)
1292 df
->regs
[dregno
].defs
= df_link_create (def
, df
->regs
[dregno
].defs
);
1298 /* Create reg-def chains for each basic block within BLOCKS. These
1299 are a list of definitions for each register. If REDO is true, add
1300 all defs, otherwise just add the new defs. */
1303 df_reg_def_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1306 #ifdef ENABLE_CHECKING
1309 unsigned old_def_id_save
= df
->def_id_save
;
1313 #ifdef ENABLE_CHECKING
1314 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1315 gcc_assert (!df
->regs
[regno
].defs
);
1318 /* Pretend that all defs are new. */
1319 df
->def_id_save
= 0;
1322 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1324 df_bb_reg_def_chain_create (df
, bb
);
1327 df
->def_id_save
= old_def_id_save
;
1330 /* Remove all reg-def chains stored in the dataflow object DF. */
1333 df_reg_def_chain_clean (struct df
*df
)
1337 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1338 free_reg_ref_chain (&df
->regs
[regno
].defs
);
1341 /* Create reg-use chains for basic block BB. These are a list of uses
1342 for each register. */
1345 df_bb_reg_use_chain_create (struct df
*df
, basic_block bb
)
1349 /* Scan in forward order so that the last uses appear at the start
1352 FOR_BB_INSNS (bb
, insn
)
1354 struct df_link
*link
;
1355 unsigned int uid
= INSN_UID (insn
);
1357 if (! INSN_P (insn
))
1360 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1362 struct ref
*use
= link
->ref
;
1363 unsigned int uregno
= DF_REF_REGNO (use
);
1365 /* Do not add ref's to the chain twice, i.e., only add new
1366 refs. XXX the same could be done by testing if the
1367 current insn is a modified (or a new) one. This would be
1369 if (DF_REF_ID (use
) < df
->use_id_save
)
1372 df
->regs
[uregno
].uses
1373 = df_link_create (use
, df
->regs
[uregno
].uses
);
1379 /* Create reg-use chains for each basic block within BLOCKS. These
1380 are a list of uses for each register. If REDO is true, remove the
1381 old reg-use chains first, otherwise just add new uses to them. */
1384 df_reg_use_chain_create (struct df
*df
, bitmap blocks
, bool redo
)
1387 #ifdef ENABLE_CHECKING
1390 unsigned old_use_id_save
= df
->use_id_save
;
1394 #ifdef ENABLE_CHECKING
1395 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1396 gcc_assert (!df
->regs
[regno
].uses
);
1399 /* Pretend that all uses are new. */
1400 df
->use_id_save
= 0;
1403 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1405 df_bb_reg_use_chain_create (df
, bb
);
1408 df
->use_id_save
= old_use_id_save
;
1411 /* Remove all reg-use chains stored in the dataflow object DF. */
1414 df_reg_use_chain_clean (struct df
*df
)
1418 for (regno
= 0; regno
< df
->n_regs
; regno
++)
1419 free_reg_ref_chain (&df
->regs
[regno
].uses
);
1422 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1424 df_bb_du_chain_create (struct df
*df
, basic_block bb
, bitmap ru
)
1426 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1429 bitmap_copy (ru
, bb_info
->ru_out
);
1431 /* For each def in BB create a linked list (chain) of uses
1432 reached from the def. */
1433 FOR_BB_INSNS_REVERSE (bb
, insn
)
1435 struct df_link
*def_link
;
1436 struct df_link
*use_link
;
1437 unsigned int uid
= INSN_UID (insn
);
1439 if (! INSN_P (insn
))
1442 /* For each def in insn... */
1443 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1445 struct ref
*def
= def_link
->ref
;
1446 unsigned int dregno
= DF_REF_REGNO (def
);
1448 DF_REF_CHAIN (def
) = 0;
1450 /* While the reg-use chains are not essential, it
1451 is _much_ faster to search these short lists rather
1452 than all the reaching uses, especially for large functions. */
1453 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1454 use_link
= use_link
->next
)
1456 struct ref
*use
= use_link
->ref
;
1458 if (bitmap_bit_p (ru
, DF_REF_ID (use
)))
1461 = df_link_create (use
, DF_REF_CHAIN (def
));
1463 bitmap_clear_bit (ru
, DF_REF_ID (use
));
1468 /* For each use in insn... */
1469 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1471 struct ref
*use
= use_link
->ref
;
1472 bitmap_set_bit (ru
, DF_REF_ID (use
));
1478 /* Create def-use chains from reaching use bitmaps for basic blocks
1481 df_du_chain_create (struct df
*df
, bitmap blocks
)
1486 ru
= BITMAP_ALLOC (NULL
);
1488 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1490 df_bb_du_chain_create (df
, bb
, ru
);
1497 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1499 df_bb_ud_chain_create (struct df
*df
, basic_block bb
)
1501 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1502 struct ref
**reg_def_last
= df
->reg_def_last
;
1505 memset (reg_def_last
, 0, df
->n_regs
* sizeof (struct ref
*));
1507 /* For each use in BB create a linked list (chain) of defs
1508 that reach the use. */
1509 FOR_BB_INSNS (bb
, insn
)
1511 unsigned int uid
= INSN_UID (insn
);
1512 struct df_link
*use_link
;
1513 struct df_link
*def_link
;
1515 if (! INSN_P (insn
))
1518 /* For each use in insn... */
1519 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1521 struct ref
*use
= use_link
->ref
;
1522 unsigned int regno
= DF_REF_REGNO (use
);
1524 DF_REF_CHAIN (use
) = 0;
1526 /* Has regno been defined in this BB yet? If so, use
1527 the last def as the single entry for the use-def
1528 chain for this use. Otherwise, we need to add all
1529 the defs using this regno that reach the start of
1531 if (reg_def_last
[regno
])
1534 = df_link_create (reg_def_last
[regno
], 0);
1538 /* While the reg-def chains are not essential, it is
1539 _much_ faster to search these short lists rather than
1540 all the reaching defs, especially for large
1542 for (def_link
= df
->regs
[regno
].defs
; def_link
;
1543 def_link
= def_link
->next
)
1545 struct ref
*def
= def_link
->ref
;
1547 if (bitmap_bit_p (bb_info
->rd_in
, DF_REF_ID (def
)))
1550 = df_link_create (def
, DF_REF_CHAIN (use
));
1557 /* For each def in insn... record the last def of each reg. */
1558 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1560 struct ref
*def
= def_link
->ref
;
1561 int dregno
= DF_REF_REGNO (def
);
1563 reg_def_last
[dregno
] = def
;
1569 /* Create use-def chains from reaching def bitmaps for basic blocks
1572 df_ud_chain_create (struct df
*df
, bitmap blocks
)
1576 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1578 df_bb_ud_chain_create (df
, bb
);
1585 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1586 void *out
, void *gen
, void *kill
,
1587 void *data ATTRIBUTE_UNUSED
)
1589 *changed
= bitmap_ior_and_compl (out
, gen
, in
, kill
);
1594 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1595 void *out
, void *gen
, void *kill
,
1596 void *data ATTRIBUTE_UNUSED
)
1598 *changed
= bitmap_ior_and_compl (in
, gen
, out
, kill
);
1603 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED
, int *changed
, void *in
,
1604 void *out
, void *use
, void *def
,
1605 void *data ATTRIBUTE_UNUSED
)
1607 *changed
= bitmap_ior_and_compl (in
, use
, out
, def
);
1611 /* Compute local reaching def info for basic block BB. */
1613 df_bb_rd_local_compute (struct df
*df
, basic_block bb
, bitmap call_killed_defs
)
1615 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1617 bitmap seen
= BITMAP_ALLOC (NULL
);
1618 bool call_seen
= false;
1620 FOR_BB_INSNS_REVERSE (bb
, insn
)
1622 unsigned int uid
= INSN_UID (insn
);
1623 struct df_link
*def_link
;
1625 if (! INSN_P (insn
))
1628 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1630 struct ref
*def
= def_link
->ref
;
1631 unsigned int regno
= DF_REF_REGNO (def
);
1632 struct df_link
*def2_link
;
