* config/sparc/constraints.md: New file.
[official-gcc.git] / gcc / combine.c
blob30ec0809625626cdbc6cc785c959529ba28f524e
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras;
121 /* Number of instructions combined in this function. */
123 static int combine_successes;
125 /* Totals over entire compilation. */
127 static int total_attempts, total_merges, total_extras, total_successes;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx i2mod;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs;
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
198 rtx last_set_value;
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick;
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
208 int last_set_label;
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies;
239 unsigned HOST_WIDE_INT nonzero_bits;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
258 static VEC(reg_stat_type,heap) *reg_stat;
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
263 static int mem_last_set;
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
268 static int last_call_luid;
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
276 static rtx subst_insn;
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
285 static int subst_low_luid;
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
290 static HARD_REG_SET newpat_used_regs;
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
296 static rtx added_links_insn;
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
303 /* Length of the currently allocated uid_insn_cost array. */
305 static int max_uid_known;
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
310 static int *uid_insn_cost;
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
315 static rtx *uid_log_links;
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
320 /* Incremented for each basic block. */
322 static int label_tick;
324 /* Reset to label_tick for each label. */
326 static int label_tick_ebb_start;
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
331 static enum machine_mode nonzero_bits_mode;
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
339 static int nonzero_sign_valid;
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
345 struct undo
347 struct undo *next;
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
359 struct undobuf
361 struct undo *undos;
362 struct undo *frees;
363 rtx other_insn;
366 static struct undobuf undobuf;
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
371 static int n_occurrences;
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
374 enum machine_mode,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
378 enum machine_mode,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
423 int);
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
476 register. */
478 static rtx
479 combine_split_insns (rtx pattern, rtx insn)
481 rtx ret;
482 unsigned int nregs;
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
488 return ret;
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
497 static rtx *
498 find_single_use_1 (rtx dest, rtx *loc)
500 rtx x = *loc;
501 enum rtx_code code = GET_CODE (x);
502 rtx *result = NULL;
503 rtx *this_result;
504 int i;
505 const char *fmt;
507 switch (code)
509 case CONST_INT:
510 case CONST:
511 case LABEL_REF:
512 case SYMBOL_REF:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case CLOBBER:
516 return 0;
518 case SET:
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
532 break;
534 return find_single_use_1 (dest, &SET_SRC (x));
536 case MEM:
537 case SUBREG:
538 return find_single_use_1 (dest, &XEXP (x, 0));
540 default:
541 break;
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
550 if (fmt[i] == 'e')
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
555 this_result = loc;
556 else
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
559 if (result == NULL)
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
563 return NULL;
565 else if (fmt[i] == 'E')
567 int j;
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
571 if (XVECEXP (x, i, j) == dest
572 || (REG_P (dest)
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
575 this_result = loc;
576 else
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
579 if (result == NULL)
580 result = this_result;
581 else if (this_result)
582 return NULL;
587 return result;
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
593 it is used.
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
605 static rtx *
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
608 rtx next;
609 rtx *result;
610 rtx link;
612 #ifdef HAVE_cc0
613 if (dest == cc0_rtx)
615 next = NEXT_INSN (insn);
616 if (next == 0
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
618 return 0;
620 result = find_single_use_1 (dest, &PATTERN (next));
621 if (result && ploc)
622 *ploc = next;
623 return result;
625 #endif
627 if (!REG_P (dest))
628 return 0;
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
637 break;
639 if (link)
641 result = find_single_use_1 (dest, &PATTERN (next));
642 if (ploc)
643 *ploc = next;
644 return result;
648 return 0;
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
655 the undo table. */
657 static void
658 do_SUBST (rtx *into, rtx newval)
660 struct undo *buf;
661 rtx oldval = *into;
663 if (oldval == newval)
664 return;
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
691 if (undobuf.frees)
692 buf = undobuf.frees, undobuf.frees = buf->next;
693 else
694 buf = XNEW (struct undo);
696 buf->kind = UNDO_RTX;
697 buf->where.r = into;
698 buf->old_contents.r = oldval;
699 *into = newval;
701 buf->next = undobuf.undos, undobuf.undos = buf;
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
708 not safe. */
710 static void
711 do_SUBST_INT (int *into, int newval)
713 struct undo *buf;
714 int oldval = *into;
716 if (oldval == newval)
717 return;
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
724 buf->kind = UNDO_INT;
725 buf->where.i = into;
726 buf->old_contents.i = oldval;
727 *into = newval;
729 buf->next = undobuf.undos, undobuf.undos = buf;
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
737 well. */
739 static void
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
742 struct undo *buf;
743 enum machine_mode oldval = GET_MODE (*into);
745 if (oldval == newval)
746 return;
748 if (undobuf.frees)
749 buf = undobuf.frees, undobuf.frees = buf->next;
750 else
751 buf = XNEW (struct undo);
753 buf->kind = UNDO_MODE;
754 buf->where.r = into;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
758 buf->next = undobuf.undos, undobuf.undos = buf;
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
770 sequence. */
772 static bool
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
774 rtx newotherpat)
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
784 if (i1)
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
790 else
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
793 i1_cost = 0;
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
798 if (newi2pat)
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
804 else
806 new_cost = new_i3_cost;
807 new_i2_cost = 0;
810 if (undobuf.other_insn)
812 int old_other_cost, new_other_cost;
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
821 else
822 old_cost = 0;
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
827 if (old_cost > 0
828 && new_cost > old_cost)
830 if (dump_file)
832 if (i1)
834 fprintf (dump_file,
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
840 else
842 fprintf (dump_file,
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
849 if (newi2pat)
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
854 else
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
858 return false;
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
864 if (i1)
865 INSN_COST (i1) = 0;
867 return true;
871 /* Delete any insns that copy a register to itself. */
873 static void
874 delete_noop_moves (void)
876 rtx insn, next;
877 basic_block bb;
879 FOR_EACH_BB (bb)
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
886 if (dump_file)
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
889 delete_insn_and_edges (insn);
896 /* Fill in log links field for all insns. */
898 static void
899 create_log_links (void)
901 basic_block bb;
902 rtx *next_use, insn;
903 struct df_ref **def_vec, **use_vec;
905 next_use = XCNEWVEC (rtx, max_reg_num ());
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
916 FOR_EACH_BB (bb)
918 FOR_BB_INSNS_REVERSE (bb, insn)
920 if (!INSN_P (insn))
921 continue;
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
928 struct df_ref *def = *def_vec;
929 int regno = DF_REF_REGNO (def);
930 rtx use_insn;
932 if (!next_use[regno])
933 continue;
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
937 continue;
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
945 #endif
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
948 #endif
950 continue;
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
955 /* flow.c claimed:
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
965 /* Don't add duplicate links between instructions. */
966 rtx links;
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
970 break;
972 if (!links)
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
977 next_use[regno] = NULL_RTX;
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
982 struct df_ref *use = *use_vec;
983 int regno = DF_REF_REGNO (use);
985 /* Do not consider the usage of the stack pointer
986 by function call. */
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
988 continue;
990 next_use[regno] = insn;
995 free (next_use);
998 /* Clear LOG_LINKS fields of insns. */
1000 static void
1001 clear_log_links (void)
1003 rtx insn;
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1006 if (INSN_P (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1018 static int
1019 combine_instructions (rtx f, unsigned int nregs)
1021 rtx insn, next;
1022 #ifdef HAVE_cc0
1023 rtx prev;
1024 #endif
1025 rtx links, nextlinks;
1026 rtx first;
1028 int new_direct_jump_p = 0;
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1032 if (!first)
1033 return 0;
1035 combine_attempts = 0;
1036 combine_merges = 0;
1037 combine_extras = 0;
1038 combine_successes = 0;
1040 rtl_hooks = combine_rtl_hooks;
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1044 init_recog_no_volatile ();
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1056 nonzero_sign_valid = 0;
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1065 label_tick = label_tick_ebb_start = 1;
1067 setup_incoming_promotions (first);
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1073 last_call_luid = 0;
1074 mem_last_set = -1;
1075 label_tick++;
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1079 subst_low_luid = DF_INSN_LUID (insn);
1080 subst_insn = insn;
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1083 insn);
1084 record_dead_and_set_regs (insn);
1086 #ifdef AUTO_INC_DEC
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1090 insn);
1091 #endif
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1097 if (dump_file)
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1105 nonzero_sign_valid = 1;
1107 /* Now scan all the insns in forward order. */
1109 label_tick = label_tick_ebb_start = 1;
1110 init_reg_last ();
1111 setup_incoming_promotions (first);
1113 FOR_EACH_BB (this_basic_block)
1115 last_call_luid = 0;
1116 mem_last_set = -1;
1117 label_tick++;
1118 rtl_profile_for_bb (this_basic_block);
1119 for (insn = BB_HEAD (this_basic_block);
1120 insn != NEXT_INSN (BB_END (this_basic_block));
1121 insn = next ? next : NEXT_INSN (insn))
1123 next = 0;
1124 if (INSN_P (insn))
1126 /* See if we know about function return values before this
1127 insn based upon SUBREG flags. */
1128 check_promoted_subreg (insn, PATTERN (insn));
1130 /* See if we can find hardregs and subreg of pseudos in
1131 narrower modes. This could help turning TRUNCATEs
1132 into SUBREGs. */
1133 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1135 /* Try this insn with each insn it links back to. */
1137 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1138 if ((next = try_combine (insn, XEXP (links, 0),
1139 NULL_RTX, &new_direct_jump_p)) != 0)
1140 goto retry;
1142 /* Try each sequence of three linked insns ending with this one. */
1144 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 rtx link = XEXP (links, 0);
1148 /* If the linked insn has been replaced by a note, then there
1149 is no point in pursuing this chain any further. */
1150 if (NOTE_P (link))
1151 continue;
1153 for (nextlinks = LOG_LINKS (link);
1154 nextlinks;
1155 nextlinks = XEXP (nextlinks, 1))
1156 if ((next = try_combine (insn, link,
1157 XEXP (nextlinks, 0),
1158 &new_direct_jump_p)) != 0)
1159 goto retry;
1162 #ifdef HAVE_cc0
1163 /* Try to combine a jump insn that uses CC0
1164 with a preceding insn that sets CC0, and maybe with its
1165 logical predecessor as well.
1166 This is how we make decrement-and-branch insns.
1167 We need this special code because data flow connections
1168 via CC0 do not get entered in LOG_LINKS. */
1170 if (JUMP_P (insn)
1171 && (prev = prev_nonnote_insn (insn)) != 0
1172 && NONJUMP_INSN_P (prev)
1173 && sets_cc0_p (PATTERN (prev)))
1175 if ((next = try_combine (insn, prev,
1176 NULL_RTX, &new_direct_jump_p)) != 0)
1177 goto retry;
1179 for (nextlinks = LOG_LINKS (prev); nextlinks;
1180 nextlinks = XEXP (nextlinks, 1))
1181 if ((next = try_combine (insn, prev,
1182 XEXP (nextlinks, 0),
1183 &new_direct_jump_p)) != 0)
1184 goto retry;
1187 /* Do the same for an insn that explicitly references CC0. */
1188 if (NONJUMP_INSN_P (insn)
1189 && (prev = prev_nonnote_insn (insn)) != 0
1190 && NONJUMP_INSN_P (prev)
1191 && sets_cc0_p (PATTERN (prev))
1192 && GET_CODE (PATTERN (insn)) == SET
1193 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1195 if ((next = try_combine (insn, prev,
1196 NULL_RTX, &new_direct_jump_p)) != 0)
1197 goto retry;
1199 for (nextlinks = LOG_LINKS (prev); nextlinks;
1200 nextlinks = XEXP (nextlinks, 1))
1201 if ((next = try_combine (insn, prev,
1202 XEXP (nextlinks, 0),
1203 &new_direct_jump_p)) != 0)
1204 goto retry;
1207 /* Finally, see if any of the insns that this insn links to
1208 explicitly references CC0. If so, try this insn, that insn,
1209 and its predecessor if it sets CC0. */
1210 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1211 if (NONJUMP_INSN_P (XEXP (links, 0))
1212 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1213 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1214 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1215 && NONJUMP_INSN_P (prev)
1216 && sets_cc0_p (PATTERN (prev))
1217 && (next = try_combine (insn, XEXP (links, 0),
1218 prev, &new_direct_jump_p)) != 0)
1219 goto retry;
1220 #endif
1222 /* Try combining an insn with two different insns whose results it
1223 uses. */
1224 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1225 for (nextlinks = XEXP (links, 1); nextlinks;
1226 nextlinks = XEXP (nextlinks, 1))
1227 if ((next = try_combine (insn, XEXP (links, 0),
1228 XEXP (nextlinks, 0),
1229 &new_direct_jump_p)) != 0)
1230 goto retry;
1232 /* Try this insn with each REG_EQUAL note it links back to. */
1233 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1235 rtx set, note;
1236 rtx temp = XEXP (links, 0);
1237 if ((set = single_set (temp)) != 0
1238 && (note = find_reg_equal_equiv_note (temp)) != 0
1239 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1240 /* Avoid using a register that may already been marked
1241 dead by an earlier instruction. */
1242 && ! unmentioned_reg_p (note, SET_SRC (set))
1243 && (GET_MODE (note) == VOIDmode
1244 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1245 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1247 /* Temporarily replace the set's source with the
1248 contents of the REG_EQUAL note. The insn will
1249 be deleted or recognized by try_combine. */
1250 rtx orig = SET_SRC (set);
1251 SET_SRC (set) = note;
1252 i2mod = temp;
1253 i2mod_old_rhs = copy_rtx (orig);
1254 i2mod_new_rhs = copy_rtx (note);
1255 next = try_combine (insn, i2mod, NULL_RTX,
1256 &new_direct_jump_p);
1257 i2mod = NULL_RTX;
1258 if (next)
1259 goto retry;
1260 SET_SRC (set) = orig;
1264 if (!NOTE_P (insn))
1265 record_dead_and_set_regs (insn);
1267 retry:
1270 else if (LABEL_P (insn))
1271 label_tick_ebb_start = label_tick;
1275 default_rtl_profile ();
1276 clear_log_links ();
1277 clear_bb_flags ();
1278 new_direct_jump_p |= purge_all_dead_edges ();
1279 delete_noop_moves ();
1281 /* Clean up. */
1282 free (uid_log_links);
1283 free (uid_insn_cost);
1284 VEC_free (reg_stat_type, heap, reg_stat);
1287 struct undo *undo, *next;
1288 for (undo = undobuf.frees; undo; undo = next)
1290 next = undo->next;
1291 free (undo);
1293 undobuf.frees = 0;
1296 total_attempts += combine_attempts;
1297 total_merges += combine_merges;
1298 total_extras += combine_extras;
1299 total_successes += combine_successes;
1301 nonzero_sign_valid = 0;
1302 rtl_hooks = general_rtl_hooks;
1304 /* Make recognizer allow volatile MEMs again. */
1305 init_recog ();
1307 return new_direct_jump_p;
1310 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1312 static void
1313 init_reg_last (void)
1315 unsigned int i;
1316 reg_stat_type *p;
1318 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1319 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1322 /* Set up any promoted values for incoming argument registers. */
1324 static void
1325 setup_incoming_promotions (rtx first)
1327 tree arg;
1328 bool strictly_local = false;
1330 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1331 return;
1333 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1334 arg = TREE_CHAIN (arg))
1336 rtx reg = DECL_INCOMING_RTL (arg);
1337 int uns1, uns3;
1338 enum machine_mode mode1, mode2, mode3, mode4;
1340 /* Only continue if the incoming argument is in a register. */
1341 if (!REG_P (reg))
1342 continue;
1344 /* Determine, if possible, whether all call sites of the current
1345 function lie within the current compilation unit. (This does
1346 take into account the exporting of a function via taking its
1347 address, and so forth.) */
1348 strictly_local = cgraph_local_info (current_function_decl)->local;
1350 /* The mode and signedness of the argument before any promotions happen
1351 (equal to the mode of the pseudo holding it at that stage). */
1352 mode1 = TYPE_MODE (TREE_TYPE (arg));
1353 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1355 /* The mode and signedness of the argument after any source language and
1356 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1357 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1358 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1360 /* The mode and signedness of the argument as it is actually passed,
1361 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1362 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1364 /* The mode of the register in which the argument is being passed. */
1365 mode4 = GET_MODE (reg);
1367 /* Eliminate sign extensions in the callee when possible. Only
1368 do this when:
1369 (a) a mode promotion has occurred;
1370 (b) the mode of the register is the same as the mode of
1371 the argument as it is passed; and
1372 (c) the signedness does not change across any of the promotions; and
1373 (d) when no language-level promotions (which we cannot guarantee
1374 will have been done by an external caller) are necessary,
1375 unless we know that this function is only ever called from
1376 the current compilation unit -- all of whose call sites will
1377 do the mode1 --> mode2 promotion. */
1378 if (mode1 != mode3
1379 && mode3 == mode4
1380 && uns1 == uns3
1381 && (mode1 == mode2 || strictly_local))
1383 /* Record that the value was promoted from mode1 to mode3,
1384 so that any sign extension at the head of the current
1385 function may be eliminated. */
1386 rtx x;
1387 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1388 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1389 record_value_for_reg (reg, first, x);
1394 /* Called via note_stores. If X is a pseudo that is narrower than
1395 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1397 If we are setting only a portion of X and we can't figure out what
1398 portion, assume all bits will be used since we don't know what will
1399 be happening.
1401 Similarly, set how many bits of X are known to be copies of the sign bit
1402 at all locations in the function. This is the smallest number implied
1403 by any set of X. */
1405 static void
1406 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1408 rtx insn = (rtx) data;
1409 unsigned int num;
1411 if (REG_P (x)
1412 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1413 /* If this register is undefined at the start of the file, we can't
1414 say what its contents were. */
1415 && ! REGNO_REG_SET_P
1416 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1417 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1419 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1421 if (set == 0 || GET_CODE (set) == CLOBBER)
1423 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1424 rsp->sign_bit_copies = 1;
1425 return;
1428 /* If this register is being initialized using itself, and the
1429 register is uninitialized in this basic block, and there are
1430 no LOG_LINKS which set the register, then part of the
1431 register is uninitialized. In that case we can't assume
1432 anything about the number of nonzero bits.
1434 ??? We could do better if we checked this in
1435 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1436 could avoid making assumptions about the insn which initially
1437 sets the register, while still using the information in other
1438 insns. We would have to be careful to check every insn
1439 involved in the combination. */
1441 if (insn
1442 && reg_referenced_p (x, PATTERN (insn))
1443 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1444 REGNO (x)))
1446 rtx link;
1448 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1450 if (dead_or_set_p (XEXP (link, 0), x))
1451 break;
1453 if (!link)
1455 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1456 rsp->sign_bit_copies = 1;
1457 return;
1461 /* If this is a complex assignment, see if we can convert it into a
1462 simple assignment. */
1463 set = expand_field_assignment (set);
1465 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1466 set what we know about X. */
1468 if (SET_DEST (set) == x
1469 || (GET_CODE (SET_DEST (set)) == SUBREG
1470 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1471 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1472 && SUBREG_REG (SET_DEST (set)) == x))
1474 rtx src = SET_SRC (set);
1476 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1477 /* If X is narrower than a word and SRC is a non-negative
1478 constant that would appear negative in the mode of X,
1479 sign-extend it for use in reg_stat[].nonzero_bits because some
1480 machines (maybe most) will actually do the sign-extension
1481 and this is the conservative approach.
1483 ??? For 2.5, try to tighten up the MD files in this regard
1484 instead of this kludge. */
1486 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1487 && GET_CODE (src) == CONST_INT
1488 && INTVAL (src) > 0
1489 && 0 != (INTVAL (src)
1490 & ((HOST_WIDE_INT) 1
1491 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1492 src = GEN_INT (INTVAL (src)
1493 | ((HOST_WIDE_INT) (-1)
1494 << GET_MODE_BITSIZE (GET_MODE (x))));
1495 #endif
1497 /* Don't call nonzero_bits if it cannot change anything. */
1498 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1499 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1500 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1501 if (rsp->sign_bit_copies == 0
1502 || rsp->sign_bit_copies > num)
1503 rsp->sign_bit_copies = num;
1505 else
1507 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1508 rsp->sign_bit_copies = 1;
1513 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1514 insns that were previously combined into I3 or that will be combined
1515 into the merger of INSN and I3.
1517 Return 0 if the combination is not allowed for any reason.
1519 If the combination is allowed, *PDEST will be set to the single
1520 destination of INSN and *PSRC to the single source, and this function
1521 will return 1. */
1523 static int
1524 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1525 rtx *pdest, rtx *psrc)
1527 int i;
1528 const_rtx set = 0;
1529 rtx src, dest;
1530 rtx p;
1531 #ifdef AUTO_INC_DEC
1532 rtx link;
1533 #endif
1534 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1535 && next_active_insn (succ) == i3)
1536 : next_active_insn (insn) == i3);
1538 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1539 or a PARALLEL consisting of such a SET and CLOBBERs.
1541 If INSN has CLOBBER parallel parts, ignore them for our processing.
1542 By definition, these happen during the execution of the insn. When it
1543 is merged with another insn, all bets are off. If they are, in fact,
1544 needed and aren't also supplied in I3, they may be added by
1545 recog_for_combine. Otherwise, it won't match.
1547 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1548 note.
1550 Get the source and destination of INSN. If more than one, can't
1551 combine. */
1553 if (GET_CODE (PATTERN (insn)) == SET)
1554 set = PATTERN (insn);
1555 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1556 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1558 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1560 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1561 rtx note;
1563 switch (GET_CODE (elt))
1565 /* This is important to combine floating point insns
1566 for the SH4 port. */
1567 case USE:
1568 /* Combining an isolated USE doesn't make sense.
1569 We depend here on combinable_i3pat to reject them. */
1570 /* The code below this loop only verifies that the inputs of
1571 the SET in INSN do not change. We call reg_set_between_p
1572 to verify that the REG in the USE does not change between
1573 I3 and INSN.
1574 If the USE in INSN was for a pseudo register, the matching
1575 insn pattern will likely match any register; combining this
1576 with any other USE would only be safe if we knew that the
1577 used registers have identical values, or if there was
1578 something to tell them apart, e.g. different modes. For
1579 now, we forgo such complicated tests and simply disallow
1580 combining of USES of pseudo registers with any other USE. */
1581 if (REG_P (XEXP (elt, 0))
1582 && GET_CODE (PATTERN (i3)) == PARALLEL)
1584 rtx i3pat = PATTERN (i3);
1585 int i = XVECLEN (i3pat, 0) - 1;
1586 unsigned int regno = REGNO (XEXP (elt, 0));
1590 rtx i3elt = XVECEXP (i3pat, 0, i);
1592 if (GET_CODE (i3elt) == USE
1593 && REG_P (XEXP (i3elt, 0))
1594 && (REGNO (XEXP (i3elt, 0)) == regno
1595 ? reg_set_between_p (XEXP (elt, 0),
1596 PREV_INSN (insn), i3)
1597 : regno >= FIRST_PSEUDO_REGISTER))
1598 return 0;
1600 while (--i >= 0);
1602 break;
1604 /* We can ignore CLOBBERs. */
1605 case CLOBBER:
1606 break;
1608 case SET:
1609 /* Ignore SETs whose result isn't used but not those that
1610 have side-effects. */
1611 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1612 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1613 || INTVAL (XEXP (note, 0)) <= 0)
1614 && ! side_effects_p (elt))
1615 break;
1617 /* If we have already found a SET, this is a second one and
1618 so we cannot combine with this insn. */
1619 if (set)
1620 return 0;
1622 set = elt;
1623 break;
1625 default:
1626 /* Anything else means we can't combine. */
1627 return 0;
1631 if (set == 0
1632 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1633 so don't do anything with it. */
1634 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1635 return 0;
1637 else
1638 return 0;
1640 if (set == 0)
1641 return 0;
1643 set = expand_field_assignment (set);
1644 src = SET_SRC (set), dest = SET_DEST (set);
1646 /* Don't eliminate a store in the stack pointer. */
1647 if (dest == stack_pointer_rtx
1648 /* Don't combine with an insn that sets a register to itself if it has
1649 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1650 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1651 /* Can't merge an ASM_OPERANDS. */
1652 || GET_CODE (src) == ASM_OPERANDS
1653 /* Can't merge a function call. */
1654 || GET_CODE (src) == CALL
1655 /* Don't eliminate a function call argument. */
1656 || (CALL_P (i3)
1657 && (find_reg_fusage (i3, USE, dest)
1658 || (REG_P (dest)
1659 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1660 && global_regs[REGNO (dest)])))
1661 /* Don't substitute into an incremented register. */
1662 || FIND_REG_INC_NOTE (i3, dest)
1663 || (succ && FIND_REG_INC_NOTE (succ, dest))
1664 /* Don't substitute into a non-local goto, this confuses CFG. */
1665 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1666 /* Make sure that DEST is not used after SUCC but before I3. */
1667 || (succ && ! all_adjacent
1668 && reg_used_between_p (dest, succ, i3))
1669 /* Make sure that the value that is to be substituted for the register
1670 does not use any registers whose values alter in between. However,
1671 If the insns are adjacent, a use can't cross a set even though we
1672 think it might (this can happen for a sequence of insns each setting
1673 the same destination; last_set of that register might point to
1674 a NOTE). If INSN has a REG_EQUIV note, the register is always
1675 equivalent to the memory so the substitution is valid even if there
1676 are intervening stores. Also, don't move a volatile asm or
1677 UNSPEC_VOLATILE across any other insns. */
1678 || (! all_adjacent
1679 && (((!MEM_P (src)
1680 || ! find_reg_note (insn, REG_EQUIV, src))
1681 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1682 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1683 || GET_CODE (src) == UNSPEC_VOLATILE))
1684 /* Don't combine across a CALL_INSN, because that would possibly
1685 change whether the life span of some REGs crosses calls or not,
1686 and it is a pain to update that information.
1687 Exception: if source is a constant, moving it later can't hurt.
1688 Accept that as a special case. */
1689 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1690 return 0;
1692 /* DEST must either be a REG or CC0. */
1693 if (REG_P (dest))
1695 /* If register alignment is being enforced for multi-word items in all
1696 cases except for parameters, it is possible to have a register copy
1697 insn referencing a hard register that is not allowed to contain the
1698 mode being copied and which would not be valid as an operand of most
1699 insns. Eliminate this problem by not combining with such an insn.
1701 Also, on some machines we don't want to extend the life of a hard
1702 register. */
1704 if (REG_P (src)
1705 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1706 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1707 /* Don't extend the life of a hard register unless it is
1708 user variable (if we have few registers) or it can't
1709 fit into the desired register (meaning something special
1710 is going on).
1711 Also avoid substituting a return register into I3, because
1712 reload can't handle a conflict with constraints of other
1713 inputs. */
1714 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1715 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1716 return 0;
1718 else if (GET_CODE (dest) != CC0)
1719 return 0;
1722 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1723 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1724 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1726 /* Don't substitute for a register intended as a clobberable
1727 operand. */
1728 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1729 if (rtx_equal_p (reg, dest))
1730 return 0;
1732 /* If the clobber represents an earlyclobber operand, we must not
1733 substitute an expression containing the clobbered register.
1734 As we do not analyze the constraint strings here, we have to
1735 make the conservative assumption. However, if the register is
1736 a fixed hard reg, the clobber cannot represent any operand;
1737 we leave it up to the machine description to either accept or
1738 reject use-and-clobber patterns. */
1739 if (!REG_P (reg)
1740 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1741 || !fixed_regs[REGNO (reg)])
1742 if (reg_overlap_mentioned_p (reg, src))
1743 return 0;
1746 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1747 or not), reject, unless nothing volatile comes between it and I3 */
1749 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1751 /* Make sure succ doesn't contain a volatile reference. */
1752 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1753 return 0;
1755 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1756 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1757 return 0;
1760 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1761 to be an explicit register variable, and was chosen for a reason. */
1763 if (GET_CODE (src) == ASM_OPERANDS
1764 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1765 return 0;
1767 /* If there are any volatile insns between INSN and I3, reject, because
1768 they might affect machine state. */
1770 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1771 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1772 return 0;
1774 /* If INSN contains an autoincrement or autodecrement, make sure that
1775 register is not used between there and I3, and not already used in
1776 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1777 Also insist that I3 not be a jump; if it were one
1778 and the incremented register were spilled, we would lose. */
1780 #ifdef AUTO_INC_DEC
1781 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1782 if (REG_NOTE_KIND (link) == REG_INC
1783 && (JUMP_P (i3)
1784 || reg_used_between_p (XEXP (link, 0), insn, i3)
1785 || (pred != NULL_RTX
1786 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1787 || (succ != NULL_RTX
1788 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1789 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1790 return 0;
1791 #endif
1793 #ifdef HAVE_cc0
1794 /* Don't combine an insn that follows a CC0-setting insn.
1795 An insn that uses CC0 must not be separated from the one that sets it.
1796 We do, however, allow I2 to follow a CC0-setting insn if that insn
1797 is passed as I1; in that case it will be deleted also.
1798 We also allow combining in this case if all the insns are adjacent
1799 because that would leave the two CC0 insns adjacent as well.
1800 It would be more logical to test whether CC0 occurs inside I1 or I2,
1801 but that would be much slower, and this ought to be equivalent. */
1803 p = prev_nonnote_insn (insn);
1804 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1805 && ! all_adjacent)
1806 return 0;
1807 #endif
1809 /* If we get here, we have passed all the tests and the combination is
1810 to be allowed. */
1812 *pdest = dest;
1813 *psrc = src;
1815 return 1;
1818 /* LOC is the location within I3 that contains its pattern or the component
1819 of a PARALLEL of the pattern. We validate that it is valid for combining.
1821 One problem is if I3 modifies its output, as opposed to replacing it
1822 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1823 so would produce an insn that is not equivalent to the original insns.
1825 Consider:
1827 (set (reg:DI 101) (reg:DI 100))
1828 (set (subreg:SI (reg:DI 101) 0) <foo>)
1830 This is NOT equivalent to:
1832 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1833 (set (reg:DI 101) (reg:DI 100))])
1835 Not only does this modify 100 (in which case it might still be valid
1836 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1838 We can also run into a problem if I2 sets a register that I1
1839 uses and I1 gets directly substituted into I3 (not via I2). In that
1840 case, we would be getting the wrong value of I2DEST into I3, so we
1841 must reject the combination. This case occurs when I2 and I1 both
1842 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1843 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1844 of a SET must prevent combination from occurring.
1846 Before doing the above check, we first try to expand a field assignment
1847 into a set of logical operations.
1849 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1850 we place a register that is both set and used within I3. If more than one
1851 such register is detected, we fail.
1853 Return 1 if the combination is valid, zero otherwise. */
1855 static int
1856 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1857 int i1_not_in_src, rtx *pi3dest_killed)
1859 rtx x = *loc;
1861 if (GET_CODE (x) == SET)
1863 rtx set = x ;
1864 rtx dest = SET_DEST (set);
1865 rtx src = SET_SRC (set);
1866 rtx inner_dest = dest;
1867 rtx subdest;
1869 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1870 || GET_CODE (inner_dest) == SUBREG
1871 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1872 inner_dest = XEXP (inner_dest, 0);
1874 /* Check for the case where I3 modifies its output, as discussed
1875 above. We don't want to prevent pseudos from being combined
1876 into the address of a MEM, so only prevent the combination if
1877 i1 or i2 set the same MEM. */
1878 if ((inner_dest != dest &&
1879 (!MEM_P (inner_dest)
1880 || rtx_equal_p (i2dest, inner_dest)
1881 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1882 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1883 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1885 /* This is the same test done in can_combine_p except we can't test
1886 all_adjacent; we don't have to, since this instruction will stay
1887 in place, thus we are not considering increasing the lifetime of
1888 INNER_DEST.
1890 Also, if this insn sets a function argument, combining it with
1891 something that might need a spill could clobber a previous
1892 function argument; the all_adjacent test in can_combine_p also
1893 checks this; here, we do a more specific test for this case. */
1895 || (REG_P (inner_dest)
1896 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1897 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1898 GET_MODE (inner_dest))))
1899 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1900 return 0;
1902 /* If DEST is used in I3, it is being killed in this insn, so
1903 record that for later. We have to consider paradoxical
1904 subregs here, since they kill the whole register, but we
1905 ignore partial subregs, STRICT_LOW_PART, etc.
1906 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1907 STACK_POINTER_REGNUM, since these are always considered to be
1908 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1909 subdest = dest;
1910 if (GET_CODE (subdest) == SUBREG
1911 && (GET_MODE_SIZE (GET_MODE (subdest))
1912 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1913 subdest = SUBREG_REG (subdest);
1914 if (pi3dest_killed
1915 && REG_P (subdest)
1916 && reg_referenced_p (subdest, PATTERN (i3))
1917 && REGNO (subdest) != FRAME_POINTER_REGNUM
1918 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1919 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1920 #endif
1921 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1922 && (REGNO (subdest) != ARG_POINTER_REGNUM
1923 || ! fixed_regs [REGNO (subdest)])
1924 #endif
1925 && REGNO (subdest) != STACK_POINTER_REGNUM)
1927 if (*pi3dest_killed)
1928 return 0;
1930 *pi3dest_killed = subdest;
1934 else if (GET_CODE (x) == PARALLEL)
1936 int i;
1938 for (i = 0; i < XVECLEN (x, 0); i++)
1939 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1940 i1_not_in_src, pi3dest_killed))
1941 return 0;
1944 return 1;
1947 /* Return 1 if X is an arithmetic expression that contains a multiplication
1948 and division. We don't count multiplications by powers of two here. */
1950 static int
1951 contains_muldiv (rtx x)
1953 switch (GET_CODE (x))
1955 case MOD: case DIV: case UMOD: case UDIV:
1956 return 1;
1958 case MULT:
1959 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1960 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1961 default:
1962 if (BINARY_P (x))
1963 return contains_muldiv (XEXP (x, 0))
1964 || contains_muldiv (XEXP (x, 1));
1966 if (UNARY_P (x))
1967 return contains_muldiv (XEXP (x, 0));
1969 return 0;
1973 /* Determine whether INSN can be used in a combination. Return nonzero if
1974 not. This is used in try_combine to detect early some cases where we
1975 can't perform combinations. */
1977 static int
1978 cant_combine_insn_p (rtx insn)
1980 rtx set;
1981 rtx src, dest;
1983 /* If this isn't really an insn, we can't do anything.
1984 This can occur when flow deletes an insn that it has merged into an
1985 auto-increment address. */
1986 if (! INSN_P (insn))
1987 return 1;
1989 /* Never combine loads and stores involving hard regs that are likely
1990 to be spilled. The register allocator can usually handle such
1991 reg-reg moves by tying. If we allow the combiner to make
1992 substitutions of likely-spilled regs, reload might die.
1993 As an exception, we allow combinations involving fixed regs; these are
1994 not available to the register allocator so there's no risk involved. */
1996 set = single_set (insn);
1997 if (! set)
1998 return 0;
1999 src = SET_SRC (set);
2000 dest = SET_DEST (set);
2001 if (GET_CODE (src) == SUBREG)
2002 src = SUBREG_REG (src);
2003 if (GET_CODE (dest) == SUBREG)
2004 dest = SUBREG_REG (dest);
2005 if (REG_P (src) && REG_P (dest)
2006 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2007 && ! fixed_regs[REGNO (src)]
2008 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2009 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2010 && ! fixed_regs[REGNO (dest)]
2011 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2012 return 1;
2014 return 0;
2017 struct likely_spilled_retval_info
2019 unsigned regno, nregs;
2020 unsigned mask;
2023 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2024 hard registers that are known to be written to / clobbered in full. */
2025 static void
2026 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2028 struct likely_spilled_retval_info *const info =
2029 (struct likely_spilled_retval_info *) data;
2030 unsigned regno, nregs;
2031 unsigned new_mask;
2033 if (!REG_P (XEXP (set, 0)))
2034 return;
2035 regno = REGNO (x);
2036 if (regno >= info->regno + info->nregs)
2037 return;
2038 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2039 if (regno + nregs <= info->regno)
2040 return;
2041 new_mask = (2U << (nregs - 1)) - 1;
2042 if (regno < info->regno)
2043 new_mask >>= info->regno - regno;
2044 else
2045 new_mask <<= regno - info->regno;
2046 info->mask &= ~new_mask;
2049 /* Return nonzero iff part of the return value is live during INSN, and
2050 it is likely spilled. This can happen when more than one insn is needed
2051 to copy the return value, e.g. when we consider to combine into the
2052 second copy insn for a complex value. */
2054 static int
2055 likely_spilled_retval_p (rtx insn)
2057 rtx use = BB_END (this_basic_block);
2058 rtx reg, p;
2059 unsigned regno, nregs;
2060 /* We assume here that no machine mode needs more than
2061 32 hard registers when the value overlaps with a register
2062 for which FUNCTION_VALUE_REGNO_P is true. */
2063 unsigned mask;
2064 struct likely_spilled_retval_info info;
2066 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2067 return 0;
2068 reg = XEXP (PATTERN (use), 0);
2069 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2070 return 0;
2071 regno = REGNO (reg);
2072 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2073 if (nregs == 1)
2074 return 0;
2075 mask = (2U << (nregs - 1)) - 1;
2077 /* Disregard parts of the return value that are set later. */
2078 info.regno = regno;
2079 info.nregs = nregs;
2080 info.mask = mask;
2081 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2082 if (INSN_P (p))
2083 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2084 mask = info.mask;
2086 /* Check if any of the (probably) live return value registers is
2087 likely spilled. */
2088 nregs --;
2091 if ((mask & 1 << nregs)
2092 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2093 return 1;
2094 } while (nregs--);
2095 return 0;
2098 /* Adjust INSN after we made a change to its destination.
2100 Changing the destination can invalidate notes that say something about
2101 the results of the insn and a LOG_LINK pointing to the insn. */
2103 static void
2104 adjust_for_new_dest (rtx insn)
2106 /* For notes, be conservative and simply remove them. */
2107 remove_reg_equal_equiv_notes (insn);
2109 /* The new insn will have a destination that was previously the destination
2110 of an insn just above it. Call distribute_links to make a LOG_LINK from
2111 the next use of that destination. */
2112 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2114 df_insn_rescan (insn);
2117 /* Return TRUE if combine can reuse reg X in mode MODE.
