* loop-iv.c (simplify_using_initial_values): Return if the
[official-gcc.git] / libgfortran / generated / product_r4.c
blob069b0d0c0e790b60b3f6f48a99e9dd3e47511ab1
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include "libgfortran.h"
37 #if defined (HAVE_GFC_REAL_4) && defined (HAVE_GFC_REAL_4)
40 extern void product_r4 (gfc_array_r4 * const restrict,
41 gfc_array_r4 * const restrict, const index_type * const restrict);
42 export_proto(product_r4);
44 void
45 product_r4 (gfc_array_r4 * const restrict retarray,
46 gfc_array_r4 * const restrict array,
47 const index_type * const restrict pdim)
49 index_type count[GFC_MAX_DIMENSIONS];
50 index_type extent[GFC_MAX_DIMENSIONS];
51 index_type sstride[GFC_MAX_DIMENSIONS];
52 index_type dstride[GFC_MAX_DIMENSIONS];
53 const GFC_REAL_4 * restrict base;
54 GFC_REAL_4 * restrict dest;
55 index_type rank;
56 index_type n;
57 index_type len;
58 index_type delta;
59 index_type dim;
61 /* Make dim zero based to avoid confusion. */
62 dim = (*pdim) - 1;
63 rank = GFC_DESCRIPTOR_RANK (array) - 1;
65 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
66 delta = array->dim[dim].stride;
68 for (n = 0; n < dim; n++)
70 sstride[n] = array->dim[n].stride;
71 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
73 if (extent[n] < 0)
74 extent[n] = 0;
76 for (n = dim; n < rank; n++)
78 sstride[n] = array->dim[n + 1].stride;
79 extent[n] =
80 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
82 if (extent[n] < 0)
83 extent[n] = 0;
86 if (retarray->data == NULL)
88 size_t alloc_size;
90 for (n = 0; n < rank; n++)
92 retarray->dim[n].lbound = 0;
93 retarray->dim[n].ubound = extent[n]-1;
94 if (n == 0)
95 retarray->dim[n].stride = 1;
96 else
97 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
100 retarray->offset = 0;
101 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
103 alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
104 * extent[rank-1];
106 if (alloc_size == 0)
108 /* Make sure we have a zero-sized array. */
109 retarray->dim[0].lbound = 0;
110 retarray->dim[0].ubound = -1;
111 return;
113 else
114 retarray->data = internal_malloc_size (alloc_size);
116 else
118 if (rank != GFC_DESCRIPTOR_RANK (retarray))
119 runtime_error ("rank of return array incorrect");
122 for (n = 0; n < rank; n++)
124 count[n] = 0;
125 dstride[n] = retarray->dim[n].stride;
126 if (extent[n] <= 0)
127 len = 0;
130 base = array->data;
131 dest = retarray->data;
133 while (base)
135 const GFC_REAL_4 * restrict src;
136 GFC_REAL_4 result;
137 src = base;
140 result = 1;
141 if (len <= 0)
142 *dest = 1;
143 else
145 for (n = 0; n < len; n++, src += delta)
148 result *= *src;
150 *dest = result;
153 /* Advance to the next element. */
154 count[0]++;
155 base += sstride[0];
156 dest += dstride[0];
157 n = 0;
158 while (count[n] == extent[n])
160 /* When we get to the end of a dimension, reset it and increment
161 the next dimension. */
162 count[n] = 0;
163 /* We could precalculate these products, but this is a less
164 frequently used path so probably not worth it. */
165 base -= sstride[n] * extent[n];
166 dest -= dstride[n] * extent[n];
167 n++;
168 if (n == rank)
170 /* Break out of the look. */
171 base = NULL;
172 break;
174 else
176 count[n]++;
177 base += sstride[n];
178 dest += dstride[n];
185 extern void mproduct_r4 (gfc_array_r4 * const restrict,
186 gfc_array_r4 * const restrict, const index_type * const restrict,
187 gfc_array_l4 * const restrict);
188 export_proto(mproduct_r4);
190 void
191 mproduct_r4 (gfc_array_r4 * const restrict retarray,
192 gfc_array_r4 * const restrict array,
193 const index_type * const restrict pdim,
194 gfc_array_l4 * const restrict mask)
196 index_type count[GFC_MAX_DIMENSIONS];
197 index_type extent[GFC_MAX_DIMENSIONS];
198 index_type sstride[GFC_MAX_DIMENSIONS];
199 index_type dstride[GFC_MAX_DIMENSIONS];
200 index_type mstride[GFC_MAX_DIMENSIONS];
201 GFC_REAL_4 * restrict dest;
202 const GFC_REAL_4 * restrict base;
203 const GFC_LOGICAL_4 * restrict mbase;
204 int rank;
205 int dim;
206 index_type n;
207 index_type len;
208 index_type delta;
209 index_type mdelta;
211 dim = (*pdim) - 1;
212 rank = GFC_DESCRIPTOR_RANK (array) - 1;