1634 if (bitmap_bit_p (seen
, regno
)
1636 && regno
< FIRST_PSEUDO_REGISTER
1637 && TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
)))
1640 for (def2_link
= df
->regs
[regno
].defs
; def2_link
;
1641 def2_link
= def2_link
->next
)
1643 struct ref
*def2
= def2_link
->ref
;
1645 /* Add all defs of this reg to the set of kills. This
1646 is greedy since many of these defs will not actually
1647 be killed by this BB but it keeps things a lot
1649 bitmap_set_bit (bb_info
->rd_kill
, DF_REF_ID (def2
));
1652 bitmap_set_bit (bb_info
->rd_gen
, DF_REF_ID (def
));
1653 bitmap_set_bit (seen
, regno
);
1656 if (CALL_P (insn
) && (df
->flags
& DF_HARD_REGS
))
1658 bitmap_ior_into (bb_info
->rd_kill
, call_killed_defs
);
1667 /* Compute local reaching def info for each basic block within BLOCKS. */
1669 df_rd_local_compute (struct df
*df
, bitmap blocks
)
1672 bitmap killed_by_call
= NULL
;
1674 struct df_link
*def_link
;
1676 if (df
->flags
& DF_HARD_REGS
)
1678 killed_by_call
= BITMAP_ALLOC (NULL
);
1679 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
1681 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
1684 for (def_link
= df
->regs
[regno
].defs
;
1686 def_link
= def_link
->next
)
1687 bitmap_set_bit (killed_by_call
, DF_REF_ID (def_link
->ref
));
1691 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1693 df_bb_rd_local_compute (df
, bb
, killed_by_call
);
1696 if (df
->flags
& DF_HARD_REGS
)
1697 BITMAP_FREE (killed_by_call
);
1701 /* Compute local reaching use (upward exposed use) info for basic
1704 df_bb_ru_local_compute (struct df
*df
, basic_block bb
)
1706 /* This is much more tricky than computing reaching defs. With
1707 reaching defs, defs get killed by other defs. With upwards
1708 exposed uses, these get killed by defs with the same regno. */
1710 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1714 FOR_BB_INSNS_REVERSE (bb
, insn
)
1716 unsigned int uid
= INSN_UID (insn
);
1717 struct df_link
*def_link
;
1718 struct df_link
*use_link
;
1720 if (! INSN_P (insn
))
1723 for (def_link
= df
->insns
[uid
].defs
; def_link
; def_link
= def_link
->next
)
1725 struct ref
*def
= def_link
->ref
;
1726 unsigned int dregno
= DF_REF_REGNO (def
);
1728 for (use_link
= df
->regs
[dregno
].uses
; use_link
;
1729 use_link
= use_link
->next
)
1731 struct ref
*use
= use_link
->ref
;
1733 /* Add all uses of this reg to the set of kills. This
1734 is greedy since many of these uses will not actually
1735 be killed by this BB but it keeps things a lot
1737 bitmap_set_bit (bb_info
->ru_kill
, DF_REF_ID (use
));
1739 /* Zap from the set of gens for this BB. */
1740 bitmap_clear_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1744 for (use_link
= df
->insns
[uid
].uses
; use_link
; use_link
= use_link
->next
)
1746 struct ref
*use
= use_link
->ref
;
1747 /* Add use to set of gens in this BB. */
1748 bitmap_set_bit (bb_info
->ru_gen
, DF_REF_ID (use
));
1754 /* Compute local reaching use (upward exposed use) info for each basic
1755 block within BLOCKS. */
1757 df_ru_local_compute (struct df
*df
, bitmap blocks
)
1761 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1763 df_bb_ru_local_compute (df
, bb
);
1768 /* Compute local live variable info for basic block BB. */
1770 df_bb_lr_local_compute (struct df
*df
, basic_block bb
)
1772 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1775 FOR_BB_INSNS_REVERSE (bb
, insn
)
1777 unsigned int uid
= INSN_UID (insn
);
1778 struct df_link
*link
;
1780 if (! INSN_P (insn
))
1783 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1785 struct ref
*def
= link
->ref
;
1786 unsigned int dregno
= DF_REF_REGNO (def
);
1788 /* Add def to set of defs in this BB. */
1789 bitmap_set_bit (bb_info
->lr_def
, dregno
);
1791 bitmap_clear_bit (bb_info
->lr_use
, dregno
);
1794 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1796 struct ref
*use
= link
->ref
;
1797 /* Add use to set of uses in this BB. */
1798 bitmap_set_bit (bb_info
->lr_use
, DF_REF_REGNO (use
));
1804 /* Compute local live variable info for each basic block within BLOCKS. */
1806 df_lr_local_compute (struct df
*df
, bitmap blocks
)
1810 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1812 df_bb_lr_local_compute (df
, bb
);
1817 /* Compute register info: lifetime, bb, and number of defs and uses
1818 for basic block BB. */
1820 df_bb_reg_info_compute (struct df
*df
, basic_block bb
, bitmap live
)
1822 struct reg_info
*reg_info
= df
->regs
;
1823 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
1826 bitmap_copy (live
, bb_info
->lr_out
);
1828 FOR_BB_INSNS_REVERSE (bb
, insn
)
1830 unsigned int uid
= INSN_UID (insn
);
1832 struct df_link
*link
;
1835 if (! INSN_P (insn
))
1838 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
1840 struct ref
*def
= link
->ref
;
1841 unsigned int dregno
= DF_REF_REGNO (def
);
1843 /* Kill this register. */
1844 bitmap_clear_bit (live
, dregno
);
1845 reg_info
[dregno
].n_defs
++;
1848 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
1850 struct ref
*use
= link
->ref
;
1851 unsigned int uregno
= DF_REF_REGNO (use
);
1853 /* This register is now live. */
1854 bitmap_set_bit (live
, uregno
);
1855 reg_info
[uregno
].n_uses
++;
1858 /* Increment lifetimes of all live registers. */
1859 EXECUTE_IF_SET_IN_BITMAP (live
, 0, regno
, bi
)
1861 reg_info
[regno
].lifetime
++;
1867 /* Compute register info: lifetime, bb, and number of defs and uses. */
1869 df_reg_info_compute (struct df
*df
, bitmap blocks
)
1874 live
= BITMAP_ALLOC (NULL
);
1876 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1878 df_bb_reg_info_compute (df
, bb
, live
);
1885 /* Assign LUIDs for BB. */
1887 df_bb_luids_set (struct df
*df
, basic_block bb
)
1892 /* The LUIDs are monotonically increasing for each basic block. */
1894 FOR_BB_INSNS (bb
, insn
)
1897 DF_INSN_LUID (df
, insn
) = luid
++;
1898 DF_INSN_LUID (df
, insn
) = luid
;
1904 /* Assign LUIDs for each basic block within BLOCKS. */
1906 df_luids_set (struct df
*df
, bitmap blocks
)
1911 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
1913 total
+= df_bb_luids_set (df
, bb
);
1919 /* Perform dataflow analysis using existing DF structure for blocks
1920 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1922 df_analyze_1 (struct df
*df
, bitmap blocks
, int flags
, int update
)
1927 struct dataflow dflow
;
1931 if (flags
& DF_UD_CHAIN
)
1932 aflags
|= DF_RD
| DF_RD_CHAIN
;
1934 if (flags
& DF_DU_CHAIN
)
1938 aflags
|= DF_RU_CHAIN
;
1940 if (flags
& DF_REG_INFO
)
1944 blocks
= df
->all_blocks
;
1949 df_refs_update (df
, NULL
);
1950 /* More fine grained incremental dataflow analysis would be
1951 nice. For now recompute the whole shebang for the
1954 df_refs_unlink (df
, blocks
);
1956 /* All the def-use, use-def chains can be potentially
1957 modified by changes in one block. The size of the
1958 bitmaps can also change. */
1962 /* Scan the function for all register defs and uses. */
1964 df_refs_record (df
, blocks
);
1966 /* Link all the new defs and uses to the insns. */
1967 df_refs_process (df
);
1970 /* Allocate the bitmaps now the total number of defs and uses are
1971 known. If the number of defs or uses have changed, then
1972 these bitmaps need to be reallocated. */
1973 df_bitmaps_alloc (df
, NULL
, aflags
);
1975 /* Set the LUIDs for each specified basic block. */
1976 df_luids_set (df
, blocks
);
1978 /* Recreate reg-def and reg-use chains from scratch so that first
1979 def is at the head of the reg-def chain and the last use is at
1980 the head of the reg-use chain. This is only important for