2118 ADDED_SETS is nonzero if the original set is still required. */
2119 static bool
2120 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2122 unsigned int regno;
2124 if (!REG_P(x))
2125 return false;
2127 regno = REGNO (x);
2128 /* Allow hard registers if the new mode is legal, and occupies no more
2129 registers than the old mode. */
2130 if (regno < FIRST_PSEUDO_REGISTER)
2131 return (HARD_REGNO_MODE_OK (regno, mode)
2132 && (hard_regno_nregs[regno][GET_MODE (x)]
2133 >= hard_regno_nregs[regno][mode]));
2135 /* Or a pseudo that is only used once. */
2136 return (REG_N_SETS (regno) == 1 && !added_sets
2137 && !REG_USERVAR_P (x));
2141 /* Check whether X, the destination of a set, refers to part of
2142 the register specified by REG. */
2144 static bool
2145 reg_subword_p (rtx x, rtx reg)
2147 /* Check that reg is an integer mode register. */
2148 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2149 return false;
2151 if (GET_CODE (x) == STRICT_LOW_PART
2152 || GET_CODE (x) == ZERO_EXTRACT)
2153 x = XEXP (x, 0);
2155 return GET_CODE (x) == SUBREG
2156 && SUBREG_REG (x) == reg
2157 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2161 /* Try to combine the insns I1 and I2 into I3.
2162 Here I1 and I2 appear earlier than I3.
2163 I1 can be zero; then we combine just I2 into I3.
2165 If we are combining three insns and the resulting insn is not recognized,
2166 try splitting it into two insns. If that happens, I2 and I3 are retained
2167 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2168 are pseudo-deleted.
2170 Return 0 if the combination does not work. Then nothing is changed.
2171 If we did the combination, return the insn at which combine should
2172 resume scanning.
2174 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2175 new direct jump instruction. */
2177 static rtx
2178 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2180 /* New patterns for I3 and I2, respectively. */
2181 rtx newpat, newi2pat = 0;
2182 rtvec newpat_vec_with_clobbers = 0;
2183 int substed_i2 = 0, substed_i1 = 0;
2184 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2185 int added_sets_1, added_sets_2;
2186 /* Total number of SETs to put into I3. */
2187 int total_sets;
2188 /* Nonzero if I2's body now appears in I3. */
2189 int i2_is_used;
2190 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2191 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2192 /* Contains I3 if the destination of I3 is used in its source, which means
2193 that the old life of I3 is being killed. If that usage is placed into
2194 I2 and not in I3, a REG_DEAD note must be made. */
2195 rtx i3dest_killed = 0;
2196 /* SET_DEST and SET_SRC of I2 and I1. */
2197 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2198 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2199 rtx i1pat = 0, i2pat = 0;
2200 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2201 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2202 int i2dest_killed = 0, i1dest_killed = 0;
2203 int i1_feeds_i3 = 0;
2204 /* Notes that must be added to REG_NOTES in I3 and I2. */
2205 rtx new_i3_notes, new_i2_notes;
2206 /* Notes that we substituted I3 into I2 instead of the normal case. */
2207 int i3_subst_into_i2 = 0;
2208 /* Notes that I1, I2 or I3 is a MULT operation. */
2209 int have_mult = 0;
2210 int swap_i2i3 = 0;
2212 int maxreg;
2213 rtx temp;
2214 rtx link;
2215 rtx other_pat = 0;
2216 rtx new_other_notes;
2217 int i;
2219 /* Exit early if one of the insns involved can't be used for
2220 combinations. */
2221 if (cant_combine_insn_p (i3)
2222 || cant_combine_insn_p (i2)
2223 || (i1 && cant_combine_insn_p (i1))
2224 || likely_spilled_retval_p (i3))
2225 return 0;
2227 combine_attempts++;
2228 undobuf.other_insn = 0;
2230 /* Reset the hard register usage information. */
2231 CLEAR_HARD_REG_SET (newpat_used_regs);
2233 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2234 code below, set I1 to be the earlier of the two insns. */
2235 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2236 temp = i1, i1 = i2, i2 = temp;
2238 added_links_insn = 0;
2240 /* First check for one important special-case that the code below will
2241 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2242 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2243 we may be able to replace that destination with the destination of I3.
2244 This occurs in the common code where we compute both a quotient and
2245 remainder into a structure, in which case we want to do the computation
2246 directly into the structure to avoid register-register copies.
2248 Note that this case handles both multiple sets in I2 and also
2249 cases where I2 has a number of CLOBBER or PARALLELs.
2251 We make very conservative checks below and only try to handle the
2252 most common cases of this. For example, we only handle the case
2253 where I2 and I3 are adjacent to avoid making difficult register
2254 usage tests. */
2256 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2257 && REG_P (SET_SRC (PATTERN (i3)))
2258 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2259 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2260 && GET_CODE (PATTERN (i2)) == PARALLEL
2261 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2262 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2263 below would need to check what is inside (and reg_overlap_mentioned_p
2264 doesn't support those codes anyway). Don't allow those destinations;
2265 the resulting insn isn't likely to be recognized anyway. */
2266 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2267 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2268 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2269 SET_DEST (PATTERN (i3)))
2270 && next_real_insn (i2) == i3)
2272 rtx p2 = PATTERN (i2);
2274 /* Make sure that the destination of I3,
2275 which we are going to substitute into one output of I2,
2276 is not used within another output of I2. We must avoid making this:
2277 (parallel [(set (mem (reg 69)) ...)
2278 (set (reg 69) ...)])
2279 which is not well-defined as to order of actions.
2280 (Besides, reload can't handle output reloads for this.)
2282 The problem can also happen if the dest of I3 is a memory ref,
2283 if another dest in I2 is an indirect memory ref. */
2284 for (i = 0; i < XVECLEN (p2, 0); i++)
2285 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2286 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2287 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2288 SET_DEST (XVECEXP (p2, 0, i))))
2289 break;
2291 if (i == XVECLEN (p2, 0))
2292 for (i = 0; i < XVECLEN (p2, 0); i++)
2293 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2294 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2295 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2297 combine_merges++;
2299 subst_insn = i3;
2300 subst_low_luid = DF_INSN_LUID (i2);
2302 added_sets_2 = added_sets_1 = 0;
2303 i2dest = SET_SRC (PATTERN (i3));
2304 i2dest_killed = dead_or_set_p (i2, i2dest);
2306 /* Replace the dest in I2 with our dest and make the resulting
2307 insn the new pattern for I3. Then skip to where we
2308 validate the pattern. Everything was set up above. */
2309 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2310 SET_DEST (PATTERN (i3)));
2312 newpat = p2;
2313 i3_subst_into_i2 = 1;
2314 goto validate_replacement;
2318 /* If I2 is setting a pseudo to a constant and I3 is setting some
2319 sub-part of it to another constant, merge them by making a new
2320 constant. */
2321 if (i1 == 0
2322 && (temp = single_set (i2)) != 0
2323 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2324 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2325 && GET_CODE (PATTERN (i3)) == SET
2326 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2327 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2328 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2330 rtx dest = SET_DEST (PATTERN (i3));
2331 int offset = -1;
2332 int width = 0;
2334 if (GET_CODE (dest) == ZERO_EXTRACT)
2336 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2337 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2339 width = INTVAL (XEXP (dest, 1));
2340 offset = INTVAL (XEXP (dest, 2));
2341 dest = XEXP (dest, 0);
2342 if (BITS_BIG_ENDIAN)
2343 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2346 else
2348 if (GET_CODE (dest) == STRICT_LOW_PART)
2349 dest = XEXP (dest, 0);
2350 width = GET_MODE_BITSIZE (GET_MODE (dest));
2351 offset = 0;
2354 if (offset >= 0)
2356 /* If this is the low part, we're done. */
2357 if (subreg_lowpart_p (dest))
2359 /* Handle the case where inner is twice the size of outer. */
2360 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2361 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2362 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2363 /* Otherwise give up for now. */
2364 else
2365 offset = -1;
2368 if (offset >= 0
2369 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2370 <= HOST_BITS_PER_WIDE_INT * 2))
2372 HOST_WIDE_INT mhi, ohi, ihi;
2373 HOST_WIDE_INT mlo, olo, ilo;
2374 rtx inner = SET_SRC (PATTERN (i3));
2375 rtx outer = SET_SRC (temp);
2377 if (GET_CODE (outer) == CONST_INT)
2379 olo = INTVAL (outer);
2380 ohi = olo < 0 ? -1 : 0;
2382 else
2384 olo = CONST_DOUBLE_LOW (outer);
2385 ohi = CONST_DOUBLE_HIGH (outer);
2388 if (GET_CODE (inner) == CONST_INT)
2390 ilo = INTVAL (inner);
2391 ihi = ilo < 0 ? -1 : 0;
2393 else
2395 ilo = CONST_DOUBLE_LOW (inner);
2396 ihi = CONST_DOUBLE_HIGH (inner);
2399 if (width < HOST_BITS_PER_WIDE_INT)
2401 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2402 mhi = 0;
2404 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2406 mhi = ((unsigned HOST_WIDE_INT) 1
2407 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2408 mlo = -1;
2410 else
2412 mlo = -1;
2413 mhi = -1;
2416 ilo &= mlo;
2417 ihi &= mhi;
2419 if (offset >= HOST_BITS_PER_WIDE_INT)
2421 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2422 mlo = 0;
2423 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2424 ilo = 0;
2426 else if (offset > 0)
2428 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2429 >> (HOST_BITS_PER_WIDE_INT - offset));
2430 mlo = mlo << offset;
2431 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2432 >> (HOST_BITS_PER_WIDE_INT - offset));
2433 ilo = ilo << offset;
2436 olo = (olo & ~mlo) | ilo;
2437 ohi = (ohi & ~mhi) | ihi;
2439 combine_merges++;
2440 subst_insn = i3;
2441 subst_low_luid = DF_INSN_LUID (i2);
2442 added_sets_2 = added_sets_1 = 0;
2443 i2dest = SET_DEST (temp);
2444 i2dest_killed = dead_or_set_p (i2, i2dest);
2446 SUBST (SET_SRC (temp),
2447 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2449 newpat = PATTERN (i2);
2450 goto validate_replacement;
2454 #ifndef HAVE_cc0
2455 /* If we have no I1 and I2 looks like:
2456 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2457 (set Y OP)])
2458 make up a dummy I1 that is
2459 (set Y OP)
2460 and change I2 to be
2461 (set (reg:CC X) (compare:CC Y (const_int 0)))
2463 (We can ignore any trailing CLOBBERs.)
2465 This undoes a previous combination and allows us to match a branch-and-
2466 decrement insn. */
2468 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2469 && XVECLEN (PATTERN (i2), 0) >= 2
2470 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2471 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2472 == MODE_CC)
2473 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2474 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2475 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2476 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2477 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2478 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2480 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2481 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2482 break;
2484 if (i == 1)
2486 /* We make I1 with the same INSN_UID as I2. This gives it
2487 the same DF_INSN_LUID for value tracking. Our fake I1 will
2488 never appear in the insn stream so giving it the same INSN_UID
2489 as I2 will not cause a problem. */
2491 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2492 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2493 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2495 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2496 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2497 SET_DEST (PATTERN (i1)));
2500 #endif
2502 /* Verify that I2 and I1 are valid for combining. */
2503 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2504 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2506 undo_all ();
2507 return 0;
2510 /* Record whether I2DEST is used in I2SRC and similarly for the other
2511 cases. Knowing this will help in register status updating below. */
2512 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2513 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2514 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2515 i2dest_killed = dead_or_set_p (i2, i2dest);
2516 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2518 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2519 in I2SRC. */
2520 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2522 /* Ensure that I3's pattern can be the destination of combines. */
2523 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2524 i1 && i2dest_in_i1src && i1_feeds_i3,
2525 &i3dest_killed))
2527 undo_all ();
2528 return 0;
2531 /* See if any of the insns is a MULT operation. Unless one is, we will
2532 reject a combination that is, since it must be slower. Be conservative
2533 here. */
2534 if (GET_CODE (i2src) == MULT
2535 || (i1 != 0 && GET_CODE (i1src) == MULT)
2536 || (GET_CODE (PATTERN (i3)) == SET
2537 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2538 have_mult = 1;
2540 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2541 We used to do this EXCEPT in one case: I3 has a post-inc in an
2542 output operand. However, that exception can give rise to insns like
2543 mov r3,(r3)+
2544 which is a famous insn on the PDP-11 where the value of r3 used as the
2545 source was model-dependent. Avoid this sort of thing. */
2547 #if 0
2548 if (!(GET_CODE (PATTERN (i3)) == SET
2549 && REG_P (SET_SRC (PATTERN (i3)))
2550 && MEM_P (SET_DEST (PATTERN (i3)))
2551 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2552 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2553 /* It's not the exception. */
2554 #endif
2555 #ifdef AUTO_INC_DEC
2556 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2557 if (REG_NOTE_KIND (link) == REG_INC
2558 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2559 || (i1 != 0
2560 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2562 undo_all ();
2563 return 0;
2565 #endif
2567 /* See if the SETs in I1 or I2 need to be kept around in the merged
2568 instruction: whenever the value set there is still needed past I3.
2569 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2571 For the SET in I1, we have two cases: If I1 and I2 independently
2572 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2573 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2574 in I1 needs to be kept around unless I1DEST dies or is set in either
2575 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2576 I1DEST. If so, we know I1 feeds into I2. */
2578 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2580 added_sets_1
2581 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2582 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2584 /* If the set in I2 needs to be kept around, we must make a copy of
2585 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2586 PATTERN (I2), we are only substituting for the original I1DEST, not into
2587 an already-substituted copy. This also prevents making self-referential
2588 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2589 I2DEST. */
2591 if (added_sets_2)
2593 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2594 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2595 else
2596 i2pat = copy_rtx (PATTERN (i2));
2599 if (added_sets_1)
2601 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2602 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2603 else
2604 i1pat = copy_rtx (PATTERN (i1));
2607 combine_merges++;
2609 /* Substitute in the latest insn for the regs set by the earlier ones. */
2611 maxreg = max_reg_num ();
2613 subst_insn = i3;
2615 #ifndef HAVE_cc0
2616 /* Many machines that don't use CC0 have insns that can both perform an
2617 arithmetic operation and set the condition code. These operations will
2618 be represented as a PARALLEL with the first element of the vector
2619 being a COMPARE of an arithmetic operation with the constant zero.
2620 The second element of the vector will set some pseudo to the result
2621 of the same arithmetic operation. If we simplify the COMPARE, we won't
2622 match such a pattern and so will generate an extra insn. Here we test
2623 for this case, where both the comparison and the operation result are
2624 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2625 I2SRC. Later we will make the PARALLEL that contains I2. */
2627 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2628 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2629 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2630 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2632 #ifdef SELECT_CC_MODE
2633 rtx *cc_use;
2634 enum machine_mode compare_mode;
2635 #endif
2637 newpat = PATTERN (i3);
2638 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2640 i2_is_used = 1;
2642 #ifdef SELECT_CC_MODE
2643 /* See if a COMPARE with the operand we substituted in should be done
2644 with the mode that is currently being used. If not, do the same
2645 processing we do in `subst' for a SET; namely, if the destination
2646 is used only once, try to replace it with a register of the proper
2647 mode and also replace the COMPARE. */
2648 if (undobuf.other_insn == 0
2649 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2650 &undobuf.other_insn))
2651 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2652 i2src, const0_rtx))
2653 != GET_MODE (SET_DEST (newpat))))
2655 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2656 compare_mode))
2658 unsigned int regno = REGNO (SET_DEST (newpat));
2659 rtx new_dest;
2661 if (regno < FIRST_PSEUDO_REGISTER)
2662 new_dest = gen_rtx_REG (compare_mode, regno);
2663 else
2665 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2666 new_dest = regno_reg_rtx[regno];
2669 SUBST (SET_DEST (newpat), new_dest);
2670 SUBST (XEXP (*cc_use, 0), new_dest);
2671 SUBST (SET_SRC (newpat),
2672 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2674 else
2675 undobuf.other_insn = 0;
2677 #endif
2679 else
2680 #endif
2682 /* It is possible that the source of I2 or I1 may be performing
2683 an unneeded operation, such as a ZERO_EXTEND of something
2684 that is known to have the high part zero. Handle that case
2685 by letting subst look at the innermost one of them.
2687 Another way to do this would be to have a function that tries
2688 to simplify a single insn instead of merging two or more
2689 insns. We don't do this because of the potential of infinite
2690 loops and because of the potential extra memory required.
2691 However, doing it the way we are is a bit of a kludge and
2692 doesn't catch all cases.
2694 But only do this if -fexpensive-optimizations since it slows
2695 things down and doesn't usually win.
2697 This is not done in the COMPARE case above because the
2698 unmodified I2PAT is used in the PARALLEL and so a pattern
2699 with a modified I2SRC would not match. */
2701 if (flag_expensive_optimizations)
2703 /* Pass pc_rtx so no substitutions are done, just
2704 simplifications. */
2705 if (i1)
2707 subst_low_luid = DF_INSN_LUID (i1);
2708 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2710 else
2712 subst_low_luid = DF_INSN_LUID (i2);
2713 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2717 n_occurrences = 0; /* `subst' counts here */
2719 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2720 need to make a unique copy of I2SRC each time we substitute it
2721 to avoid self-referential rtl. */
2723 subst_low_luid = DF_INSN_LUID (i2);
2724 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2725 ! i1_feeds_i3 && i1dest_in_i1src);
2726 substed_i2 = 1;
2728 /* Record whether i2's body now appears within i3's body. */
2729 i2_is_used = n_occurrences;
2732 /* If we already got a failure, don't try to do more. Otherwise,
2733 try to substitute in I1 if we have it. */
2735 if (i1 && GET_CODE (newpat) != CLOBBER)
2737 /* Check that an autoincrement side-effect on I1 has not been lost.
2738 This happens if I1DEST is mentioned in I2 and dies there, and
2739 has disappeared from the new pattern. */
2740 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2741 && !i1_feeds_i3
2742 && dead_or_set_p (i2, i1dest)
2743 && !reg_overlap_mentioned_p (i1dest, newpat))
2744 /* Before we can do this substitution, we must redo the test done
2745 above (see detailed comments there) that ensures that I1DEST
2746 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2747 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2749 undo_all ();
2750 return 0;
2753 n_occurrences = 0;
2754 subst_low_luid = DF_INSN_LUID (i1);
2755 newpat = subst (newpat, i1dest, i1src, 0, 0);
2756 substed_i1 = 1;
2759 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2760 to count all the ways that I2SRC and I1SRC can be used. */
2761 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2762 && i2_is_used + added_sets_2 > 1)
2763 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2764 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2765 > 1))
2766 /* Fail if we tried to make a new register. */
2767 || max_reg_num () != maxreg
2768 /* Fail if we couldn't do something and have a CLOBBER. */
2769 || GET_CODE (newpat) == CLOBBER
2770 /* Fail if this new pattern is a MULT and we didn't have one before
2771 at the outer level. */
2772 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2773 && ! have_mult))
2775 undo_all ();
2776 return 0;
2779 /* If the actions of the earlier insns must be kept
2780 in addition to substituting them into the latest one,
2781 we must make a new PARALLEL for the latest insn
2782 to hold additional the SETs. */
2784 if (added_sets_1 || added_sets_2)
2786 combine_extras++;
2788 if (GET_CODE (newpat) == PARALLEL)
2790 rtvec old = XVEC (newpat, 0);
2791 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2792 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2793 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2794 sizeof (old->elem[0]) * old->num_elem);
2796 else
2798 rtx old = newpat;
2799 total_sets = 1 + added_sets_1 + added_sets_2;
2800 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2801 XVECEXP (newpat, 0, 0) = old;
2804 if (added_sets_1)
2805 XVECEXP (newpat, 0, --total_sets) = i1pat;
2807 if (added_sets_2)
2809 /* If there is no I1, use I2's body as is. We used to also not do
2810 the subst call below if I2 was substituted into I3,
2811 but that could lose a simplification. */
2812 if (i1 == 0)
2813 XVECEXP (newpat, 0, --total_sets) = i2pat;
2814 else
2815 /* See comment where i2pat is assigned. */
2816 XVECEXP (newpat, 0, --total_sets)
2817 = subst (i2pat, i1dest, i1src, 0, 0);
2821 /* We come here when we are replacing a destination in I2 with the
2822 destination of I3. */
2823 validate_replacement:
2825 /* Note which hard regs this insn has as inputs. */
2826 mark_used_regs_combine (newpat);
2828 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2829 consider splitting this pattern, we might need these clobbers. */
2830 if (i1 && GET_CODE (newpat) == PARALLEL
2831 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2833 int len = XVECLEN (newpat, 0);
2835 newpat_vec_with_clobbers = rtvec_alloc (len);
2836 for (i = 0; i < len; i++)
2837 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2840 /* Is the result of combination a valid instruction? */
2841 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2843 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2844 the second SET's destination is a register that is unused and isn't
2845 marked as an instruction that might trap in an EH region. In that case,
2846 we just need the first SET. This can occur when simplifying a divmod
2847 insn. We *must* test for this case here because the code below that
2848 splits two independent SETs doesn't handle this case correctly when it
2849 updates the register status.
2851 It's pointless doing this if we originally had two sets, one from
2852 i3, and one from i2. Combining then splitting the parallel results
2853 in the original i2 again plus an invalid insn (which we delete).
2854 The net effect is only to move instructions around, which makes
2855 debug info less accurate.
2857 Also check the case where the first SET's destination is unused.
2858 That would not cause incorrect code, but does cause an unneeded
2859 insn to remain. */
2861 if (insn_code_number < 0
2862 && !(added_sets_2 && i1 == 0)
2863 && GET_CODE (newpat) == PARALLEL
2864 && XVECLEN (newpat, 0) == 2
2865 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2866 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2867 && asm_noperands (newpat) < 0)
2869 rtx set0 = XVECEXP (newpat, 0, 0);
2870 rtx set1 = XVECEXP (newpat, 0, 1);
2871 rtx note;
2873 if (((REG_P (SET_DEST (set1))
2874 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2875 || (GET_CODE (SET_DEST (set1)) == SUBREG
2876 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2877 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2878 || INTVAL (XEXP (note, 0)) <= 0)
2879 && ! side_effects_p (SET_SRC (set1)))
2881 newpat = set0;
2882 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2885 else if (((REG_P (SET_DEST (set0))
2886 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2887 || (GET_CODE (SET_DEST (set0)) == SUBREG
2888 && find_reg_note (i3, REG_UNUSED,
2889 SUBREG_REG (SET_DEST (set0)))))
2890 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2891 || INTVAL (XEXP (note, 0)) <= 0)
2892 && ! side_effects_p (SET_SRC (set0)))
2894 newpat = set1;
2895 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2897 if (insn_code_number >= 0)
2899 /* If we will be able to accept this, we have made a
2900 change to the destination of I3. This requires us to
2901 do a few adjustments. */
2903 PATTERN (i3) = newpat;
2904 adjust_for_new_dest (i3);
2909 /* If we were combining three insns and the result is a simple SET
2910 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2911 insns. There are two ways to do this. It can be split using a
2912 machine-specific method (like when you have an addition of a large
2913 constant) or by combine in the function find_split_point. */
2915 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2916 && asm_noperands (newpat) < 0)
2918 rtx parallel, m_split, *split;
2920 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2921 use I2DEST as a scratch register will help. In the latter case,
2922 convert I2DEST to the mode of the source of NEWPAT if we can. */
2924 m_split = combine_split_insns (newpat, i3);
2926 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2927 inputs of NEWPAT. */
2929 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2930 possible to try that as a scratch reg. This would require adding
2931 more code to make it work though. */
2933 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2935 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2937 /* First try to split using the original register as a
2938 scratch register. */
2939 parallel = gen_rtx_PARALLEL (VOIDmode,
2940 gen_rtvec (2, newpat,
2941 gen_rtx_CLOBBER (VOIDmode,
2942 i2dest)));
2943 m_split = combine_split_insns (parallel, i3);
2945 /* If that didn't work, try changing the mode of I2DEST if
2946 we can. */
2947 if (m_split == 0
2948 && new_mode != GET_MODE (i2dest)
2949 && new_mode != VOIDmode
2950 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2952 enum machine_mode old_mode = GET_MODE (i2dest);
2953 rtx ni2dest;
2955 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2956 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2957 else
2959 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2960 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2963 parallel = (gen_rtx_PARALLEL
2964 (VOIDmode,
2965 gen_rtvec (2, newpat,
2966 gen_rtx_CLOBBER (VOIDmode,
2967 ni2dest))));
2968 m_split = combine_split_insns (parallel, i3);
2970 if (m_split == 0
2971 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2973 struct undo *buf;
2975 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2976 buf = undobuf.undos;
2977 undobuf.undos = buf->next;
2978 buf->next = undobuf.frees;
2979 undobuf.frees = buf;
2984 /* If recog_for_combine has discarded clobbers, try to use them
2985 again for the split. */
2986 if (m_split == 0 && newpat_vec_with_clobbers)
2988 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2989 m_split = combine_split_insns (parallel, i3);
2992 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2994 m_split = PATTERN (m_split);
2995 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2996 if (insn_code_number >= 0)
2997 newpat = m_split;
2999 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
3000 && (next_real_insn (i2) == i3
3001 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
3003 rtx i2set, i3set;
3004 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3005 newi2pat = PATTERN (m_split);
3007 i3set = single_set (NEXT_INSN (m_split));
3008 i2set = single_set (m_split);
3010 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3012 /* If I2 or I3 has multiple SETs, we won't know how to track
3013 register status, so don't use these insns. If I2's destination
3014 is used between I2 and I3, we also can't use these insns. */
3016 if (i2_code_number >= 0 && i2set && i3set
3017 && (next_real_insn (i2) == i3
3018 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3019 insn_code_number = recog_for_combine (&newi3pat, i3,
3020 &new_i3_notes);
3021 if (insn_code_number >= 0)
3022 newpat = newi3pat;
3024 /* It is possible that both insns now set the destination of I3.
3025 If so, we must show an extra use of it. */
3027 if (insn_code_number >= 0)
3029 rtx new_i3_dest = SET_DEST (i3set);
3030 rtx new_i2_dest = SET_DEST (i2set);
3032 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i3_dest) == SUBREG)
3035 new_i3_dest = XEXP (new_i3_dest, 0);
3037 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3038 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3039 || GET_CODE (new_i2_dest) == SUBREG)
3040 new_i2_dest = XEXP (new_i2_dest, 0);
3042 if (REG_P (new_i3_dest)
3043 && REG_P (new_i2_dest)
3044 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3045 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3049 /* If we can split it and use I2DEST, go ahead and see if that
3050 helps things be recognized. Verify that none of the registers
3051 are set between I2 and I3. */
3052 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3053 #ifdef HAVE_cc0
3054 && REG_P (i2dest)
3055 #endif
3056 /* We need I2DEST in the proper mode. If it is a hard register
3057 or the only use of a pseudo, we can change its mode.
3058 Make sure we don't change a hard register to have a mode that
3059 isn't valid for it, or change the number of registers. */
3060 && (GET_MODE (*split) == GET_MODE (i2dest)
3061 || GET_MODE (*split) == VOIDmode
3062 || can_change_dest_mode (i2dest, added_sets_2,
3063 GET_MODE (*split)))
3064 && (next_real_insn (i2) == i3
3065 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3066 /* We can't overwrite I2DEST if its value is still used by
3067 NEWPAT. */
3068 && ! reg_referenced_p (i2dest, newpat))
3070 rtx newdest = i2dest;
3071 enum rtx_code split_code = GET_CODE (*split);
3072 enum machine_mode split_mode = GET_MODE (*split);
3073 bool subst_done = false;
3074 newi2pat = NULL_RTX;
3076 /* Get NEWDEST as a register in the proper mode. We have already
3077 validated that we can do this. */
3078 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3080 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3081 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3082 else
3084 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3085 newdest = regno_reg_rtx[REGNO (i2dest)];
3089 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3090 an ASHIFT. This can occur if it was inside a PLUS and hence
3091 appeared to be a memory address. This is a kludge. */
3092 if (split_code == MULT
3093 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3094 && INTVAL (XEXP (*split, 1)) > 0
3095 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3097 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3098 XEXP (*split, 0), GEN_INT (i)));
3099 /* Update split_code because we may not have a multiply
3100 anymore. */
3101 split_code = GET_CODE (*split);
3104 #ifdef INSN_SCHEDULING
3105 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3106 be written as a ZERO_EXTEND. */
3107 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3109 #ifdef LOAD_EXTEND_OP
3110 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3111 what it really is. */
3112 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3113 == SIGN_EXTEND)
3114 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3115 SUBREG_REG (*split)));
3116 else
3117 #endif
3118 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3119 SUBREG_REG (*split)));
3121 #endif
3123 /* Attempt to split binary operators using arithmetic identities. */
3124 if (BINARY_P (SET_SRC (newpat))
3125 && split_mode == GET_MODE (SET_SRC (newpat))
3126 && ! side_effects_p (SET_SRC (newpat)))
3128 rtx setsrc = SET_SRC (newpat);
3129 enum machine_mode mode = GET_MODE (setsrc);
3130 enum rtx_code code = GET_CODE (setsrc);
3131 rtx src_op0 = XEXP (setsrc, 0);
3132 rtx src_op1 = XEXP (setsrc, 1);
3134 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3135 if (rtx_equal_p (src_op0, src_op1))
3137 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3138 SUBST (XEXP (setsrc, 0), newdest);
3139 SUBST (XEXP (setsrc, 1), newdest);
3140 subst_done = true;
3142 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3143 else if ((code == PLUS || code == MULT)
3144 && GET_CODE (src_op0) == code
3145 && GET_CODE (XEXP (src_op0, 0)) == code
3146 && (INTEGRAL_MODE_P (mode)
3147 || (FLOAT_MODE_P (mode)
3148 && flag_unsafe_math_optimizations)))
3150 rtx p = XEXP (XEXP (src_op0, 0), 0);
3151 rtx q = XEXP (XEXP (src_op0, 0), 1);
3152 rtx r = XEXP (src_op0, 1);
3153 rtx s = src_op1;
3155 /* Split both "((X op Y) op X) op Y" and
3156 "((X op Y) op Y) op X" as "T op T" where T is
3157 "X op Y". */
3158 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3159 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3161 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3162 XEXP (src_op0, 0));
3163 SUBST (XEXP (setsrc, 0), newdest);
3164 SUBST (XEXP (setsrc, 1), newdest);
3165 subst_done = true;
3167 /* Split "((X op X) op Y) op Y)" as "T op T" where
3168 T is "X op Y". */
3169 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3171 rtx tmp = simplify_gen_binary (code, mode, p, r);
3172 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3173 SUBST (XEXP (setsrc, 0), newdest);
3174 SUBST (XEXP (setsrc, 1), newdest);
3175 subst_done = true;
3180 if (!subst_done)
3182 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3183 SUBST (*split, newdest);
3186 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3188 /* recog_for_combine might have added CLOBBERs to newi2pat.
3189 Make sure NEWPAT does not depend on the clobbered regs. */
3190 if (GET_CODE (newi2pat) == PARALLEL)
3191 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3192 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3194 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3195 if (reg_overlap_mentioned_p (reg, newpat))
3197 undo_all ();
3198 return 0;
3202 /* If the split point was a MULT and we didn't have one before,
3203 don't use one now. */
3204 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3205 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3209 /* Check for a case where we loaded from memory in a narrow mode and
3210 then sign extended it, but we need both registers. In that case,
3211 we have a PARALLEL with both loads from the same memory location.
3212 We can split this into a load from memory followed by a register-register
3213 copy. This saves at least one insn, more if register allocation can
3214 eliminate the copy.
3216 We cannot do this if the destination of the first assignment is a
3217 condition code register or cc0. We eliminate this case by making sure
3218 the SET_DEST and SET_SRC have the same mode.
3220 We cannot do this if the destination of the second assignment is
3221 a register that we have already assumed is zero-extended. Similarly
3222 for a SUBREG of such a register. */
3224 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3225 && GET_CODE (newpat) == PARALLEL
3226 && XVECLEN (newpat, 0) == 2
3227 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3228 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3229 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3230 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3231 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3232 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3233 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3234 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3235 DF_INSN_LUID (i2))
3236 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3237 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3238 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3239 (REG_P (temp)
3240 && VEC_index (reg_stat_type, reg_stat,
3241 REGNO (temp))->nonzero_bits != 0
3242 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3243 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3244 && (VEC_index (reg_stat_type, reg_stat,
3245 REGNO (temp))->nonzero_bits
3246 != GET_MODE_MASK (word_mode))))
3247 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3248 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3249 (REG_P (temp)
3250 && VEC_index (reg_stat_type, reg_stat,
3251 REGNO (temp))->nonzero_bits != 0
3252 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3253 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3254 && (VEC_index (reg_stat_type, reg_stat,
3255 REGNO (temp))->nonzero_bits
3256 != GET_MODE_MASK (word_mode)))))
3257 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3258 SET_SRC (XVECEXP (newpat, 0, 1)))
3259 && ! find_reg_note (i3, REG_UNUSED,
3260 SET_DEST (XVECEXP (newpat, 0, 0))))
3262 rtx ni2dest;
3264 newi2pat = XVECEXP (newpat, 0, 0);
3265 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3266 newpat = XVECEXP (newpat, 0, 1);
3267 SUBST (SET_SRC (newpat),
3268 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3269 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3271 if (i2_code_number >= 0)
3272 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3274 if (insn_code_number >= 0)
3275 swap_i2i3 = 1;
3278 /* Similarly, check for a case where we have a PARALLEL of two independent
3279 SETs but we started with three insns. In this case, we can do the sets
3280 as two separate insns. This case occurs when some SET allows two
3281 other insns to combine, but the destination of that SET is still live. */
3283 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3284 && GET_CODE (newpat) == PARALLEL
3285 && XVECLEN (newpat, 0) == 2
3286 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3287 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3288 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3289 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3290 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3291 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3292 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3293 DF_INSN_LUID (i2))
3294 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3295 XVECEXP (newpat, 0, 0))
3296 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3297 XVECEXP (newpat, 0, 1))
3298 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3299 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3300 #ifdef HAVE_cc0
3301 /* We cannot split the parallel into two sets if both sets
3302 reference cc0. */
3303 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3304 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3305 #endif
3308 /* Normally, it doesn't matter which of the two is done first,
3309 but it does if one references cc0. In that case, it has to
3310 be first. */
3311 #ifdef HAVE_cc0
3312 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3314 newi2pat = XVECEXP (newpat, 0, 0);
3315 newpat = XVECEXP (newpat, 0, 1);
3317 else
3318 #endif
3320 newi2pat = XVECEXP (newpat, 0, 1);
3321 newpat = XVECEXP (newpat, 0, 0);
3324 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3326 if (i2_code_number >= 0)
3327 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3330 /* If it still isn't recognized, fail and change things back the way they
3331 were. */
3332 if ((insn_code_number < 0
3333 /* Is the result a reasonable ASM_OPERANDS? */
3334 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3336 undo_all ();
3337 return 0;
3340 /* If we had to change another insn, make sure it is valid also. */
3341 if (undobuf.other_insn)
3343 CLEAR_HARD_REG_SET (newpat_used_regs);
3345 other_pat = PATTERN (undobuf.other_insn);
3346 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3347 &new_other_notes);
3349 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3351 undo_all ();
3352 return 0;
3356 #ifdef HAVE_cc0
3357 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3358 they are adjacent to each other or not. */
3360 rtx p = prev_nonnote_insn (i3);
3361 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3362 && sets_cc0_p (newi2pat))
3364 undo_all ();
3365 return 0;
3368 #endif
3370 /* Only allow this combination if insn_rtx_costs reports that the
3371 replacement instructions are cheaper than the originals. */
3372 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3374 undo_all ();
3375 return 0;
3378 /* We now know that we can do this combination. Merge the insns and
3379 update the status of registers and LOG_LINKS. */
3381 if (undobuf.other_insn)
3383 rtx note, next;
3385 PATTERN (undobuf.other_insn) = other_pat;
3387 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3388 are still valid. Then add any non-duplicate notes added by
3389 recog_for_combine. */
3390 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3392 next = XEXP (note, 1);
3394 if (REG_NOTE_KIND (note) == REG_UNUSED
3395 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3396 remove_note (undobuf.other_insn, note);
3399 distribute_notes (new_other_notes, undobuf.other_insn,
3400 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3403 if (swap_i2i3)
3405 rtx insn;
3406 rtx link;
3407 rtx ni2dest;
3409 /* I3 now uses what used to be its destination and which is now
3410 I2's destination. This requires us to do a few adjustments. */
3411 PATTERN (i3) = newpat;
3412 adjust_for_new_dest (i3);
3414 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3415 so we still will.
3417 However, some later insn might be using I2's dest and have
3418 a LOG_LINK pointing at I3. We must remove this link.
3419 The simplest way to remove the link is to point it at I1,
3420 which we know will be a NOTE. */
3422 /* newi2pat is usually a SET here; however, recog_for_combine might
3423 have added some clobbers. */
3424 if (GET_CODE (newi2pat) == PARALLEL)
3425 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3426 else
3427 ni2dest = SET_DEST (newi2pat);
3429 for (insn = NEXT_INSN (i3);
3430 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3431 || insn != BB_HEAD (this_basic_block->next_bb));
3432 insn = NEXT_INSN (insn))
3434 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3436 for (link = LOG_LINKS (insn); link;
3437 link = XEXP (link, 1))
3438 if (XEXP (link, 0) == i3)
3439 XEXP (link, 0) = i1;
3441 break;
3447 rtx i3notes, i2notes, i1notes = 0;
3448 rtx i3links, i2links, i1links = 0;
3449 rtx midnotes = 0;
3450 unsigned int regno;
3451 /* Compute which registers we expect to eliminate. newi2pat may be setting
3452 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3453 same as i3dest, in which case newi2pat may be setting i1dest. */
3454 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3455 || i2dest_in_i2src || i2dest_in_i1src
3456 || !i2dest_killed
3457 ? 0 : i2dest);
3458 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3459 || (newi2pat && reg_set_p (i1dest, newi2pat))
3460 || !i1dest_killed
3461 ? 0 : i1dest);
3463 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3464 clear them. */
3465 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3466 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3467 if (i1)
3468 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3470 /* Ensure that we do not have something that should not be shared but
3471 occurs multiple times in the new insns. Check this by first
3472 resetting all the `used' flags and then copying anything is shared. */
3474 reset_used_flags (i3notes);
3475 reset_used_flags (i2notes);
3476 reset_used_flags (i1notes);
3477 reset_used_flags (newpat);
3478 reset_used_flags (newi2pat);
3479 if (undobuf.other_insn)
3480 reset_used_flags (PATTERN (undobuf.other_insn));
3482 i3notes = copy_rtx_if_shared (i3notes);
3483 i2notes = copy_rtx_if_shared (i2notes);
3484 i1notes = copy_rtx_if_shared (i1notes);
3485 newpat = copy_rtx_if_shared (newpat);
3486 newi2pat = copy_rtx_if_shared (newi2pat);
3487 if (undobuf.other_insn)
3488 reset_used_flags (PATTERN (undobuf.other_insn));
3490 INSN_CODE (i3) = insn_code_number;
3491 PATTERN (i3) = newpat;
3493 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3495 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3497 reset_used_flags (call_usage);
3498 call_usage = copy_rtx (call_usage);
3500 if (substed_i2)
3501 replace_rtx (call_usage, i2dest, i2src);
3503 if (substed_i1)
3504 replace_rtx (call_usage, i1dest, i1src);
3506 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3509 if (undobuf.other_insn)
3510 INSN_CODE (undobuf.other_insn) = other_code_number;
3512 /* We had one special case above where I2 had more than one set and
3513 we replaced a destination of one of those sets with the destination
3514 of I3. In that case, we have to update LOG_LINKS of insns later
3515 in this basic block. Note that this (expensive) case is rare.