214 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
215 if (len <= 0)
216 return;
217 delta = array->dim[dim].stride;
218 mdelta = mask->dim[dim].stride;
220 for (n = 0; n < dim; n++)
222 sstride[n] = array->dim[n].stride;
223 mstride[n] = mask->dim[n].stride;
224 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
226 if (extent[n] < 0)
227 extent[n] = 0;
230 for (n = dim; n < rank; n++)
232 sstride[n] = array->dim[n + 1].stride;
233 mstride[n] = mask->dim[n + 1].stride;
234 extent[n] =
235 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
237 if (extent[n] < 0)
238 extent[n] = 0;
241 if (retarray->data == NULL)
243 size_t alloc_size;
245 for (n = 0; n < rank; n++)
247 retarray->dim[n].lbound = 0;
248 retarray->dim[n].ubound = extent[n]-1;
249 if (n == 0)
250 retarray->dim[n].stride = 1;
251 else
252 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
255 alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
256 * extent[rank-1];
258 retarray->offset = 0;
259 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
261 if (alloc_size == 0)
263 /* Make sure we have a zero-sized array. */
264 retarray->dim[0].lbound = 0;
265 retarray->dim[0].ubound = -1;
266 return;
268 else
269 retarray->data = internal_malloc_size (alloc_size);
272 else
274 if (rank != GFC_DESCRIPTOR_RANK (retarray))
275 runtime_error ("rank of return array incorrect");
278 for (n = 0; n < rank; n++)
280 count[n] = 0;
281 dstride[n] = retarray->dim[n].stride;
282 if (extent[n] <= 0)
283 return;
286 dest = retarray->data;
287 base = array->data;
288 mbase = mask->data;
290 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
292 /* This allows the same loop to be used for all logical types. */
293 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
294 for (n = 0; n < rank; n++)
295 mstride[n] <<= 1;
296 mdelta <<= 1;
297 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
300 while (base)
302 const GFC_REAL_4 * restrict src;
303 const GFC_LOGICAL_4 * restrict msrc;
304 GFC_REAL_4 result;
305 src = base;
306 msrc = mbase;
309 result = 1;
310 if (len <= 0)
311 *dest = 1;
312 else
314 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
317 if (*msrc)
318 result *= *src;
320 *dest = result;
323 /* Advance to the next element. */
324 count[0]++;
325 base += sstride[0];
326 mbase += mstride[0];
327 dest += dstride[0];
328 n = 0;
329 while (count[n] == extent[n])
331 /* When we get to the end of a dimension, reset it and increment
332 the next dimension. */
333 count[n] = 0;
334 /* We could precalculate these products, but this is a less
335 frequently used path so probably not worth it. */
336 base -= sstride[n] * extent[n];
337 mbase -= mstride[n] * extent[n];
338 dest -= dstride[n] * extent[n];
339 n++;
340 if (n == rank)
342 /* Break out of the look. */
343 base = NULL;
344 break;
346 else
348 count[n]++;
349 base += sstride[n];
350 mbase += mstride[n];
351 dest += dstride[n];
358 extern void sproduct_r4 (gfc_array_r4 * const restrict,
359 gfc_array_r4 * const restrict, const index_type * const restrict,
360 GFC_LOGICAL_4 *);
361 export_proto(sproduct_r4);
363 void
364 sproduct_r4 (gfc_array_r4 * const restrict retarray,
365 gfc_array_r4 * const restrict array,
366 const index_type * const restrict pdim,
367 GFC_LOGICAL_4 * mask)
369 index_type rank;
370 index_type n;
371 index_type dstride;
372 GFC_REAL_4 *dest;
374 if (*mask)
376 product_r4 (retarray, array, pdim);
377 return;
379 rank = GFC_DESCRIPTOR_RANK (array);
380 if (rank <= 0)
381 runtime_error ("Rank of array needs to be > 0");
383 if (retarray->data == NULL)
385 retarray->dim[0].lbound = 0;
386 retarray->dim[0].ubound = rank-1;
387 retarray->dim[0].stride = 1;
388 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
389 retarray->offset = 0;
390 retarray->data = internal_malloc_size (sizeof (GFC_REAL_4) * rank);
392 else
394 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
395 runtime_error ("rank of return array does not equal 1");
397 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
398 runtime_error ("dimension of return array incorrect");
401 dstride = retarray->dim[0].stride;
402 dest = retarray->data;
404 for (n = 0; n < rank; n++)
405 dest[n * dstride] = 1 ;
408 #endif