1981 regs local to a basic block as it speeds up searching. */
1982 if (aflags
& DF_RD_CHAIN
)
1984 df_reg_def_chain_create (df
, blocks
, false);
1987 if (aflags
& DF_RU_CHAIN
)
1989 df_reg_use_chain_create (df
, blocks
, false);
1992 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
1993 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
1994 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
1996 pre_and_rev_post_order_compute (df
->dfs_order
, df
->rc_order
, false);
1997 post_order_compute (df
->rts_order
, false);
2000 /* Compute the sets of gens and kills for the defs of each bb. */
2001 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2002 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2003 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2004 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2006 df_rd_local_compute (df
, df
->flags
& DF_RD
? blocks
: df
->all_blocks
);
2009 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2010 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2011 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2012 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2015 dflow
.repr
= SR_BITMAP
;
2016 dflow
.dir
= DF_FORWARD
;
2017 dflow
.conf_op
= DF_UNION
;
2018 dflow
.transfun
= df_rd_transfer_function
;
2019 dflow
.n_blocks
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
2020 dflow
.order
= df
->rc_order
;
2023 iterative_dataflow (&dflow
);
2030 if (aflags
& DF_UD_CHAIN
)
2032 /* Create use-def chains. */
2033 df_ud_chain_create (df
, df
->all_blocks
);
2035 if (! (flags
& DF_RD
))
2041 /* Compute the sets of gens and kills for the upwards exposed
2043 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2044 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2045 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2046 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2048 df_ru_local_compute (df
, df
->flags
& DF_RU
? blocks
: df
->all_blocks
);
2052 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2053 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2054 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2055 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2058 dflow
.repr
= SR_BITMAP
;
2059 dflow
.dir
= DF_BACKWARD
;
2060 dflow
.conf_op
= DF_UNION
;
2061 dflow
.transfun
= df_ru_transfer_function
;
2062 dflow
.n_blocks
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
2063 dflow
.order
= df
->rts_order
;
2066 iterative_dataflow (&dflow
);
2073 if (aflags
& DF_DU_CHAIN
)
2075 /* Create def-use chains. */
2076 df_du_chain_create (df
, df
->all_blocks
);
2078 if (! (flags
& DF_RU
))
2082 /* Free up bitmaps that are no longer required. */
2084 df_bitmaps_free (df
, dflags
);
2088 /* Compute the sets of defs and uses of live variables. */
2089 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2090 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2091 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2092 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2094 df_lr_local_compute (df
, df
->flags
& DF_LR
? blocks
: df
->all_blocks
);
2098 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2099 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2100 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2101 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2104 dflow
.repr
= SR_BITMAP
;
2105 dflow
.dir
= DF_BACKWARD
;
2106 dflow
.conf_op
= DF_UNION
;
2107 dflow
.transfun
= df_lr_transfer_function
;
2108 dflow
.n_blocks
= n_basic_blocks
- NUM_FIXED_BLOCKS
;
2109 dflow
.order
= df
->rts_order
;
2112 iterative_dataflow (&dflow
);
2119 if (aflags
& DF_REG_INFO
)
2121 df_reg_info_compute (df
, df
->all_blocks
);
2124 free (df
->dfs_order
);
2125 free (df
->rc_order
);
2126 free (df
->rts_order
);
2130 /* Initialize dataflow analysis. */
2136 df
= xcalloc (1, sizeof (struct df
));
2138 /* Squirrel away a global for debugging. */
2145 /* Start queuing refs. */
2147 df_refs_queue (struct df
*df
)
2149 df
->def_id_save
= df
->def_id
;
2150 df
->use_id_save
= df
->use_id
;
2151 /* ???? Perhaps we should save current obstack state so that we can
2157 /* Process queued refs. */
2159 df_refs_process (struct df
*df
)
2163 /* Build new insn-def chains. */
2164 for (i
= df
->def_id_save
; i
!= df
->def_id
; i
++)
2166 struct ref
*def
= df
->defs
[i
];
2167 unsigned int uid
= DF_REF_INSN_UID (def
);
2169 /* Add def to head of def list for INSN. */
2171 = df_link_create (def
, df
->insns
[uid
].defs
);
2174 /* Build new insn-use chains. */
2175 for (i
= df
->use_id_save
; i
!= df
->use_id
; i
++)
2177 struct ref
*use
= df
->uses
[i
];
2178 unsigned int uid
= DF_REF_INSN_UID (use
);
2180 /* Add use to head of use list for INSN. */
2182 = df_link_create (use
, df
->insns
[uid
].uses
);
2188 /* Update refs for basic block BB. */
2190 df_bb_refs_update (struct df
*df
, basic_block bb
)
2195 /* While we have to scan the chain of insns for this BB, we do not
2196 need to allocate and queue a long chain of BB/INSN pairs. Using
2197 a bitmap for insns_modified saves memory and avoids queuing
2200 FOR_BB_INSNS (bb
, insn
)
2204 uid
= INSN_UID (insn
);
2206 if (bitmap_bit_p (df
->insns_modified
, uid
))
2208 /* Delete any allocated refs of this insn. MPH, FIXME. */
2209 df_insn_refs_unlink (df
, bb
, insn
);
2211 /* Scan the insn for refs. */
2212 df_insn_refs_record (df
, bb
, insn
);
2221 /* Process all the modified/deleted insns that were queued. */
2223 df_refs_update (struct df
*df
, bitmap blocks
)
2226 unsigned count
= 0, bbno
;
2228 df
->n_regs
= max_reg_num ();
2229 if (df
->n_regs
>= df
->reg_size
)
2230 df_reg_table_realloc (df
, 0);
2236 FOR_EACH_BB_IN_BITMAP (df
->bbs_modified
, 0, bb
,
2238 count
+= df_bb_refs_update (df
, bb
);
2245 EXECUTE_IF_AND_IN_BITMAP (df
->bbs_modified
, blocks
, 0, bbno
, bi
)
2247 count
+= df_bb_refs_update (df
, BASIC_BLOCK (bbno
));
2251 df_refs_process (df
);
2256 /* Return nonzero if any of the requested blocks in the bitmap
2257 BLOCKS have been modified. */
2259 df_modified_p (struct df
*df
, bitmap blocks
)
2268 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
)
2269 && (! blocks
|| (blocks
== (bitmap
) -1) || bitmap_bit_p (blocks
, bb
->index
)))
2278 /* Analyze dataflow info for the basic blocks specified by the bitmap
2279 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2280 modified blocks if BLOCKS is -1. */
2283 df_analyze (struct df
*df
, bitmap blocks
, int flags
)
2287 /* We could deal with additional basic blocks being created by
2288 rescanning everything again. */
2289 gcc_assert (!df
->n_bbs
|| df
->n_bbs
== (unsigned int) last_basic_block
);
2291 update
= df_modified_p (df
, blocks
);
2292 if (update
|| (flags
!= df
->flags
))
2298 /* Recompute everything from scratch. */
2301 /* Allocate and initialize data structures. */
2302 df_alloc (df
, max_reg_num ());
2303 df_analyze_1 (df
, 0, flags
, 0);
2308 if (blocks
== (bitmap
) -1)
2309 blocks
= df
->bbs_modified
;
2311 gcc_assert (df
->n_bbs
);
2313 df_analyze_1 (df
, blocks
, flags
, 1);
2314 bitmap_zero (df
->bbs_modified
);
2315 bitmap_zero (df
->insns_modified
);
2321 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2322 the order of the remaining entries. Returns the length of the resulting
2326 prune_to_subcfg (int list
[], unsigned len
, bitmap blocks
)
2330 for (act
= 0, last
= 0; act
< len
; act
++)
2331 if (bitmap_bit_p (blocks
, list
[act
]))
2332 list
[last
++] = list
[act
];
2337 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2338 graph induced by BLOCKS.