3517 Also, in this case, we must pretend that all REG_NOTEs for I2
3518 actually came from I3, so that REG_UNUSED notes from I2 will be
3519 properly handled. */
3521 if (i3_subst_into_i2)
3523 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3524 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3525 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3526 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3527 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3528 && ! find_reg_note (i2, REG_UNUSED,
3529 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3530 for (temp = NEXT_INSN (i2);
3531 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3532 || BB_HEAD (this_basic_block) != temp);
3533 temp = NEXT_INSN (temp))
3534 if (temp != i3 && INSN_P (temp))
3535 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3536 if (XEXP (link, 0) == i2)
3537 XEXP (link, 0) = i3;
3539 if (i3notes)
3541 rtx link = i3notes;
3542 while (XEXP (link, 1))
3543 link = XEXP (link, 1);
3544 XEXP (link, 1) = i2notes;
3546 else
3547 i3notes = i2notes;
3548 i2notes = 0;
3551 LOG_LINKS (i3) = 0;
3552 REG_NOTES (i3) = 0;
3553 LOG_LINKS (i2) = 0;
3554 REG_NOTES (i2) = 0;
3556 if (newi2pat)
3558 INSN_CODE (i2) = i2_code_number;
3559 PATTERN (i2) = newi2pat;
3561 else
3562 SET_INSN_DELETED (i2);
3564 if (i1)
3566 LOG_LINKS (i1) = 0;
3567 REG_NOTES (i1) = 0;
3568 SET_INSN_DELETED (i1);
3571 /* Get death notes for everything that is now used in either I3 or
3572 I2 and used to die in a previous insn. If we built two new
3573 patterns, move from I1 to I2 then I2 to I3 so that we get the
3574 proper movement on registers that I2 modifies. */
3576 if (newi2pat)
3578 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3579 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3581 else
3582 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3583 i3, &midnotes);
3585 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3586 if (i3notes)
3587 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3588 elim_i2, elim_i1);
3589 if (i2notes)
3590 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3591 elim_i2, elim_i1);
3592 if (i1notes)
3593 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3594 elim_i2, elim_i1);
3595 if (midnotes)
3596 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3597 elim_i2, elim_i1);
3599 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3600 know these are REG_UNUSED and want them to go to the desired insn,
3601 so we always pass it as i3. */
3603 if (newi2pat && new_i2_notes)
3604 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3606 if (new_i3_notes)
3607 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3609 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3610 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3611 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3612 in that case, it might delete I2. Similarly for I2 and I1.
3613 Show an additional death due to the REG_DEAD note we make here. If
3614 we discard it in distribute_notes, we will decrement it again. */
3616 if (i3dest_killed)
3618 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3619 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3620 NULL_RTX),
3621 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3622 else
3623 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3624 NULL_RTX),
3625 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3626 elim_i2, elim_i1);
3629 if (i2dest_in_i2src)
3631 if (newi2pat && reg_set_p (i2dest, newi2pat))
3632 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3633 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3634 else
3635 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3636 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3637 NULL_RTX, NULL_RTX);
3640 if (i1dest_in_i1src)
3642 if (newi2pat && reg_set_p (i1dest, newi2pat))
3643 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3644 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3645 else
3646 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3647 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3648 NULL_RTX, NULL_RTX);
3651 distribute_links (i3links);
3652 distribute_links (i2links);
3653 distribute_links (i1links);
3655 if (REG_P (i2dest))
3657 rtx link;
3658 rtx i2_insn = 0, i2_val = 0, set;
3660 /* The insn that used to set this register doesn't exist, and
3661 this life of the register may not exist either. See if one of
3662 I3's links points to an insn that sets I2DEST. If it does,
3663 that is now the last known value for I2DEST. If we don't update
3664 this and I2 set the register to a value that depended on its old
3665 contents, we will get confused. If this insn is used, thing
3666 will be set correctly in combine_instructions. */
3668 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3669 if ((set = single_set (XEXP (link, 0))) != 0
3670 && rtx_equal_p (i2dest, SET_DEST (set)))
3671 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3673 record_value_for_reg (i2dest, i2_insn, i2_val);
3675 /* If the reg formerly set in I2 died only once and that was in I3,
3676 zero its use count so it won't make `reload' do any work. */
3677 if (! added_sets_2
3678 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3679 && ! i2dest_in_i2src)
3681 regno = REGNO (i2dest);
3682 INC_REG_N_SETS (regno, -1);
3686 if (i1 && REG_P (i1dest))
3688 rtx link;
3689 rtx i1_insn = 0, i1_val = 0, set;
3691 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3692 if ((set = single_set (XEXP (link, 0))) != 0
3693 && rtx_equal_p (i1dest, SET_DEST (set)))
3694 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3696 record_value_for_reg (i1dest, i1_insn, i1_val);
3698 regno = REGNO (i1dest);
3699 if (! added_sets_1 && ! i1dest_in_i1src)
3700 INC_REG_N_SETS (regno, -1);
3703 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3704 been made to this insn. The order of
3705 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3706 can affect nonzero_bits of newpat */
3707 if (newi2pat)
3708 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3709 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3711 /* Set new_direct_jump_p if a new return or simple jump instruction
3712 has been created.
3714 If I3 is now an unconditional jump, ensure that it has a
3715 BARRIER following it since it may have initially been a
3716 conditional jump. It may also be the last nonnote insn. */
3718 if (returnjump_p (i3) || any_uncondjump_p (i3))
3720 *new_direct_jump_p = 1;
3721 mark_jump_label (PATTERN (i3), i3, 0);
3723 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3724 || !BARRIER_P (temp))
3725 emit_barrier_after (i3);
3728 if (undobuf.other_insn != NULL_RTX
3729 && (returnjump_p (undobuf.other_insn)
3730 || any_uncondjump_p (undobuf.other_insn)))
3732 *new_direct_jump_p = 1;
3734 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3735 || !BARRIER_P (temp))
3736 emit_barrier_after (undobuf.other_insn);
3739 /* An NOOP jump does not need barrier, but it does need cleaning up
3740 of CFG. */
3741 if (GET_CODE (newpat) == SET
3742 && SET_SRC (newpat) == pc_rtx
3743 && SET_DEST (newpat) == pc_rtx)
3744 *new_direct_jump_p = 1;
3747 if (undobuf.other_insn != NULL_RTX)
3749 if (dump_file)
3751 fprintf (dump_file, "modifying other_insn ");
3752 dump_insn_slim (dump_file, undobuf.other_insn);
3754 df_insn_rescan (undobuf.other_insn);
3757 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3759 if (dump_file)
3761 fprintf (dump_file, "modifying insn i1 ");
3762 dump_insn_slim (dump_file, i1);
3764 df_insn_rescan (i1);
3767 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3769 if (dump_file)
3771 fprintf (dump_file, "modifying insn i2 ");
3772 dump_insn_slim (dump_file, i2);
3774 df_insn_rescan (i2);
3777 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3779 if (dump_file)
3781 fprintf (dump_file, "modifying insn i3 ");
3782 dump_insn_slim (dump_file, i3);
3784 df_insn_rescan (i3);
3787 combine_successes++;
3788 undo_commit ();
3790 if (added_links_insn
3791 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3792 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3793 return added_links_insn;
3794 else
3795 return newi2pat ? i2 : i3;
3798 /* Undo all the modifications recorded in undobuf. */
3800 static void
3801 undo_all (void)
3803 struct undo *undo, *next;
3805 for (undo = undobuf.undos; undo; undo = next)
3807 next = undo->next;
3808 switch (undo->kind)
3810 case UNDO_RTX:
3811 *undo->where.r = undo->old_contents.r;
3812 break;
3813 case UNDO_INT:
3814 *undo->where.i = undo->old_contents.i;
3815 break;
3816 case UNDO_MODE:
3817 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3818 break;
3819 default:
3820 gcc_unreachable ();
3823 undo->next = undobuf.frees;
3824 undobuf.frees = undo;
3827 undobuf.undos = 0;
3830 /* We've committed to accepting the changes we made. Move all
3831 of the undos to the free list. */
3833 static void
3834 undo_commit (void)
3836 struct undo *undo, *next;
3838 for (undo = undobuf.undos; undo; undo = next)
3840 next = undo->next;
3841 undo->next = undobuf.frees;
3842 undobuf.frees = undo;
3844 undobuf.undos = 0;
3847 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3848 where we have an arithmetic expression and return that point. LOC will
3849 be inside INSN.
3851 try_combine will call this function to see if an insn can be split into
3852 two insns. */
3854 static rtx *
3855 find_split_point (rtx *loc, rtx insn)
3857 rtx x = *loc;
3858 enum rtx_code code = GET_CODE (x);
3859 rtx *split;
3860 unsigned HOST_WIDE_INT len = 0;
3861 HOST_WIDE_INT pos = 0;
3862 int unsignedp = 0;
3863 rtx inner = NULL_RTX;
3865 /* First special-case some codes. */
3866 switch (code)
3868 case SUBREG:
3869 #ifdef INSN_SCHEDULING
3870 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3871 point. */
3872 if (MEM_P (SUBREG_REG (x)))
3873 return loc;
3874 #endif
3875 return find_split_point (&SUBREG_REG (x), insn);
3877 case MEM:
3878 #ifdef HAVE_lo_sum
3879 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3880 using LO_SUM and HIGH. */
3881 if (GET_CODE (XEXP (x, 0)) == CONST
3882 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3884 SUBST (XEXP (x, 0),
3885 gen_rtx_LO_SUM (Pmode,
3886 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3887 XEXP (x, 0)));
3888 return &XEXP (XEXP (x, 0), 0);
3890 #endif
3892 /* If we have a PLUS whose second operand is a constant and the
3893 address is not valid, perhaps will can split it up using
3894 the machine-specific way to split large constants. We use
3895 the first pseudo-reg (one of the virtual regs) as a placeholder;
3896 it will not remain in the result. */
3897 if (GET_CODE (XEXP (x, 0)) == PLUS
3898 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3899 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3901 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3902 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3903 XEXP (x, 0)),
3904 subst_insn);
3906 /* This should have produced two insns, each of which sets our
3907 placeholder. If the source of the second is a valid address,
3908 we can make put both sources together and make a split point
3909 in the middle. */
3911 if (seq
3912 && NEXT_INSN (seq) != NULL_RTX
3913 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3914 && NONJUMP_INSN_P (seq)
3915 && GET_CODE (PATTERN (seq)) == SET
3916 && SET_DEST (PATTERN (seq)) == reg
3917 && ! reg_mentioned_p (reg,
3918 SET_SRC (PATTERN (seq)))
3919 && NONJUMP_INSN_P (NEXT_INSN (seq))
3920 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3921 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3922 && memory_address_p (GET_MODE (x),
3923 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3925 rtx src1 = SET_SRC (PATTERN (seq));
3926 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3928 /* Replace the placeholder in SRC2 with SRC1. If we can
3929 find where in SRC2 it was placed, that can become our
3930 split point and we can replace this address with SRC2.
3931 Just try two obvious places. */
3933 src2 = replace_rtx (src2, reg, src1);
3934 split = 0;
3935 if (XEXP (src2, 0) == src1)
3936 split = &XEXP (src2, 0);
3937 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3938 && XEXP (XEXP (src2, 0), 0) == src1)
3939 split = &XEXP (XEXP (src2, 0), 0);
3941 if (split)
3943 SUBST (XEXP (x, 0), src2);
3944 return split;
3948 /* If that didn't work, perhaps the first operand is complex and
3949 needs to be computed separately, so make a split point there.
3950 This will occur on machines that just support REG + CONST
3951 and have a constant moved through some previous computation. */
3953 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3954 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3955 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3956 return &XEXP (XEXP (x, 0), 0);
3959 /* If we have a PLUS whose first operand is complex, try computing it
3960 separately by making a split there. */
3961 if (GET_CODE (XEXP (x, 0)) == PLUS
3962 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3963 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3964 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3965 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3966 return &XEXP (XEXP (x, 0), 0);
3967 break;
3969 case SET:
3970 #ifdef HAVE_cc0
3971 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3972 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3973 we need to put the operand into a register. So split at that
3974 point. */
3976 if (SET_DEST (x) == cc0_rtx
3977 && GET_CODE (SET_SRC (x)) != COMPARE
3978 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3979 && !OBJECT_P (SET_SRC (x))
3980 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3981 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3982 return &SET_SRC (x);
3983 #endif
3985 /* See if we can split SET_SRC as it stands. */
3986 split = find_split_point (&SET_SRC (x), insn);
3987 if (split && split != &SET_SRC (x))
3988 return split;
3990 /* See if we can split SET_DEST as it stands. */
3991 split = find_split_point (&SET_DEST (x), insn);
3992 if (split && split != &SET_DEST (x))
3993 return split;
3995 /* See if this is a bitfield assignment with everything constant. If
3996 so, this is an IOR of an AND, so split it into that. */
3997 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3998 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3999 <= HOST_BITS_PER_WIDE_INT)
4000 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4001 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4002 && GET_CODE (SET_SRC (x)) == CONST_INT
4003 && ((INTVAL (XEXP (SET_DEST (x), 1))
4004 + INTVAL (XEXP (SET_DEST (x), 2)))
4005 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4006 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4008 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4009 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4010 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4011 rtx dest = XEXP (SET_DEST (x), 0);
4012 enum machine_mode mode = GET_MODE (dest);
4013 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4014 rtx or_mask;
4016 if (BITS_BIG_ENDIAN)
4017 pos = GET_MODE_BITSIZE (mode) - len - pos;
4019 or_mask = gen_int_mode (src << pos, mode);
4020 if (src == mask)
4021 SUBST (SET_SRC (x),
4022 simplify_gen_binary (IOR, mode, dest, or_mask));
4023 else
4025 rtx negmask = gen_int_mode (~(mask << pos), mode);
4026 SUBST (SET_SRC (x),
4027 simplify_gen_binary (IOR, mode,
4028 simplify_gen_binary (AND, mode,
4029 dest, negmask),
4030 or_mask));
4033 SUBST (SET_DEST (x), dest);
4035 split = find_split_point (&SET_SRC (x), insn);
4036 if (split && split != &SET_SRC (x))
4037 return split;
4040 /* Otherwise, see if this is an operation that we can split into two.
4041 If so, try to split that. */
4042 code = GET_CODE (SET_SRC (x));
4044 switch (code)
4046 case AND:
4047 /* If we are AND'ing with a large constant that is only a single
4048 bit and the result is only being used in a context where we
4049 need to know if it is zero or nonzero, replace it with a bit
4050 extraction. This will avoid the large constant, which might
4051 have taken more than one insn to make. If the constant were
4052 not a valid argument to the AND but took only one insn to make,
4053 this is no worse, but if it took more than one insn, it will
4054 be better. */
4056 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4057 && REG_P (XEXP (SET_SRC (x), 0))
4058 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4059 && REG_P (SET_DEST (x))
4060 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4061 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4062 && XEXP (*split, 0) == SET_DEST (x)
4063 && XEXP (*split, 1) == const0_rtx)
4065 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4066 XEXP (SET_SRC (x), 0),
4067 pos, NULL_RTX, 1, 1, 0, 0);
4068 if (extraction != 0)
4070 SUBST (SET_SRC (x), extraction);
4071 return find_split_point (loc, insn);
4074 break;
4076 case NE:
4077 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4078 is known to be on, this can be converted into a NEG of a shift. */
4079 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4080 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4081 && 1 <= (pos = exact_log2
4082 (nonzero_bits (XEXP (SET_SRC (x), 0),
4083 GET_MODE (XEXP (SET_SRC (x), 0))))))
4085 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4087 SUBST (SET_SRC (x),
4088 gen_rtx_NEG (mode,
4089 gen_rtx_LSHIFTRT (mode,
4090 XEXP (SET_SRC (x), 0),
4091 GEN_INT (pos))));
4093 split = find_split_point (&SET_SRC (x), insn);
4094 if (split && split != &SET_SRC (x))
4095 return split;
4097 break;
4099 case SIGN_EXTEND:
4100 inner = XEXP (SET_SRC (x), 0);
4102 /* We can't optimize if either mode is a partial integer
4103 mode as we don't know how many bits are significant
4104 in those modes. */
4105 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4106 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4107 break;
4109 pos = 0;
4110 len = GET_MODE_BITSIZE (GET_MODE (inner));
4111 unsignedp = 0;
4112 break;
4114 case SIGN_EXTRACT:
4115 case ZERO_EXTRACT:
4116 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4117 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4119 inner = XEXP (SET_SRC (x), 0);
4120 len = INTVAL (XEXP (SET_SRC (x), 1));
4121 pos = INTVAL (XEXP (SET_SRC (x), 2));
4123 if (BITS_BIG_ENDIAN)
4124 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4125 unsignedp = (code == ZERO_EXTRACT);
4127 break;
4129 default:
4130 break;
4133 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4135 enum machine_mode mode = GET_MODE (SET_SRC (x));
4137 /* For unsigned, we have a choice of a shift followed by an
4138 AND or two shifts. Use two shifts for field sizes where the
4139 constant might be too large. We assume here that we can
4140 always at least get 8-bit constants in an AND insn, which is
4141 true for every current RISC. */
4143 if (unsignedp && len <= 8)
4145 SUBST (SET_SRC (x),
4146 gen_rtx_AND (mode,
4147 gen_rtx_LSHIFTRT
4148 (mode, gen_lowpart (mode, inner),
4149 GEN_INT (pos)),
4150 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4152 split = find_split_point (&SET_SRC (x), insn);
4153 if (split && split != &SET_SRC (x))
4154 return split;
4156 else
4158 SUBST (SET_SRC (x),
4159 gen_rtx_fmt_ee
4160 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4161 gen_rtx_ASHIFT (mode,
4162 gen_lowpart (mode, inner),
4163 GEN_INT (GET_MODE_BITSIZE (mode)
4164 - len - pos)),
4165 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4167 split = find_split_point (&SET_SRC (x), insn);
4168 if (split && split != &SET_SRC (x))
4169 return split;
4173 /* See if this is a simple operation with a constant as the second
4174 operand. It might be that this constant is out of range and hence
4175 could be used as a split point. */
4176 if (BINARY_P (SET_SRC (x))
4177 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4178 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4179 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4180 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4181 return &XEXP (SET_SRC (x), 1);
4183 /* Finally, see if this is a simple operation with its first operand
4184 not in a register. The operation might require this operand in a
4185 register, so return it as a split point. We can always do this
4186 because if the first operand were another operation, we would have
4187 already found it as a split point. */
4188 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4189 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4190 return &XEXP (SET_SRC (x), 0);
4192 return 0;
4194 case AND:
4195 case IOR:
4196 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4197 it is better to write this as (not (ior A B)) so we can split it.
4198 Similarly for IOR. */
4199 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4201 SUBST (*loc,
4202 gen_rtx_NOT (GET_MODE (x),
4203 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4204 GET_MODE (x),
4205 XEXP (XEXP (x, 0), 0),
4206 XEXP (XEXP (x, 1), 0))));
4207 return find_split_point (loc, insn);
4210 /* Many RISC machines have a large set of logical insns. If the
4211 second operand is a NOT, put it first so we will try to split the
4212 other operand first. */
4213 if (GET_CODE (XEXP (x, 1)) == NOT)
4215 rtx tem = XEXP (x, 0);
4216 SUBST (XEXP (x, 0), XEXP (x, 1));
4217 SUBST (XEXP (x, 1), tem);
4219 break;
4221 default:
4222 break;
4225 /* Otherwise, select our actions depending on our rtx class. */
4226 switch (GET_RTX_CLASS (code))
4228 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4229 case RTX_TERNARY:
4230 split = find_split_point (&XEXP (x, 2), insn);
4231 if (split)
4232 return split;
4233 /* ... fall through ... */
4234 case RTX_BIN_ARITH:
4235 case RTX_COMM_ARITH:
4236 case RTX_COMPARE:
4237 case RTX_COMM_COMPARE:
4238 split = find_split_point (&XEXP (x, 1), insn);
4239 if (split)
4240 return split;
4241 /* ... fall through ... */
4242 case RTX_UNARY:
4243 /* Some machines have (and (shift ...) ...) insns. If X is not
4244 an AND, but XEXP (X, 0) is, use it as our split point. */
4245 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4246 return &XEXP (x, 0);
4248 split = find_split_point (&XEXP (x, 0), insn);
4249 if (split)
4250 return split;
4251 return loc;
4253 default:
4254 /* Otherwise, we don't have a split point. */
4255 return 0;
4259 /* Throughout X, replace FROM with TO, and return the result.
4260 The result is TO if X is FROM;
4261 otherwise the result is X, but its contents may have been modified.
4262 If they were modified, a record was made in undobuf so that
4263 undo_all will (among other things) return X to its original state.
4265 If the number of changes necessary is too much to record to undo,
4266 the excess changes are not made, so the result is invalid.
4267 The changes already made can still be undone.
4268 undobuf.num_undo is incremented for such changes, so by testing that
4269 the caller can tell whether the result is valid.
4271 `n_occurrences' is incremented each time FROM is replaced.
4273 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4275 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4276 by copying if `n_occurrences' is nonzero. */
4278 static rtx
4279 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4281 enum rtx_code code = GET_CODE (x);
4282 enum machine_mode op0_mode = VOIDmode;
4283 const char *fmt;
4284 int len, i;
4285 rtx new_rtx;
4287 /* Two expressions are equal if they are identical copies of a shared
4288 RTX or if they are both registers with the same register number
4289 and mode. */
4291 #define COMBINE_RTX_EQUAL_P(X,Y) \
4292 ((X) == (Y) \
4293 || (REG_P (X) && REG_P (Y) \
4294 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4296 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4298 n_occurrences++;
4299 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4302 /* If X and FROM are the same register but different modes, they
4303 will not have been seen as equal above. However, the log links code
4304 will make a LOG_LINKS entry for that case. If we do nothing, we
4305 will try to rerecognize our original insn and, when it succeeds,
4306 we will delete the feeding insn, which is incorrect.
4308 So force this insn not to match in this (rare) case. */
4309 if (! in_dest && code == REG && REG_P (from)
4310 && reg_overlap_mentioned_p (x, from))
4311 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4313 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4314 of which may contain things that can be combined. */
4315 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4316 return x;
4318 /* It is possible to have a subexpression appear twice in the insn.
4319 Suppose that FROM is a register that appears within TO.
4320 Then, after that subexpression has been scanned once by `subst',
4321 the second time it is scanned, TO may be found. If we were
4322 to scan TO here, we would find FROM within it and create a
4323 self-referent rtl structure which is completely wrong. */
4324 if (COMBINE_RTX_EQUAL_P (x, to))
4325 return to;
4327 /* Parallel asm_operands need special attention because all of the
4328 inputs are shared across the arms. Furthermore, unsharing the
4329 rtl results in recognition failures. Failure to handle this case
4330 specially can result in circular rtl.
4332 Solve this by doing a normal pass across the first entry of the
4333 parallel, and only processing the SET_DESTs of the subsequent
4334 entries. Ug. */
4336 if (code == PARALLEL
4337 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4338 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4340 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4342 /* If this substitution failed, this whole thing fails. */
4343 if (GET_CODE (new_rtx) == CLOBBER
4344 && XEXP (new_rtx, 0) == const0_rtx)
4345 return new_rtx;
4347 SUBST (XVECEXP (x, 0, 0), new_rtx);
4349 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4351 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4353 if (!REG_P (dest)
4354 && GET_CODE (dest) != CC0
4355 && GET_CODE (dest) != PC)
4357 new_rtx = subst (dest, from, to, 0, unique_copy);
4359 /* If this substitution failed, this whole thing fails. */
4360 if (GET_CODE (new_rtx) == CLOBBER
4361 && XEXP (new_rtx, 0) == const0_rtx)
4362 return new_rtx;
4364 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4368 else
4370 len = GET_RTX_LENGTH (code);
4371 fmt = GET_RTX_FORMAT (code);
4373 /* We don't need to process a SET_DEST that is a register, CC0,
4374 or PC, so set up to skip this common case. All other cases
4375 where we want to suppress replacing something inside a
4376 SET_SRC are handled via the IN_DEST operand. */
4377 if (code == SET
4378 && (REG_P (SET_DEST (x))
4379 || GET_CODE (SET_DEST (x)) == CC0
4380 || GET_CODE (SET_DEST (x)) == PC))
4381 fmt = "ie";
4383 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4384 constant. */
4385 if (fmt[0] == 'e')
4386 op0_mode = GET_MODE (XEXP (x, 0));
4388 for (i = 0; i < len; i++)
4390 if (fmt[i] == 'E')
4392 int j;
4393 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4395 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4397 new_rtx = (unique_copy && n_occurrences
4398 ? copy_rtx (to) : to);
4399 n_occurrences++;
4401 else
4403 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4404 unique_copy);
4406 /* If this substitution failed, this whole thing
4407 fails. */
4408 if (GET_CODE (new_rtx) == CLOBBER
4409 && XEXP (new_rtx, 0) == const0_rtx)
4410 return new_rtx;
4413 SUBST (XVECEXP (x, i, j), new_rtx);
4416 else if (fmt[i] == 'e')
4418 /* If this is a register being set, ignore it. */
4419 new_rtx = XEXP (x, i);
4420 if (in_dest
4421 && i == 0
4422 && (((code == SUBREG || code == ZERO_EXTRACT)
4423 && REG_P (new_rtx))
4424 || code == STRICT_LOW_PART))
4427 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4429 /* In general, don't install a subreg involving two
4430 modes not tieable. It can worsen register
4431 allocation, and can even make invalid reload
4432 insns, since the reg inside may need to be copied
4433 from in the outside mode, and that may be invalid
4434 if it is an fp reg copied in integer mode.
4436 We allow two exceptions to this: It is valid if
4437 it is inside another SUBREG and the mode of that
4438 SUBREG and the mode of the inside of TO is
4439 tieable and it is valid if X is a SET that copies
4440 FROM to CC0. */
4442 if (GET_CODE (to) == SUBREG
4443 && ! MODES_TIEABLE_P (GET_MODE (to),
4444 GET_MODE (SUBREG_REG (to)))
4445 && ! (code == SUBREG
4446 && MODES_TIEABLE_P (GET_MODE (x),
4447 GET_MODE (SUBREG_REG (to))))
4448 #ifdef HAVE_cc0
4449 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4450 #endif
4452 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4454 #ifdef CANNOT_CHANGE_MODE_CLASS
4455 if (code == SUBREG
4456 && REG_P (to)
4457 && REGNO (to) < FIRST_PSEUDO_REGISTER
4458 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4459 GET_MODE (to),
4460 GET_MODE (x)))
4461 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4462 #endif
4464 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4465 n_occurrences++;
4467 else
4468 /* If we are in a SET_DEST, suppress most cases unless we
4469 have gone inside a MEM, in which case we want to
4470 simplify the address. We assume here that things that
4471 are actually part of the destination have their inner
4472 parts in the first expression. This is true for SUBREG,
4473 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4474 things aside from REG and MEM that should appear in a
4475 SET_DEST. */
4476 new_rtx = subst (XEXP (x, i), from, to,
4477 (((in_dest
4478 && (code == SUBREG || code == STRICT_LOW_PART
4479 || code == ZERO_EXTRACT))
4480 || code == SET)
4481 && i == 0), unique_copy);
4483 /* If we found that we will have to reject this combination,
4484 indicate that by returning the CLOBBER ourselves, rather than
4485 an expression containing it. This will speed things up as
4486 well as prevent accidents where two CLOBBERs are considered
4487 to be equal, thus producing an incorrect simplification. */
4489 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4490 return new_rtx;
4492 if (GET_CODE (x) == SUBREG
4493 && (GET_CODE (new_rtx) == CONST_INT
4494 || GET_CODE (new_rtx) == CONST_DOUBLE))
4496 enum machine_mode mode = GET_MODE (x);
4498 x = simplify_subreg (GET_MODE (x), new_rtx,
4499 GET_MODE (SUBREG_REG (x)),
4500 SUBREG_BYTE (x));
4501 if (! x)
4502 x = gen_rtx_CLOBBER (mode, const0_rtx);
4504 else if (GET_CODE (new_rtx) == CONST_INT
4505 && GET_CODE (x) == ZERO_EXTEND)
4507 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4508 new_rtx, GET_MODE (XEXP (x, 0)));
4509 gcc_assert (x);
4511 else
4512 SUBST (XEXP (x, i), new_rtx);
4517 /* Check if we are loading something from the constant pool via float
4518 extension; in this case we would undo compress_float_constant
4519 optimization and degenerate constant load to an immediate value. */
4520 if (GET_CODE (x) == FLOAT_EXTEND
4521 && MEM_P (XEXP (x, 0))
4522 && MEM_READONLY_P (XEXP (x, 0)))
4524 rtx tmp = avoid_constant_pool_reference (x);
4525 if (x != tmp)
4526 return x;
4529 /* Try to simplify X. If the simplification changed the code, it is likely
4530 that further simplification will help, so loop, but limit the number
4531 of repetitions that will be performed. */
4533 for (i = 0; i < 4; i++)
4535 /* If X is sufficiently simple, don't bother trying to do anything
4536 with it. */
4537 if (code != CONST_INT && code != REG && code != CLOBBER)
4538 x = combine_simplify_rtx (x, op0_mode, in_dest);
4540 if (GET_CODE (x) == code)
4541 break;
4543 code = GET_CODE (x);
4545 /* We no longer know the original mode of operand 0 since we
4546 have changed the form of X) */
4547 op0_mode = VOIDmode;
4550 return x;
4553 /* Simplify X, a piece of RTL. We just operate on the expression at the
4554 outer level; call `subst' to simplify recursively. Return the new
4555 expression.
4557 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4558 if we are inside a SET_DEST. */
4560 static rtx
4561 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4563 enum rtx_code code = GET_CODE (x);
4564 enum machine_mode mode = GET_MODE (x);
4565 rtx temp;
4566 int i;
4568 /* If this is a commutative operation, put a constant last and a complex
4569 expression first. We don't need to do this for comparisons here. */
4570 if (COMMUTATIVE_ARITH_P (x)
4571 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4573 temp = XEXP (x, 0);
4574 SUBST (XEXP (x, 0), XEXP (x, 1));
4575 SUBST (XEXP (x, 1), temp);
4578 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4579 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4580 things. Check for cases where both arms are testing the same
4581 condition.
4583 Don't do anything if all operands are very simple. */
4585 if ((BINARY_P (x)
4586 && ((!OBJECT_P (XEXP (x, 0))
4587 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4588 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4589 || (!OBJECT_P (XEXP (x, 1))
4590 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4591 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4592 || (UNARY_P (x)
4593 && (!OBJECT_P (XEXP (x, 0))
4594 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4595 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4597 rtx cond, true_rtx, false_rtx;
4599 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4600 if (cond != 0
4601 /* If everything is a comparison, what we have is highly unlikely
4602 to be simpler, so don't use it. */
4603 && ! (COMPARISON_P (x)
4604 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4606 rtx cop1 = const0_rtx;
4607 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4609 if (cond_code == NE && COMPARISON_P (cond))
4610 return x;
4612 /* Simplify the alternative arms; this may collapse the true and
4613 false arms to store-flag values. Be careful to use copy_rtx
4614 here since true_rtx or false_rtx might share RTL with x as a
4615 result of the if_then_else_cond call above. */
4616 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4617 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4619 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4620 is unlikely to be simpler. */
4621 if (general_operand (true_rtx, VOIDmode)
4622 && general_operand (false_rtx, VOIDmode))
4624 enum rtx_code reversed;
4626 /* Restarting if we generate a store-flag expression will cause
4627 us to loop. Just drop through in this case. */
4629 /* If the result values are STORE_FLAG_VALUE and zero, we can
4630 just make the comparison operation. */
4631 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4632 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4633 cond, cop1);
4634 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4635 && ((reversed = reversed_comparison_code_parts
4636 (cond_code, cond, cop1, NULL))
4637 != UNKNOWN))
4638 x = simplify_gen_relational (reversed, mode, VOIDmode,
4639 cond, cop1);
4641 /* Likewise, we can make the negate of a comparison operation
4642 if the result values are - STORE_FLAG_VALUE and zero. */
4643 else if (GET_CODE (true_rtx) == CONST_INT
4644 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4645 && false_rtx == const0_rtx)
4646 x = simplify_gen_unary (NEG, mode,
4647 simplify_gen_relational (cond_code,
4648 mode, VOIDmode,
4649 cond, cop1),
4650 mode);
4651 else if (GET_CODE (false_rtx) == CONST_INT
4652 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4653 && true_rtx == const0_rtx
4654 && ((reversed = reversed_comparison_code_parts
4655 (cond_code, cond, cop1, NULL))
4656 != UNKNOWN))
4657 x = simplify_gen_unary (NEG, mode,
4658 simplify_gen_relational (reversed,
4659 mode, VOIDmode,
4660 cond, cop1),
4661 mode);
4662 else
4663 return gen_rtx_IF_THEN_ELSE (mode,
4664 simplify_gen_relational (cond_code,
4665 mode,
4666 VOIDmode,
4667 cond,
4668 cop1),
4669 true_rtx, false_rtx);
4671 code = GET_CODE (x);
4672 op0_mode = VOIDmode;
4677 /* Try to fold this expression in case we have constants that weren't
4678 present before. */
4679 temp = 0;
4680 switch (GET_RTX_CLASS (code))
4682 case RTX_UNARY:
4683 if (op0_mode == VOIDmode)
4684 op0_mode = GET_MODE (XEXP (x, 0));
4685 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4686 break;
4687 case RTX_COMPARE:
4688 case RTX_COMM_COMPARE:
4690 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4691 if (cmp_mode == VOIDmode)
4693 cmp_mode = GET_MODE (XEXP (x, 1));
4694 if (cmp_mode == VOIDmode)
4695 cmp_mode = op0_mode;
4697 temp = simplify_relational_operation (code, mode, cmp_mode,
4698 XEXP (x, 0), XEXP (x, 1));
4700 break;
4701 case RTX_COMM_ARITH:
4702 case RTX_BIN_ARITH:
4703 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4704 break;
4705 case RTX_BITFIELD_OPS:
4706 case RTX_TERNARY:
4707 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4708 XEXP (x, 1), XEXP (x, 2));
4709 break;
4710 default:
4711 break;
4714 if (temp)
4716 x = temp;
4717 code = GET_CODE (temp);
4718 op0_mode = VOIDmode;
4719 mode = GET_MODE (temp);
4722 /* First see if we can apply the inverse distributive law. */
4723 if (code == PLUS || code == MINUS
4724 || code == AND || code == IOR || code == XOR)
4726 x = apply_distributive_law (x);
4727 code = GET_CODE (x);
4728 op0_mode = VOIDmode;
4731 /* If CODE is an associative operation not otherwise handled, see if we
4732 can associate some operands. This can win if they are constants or
4733 if they are logically related (i.e. (a & b) & a). */
4734 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4735 || code == AND || code == IOR || code == XOR
4736 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4737 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4738 || (flag_associative_math && FLOAT_MODE_P (mode))))
4740 if (GET_CODE (XEXP (x, 0)) == code)
4742 rtx other = XEXP (XEXP (x, 0), 0);
4743 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4744 rtx inner_op1 = XEXP (x, 1);
4745 rtx inner;
4747 /* Make sure we pass the constant operand if any as the second
4748 one if this is a commutative operation. */
4749 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4751 rtx tem = inner_op0;
4752 inner_op0 = inner_op1;
4753 inner_op1 = tem;
4755 inner = simplify_binary_operation (code == MINUS ? PLUS
4756 : code == DIV ? MULT
4757 : code,
4758 mode, inner_op0, inner_op1);
4760 /* For commutative operations, try the other pair if that one
4761 didn't simplify. */
4762 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4764 other = XEXP (XEXP (x, 0), 1);
4765 inner = simplify_binary_operation (code, mode,
4766 XEXP (XEXP (x, 0), 0),
4767 XEXP (x, 1));
4770 if (inner)
4771 return simplify_gen_binary (code, mode, other, inner);
4775 /* A little bit of algebraic simplification here. */
4776 switch (code)
4778 case MEM:
4779 /* Ensure that our address has any ASHIFTs converted to MULT in case
4780 address-recognizing predicates are called later. */
4781 temp = make_compound_operation (XEXP (x, 0), MEM);
4782 SUBST (XEXP (x, 0), temp);
4783 break;
4785 case SUBREG:
4786 if (op0_mode == VOIDmode)
4787 op0_mode = GET_MODE (SUBREG_REG (x));
4789 /* See if this can be moved to simplify_subreg. */
4790 if (CONSTANT_P (SUBREG_REG (x))
4791 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4792 /* Don't call gen_lowpart if the inner mode
4793 is VOIDmode and we cannot simplify it, as SUBREG without
4794 inner mode is invalid. */
4795 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4796 || gen_lowpart_common (mode, SUBREG_REG (x))))
4797 return gen_lowpart (mode, SUBREG_REG (x));
4799 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4800 break;
4802 rtx temp;
4803 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4804 SUBREG_BYTE (x));
4805 if (temp)
4806 return temp;
4809 /* Don't change the mode of the MEM if that would change the meaning
4810 of the address. */
4811 if (MEM_P (SUBREG_REG (x))
4812 && (MEM_VOLATILE_P (SUBREG_REG (x))
4813 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4814 return gen_rtx_CLOBBER (mode, const0_rtx);
4816 /* Note that we cannot do any narrowing for non-constants since
4817 we might have been counting on using the fact that some bits were
4818 zero. We now do this in the SET. */
4820 break;
4822 case NEG:
4823 temp = expand_compound_operation (XEXP (x, 0));
4825 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4826 replaced by (lshiftrt X C). This will convert
4827 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4829 if (GET_CODE (temp) == ASHIFTRT
4830 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4831 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4832 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4833 INTVAL (XEXP (temp, 1)));
4835 /* If X has only a single bit that might be nonzero, say, bit I, convert
4836 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4837 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4838 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4839 or a SUBREG of one since we'd be making the expression more
4840 complex if it was just a register. */
4842 if (!REG_P (temp)
4843 && ! (GET_CODE (temp) == SUBREG
4844 && REG_P (SUBREG_REG (temp)))
4845 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4847 rtx temp1 = simplify_shift_const
4848 (NULL_RTX, ASHIFTRT, mode,
4849 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4850 GET_MODE_BITSIZE (mode) - 1 - i),
4851 GET_MODE_BITSIZE (mode) - 1 - i);
4853 /* If all we did was surround TEMP with the two shifts, we
4854 haven't improved anything, so don't use it. Otherwise,
4855 we are better off with TEMP1. */
4856 if (GET_CODE (temp1) != ASHIFTRT
4857 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4858 || XEXP (XEXP (temp1, 0), 0) != temp)
4859 return temp1;
4861 break;
4863 case TRUNCATE:
4864 /* We can't handle truncation to a partial integer mode here
4865 because we don't know the real bitsize of the partial
4866 integer mode. */
4867 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4868 break;
4870 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4871 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4872 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4873 SUBST (XEXP (x, 0),
4874 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4875 GET_MODE_MASK (mode), 0));
4877 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4878 whose value is a comparison can be replaced with a subreg if
4879 STORE_FLAG_VALUE permits. */
4880 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4881 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4882 && (temp = get_last_value (XEXP (x, 0)))
4883 && COMPARISON_P (temp))
4884 return gen_lowpart (mode, XEXP (x, 0));
4885 break;
4887 #ifdef HAVE_cc0
4888 case COMPARE:
4889 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4890 using cc0, in which case we want to leave it as a COMPARE
4891 so we can distinguish it from a register-register-copy. */
4892 if (XEXP (x, 1) == const0_rtx)
4893 return XEXP (x, 0);
4895 /* x - 0 is the same as x unless x's mode has signed zeros and
4896 allows rounding towards -infinity. Under those conditions,
4897 0 - 0 is -0. */
4898 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4899 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4900 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4901 return XEXP (x, 0);
4902 break;
4903 #endif
4905 case CONST:
4906 /* (const (const X)) can become (const X). Do it this way rather than
4907 returning the inner CONST since CONST can be shared with a
4908 REG_EQUAL note. */
4909 if (GET_CODE (XEXP (x, 0)) == CONST)
4910 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4911 break;
4913 #ifdef HAVE_lo_sum
4914 case LO_SUM:
4915 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4916 can add in an offset. find_split_point will split this address up
4917 again if it doesn't match. */
4918 if (GET_CODE (XEXP (x, 0)) == HIGH
4919 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4920 return XEXP (x, 1);
4921 break;
4922 #endif
4924 case PLUS:
4925 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4926 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4927 bit-field and can be replaced by either a sign_extend or a
4928 sign_extract. The `and' may be a zero_extend and the two
4929 <c>, -<c> constants may be reversed. */
4930 if (GET_CODE (XEXP (x, 0)) == XOR
4931 && GET_CODE (XEXP (x, 1)) == CONST_INT
4932 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4933 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4934 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4935 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4936 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4937 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4938 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4939 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4940 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4941 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4942 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4943 == (unsigned int) i + 1))))
4944 return simplify_shift_const
4945 (NULL_RTX, ASHIFTRT, mode,
4946 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4947 XEXP (XEXP (XEXP (x, 0), 0), 0),
4948 GET_MODE_BITSIZE (mode) - (i + 1)),
4949 GET_MODE_BITSIZE (mode) - (i + 1));
4951 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4952 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4953 the bitsize of the mode - 1. This allows simplification of
4954 "a = (b & 8) == 0;" */
4955 if (XEXP (x, 1) == constm1_rtx
4956 && !REG_P (XEXP (x, 0))
4957 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4958 && REG_P (SUBREG_REG (XEXP (x, 0))))
4959 && nonzero_bits (XEXP (x, 0), mode) == 1)
4960 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4961 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4962 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4963 GET_MODE_BITSIZE (mode) - 1),
4964 GET_MODE_BITSIZE (mode) - 1);
4966 /* If we are adding two things that have no bits in common, convert
4967 the addition into an IOR. This will often be further simplified,
4968 for example in cases like ((a & 1) + (a & 2)), which can
4969 become a & 3. */
4971 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4972 && (nonzero_bits (XEXP (x, 0), mode)
4973 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4975 /* Try to simplify the expression further. */
4976 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4977 temp = combine_simplify_rtx (tor, mode, in_dest);
4979 /* If we could, great. If not, do not go ahead with the IOR
4980 replacement, since PLUS appears in many special purpose
4981 address arithmetic instructions. */
4982 if (GET_CODE (temp) != CLOBBER && temp != tor)
4983 return temp;
4985 break;
4987 case MINUS:
4988 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4989 (and <foo> (const_int pow2-1)) */
4990 if (GET_CODE (XEXP (x, 1)) == AND
4991 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4992 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4993 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4994 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4995 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4996 break;
4998 case MULT:
4999 /* If we have (mult (plus A B) C), apply the distributive law and then
5000 the inverse distributive law to see if things simplify. This
5001 occurs mostly in addresses, often when unrolling loops. */
5003 if (GET_CODE (XEXP (x, 0)) == PLUS)
5005 rtx result = distribute_and_simplify_rtx (x, 0);
5006 if (result)
5007 return result;
5010 /* Try simplify a*(b/c) as (a*b)/c. */
5011 if (FLOAT_MODE_P (mode) && flag_associative_math
5012 && GET_CODE (XEXP (x, 0)) == DIV)
5014 rtx tem = simplify_binary_operation (MULT, mode,
5015 XEXP (XEXP (x, 0), 0),
5016 XEXP (x, 1));
5017 if (tem)
5018 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5020 break;
5022 case UDIV:
5023 /* If this is a divide by a power of two, treat it as a shift if
5024 its first operand is a shift. */
5025 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5026 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5027 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5028 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5029 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5030 || GET_CODE (XEXP (x, 0)) == ROTATE
5031 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5032 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5033 break;
5035 case EQ: case NE:
5036 case GT: case GTU: case GE: case GEU:
5037 case LT: case LTU: case LE: case LEU:
5038 case UNEQ: case LTGT:
5039 case UNGT: case UNGE:
5040 case UNLT: case UNLE:
5041 case UNORDERED: case ORDERED:
5042 /* If the first operand is a condition code, we can't do anything
5043 with it. */
5044 if (GET_CODE (XEXP (x, 0)) == COMPARE
5045 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5046 && ! CC0_P (XEXP (x, 0))))
5048 rtx op0 = XEXP (x, 0);
5049 rtx op1 = XEXP (x, 1);
5050 enum rtx_code new_code;
5052 if (GET_CODE (op0) == COMPARE)
5053 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5055 /* Simplify our comparison, if possible. */
5056 new_code = simplify_comparison (code, &op0, &op1);
5058 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5059 if only the low-order bit is possibly nonzero in X (such as when
5060 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5061 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5062 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5063 (plus X 1).
5065 Remove any ZERO_EXTRACT we made when thinking this was a
5066 comparison. It may now be simpler to use, e.g., an AND. If a
5067 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5068 the call to make_compound_operation in the SET case. */
5070 if (STORE_FLAG_VALUE == 1
5071 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5072 && op1 == const0_rtx
5073 && mode == GET_MODE (op0)
5074 && nonzero_bits (op0, mode) == 1)
5075 return gen_lowpart (mode,
5076 expand_compound_operation (op0));
5078 else if (STORE_FLAG_VALUE == 1
5079 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5080 && op1 == const0_rtx
5081 && mode == GET_MODE (op0)
5082 && (num_sign_bit_copies (op0, mode)
5083 == GET_MODE_BITSIZE (mode)))
5085 op0 = expand_compound_operation (op0);
5086 return simplify_gen_unary (NEG, mode,
5087 gen_lowpart (mode, op0),
5088 mode);
5091 else if (STORE_FLAG_VALUE == 1
5092 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5093 && op1 == const0_rtx
5094 && mode == GET_MODE (op0)
5095 && nonzero_bits (op0, mode) == 1)
5097 op0 = expand_compound_operation (op0);
5098 return simplify_gen_binary (XOR, mode,
5099 gen_lowpart (mode, op0),
5100 const1_rtx);
5103 else if (STORE_FLAG_VALUE == 1
5104 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5105 && op1 == const0_rtx
5106 && mode == GET_MODE (op0)
5107 && (num_sign_bit_copies (op0, mode)
5108 == GET_MODE_BITSIZE (mode)))
5110 op0 = expand_compound_operation (op0);
5111 return plus_constant (gen_lowpart (mode, op0), 1);
5114 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5115 those above. */
5116 if (STORE_FLAG_VALUE == -1
5117 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5118 && op1 == const0_rtx
5119 && (num_sign_bit_copies (op0, mode)
5120 == GET_MODE_BITSIZE (mode)))
5121 return gen_lowpart (mode,
5122 expand_compound_operation (op0));
5124 else if (STORE_FLAG_VALUE == -1
5125 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5126 && op1 == const0_rtx
5127 && mode == GET_MODE (op0)
5128 && nonzero_bits (op0, mode) == 1)
5130 op0 = expand_compound_operation (op0);
5131 return simplify_gen_unary (NEG, mode,
5132 gen_lowpart (mode, op0),
5133 mode);
5136 else if (STORE_FLAG_VALUE == -1
5137 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5138 && op1 == const0_rtx
5139 && mode == GET_MODE (op0)
5140 && (num_sign_bit_copies (op0, mode)
5141 == GET_MODE_BITSIZE (mode)))
5143 op0 = expand_compound_operation (op0);
5144 return simplify_gen_unary (NOT, mode,
5145 gen_lowpart (mode, op0),
5146 mode);
5149 /* If X is 0/1, (eq X 0) is X-1. */
5150 else if (STORE_FLAG_VALUE == -1
5151 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5152 && op1 == const0_rtx
5153 && mode == GET_MODE (op0)
5154 && nonzero_bits (op0, mode) == 1)
5156 op0 = expand_compound_operation (op0);
5157 return plus_constant (gen_lowpart (mode, op0), -1);
5160 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5161 one bit that might be nonzero, we can convert (ne x 0) to
5162 (ashift x c) where C puts the bit in the sign bit. Remove any
5163 AND with STORE_FLAG_VALUE when we are done, since we are only
5164 going to test the sign bit. */
5165 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5166 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5167 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5168 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5169 && op1 == const0_rtx
5170 && mode == GET_MODE (op0)
5171 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5173 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5174 expand_compound_operation (op0),
5175 GET_MODE_BITSIZE (mode) - 1 - i);
5176 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5177 return XEXP (x, 0);
5178 else
5179 return x;
5182 /* If the code changed, return a whole new comparison. */
5183 if (new_code != code)
5184 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5186 /* Otherwise, keep this operation, but maybe change its operands.
5187 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5188 SUBST (XEXP (x, 0), op0);
5189 SUBST (XEXP (x, 1), op1);
5191 break;
5193 case IF_THEN_ELSE:
5194 return simplify_if_then_else (x);
5196 case ZERO_EXTRACT:
5197 case SIGN_EXTRACT:
5198 case ZERO_EXTEND:
5199 case SIGN_EXTEND:
5200 /* If we are processing SET_DEST, we are done. */
5201 if (in_dest)
5202 return x;
5204 return expand_compound_operation (x);
5206 case SET:
5207 return simplify_set (x);
5209 case AND:
5210 case IOR:
5211 return simplify_logical (x);
5213 case ASHIFT:
5214 case LSHIFTRT:
5215 case ASHIFTRT:
5216 case ROTATE:
5217 case ROTATERT:
5218 /* If this is a shift by a constant amount, simplify it. */
5219 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5220 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5221 INTVAL (XEXP (x, 1)));
5223 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5224 SUBST (XEXP (x, 1),
5225 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5226 ((HOST_WIDE_INT) 1
5227 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5228 - 1,
5229 0));
5230 break;
5232 default:
5233 break;
5236 return x;
5239 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5241 static rtx
5242 simplify_if_then_else (rtx x)
5244 enum machine_mode mode = GET_MODE (x);
5245 rtx cond = XEXP (x, 0);
5246 rtx true_rtx = XEXP (x, 1);
5247 rtx false_rtx = XEXP (x, 2);
5248 enum rtx_code true_code = GET_CODE (cond);
5249 int comparison_p = COMPARISON_P (cond);
5250 rtx temp;
5251 int i;
5252 enum rtx_code false_code;
5253 rtx reversed;
5255 /* Simplify storing of the truth value. */
5256 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5257 return simplify_gen_relational (true_code, mode, VOIDmode,
5258 XEXP (cond, 0), XEXP (cond, 1));
5260 /* Also when the truth value has to be reversed. */
5261 if (comparison_p
5262 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5263 && (reversed = reversed_comparison (cond, mode)))
5264 return reversed;
5266 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5267 in it is being compared against certain values. Get the true and false
5268 comparisons and see if that says anything about the value of each arm. */
5270 if (comparison_p
5271 && ((false_code = reversed_comparison_code (cond, NULL))
5272 != UNKNOWN)
5273 && REG_P (XEXP (cond, 0)))
5275 HOST_WIDE_INT nzb;
5276 rtx from = XEXP (cond, 0);
5277 rtx true_val = XEXP (cond, 1);
5278 rtx false_val = true_val;
5279 int swapped = 0;
5281 /* If FALSE_CODE is EQ, swap the codes and arms. */
5283 if (false_code == EQ)
5285 swapped = 1, true_code = EQ, false_code = NE;
5286 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5289 /* If we are comparing against zero and the expression being tested has
5290 only a single bit that might be nonzero, that is its value when it is
5291 not equal to zero. Similarly if it is known to be -1 or 0. */
5293 if (true_code == EQ && true_val == const0_rtx
5294 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5296 false_code = EQ;
5297 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5299 else if (true_code == EQ && true_val == const0_rtx
5300 && (num_sign_bit_copies (from, GET_MODE (from))
5301 == GET_MODE_BITSIZE (GET_MODE (from))))
5303 false_code = EQ;
5304 false_val = constm1_rtx;
5307 /* Now simplify an arm if we know the value of the register in the
5308 branch and it is used in the arm. Be careful due to the potential
5309 of locally-shared RTL. */
5311 if (reg_mentioned_p (from, true_rtx))
5312 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5313 from, true_val),
5314 pc_rtx, pc_rtx, 0, 0);
5315 if (reg_mentioned_p (from, false_rtx))
5316 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5317 from, false_val),
5318 pc_rtx, pc_rtx, 0, 0);
5320 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5321 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5323 true_rtx = XEXP (x, 1);
5324 false_rtx = XEXP (x, 2);
5325 true_code = GET_CODE (cond);
5328 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5329 reversed, do so to avoid needing two sets of patterns for
5330 subtract-and-branch insns. Similarly if we have a constant in the true
5331 arm, the false arm is the same as the first operand of the comparison, or
5332 the false arm is more complicated than the true arm. */
5334 if (comparison_p
5335 && reversed_comparison_code (cond, NULL) != UNKNOWN
5336 && (true_rtx == pc_rtx
5337 || (CONSTANT_P (true_rtx)
5338 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5339 || true_rtx == const0_rtx
5340 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5341 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5342 && !OBJECT_P (false_rtx))
5343 || reg_mentioned_p (true_rtx, false_rtx)
5344 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5346 true_code = reversed_comparison_code (cond, NULL);
5347 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5348 SUBST (XEXP (x, 1), false_rtx);
5349 SUBST (XEXP (x, 2), true_rtx);
5351 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5352 cond = XEXP (x, 0);
5354 /* It is possible that the conditional has been simplified out. */
5355 true_code = GET_CODE (cond);
5356 comparison_p = COMPARISON_P (cond);
5359 /* If the two arms are identical, we don't need the comparison. */
5361 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5362 return true_rtx;
5364 /* Convert a == b ? b : a to "a". */
5365 if (true_code == EQ && ! side_effects_p (cond)
5366 && !HONOR_NANS (mode)
5367 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5368 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5369 return false_rtx;
5370 else if (true_code == NE && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5374 return true_rtx;
5376 /* Look for cases where we have (abs x) or (neg (abs X)). */
5378 if (GET_MODE_CLASS (mode) == MODE_INT
5379 && comparison_p
5380 && XEXP (cond, 1) == const0_rtx
5381 && GET_CODE (false_rtx) == NEG
5382 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5383 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5384 && ! side_effects_p (true_rtx))
5385 switch (true_code)
5387 case GT:
5388 case GE:
5389 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5390 case LT:
5391 case LE:
5392 return
5393 simplify_gen_unary (NEG, mode,
5394 simplify_gen_unary (ABS, mode, true_rtx, mode),
5395 mode);
5396 default:
5397 break;
5400 /* Look for MIN or MAX. */
5402 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5403 && comparison_p
5404 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5405 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5406 && ! side_effects_p (cond))
5407 switch (true_code)
5409 case GE:
5410 case GT:
5411 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5412 case LE:
5413 case LT:
5414 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5415 case GEU:
5416 case GTU:
5417 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5418 case LEU:
5419 case LTU:
5420 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5421 default:
5422 break;
5425 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5426 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5427 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5428 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5429 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5430 neither 1 or -1, but it isn't worth checking for. */
5432 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5433 && comparison_p
5434 && GET_MODE_CLASS (mode) == MODE_INT
5435 && ! side_effects_p (x))
5437 rtx t = make_compound_operation (true_rtx, SET);
5438 rtx f = make_compound_operation (false_rtx, SET);
5439 rtx cond_op0 = XEXP (cond, 0);
5440 rtx cond_op1 = XEXP (cond, 1);
5441 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5442 enum machine_mode m = mode;
5443 rtx z = 0, c1 = NULL_RTX;
5445 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5446 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5447 || GET_CODE (t) == ASHIFT
5448 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5449 && rtx_equal_p (XEXP (t, 0), f))
5450 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5452 /* If an identity-zero op is commutative, check whether there
5453 would be a match if we swapped the operands. */
5454 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5455 || GET_CODE (t) == XOR)
5456 && rtx_equal_p (XEXP (t, 1), f))
5457 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5458 else if (GET_CODE (t) == SIGN_EXTEND
5459 && (GET_CODE (XEXP (t, 0)) == PLUS
5460 || GET_CODE (XEXP (t, 0)) == MINUS
5461 || GET_CODE (XEXP (t, 0)) == IOR
5462 || GET_CODE (XEXP (t, 0)) == XOR
5463 || GET_CODE (XEXP (t, 0)) == ASHIFT
5464 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5465 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5466 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5467 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5468 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5469 && (num_sign_bit_copies (f, GET_MODE (f))
5470 > (unsigned int)
5471 (GET_MODE_BITSIZE (mode)
5472 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5474 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5475 extend_op = SIGN_EXTEND;
5476 m = GET_MODE (XEXP (t, 0));
5478 else if (GET_CODE (t) == SIGN_EXTEND
5479 && (GET_CODE (XEXP (t, 0)) == PLUS
5480 || GET_CODE (XEXP (t, 0)) == IOR
5481 || GET_CODE (XEXP (t, 0)) == XOR)
5482 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5483 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5484 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5485 && (num_sign_bit_copies (f, GET_MODE (f))
5486 > (unsigned int)
5487 (GET_MODE_BITSIZE (mode)
5488 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5490 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5491 extend_op = SIGN_EXTEND;
5492 m = GET_MODE (XEXP (t, 0));
5494 else if (GET_CODE (t) == ZERO_EXTEND
5495 && (GET_CODE (XEXP (t, 0)) == PLUS
5496 || GET_CODE (XEXP (t, 0)) == MINUS
5497 || GET_CODE (XEXP (t, 0)) == IOR
5498 || GET_CODE (XEXP (t, 0)) == XOR
5499 || GET_CODE (XEXP (t, 0)) == ASHIFT
5500 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5501 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5502 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5503 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5504 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5505 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5506 && ((nonzero_bits (f, GET_MODE (f))
5507 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5508 == 0))
5510 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5511 extend_op = ZERO_EXTEND;
5512 m = GET_MODE (XEXP (t, 0));
5514 else if (GET_CODE (t) == ZERO_EXTEND
5515 && (GET_CODE (XEXP (t, 0)) == PLUS
5516 || GET_CODE (XEXP (t, 0)) == IOR
5517 || GET_CODE (XEXP (t, 0)) == XOR)
5518 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5519 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5520 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5521 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5522 && ((nonzero_bits (f, GET_MODE (f))
5523 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5524 == 0))
5526 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5527 extend_op = ZERO_EXTEND;
5528 m = GET_MODE (XEXP (t, 0));
5531 if (z)
5533 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5534 cond_op0, cond_op1),
5535 pc_rtx, pc_rtx, 0, 0);
5536 temp = simplify_gen_binary (MULT, m, temp,
5537 simplify_gen_binary (MULT, m, c1,
5538 const_true_rtx));
5539 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5540 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5542 if (extend_op != UNKNOWN)
5543 temp = simplify_gen_unary (extend_op, mode, temp, m);
5545 return temp;
5549 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5550 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5551 negation of a single bit, we can convert this operation to a shift. We
5552 can actually do this more generally, but it doesn't seem worth it. */
5554 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5555 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5556 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5557 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5558 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5559 == GET_MODE_BITSIZE (mode))
5560 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5561 return
5562 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5563 gen_lowpart (mode, XEXP (cond, 0)), i);
5565 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5566 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5567 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5568 && GET_MODE (XEXP (cond, 0)) == mode
5569 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5570 == nonzero_bits (XEXP (cond, 0), mode)
5571 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5572 return XEXP (cond, 0);
5574 return x;
5577 /* Simplify X, a SET expression. Return the new expression. */
5579 static rtx
5580 simplify_set (rtx x)
5582 rtx src = SET_SRC (x);
5583 rtx dest = SET_DEST (x);
5584 enum machine_mode mode
5585 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5586 rtx other_insn;
5587 rtx *cc_use;
5589 /* (set (pc) (return)) gets written as (return). */
5590 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5591 return src;
5593 /* Now that we know for sure which bits of SRC we are using, see if we can
5594 simplify the expression for the object knowing that we only need the
5595 low-order bits. */
5597 if (GET_MODE_CLASS (mode) == MODE_INT
5598 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5600 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5601 SUBST (SET_SRC (x), src);
5604 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5605 the comparison result and try to simplify it unless we already have used
5606 undobuf.other_insn. */
5607 if ((GET_MODE_CLASS (mode) == MODE_CC
5608 || GET_CODE (src) == COMPARE
5609 || CC0_P (dest))
5610 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5611 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5612 && COMPARISON_P (*cc_use)
5613 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5615 enum rtx_code old_code = GET_CODE (*cc_use);
5616 enum rtx_code new_code;
5617 rtx op0, op1, tmp;
5618 int other_changed = 0;
5619 enum machine_mode compare_mode = GET_MODE (dest);
5621 if (GET_CODE (src) == COMPARE)
5622 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5623 else
5624 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5626 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5627 op0, op1);
5628 if (!tmp)
5629 new_code = old_code;
5630 else if (!CONSTANT_P (tmp))
5632 new_code = GET_CODE (tmp);
5633 op0 = XEXP (tmp, 0);
5634 op1 = XEXP (tmp, 1);
5636 else
5638 rtx pat = PATTERN (other_insn);
5639 undobuf.other_insn = other_insn;
5640 SUBST (*cc_use, tmp);
5642 /* Attempt to simplify CC user. */
5643 if (GET_CODE (pat) == SET)
5645 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5646 if (new_rtx != NULL_RTX)
5647 SUBST (SET_SRC (pat), new_rtx);
5650 /* Convert X into a no-op move. */
5651 SUBST (SET_DEST (x), pc_rtx);
5652 SUBST (SET_SRC (x), pc_rtx);
5653 return x;
5656 /* Simplify our comparison, if possible. */
5657 new_code = simplify_comparison (new_code, &op0, &op1);
5659 #ifdef SELECT_CC_MODE
5660 /* If this machine has CC modes other than CCmode, check to see if we
5661 need to use a different CC mode here. */
5662 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5663 compare_mode = GET_MODE (op0);
5664 else
5665 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5667 #ifndef HAVE_cc0
5668 /* If the mode changed, we have to change SET_DEST, the mode in the
5669 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5670 a hard register, just build new versions with the proper mode. If it
5671 is a pseudo, we lose unless it is only time we set the pseudo, in
5672 which case we can safely change its mode. */
5673 if (compare_mode != GET_MODE (dest))
5675 if (can_change_dest_mode (dest, 0, compare_mode))
5677 unsigned int regno = REGNO (dest);
5678 rtx new_dest;
5680 if (regno < FIRST_PSEUDO_REGISTER)
5681 new_dest = gen_rtx_REG (compare_mode, regno);
5682 else
5684 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5685 new_dest = regno_reg_rtx[regno];
5688 SUBST (SET_DEST (x), new_dest);
5689 SUBST (XEXP (*cc_use, 0), new_dest);
5690 other_changed = 1;
5692 dest = new_dest;
5695 #endif /* cc0 */
5696 #endif /* SELECT_CC_MODE */
5698 /* If the code changed, we have to build a new comparison in
5699 undobuf.other_insn. */
5700 if (new_code != old_code)
5702 int other_changed_previously = other_changed;
5703 unsigned HOST_WIDE_INT mask;
5705 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5706 dest, const0_rtx));
5707 other_changed = 1;
5709 /* If the only change we made was to change an EQ into an NE or
5710 vice versa, OP0 has only one bit that might be nonzero, and OP1
5711 is zero, check if changing the user of the condition code will
5712 produce a valid insn. If it won't, we can keep the original code
5713 in that insn by surrounding our operation with an XOR. */
5715 if (((old_code == NE && new_code == EQ)
5716 || (old_code == EQ && new_code == NE))
5717 && ! other_changed_previously && op1 == const0_rtx
5718 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5719 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5721 rtx pat = PATTERN (other_insn), note = 0;
5723 if ((recog_for_combine (&pat, other_insn, &note) < 0
5724 && ! check_asm_operands (pat)))
5726 PUT_CODE (*cc_use, old_code);
5727 other_changed = 0;
5729 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5730 op0, GEN_INT (mask));
5735 if (other_changed)
5736 undobuf.other_insn = other_insn;
5738 #ifdef HAVE_cc0
5739 /* If we are now comparing against zero, change our source if
5740 needed. If we do not use cc0, we always have a COMPARE. */
5741 if (op1 == const0_rtx && dest == cc0_rtx)
5743 SUBST (SET_SRC (x), op0);
5744 src = op0;
5746 else
5747 #endif
5749 /* Otherwise, if we didn't previously have a COMPARE in the
5750 correct mode, we need one. */
5751 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5753 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5754 src = SET_SRC (x);
5756 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5758 SUBST (SET_SRC (x), op0);
5759 src = SET_SRC (x);
5761 /* Otherwise, update the COMPARE if needed. */
5762 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5764 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5765 src = SET_SRC (x);
5768 else
5770 /* Get SET_SRC in a form where we have placed back any
5771 compound expressions. Then do the checks below. */
5772 src = make_compound_operation (src, SET);
5773 SUBST (SET_SRC (x), src);
5776 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5777 and X being a REG or (subreg (reg)), we may be able to convert this to
5778 (set (subreg:m2 x) (op)).
5780 We can always do this if M1 is narrower than M2 because that means that
5781 we only care about the low bits of the result.
5783 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5784 perform a narrower operation than requested since the high-order bits will
5785 be undefined. On machine where it is defined, this transformation is safe
5786 as long as M1 and M2 have the same number of words. */
5788 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5789 && !OBJECT_P (SUBREG_REG (src))
5790 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5791 / UNITS_PER_WORD)
5792 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5793 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5794 #ifndef WORD_REGISTER_OPERATIONS
5795 && (GET_MODE_SIZE (GET_MODE (src))
5796 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5797 #endif
5798 #ifdef CANNOT_CHANGE_MODE_CLASS
5799 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5800 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5801 GET_MODE (SUBREG_REG (src)),
5802 GET_MODE (src)))
5803 #endif
5804 && (REG_P (dest)
5805 || (GET_CODE (dest) == SUBREG
5806 && REG_P (SUBREG_REG (dest)))))
5808 SUBST (SET_DEST (x),
5809 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5810 dest));
5811 SUBST (SET_SRC (x), SUBREG_REG (src));
5813 src = SET_SRC (x), dest = SET_DEST (x);
5816 #ifdef HAVE_cc0
5817 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5818 in SRC. */
5819 if (dest == cc0_rtx
5820 && GET_CODE (src) == SUBREG
5821 && subreg_lowpart_p (src)
5822 && (GET_MODE_BITSIZE (GET_MODE (src))
5823 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5825 rtx inner = SUBREG_REG (src);
5826 enum machine_mode inner_mode = GET_MODE (inner);
5828 /* Here we make sure that we don't have a sign bit on. */
5829 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5830 && (nonzero_bits (inner, inner_mode)
5831 < ((unsigned HOST_WIDE_INT) 1
5832 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5834 SUBST (SET_SRC (x), inner);
5835 src = SET_SRC (x);
5838 #endif
5840 #ifdef LOAD_EXTEND_OP
5841 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5842 would require a paradoxical subreg. Replace the subreg with a
5843 zero_extend to avoid the reload that would otherwise be required. */
5845 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5846 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5847 && SUBREG_BYTE (src) == 0
5848 && (GET_MODE_SIZE (GET_MODE (src))
5849 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5850 && MEM_P (SUBREG_REG (src)))
5852 SUBST (SET_SRC (x),
5853 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5854 GET_MODE (src), SUBREG_REG (src)));
5856 src = SET_SRC (x);
5858 #endif
5860 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5861 are comparing an item known to be 0 or -1 against 0, use a logical
5862 operation instead. Check for one of the arms being an IOR of the other
5863 arm with some value. We compute three terms to be IOR'ed together. In
5864 practice, at most two will be nonzero. Then we do the IOR's. */
5866 if (GET_CODE (dest) != PC
5867 && GET_CODE (src) == IF_THEN_ELSE
5868 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5869 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5870 && XEXP (XEXP (src, 0), 1) == const0_rtx
5871 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5872 #ifdef HAVE_conditional_move
5873 && ! can_conditionally_move_p (GET_MODE (src))
5874 #endif
5875 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5876 GET_MODE (XEXP (XEXP (src, 0), 0)))
5877 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5878 && ! side_effects_p (src))
5880 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5881 ? XEXP (src, 1) : XEXP (src, 2));
5882 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5883 ? XEXP (src, 2) : XEXP (src, 1));
5884 rtx term1 = const0_rtx, term2, term3;
5886 if (GET_CODE (true_rtx) == IOR
5887 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5888 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5889 else if (GET_CODE (true_rtx) == IOR
5890 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5891 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5892 else if (GET_CODE (false_rtx) == IOR
5893 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5894 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5895 else if (GET_CODE (false_rtx) == IOR
5896 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5897 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5899 term2 = simplify_gen_binary (AND, GET_MODE (src),
5900 XEXP (XEXP (src, 0), 0), true_rtx);
5901 term3 = simplify_gen_binary (AND, GET_MODE (src),
5902 simplify_gen_unary (NOT, GET_MODE (src),
5903 XEXP (XEXP (src, 0), 0),
5904 GET_MODE (src)),
5905 false_rtx);
5907 SUBST (SET_SRC (x),
5908 simplify_gen_binary (IOR, GET_MODE (src),
5909 simplify_gen_binary (IOR, GET_MODE (src),
5910 term1, term2),
5911 term3));
5913 src = SET_SRC (x);
5916 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5917 whole thing fail. */
5918 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5919 return src;
5920 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5921 return dest;
5922 else
5923 /* Convert this into a field assignment operation, if possible. */
5924 return make_field_assignment (x);
5927 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5928 result. */
5930 static rtx
5931 simplify_logical (rtx x)
5933 enum machine_mode mode = GET_MODE (x);
5934 rtx op0 = XEXP (x, 0);
5935 rtx op1 = XEXP (x, 1);
5937 switch (GET_CODE (x))
5939 case AND:
5940 /* We can call simplify_and_const_int only if we don't lose
5941 any (sign) bits when converting INTVAL (op1) to
5942 "unsigned HOST_WIDE_INT". */
5943 if (GET_CODE (op1) == CONST_INT
5944 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5945 || INTVAL (op1) > 0))
5947 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5948 if (GET_CODE (x) != AND)
5949 return x;
5951 op0 = XEXP (x, 0);
5952 op1 = XEXP (x, 1);
5955 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5956 apply the distributive law and then the inverse distributive
5957 law to see if things simplify. */
5958 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5960 rtx result = distribute_and_simplify_rtx (x, 0);
5961 if (result)
5962 return result;
5964 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5966 rtx result = distribute_and_simplify_rtx (x, 1);
5967 if (result)
5968 return result;
5970 break;
5972 case IOR:
5973 /* If we have (ior (and A B) C), apply the distributive law and then
5974 the inverse distributive law to see if things simplify. */
5976 if (GET_CODE (op0) == AND)
5978 rtx result = distribute_and_simplify_rtx (x, 0);
5979 if (result)
5980 return result;
5983 if (GET_CODE (op1) == AND)
5985 rtx result = distribute_and_simplify_rtx (x, 1);
5986 if (result)
5987 return result;
5989 break;
5991 default:
5992 gcc_unreachable ();
5995 return x;
5998 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5999 operations" because they can be replaced with two more basic operations.
6000 ZERO_EXTEND is also considered "compound" because it can be replaced with
6001 an AND operation, which is simpler, though only one operation.
6003 The function expand_compound_operation is called with an rtx expression
6004 and will convert it to the appropriate shifts and AND operations,
6005 simplifying at each stage.
6007 The function make_compound_operation is called to convert an expression
6008 consisting of shifts and ANDs into the equivalent compound expression.
6009 It is the inverse of this function, loosely speaking. */
6011 static rtx
6012 expand_compound_operation (rtx x)
6014 unsigned HOST_WIDE_INT pos = 0, len;
6015 int unsignedp = 0;
6016 unsigned int modewidth;
6017 rtx tem;
6019 switch (GET_CODE (x))
6021 case ZERO_EXTEND:
6022 unsignedp = 1;
6023 case SIGN_EXTEND:
6024 /* We can't necessarily use a const_int for a multiword mode;
6025 it depends on implicitly extending the value.
6026 Since we don't know the right way to extend it,
6027 we can't tell whether the implicit way is right.
6029 Even for a mode that is no wider than a const_int,
6030 we can't win, because we need to sign extend one of its bits through
6031 the rest of it, and we don't know which bit. */
6032 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6033 return x;
6035 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6036 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6037 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6038 reloaded. If not for that, MEM's would very rarely be safe.
6040 Reject MODEs bigger than a word, because we might not be able
6041 to reference a two-register group starting with an arbitrary register
6042 (and currently gen_lowpart might crash for a SUBREG). */
6044 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6045 return x;
6047 /* Reject MODEs that aren't scalar integers because turning vector
6048 or complex modes into shifts causes problems. */
6050 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6051 return x;
6053 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6054 /* If the inner object has VOIDmode (the only way this can happen
6055 is if it is an ASM_OPERANDS), we can't do anything since we don't
6056 know how much masking to do. */
6057 if (len == 0)
6058 return x;
6060 break;
6062 case ZERO_EXTRACT:
6063 unsignedp = 1;
6065 /* ... fall through ... */
6067 case SIGN_EXTRACT:
6068 /* If the operand is a CLOBBER, just return it. */
6069 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6070 return XEXP (x, 0);
6072 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6073 || GET_CODE (XEXP (x, 2)) != CONST_INT
6074 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6075 return x;
6077 /* Reject MODEs that aren't scalar integers because turning vector
6078 or complex modes into shifts causes problems. */
6080 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6081 return x;
6083 len = INTVAL (XEXP (x, 1));
6084 pos = INTVAL (XEXP (x, 2));
6086 /* This should stay within the object being extracted, fail otherwise. */
6087 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6088 return x;
6090 if (BITS_BIG_ENDIAN)
6091 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6093 break;
6095 default:
6096 return x;
6098 /* Convert sign extension to zero extension, if we know that the high
6099 bit is not set, as this is easier to optimize. It will be converted
6100 back to cheaper alternative in make_extraction. */
6101 if (GET_CODE (x) == SIGN_EXTEND
6102 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6103 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6104 & ~(((unsigned HOST_WIDE_INT)
6105 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6106 >> 1))
6107 == 0)))
6109 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6110 rtx temp2 = expand_compound_operation (temp);
6112 /* Make sure this is a profitable operation. */
6113 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6114 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6115 return temp2;
6116 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6117 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6118 return temp;
6119 else
6120 return x;
6123 /* We can optimize some special cases of ZERO_EXTEND. */
6124 if (GET_CODE (x) == ZERO_EXTEND)
6126 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6127 know that the last value didn't have any inappropriate bits
6128 set. */
6129 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6130 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6131 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6132 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6133 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6134 return XEXP (XEXP (x, 0), 0);
6136 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6137 if (GET_CODE (XEXP (x, 0)) == SUBREG
6138 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6139 && subreg_lowpart_p (XEXP (x, 0))
6140 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6141 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6142 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6143 return SUBREG_REG (XEXP (x, 0));
6145 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6146 is a comparison and STORE_FLAG_VALUE permits. This is like
6147 the first case, but it works even when GET_MODE (x) is larger
6148 than HOST_WIDE_INT. */
6149 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6150 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6151 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6152 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6153 <= HOST_BITS_PER_WIDE_INT)
6154 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6155 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6156 return XEXP (XEXP (x, 0), 0);
6158 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6159 if (GET_CODE (XEXP (x, 0)) == SUBREG
6160 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6161 && subreg_lowpart_p (XEXP (x, 0))
6162 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6163 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6164 <= HOST_BITS_PER_WIDE_INT)
6165 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6166 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6167 return SUBREG_REG (XEXP (x, 0));
6171 /* If we reach here, we want to return a pair of shifts. The inner
6172 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6173 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6174 logical depending on the value of UNSIGNEDP.
6176 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6177 converted into an AND of a shift.