2340 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2341 here, and simultaneously not make even greater chaos in it. We behave
2342 slightly differently in some details, especially in handling modified
2346 df_analyze_subcfg (struct df
*df
, bitmap blocks
, int flags
)
2350 struct dataflow dflow
;
2353 if (flags
& DF_UD_CHAIN
)
2354 flags
|= DF_RD
| DF_RD_CHAIN
;
2355 if (flags
& DF_DU_CHAIN
)
2358 flags
|= DF_RU_CHAIN
;
2359 if (flags
& DF_REG_INFO
)
2364 df_alloc (df
, max_reg_num ());
2366 /* Mark all insns as modified. */
2370 FOR_BB_INSNS (bb
, insn
)
2372 df_insn_modify (df
, bb
, insn
);
2379 df_reg_def_chain_clean (df
);
2380 df_reg_use_chain_clean (df
);
2382 df_refs_update (df
, blocks
);
2384 /* Clear the updated stuff from ``modified'' bitmaps. */
2385 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2387 if (bitmap_bit_p (df
->bbs_modified
, bb
->index
))
2389 FOR_BB_INSNS (bb
, insn
)
2391 bitmap_clear_bit (df
->insns_modified
, INSN_UID (insn
));
2394 bitmap_clear_bit (df
->bbs_modified
, bb
->index
);
2398 /* Allocate the bitmaps now the total number of defs and uses are
2399 known. If the number of defs or uses have changed, then
2400 these bitmaps need to be reallocated. */
2401 df_bitmaps_alloc (df
, blocks
, flags
);
2403 /* Set the LUIDs for each specified basic block. */
2404 df_luids_set (df
, blocks
);
2406 /* Recreate reg-def and reg-use chains from scratch so that first
2407 def is at the head of the reg-def chain and the last use is at
2408 the head of the reg-use chain. This is only important for
2409 regs local to a basic block as it speeds up searching. */
2410 if (flags
& DF_RD_CHAIN
)
2412 df_reg_def_chain_create (df
, blocks
, true);
2415 if (flags
& DF_RU_CHAIN
)
2417 df_reg_use_chain_create (df
, blocks
, true);
2420 df
->dfs_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
2421 df
->rc_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
2422 df
->rts_order
= xmalloc (sizeof (int) * n_basic_blocks
- NUM_FIXED_BLOCKS
);
2424 pre_and_rev_post_order_compute (df
->dfs_order
, df
->rc_order
, false);
2425 post_order_compute (df
->rts_order
, false);
2427 n_blocks
= prune_to_subcfg (df
->dfs_order
, n_basic_blocks
- NUM_FIXED_BLOCKS
, blocks
);
2428 prune_to_subcfg (df
->rc_order
, n_basic_blocks
- NUM_FIXED_BLOCKS
, blocks
);
2429 prune_to_subcfg (df
->rts_order
, n_basic_blocks
- NUM_FIXED_BLOCKS
, blocks
);
2431 dflow
.in
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2432 dflow
.out
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2433 dflow
.gen
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2434 dflow
.kill
= xmalloc (sizeof (bitmap
) * last_basic_block
);
2438 /* Compute the sets of gens and kills for the defs of each bb. */
2439 df_rd_local_compute (df
, blocks
);
2441 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2443 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_in
;
2444 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_out
;
2445 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_gen
;
2446 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->rd_kill
;
2449 dflow
.repr
= SR_BITMAP
;
2450 dflow
.dir
= DF_FORWARD
;
2451 dflow
.conf_op
= DF_UNION
;
2452 dflow
.transfun
= df_rd_transfer_function
;
2453 dflow
.n_blocks
= n_blocks
;
2454 dflow
.order
= df
->rc_order
;
2457 iterative_dataflow (&dflow
);
2460 if (flags
& DF_UD_CHAIN
)
2462 /* Create use-def chains. */
2463 df_ud_chain_create (df
, blocks
);
2468 /* Compute the sets of gens and kills for the upwards exposed
2470 df_ru_local_compute (df
, blocks
);
2472 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2474 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_in
;
2475 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_out
;
2476 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_gen
;
2477 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->ru_kill
;
2480 dflow
.repr
= SR_BITMAP
;
2481 dflow
.dir
= DF_BACKWARD
;
2482 dflow
.conf_op
= DF_UNION
;
2483 dflow
.transfun
= df_ru_transfer_function
;
2484 dflow
.n_blocks
= n_blocks
;
2485 dflow
.order
= df
->rts_order
;
2488 iterative_dataflow (&dflow
);
2491 if (flags
& DF_DU_CHAIN
)
2493 /* Create def-use chains. */
2494 df_du_chain_create (df
, blocks
);
2499 /* Compute the sets of defs and uses of live variables. */
2500 df_lr_local_compute (df
, blocks
);
2504 dflow
.in
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_in
;
2505 dflow
.out
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_out
;
2506 dflow
.gen
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_use
;
2507 dflow
.kill
[bb
->index
] = DF_BB_INFO (df
, bb
)->lr_def
;
2510 dflow
.repr
= SR_BITMAP
;
2511 dflow
.dir
= DF_BACKWARD
;
2512 dflow
.conf_op
= DF_UNION
;
2513 dflow
.transfun
= df_lr_transfer_function
;
2514 dflow
.n_blocks
= n_blocks
;
2515 dflow
.order
= df
->rts_order
;
2518 iterative_dataflow (&dflow
);
2521 if (flags
& DF_REG_INFO
)
2523 df_reg_info_compute (df
, blocks
);
2531 free (df
->dfs_order
);
2532 free (df
->rc_order
);
2533 free (df
->rts_order
);
2536 /* Free all the dataflow info and the DF structure. */
2538 df_finish (struct df
*df
)
2544 /* Unlink INSN from its reference information. */
2546 df_insn_refs_unlink (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2548 struct df_link
*link
;
2551 uid
= INSN_UID (insn
);
2553 /* Unlink all refs defined by this insn. */
2554 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2555 df_def_unlink (df
, link
->ref
);
2557 /* Unlink all refs used by this insn. */
2558 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2559 df_use_unlink (df
, link
->ref
);
2561 df
->insns
[uid
].defs
= 0;
2562 df
->insns
[uid
].uses
= 0;
2567 /* Unlink all the insns within BB from their reference information. */
2569 df_bb_refs_unlink (struct df
*df
, basic_block bb
)
2573 /* Scan the block an insn at a time from beginning to end. */
2574 for (insn
= BB_HEAD (bb
); ; insn
= NEXT_INSN (insn
))
2578 /* Unlink refs for INSN. */
2579 df_insn_refs_unlink (df
, bb
, insn
);
2581 if (insn
== BB_END (bb
))
2587 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2588 Not currently used. */
2590 df_refs_unlink (struct df
*df
, bitmap blocks
)
2596 FOR_EACH_BB_IN_BITMAP (blocks
, 0, bb
,
2598 df_bb_refs_unlink (df
, bb
);
2604 df_bb_refs_unlink (df
, bb
);
2609 /* Functions to modify insns. */
2612 /* Delete INSN and all its reference information. */
2614 df_insn_delete (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
, rtx insn
)
2616 /* If the insn is a jump, we should perhaps call delete_insn to
2617 handle the JUMP_LABEL? */
2619 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2620 gcc_assert (insn
!= BB_HEAD (bb
));
2622 /* Delete the insn. */
2625 df_insn_modify (df
, bb
, insn
);
2627 return NEXT_INSN (insn
);
2630 /* Mark that basic block BB was modified. */
2633 df_bb_modify (struct df
*df
, basic_block bb
)
2635 if ((unsigned) bb
->index
>= df
->n_bbs
)
2636 df_bb_table_realloc (df
, bb
->index
);
2638 bitmap_set_bit (df
->bbs_modified
, bb
->index
);
2641 /* Mark that INSN within BB may have changed (created/modified/deleted).
2642 This may be called multiple times for the same insn. There is no
2643 harm calling this function if the insn wasn't changed; it will just
2644 slow down the rescanning of refs. */
2646 df_insn_modify (struct df
*df
, basic_block bb
, rtx insn
)
2650 uid
= INSN_UID (insn
);
2651 if (uid
>= df
->insn_size
)
2652 df_insn_table_realloc (df
, uid
);
2654 df_bb_modify (df
, bb
);
2655 bitmap_set_bit (df
->insns_modified
, uid
);
2657 /* For incremental updating on the fly, perhaps we could make a copy
2658 of all the refs of the original insn and turn them into
2659 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2660 the original refs. If validate_change fails then these anti-refs
2661 will just get ignored. */
2664 /* Check if INSN was marked as changed. Of course the correctness of
2665 the information depends on whether the instruction was really modified
2666 at the time df_insn_modify was called. */
2668 df_insn_modified_p (struct df
*df
, rtx insn
)
2672 uid
= INSN_UID (insn
);
2673 return (df
->insns_modified
2674 && uid
< df
->insn_size
2675 && bitmap_bit_p (df
->insns_modified
, uid
));
2678 typedef struct replace_args
2687 /* Replace mem pointed to by PX with its associated pseudo register.