6179 We must check for the case where the left shift would have a negative
6180 count. This can happen in a case like (x >> 31) & 255 on machines
6181 that can't shift by a constant. On those machines, we would first
6182 combine the shift with the AND to produce a variable-position
6183 extraction. Then the constant of 31 would be substituted in to produce
6184 a such a position. */
6186 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6187 if (modewidth + len >= pos)
6189 enum machine_mode mode = GET_MODE (x);
6190 tem = gen_lowpart (mode, XEXP (x, 0));
6191 if (!tem || GET_CODE (tem) == CLOBBER)
6192 return x;
6193 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6194 tem, modewidth - pos - len);
6195 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6196 mode, tem, modewidth - len);
6198 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6199 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6200 simplify_shift_const (NULL_RTX, LSHIFTRT,
6201 GET_MODE (x),
6202 XEXP (x, 0), pos),
6203 ((HOST_WIDE_INT) 1 << len) - 1);
6204 else
6205 /* Any other cases we can't handle. */
6206 return x;
6208 /* If we couldn't do this for some reason, return the original
6209 expression. */
6210 if (GET_CODE (tem) == CLOBBER)
6211 return x;
6213 return tem;
6216 /* X is a SET which contains an assignment of one object into
6217 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6218 or certain SUBREGS). If possible, convert it into a series of
6219 logical operations.
6221 We half-heartedly support variable positions, but do not at all
6222 support variable lengths. */
6224 static const_rtx
6225 expand_field_assignment (const_rtx x)
6227 rtx inner;
6228 rtx pos; /* Always counts from low bit. */
6229 int len;
6230 rtx mask, cleared, masked;
6231 enum machine_mode compute_mode;
6233 /* Loop until we find something we can't simplify. */
6234 while (1)
6236 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6237 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6239 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6240 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6241 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6243 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6244 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6246 inner = XEXP (SET_DEST (x), 0);
6247 len = INTVAL (XEXP (SET_DEST (x), 1));
6248 pos = XEXP (SET_DEST (x), 2);
6250 /* A constant position should stay within the width of INNER. */
6251 if (GET_CODE (pos) == CONST_INT
6252 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6253 break;
6255 if (BITS_BIG_ENDIAN)
6257 if (GET_CODE (pos) == CONST_INT)
6258 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6259 - INTVAL (pos));
6260 else if (GET_CODE (pos) == MINUS
6261 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6262 && (INTVAL (XEXP (pos, 1))
6263 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6264 /* If position is ADJUST - X, new position is X. */
6265 pos = XEXP (pos, 0);
6266 else
6267 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6268 GEN_INT (GET_MODE_BITSIZE (
6269 GET_MODE (inner))
6270 - len),
6271 pos);
6275 /* A SUBREG between two modes that occupy the same numbers of words
6276 can be done by moving the SUBREG to the source. */
6277 else if (GET_CODE (SET_DEST (x)) == SUBREG
6278 /* We need SUBREGs to compute nonzero_bits properly. */
6279 && nonzero_sign_valid
6280 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6281 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6282 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6283 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6285 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6286 gen_lowpart
6287 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6288 SET_SRC (x)));
6289 continue;
6291 else
6292 break;
6294 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6295 inner = SUBREG_REG (inner);
6297 compute_mode = GET_MODE (inner);
6299 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6300 if (! SCALAR_INT_MODE_P (compute_mode))
6302 enum machine_mode imode;
6304 /* Don't do anything for vector or complex integral types. */
6305 if (! FLOAT_MODE_P (compute_mode))
6306 break;
6308 /* Try to find an integral mode to pun with. */
6309 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6310 if (imode == BLKmode)
6311 break;
6313 compute_mode = imode;
6314 inner = gen_lowpart (imode, inner);
6317 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6318 if (len >= HOST_BITS_PER_WIDE_INT)
6319 break;
6321 /* Now compute the equivalent expression. Make a copy of INNER
6322 for the SET_DEST in case it is a MEM into which we will substitute;
6323 we don't want shared RTL in that case. */
6324 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6325 cleared = simplify_gen_binary (AND, compute_mode,
6326 simplify_gen_unary (NOT, compute_mode,
6327 simplify_gen_binary (ASHIFT,
6328 compute_mode,
6329 mask, pos),
6330 compute_mode),
6331 inner);
6332 masked = simplify_gen_binary (ASHIFT, compute_mode,
6333 simplify_gen_binary (
6334 AND, compute_mode,
6335 gen_lowpart (compute_mode, SET_SRC (x)),
6336 mask),
6337 pos);
6339 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6340 simplify_gen_binary (IOR, compute_mode,
6341 cleared, masked));
6344 return x;
6347 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6348 it is an RTX that represents a variable starting position; otherwise,
6349 POS is the (constant) starting bit position (counted from the LSB).
6351 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6352 signed reference.
6354 IN_DEST is nonzero if this is a reference in the destination of a
6355 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6356 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6357 be used.
6359 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6360 ZERO_EXTRACT should be built even for bits starting at bit 0.
6362 MODE is the desired mode of the result (if IN_DEST == 0).
6364 The result is an RTX for the extraction or NULL_RTX if the target
6365 can't handle it. */
6367 static rtx
6368 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6369 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6370 int in_dest, int in_compare)
6372 /* This mode describes the size of the storage area
6373 to fetch the overall value from. Within that, we
6374 ignore the POS lowest bits, etc. */
6375 enum machine_mode is_mode = GET_MODE (inner);
6376 enum machine_mode inner_mode;
6377 enum machine_mode wanted_inner_mode;
6378 enum machine_mode wanted_inner_reg_mode = word_mode;
6379 enum machine_mode pos_mode = word_mode;
6380 enum machine_mode extraction_mode = word_mode;
6381 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6382 rtx new_rtx = 0;
6383 rtx orig_pos_rtx = pos_rtx;
6384 HOST_WIDE_INT orig_pos;
6386 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6388 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6389 consider just the QI as the memory to extract from.
6390 The subreg adds or removes high bits; its mode is
6391 irrelevant to the meaning of this extraction,
6392 since POS and LEN count from the lsb. */
6393 if (MEM_P (SUBREG_REG (inner)))
6394 is_mode = GET_MODE (SUBREG_REG (inner));
6395 inner = SUBREG_REG (inner);
6397 else if (GET_CODE (inner) == ASHIFT
6398 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6399 && pos_rtx == 0 && pos == 0
6400 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6402 /* We're extracting the least significant bits of an rtx
6403 (ashift X (const_int C)), where LEN > C. Extract the
6404 least significant (LEN - C) bits of X, giving an rtx
6405 whose mode is MODE, then shift it left C times. */
6406 new_rtx = make_extraction (mode, XEXP (inner, 0),
6407 0, 0, len - INTVAL (XEXP (inner, 1)),
6408 unsignedp, in_dest, in_compare);
6409 if (new_rtx != 0)
6410 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6413 inner_mode = GET_MODE (inner);
6415 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6416 pos = INTVAL (pos_rtx), pos_rtx = 0;
6418 /* See if this can be done without an extraction. We never can if the
6419 width of the field is not the same as that of some integer mode. For
6420 registers, we can only avoid the extraction if the position is at the
6421 low-order bit and this is either not in the destination or we have the
6422 appropriate STRICT_LOW_PART operation available.
6424 For MEM, we can avoid an extract if the field starts on an appropriate
6425 boundary and we can change the mode of the memory reference. */
6427 if (tmode != BLKmode
6428 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6429 && !MEM_P (inner)
6430 && (inner_mode == tmode
6431 || !REG_P (inner)
6432 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6433 GET_MODE_BITSIZE (inner_mode))
6434 || reg_truncated_to_mode (tmode, inner))
6435 && (! in_dest
6436 || (REG_P (inner)
6437 && have_insn_for (STRICT_LOW_PART, tmode))))
6438 || (MEM_P (inner) && pos_rtx == 0
6439 && (pos
6440 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6441 : BITS_PER_UNIT)) == 0
6442 /* We can't do this if we are widening INNER_MODE (it
6443 may not be aligned, for one thing). */
6444 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6445 && (inner_mode == tmode
6446 || (! mode_dependent_address_p (XEXP (inner, 0))
6447 && ! MEM_VOLATILE_P (inner))))))
6449 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6450 field. If the original and current mode are the same, we need not
6451 adjust the offset. Otherwise, we do if bytes big endian.
6453 If INNER is not a MEM, get a piece consisting of just the field
6454 of interest (in this case POS % BITS_PER_WORD must be 0). */
6456 if (MEM_P (inner))
6458 HOST_WIDE_INT offset;
6460 /* POS counts from lsb, but make OFFSET count in memory order. */
6461 if (BYTES_BIG_ENDIAN)
6462 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6463 else
6464 offset = pos / BITS_PER_UNIT;
6466 new_rtx = adjust_address_nv (inner, tmode, offset);
6468 else if (REG_P (inner))
6470 if (tmode != inner_mode)
6472 /* We can't call gen_lowpart in a DEST since we
6473 always want a SUBREG (see below) and it would sometimes
6474 return a new hard register. */
6475 if (pos || in_dest)
6477 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6479 if (WORDS_BIG_ENDIAN
6480 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6481 final_word = ((GET_MODE_SIZE (inner_mode)
6482 - GET_MODE_SIZE (tmode))
6483 / UNITS_PER_WORD) - final_word;
6485 final_word *= UNITS_PER_WORD;
6486 if (BYTES_BIG_ENDIAN &&
6487 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6488 final_word += (GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6491 /* Avoid creating invalid subregs, for example when
6492 simplifying (x>>32)&255. */
6493 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6494 return NULL_RTX;
6496 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6498 else
6499 new_rtx = gen_lowpart (tmode, inner);
6501 else
6502 new_rtx = inner;
6504 else
6505 new_rtx = force_to_mode (inner, tmode,
6506 len >= HOST_BITS_PER_WIDE_INT
6507 ? ~(unsigned HOST_WIDE_INT) 0
6508 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6511 /* If this extraction is going into the destination of a SET,
6512 make a STRICT_LOW_PART unless we made a MEM. */
6514 if (in_dest)
6515 return (MEM_P (new_rtx) ? new_rtx
6516 : (GET_CODE (new_rtx) != SUBREG
6517 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6518 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6520 if (mode == tmode)
6521 return new_rtx;
6523 if (GET_CODE (new_rtx) == CONST_INT)
6524 return gen_int_mode (INTVAL (new_rtx), mode);
6526 /* If we know that no extraneous bits are set, and that the high
6527 bit is not set, convert the extraction to the cheaper of
6528 sign and zero extension, that are equivalent in these cases. */
6529 if (flag_expensive_optimizations
6530 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6531 && ((nonzero_bits (new_rtx, tmode)
6532 & ~(((unsigned HOST_WIDE_INT)
6533 GET_MODE_MASK (tmode))
6534 >> 1))
6535 == 0)))
6537 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6538 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6540 /* Prefer ZERO_EXTENSION, since it gives more information to
6541 backends. */
6542 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6543 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6544 return temp;
6545 return temp1;
6548 /* Otherwise, sign- or zero-extend unless we already are in the
6549 proper mode. */
6551 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6552 mode, new_rtx));
6555 /* Unless this is a COMPARE or we have a funny memory reference,
6556 don't do anything with zero-extending field extracts starting at
6557 the low-order bit since they are simple AND operations. */
6558 if (pos_rtx == 0 && pos == 0 && ! in_dest
6559 && ! in_compare && unsignedp)
6560 return 0;
6562 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6563 if the position is not a constant and the length is not 1. In all
6564 other cases, we would only be going outside our object in cases when
6565 an original shift would have been undefined. */
6566 if (MEM_P (inner)
6567 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6568 || (pos_rtx != 0 && len != 1)))
6569 return 0;
6571 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6572 and the mode for the result. */
6573 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6575 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6576 pos_mode = mode_for_extraction (EP_insv, 2);
6577 extraction_mode = mode_for_extraction (EP_insv, 3);
6580 if (! in_dest && unsignedp
6581 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6583 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6584 pos_mode = mode_for_extraction (EP_extzv, 3);
6585 extraction_mode = mode_for_extraction (EP_extzv, 0);
6588 if (! in_dest && ! unsignedp
6589 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6591 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6592 pos_mode = mode_for_extraction (EP_extv, 3);
6593 extraction_mode = mode_for_extraction (EP_extv, 0);
6596 /* Never narrow an object, since that might not be safe. */
6598 if (mode != VOIDmode
6599 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6600 extraction_mode = mode;
6602 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6603 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6604 pos_mode = GET_MODE (pos_rtx);
6606 /* If this is not from memory, the desired mode is the preferred mode
6607 for an extraction pattern's first input operand, or word_mode if there
6608 is none. */
6609 if (!MEM_P (inner))
6610 wanted_inner_mode = wanted_inner_reg_mode;
6611 else
6613 /* Be careful not to go beyond the extracted object and maintain the
6614 natural alignment of the memory. */
6615 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6616 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6617 > GET_MODE_BITSIZE (wanted_inner_mode))
6619 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6620 gcc_assert (wanted_inner_mode != VOIDmode);
6623 /* If we have to change the mode of memory and cannot, the desired mode
6624 is EXTRACTION_MODE. */
6625 if (inner_mode != wanted_inner_mode
6626 && (mode_dependent_address_p (XEXP (inner, 0))
6627 || MEM_VOLATILE_P (inner)
6628 || pos_rtx))
6629 wanted_inner_mode = extraction_mode;
6632 orig_pos = pos;
6634 if (BITS_BIG_ENDIAN)
6636 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6637 BITS_BIG_ENDIAN style. If position is constant, compute new
6638 position. Otherwise, build subtraction.
6639 Note that POS is relative to the mode of the original argument.
6640 If it's a MEM we need to recompute POS relative to that.
6641 However, if we're extracting from (or inserting into) a register,
6642 we want to recompute POS relative to wanted_inner_mode. */
6643 int width = (MEM_P (inner)
6644 ? GET_MODE_BITSIZE (is_mode)
6645 : GET_MODE_BITSIZE (wanted_inner_mode));
6647 if (pos_rtx == 0)
6648 pos = width - len - pos;
6649 else
6650 pos_rtx
6651 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6652 /* POS may be less than 0 now, but we check for that below.
6653 Note that it can only be less than 0 if !MEM_P (inner). */
6656 /* If INNER has a wider mode, and this is a constant extraction, try to
6657 make it smaller and adjust the byte to point to the byte containing
6658 the value. */
6659 if (wanted_inner_mode != VOIDmode
6660 && inner_mode != wanted_inner_mode
6661 && ! pos_rtx
6662 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6663 && MEM_P (inner)
6664 && ! mode_dependent_address_p (XEXP (inner, 0))
6665 && ! MEM_VOLATILE_P (inner))
6667 int offset = 0;
6669 /* The computations below will be correct if the machine is big
6670 endian in both bits and bytes or little endian in bits and bytes.
6671 If it is mixed, we must adjust. */
6673 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6674 adjust OFFSET to compensate. */
6675 if (BYTES_BIG_ENDIAN
6676 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6677 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6679 /* We can now move to the desired byte. */
6680 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6681 * GET_MODE_SIZE (wanted_inner_mode);
6682 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6684 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6685 && is_mode != wanted_inner_mode)
6686 offset = (GET_MODE_SIZE (is_mode)
6687 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6689 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6692 /* If INNER is not memory, we can always get it into the proper mode. If we
6693 are changing its mode, POS must be a constant and smaller than the size
6694 of the new mode. */
6695 else if (!MEM_P (inner))
6697 if (GET_MODE (inner) != wanted_inner_mode
6698 && (pos_rtx != 0
6699 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6700 return 0;
6702 if (orig_pos < 0)
6703 return 0;
6705 inner = force_to_mode (inner, wanted_inner_mode,
6706 pos_rtx
6707 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6708 ? ~(unsigned HOST_WIDE_INT) 0
6709 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6710 << orig_pos),
6714 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6715 have to zero extend. Otherwise, we can just use a SUBREG. */
6716 if (pos_rtx != 0
6717 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6719 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6721 /* If we know that no extraneous bits are set, and that the high
6722 bit is not set, convert extraction to cheaper one - either
6723 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6724 cases. */
6725 if (flag_expensive_optimizations
6726 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6727 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6728 & ~(((unsigned HOST_WIDE_INT)
6729 GET_MODE_MASK (GET_MODE (pos_rtx)))
6730 >> 1))
6731 == 0)))
6733 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6735 /* Prefer ZERO_EXTENSION, since it gives more information to
6736 backends. */
6737 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6738 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6739 temp = temp1;
6741 pos_rtx = temp;
6743 else if (pos_rtx != 0
6744 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6745 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6747 /* Make POS_RTX unless we already have it and it is correct. If we don't
6748 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6749 be a CONST_INT. */
6750 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6751 pos_rtx = orig_pos_rtx;
6753 else if (pos_rtx == 0)
6754 pos_rtx = GEN_INT (pos);
6756 /* Make the required operation. See if we can use existing rtx. */
6757 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6758 extraction_mode, inner, GEN_INT (len), pos_rtx);
6759 if (! in_dest)
6760 new_rtx = gen_lowpart (mode, new_rtx);
6762 return new_rtx;
6765 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6766 with any other operations in X. Return X without that shift if so. */
6768 static rtx
6769 extract_left_shift (rtx x, int count)
6771 enum rtx_code code = GET_CODE (x);
6772 enum machine_mode mode = GET_MODE (x);
6773 rtx tem;
6775 switch (code)
6777 case ASHIFT:
6778 /* This is the shift itself. If it is wide enough, we will return
6779 either the value being shifted if the shift count is equal to
6780 COUNT or a shift for the difference. */
6781 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6782 && INTVAL (XEXP (x, 1)) >= count)
6783 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6784 INTVAL (XEXP (x, 1)) - count);
6785 break;
6787 case NEG: case NOT:
6788 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6789 return simplify_gen_unary (code, mode, tem, mode);
6791 break;
6793 case PLUS: case IOR: case XOR: case AND:
6794 /* If we can safely shift this constant and we find the inner shift,
6795 make a new operation. */
6796 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6797 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6798 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6799 return simplify_gen_binary (code, mode, tem,
6800 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6802 break;
6804 default:
6805 break;
6808 return 0;
6811 /* Look at the expression rooted at X. Look for expressions
6812 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6813 Form these expressions.
6815 Return the new rtx, usually just X.
6817 Also, for machines like the VAX that don't have logical shift insns,
6818 try to convert logical to arithmetic shift operations in cases where
6819 they are equivalent. This undoes the canonicalizations to logical
6820 shifts done elsewhere.
6822 We try, as much as possible, to re-use rtl expressions to save memory.
6824 IN_CODE says what kind of expression we are processing. Normally, it is
6825 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6826 being kludges), it is MEM. When processing the arguments of a comparison
6827 or a COMPARE against zero, it is COMPARE. */
6829 static rtx
6830 make_compound_operation (rtx x, enum rtx_code in_code)
6832 enum rtx_code code = GET_CODE (x);
6833 enum machine_mode mode = GET_MODE (x);
6834 int mode_width = GET_MODE_BITSIZE (mode);
6835 rtx rhs, lhs;
6836 enum rtx_code next_code;
6837 int i;
6838 rtx new_rtx = 0;
6839 rtx tem;
6840 const char *fmt;
6842 /* Select the code to be used in recursive calls. Once we are inside an
6843 address, we stay there. If we have a comparison, set to COMPARE,
6844 but once inside, go back to our default of SET. */
6846 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6847 : ((code == COMPARE || COMPARISON_P (x))
6848 && XEXP (x, 1) == const0_rtx) ? COMPARE
6849 : in_code == COMPARE ? SET : in_code);
6851 /* Process depending on the code of this operation. If NEW is set
6852 nonzero, it will be returned. */
6854 switch (code)
6856 case ASHIFT:
6857 /* Convert shifts by constants into multiplications if inside
6858 an address. */
6859 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6860 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6861 && INTVAL (XEXP (x, 1)) >= 0)
6863 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6864 new_rtx = gen_rtx_MULT (mode, new_rtx,
6865 GEN_INT ((HOST_WIDE_INT) 1
6866 << INTVAL (XEXP (x, 1))));
6868 break;
6870 case AND:
6871 /* If the second operand is not a constant, we can't do anything
6872 with it. */
6873 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6874 break;
6876 /* If the constant is a power of two minus one and the first operand
6877 is a logical right shift, make an extraction. */
6878 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6879 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6881 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6882 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6883 0, in_code == COMPARE);
6886 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6887 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6888 && subreg_lowpart_p (XEXP (x, 0))
6889 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6890 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6892 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6893 next_code);
6894 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6895 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6896 0, in_code == COMPARE);
6898 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6899 else if ((GET_CODE (XEXP (x, 0)) == XOR
6900 || GET_CODE (XEXP (x, 0)) == IOR)
6901 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6902 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6903 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6905 /* Apply the distributive law, and then try to make extractions. */
6906 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6907 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6908 XEXP (x, 1)),
6909 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6910 XEXP (x, 1)));
6911 new_rtx = make_compound_operation (new_rtx, in_code);
6914 /* If we are have (and (rotate X C) M) and C is larger than the number
6915 of bits in M, this is an extraction. */
6917 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6918 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6919 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6920 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6922 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6923 new_rtx = make_extraction (mode, new_rtx,
6924 (GET_MODE_BITSIZE (mode)
6925 - INTVAL (XEXP (XEXP (x, 0), 1))),
6926 NULL_RTX, i, 1, 0, in_code == COMPARE);
6929 /* On machines without logical shifts, if the operand of the AND is
6930 a logical shift and our mask turns off all the propagated sign
6931 bits, we can replace the logical shift with an arithmetic shift. */
6932 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6933 && !have_insn_for (LSHIFTRT, mode)
6934 && have_insn_for (ASHIFTRT, mode)
6935 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6936 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6937 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6938 && mode_width <= HOST_BITS_PER_WIDE_INT)
6940 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6942 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6943 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6944 SUBST (XEXP (x, 0),
6945 gen_rtx_ASHIFTRT (mode,
6946 make_compound_operation
6947 (XEXP (XEXP (x, 0), 0), next_code),
6948 XEXP (XEXP (x, 0), 1)));
6951 /* If the constant is one less than a power of two, this might be
6952 representable by an extraction even if no shift is present.
6953 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6954 we are in a COMPARE. */
6955 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6956 new_rtx = make_extraction (mode,
6957 make_compound_operation (XEXP (x, 0),
6958 next_code),
6959 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6961 /* If we are in a comparison and this is an AND with a power of two,
6962 convert this into the appropriate bit extract. */
6963 else if (in_code == COMPARE
6964 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6965 new_rtx = make_extraction (mode,
6966 make_compound_operation (XEXP (x, 0),
6967 next_code),
6968 i, NULL_RTX, 1, 1, 0, 1);
6970 break;
6972 case LSHIFTRT:
6973 /* If the sign bit is known to be zero, replace this with an
6974 arithmetic shift. */
6975 if (have_insn_for (ASHIFTRT, mode)
6976 && ! have_insn_for (LSHIFTRT, mode)
6977 && mode_width <= HOST_BITS_PER_WIDE_INT
6978 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6980 new_rtx = gen_rtx_ASHIFTRT (mode,
6981 make_compound_operation (XEXP (x, 0),
6982 next_code),
6983 XEXP (x, 1));
6984 break;
6987 /* ... fall through ... */
6989 case ASHIFTRT:
6990 lhs = XEXP (x, 0);
6991 rhs = XEXP (x, 1);
6993 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6994 this is a SIGN_EXTRACT. */
6995 if (GET_CODE (rhs) == CONST_INT
6996 && GET_CODE (lhs) == ASHIFT
6997 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6998 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
7000 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7001 new_rtx = make_extraction (mode, new_rtx,
7002 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7003 NULL_RTX, mode_width - INTVAL (rhs),
7004 code == LSHIFTRT, 0, in_code == COMPARE);
7005 break;
7008 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7009 If so, try to merge the shifts into a SIGN_EXTEND. We could
7010 also do this for some cases of SIGN_EXTRACT, but it doesn't
7011 seem worth the effort; the case checked for occurs on Alpha. */
7013 if (!OBJECT_P (lhs)
7014 && ! (GET_CODE (lhs) == SUBREG
7015 && (OBJECT_P (SUBREG_REG (lhs))))
7016 && GET_CODE (rhs) == CONST_INT
7017 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7018 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7019 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7020 0, NULL_RTX, mode_width - INTVAL (rhs),
7021 code == LSHIFTRT, 0, in_code == COMPARE);
7023 break;
7025 case SUBREG:
7026 /* Call ourselves recursively on the inner expression. If we are
7027 narrowing the object and it has a different RTL code from
7028 what it originally did, do this SUBREG as a force_to_mode. */
7030 tem = make_compound_operation (SUBREG_REG (x), in_code);
7033 rtx simplified;
7034 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7035 SUBREG_BYTE (x));
7037 if (simplified)
7038 tem = simplified;
7040 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7041 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7042 && subreg_lowpart_p (x))
7044 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7047 /* If we have something other than a SUBREG, we might have
7048 done an expansion, so rerun ourselves. */
7049 if (GET_CODE (newer) != SUBREG)
7050 newer = make_compound_operation (newer, in_code);
7052 return newer;
7055 if (simplified)
7056 return tem;
7058 break;
7060 default:
7061 break;
7064 if (new_rtx)
7066 x = gen_lowpart (mode, new_rtx);
7067 code = GET_CODE (x);
7070 /* Now recursively process each operand of this operation. */
7071 fmt = GET_RTX_FORMAT (code);
7072 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7073 if (fmt[i] == 'e')
7075 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7076 SUBST (XEXP (x, i), new_rtx);
7079 /* If this is a commutative operation, the changes to the operands
7080 may have made it noncanonical. */
7081 if (COMMUTATIVE_ARITH_P (x)
7082 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7084 tem = XEXP (x, 0);
7085 SUBST (XEXP (x, 0), XEXP (x, 1));
7086 SUBST (XEXP (x, 1), tem);
7089 return x;
7092 /* Given M see if it is a value that would select a field of bits
7093 within an item, but not the entire word. Return -1 if not.
7094 Otherwise, return the starting position of the field, where 0 is the
7095 low-order bit.
7097 *PLEN is set to the length of the field. */
7099 static int
7100 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7102 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7103 int pos = exact_log2 (m & -m);
7104 int len = 0;
7106 if (pos >= 0)
7107 /* Now shift off the low-order zero bits and see if we have a
7108 power of two minus 1. */
7109 len = exact_log2 ((m >> pos) + 1);
7111 if (len <= 0)
7112 pos = -1;
7114 *plen = len;
7115 return pos;
7118 /* If X refers to a register that equals REG in value, replace these
7119 references with REG. */
7120 static rtx
7121 canon_reg_for_combine (rtx x, rtx reg)
7123 rtx op0, op1, op2;
7124 const char *fmt;
7125 int i;
7126 bool copied;
7128 enum rtx_code code = GET_CODE (x);
7129 switch (GET_RTX_CLASS (code))
7131 case RTX_UNARY:
7132 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7133 if (op0 != XEXP (x, 0))
7134 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7135 GET_MODE (reg));
7136 break;
7138 case RTX_BIN_ARITH:
7139 case RTX_COMM_ARITH:
7140 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7141 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7142 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7143 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7144 break;
7146 case RTX_COMPARE:
7147 case RTX_COMM_COMPARE:
7148 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7149 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7150 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7151 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7152 GET_MODE (op0), op0, op1);
7153 break;
7155 case RTX_TERNARY:
7156 case RTX_BITFIELD_OPS:
7157 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7158 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7159 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7160 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7161 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7162 GET_MODE (op0), op0, op1, op2);
7164 case RTX_OBJ:
7165 if (REG_P (x))
7167 if (rtx_equal_p (get_last_value (reg), x)
7168 || rtx_equal_p (reg, get_last_value (x)))
7169 return reg;
7170 else
7171 break;
7174 /* fall through */
7176 default:
7177 fmt = GET_RTX_FORMAT (code);
7178 copied = false;
7179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7180 if (fmt[i] == 'e')
7182 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7183 if (op != XEXP (x, i))
7185 if (!copied)
7187 copied = true;
7188 x = copy_rtx (x);
7190 XEXP (x, i) = op;
7193 else if (fmt[i] == 'E')
7195 int j;
7196 for (j = 0; j < XVECLEN (x, i); j++)
7198 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7199 if (op != XVECEXP (x, i, j))
7201 if (!copied)
7203 copied = true;
7204 x = copy_rtx (x);
7206 XVECEXP (x, i, j) = op;
7211 break;
7214 return x;
7217 /* Return X converted to MODE. If the value is already truncated to
7218 MODE we can just return a subreg even though in the general case we
7219 would need an explicit truncation. */
7221 static rtx
7222 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7224 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7225 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7226 GET_MODE_BITSIZE (GET_MODE (x)))
7227 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7228 return gen_lowpart (mode, x);
7229 else
7230 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7233 /* See if X can be simplified knowing that we will only refer to it in
7234 MODE and will only refer to those bits that are nonzero in MASK.
7235 If other bits are being computed or if masking operations are done
7236 that select a superset of the bits in MASK, they can sometimes be
7237 ignored.
7239 Return a possibly simplified expression, but always convert X to
7240 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7242 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7243 are all off in X. This is used when X will be complemented, by either
7244 NOT, NEG, or XOR. */
7246 static rtx
7247 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7248 int just_select)
7250 enum rtx_code code = GET_CODE (x);
7251 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7252 enum machine_mode op_mode;
7253 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7254 rtx op0, op1, temp;
7256 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7257 code below will do the wrong thing since the mode of such an
7258 expression is VOIDmode.
7260 Also do nothing if X is a CLOBBER; this can happen if X was
7261 the return value from a call to gen_lowpart. */
7262 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7263 return x;
7265 /* We want to perform the operation is its present mode unless we know
7266 that the operation is valid in MODE, in which case we do the operation
7267 in MODE. */
7268 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7269 && have_insn_for (code, mode))
7270 ? mode : GET_MODE (x));
7272 /* It is not valid to do a right-shift in a narrower mode
7273 than the one it came in with. */
7274 if ((code == LSHIFTRT || code == ASHIFTRT)
7275 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7276 op_mode = GET_MODE (x);
7278 /* Truncate MASK to fit OP_MODE. */
7279 if (op_mode)
7280 mask &= GET_MODE_MASK (op_mode);
7282 /* When we have an arithmetic operation, or a shift whose count we
7283 do not know, we need to assume that all bits up to the highest-order
7284 bit in MASK will be needed. This is how we form such a mask. */
7285 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7286 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7287 else
7288 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7289 - 1);
7291 /* Determine what bits of X are guaranteed to be (non)zero. */
7292 nonzero = nonzero_bits (x, mode);
7294 /* If none of the bits in X are needed, return a zero. */
7295 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7296 x = const0_rtx;
7298 /* If X is a CONST_INT, return a new one. Do this here since the
7299 test below will fail. */
7300 if (GET_CODE (x) == CONST_INT)
7302 if (SCALAR_INT_MODE_P (mode))
7303 return gen_int_mode (INTVAL (x) & mask, mode);
7304 else
7306 x = GEN_INT (INTVAL (x) & mask);
7307 return gen_lowpart_common (mode, x);
7311 /* If X is narrower than MODE and we want all the bits in X's mode, just
7312 get X in the proper mode. */
7313 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7314 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7315 return gen_lowpart (mode, x);
7317 switch (code)
7319 case CLOBBER:
7320 /* If X is a (clobber (const_int)), return it since we know we are
7321 generating something that won't match. */
7322 return x;
7324 case SIGN_EXTEND:
7325 case ZERO_EXTEND:
7326 case ZERO_EXTRACT:
7327 case SIGN_EXTRACT:
7328 x = expand_compound_operation (x);
7329 if (GET_CODE (x) != code)
7330 return force_to_mode (x, mode, mask, next_select);
7331 break;
7333 case SUBREG:
7334 if (subreg_lowpart_p (x)
7335 /* We can ignore the effect of this SUBREG if it narrows the mode or
7336 if the constant masks to zero all the bits the mode doesn't
7337 have. */
7338 && ((GET_MODE_SIZE (GET_MODE (x))
7339 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7340 || (0 == (mask
7341 & GET_MODE_MASK (GET_MODE (x))
7342 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7343 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7344 break;
7346 case AND:
7347 /* If this is an AND with a constant, convert it into an AND
7348 whose constant is the AND of that constant with MASK. If it
7349 remains an AND of MASK, delete it since it is redundant. */
7351 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7353 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7354 mask & INTVAL (XEXP (x, 1)));
7356 /* If X is still an AND, see if it is an AND with a mask that
7357 is just some low-order bits. If so, and it is MASK, we don't
7358 need it. */
7360 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7361 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7362 == mask))
7363 x = XEXP (x, 0);
7365 /* If it remains an AND, try making another AND with the bits
7366 in the mode mask that aren't in MASK turned on. If the
7367 constant in the AND is wide enough, this might make a
7368 cheaper constant. */
7370 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7371 && GET_MODE_MASK (GET_MODE (x)) != mask
7372 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7374 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7375 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7376 int width = GET_MODE_BITSIZE (GET_MODE (x));
7377 rtx y;
7379 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7380 number, sign extend it. */
7381 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7382 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7383 cval |= (HOST_WIDE_INT) -1 << width;
7385 y = simplify_gen_binary (AND, GET_MODE (x),
7386 XEXP (x, 0), GEN_INT (cval));
7387 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7388 < rtx_cost (x, SET, optimize_this_for_speed_p))
7389 x = y;
7392 break;
7395 goto binop;
7397 case PLUS:
7398 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7399 low-order bits (as in an alignment operation) and FOO is already
7400 aligned to that boundary, mask C1 to that boundary as well.
7401 This may eliminate that PLUS and, later, the AND. */
7404 unsigned int width = GET_MODE_BITSIZE (mode);
7405 unsigned HOST_WIDE_INT smask = mask;
7407 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7408 number, sign extend it. */
7410 if (width < HOST_BITS_PER_WIDE_INT
7411 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7412 smask |= (HOST_WIDE_INT) -1 << width;
7414 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7415 && exact_log2 (- smask) >= 0
7416 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7417 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7418 return force_to_mode (plus_constant (XEXP (x, 0),
7419 (INTVAL (XEXP (x, 1)) & smask)),
7420 mode, smask, next_select);
7423 /* ... fall through ... */
7425 case MULT:
7426 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7427 most significant bit in MASK since carries from those bits will
7428 affect the bits we are interested in. */
7429 mask = fuller_mask;
7430 goto binop;
7432 case MINUS:
7433 /* If X is (minus C Y) where C's least set bit is larger than any bit
7434 in the mask, then we may replace with (neg Y). */
7435 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7436 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7437 & -INTVAL (XEXP (x, 0))))
7438 > mask))
7440 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7441 GET_MODE (x));
7442 return force_to_mode (x, mode, mask, next_select);
7445 /* Similarly, if C contains every bit in the fuller_mask, then we may
7446 replace with (not Y). */
7447 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7448 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7449 == INTVAL (XEXP (x, 0))))
7451 x = simplify_gen_unary (NOT, GET_MODE (x),
7452 XEXP (x, 1), GET_MODE (x));
7453 return force_to_mode (x, mode, mask, next_select);
7456 mask = fuller_mask;
7457 goto binop;
7459 case IOR:
7460 case XOR:
7461 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7462 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7463 operation which may be a bitfield extraction. Ensure that the
7464 constant we form is not wider than the mode of X. */
7466 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7467 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7468 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7469 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7470 && GET_CODE (XEXP (x, 1)) == CONST_INT
7471 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7472 + floor_log2 (INTVAL (XEXP (x, 1))))
7473 < GET_MODE_BITSIZE (GET_MODE (x)))
7474 && (INTVAL (XEXP (x, 1))
7475 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7477 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7478 << INTVAL (XEXP (XEXP (x, 0), 1)));
7479 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7480 XEXP (XEXP (x, 0), 0), temp);
7481 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7482 XEXP (XEXP (x, 0), 1));
7483 return force_to_mode (x, mode, mask, next_select);
7486 binop:
7487 /* For most binary operations, just propagate into the operation and
7488 change the mode if we have an operation of that mode. */
7490 op0 = gen_lowpart_or_truncate (op_mode,
7491 force_to_mode (XEXP (x, 0), mode, mask,
7492 next_select));
7493 op1 = gen_lowpart_or_truncate (op_mode,
7494 force_to_mode (XEXP (x, 1), mode, mask,
7495 next_select));
7497 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7498 x = simplify_gen_binary (code, op_mode, op0, op1);
7499 break;
7501 case ASHIFT:
7502 /* For left shifts, do the same, but just for the first operand.
7503 However, we cannot do anything with shifts where we cannot
7504 guarantee that the counts are smaller than the size of the mode
7505 because such a count will have a different meaning in a
7506 wider mode. */
7508 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7509 && INTVAL (XEXP (x, 1)) >= 0
7510 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7511 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7512 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7513 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7514 break;
7516 /* If the shift count is a constant and we can do arithmetic in
7517 the mode of the shift, refine which bits we need. Otherwise, use the
7518 conservative form of the mask. */
7519 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7520 && INTVAL (XEXP (x, 1)) >= 0
7521 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7522 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7523 mask >>= INTVAL (XEXP (x, 1));
7524 else
7525 mask = fuller_mask;
7527 op0 = gen_lowpart_or_truncate (op_mode,
7528 force_to_mode (XEXP (x, 0), op_mode,
7529 mask, next_select));
7531 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7532 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7533 break;
7535 case LSHIFTRT:
7536 /* Here we can only do something if the shift count is a constant,
7537 this shift constant is valid for the host, and we can do arithmetic
7538 in OP_MODE. */
7540 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7541 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7542 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7544 rtx inner = XEXP (x, 0);
7545 unsigned HOST_WIDE_INT inner_mask;
7547 /* Select the mask of the bits we need for the shift operand. */
7548 inner_mask = mask << INTVAL (XEXP (x, 1));
7550 /* We can only change the mode of the shift if we can do arithmetic
7551 in the mode of the shift and INNER_MASK is no wider than the
7552 width of X's mode. */
7553 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7554 op_mode = GET_MODE (x);
7556 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7558 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7559 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7562 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7563 shift and AND produces only copies of the sign bit (C2 is one less
7564 than a power of two), we can do this with just a shift. */
7566 if (GET_CODE (x) == LSHIFTRT
7567 && GET_CODE (XEXP (x, 1)) == CONST_INT
7568 /* The shift puts one of the sign bit copies in the least significant
7569 bit. */
7570 && ((INTVAL (XEXP (x, 1))
7571 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7572 >= GET_MODE_BITSIZE (GET_MODE (x)))
7573 && exact_log2 (mask + 1) >= 0
7574 /* Number of bits left after the shift must be more than the mask
7575 needs. */
7576 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7577 <= GET_MODE_BITSIZE (GET_MODE (x)))
7578 /* Must be more sign bit copies than the mask needs. */
7579 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7580 >= exact_log2 (mask + 1)))
7581 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7582 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7583 - exact_log2 (mask + 1)));
7585 goto shiftrt;
7587 case ASHIFTRT:
7588 /* If we are just looking for the sign bit, we don't need this shift at
7589 all, even if it has a variable count. */
7590 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7591 && (mask == ((unsigned HOST_WIDE_INT) 1
7592 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7593 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7595 /* If this is a shift by a constant, get a mask that contains those bits
7596 that are not copies of the sign bit. We then have two cases: If
7597 MASK only includes those bits, this can be a logical shift, which may
7598 allow simplifications. If MASK is a single-bit field not within
7599 those bits, we are requesting a copy of the sign bit and hence can
7600 shift the sign bit to the appropriate location. */
7602 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7603 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7605 int i;
7607 /* If the considered data is wider than HOST_WIDE_INT, we can't
7608 represent a mask for all its bits in a single scalar.
7609 But we only care about the lower bits, so calculate these. */
7611 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7613 nonzero = ~(HOST_WIDE_INT) 0;
7615 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7616 is the number of bits a full-width mask would have set.
7617 We need only shift if these are fewer than nonzero can
7618 hold. If not, we must keep all bits set in nonzero. */
7620 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7621 < HOST_BITS_PER_WIDE_INT)
7622 nonzero >>= INTVAL (XEXP (x, 1))
7623 + HOST_BITS_PER_WIDE_INT
7624 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7626 else
7628 nonzero = GET_MODE_MASK (GET_MODE (x));
7629 nonzero >>= INTVAL (XEXP (x, 1));
7632 if ((mask & ~nonzero) == 0)
7634 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7635 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7636 if (GET_CODE (x) != ASHIFTRT)
7637 return force_to_mode (x, mode, mask, next_select);
7640 else if ((i = exact_log2 (mask)) >= 0)
7642 x = simplify_shift_const
7643 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7644 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7646 if (GET_CODE (x) != ASHIFTRT)
7647 return force_to_mode (x, mode, mask, next_select);
7651 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7652 even if the shift count isn't a constant. */
7653 if (mask == 1)
7654 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7655 XEXP (x, 0), XEXP (x, 1));
7657 shiftrt:
7659 /* If this is a zero- or sign-extension operation that just affects bits
7660 we don't care about, remove it. Be sure the call above returned
7661 something that is still a shift. */
7663 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7664 && GET_CODE (XEXP (x, 1)) == CONST_INT
7665 && INTVAL (XEXP (x, 1)) >= 0
7666 && (INTVAL (XEXP (x, 1))
7667 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7668 && GET_CODE (XEXP (x, 0)) == ASHIFT
7669 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7670 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7671 next_select);
7673 break;
7675 case ROTATE:
7676 case ROTATERT:
7677 /* If the shift count is constant and we can do computations
7678 in the mode of X, compute where the bits we care about are.
7679 Otherwise, we can't do anything. Don't change the mode of
7680 the shift or propagate MODE into the shift, though. */
7681 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7682 && INTVAL (XEXP (x, 1)) >= 0)
7684 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7685 GET_MODE (x), GEN_INT (mask),
7686 XEXP (x, 1));
7687 if (temp && GET_CODE (temp) == CONST_INT)
7688 SUBST (XEXP (x, 0),
7689 force_to_mode (XEXP (x, 0), GET_MODE (x),
7690 INTVAL (temp), next_select));
7692 break;
7694 case NEG:
7695 /* If we just want the low-order bit, the NEG isn't needed since it
7696 won't change the low-order bit. */
7697 if (mask == 1)
7698 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7700 /* We need any bits less significant than the most significant bit in
7701 MASK since carries from those bits will affect the bits we are
7702 interested in. */
7703 mask = fuller_mask;
7704 goto unop;
7706 case NOT:
7707 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7708 same as the XOR case above. Ensure that the constant we form is not
7709 wider than the mode of X. */
7711 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7712 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7713 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7714 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7715 < GET_MODE_BITSIZE (GET_MODE (x)))
7716 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7718 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7719 GET_MODE (x));
7720 temp = simplify_gen_binary (XOR, GET_MODE (x),
7721 XEXP (XEXP (x, 0), 0), temp);
7722 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7723 temp, XEXP (XEXP (x, 0), 1));
7725 return force_to_mode (x, mode, mask, next_select);
7728 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7729 use the full mask inside the NOT. */
7730 mask = fuller_mask;
7732 unop:
7733 op0 = gen_lowpart_or_truncate (op_mode,
7734 force_to_mode (XEXP (x, 0), mode, mask,
7735 next_select));
7736 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7737 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7738 break;
7740 case NE:
7741 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7742 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7743 which is equal to STORE_FLAG_VALUE. */
7744 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7745 && GET_MODE (XEXP (x, 0)) == mode
7746 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7747 && (nonzero_bits (XEXP (x, 0), mode)
7748 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7749 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7751 break;
7753 case IF_THEN_ELSE:
7754 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7755 written in a narrower mode. We play it safe and do not do so. */
7757 SUBST (XEXP (x, 1),
7758 gen_lowpart_or_truncate (GET_MODE (x),
7759 force_to_mode (XEXP (x, 1), mode,
7760 mask, next_select)));
7761 SUBST (XEXP (x, 2),
7762 gen_lowpart_or_truncate (GET_MODE (x),
7763 force_to_mode (XEXP (x, 2), mode,
7764 mask, next_select)));
7765 break;
7767 default:
7768 break;
7771 /* Ensure we return a value of the proper mode. */
7772 return gen_lowpart_or_truncate (mode, x);
7775 /* Return nonzero if X is an expression that has one of two values depending on
7776 whether some other value is zero or nonzero. In that case, we return the
7777 value that is being tested, *PTRUE is set to the value if the rtx being
7778 returned has a nonzero value, and *PFALSE is set to the other alternative.
7780 If we return zero, we set *PTRUE and *PFALSE to X. */
7782 static rtx
7783 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7785 enum machine_mode mode = GET_MODE (x);
7786 enum rtx_code code = GET_CODE (x);
7787 rtx cond0, cond1, true0, true1, false0, false1;
7788 unsigned HOST_WIDE_INT nz;
7790 /* If we are comparing a value against zero, we are done. */
7791 if ((code == NE || code == EQ)
7792 && XEXP (x, 1) == const0_rtx)
7794 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7795 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7796 return XEXP (x, 0);
7799 /* If this is a unary operation whose operand has one of two values, apply
7800 our opcode to compute those values. */
7801 else if (UNARY_P (x)
7802 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7804 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7805 *pfalse = simplify_gen_unary (code, mode, false0,
7806 GET_MODE (XEXP (x, 0)));
7807 return cond0;
7810 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7811 make can't possibly match and would suppress other optimizations. */
7812 else if (code == COMPARE)
7815 /* If this is a binary operation, see if either side has only one of two
7816 values. If either one does or if both do and they are conditional on
7817 the same value, compute the new true and false values. */
7818 else if (BINARY_P (x))
7820 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7821 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7823 if ((cond0 != 0 || cond1 != 0)
7824 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7826 /* If if_then_else_cond returned zero, then true/false are the
7827 same rtl. We must copy one of them to prevent invalid rtl
7828 sharing. */
7829 if (cond0 == 0)
7830 true0 = copy_rtx (true0);
7831 else if (cond1 == 0)
7832 true1 = copy_rtx (true1);
7834 if (COMPARISON_P (x))
7836 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7837 true0, true1);
7838 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7839 false0, false1);
7841 else
7843 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7844 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7847 return cond0 ? cond0 : cond1;
7850 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7851 operands is zero when the other is nonzero, and vice-versa,
7852 and STORE_FLAG_VALUE is 1 or -1. */
7854 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7855 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7856 || code == UMAX)
7857 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7859 rtx op0 = XEXP (XEXP (x, 0), 1);
7860 rtx op1 = XEXP (XEXP (x, 1), 1);
7862 cond0 = XEXP (XEXP (x, 0), 0);
7863 cond1 = XEXP (XEXP (x, 1), 0);
7865 if (COMPARISON_P (cond0)
7866 && COMPARISON_P (cond1)
7867 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7868 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7869 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7870 || ((swap_condition (GET_CODE (cond0))
7871 == reversed_comparison_code (cond1, NULL))
7872 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7873 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7874 && ! side_effects_p (x))
7876 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7877 *pfalse = simplify_gen_binary (MULT, mode,
7878 (code == MINUS
7879 ? simplify_gen_unary (NEG, mode,
7880 op1, mode)
7881 : op1),
7882 const_true_rtx);
7883 return cond0;
7887 /* Similarly for MULT, AND and UMIN, except that for these the result
7888 is always zero. */
7889 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7890 && (code == MULT || code == AND || code == UMIN)
7891 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7893 cond0 = XEXP (XEXP (x, 0), 0);
7894 cond1 = XEXP (XEXP (x, 1), 0);
7896 if (COMPARISON_P (cond0)
7897 && COMPARISON_P (cond1)
7898 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7899 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7900 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7901 || ((swap_condition (GET_CODE (cond0))
7902 == reversed_comparison_code (cond1, NULL))
7903 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7904 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7905 && ! side_effects_p (x))
7907 *ptrue = *pfalse = const0_rtx;
7908 return cond0;
7913 else if (code == IF_THEN_ELSE)
7915 /* If we have IF_THEN_ELSE already, extract the condition and
7916 canonicalize it if it is NE or EQ. */
7917 cond0 = XEXP (x, 0);
7918 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7919 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7920 return XEXP (cond0, 0);
7921 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7923 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7924 return XEXP (cond0, 0);
7926 else
7927 return cond0;
7930 /* If X is a SUBREG, we can narrow both the true and false values
7931 if the inner expression, if there is a condition. */
7932 else if (code == SUBREG
7933 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7934 &true0, &false0)))
7936 true0 = simplify_gen_subreg (mode, true0,
7937 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7938 false0 = simplify_gen_subreg (mode, false0,
7939 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7940 if (true0 && false0)
7942 *ptrue = true0;
7943 *pfalse = false0;
7944 return cond0;
7948 /* If X is a constant, this isn't special and will cause confusions
7949 if we treat it as such. Likewise if it is equivalent to a constant. */
7950 else if (CONSTANT_P (x)
7951 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7954 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7955 will be least confusing to the rest of the compiler. */
7956 else if (mode == BImode)
7958 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7959 return x;
7962 /* If X is known to be either 0 or -1, those are the true and
7963 false values when testing X. */
7964 else if (x == constm1_rtx || x == const0_rtx
7965 || (mode != VOIDmode
7966 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7968 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7969 return x;
7972 /* Likewise for 0 or a single bit. */
7973 else if (SCALAR_INT_MODE_P (mode)
7974 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7975 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7977 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7978 return x;
7981 /* Otherwise fail; show no condition with true and false values the same. */
7982 *ptrue = *pfalse = x;
7983 return 0;
7986 /* Return the value of expression X given the fact that condition COND
7987 is known to be true when applied to REG as its first operand and VAL
7988 as its second. X is known to not be shared and so can be modified in
7989 place.
7991 We only handle the simplest cases, and specifically those cases that
7992 arise with IF_THEN_ELSE expressions. */
7994 static rtx
7995 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7997 enum rtx_code code = GET_CODE (x);
7998 rtx temp;
7999 const char *fmt;
8000 int i, j;
8002 if (side_effects_p (x))
8003 return x;
8005 /* If either operand of the condition is a floating point value,
8006 then we have to avoid collapsing an EQ comparison. */
8007 if (cond == EQ
8008 && rtx_equal_p (x, reg)
8009 && ! FLOAT_MODE_P (GET_MODE (x))
8010 && ! FLOAT_MODE_P (GET_MODE (val)))
8011 return val;
8013 if (cond == UNEQ && rtx_equal_p (x, reg))
8014 return val;
8016 /* If X is (abs REG) and we know something about REG's relationship
8017 with zero, we may be able to simplify this. */
8019 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8020 switch (cond)
8022 case GE: case GT: case EQ:
8023 return XEXP (x, 0);
8024 case LT: case LE:
8025 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8026 XEXP (x, 0),
8027 GET_MODE (XEXP (x, 0)));
8028 default:
8029 break;
8032 /* The only other cases we handle are MIN, MAX, and comparisons if the
8033 operands are the same as REG and VAL. */
8035 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8037 if (rtx_equal_p (XEXP (x, 0), val))
8038 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8040 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8042 if (COMPARISON_P (x))
8044 if (comparison_dominates_p (cond, code))
8045 return const_true_rtx;
8047 code = reversed_comparison_code (x, NULL);
8048 if (code != UNKNOWN
8049 && comparison_dominates_p (cond, code))
8050 return const0_rtx;
8051 else
8052 return x;
8054 else if (code == SMAX || code == SMIN
8055 || code == UMIN || code == UMAX)
8057 int unsignedp = (code == UMIN || code == UMAX);
8059 /* Do not reverse the condition when it is NE or EQ.
8060 This is because we cannot conclude anything about
8061 the value of 'SMAX (x, y)' when x is not equal to y,
8062 but we can when x equals y. */
8063 if ((code == SMAX || code == UMAX)
8064 && ! (cond == EQ || cond == NE))
8065 cond = reverse_condition (cond);
8067 switch (cond)
8069 case GE: case GT:
8070 return unsignedp ? x : XEXP (x, 1);
8071 case LE: case LT:
8072 return unsignedp ? x : XEXP (x, 0);
8073 case GEU: case GTU:
8074 return unsignedp ? XEXP (x, 1) : x;
8075 case LEU: case LTU:
8076 return unsignedp ? XEXP (x, 0) : x;
8077 default:
8078 break;
8083 else if (code == SUBREG)
8085 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8086 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8088 if (SUBREG_REG (x) != r)
8090 /* We must simplify subreg here, before we lose track of the
8091 original inner_mode. */
8092 new_rtx = simplify_subreg (GET_MODE (x), r,
8093 inner_mode, SUBREG_BYTE (x));
8094 if (new_rtx)
8095 return new_rtx;
8096 else
8097 SUBST (SUBREG_REG (x), r);
8100 return x;
8102 /* We don't have to handle SIGN_EXTEND here, because even in the
8103 case of replacing something with a modeless CONST_INT, a
8104 CONST_INT is already (supposed to be) a valid sign extension for
8105 its narrower mode, which implies it's already properly
8106 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8107 story is different. */
8108 else if (code == ZERO_EXTEND)
8110 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8111 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8113 if (XEXP (x, 0) != r)
8115 /* We must simplify the zero_extend here, before we lose
8116 track of the original inner_mode. */
8117 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8118 r, inner_mode);
8119 if (new_rtx)
8120 return new_rtx;
8121 else
8122 SUBST (XEXP (x, 0), r);
8125 return x;
8128 fmt = GET_RTX_FORMAT (code);
8129 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8131 if (fmt[i] == 'e')
8132 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8133 else if (fmt[i] == 'E')
8134 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8135 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8136 cond, reg, val));
8139 return x;
8142 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8143 assignment as a field assignment. */
8145 static int
8146 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8148 if (x == y || rtx_equal_p (x, y))
8149 return 1;
8151 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8152 return 0;
8154 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8155 Note that all SUBREGs of MEM are paradoxical; otherwise they
8156 would have been rewritten. */
8157 if (MEM_P (x) && GET_CODE (y) == SUBREG
8158 && MEM_P (SUBREG_REG (y))
8159 && rtx_equal_p (SUBREG_REG (y),
8160 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8161 return 1;
8163 if (MEM_P (y) && GET_CODE (x) == SUBREG
8164 && MEM_P (SUBREG_REG (x))
8165 && rtx_equal_p (SUBREG_REG (x),
8166 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8167 return 1;
8169 /* We used to see if get_last_value of X and Y were the same but that's
8170 not correct. In one direction, we'll cause the assignment to have
8171 the wrong destination and in the case, we'll import a register into this
8172 insn that might have already have been dead. So fail if none of the
8173 above cases are true. */
8174 return 0;
8177 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8178 Return that assignment if so.
8180 We only handle the most common cases. */
8182 static rtx
8183 make_field_assignment (rtx x)
8185 rtx dest = SET_DEST (x);
8186 rtx src = SET_SRC (x);
8187 rtx assign;
8188 rtx rhs, lhs;
8189 HOST_WIDE_INT c1;
8190 HOST_WIDE_INT pos;
8191 unsigned HOST_WIDE_INT len;
8192 rtx other;
8193 enum machine_mode mode;
8195 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8196 a clear of a one-bit field. We will have changed it to
8197 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8198 for a SUBREG. */
8200 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8201 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8202 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8203 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8205 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8206 1, 1, 1, 0);
8207 if (assign != 0)
8208 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8209 return x;
8212 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8213 && subreg_lowpart_p (XEXP (src, 0))
8214 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8215 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8216 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8217 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8218 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8219 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8221 assign = make_extraction (VOIDmode, dest, 0,
8222 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8223 1, 1, 1, 0);
8224 if (assign != 0)
8225 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8226 return x;
8229 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8230 one-bit field. */
8231 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8232 && XEXP (XEXP (src, 0), 0) == const1_rtx
8233 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8235 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8236 1, 1, 1, 0);
8237 if (assign != 0)
8238 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8239 return x;
8242 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8243 SRC is an AND with all bits of that field set, then we can discard
8244 the AND. */
8245 if (GET_CODE (dest) == ZERO_EXTRACT
8246 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8247 && GET_CODE (src) == AND
8248 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8250 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8251 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8252 unsigned HOST_WIDE_INT ze_mask;
8254 if (width >= HOST_BITS_PER_WIDE_INT)
8255 ze_mask = -1;
8256 else
8257 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8259 /* Complete overlap. We can remove the source AND. */
8260 if ((and_mask & ze_mask) == ze_mask)
8261 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8263 /* Partial overlap. We can reduce the source AND. */
8264 if ((and_mask & ze_mask) != and_mask)
8266 mode = GET_MODE (src);
8267 src = gen_rtx_AND (mode, XEXP (src, 0),
8268 gen_int_mode (and_mask & ze_mask, mode));
8269 return gen_rtx_SET (VOIDmode, dest, src);
8273 /* The other case we handle is assignments into a constant-position
8274 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8275 a mask that has all one bits except for a group of zero bits and
8276 OTHER is known to have zeros where C1 has ones, this is such an
8277 assignment. Compute the position and length from C1. Shift OTHER
8278 to the appropriate position, force it to the required mode, and
8279 make the extraction. Check for the AND in both operands. */
8281 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8282 return x;
8284 rhs = expand_compound_operation (XEXP (src, 0));
8285 lhs = expand_compound_operation (XEXP (src, 1));
8287 if (GET_CODE (rhs) == AND
8288 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8289 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8290 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8291 else if (GET_CODE (lhs) == AND
8292 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8293 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8294 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8295 else
8296 return x;
8298 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8299 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8300 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8301 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8302 return x;
8304 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8305 if (assign == 0)
8306 return x;
8308 /* The mode to use for the source is the mode of the assignment, or of
8309 what is inside a possible STRICT_LOW_PART. */
8310 mode = (GET_CODE (assign) == STRICT_LOW_PART
8311 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8313 /* Shift OTHER right POS places and make it the source, restricting it
8314 to the proper length and mode. */
8316 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8317 GET_MODE (src),
8318 other, pos),
8319 dest);
8320 src = force_to_mode (src, mode,
8321 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8322 ? ~(unsigned HOST_WIDE_INT) 0
8323 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8326 /* If SRC is masked by an AND that does not make a difference in
8327 the value being stored, strip it. */
8328 if (GET_CODE (assign) == ZERO_EXTRACT
8329 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8330 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8331 && GET_CODE (src) == AND
8332 && GET_CODE (XEXP (src, 1)) == CONST_INT
8333 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8334 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8335 src = XEXP (src, 0);
8337 return gen_rtx_SET (VOIDmode, assign, src);
8340 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8341 if so. */
8343 static rtx
8344 apply_distributive_law (rtx x)
8346 enum rtx_code code = GET_CODE (x);
8347 enum rtx_code inner_code;
8348 rtx lhs, rhs, other;
8349 rtx tem;
8351 /* Distributivity is not true for floating point as it can change the
8352 value. So we don't do it unless -funsafe-math-optimizations. */
8353 if (FLOAT_MODE_P (GET_MODE (x))
8354 && ! flag_unsafe_math_optimizations)
8355 return x;
8357 /* The outer operation can only be one of the following: */
8358 if (code != IOR && code != AND && code != XOR
8359 && code != PLUS && code != MINUS)
8360 return x;
8362 lhs = XEXP (x, 0);
8363 rhs = XEXP (x, 1);
8365 /* If either operand is a primitive we can't do anything, so get out
8366 fast. */
8367 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8368 return x;
8370 lhs = expand_compound_operation (lhs);
8371 rhs = expand_compound_operation (rhs);
8372 inner_code = GET_CODE (lhs);
8373 if (inner_code != GET_CODE (rhs))
8374 return x;
8376 /* See if the inner and outer operations distribute. */
8377 switch (inner_code)
8379 case LSHIFTRT:
8380 case ASHIFTRT:
8381 case AND:
8382 case IOR:
8383 /* These all distribute except over PLUS. */
8384 if (code == PLUS || code == MINUS)
8385 return x;
8386 break;
8388 case MULT:
8389 if (code != PLUS && code != MINUS)
8390 return x;
8391 break;
8393 case ASHIFT:
8394 /* This is also a multiply, so it distributes over everything. */
8395 break;
8397 case SUBREG:
8398 /* Non-paradoxical SUBREGs distributes over all operations,
8399 provided the inner modes and byte offsets are the same, this
8400 is an extraction of a low-order part, we don't convert an fp
8401 operation to int or vice versa, this is not a vector mode,
8402 and we would not be converting a single-word operation into a
8403 multi-word operation. The latter test is not required, but
8404 it prevents generating unneeded multi-word operations. Some
8405 of the previous tests are redundant given the latter test,
8406 but are retained because they are required for correctness.
8408 We produce the result slightly differently in this case. */
8410 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8411 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8412 || ! subreg_lowpart_p (lhs)
8413 || (GET_MODE_CLASS (GET_MODE (lhs))
8414 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8415 || (GET_MODE_SIZE (GET_MODE (lhs))
8416 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8417 || VECTOR_MODE_P (GET_MODE (lhs))
8418 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8419 /* Result might need to be truncated. Don't change mode if
8420 explicit truncation is needed. */
8421 || !TRULY_NOOP_TRUNCATION
8422 (GET_MODE_BITSIZE (GET_MODE (x)),
8423 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8424 return x;
8426 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8427 SUBREG_REG (lhs), SUBREG_REG (rhs));
8428 return gen_lowpart (GET_MODE (x), tem);
8430 default:
8431 return x;
8434 /* Set LHS and RHS to the inner operands (A and B in the example
8435 above) and set OTHER to the common operand (C in the example).
8436 There is only one way to do this unless the inner operation is
8437 commutative. */
8438 if (COMMUTATIVE_ARITH_P (lhs)
8439 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8440 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8441 else if (COMMUTATIVE_ARITH_P (lhs)
8442 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8443 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8444 else if (COMMUTATIVE_ARITH_P (lhs)
8445 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8446 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8447 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8448 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8449 else
8450 return x;
8452 /* Form the new inner operation, seeing if it simplifies first. */
8453 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8455 /* There is one exception to the general way of distributing:
8456 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8457 if (code == XOR && inner_code == IOR)
8459 inner_code = AND;
8460 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8463 /* We may be able to continuing distributing the result, so call
8464 ourselves recursively on the inner operation before forming the
8465 outer operation, which we return. */
8466 return simplify_gen_binary (inner_code, GET_MODE (x),
8467 apply_distributive_law (tem), other);
8470 /* See if X is of the form (* (+ A B) C), and if so convert to
8471 (+ (* A C) (* B C)) and try to simplify.
8473 Most of the time, this results in no change. However, if some of
8474 the operands are the same or inverses of each other, simplifications
8475 will result.
8477 For example, (and (ior A B) (not B)) can occur as the result of
8478 expanding a bit field assignment. When we apply the distributive
8479 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8480 which then simplifies to (and (A (not B))).
8482 Note that no checks happen on the validity of applying the inverse
8483 distributive law. This is pointless since we can do it in the
8484 few places where this routine is called.
8486 N is the index of the term that is decomposed (the arithmetic operation,
8487 i.e. (+ A B) in the first example above). !N is the index of the term that
8488 is distributed, i.e. of C in the first example above. */
8489 static rtx
8490 distribute_and_simplify_rtx (rtx x, int n)
8492 enum machine_mode mode;
8493 enum rtx_code outer_code, inner_code;
8494 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8496 decomposed = XEXP (x, n);
8497 if (!ARITHMETIC_P (decomposed))
8498 return NULL_RTX;
8500 mode = GET_MODE (x);
8501 outer_code = GET_CODE (x);
8502 distributed = XEXP (x, !n);
8504 inner_code = GET_CODE (decomposed);
8505 inner_op0 = XEXP (decomposed, 0);
8506 inner_op1 = XEXP (decomposed, 1);
8508 /* Special case (and (xor B C) (not A)), which is equivalent to
8509 (xor (ior A B) (ior A C)) */
8510 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8512 distributed = XEXP (distributed, 0);
8513 outer_code = IOR;
8516 if (n == 0)
8518 /* Distribute the second term. */
8519 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8520 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8522 else
8524 /* Distribute the first term. */
8525 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8526 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8529 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8530 new_op0, new_op1));
8531 if (GET_CODE (tmp) != outer_code
8532 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8533 < rtx_cost (x, SET, optimize_this_for_speed_p))
8534 return tmp;
8536 return NULL_RTX;
8539 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8540 in MODE. Return an equivalent form, if different from (and VAROP
8541 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8543 static rtx
8544 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8545 unsigned HOST_WIDE_INT constop)
8547 unsigned HOST_WIDE_INT nonzero;
8548 unsigned HOST_WIDE_INT orig_constop;
8549 rtx orig_varop;
8550 int i;
8552 orig_varop = varop;
8553 orig_constop = constop;
8554 if (GET_CODE (varop) == CLOBBER)
8555 return NULL_RTX;
8557 /* Simplify VAROP knowing that we will be only looking at some of the
8558 bits in it.
8560 Note by passing in CONSTOP, we guarantee that the bits not set in
8561 CONSTOP are not significant and will never be examined. We must
8562 ensure that is the case by explicitly masking out those bits
8563 before returning. */
8564 varop = force_to_mode (varop, mode, constop, 0);
8566 /* If VAROP is a CLOBBER, we will fail so return it. */
8567 if (GET_CODE (varop) == CLOBBER)
8568 return varop;
8570 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8571 to VAROP and return the new constant. */
8572 if (GET_CODE (varop) == CONST_INT)
8573 return gen_int_mode (INTVAL (varop) & constop, mode);
8575 /* See what bits may be nonzero in VAROP. Unlike the general case of
8576 a call to nonzero_bits, here we don't care about bits outside
8577 MODE. */
8579 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8581 /* Turn off all bits in the constant that are known to already be zero.
8582 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8583 which is tested below. */
8585 constop &= nonzero;
8587 /* If we don't have any bits left, return zero. */
8588 if (constop == 0)
8589 return const0_rtx;
8591 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8592 a power of two, we can replace this with an ASHIFT. */
8593 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8594 && (i = exact_log2 (constop)) >= 0)
8595 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8597 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8598 or XOR, then try to apply the distributive law. This may eliminate
8599 operations if either branch can be simplified because of the AND.
8600 It may also make some cases more complex, but those cases probably
8601 won't match a pattern either with or without this. */
8603 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8604 return
8605 gen_lowpart
8606 (mode,
8607 apply_distributive_law
8608 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8609 simplify_and_const_int (NULL_RTX,
8610 GET_MODE (varop),
8611 XEXP (varop, 0),
8612 constop),
8613 simplify_and_const_int (NULL_RTX,
8614 GET_MODE (varop),
8615 XEXP (varop, 1),
8616 constop))));
8618 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8619 the AND and see if one of the operands simplifies to zero. If so, we
8620 may eliminate it. */
8622 if (GET_CODE (varop) == PLUS
8623 && exact_log2 (constop + 1) >= 0)
8625 rtx o0, o1;
8627 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8628 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8629 if (o0 == const0_rtx)
8630 return o1;
8631 if (o1 == const0_rtx)
8632 return o0;
8635 /* Make a SUBREG if necessary. If we can't make it, fail. */
8636 varop = gen_lowpart (mode, varop);
8637 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8638 return NULL_RTX;
8640 /* If we are only masking insignificant bits, return VAROP. */
8641 if (constop == nonzero)
8642 return varop;
8644 if (varop == orig_varop && constop == orig_constop)
8645 return NULL_RTX;
8647 /* Otherwise, return an AND. */
8648 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8652 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8653 in MODE.
8655 Return an equivalent form, if different from X. Otherwise, return X. If
8656 X is zero, we are to always construct the equivalent form. */
8658 static rtx
8659 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8660 unsigned HOST_WIDE_INT constop)
8662 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8663 if (tem)
8664 return tem;
8666 if (!x)
8667 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8668 gen_int_mode (constop, mode));
8669 if (GET_MODE (x) != mode)
8670 x = gen_lowpart (mode, x);
8671 return x;
8674 /* Given a REG, X, compute which bits in X can be nonzero.
8675 We don't care about bits outside of those defined in MODE.
8677 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8678 a shift, AND, or zero_extract, we can do better. */
8680 static rtx
8681 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8682 const_rtx known_x ATTRIBUTE_UNUSED,
8683 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8684 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8685 unsigned HOST_WIDE_INT *nonzero)
8687 rtx tem;
8688 reg_stat_type *rsp;
8690 /* If X is a register whose nonzero bits value is current, use it.
8691 Otherwise, if X is a register whose value we can find, use that
8692 value. Otherwise, use the previously-computed global nonzero bits
8693 for this register. */
8695 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8696 if (rsp->last_set_value != 0
8697 && (rsp->last_set_mode == mode
8698 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8699 && GET_MODE_CLASS (mode) == MODE_INT))
8700 && ((rsp->last_set_label >= label_tick_ebb_start
8701 && rsp->last_set_label < label_tick)
8702 || (rsp->last_set_label == label_tick
8703 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8704 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8705 && REG_N_SETS (REGNO (x)) == 1
8706 && !REGNO_REG_SET_P
8707 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8709 *nonzero &= rsp->last_set_nonzero_bits;
8710 return NULL;
8713 tem = get_last_value (x);
8715 if (tem)
8717 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8718 /* If X is narrower than MODE and TEM is a non-negative
8719 constant that would appear negative in the mode of X,
8720 sign-extend it for use in reg_nonzero_bits because some
8721 machines (maybe most) will actually do the sign-extension
8722 and this is the conservative approach.
8724 ??? For 2.5, try to tighten up the MD files in this regard
8725 instead of this kludge. */
8727 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8728 && GET_CODE (tem) == CONST_INT
8729 && INTVAL (tem) > 0
8730 && 0 != (INTVAL (tem)
8731 & ((HOST_WIDE_INT) 1
8732 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8733 tem = GEN_INT (INTVAL (tem)
8734 | ((HOST_WIDE_INT) (-1)
8735 << GET_MODE_BITSIZE (GET_MODE (x))));
8736 #endif
8737 return tem;
8739 else if (nonzero_sign_valid && rsp->nonzero_bits)
8741 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8743 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8744 /* We don't know anything about the upper bits. */
8745 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8746 *nonzero &= mask;
8749 return NULL;
8752 /* Return the number of bits at the high-order end of X that are known to
8753 be equal to the sign bit. X will be used in mode MODE; if MODE is
8754 VOIDmode, X will be used in its own mode. The returned value will always
8755 be between 1 and the number of bits in MODE. */
8757 static rtx
8758 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8759 const_rtx known_x ATTRIBUTE_UNUSED,
8760 enum machine_mode known_mode
8761 ATTRIBUTE_UNUSED,
8762 unsigned int known_ret ATTRIBUTE_UNUSED,
8763 unsigned int *result)
8765 rtx tem;
8766 reg_stat_type *rsp;
8768 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8769 if (rsp->last_set_value != 0
8770 && rsp->last_set_mode == mode
8771 && ((rsp->last_set_label >= label_tick_ebb_start
8772 && rsp->last_set_label < label_tick)
8773 || (rsp->last_set_label == label_tick
8774 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8775 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8776 && REG_N_SETS (REGNO (x)) == 1
8777 && !REGNO_REG_SET_P
8778 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8780 *result = rsp->last_set_sign_bit_copies;
8781 return NULL;
8784 tem = get_last_value (x);
8785 if (tem != 0)
8786 return tem;
8788 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8789 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8790 *result = rsp->sign_bit_copies;
8792 return NULL;
8795 /* Return the number of "extended" bits there are in X, when interpreted
8796 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8797 unsigned quantities, this is the number of high-order zero bits.
8798 For signed quantities, this is the number of copies of the sign bit
8799 minus 1. In both case, this function returns the number of "spare"
8800 bits. For example, if two quantities for which this function returns
8801 at least 1 are added, the addition is known not to overflow.
8803 This function will always return 0 unless called during combine, which
8804 implies that it must be called from a define_split. */
8806 unsigned int
8807 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8809 if (nonzero_sign_valid == 0)
8810 return 0;
8812 return (unsignedp
8813 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8814 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8815 - floor_log2 (nonzero_bits (x, mode)))
8816 : 0)
8817 : num_sign_bit_copies (x, mode) - 1);
8820 /* This function is called from `simplify_shift_const' to merge two
8821 outer operations. Specifically, we have already found that we need
8822 to perform operation *POP0 with constant *PCONST0 at the outermost
8823 position. We would now like to also perform OP1 with constant CONST1
8824 (with *POP0 being done last).
8826 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8827 the resulting operation. *PCOMP_P is set to 1 if we would need to
8828 complement the innermost operand, otherwise it is unchanged.
8830 MODE is the mode in which the operation will be done. No bits outside
8831 the width of this mode matter. It is assumed that the width of this mode
8832 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8834 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8835 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8836 result is simply *PCONST0.
8838 If the resulting operation cannot be expressed as one operation, we
8839 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8841 static int
8842 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8844 enum rtx_code op0 = *pop0;
8845 HOST_WIDE_INT const0 = *pconst0;
8847 const0 &= GET_MODE_MASK (mode);
8848 const1 &= GET_MODE_MASK (mode);
8850 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8851 if (op0 == AND)
8852 const1 &= const0;
8854 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8855 if OP0 is SET. */
8857 if (op1 == UNKNOWN || op0 == SET)
8858 return 1;
8860 else if (op0 == UNKNOWN)
8861 op0 = op1, const0 = const1;
8863 else if (op0 == op1)
8865 switch (op0)
8867 case AND:
8868 const0 &= const1;
8869 break;
8870 case IOR:
8871 const0 |= const1;
8872 break;
8873 case XOR:
8874 const0 ^= const1;
8875 break;
8876 case PLUS:
8877 const0 += const1;
8878 break;
8879 case NEG:
8880 op0 = UNKNOWN;
8881 break;
8882 default:
8883 break;
8887 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8888 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8889 return 0;
8891 /* If the two constants aren't the same, we can't do anything. The
8892 remaining six cases can all be done. */
8893 else if (const0 != const1)
8894 return 0;
8896 else
8897 switch (op0)
8899 case IOR:
8900 if (op1 == AND)
8901 /* (a & b) | b == b */
8902 op0 = SET;
8903 else /* op1 == XOR */
8904 /* (a ^ b) | b == a | b */
8906 break;
8908 case XOR:
8909 if (op1 == AND)
8910 /* (a & b) ^ b == (~a) & b */
8911 op0 = AND, *pcomp_p = 1;
8912 else /* op1 == IOR */
8913 /* (a | b) ^ b == a & ~b */
8914 op0 = AND, const0 = ~const0;
8915 break;
8917 case AND:
8918 if (op1 == IOR)
8919 /* (a | b) & b == b */
8920 op0 = SET;
8921 else /* op1 == XOR */
8922 /* (a ^ b) & b) == (~a) & b */
8923 *pcomp_p = 1;
8924 break;
8925 default:
8926 break;
8929 /* Check for NO-OP cases. */
8930 const0 &= GET_MODE_MASK (mode);
8931 if (const0 == 0
8932 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8933 op0 = UNKNOWN;
8934 else if (const0 == 0 && op0 == AND)
8935 op0 = SET;
8936 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8937 && op0 == AND)
8938 op0 = UNKNOWN;
8940 /* ??? Slightly redundant with the above mask, but not entirely.
8941 Moving this above means we'd have to sign-extend the mode mask
8942 for the final test. */
8943 const0 = trunc_int_for_mode (const0, mode);
8945 *pop0 = op0;
8946 *pconst0 = const0;
8948 return 1;
8951 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8952 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8953 simplify it. Otherwise, return a simplified value.
8955 The shift is normally computed in the widest mode we find in VAROP, as
8956 long as it isn't a different number of words than RESULT_MODE. Exceptions
8957 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8959 static rtx
8960 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8961 rtx varop, int orig_count)
8963 enum rtx_code orig_code = code;
8964 rtx orig_varop = varop;
8965 int count;
8966 enum machine_mode mode = result_mode;
8967 enum machine_mode shift_mode, tmode;
8968 unsigned int mode_words
8969 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8970 /* We form (outer_op (code varop count) (outer_const)). */
8971 enum rtx_code outer_op = UNKNOWN;
8972 HOST_WIDE_INT outer_const = 0;
8973 int complement_p = 0;
8974 rtx new_rtx, x;
8976 /* Make sure and truncate the "natural" shift on the way in. We don't
8977 want to do this inside the loop as it makes it more difficult to
8978 combine shifts. */
8979 if (SHIFT_COUNT_TRUNCATED)
8980 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8982 /* If we were given an invalid count, don't do anything except exactly
8983 what was requested. */
8985 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8986 return NULL_RTX;
8988 count = orig_count;
8990 /* Unless one of the branches of the `if' in this loop does a `continue',
8991 we will `break' the loop after the `if'. */
8993 while (count != 0)
8995 /* If we have an operand of (clobber (const_int 0)), fail. */
8996 if (GET_CODE (varop) == CLOBBER)
8997 return NULL_RTX;
8999 /* If we discovered we had to complement VAROP, leave. Making a NOT
9000 here would cause an infinite loop. */
9001 if (complement_p)
9002 break;
9004 /* Convert ROTATERT to ROTATE. */
9005 if (code == ROTATERT)
9007 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9008 code = ROTATE;
9009 if (VECTOR_MODE_P (result_mode))
9010 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9011 else
9012 count = bitsize - count;
9015 /* We need to determine what mode we will do the shift in. If the
9016 shift is a right shift or a ROTATE, we must always do it in the mode
9017 it was originally done in. Otherwise, we can do it in MODE, the
9018 widest mode encountered. */
9019 shift_mode
9020 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9021 ? result_mode : mode);
9023 /* Handle cases where the count is greater than the size of the mode
9024 minus 1. For ASHIFT, use the size minus one as the count (this can
9025 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9026 take the count modulo the size. For other shifts, the result is
9027 zero.