2688 DATA is actually a pointer to a structure describing the
2689 instruction currently being scanned and the MEM we are currently
2692 df_rtx_mem_replace (rtx
*px
, void *data
)
2694 replace_args
*args
= (replace_args
*) data
;
2697 if (mem
== NULL_RTX
)
2700 switch (GET_CODE (mem
))
2706 /* We're not interested in the MEM associated with a
2707 CONST_DOUBLE, so there's no need to traverse into one. */
2711 /* This is not a MEM. */
2715 if (!rtx_equal_p (args
->match
, mem
))
2716 /* This is not the MEM we are currently replacing. */
2719 /* Actually replace the MEM. */
2720 validate_change (args
->insn
, px
, args
->replacement
, 1);
2728 df_insn_mem_replace (struct df
*df
, basic_block bb
, rtx insn
, rtx mem
, rtx reg
)
2734 args
.replacement
= reg
;
2737 /* Search and replace all matching mems within insn. */
2738 for_each_rtx (&insn
, df_rtx_mem_replace
, &args
);
2741 df_insn_modify (df
, bb
, insn
);
2743 /* ???? FIXME. We may have a new def or one or more new uses of REG
2744 in INSN. REG should be a new pseudo so it won't affect the
2745 dataflow information that we currently have. We should add
2746 the new uses and defs to INSN and then recreate the chains
2747 when df_analyze is called. */
2748 return args
.modified
;
2752 /* Replace one register with another. Called through for_each_rtx; PX
2753 points to the rtx being scanned. DATA is actually a pointer to a
2754 structure of arguments. */
2756 df_rtx_reg_replace (rtx
*px
, void *data
)
2759 replace_args
*args
= (replace_args
*) data
;
2764 if (x
== args
->match
)
2766 validate_change (args
->insn
, px
, args
->replacement
, 1);
2774 /* Replace the reg within every ref on CHAIN that is within the set
2775 BLOCKS of basic blocks with NEWREG. Also update the regs within
2778 df_refs_reg_replace (struct df
*df
, bitmap blocks
, struct df_link
*chain
, rtx oldreg
, rtx newreg
)
2780 struct df_link
*link
;
2784 blocks
= df
->all_blocks
;
2786 args
.match
= oldreg
;
2787 args
.replacement
= newreg
;
2790 for (link
= chain
; link
; link
= link
->next
)
2792 struct ref
*ref
= link
->ref
;
2793 rtx insn
= DF_REF_INSN (ref
);
2795 if (! INSN_P (insn
))
2798 gcc_assert (bitmap_bit_p (blocks
, DF_REF_BBNO (ref
)));
2800 df_ref_reg_replace (df
, ref
, oldreg
, newreg
);
2802 /* Replace occurrences of the reg within the REG_NOTES. */
2803 if ((! link
->next
|| DF_REF_INSN (ref
)
2804 != DF_REF_INSN (link
->next
->ref
))
2805 && REG_NOTES (insn
))
2808 for_each_rtx (®_NOTES (insn
), df_rtx_reg_replace
, &args
);
2814 /* Replace all occurrences of register OLDREG with register NEWREG in
2815 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2816 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2817 routine expects the reg-use and reg-def chains to be valid. */
2819 df_reg_replace (struct df
*df
, bitmap blocks
, rtx oldreg
, rtx newreg
)
2821 unsigned int oldregno
= REGNO (oldreg
);
2823 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].defs
, oldreg
, newreg
);
2824 df_refs_reg_replace (df
, blocks
, df
->regs
[oldregno
].uses
, oldreg
, newreg
);
2829 /* Try replacing the reg within REF with NEWREG. Do not modify
2830 def-use/use-def chains. */
2832 df_ref_reg_replace (struct df
*df
, struct ref
*ref
, rtx oldreg
, rtx newreg
)
2834 /* Check that insn was deleted by being converted into a NOTE. If
2835 so ignore this insn. */
2836 if (! INSN_P (DF_REF_INSN (ref
)))
2839 gcc_assert (!oldreg
|| oldreg
== DF_REF_REG (ref
));
2841 if (! validate_change (DF_REF_INSN (ref
), DF_REF_LOC (ref
), newreg
, 1))
2844 df_insn_modify (df
, DF_REF_BB (ref
), DF_REF_INSN (ref
));
2850 df_bb_def_use_swap (struct df
*df
, basic_block bb
, rtx def_insn
, rtx use_insn
, unsigned int regno
)
2856 struct df_link
*link
;
2858 def
= df_bb_insn_regno_first_def_find (df
, bb
, def_insn
, regno
);
2862 use
= df_bb_insn_regno_last_use_find (df
, bb
, use_insn
, regno
);
2866 /* The USE no longer exists. */
2867 use_uid
= INSN_UID (use_insn
);
2868 df_use_unlink (df
, use
);
2869 df_ref_unlink (&df
->insns
[use_uid
].uses
, use
);
2871 /* The DEF requires shifting so remove it from DEF_INSN
2872 and add it to USE_INSN by reusing LINK. */
2873 def_uid
= INSN_UID (def_insn
);
2874 link
= df_ref_unlink (&df
->insns
[def_uid
].defs
, def
);
2876 link
->next
= df
->insns
[use_uid
].defs
;
2877 df
->insns
[use_uid
].defs
= link
;
2880 link
= df_ref_unlink (&df
->regs
[regno
].defs
, def
);
2882 link
->next
= df
->regs
[regno
].defs
;
2883 df
->insns
[regno
].defs
= link
;
2886 DF_REF_INSN (def
) = use_insn
;
2891 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2892 insns must be processed by this routine. */
2894 df_insns_modify (struct df
*df
, basic_block bb
, rtx first_insn
, rtx last_insn
)
2898 for (insn
= first_insn
; ; insn
= NEXT_INSN (insn
))
2902 /* A non-const call should not have slipped through the net. If
2903 it does, we need to create a new basic block. Ouch. The
2904 same applies for a label. */
2905 gcc_assert ((!CALL_P (insn
) || CONST_OR_PURE_CALL_P (insn
))
2906 && !LABEL_P (insn
));
2908 uid
= INSN_UID (insn
);
2910 if (uid
>= df
->insn_size
)
2911 df_insn_table_realloc (df
, uid
);
2913 df_insn_modify (df
, bb
, insn
);
2915 if (insn
== last_insn
)
2921 /* Emit PATTERN before INSN within BB. */
2923 df_pattern_emit_before (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2926 rtx prev_insn
= PREV_INSN (insn
);
2928 /* We should not be inserting before the start of the block. */
2929 gcc_assert (insn
!= BB_HEAD (bb
));
2930 ret_insn
= emit_insn_before (pattern
, insn
);
2931 if (ret_insn
== insn
)
2934 df_insns_modify (df
, bb
, NEXT_INSN (prev_insn
), ret_insn
);
2939 /* Emit PATTERN after INSN within BB. */
2941 df_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2945 ret_insn
= emit_insn_after (pattern
, insn
);
2946 if (ret_insn
== insn
)
2949 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2954 /* Emit jump PATTERN after INSN within BB. */
2956 df_jump_pattern_emit_after (struct df
*df
, rtx pattern
, basic_block bb
, rtx insn
)
2960 ret_insn
= emit_jump_insn_after (pattern
, insn
);
2961 if (ret_insn
== insn
)
2964 df_insns_modify (df
, bb
, NEXT_INSN (insn
), ret_insn
);
2969 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2971 This function should only be used to move loop invariant insns
2972 out of a loop where it has been proven that the def-use info
2973 will still be valid. */
2975 df_insn_move_before (struct df
*df
, basic_block bb
, rtx insn
, basic_block before_bb
, rtx before_insn
)
2977 struct df_link
*link
;
2981 return df_pattern_emit_before (df
, insn
, before_bb
, before_insn
);
2983 uid
= INSN_UID (insn
);
2985 /* Change bb for all df defined and used by this insn. */
2986 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
2987 DF_REF_BB (link
->ref
) = before_bb
;
2988 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
2989 DF_REF_BB (link
->ref
) = before_bb
;
2991 /* The lifetimes of the registers used in this insn will be reduced
2992 while the lifetimes of the registers defined in this insn
2993 are likely to be increased. */
2995 /* ???? Perhaps all the insns moved should be stored on a list
2996 which df_analyze removes when it recalculates data flow. */
2998 return emit_insn_before (insn
, before_insn
);
3001 /* Functions to query dataflow information. */
3005 df_insn_regno_def_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3006 rtx insn
, unsigned int regno
)
3009 struct df_link
*link
;
3011 uid
= INSN_UID (insn
);
3013 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3015 struct ref
*def
= link
->ref
;
3017 if (DF_REF_REGNO (def
) == regno
)
3024 /* Finds the reference corresponding to the definition of REG in INSN.
3025 DF is the dataflow object. */
3028 df_find_def (struct df
*df
, rtx insn
, rtx reg
)
3030 struct df_link
*defs
;
3032 if (GET_CODE (reg
) == SUBREG
)
3033 reg
= SUBREG_REG (reg
);
3034 gcc_assert (REG_P (reg
));
3036 for (defs
= DF_INSN_DEFS (df
, insn
); defs
; defs
= defs
->next
)
3037 if (rtx_equal_p (DF_REF_REAL_REG (defs
->ref
), reg
))
3043 /* Finds the reference corresponding to the use of REG in INSN.
3044 DF is the dataflow object. */
3047 df_find_use (struct df
*df
, rtx insn
, rtx reg
)
3049 struct df_link
*uses
;
3051 if (GET_CODE (reg
) == SUBREG
)
3052 reg
= SUBREG_REG (reg
);
3053 gcc_assert (REG_P (reg
));
3055 for (uses
= DF_INSN_USES (df
, insn
); uses
; uses
= uses
->next
)
3056 if (rtx_equal_p (DF_REF_REAL_REG (uses
->ref
), reg
))
3062 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3065 df_reg_used (struct df
*df
, rtx insn
, rtx reg
)
3067 return df_find_use (df
, insn
, reg
) != NULL
;
3071 df_def_dominates_all_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
)
3073 struct df_link
*du_link
;
3075 /* Follow def-use chain to find all the uses of this def. */
3076 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3078 struct ref
*use
= du_link
->ref
;
3079 struct df_link
*ud_link
;
3081 /* Follow use-def chain to check all the defs for this use. */
3082 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3083 if (ud_link
->ref
!= def
)
3091 df_insn_dominates_all_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3095 struct df_link
*link
;
3097 uid
= INSN_UID (insn
);
3099 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3101 struct ref
*def
= link
->ref
;
3103 if (! df_def_dominates_all_uses_p (df
, def
))
3111 /* Return nonzero if all DF dominates all the uses within the bitmap
3114 df_def_dominates_uses_p (struct df
*df ATTRIBUTE_UNUSED
, struct ref
*def
,
3117 struct df_link
*du_link
;
3119 /* Follow def-use chain to find all the uses of this def. */
3120 for (du_link
= DF_REF_CHAIN (def
); du_link
; du_link
= du_link
->next
)
3122 struct ref
*use
= du_link
->ref
;
3123 struct df_link
*ud_link
;
3125 /* Only worry about the uses within BLOCKS. For example,
3126 consider a register defined within a loop that is live at the
3128 if (bitmap_bit_p (blocks
, DF_REF_BBNO (use
)))
3130 /* Follow use-def chain to check all the defs for this use. */
3131 for (ud_link
= DF_REF_CHAIN (use
); ud_link
; ud_link
= ud_link
->next
)
3132 if (ud_link
->ref
!= def
)
3140 /* Return nonzero if all the defs of INSN within BB dominates
3141 all the corresponding uses. */
3143 df_insn_dominates_uses_p (struct df
*df
, basic_block bb ATTRIBUTE_UNUSED
,
3144 rtx insn
, bitmap blocks
)
3147 struct df_link
*link
;
3149 uid
= INSN_UID (insn
);
3151 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3153 struct ref
*def
= link
->ref
;
3155 /* Only consider the defs within BLOCKS. */
3156 if (bitmap_bit_p (blocks
, DF_REF_BBNO (def
))
3157 && ! df_def_dominates_uses_p (df
, def
, blocks
))
3164 /* Return the basic block that REG referenced in or NULL if referenced
3165 in multiple basic blocks. */
3167 df_regno_bb (struct df
*df
, unsigned int regno
)
3169 struct df_link
*defs
= df
->regs
[regno
].defs
;
3170 struct df_link
*uses
= df
->regs
[regno
].uses
;
3171 struct ref
*def
= defs
? defs
->ref
: 0;
3172 struct ref
*use
= uses
? uses
->ref
: 0;
3173 basic_block bb_def
= def
? DF_REF_BB (def
) : 0;
3174 basic_block bb_use
= use
? DF_REF_BB (use
) : 0;
3176 /* Compare blocks of first def and last use. ???? FIXME. What if
3177 the reg-def and reg-use lists are not correctly ordered. */
3178 return bb_def
== bb_use
? bb_def
: 0;
3182 /* Return nonzero if REG used in multiple basic blocks. */
3184 df_reg_global_p (struct df
*df
, rtx reg
)
3186 return df_regno_bb (df
, REGNO (reg
)) != 0;
3190 /* Return total lifetime (in insns) of REG. */
3192 df_reg_lifetime (struct df
*df
, rtx reg
)
3194 return df
->regs
[REGNO (reg
)].lifetime
;
3198 /* Return nonzero if REG live at start of BB. */
3200 df_bb_reg_live_start_p (struct df
*df
, basic_block bb
, rtx reg
)
3202 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3204 gcc_assert (bb_info
->lr_in
);
3206 return bitmap_bit_p (bb_info
->lr_in
, REGNO (reg
));
3210 /* Return nonzero if REG live at end of BB. */
3212 df_bb_reg_live_end_p (struct df
*df
, basic_block bb
, rtx reg
)
3214 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3216 gcc_assert (bb_info
->lr_in
);
3218 return bitmap_bit_p (bb_info
->lr_out
, REGNO (reg
));
3222 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3223 after life of REG2, or 0, if the lives overlap. */
3225 df_bb_regs_lives_compare (struct df
*df
, basic_block bb
, rtx reg1
, rtx reg2
)
3227 unsigned int regno1
= REGNO (reg1
);
3228 unsigned int regno2
= REGNO (reg2
);
3235 /* The regs must be local to BB. */
3236 gcc_assert (df_regno_bb (df
, regno1
) == bb
3237 && df_regno_bb (df
, regno2
) == bb
);
3239 def2
= df_bb_regno_first_def_find (df
, bb
, regno2
);
3240 use1
= df_bb_regno_last_use_find (df
, bb
, regno1
);
3242 if (DF_INSN_LUID (df
, DF_REF_INSN (def2
))
3243 > DF_INSN_LUID (df
, DF_REF_INSN (use1
)))
3246 def1
= df_bb_regno_first_def_find (df
, bb
, regno1
);
3247 use2
= df_bb_regno_last_use_find (df
, bb
, regno2
);
3249 if (DF_INSN_LUID (df
, DF_REF_INSN (def1
))
3250 > DF_INSN_LUID (df
, DF_REF_INSN (use2
)))
3257 /* Return true if the definition DEF, which is in the same basic
3258 block as USE, is available at USE. So DEF may as well be
3259 dead, in which case using it will extend its live range. */
3261 df_local_def_available_p (struct df
*df
, struct ref
*def
, struct ref
*use
)
3263 struct df_link
*link
;
3264 int def_luid
= DF_INSN_LUID (df
, DF_REF_INSN (def
));
3266 unsigned int regno
= REGNO (def
->reg
);
3269 /* The regs must be local to BB. */
3270 gcc_assert (DF_REF_BB (def
) == DF_REF_BB (use
));
3271 bb
= DF_REF_BB (def
);
3273 /* This assumes that the reg-def list is ordered such that for any
3274 BB, the first def is found first. However, since the BBs are not
3275 ordered, the first def in the chain is not necessarily the first
3276 def in the function. */
3277 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3279 struct ref
*this_def
= link
->ref
;
3280 if (DF_REF_BB (this_def
) == bb
)
3282 int this_luid
= DF_INSN_LUID (df
, DF_REF_INSN (this_def
));
3283 /* Do nothing with defs coming before DEF. */
3284 if (this_luid
> def_luid
)
3285 return this_luid
> DF_INSN_LUID (df
, DF_REF_INSN (use
));
3290 /* DEF was the last in its basic block. */
3294 /* DEF was the last in the function. */
3299 /* Return last use of REGNO within BB. */
3301 df_bb_regno_last_use_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3303 struct df_link
*link
;
3305 /* This assumes that the reg-use list is ordered such that for any
3306 BB, the last use is found first. However, since the BBs are not