9029 Since these shifts are being produced by the compiler by combining
9030 multiple operations, each of which are defined, we know what the
9031 result is supposed to be. */
9033 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9035 if (code == ASHIFTRT)
9036 count = GET_MODE_BITSIZE (shift_mode) - 1;
9037 else if (code == ROTATE || code == ROTATERT)
9038 count %= GET_MODE_BITSIZE (shift_mode);
9039 else
9041 /* We can't simply return zero because there may be an
9042 outer op. */
9043 varop = const0_rtx;
9044 count = 0;
9045 break;
9049 /* An arithmetic right shift of a quantity known to be -1 or 0
9050 is a no-op. */
9051 if (code == ASHIFTRT
9052 && (num_sign_bit_copies (varop, shift_mode)
9053 == GET_MODE_BITSIZE (shift_mode)))
9055 count = 0;
9056 break;
9059 /* If we are doing an arithmetic right shift and discarding all but
9060 the sign bit copies, this is equivalent to doing a shift by the
9061 bitsize minus one. Convert it into that shift because it will often
9062 allow other simplifications. */
9064 if (code == ASHIFTRT
9065 && (count + num_sign_bit_copies (varop, shift_mode)
9066 >= GET_MODE_BITSIZE (shift_mode)))
9067 count = GET_MODE_BITSIZE (shift_mode) - 1;
9069 /* We simplify the tests below and elsewhere by converting
9070 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9071 `make_compound_operation' will convert it to an ASHIFTRT for
9072 those machines (such as VAX) that don't have an LSHIFTRT. */
9073 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9074 && code == ASHIFTRT
9075 && ((nonzero_bits (varop, shift_mode)
9076 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9077 == 0))
9078 code = LSHIFTRT;
9080 if (((code == LSHIFTRT
9081 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9082 && !(nonzero_bits (varop, shift_mode) >> count))
9083 || (code == ASHIFT
9084 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9085 && !((nonzero_bits (varop, shift_mode) << count)
9086 & GET_MODE_MASK (shift_mode))))
9087 && !side_effects_p (varop))
9088 varop = const0_rtx;
9090 switch (GET_CODE (varop))
9092 case SIGN_EXTEND:
9093 case ZERO_EXTEND:
9094 case SIGN_EXTRACT:
9095 case ZERO_EXTRACT:
9096 new_rtx = expand_compound_operation (varop);
9097 if (new_rtx != varop)
9099 varop = new_rtx;
9100 continue;
9102 break;
9104 case MEM:
9105 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9106 minus the width of a smaller mode, we can do this with a
9107 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9108 if ((code == ASHIFTRT || code == LSHIFTRT)
9109 && ! mode_dependent_address_p (XEXP (varop, 0))
9110 && ! MEM_VOLATILE_P (varop)
9111 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9112 MODE_INT, 1)) != BLKmode)
9114 new_rtx = adjust_address_nv (varop, tmode,
9115 BYTES_BIG_ENDIAN ? 0
9116 : count / BITS_PER_UNIT);
9118 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9119 : ZERO_EXTEND, mode, new_rtx);
9120 count = 0;
9121 continue;
9123 break;
9125 case SUBREG:
9126 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9127 the same number of words as what we've seen so far. Then store
9128 the widest mode in MODE. */
9129 if (subreg_lowpart_p (varop)
9130 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9131 > GET_MODE_SIZE (GET_MODE (varop)))
9132 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9133 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9134 == mode_words)
9136 varop = SUBREG_REG (varop);
9137 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9138 mode = GET_MODE (varop);
9139 continue;
9141 break;
9143 case MULT:
9144 /* Some machines use MULT instead of ASHIFT because MULT
9145 is cheaper. But it is still better on those machines to
9146 merge two shifts into one. */
9147 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9148 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9150 varop
9151 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9152 XEXP (varop, 0),
9153 GEN_INT (exact_log2 (
9154 INTVAL (XEXP (varop, 1)))));
9155 continue;
9157 break;
9159 case UDIV:
9160 /* Similar, for when divides are cheaper. */
9161 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9162 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9164 varop
9165 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9166 XEXP (varop, 0),
9167 GEN_INT (exact_log2 (
9168 INTVAL (XEXP (varop, 1)))));
9169 continue;
9171 break;
9173 case ASHIFTRT:
9174 /* If we are extracting just the sign bit of an arithmetic
9175 right shift, that shift is not needed. However, the sign
9176 bit of a wider mode may be different from what would be
9177 interpreted as the sign bit in a narrower mode, so, if
9178 the result is narrower, don't discard the shift. */
9179 if (code == LSHIFTRT
9180 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9181 && (GET_MODE_BITSIZE (result_mode)
9182 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9184 varop = XEXP (varop, 0);
9185 continue;
9188 /* ... fall through ... */
9190 case LSHIFTRT:
9191 case ASHIFT:
9192 case ROTATE:
9193 /* Here we have two nested shifts. The result is usually the
9194 AND of a new shift with a mask. We compute the result below. */
9195 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9196 && INTVAL (XEXP (varop, 1)) >= 0
9197 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9198 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9199 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9200 && !VECTOR_MODE_P (result_mode))
9202 enum rtx_code first_code = GET_CODE (varop);
9203 unsigned int first_count = INTVAL (XEXP (varop, 1));
9204 unsigned HOST_WIDE_INT mask;
9205 rtx mask_rtx;
9207 /* We have one common special case. We can't do any merging if
9208 the inner code is an ASHIFTRT of a smaller mode. However, if
9209 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9210 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9211 we can convert it to
9212 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9213 This simplifies certain SIGN_EXTEND operations. */
9214 if (code == ASHIFT && first_code == ASHIFTRT
9215 && count == (GET_MODE_BITSIZE (result_mode)
9216 - GET_MODE_BITSIZE (GET_MODE (varop))))
9218 /* C3 has the low-order C1 bits zero. */
9220 mask = (GET_MODE_MASK (mode)
9221 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9223 varop = simplify_and_const_int (NULL_RTX, result_mode,
9224 XEXP (varop, 0), mask);
9225 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9226 varop, count);
9227 count = first_count;
9228 code = ASHIFTRT;
9229 continue;
9232 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9233 than C1 high-order bits equal to the sign bit, we can convert
9234 this to either an ASHIFT or an ASHIFTRT depending on the
9235 two counts.
9237 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9239 if (code == ASHIFTRT && first_code == ASHIFT
9240 && GET_MODE (varop) == shift_mode
9241 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9242 > first_count))
9244 varop = XEXP (varop, 0);
9245 count -= first_count;
9246 if (count < 0)
9248 count = -count;
9249 code = ASHIFT;
9252 continue;
9255 /* There are some cases we can't do. If CODE is ASHIFTRT,
9256 we can only do this if FIRST_CODE is also ASHIFTRT.
9258 We can't do the case when CODE is ROTATE and FIRST_CODE is
9259 ASHIFTRT.
9261 If the mode of this shift is not the mode of the outer shift,
9262 we can't do this if either shift is a right shift or ROTATE.
9264 Finally, we can't do any of these if the mode is too wide
9265 unless the codes are the same.
9267 Handle the case where the shift codes are the same
9268 first. */
9270 if (code == first_code)
9272 if (GET_MODE (varop) != result_mode
9273 && (code == ASHIFTRT || code == LSHIFTRT
9274 || code == ROTATE))
9275 break;
9277 count += first_count;
9278 varop = XEXP (varop, 0);
9279 continue;
9282 if (code == ASHIFTRT
9283 || (code == ROTATE && first_code == ASHIFTRT)
9284 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9285 || (GET_MODE (varop) != result_mode
9286 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9287 || first_code == ROTATE
9288 || code == ROTATE)))
9289 break;
9291 /* To compute the mask to apply after the shift, shift the
9292 nonzero bits of the inner shift the same way the
9293 outer shift will. */
9295 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9297 mask_rtx
9298 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9299 GEN_INT (count));
9301 /* Give up if we can't compute an outer operation to use. */
9302 if (mask_rtx == 0
9303 || GET_CODE (mask_rtx) != CONST_INT
9304 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9305 INTVAL (mask_rtx),
9306 result_mode, &complement_p))
9307 break;
9309 /* If the shifts are in the same direction, we add the
9310 counts. Otherwise, we subtract them. */
9311 if ((code == ASHIFTRT || code == LSHIFTRT)
9312 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9313 count += first_count;
9314 else
9315 count -= first_count;
9317 /* If COUNT is positive, the new shift is usually CODE,
9318 except for the two exceptions below, in which case it is
9319 FIRST_CODE. If the count is negative, FIRST_CODE should
9320 always be used */
9321 if (count > 0
9322 && ((first_code == ROTATE && code == ASHIFT)
9323 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9324 code = first_code;
9325 else if (count < 0)
9326 code = first_code, count = -count;
9328 varop = XEXP (varop, 0);
9329 continue;
9332 /* If we have (A << B << C) for any shift, we can convert this to
9333 (A << C << B). This wins if A is a constant. Only try this if
9334 B is not a constant. */
9336 else if (GET_CODE (varop) == code
9337 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9338 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9340 rtx new_rtx = simplify_const_binary_operation (code, mode,
9341 XEXP (varop, 0),
9342 GEN_INT (count));
9343 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9344 count = 0;
9345 continue;
9347 break;
9349 case NOT:
9350 if (VECTOR_MODE_P (mode))
9351 break;
9353 /* Make this fit the case below. */
9354 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9355 GEN_INT (GET_MODE_MASK (mode)));
9356 continue;
9358 case IOR:
9359 case AND:
9360 case XOR:
9361 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9362 with C the size of VAROP - 1 and the shift is logical if
9363 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9364 we have an (le X 0) operation. If we have an arithmetic shift
9365 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9366 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9368 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9369 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9370 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9371 && (code == LSHIFTRT || code == ASHIFTRT)
9372 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9373 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9375 count = 0;
9376 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9377 const0_rtx);
9379 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9380 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9382 continue;
9385 /* If we have (shift (logical)), move the logical to the outside
9386 to allow it to possibly combine with another logical and the
9387 shift to combine with another shift. This also canonicalizes to
9388 what a ZERO_EXTRACT looks like. Also, some machines have
9389 (and (shift)) insns. */
9391 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9392 /* We can't do this if we have (ashiftrt (xor)) and the
9393 constant has its sign bit set in shift_mode. */
9394 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9395 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9396 shift_mode))
9397 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9398 XEXP (varop, 1),
9399 GEN_INT (count))) != 0
9400 && GET_CODE (new_rtx) == CONST_INT
9401 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9402 INTVAL (new_rtx), result_mode, &complement_p))
9404 varop = XEXP (varop, 0);
9405 continue;
9408 /* If we can't do that, try to simplify the shift in each arm of the
9409 logical expression, make a new logical expression, and apply
9410 the inverse distributive law. This also can't be done
9411 for some (ashiftrt (xor)). */
9412 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9413 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9414 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9415 shift_mode)))
9417 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9418 XEXP (varop, 0), count);
9419 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9420 XEXP (varop, 1), count);
9422 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9423 lhs, rhs);
9424 varop = apply_distributive_law (varop);
9426 count = 0;
9427 continue;
9429 break;
9431 case EQ:
9432 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9433 says that the sign bit can be tested, FOO has mode MODE, C is
9434 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9435 that may be nonzero. */
9436 if (code == LSHIFTRT
9437 && XEXP (varop, 1) == const0_rtx
9438 && GET_MODE (XEXP (varop, 0)) == result_mode
9439 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9440 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9441 && STORE_FLAG_VALUE == -1
9442 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9443 && merge_outer_ops (&outer_op, &outer_const, XOR,
9444 (HOST_WIDE_INT) 1, result_mode,
9445 &complement_p))
9447 varop = XEXP (varop, 0);
9448 count = 0;
9449 continue;
9451 break;
9453 case NEG:
9454 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9455 than the number of bits in the mode is equivalent to A. */
9456 if (code == LSHIFTRT
9457 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9458 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9460 varop = XEXP (varop, 0);
9461 count = 0;
9462 continue;
9465 /* NEG commutes with ASHIFT since it is multiplication. Move the
9466 NEG outside to allow shifts to combine. */
9467 if (code == ASHIFT
9468 && merge_outer_ops (&outer_op, &outer_const, NEG,
9469 (HOST_WIDE_INT) 0, result_mode,
9470 &complement_p))
9472 varop = XEXP (varop, 0);
9473 continue;
9475 break;
9477 case PLUS:
9478 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9479 is one less than the number of bits in the mode is
9480 equivalent to (xor A 1). */
9481 if (code == LSHIFTRT
9482 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9483 && XEXP (varop, 1) == constm1_rtx
9484 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9485 && merge_outer_ops (&outer_op, &outer_const, XOR,
9486 (HOST_WIDE_INT) 1, result_mode,
9487 &complement_p))
9489 count = 0;
9490 varop = XEXP (varop, 0);
9491 continue;
9494 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9495 that might be nonzero in BAR are those being shifted out and those
9496 bits are known zero in FOO, we can replace the PLUS with FOO.
9497 Similarly in the other operand order. This code occurs when
9498 we are computing the size of a variable-size array. */
9500 if ((code == ASHIFTRT || code == LSHIFTRT)
9501 && count < HOST_BITS_PER_WIDE_INT
9502 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9503 && (nonzero_bits (XEXP (varop, 1), result_mode)
9504 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9506 varop = XEXP (varop, 0);
9507 continue;
9509 else if ((code == ASHIFTRT || code == LSHIFTRT)
9510 && count < HOST_BITS_PER_WIDE_INT
9511 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9512 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9513 >> count)
9514 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9515 & nonzero_bits (XEXP (varop, 1),
9516 result_mode)))
9518 varop = XEXP (varop, 1);
9519 continue;
9522 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9523 if (code == ASHIFT
9524 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9525 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9526 XEXP (varop, 1),
9527 GEN_INT (count))) != 0
9528 && GET_CODE (new_rtx) == CONST_INT
9529 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9530 INTVAL (new_rtx), result_mode, &complement_p))
9532 varop = XEXP (varop, 0);
9533 continue;
9536 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9537 signbit', and attempt to change the PLUS to an XOR and move it to
9538 the outer operation as is done above in the AND/IOR/XOR case
9539 leg for shift(logical). See details in logical handling above
9540 for reasoning in doing so. */
9541 if (code == LSHIFTRT
9542 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9543 && mode_signbit_p (result_mode, XEXP (varop, 1))
9544 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9545 XEXP (varop, 1),
9546 GEN_INT (count))) != 0
9547 && GET_CODE (new_rtx) == CONST_INT
9548 && merge_outer_ops (&outer_op, &outer_const, XOR,
9549 INTVAL (new_rtx), result_mode, &complement_p))
9551 varop = XEXP (varop, 0);
9552 continue;
9555 break;
9557 case MINUS:
9558 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9559 with C the size of VAROP - 1 and the shift is logical if
9560 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9561 we have a (gt X 0) operation. If the shift is arithmetic with
9562 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9563 we have a (neg (gt X 0)) operation. */
9565 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9566 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9567 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9568 && (code == LSHIFTRT || code == ASHIFTRT)
9569 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9570 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9571 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9573 count = 0;
9574 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9575 const0_rtx);
9577 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9578 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9580 continue;
9582 break;
9584 case TRUNCATE:
9585 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9586 if the truncate does not affect the value. */
9587 if (code == LSHIFTRT
9588 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9589 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9590 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9591 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9592 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9594 rtx varop_inner = XEXP (varop, 0);
9596 varop_inner
9597 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9598 XEXP (varop_inner, 0),
9599 GEN_INT
9600 (count + INTVAL (XEXP (varop_inner, 1))));
9601 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9602 count = 0;
9603 continue;
9605 break;
9607 default:
9608 break;
9611 break;
9614 /* We need to determine what mode to do the shift in. If the shift is
9615 a right shift or ROTATE, we must always do it in the mode it was
9616 originally done in. Otherwise, we can do it in MODE, the widest mode
9617 encountered. The code we care about is that of the shift that will
9618 actually be done, not the shift that was originally requested. */
9619 shift_mode
9620 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9621 ? result_mode : mode);
9623 /* We have now finished analyzing the shift. The result should be
9624 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9625 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9626 to the result of the shift. OUTER_CONST is the relevant constant,
9627 but we must turn off all bits turned off in the shift. */
9629 if (outer_op == UNKNOWN
9630 && orig_code == code && orig_count == count
9631 && varop == orig_varop
9632 && shift_mode == GET_MODE (varop))
9633 return NULL_RTX;
9635 /* Make a SUBREG if necessary. If we can't make it, fail. */
9636 varop = gen_lowpart (shift_mode, varop);
9637 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9638 return NULL_RTX;
9640 /* If we have an outer operation and we just made a shift, it is
9641 possible that we could have simplified the shift were it not
9642 for the outer operation. So try to do the simplification
9643 recursively. */
9645 if (outer_op != UNKNOWN)
9646 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9647 else
9648 x = NULL_RTX;
9650 if (x == NULL_RTX)
9651 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9653 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9654 turn off all the bits that the shift would have turned off. */
9655 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9656 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9657 GET_MODE_MASK (result_mode) >> orig_count);
9659 /* Do the remainder of the processing in RESULT_MODE. */
9660 x = gen_lowpart_or_truncate (result_mode, x);
9662 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9663 operation. */
9664 if (complement_p)
9665 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9667 if (outer_op != UNKNOWN)
9669 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9670 outer_const = trunc_int_for_mode (outer_const, result_mode);
9672 if (outer_op == AND)
9673 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9674 else if (outer_op == SET)
9676 /* This means that we have determined that the result is
9677 equivalent to a constant. This should be rare. */
9678 if (!side_effects_p (x))
9679 x = GEN_INT (outer_const);
9681 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9682 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9683 else
9684 x = simplify_gen_binary (outer_op, result_mode, x,
9685 GEN_INT (outer_const));
9688 return x;
9691 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9692 The result of the shift is RESULT_MODE. If we cannot simplify it,
9693 return X or, if it is NULL, synthesize the expression with
9694 simplify_gen_binary. Otherwise, return a simplified value.
9696 The shift is normally computed in the widest mode we find in VAROP, as
9697 long as it isn't a different number of words than RESULT_MODE. Exceptions
9698 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9700 static rtx
9701 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9702 rtx varop, int count)
9704 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9705 if (tem)
9706 return tem;
9708 if (!x)
9709 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9710 if (GET_MODE (x) != result_mode)
9711 x = gen_lowpart (result_mode, x);
9712 return x;
9716 /* Like recog, but we receive the address of a pointer to a new pattern.
9717 We try to match the rtx that the pointer points to.
9718 If that fails, we may try to modify or replace the pattern,
9719 storing the replacement into the same pointer object.
9721 Modifications include deletion or addition of CLOBBERs.
9723 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9724 the CLOBBERs are placed.
9726 The value is the final insn code from the pattern ultimately matched,
9727 or -1. */
9729 static int
9730 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9732 rtx pat = *pnewpat;
9733 int insn_code_number;
9734 int num_clobbers_to_add = 0;
9735 int i;
9736 rtx notes = 0;
9737 rtx old_notes, old_pat;
9739 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9740 we use to indicate that something didn't match. If we find such a
9741 thing, force rejection. */
9742 if (GET_CODE (pat) == PARALLEL)
9743 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9744 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9745 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9746 return -1;
9748 old_pat = PATTERN (insn);
9749 old_notes = REG_NOTES (insn);
9750 PATTERN (insn) = pat;
9751 REG_NOTES (insn) = 0;
9753 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9754 if (dump_file && (dump_flags & TDF_DETAILS))
9756 if (insn_code_number < 0)
9757 fputs ("Failed to match this instruction:\n", dump_file);
9758 else
9759 fputs ("Successfully matched this instruction:\n", dump_file);
9760 print_rtl_single (dump_file, pat);
9763 /* If it isn't, there is the possibility that we previously had an insn
9764 that clobbered some register as a side effect, but the combined
9765 insn doesn't need to do that. So try once more without the clobbers
9766 unless this represents an ASM insn. */
9768 if (insn_code_number < 0 && ! check_asm_operands (pat)
9769 && GET_CODE (pat) == PARALLEL)
9771 int pos;
9773 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9774 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9776 if (i != pos)
9777 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9778 pos++;
9781 SUBST_INT (XVECLEN (pat, 0), pos);
9783 if (pos == 1)
9784 pat = XVECEXP (pat, 0, 0);
9786 PATTERN (insn) = pat;
9787 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9788 if (dump_file && (dump_flags & TDF_DETAILS))
9790 if (insn_code_number < 0)
9791 fputs ("Failed to match this instruction:\n", dump_file);
9792 else
9793 fputs ("Successfully matched this instruction:\n", dump_file);
9794 print_rtl_single (dump_file, pat);
9797 PATTERN (insn) = old_pat;
9798 REG_NOTES (insn) = old_notes;
9800 /* Recognize all noop sets, these will be killed by followup pass. */
9801 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9802 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9804 /* If we had any clobbers to add, make a new pattern than contains
9805 them. Then check to make sure that all of them are dead. */
9806 if (num_clobbers_to_add)
9808 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9809 rtvec_alloc (GET_CODE (pat) == PARALLEL
9810 ? (XVECLEN (pat, 0)
9811 + num_clobbers_to_add)
9812 : num_clobbers_to_add + 1));
9814 if (GET_CODE (pat) == PARALLEL)
9815 for (i = 0; i < XVECLEN (pat, 0); i++)
9816 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9817 else
9818 XVECEXP (newpat, 0, 0) = pat;
9820 add_clobbers (newpat, insn_code_number);
9822 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9823 i < XVECLEN (newpat, 0); i++)
9825 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9826 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9827 return -1;
9828 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9830 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9831 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9832 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9835 pat = newpat;
9838 *pnewpat = pat;
9839 *pnotes = notes;
9841 return insn_code_number;
9844 /* Like gen_lowpart_general but for use by combine. In combine it
9845 is not possible to create any new pseudoregs. However, it is
9846 safe to create invalid memory addresses, because combine will
9847 try to recognize them and all they will do is make the combine
9848 attempt fail.
9850 If for some reason this cannot do its job, an rtx
9851 (clobber (const_int 0)) is returned.
9852 An insn containing that will not be recognized. */
9854 static rtx
9855 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9857 enum machine_mode imode = GET_MODE (x);
9858 unsigned int osize = GET_MODE_SIZE (omode);
9859 unsigned int isize = GET_MODE_SIZE (imode);
9860 rtx result;
9862 if (omode == imode)
9863 return x;
9865 /* Return identity if this is a CONST or symbolic reference. */
9866 if (omode == Pmode
9867 && (GET_CODE (x) == CONST
9868 || GET_CODE (x) == SYMBOL_REF
9869 || GET_CODE (x) == LABEL_REF))
9870 return x;
9872 /* We can only support MODE being wider than a word if X is a
9873 constant integer or has a mode the same size. */
9874 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9875 && ! ((imode == VOIDmode
9876 && (GET_CODE (x) == CONST_INT
9877 || GET_CODE (x) == CONST_DOUBLE))
9878 || isize == osize))
9879 goto fail;
9881 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9882 won't know what to do. So we will strip off the SUBREG here and
9883 process normally. */
9884 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9886 x = SUBREG_REG (x);
9888 /* For use in case we fall down into the address adjustments
9889 further below, we need to adjust the known mode and size of
9890 x; imode and isize, since we just adjusted x. */
9891 imode = GET_MODE (x);
9893 if (imode == omode)
9894 return x;
9896 isize = GET_MODE_SIZE (imode);
9899 result = gen_lowpart_common (omode, x);
9901 if (result)
9902 return result;
9904 if (MEM_P (x))
9906 int offset = 0;
9908 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9909 address. */
9910 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9911 goto fail;
9913 /* If we want to refer to something bigger than the original memref,
9914 generate a paradoxical subreg instead. That will force a reload
9915 of the original memref X. */
9916 if (isize < osize)
9917 return gen_rtx_SUBREG (omode, x, 0);
9919 if (WORDS_BIG_ENDIAN)
9920 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9922 /* Adjust the address so that the address-after-the-data is
9923 unchanged. */
9924 if (BYTES_BIG_ENDIAN)
9925 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9927 return adjust_address_nv (x, omode, offset);
9930 /* If X is a comparison operator, rewrite it in a new mode. This
9931 probably won't match, but may allow further simplifications. */
9932 else if (COMPARISON_P (x))
9933 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9935 /* If we couldn't simplify X any other way, just enclose it in a
9936 SUBREG. Normally, this SUBREG won't match, but some patterns may
9937 include an explicit SUBREG or we may simplify it further in combine. */
9938 else
9940 int offset = 0;
9941 rtx res;
9943 offset = subreg_lowpart_offset (omode, imode);
9944 if (imode == VOIDmode)
9946 imode = int_mode_for_mode (omode);
9947 x = gen_lowpart_common (imode, x);
9948 if (x == NULL)
9949 goto fail;
9951 res = simplify_gen_subreg (omode, x, imode, offset);
9952 if (res)
9953 return res;
9956 fail:
9957 return gen_rtx_CLOBBER (imode, const0_rtx);
9960 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9961 comparison code that will be tested.
9963 The result is a possibly different comparison code to use. *POP0 and
9964 *POP1 may be updated.
9966 It is possible that we might detect that a comparison is either always
9967 true or always false. However, we do not perform general constant
9968 folding in combine, so this knowledge isn't useful. Such tautologies
9969 should have been detected earlier. Hence we ignore all such cases. */
9971 static enum rtx_code
9972 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9974 rtx op0 = *pop0;
9975 rtx op1 = *pop1;
9976 rtx tem, tem1;
9977 int i;
9978 enum machine_mode mode, tmode;
9980 /* Try a few ways of applying the same transformation to both operands. */
9981 while (1)
9983 #ifndef WORD_REGISTER_OPERATIONS
9984 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9985 so check specially. */
9986 if (code != GTU && code != GEU && code != LTU && code != LEU
9987 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9988 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9989 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9990 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9991 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9992 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9993 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9994 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9995 && XEXP (op0, 1) == XEXP (op1, 1)
9996 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9997 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9998 && (INTVAL (XEXP (op0, 1))
9999 == (GET_MODE_BITSIZE (GET_MODE (op0))
10000 - (GET_MODE_BITSIZE
10001 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10003 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10004 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10006 #endif
10008 /* If both operands are the same constant shift, see if we can ignore the
10009 shift. We can if the shift is a rotate or if the bits shifted out of
10010 this shift are known to be zero for both inputs and if the type of
10011 comparison is compatible with the shift. */
10012 if (GET_CODE (op0) == GET_CODE (op1)
10013 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10014 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10015 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10016 && (code != GT && code != LT && code != GE && code != LE))
10017 || (GET_CODE (op0) == ASHIFTRT
10018 && (code != GTU && code != LTU
10019 && code != GEU && code != LEU)))
10020 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10021 && INTVAL (XEXP (op0, 1)) >= 0
10022 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10023 && XEXP (op0, 1) == XEXP (op1, 1))
10025 enum machine_mode mode = GET_MODE (op0);
10026 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10027 int shift_count = INTVAL (XEXP (op0, 1));
10029 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10030 mask &= (mask >> shift_count) << shift_count;
10031 else if (GET_CODE (op0) == ASHIFT)
10032 mask = (mask & (mask << shift_count)) >> shift_count;
10034 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10035 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10036 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10037 else
10038 break;
10041 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10042 SUBREGs are of the same mode, and, in both cases, the AND would
10043 be redundant if the comparison was done in the narrower mode,
10044 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10045 and the operand's possibly nonzero bits are 0xffffff01; in that case
10046 if we only care about QImode, we don't need the AND). This case
10047 occurs if the output mode of an scc insn is not SImode and
10048 STORE_FLAG_VALUE == 1 (e.g., the 386).
10050 Similarly, check for a case where the AND's are ZERO_EXTEND
10051 operations from some narrower mode even though a SUBREG is not
10052 present. */
10054 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10055 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10056 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10058 rtx inner_op0 = XEXP (op0, 0);
10059 rtx inner_op1 = XEXP (op1, 0);
10060 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10061 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10062 int changed = 0;
10064 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10065 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10066 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10067 && (GET_MODE (SUBREG_REG (inner_op0))
10068 == GET_MODE (SUBREG_REG (inner_op1)))
10069 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10070 <= HOST_BITS_PER_WIDE_INT)
10071 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10072 GET_MODE (SUBREG_REG (inner_op0)))))
10073 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10074 GET_MODE (SUBREG_REG (inner_op1))))))
10076 op0 = SUBREG_REG (inner_op0);
10077 op1 = SUBREG_REG (inner_op1);
10079 /* The resulting comparison is always unsigned since we masked
10080 off the original sign bit. */
10081 code = unsigned_condition (code);
10083 changed = 1;
10086 else if (c0 == c1)
10087 for (tmode = GET_CLASS_NARROWEST_MODE
10088 (GET_MODE_CLASS (GET_MODE (op0)));
10089 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10090 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10092 op0 = gen_lowpart (tmode, inner_op0);
10093 op1 = gen_lowpart (tmode, inner_op1);
10094 code = unsigned_condition (code);
10095 changed = 1;
10096 break;
10099 if (! changed)
10100 break;
10103 /* If both operands are NOT, we can strip off the outer operation
10104 and adjust the comparison code for swapped operands; similarly for
10105 NEG, except that this must be an equality comparison. */
10106 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10107 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10108 && (code == EQ || code == NE)))
10109 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10111 else
10112 break;
10115 /* If the first operand is a constant, swap the operands and adjust the
10116 comparison code appropriately, but don't do this if the second operand
10117 is already a constant integer. */
10118 if (swap_commutative_operands_p (op0, op1))
10120 tem = op0, op0 = op1, op1 = tem;
10121 code = swap_condition (code);
10124 /* We now enter a loop during which we will try to simplify the comparison.
10125 For the most part, we only are concerned with comparisons with zero,
10126 but some things may really be comparisons with zero but not start
10127 out looking that way. */
10129 while (GET_CODE (op1) == CONST_INT)
10131 enum machine_mode mode = GET_MODE (op0);
10132 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10133 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10134 int equality_comparison_p;
10135 int sign_bit_comparison_p;
10136 int unsigned_comparison_p;
10137 HOST_WIDE_INT const_op;
10139 /* We only want to handle integral modes. This catches VOIDmode,
10140 CCmode, and the floating-point modes. An exception is that we
10141 can handle VOIDmode if OP0 is a COMPARE or a comparison
10142 operation. */
10144 if (GET_MODE_CLASS (mode) != MODE_INT
10145 && ! (mode == VOIDmode
10146 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10147 break;
10149 /* Get the constant we are comparing against and turn off all bits
10150 not on in our mode. */
10151 const_op = INTVAL (op1);
10152 if (mode != VOIDmode)
10153 const_op = trunc_int_for_mode (const_op, mode);
10154 op1 = GEN_INT (const_op);
10156 /* If we are comparing against a constant power of two and the value
10157 being compared can only have that single bit nonzero (e.g., it was
10158 `and'ed with that bit), we can replace this with a comparison
10159 with zero. */
10160 if (const_op
10161 && (code == EQ || code == NE || code == GE || code == GEU
10162 || code == LT || code == LTU)
10163 && mode_width <= HOST_BITS_PER_WIDE_INT
10164 && exact_log2 (const_op) >= 0
10165 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10167 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10168 op1 = const0_rtx, const_op = 0;
10171 /* Similarly, if we are comparing a value known to be either -1 or
10172 0 with -1, change it to the opposite comparison against zero. */
10174 if (const_op == -1
10175 && (code == EQ || code == NE || code == GT || code == LE
10176 || code == GEU || code == LTU)
10177 && num_sign_bit_copies (op0, mode) == mode_width)
10179 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10180 op1 = const0_rtx, const_op = 0;
10183 /* Do some canonicalizations based on the comparison code. We prefer
10184 comparisons against zero and then prefer equality comparisons.
10185 If we can reduce the size of a constant, we will do that too. */
10187 switch (code)
10189 case LT:
10190 /* < C is equivalent to <= (C - 1) */
10191 if (const_op > 0)
10193 const_op -= 1;
10194 op1 = GEN_INT (const_op);
10195 code = LE;
10196 /* ... fall through to LE case below. */
10198 else
10199 break;
10201 case LE:
10202 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10203 if (const_op < 0)
10205 const_op += 1;
10206 op1 = GEN_INT (const_op);
10207 code = LT;
10210 /* If we are doing a <= 0 comparison on a value known to have
10211 a zero sign bit, we can replace this with == 0. */
10212 else if (const_op == 0
10213 && mode_width <= HOST_BITS_PER_WIDE_INT
10214 && (nonzero_bits (op0, mode)
10215 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10216 code = EQ;
10217 break;
10219 case GE:
10220 /* >= C is equivalent to > (C - 1). */
10221 if (const_op > 0)
10223 const_op -= 1;
10224 op1 = GEN_INT (const_op);
10225 code = GT;
10226 /* ... fall through to GT below. */
10228 else
10229 break;
10231 case GT:
10232 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10233 if (const_op < 0)
10235 const_op += 1;
10236 op1 = GEN_INT (const_op);
10237 code = GE;
10240 /* If we are doing a > 0 comparison on a value known to have
10241 a zero sign bit, we can replace this with != 0. */
10242 else if (const_op == 0
10243 && mode_width <= HOST_BITS_PER_WIDE_INT
10244 && (nonzero_bits (op0, mode)
10245 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10246 code = NE;
10247 break;
10249 case LTU:
10250 /* < C is equivalent to <= (C - 1). */
10251 if (const_op > 0)
10253 const_op -= 1;
10254 op1 = GEN_INT (const_op);
10255 code = LEU;
10256 /* ... fall through ... */
10259 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10260 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10261 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10263 const_op = 0, op1 = const0_rtx;
10264 code = GE;
10265 break;
10267 else
10268 break;
10270 case LEU:
10271 /* unsigned <= 0 is equivalent to == 0 */
10272 if (const_op == 0)
10273 code = EQ;
10275 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10276 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10277 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10279 const_op = 0, op1 = const0_rtx;
10280 code = GE;
10282 break;
10284 case GEU:
10285 /* >= C is equivalent to > (C - 1). */
10286 if (const_op > 1)
10288 const_op -= 1;
10289 op1 = GEN_INT (const_op);
10290 code = GTU;
10291 /* ... fall through ... */
10294 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10295 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10296 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10298 const_op = 0, op1 = const0_rtx;
10299 code = LT;
10300 break;
10302 else
10303 break;
10305 case GTU:
10306 /* unsigned > 0 is equivalent to != 0 */
10307 if (const_op == 0)
10308 code = NE;
10310 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10311 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10312 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10314 const_op = 0, op1 = const0_rtx;
10315 code = LT;
10317 break;
10319 default:
10320 break;
10323 /* Compute some predicates to simplify code below. */
10325 equality_comparison_p = (code == EQ || code == NE);
10326 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10327 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10328 || code == GEU);
10330 /* If this is a sign bit comparison and we can do arithmetic in
10331 MODE, say that we will only be needing the sign bit of OP0. */
10332 if (sign_bit_comparison_p
10333 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10334 op0 = force_to_mode (op0, mode,
10335 ((HOST_WIDE_INT) 1
10336 << (GET_MODE_BITSIZE (mode) - 1)),
10339 /* Now try cases based on the opcode of OP0. If none of the cases
10340 does a "continue", we exit this loop immediately after the
10341 switch. */
10343 switch (GET_CODE (op0))
10345 case ZERO_EXTRACT:
10346 /* If we are extracting a single bit from a variable position in
10347 a constant that has only a single bit set and are comparing it
10348 with zero, we can convert this into an equality comparison
10349 between the position and the location of the single bit. */
10350 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10351 have already reduced the shift count modulo the word size. */
10352 if (!SHIFT_COUNT_TRUNCATED
10353 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10354 && XEXP (op0, 1) == const1_rtx
10355 && equality_comparison_p && const_op == 0
10356 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10358 if (BITS_BIG_ENDIAN)
10360 enum machine_mode new_mode
10361 = mode_for_extraction (EP_extzv, 1);
10362 if (new_mode == MAX_MACHINE_MODE)
10363 i = BITS_PER_WORD - 1 - i;
10364 else
10366 mode = new_mode;
10367 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10371 op0 = XEXP (op0, 2);
10372 op1 = GEN_INT (i);
10373 const_op = i;
10375 /* Result is nonzero iff shift count is equal to I. */
10376 code = reverse_condition (code);
10377 continue;
10380 /* ... fall through ... */
10382 case SIGN_EXTRACT:
10383 tem = expand_compound_operation (op0);
10384 if (tem != op0)
10386 op0 = tem;
10387 continue;
10389 break;
10391 case NOT:
10392 /* If testing for equality, we can take the NOT of the constant. */
10393 if (equality_comparison_p
10394 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10396 op0 = XEXP (op0, 0);
10397 op1 = tem;
10398 continue;
10401 /* If just looking at the sign bit, reverse the sense of the
10402 comparison. */
10403 if (sign_bit_comparison_p)
10405 op0 = XEXP (op0, 0);
10406 code = (code == GE ? LT : GE);
10407 continue;
10409 break;
10411 case NEG:
10412 /* If testing for equality, we can take the NEG of the constant. */
10413 if (equality_comparison_p
10414 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10416 op0 = XEXP (op0, 0);
10417 op1 = tem;
10418 continue;
10421 /* The remaining cases only apply to comparisons with zero. */
10422 if (const_op != 0)
10423 break;
10425 /* When X is ABS or is known positive,
10426 (neg X) is < 0 if and only if X != 0. */
10428 if (sign_bit_comparison_p
10429 && (GET_CODE (XEXP (op0, 0)) == ABS
10430 || (mode_width <= HOST_BITS_PER_WIDE_INT
10431 && (nonzero_bits (XEXP (op0, 0), mode)
10432 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10434 op0 = XEXP (op0, 0);
10435 code = (code == LT ? NE : EQ);
10436 continue;
10439 /* If we have NEG of something whose two high-order bits are the
10440 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10441 if (num_sign_bit_copies (op0, mode) >= 2)
10443 op0 = XEXP (op0, 0);
10444 code = swap_condition (code);
10445 continue;
10447 break;
10449 case ROTATE:
10450 /* If we are testing equality and our count is a constant, we
10451 can perform the inverse operation on our RHS. */
10452 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && (tem = simplify_binary_operation (ROTATERT, mode,
10454 op1, XEXP (op0, 1))) != 0)
10456 op0 = XEXP (op0, 0);
10457 op1 = tem;
10458 continue;
10461 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10462 a particular bit. Convert it to an AND of a constant of that
10463 bit. This will be converted into a ZERO_EXTRACT. */
10464 if (const_op == 0 && sign_bit_comparison_p
10465 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10466 && mode_width <= HOST_BITS_PER_WIDE_INT)
10468 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10469 ((HOST_WIDE_INT) 1
10470 << (mode_width - 1
10471 - INTVAL (XEXP (op0, 1)))));
10472 code = (code == LT ? NE : EQ);
10473 continue;
10476 /* Fall through. */
10478 case ABS:
10479 /* ABS is ignorable inside an equality comparison with zero. */
10480 if (const_op == 0 && equality_comparison_p)
10482 op0 = XEXP (op0, 0);
10483 continue;
10485 break;
10487 case SIGN_EXTEND:
10488 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10489 (compare FOO CONST) if CONST fits in FOO's mode and we
10490 are either testing inequality or have an unsigned
10491 comparison with ZERO_EXTEND or a signed comparison with
10492 SIGN_EXTEND. But don't do it if we don't have a compare
10493 insn of the given mode, since we'd have to revert it
10494 later on, and then we wouldn't know whether to sign- or
10495 zero-extend. */
10496 mode = GET_MODE (XEXP (op0, 0));
10497 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10498 && ! unsigned_comparison_p
10499 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10500 && ((unsigned HOST_WIDE_INT) const_op
10501 < (((unsigned HOST_WIDE_INT) 1
10502 << (GET_MODE_BITSIZE (mode) - 1))))
10503 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10505 op0 = XEXP (op0, 0);
10506 continue;
10508 break;
10510 case SUBREG:
10511 /* Check for the case where we are comparing A - C1 with C2, that is
10513 (subreg:MODE (plus (A) (-C1))) op (C2)
10515 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10516 comparison in the wider mode. One of the following two conditions
10517 must be true in order for this to be valid:
10519 1. The mode extension results in the same bit pattern being added
10520 on both sides and the comparison is equality or unsigned. As
10521 C2 has been truncated to fit in MODE, the pattern can only be
10522 all 0s or all 1s.