3307 ordered, the first use in the chain is not necessarily the last
3308 use in the function. */
3309 for (link
= df
->regs
[regno
].uses
; link
; link
= link
->next
)
3311 struct ref
*use
= link
->ref
;
3313 if (DF_REF_BB (use
) == bb
)
3320 /* Return first def of REGNO within BB. */
3322 df_bb_regno_first_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3324 struct df_link
*link
;
3326 /* This assumes that the reg-def list is ordered such that for any
3327 BB, the first def is found first. However, since the BBs are not
3328 ordered, the first def in the chain is not necessarily the first
3329 def in the function. */
3330 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3332 struct ref
*def
= link
->ref
;
3334 if (DF_REF_BB (def
) == bb
)
3340 /* Return last def of REGNO within BB. */
3342 df_bb_regno_last_def_find (struct df
*df
, basic_block bb
, unsigned int regno
)
3344 struct df_link
*link
;
3345 struct ref
*last_def
= NULL
;
3348 /* This assumes that the reg-def list is ordered such that for any
3349 BB, the first def is found first. However, since the BBs are not
3350 ordered, the first def in the chain is not necessarily the first
3351 def in the function. */
3352 for (link
= df
->regs
[regno
].defs
; link
; link
= link
->next
)
3354 struct ref
*def
= link
->ref
;
3355 /* The first time in the desired block. */
3356 if (DF_REF_BB (def
) == bb
)
3358 /* The last def in the desired block. */
3366 /* Return last use of REGNO inside INSN within BB. */
3368 df_bb_insn_regno_last_use_find (struct df
*df
,
3369 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3373 struct df_link
*link
;
3375 uid
= INSN_UID (insn
);
3377 for (link
= df
->insns
[uid
].uses
; link
; link
= link
->next
)
3379 struct ref
*use
= link
->ref
;
3381 if (DF_REF_REGNO (use
) == regno
)
3389 /* Return first def of REGNO inside INSN within BB. */
3391 df_bb_insn_regno_first_def_find (struct df
*df
,
3392 basic_block bb ATTRIBUTE_UNUSED
, rtx insn
,
3396 struct df_link
*link
;
3398 uid
= INSN_UID (insn
);
3400 for (link
= df
->insns
[uid
].defs
; link
; link
= link
->next
)
3402 struct ref
*def
= link
->ref
;
3404 if (DF_REF_REGNO (def
) == regno
)
3412 /* Return insn using REG if the BB contains only a single
3413 use and def of REG. */
3415 df_bb_single_def_use_insn_find (struct df
*df
, basic_block bb
, rtx insn
, rtx reg
)
3419 struct df_link
*du_link
;
3421 def
= df_bb_insn_regno_first_def_find (df
, bb
, insn
, REGNO (reg
));
3425 du_link
= DF_REF_CHAIN (def
);
3432 /* Check if def is dead. */
3436 /* Check for multiple uses. */
3440 return DF_REF_INSN (use
);
3443 /* Functions for debugging/dumping dataflow information. */
3446 /* Dump a def-use or use-def chain for REF to FILE. */
3448 df_chain_dump (struct df_link
*link
, FILE *file
)
3450 fprintf (file
, "{ ");
3451 for (; link
; link
= link
->next
)
3453 fprintf (file
, "%c%d ",
3454 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3455 DF_REF_ID (link
->ref
));
3457 fprintf (file
, "}");
3461 /* Dump a chain of refs with the associated regno. */
3463 df_chain_dump_regno (struct df_link
*link
, FILE *file
)
3465 fprintf (file
, "{ ");
3466 for (; link
; link
= link
->next
)
3468 fprintf (file
, "%c%d(%d) ",
3469 DF_REF_REG_DEF_P (link
->ref
) ? 'd' : 'u',
3470 DF_REF_ID (link
->ref
),
3471 DF_REF_REGNO (link
->ref
));
3473 fprintf (file
, "}");
3477 /* Dump dataflow info. */
3479 df_dump (struct df
*df
, int flags
, FILE *file
)
3487 fprintf (file
, "\nDataflow summary:\n");
3488 fprintf (file
, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3489 df
->n_regs
, df
->n_defs
, df
->n_uses
, df
->n_bbs
);
3495 fprintf (file
, "Reaching defs:\n");
3498 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3500 if (! bb_info
->rd_in
)
3503 fprintf (file
, "bb %d in \t", bb
->index
);
3504 dump_bitmap (file
, bb_info
->rd_in
);
3505 fprintf (file
, "bb %d gen \t", bb
->index
);
3506 dump_bitmap (file
, bb_info
->rd_gen
);
3507 fprintf (file
, "bb %d kill\t", bb
->index
);
3508 dump_bitmap (file
, bb_info
->rd_kill
);
3509 fprintf (file
, "bb %d out \t", bb
->index
);
3510 dump_bitmap (file
, bb_info
->rd_out
);
3514 if (flags
& DF_UD_CHAIN
)
3516 fprintf (file
, "Use-def chains:\n");
3517 for (j
= 0; j
< df
->n_defs
; j
++)
3521 fprintf (file
, "d%d bb %d luid %d insn %d reg %d ",
3522 j
, DF_REF_BBNO (df
->defs
[j
]),
3523 DF_INSN_LUID (df
, DF_REF_INSN (df
->defs
[j
])),
3524 DF_REF_INSN_UID (df
->defs
[j
]),
3525 DF_REF_REGNO (df
->defs
[j
]));
3526 if (df
->defs
[j
]->flags
& DF_REF_READ_WRITE
)
3527 fprintf (file
, "read/write ");
3528 df_chain_dump (DF_REF_CHAIN (df
->defs
[j
]), file
);
3529 fprintf (file
, "\n");
3536 fprintf (file
, "Reaching uses:\n");
3539 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3541 if (! bb_info
->ru_in
)
3544 fprintf (file
, "bb %d in \t", bb
->index
);
3545 dump_bitmap (file
, bb_info
->ru_in
);
3546 fprintf (file
, "bb %d gen \t", bb
->index
);
3547 dump_bitmap (file
, bb_info
->ru_gen
);
3548 fprintf (file
, "bb %d kill\t", bb
->index
);
3549 dump_bitmap (file
, bb_info
->ru_kill
);
3550 fprintf (file
, "bb %d out \t", bb
->index
);
3551 dump_bitmap (file
, bb_info
->ru_out
);
3555 if (flags
& DF_DU_CHAIN
)
3557 fprintf (file
, "Def-use chains:\n");
3558 for (j
= 0; j
< df
->n_uses
; j
++)
3562 fprintf (file
, "u%d bb %d luid %d insn %d reg %d ",
3563 j
, DF_REF_BBNO (df
->uses
[j
]),
3564 DF_INSN_LUID (df
, DF_REF_INSN (df
->uses
[j
])),
3565 DF_REF_INSN_UID (df
->uses
[j
]),
3566 DF_REF_REGNO (df
->uses
[j
]));
3567 if (df
->uses
[j
]->flags
& DF_REF_READ_WRITE
)
3568 fprintf (file
, "read/write ");
3569 df_chain_dump (DF_REF_CHAIN (df
->uses
[j
]), file
);
3570 fprintf (file
, "\n");
3577 fprintf (file
, "Live regs:\n");
3580 struct bb_info
*bb_info
= DF_BB_INFO (df
, bb
);
3582 if (! bb_info
->lr_in
)
3585 fprintf (file
, "bb %d in \t", bb
->index
);
3586 dump_bitmap (file
, bb_info
->lr_in
);
3587 fprintf (file
, "bb %d use \t", bb
->index
);
3588 dump_bitmap (file
, bb_info
->lr_use
);
3589 fprintf (file
, "bb %d def \t", bb
->index
);
3590 dump_bitmap (file
, bb_info
->lr_def
);
3591 fprintf (file
, "bb %d out \t", bb
->index
);
3592 dump_bitmap (file
, bb_info
->lr_out
);
3596 if (flags
& (DF_REG_INFO
| DF_RD_CHAIN
| DF_RU_CHAIN
))
3598 struct reg_info
*reg_info
= df
->regs
;
3600 fprintf (file
, "Register info:\n");
3601 for (j
= 0; j
< df
->n_regs
; j
++)
3603 if (((flags
& DF_REG_INFO
)
3604 && (reg_info
[j
].n_uses
|| reg_info
[j
].n_defs
))
3605 || ((flags
& DF_RD_CHAIN
) && reg_info
[j
].defs
)
3606 || ((flags
& DF_RU_CHAIN
) && reg_info
[j
].uses
))
3608 fprintf (file
, "reg %d", j
);
3609 if ((flags
& DF_RD_CHAIN
) && (flags
& DF_RU_CHAIN
))
3611 basic_block bb
= df_regno_bb (df
, j
);
3614 fprintf (file
, " bb %d", bb
->index
);
3616 fprintf (file
, " bb ?");
3618 if (flags
& DF_REG_INFO
)
3620 fprintf (file
, " life %d", reg_info
[j
].lifetime
);
3623 if ((flags
& DF_REG_INFO
) || (flags
& DF_RD_CHAIN
))
3625 fprintf (file
, " defs ");
3626 if (flags
& DF_REG_INFO
)
3627 fprintf (file
, "%d ", reg_info
[j
].n_defs
);
3628 if (flags
& DF_RD_CHAIN
)
3629 df_chain_dump (reg_info
[j
].defs
, file
);
3632 if ((flags
& DF_REG_INFO
) || (flags
& DF_RU_CHAIN
))
3634 fprintf (file
, " uses ");
3635 if (flags
& DF_REG_INFO
)
3636 fprintf (file
, "%d ", reg_info
[j
].n_uses
);
3637 if (flags
& DF_RU_CHAIN
)
3638 df_chain_dump (reg_info
[j
].uses
, file
);
3641 fprintf (file
, "\n");
3645 fprintf (file
, "\n");
3650 df_insn_debug (struct df
*df
, rtx insn
, FILE *file
)
3655 uid
= INSN_UID (insn
);
3656 if (uid
>= df
->insn_size
)
3659 if (df
->insns
[uid
].defs
)
3660 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3661 else if (df
->insns
[uid
].uses
)
3662 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3666 fprintf (file
, "insn %d bb %d luid %d defs ",
3667 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3668 df_chain_dump (df
->insns
[uid
].defs
, file
);
3669 fprintf (file
, " uses ");
3670 df_chain_dump (df
->insns
[uid
].uses
, file
);
3671 fprintf (file
, "\n");
3676 df_insn_debug_regno (struct df
*df
, rtx insn
, FILE *file
)
3681 uid
= INSN_UID (insn
);
3682 if (uid
>= df
->insn_size
)
3685 if (df
->insns
[uid
].defs
)
3686 bbi
= DF_REF_BBNO (df
->insns
[uid
].defs
->ref
);
3687 else if (df
->insns
[uid
].uses
)
3688 bbi
= DF_REF_BBNO (df
->insns
[uid
].uses
->ref
);
3692 fprintf (file
, "insn %d bb %d luid %d defs ",
3693 uid
, bbi
, DF_INSN_LUID (df
, insn
));
3694 df_chain_dump_regno (df
->insns
[uid
].defs
, file
);
3695 fprintf (file
, " uses ");
3696 df_chain_dump_regno (df
->insns
[uid
].uses
, file
);
3697 fprintf (file
, "\n");
3702 df_regno_debug (struct df
*df
, unsigned int regno
, FILE *file
)
3704 if (regno
>= df
->reg_size
)
3707 fprintf (file
, "reg %d life %d defs ",
3708 regno
, df
->regs
[regno
].lifetime
);
3709 df_chain_dump (df
->regs
[regno
].defs
, file
);
3710 fprintf (file
, " uses ");
3711 df_chain_dump (df
->regs
[regno
].uses
, file
);
3712 fprintf (file
, "\n");
3717 df_ref_debug (struct df
*df
, struct ref
*ref
, FILE *file
)
3719 fprintf (file
, "%c%d ",
3720 DF_REF_REG_DEF_P (ref
) ? 'd' : 'u',
3722 fprintf (file
, "reg %d bb %d luid %d insn %d chain ",
3725 DF_INSN_LUID (df
, DF_REF_INSN (ref
)),
3726 INSN_UID (DF_REF_INSN (ref
)));
3727 df_chain_dump (DF_REF_CHAIN (ref
), file
);
3728 fprintf (file
, "\n");
3731 /* Functions for debugging from GDB. */
3734 debug_df_insn (rtx insn
)
3736 df_insn_debug (ddf
, insn
, stderr
);
3742 debug_df_reg (rtx reg
)
3744 df_regno_debug (ddf
, REGNO (reg
), stderr
);
3749 debug_df_regno (unsigned int regno
)
3751 df_regno_debug (ddf
, regno
, stderr
);
3756 debug_df_ref (struct ref
*ref
)
3758 df_ref_debug (ddf
, ref
, stderr
);
3763 debug_df_defno (unsigned int defno
)
3765 df_ref_debug (ddf
, ddf
->defs
[defno
], stderr
);
3770 debug_df_useno (unsigned int defno
)
3772 df_ref_debug (ddf
, ddf
->uses
[defno
], stderr
);
3777 debug_df_chain (struct df_link
*link
)
3779 df_chain_dump (link
, stderr
);
3780 fputc ('\n', stderr
);
3784 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3785 storing the result in OP1. */
3788 dataflow_set_a_op_b (enum set_representation repr
,
3789 enum df_confluence_op op
,
3790 void *op1
, void *op2
)
3798 sbitmap_a_or_b (op1
, op1
, op2
);
3801 case DF_INTERSECTION
:
3802 sbitmap_a_and_b (op1
, op1
, op2
);
3814 bitmap_ior_into (op1
, op2
);
3817 case DF_INTERSECTION
:
3818 bitmap_and_into (op1
, op2
);
3832 dataflow_set_copy (enum set_representation repr
, void *dest
, void *src
)
3837 sbitmap_copy (dest
, src
);
3841 bitmap_copy (dest
, src
);
3849 /* Hybrid search algorithm from "Implementation Techniques for
3850 Efficient Data-Flow Analysis of Large Programs". */
3853 hybrid_search (basic_block bb
, struct dataflow
*dataflow
,
3854 sbitmap visited
, sbitmap pending
, sbitmap considered
)
3861 SET_BIT (visited
, bb
->index
);
3862 gcc_assert (TEST_BIT (pending
, bb
->index
));
3863 RESET_BIT (pending
, i
);
3865 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3866 E, E_BB, E_START_BB, OUT_SET) \
3869 /* Calculate <conf_op> of predecessor_outs. */ \
3870 bitmap_zero (IN_SET[i]); \
3871 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3873 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3875 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3878 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3880 OUT_SET[e->E_ANTI_BB->index]); \
3883 (*dataflow->transfun)(i, &changed, \
3884 dataflow->in[i], dataflow->out[i], \
3885 dataflow->gen[i], dataflow->kill[i], \
3891 FOR_EACH_EDGE (e, ei, bb->E) \
3893 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3896 if (!TEST_BIT (considered, e->E_BB->index)) \
3899 SET_BIT (pending, e->E_BB->index); \
3902 FOR_EACH_EDGE (e, ei, bb->E) \
3904 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3907 if (!TEST_BIT (considered, e->E_BB->index)) \
3910 if (!TEST_BIT (visited, e->E_BB->index)) \
3911 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3915 if (dataflow
->dir
== DF_FORWARD
)
3916 HS (preds
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
,
3917 succs
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
);
3919 HS (succs
, dest
, EXIT_BLOCK_PTR
, dataflow
->out
,
3920 preds
, src
, ENTRY_BLOCK_PTR
, dataflow
->in
);
3923 /* This function will perform iterative bitvector dataflow described by
3924 DATAFLOW, producing the in and out sets. Only the part of the cfg
3925 induced by blocks in DATAFLOW->order is taken into account.
3927 For forward problems, you probably want to pass in rc_order. */
3930 iterative_dataflow (struct dataflow
*dataflow
)
3933 sbitmap visited
, pending
, considered
;
3935 pending
= sbitmap_alloc (last_basic_block
);
3936 visited
= sbitmap_alloc (last_basic_block
);
3937 considered
= sbitmap_alloc (last_basic_block
);
3938 sbitmap_zero (pending
);
3939 sbitmap_zero (visited
);
3940 sbitmap_zero (considered
);
3942 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3944 idx
= dataflow
->order
[i
];
3945 SET_BIT (pending
, idx
);
3946 SET_BIT (considered
, idx
);
3947 if (dataflow
->dir
== DF_FORWARD
)
3948 dataflow_set_copy (dataflow
->repr
,
3949 dataflow
->out
[idx
], dataflow
->gen
[idx
]);
3951 dataflow_set_copy (dataflow
->repr
,
3952 dataflow
->in
[idx
], dataflow
->gen
[idx
]);
3957 for (i
= 0; i
< dataflow
->n_blocks
; i
++)
3959 idx
= dataflow
->order
[i
];
3961 if (TEST_BIT (pending
, idx
) && !TEST_BIT (visited
, idx
))
3962 hybrid_search (BASIC_BLOCK (idx
), dataflow
,
3963 visited
, pending
, considered
);
3966 if (sbitmap_first_set_bit (pending
) == -1)
3969 sbitmap_zero (visited
);
3972 sbitmap_free (pending
);
3973 sbitmap_free (visited
);
3974 sbitmap_free (considered
);