10524 2. The mode extension results in the sign bit being copied on
10525 each side.
10527 The difficulty here is that we have predicates for A but not for
10528 (A - C1) so we need to check that C1 is within proper bounds so
10529 as to perturbate A as little as possible. */
10531 if (mode_width <= HOST_BITS_PER_WIDE_INT
10532 && subreg_lowpart_p (op0)
10533 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10534 && GET_CODE (SUBREG_REG (op0)) == PLUS
10535 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10537 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10538 rtx a = XEXP (SUBREG_REG (op0), 0);
10539 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10541 if ((c1 > 0
10542 && (unsigned HOST_WIDE_INT) c1
10543 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10544 && (equality_comparison_p || unsigned_comparison_p)
10545 /* (A - C1) zero-extends if it is positive and sign-extends
10546 if it is negative, C2 both zero- and sign-extends. */
10547 && ((0 == (nonzero_bits (a, inner_mode)
10548 & ~GET_MODE_MASK (mode))
10549 && const_op >= 0)
10550 /* (A - C1) sign-extends if it is positive and 1-extends
10551 if it is negative, C2 both sign- and 1-extends. */
10552 || (num_sign_bit_copies (a, inner_mode)
10553 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10554 - mode_width)
10555 && const_op < 0)))
10556 || ((unsigned HOST_WIDE_INT) c1
10557 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10558 /* (A - C1) always sign-extends, like C2. */
10559 && num_sign_bit_copies (a, inner_mode)
10560 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10561 - (mode_width - 1))))
10563 op0 = SUBREG_REG (op0);
10564 continue;
10568 /* If the inner mode is narrower and we are extracting the low part,
10569 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10570 if (subreg_lowpart_p (op0)
10571 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10572 /* Fall through */ ;
10573 else
10574 break;
10576 /* ... fall through ... */
10578 case ZERO_EXTEND:
10579 mode = GET_MODE (XEXP (op0, 0));
10580 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10581 && (unsigned_comparison_p || equality_comparison_p)
10582 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10583 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10584 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10586 op0 = XEXP (op0, 0);
10587 continue;
10589 break;
10591 case PLUS:
10592 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10593 this for equality comparisons due to pathological cases involving
10594 overflows. */
10595 if (equality_comparison_p
10596 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10597 op1, XEXP (op0, 1))))
10599 op0 = XEXP (op0, 0);
10600 op1 = tem;
10601 continue;
10604 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10605 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10606 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10608 op0 = XEXP (XEXP (op0, 0), 0);
10609 code = (code == LT ? EQ : NE);
10610 continue;
10612 break;
10614 case MINUS:
10615 /* We used to optimize signed comparisons against zero, but that
10616 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10617 arrive here as equality comparisons, or (GEU, LTU) are
10618 optimized away. No need to special-case them. */
10620 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10621 (eq B (minus A C)), whichever simplifies. We can only do
10622 this for equality comparisons due to pathological cases involving
10623 overflows. */
10624 if (equality_comparison_p
10625 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10626 XEXP (op0, 1), op1)))
10628 op0 = XEXP (op0, 0);
10629 op1 = tem;
10630 continue;
10633 if (equality_comparison_p
10634 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10635 XEXP (op0, 0), op1)))
10637 op0 = XEXP (op0, 1);
10638 op1 = tem;
10639 continue;
10642 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10643 of bits in X minus 1, is one iff X > 0. */
10644 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10645 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10646 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10647 == mode_width - 1
10648 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10650 op0 = XEXP (op0, 1);
10651 code = (code == GE ? LE : GT);
10652 continue;
10654 break;
10656 case XOR:
10657 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10658 if C is zero or B is a constant. */
10659 if (equality_comparison_p
10660 && 0 != (tem = simplify_binary_operation (XOR, mode,
10661 XEXP (op0, 1), op1)))
10663 op0 = XEXP (op0, 0);
10664 op1 = tem;
10665 continue;
10667 break;
10669 case EQ: case NE:
10670 case UNEQ: case LTGT:
10671 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10672 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10673 case UNORDERED: case ORDERED:
10674 /* We can't do anything if OP0 is a condition code value, rather
10675 than an actual data value. */
10676 if (const_op != 0
10677 || CC0_P (XEXP (op0, 0))
10678 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10679 break;
10681 /* Get the two operands being compared. */
10682 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10683 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10684 else
10685 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10687 /* Check for the cases where we simply want the result of the
10688 earlier test or the opposite of that result. */
10689 if (code == NE || code == EQ
10690 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10691 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10692 && (STORE_FLAG_VALUE
10693 & (((HOST_WIDE_INT) 1
10694 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10695 && (code == LT || code == GE)))
10697 enum rtx_code new_code;
10698 if (code == LT || code == NE)
10699 new_code = GET_CODE (op0);
10700 else
10701 new_code = reversed_comparison_code (op0, NULL);
10703 if (new_code != UNKNOWN)
10705 code = new_code;
10706 op0 = tem;
10707 op1 = tem1;
10708 continue;
10711 break;
10713 case IOR:
10714 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10715 iff X <= 0. */
10716 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10717 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10718 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10720 op0 = XEXP (op0, 1);
10721 code = (code == GE ? GT : LE);
10722 continue;
10724 break;
10726 case AND:
10727 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10728 will be converted to a ZERO_EXTRACT later. */
10729 if (const_op == 0 && equality_comparison_p
10730 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10731 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10733 op0 = simplify_and_const_int
10734 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10735 XEXP (op0, 1),
10736 XEXP (XEXP (op0, 0), 1)),
10737 (HOST_WIDE_INT) 1);
10738 continue;
10741 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10742 zero and X is a comparison and C1 and C2 describe only bits set
10743 in STORE_FLAG_VALUE, we can compare with X. */
10744 if (const_op == 0 && equality_comparison_p
10745 && mode_width <= HOST_BITS_PER_WIDE_INT
10746 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10747 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10748 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10749 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10750 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10752 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10753 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10754 if ((~STORE_FLAG_VALUE & mask) == 0
10755 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10756 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10757 && COMPARISON_P (tem))))
10759 op0 = XEXP (XEXP (op0, 0), 0);
10760 continue;
10764 /* If we are doing an equality comparison of an AND of a bit equal
10765 to the sign bit, replace this with a LT or GE comparison of
10766 the underlying value. */
10767 if (equality_comparison_p
10768 && const_op == 0
10769 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10770 && mode_width <= HOST_BITS_PER_WIDE_INT
10771 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10772 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10774 op0 = XEXP (op0, 0);
10775 code = (code == EQ ? GE : LT);
10776 continue;
10779 /* If this AND operation is really a ZERO_EXTEND from a narrower
10780 mode, the constant fits within that mode, and this is either an
10781 equality or unsigned comparison, try to do this comparison in
10782 the narrower mode.
10784 Note that in:
10786 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10787 -> (ne:DI (reg:SI 4) (const_int 0))
10789 unless TRULY_NOOP_TRUNCATION allows it or the register is
10790 known to hold a value of the required mode the
10791 transformation is invalid. */
10792 if ((equality_comparison_p || unsigned_comparison_p)
10793 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10794 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10795 & GET_MODE_MASK (mode))
10796 + 1)) >= 0
10797 && const_op >> i == 0
10798 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10799 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10800 GET_MODE_BITSIZE (GET_MODE (op0)))
10801 || (REG_P (XEXP (op0, 0))
10802 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10804 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10805 continue;
10808 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10809 fits in both M1 and M2 and the SUBREG is either paradoxical
10810 or represents the low part, permute the SUBREG and the AND
10811 and try again. */
10812 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10814 unsigned HOST_WIDE_INT c1;
10815 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10816 /* Require an integral mode, to avoid creating something like
10817 (AND:SF ...). */
10818 if (SCALAR_INT_MODE_P (tmode)
10819 /* It is unsafe to commute the AND into the SUBREG if the
10820 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10821 not defined. As originally written the upper bits
10822 have a defined value due to the AND operation.
10823 However, if we commute the AND inside the SUBREG then
10824 they no longer have defined values and the meaning of
10825 the code has been changed. */
10826 && (0
10827 #ifdef WORD_REGISTER_OPERATIONS
10828 || (mode_width > GET_MODE_BITSIZE (tmode)
10829 && mode_width <= BITS_PER_WORD)
10830 #endif
10831 || (mode_width <= GET_MODE_BITSIZE (tmode)
10832 && subreg_lowpart_p (XEXP (op0, 0))))
10833 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10834 && mode_width <= HOST_BITS_PER_WIDE_INT
10835 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10836 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10837 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10838 && c1 != mask
10839 && c1 != GET_MODE_MASK (tmode))
10841 op0 = simplify_gen_binary (AND, tmode,
10842 SUBREG_REG (XEXP (op0, 0)),
10843 gen_int_mode (c1, tmode));
10844 op0 = gen_lowpart (mode, op0);
10845 continue;
10849 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10850 if (const_op == 0 && equality_comparison_p
10851 && XEXP (op0, 1) == const1_rtx
10852 && GET_CODE (XEXP (op0, 0)) == NOT)
10854 op0 = simplify_and_const_int
10855 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10856 code = (code == NE ? EQ : NE);
10857 continue;
10860 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10861 (eq (and (lshiftrt X) 1) 0).
10862 Also handle the case where (not X) is expressed using xor. */
10863 if (const_op == 0 && equality_comparison_p
10864 && XEXP (op0, 1) == const1_rtx
10865 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10867 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10868 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10870 if (GET_CODE (shift_op) == NOT
10871 || (GET_CODE (shift_op) == XOR
10872 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10873 && GET_CODE (shift_count) == CONST_INT
10874 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10875 && (INTVAL (XEXP (shift_op, 1))
10876 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10878 op0 = simplify_and_const_int
10879 (NULL_RTX, mode,
10880 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10881 (HOST_WIDE_INT) 1);
10882 code = (code == NE ? EQ : NE);
10883 continue;
10886 break;
10888 case ASHIFT:
10889 /* If we have (compare (ashift FOO N) (const_int C)) and
10890 the high order N bits of FOO (N+1 if an inequality comparison)
10891 are known to be zero, we can do this by comparing FOO with C
10892 shifted right N bits so long as the low-order N bits of C are
10893 zero. */
10894 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10895 && INTVAL (XEXP (op0, 1)) >= 0
10896 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10897 < HOST_BITS_PER_WIDE_INT)
10898 && ((const_op
10899 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10900 && mode_width <= HOST_BITS_PER_WIDE_INT
10901 && (nonzero_bits (XEXP (op0, 0), mode)
10902 & ~(mask >> (INTVAL (XEXP (op0, 1))
10903 + ! equality_comparison_p))) == 0)
10905 /* We must perform a logical shift, not an arithmetic one,
10906 as we want the top N bits of C to be zero. */
10907 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10909 temp >>= INTVAL (XEXP (op0, 1));
10910 op1 = gen_int_mode (temp, mode);
10911 op0 = XEXP (op0, 0);
10912 continue;
10915 /* If we are doing a sign bit comparison, it means we are testing
10916 a particular bit. Convert it to the appropriate AND. */
10917 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10918 && mode_width <= HOST_BITS_PER_WIDE_INT)
10920 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10921 ((HOST_WIDE_INT) 1
10922 << (mode_width - 1
10923 - INTVAL (XEXP (op0, 1)))));
10924 code = (code == LT ? NE : EQ);
10925 continue;
10928 /* If this an equality comparison with zero and we are shifting
10929 the low bit to the sign bit, we can convert this to an AND of the
10930 low-order bit. */
10931 if (const_op == 0 && equality_comparison_p
10932 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10933 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10934 == mode_width - 1)
10936 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10937 (HOST_WIDE_INT) 1);
10938 continue;
10940 break;
10942 case ASHIFTRT:
10943 /* If this is an equality comparison with zero, we can do this
10944 as a logical shift, which might be much simpler. */
10945 if (equality_comparison_p && const_op == 0
10946 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10948 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10949 XEXP (op0, 0),
10950 INTVAL (XEXP (op0, 1)));
10951 continue;
10954 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10955 do the comparison in a narrower mode. */
10956 if (! unsigned_comparison_p
10957 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10958 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10959 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10960 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10961 MODE_INT, 1)) != BLKmode
10962 && (((unsigned HOST_WIDE_INT) const_op
10963 + (GET_MODE_MASK (tmode) >> 1) + 1)
10964 <= GET_MODE_MASK (tmode)))
10966 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10967 continue;
10970 /* Likewise if OP0 is a PLUS of a sign extension with a
10971 constant, which is usually represented with the PLUS
10972 between the shifts. */
10973 if (! unsigned_comparison_p
10974 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10975 && GET_CODE (XEXP (op0, 0)) == PLUS
10976 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10977 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10978 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10979 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10980 MODE_INT, 1)) != BLKmode
10981 && (((unsigned HOST_WIDE_INT) const_op
10982 + (GET_MODE_MASK (tmode) >> 1) + 1)
10983 <= GET_MODE_MASK (tmode)))
10985 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10986 rtx add_const = XEXP (XEXP (op0, 0), 1);
10987 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
10988 add_const, XEXP (op0, 1));
10990 op0 = simplify_gen_binary (PLUS, tmode,
10991 gen_lowpart (tmode, inner),
10992 new_const);
10993 continue;
10996 /* ... fall through ... */
10997 case LSHIFTRT:
10998 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10999 the low order N bits of FOO are known to be zero, we can do this
11000 by comparing FOO with C shifted left N bits so long as no
11001 overflow occurs. */
11002 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11003 && INTVAL (XEXP (op0, 1)) >= 0
11004 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11005 && mode_width <= HOST_BITS_PER_WIDE_INT
11006 && (nonzero_bits (XEXP (op0, 0), mode)
11007 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11008 && (((unsigned HOST_WIDE_INT) const_op
11009 + (GET_CODE (op0) != LSHIFTRT
11010 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11011 + 1)
11012 : 0))
11013 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11015 /* If the shift was logical, then we must make the condition
11016 unsigned. */
11017 if (GET_CODE (op0) == LSHIFTRT)
11018 code = unsigned_condition (code);
11020 const_op <<= INTVAL (XEXP (op0, 1));
11021 op1 = GEN_INT (const_op);
11022 op0 = XEXP (op0, 0);
11023 continue;
11026 /* If we are using this shift to extract just the sign bit, we
11027 can replace this with an LT or GE comparison. */
11028 if (const_op == 0
11029 && (equality_comparison_p || sign_bit_comparison_p)
11030 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11031 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11032 == mode_width - 1)
11034 op0 = XEXP (op0, 0);
11035 code = (code == NE || code == GT ? LT : GE);
11036 continue;
11038 break;
11040 default:
11041 break;
11044 break;
11047 /* Now make any compound operations involved in this comparison. Then,
11048 check for an outmost SUBREG on OP0 that is not doing anything or is
11049 paradoxical. The latter transformation must only be performed when
11050 it is known that the "extra" bits will be the same in op0 and op1 or
11051 that they don't matter. There are three cases to consider:
11053 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11054 care bits and we can assume they have any convenient value. So
11055 making the transformation is safe.
11057 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11058 In this case the upper bits of op0 are undefined. We should not make
11059 the simplification in that case as we do not know the contents of
11060 those bits.
11062 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11063 UNKNOWN. In that case we know those bits are zeros or ones. We must
11064 also be sure that they are the same as the upper bits of op1.
11066 We can never remove a SUBREG for a non-equality comparison because
11067 the sign bit is in a different place in the underlying object. */
11069 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11070 op1 = make_compound_operation (op1, SET);
11072 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11073 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11074 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11075 && (code == NE || code == EQ))
11077 if (GET_MODE_SIZE (GET_MODE (op0))
11078 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11080 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11081 implemented. */
11082 if (REG_P (SUBREG_REG (op0)))
11084 op0 = SUBREG_REG (op0);
11085 op1 = gen_lowpart (GET_MODE (op0), op1);
11088 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11089 <= HOST_BITS_PER_WIDE_INT)
11090 && (nonzero_bits (SUBREG_REG (op0),
11091 GET_MODE (SUBREG_REG (op0)))
11092 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11094 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11096 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11097 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11098 op0 = SUBREG_REG (op0), op1 = tem;
11102 /* We now do the opposite procedure: Some machines don't have compare
11103 insns in all modes. If OP0's mode is an integer mode smaller than a
11104 word and we can't do a compare in that mode, see if there is a larger
11105 mode for which we can do the compare. There are a number of cases in
11106 which we can use the wider mode. */
11108 mode = GET_MODE (op0);
11109 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11110 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11111 && ! have_insn_for (COMPARE, mode))
11112 for (tmode = GET_MODE_WIDER_MODE (mode);
11113 (tmode != VOIDmode
11114 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11115 tmode = GET_MODE_WIDER_MODE (tmode))
11116 if (have_insn_for (COMPARE, tmode))
11118 int zero_extended;
11120 /* If the only nonzero bits in OP0 and OP1 are those in the
11121 narrower mode and this is an equality or unsigned comparison,
11122 we can use the wider mode. Similarly for sign-extended
11123 values, in which case it is true for all comparisons. */
11124 zero_extended = ((code == EQ || code == NE
11125 || code == GEU || code == GTU
11126 || code == LEU || code == LTU)
11127 && (nonzero_bits (op0, tmode)
11128 & ~GET_MODE_MASK (mode)) == 0
11129 && ((GET_CODE (op1) == CONST_INT
11130 || (nonzero_bits (op1, tmode)
11131 & ~GET_MODE_MASK (mode)) == 0)));
11133 if (zero_extended
11134 || ((num_sign_bit_copies (op0, tmode)
11135 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11136 - GET_MODE_BITSIZE (mode)))
11137 && (num_sign_bit_copies (op1, tmode)
11138 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11139 - GET_MODE_BITSIZE (mode)))))
11141 /* If OP0 is an AND and we don't have an AND in MODE either,
11142 make a new AND in the proper mode. */
11143 if (GET_CODE (op0) == AND
11144 && !have_insn_for (AND, mode))
11145 op0 = simplify_gen_binary (AND, tmode,
11146 gen_lowpart (tmode,
11147 XEXP (op0, 0)),
11148 gen_lowpart (tmode,
11149 XEXP (op0, 1)));
11151 op0 = gen_lowpart (tmode, op0);
11152 if (zero_extended && GET_CODE (op1) == CONST_INT)
11153 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11154 op1 = gen_lowpart (tmode, op1);
11155 break;
11158 /* If this is a test for negative, we can make an explicit
11159 test of the sign bit. */
11161 if (op1 == const0_rtx && (code == LT || code == GE)
11162 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11164 op0 = simplify_gen_binary (AND, tmode,
11165 gen_lowpart (tmode, op0),
11166 GEN_INT ((HOST_WIDE_INT) 1
11167 << (GET_MODE_BITSIZE (mode)
11168 - 1)));
11169 code = (code == LT) ? NE : EQ;
11170 break;
11174 #ifdef CANONICALIZE_COMPARISON
11175 /* If this machine only supports a subset of valid comparisons, see if we
11176 can convert an unsupported one into a supported one. */
11177 CANONICALIZE_COMPARISON (code, op0, op1);
11178 #endif
11180 *pop0 = op0;
11181 *pop1 = op1;
11183 return code;
11186 /* Utility function for record_value_for_reg. Count number of
11187 rtxs in X. */
11188 static int
11189 count_rtxs (rtx x)
11191 enum rtx_code code = GET_CODE (x);
11192 const char *fmt;
11193 int i, ret = 1;
11195 if (GET_RTX_CLASS (code) == '2'
11196 || GET_RTX_CLASS (code) == 'c')
11198 rtx x0 = XEXP (x, 0);
11199 rtx x1 = XEXP (x, 1);
11201 if (x0 == x1)
11202 return 1 + 2 * count_rtxs (x0);
11204 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11205 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11206 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11207 return 2 + 2 * count_rtxs (x0)
11208 + count_rtxs (x == XEXP (x1, 0)
11209 ? XEXP (x1, 1) : XEXP (x1, 0));
11211 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11212 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11213 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11214 return 2 + 2 * count_rtxs (x1)
11215 + count_rtxs (x == XEXP (x0, 0)
11216 ? XEXP (x0, 1) : XEXP (x0, 0));
11219 fmt = GET_RTX_FORMAT (code);
11220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11221 if (fmt[i] == 'e')
11222 ret += count_rtxs (XEXP (x, i));
11224 return ret;
11227 /* Utility function for following routine. Called when X is part of a value
11228 being stored into last_set_value. Sets last_set_table_tick
11229 for each register mentioned. Similar to mention_regs in cse.c */
11231 static void
11232 update_table_tick (rtx x)
11234 enum rtx_code code = GET_CODE (x);
11235 const char *fmt = GET_RTX_FORMAT (code);
11236 int i;
11238 if (code == REG)
11240 unsigned int regno = REGNO (x);
11241 unsigned int endregno = END_REGNO (x);
11242 unsigned int r;
11244 for (r = regno; r < endregno; r++)
11246 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11247 rsp->last_set_table_tick = label_tick;
11250 return;
11253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11254 /* Note that we can't have an "E" in values stored; see
11255 get_last_value_validate. */
11256 if (fmt[i] == 'e')
11258 /* Check for identical subexpressions. If x contains
11259 identical subexpression we only have to traverse one of
11260 them. */
11261 if (i == 0 && ARITHMETIC_P (x))
11263 /* Note that at this point x1 has already been
11264 processed. */
11265 rtx x0 = XEXP (x, 0);
11266 rtx x1 = XEXP (x, 1);
11268 /* If x0 and x1 are identical then there is no need to
11269 process x0. */
11270 if (x0 == x1)
11271 break;
11273 /* If x0 is identical to a subexpression of x1 then while
11274 processing x1, x0 has already been processed. Thus we
11275 are done with x. */
11276 if (ARITHMETIC_P (x1)
11277 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11278 break;
11280 /* If x1 is identical to a subexpression of x0 then we
11281 still have to process the rest of x0. */
11282 if (ARITHMETIC_P (x0)
11283 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11285 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11286 break;
11290 update_table_tick (XEXP (x, i));
11294 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11295 are saying that the register is clobbered and we no longer know its
11296 value. If INSN is zero, don't update reg_stat[].last_set; this is
11297 only permitted with VALUE also zero and is used to invalidate the
11298 register. */
11300 static void
11301 record_value_for_reg (rtx reg, rtx insn, rtx value)
11303 unsigned int regno = REGNO (reg);
11304 unsigned int endregno = END_REGNO (reg);
11305 unsigned int i;
11306 reg_stat_type *rsp;
11308 /* If VALUE contains REG and we have a previous value for REG, substitute
11309 the previous value. */
11310 if (value && insn && reg_overlap_mentioned_p (reg, value))
11312 rtx tem;
11314 /* Set things up so get_last_value is allowed to see anything set up to
11315 our insn. */
11316 subst_low_luid = DF_INSN_LUID (insn);
11317 tem = get_last_value (reg);
11319 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11320 it isn't going to be useful and will take a lot of time to process,
11321 so just use the CLOBBER. */
11323 if (tem)
11325 if (ARITHMETIC_P (tem)
11326 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11327 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11328 tem = XEXP (tem, 0);
11329 else if (count_occurrences (value, reg, 1) >= 2)
11331 /* If there are two or more occurrences of REG in VALUE,
11332 prevent the value from growing too much. */
11333 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11334 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11337 value = replace_rtx (copy_rtx (value), reg, tem);
11341 /* For each register modified, show we don't know its value, that
11342 we don't know about its bitwise content, that its value has been
11343 updated, and that we don't know the location of the death of the
11344 register. */
11345 for (i = regno; i < endregno; i++)
11347 rsp = VEC_index (reg_stat_type, reg_stat, i);
11349 if (insn)
11350 rsp->last_set = insn;
11352 rsp->last_set_value = 0;
11353 rsp->last_set_mode = 0;
11354 rsp->last_set_nonzero_bits = 0;
11355 rsp->last_set_sign_bit_copies = 0;
11356 rsp->last_death = 0;
11357 rsp->truncated_to_mode = 0;
11360 /* Mark registers that are being referenced in this value. */
11361 if (value)
11362 update_table_tick (value);
11364 /* Now update the status of each register being set.
11365 If someone is using this register in this block, set this register
11366 to invalid since we will get confused between the two lives in this
11367 basic block. This makes using this register always invalid. In cse, we
11368 scan the table to invalidate all entries using this register, but this
11369 is too much work for us. */
11371 for (i = regno; i < endregno; i++)
11373 rsp = VEC_index (reg_stat_type, reg_stat, i);
11374 rsp->last_set_label = label_tick;
11375 if (!insn
11376 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11377 rsp->last_set_invalid = 1;
11378 else
11379 rsp->last_set_invalid = 0;
11382 /* The value being assigned might refer to X (like in "x++;"). In that
11383 case, we must replace it with (clobber (const_int 0)) to prevent
11384 infinite loops. */
11385 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11386 if (value && ! get_last_value_validate (&value, insn,
11387 rsp->last_set_label, 0))
11389 value = copy_rtx (value);
11390 if (! get_last_value_validate (&value, insn,
11391 rsp->last_set_label, 1))
11392 value = 0;
11395 /* For the main register being modified, update the value, the mode, the
11396 nonzero bits, and the number of sign bit copies. */
11398 rsp->last_set_value = value;
11400 if (value)
11402 enum machine_mode mode = GET_MODE (reg);
11403 subst_low_luid = DF_INSN_LUID (insn);
11404 rsp->last_set_mode = mode;
11405 if (GET_MODE_CLASS (mode) == MODE_INT
11406 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11407 mode = nonzero_bits_mode;
11408 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11409 rsp->last_set_sign_bit_copies
11410 = num_sign_bit_copies (value, GET_MODE (reg));
11414 /* Called via note_stores from record_dead_and_set_regs to handle one
11415 SET or CLOBBER in an insn. DATA is the instruction in which the
11416 set is occurring. */
11418 static void
11419 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11421 rtx record_dead_insn = (rtx) data;
11423 if (GET_CODE (dest) == SUBREG)
11424 dest = SUBREG_REG (dest);
11426 if (!record_dead_insn)
11428 if (REG_P (dest))
11429 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11430 return;
11433 if (REG_P (dest))
11435 /* If we are setting the whole register, we know its value. Otherwise
11436 show that we don't know the value. We can handle SUBREG in
11437 some cases. */
11438 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11439 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11440 else if (GET_CODE (setter) == SET
11441 && GET_CODE (SET_DEST (setter)) == SUBREG
11442 && SUBREG_REG (SET_DEST (setter)) == dest
11443 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11444 && subreg_lowpart_p (SET_DEST (setter)))
11445 record_value_for_reg (dest, record_dead_insn,
11446 gen_lowpart (GET_MODE (dest),
11447 SET_SRC (setter)));
11448 else
11449 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11451 else if (MEM_P (dest)
11452 /* Ignore pushes, they clobber nothing. */
11453 && ! push_operand (dest, GET_MODE (dest)))
11454 mem_last_set = DF_INSN_LUID (record_dead_insn);
11457 /* Update the records of when each REG was most recently set or killed
11458 for the things done by INSN. This is the last thing done in processing
11459 INSN in the combiner loop.
11461 We update reg_stat[], in particular fields last_set, last_set_value,
11462 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11463 last_death, and also the similar information mem_last_set (which insn
11464 most recently modified memory) and last_call_luid (which insn was the
11465 most recent subroutine call). */
11467 static void
11468 record_dead_and_set_regs (rtx insn)
11470 rtx link;
11471 unsigned int i;
11473 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11475 if (REG_NOTE_KIND (link) == REG_DEAD
11476 && REG_P (XEXP (link, 0)))
11478 unsigned int regno = REGNO (XEXP (link, 0));
11479 unsigned int endregno = END_REGNO (XEXP (link, 0));
11481 for (i = regno; i < endregno; i++)
11483 reg_stat_type *rsp;
11485 rsp = VEC_index (reg_stat_type, reg_stat, i);
11486 rsp->last_death = insn;
11489 else if (REG_NOTE_KIND (link) == REG_INC)
11490 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11493 if (CALL_P (insn))
11495 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11496 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11498 reg_stat_type *rsp;
11500 rsp = VEC_index (reg_stat_type, reg_stat, i);
11501 rsp->last_set_invalid = 1;
11502 rsp->last_set = insn;
11503 rsp->last_set_value = 0;
11504 rsp->last_set_mode = 0;
11505 rsp->last_set_nonzero_bits = 0;
11506 rsp->last_set_sign_bit_copies = 0;
11507 rsp->last_death = 0;
11508 rsp->truncated_to_mode = 0;
11511 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11513 /* We can't combine into a call pattern. Remember, though, that
11514 the return value register is set at this LUID. We could
11515 still replace a register with the return value from the
11516 wrong subroutine call! */
11517 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11519 else
11520 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11523 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11524 register present in the SUBREG, so for each such SUBREG go back and
11525 adjust nonzero and sign bit information of the registers that are
11526 known to have some zero/sign bits set.
11528 This is needed because when combine blows the SUBREGs away, the
11529 information on zero/sign bits is lost and further combines can be
11530 missed because of that. */
11532 static void
11533 record_promoted_value (rtx insn, rtx subreg)
11535 rtx links, set;
11536 unsigned int regno = REGNO (SUBREG_REG (subreg));
11537 enum machine_mode mode = GET_MODE (subreg);
11539 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11540 return;
11542 for (links = LOG_LINKS (insn); links;)
11544 reg_stat_type *rsp;
11546 insn = XEXP (links, 0);
11547 set = single_set (insn);
11549 if (! set || !REG_P (SET_DEST (set))
11550 || REGNO (SET_DEST (set)) != regno
11551 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11553 links = XEXP (links, 1);
11554 continue;
11557 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11558 if (rsp->last_set == insn)
11560 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11561 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11564 if (REG_P (SET_SRC (set)))
11566 regno = REGNO (SET_SRC (set));
11567 links = LOG_LINKS (insn);
11569 else
11570 break;
11574 /* Check if X, a register, is known to contain a value already
11575 truncated to MODE. In this case we can use a subreg to refer to
11576 the truncated value even though in the generic case we would need
11577 an explicit truncation. */
11579 static bool
11580 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11582 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11583 enum machine_mode truncated = rsp->truncated_to_mode;
11585 if (truncated == 0
11586 || rsp->truncation_label < label_tick_ebb_start)
11587 return false;
11588 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11589 return true;
11590 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11591 GET_MODE_BITSIZE (truncated)))
11592 return true;
11593 return false;
11596 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11597 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11598 might be able to turn a truncate into a subreg using this information.
11599 Return -1 if traversing *P is complete or 0 otherwise. */
11601 static int
11602 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11604 rtx x = *p;
11605 enum machine_mode truncated_mode;
11606 reg_stat_type *rsp;
11608 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11610 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11611 truncated_mode = GET_MODE (x);
11613 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11614 return -1;
11616 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11617 GET_MODE_BITSIZE (original_mode)))
11618 return -1;
11620 x = SUBREG_REG (x);
11622 /* ??? For hard-regs we now record everything. We might be able to
11623 optimize this using last_set_mode. */
11624 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11625 truncated_mode = GET_MODE (x);
11626 else
11627 return 0;
11629 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11630 if (rsp->truncated_to_mode == 0
11631 || rsp->truncation_label < label_tick_ebb_start
11632 || (GET_MODE_SIZE (truncated_mode)
11633 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11635 rsp->truncated_to_mode = truncated_mode;
11636 rsp->truncation_label = label_tick;
11639 return -1;
11642 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11643 the modes they are used in. This can help truning TRUNCATEs into
11644 SUBREGs. */
11646 static void
11647 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11649 for_each_rtx (x, record_truncated_value, NULL);
11652 /* Scan X for promoted SUBREGs. For each one found,
11653 note what it implies to the registers used in it. */
11655 static void
11656 check_promoted_subreg (rtx insn, rtx x)
11658 if (GET_CODE (x) == SUBREG
11659 && SUBREG_PROMOTED_VAR_P (x)
11660 && REG_P (SUBREG_REG (x)))
11661 record_promoted_value (insn, x);
11662 else
11664 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11665 int i, j;
11667 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11668 switch (format[i])
11670 case 'e':
11671 check_promoted_subreg (insn, XEXP (x, i));
11672 break;
11673 case 'V':
11674 case 'E':
11675 if (XVEC (x, i) != 0)
11676 for (j = 0; j < XVECLEN (x, i); j++)
11677 check_promoted_subreg (insn, XVECEXP (x, i, j));
11678 break;
11683 /* Utility routine for the following function. Verify that all the registers
11684 mentioned in *LOC are valid when *LOC was part of a value set when
11685 label_tick == TICK. Return 0 if some are not.
11687 If REPLACE is nonzero, replace the invalid reference with
11688 (clobber (const_int 0)) and return 1. This replacement is useful because
11689 we often can get useful information about the form of a value (e.g., if
11690 it was produced by a shift that always produces -1 or 0) even though
11691 we don't know exactly what registers it was produced from. */
11693 static int
11694 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11696 rtx x = *loc;
11697 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11698 int len = GET_RTX_LENGTH (GET_CODE (x));
11699 int i;
11701 if (REG_P (x))
11703 unsigned int regno = REGNO (x);
11704 unsigned int endregno = END_REGNO (x);
11705 unsigned int j;
11707 for (j = regno; j < endregno; j++)
11709 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11710 if (rsp->last_set_invalid
11711 /* If this is a pseudo-register that was only set once and not
11712 live at the beginning of the function, it is always valid. */
11713 || (! (regno >= FIRST_PSEUDO_REGISTER
11714 && REG_N_SETS (regno) == 1
11715 && (!REGNO_REG_SET_P
11716 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11717 && rsp->last_set_label > tick))
11719 if (replace)
11720 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11721 return replace;
11725 return 1;
11727 /* If this is a memory reference, make sure that there were
11728 no stores after it that might have clobbered the value. We don't
11729 have alias info, so we assume any store invalidates it. */
11730 else if (MEM_P (x) && !MEM_READONLY_P (x)
11731 && DF_INSN_LUID (insn) <= mem_last_set)
11733 if (replace)
11734 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11735 return replace;
11738 for (i = 0; i < len; i++)
11740 if (fmt[i] == 'e')
11742 /* Check for identical subexpressions. If x contains
11743 identical subexpression we only have to traverse one of
11744 them. */
11745 if (i == 1 && ARITHMETIC_P (x))
11747 /* Note that at this point x0 has already been checked
11748 and found valid. */
11749 rtx x0 = XEXP (x, 0);
11750 rtx x1 = XEXP (x, 1);
11752 /* If x0 and x1 are identical then x is also valid. */
11753 if (x0 == x1)
11754 return 1;
11756 /* If x1 is identical to a subexpression of x0 then
11757 while checking x0, x1 has already been checked. Thus
11758 it is valid and so as x. */
11759 if (ARITHMETIC_P (x0)
11760 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11761 return 1;
11763 /* If x0 is identical to a subexpression of x1 then x is
11764 valid iff the rest of x1 is valid. */
11765 if (ARITHMETIC_P (x1)
11766 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11767 return
11768 get_last_value_validate (&XEXP (x1,
11769 x0 == XEXP (x1, 0) ? 1 : 0),
11770 insn, tick, replace);
11773 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11774 replace) == 0)
11775 return 0;
11777 /* Don't bother with these. They shouldn't occur anyway. */
11778 else if (fmt[i] == 'E')
11779 return 0;
11782 /* If we haven't found a reason for it to be invalid, it is valid. */
11783 return 1;
11786 /* Get the last value assigned to X, if known. Some registers
11787 in the value may be replaced with (clobber (const_int 0)) if their value
11788 is known longer known reliably. */
11790 static rtx
11791 get_last_value (const_rtx x)
11793 unsigned int regno;
11794 rtx value;
11795 reg_stat_type *rsp;
11797 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11798 then convert it to the desired mode. If this is a paradoxical SUBREG,
11799 we cannot predict what values the "extra" bits might have. */
11800 if (GET_CODE (x) == SUBREG
11801 && subreg_lowpart_p (x)
11802 && (GET_MODE_SIZE (GET_MODE (x))
11803 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11804 && (value = get_last_value (SUBREG_REG (x))) != 0)
11805 return gen_lowpart (GET_MODE (x), value);
11807 if (!REG_P (x))
11808 return 0;
11810 regno = REGNO (x);
11811 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11812 value = rsp->last_set_value;
11814 /* If we don't have a value, or if it isn't for this basic block and
11815 it's either a hard register, set more than once, or it's a live
11816 at the beginning of the function, return 0.
11818 Because if it's not live at the beginning of the function then the reg
11819 is always set before being used (is never used without being set).
11820 And, if it's set only once, and it's always set before use, then all
11821 uses must have the same last value, even if it's not from this basic
11822 block. */
11824 if (value == 0
11825 || (rsp->last_set_label < label_tick_ebb_start
11826 && (regno < FIRST_PSEUDO_REGISTER
11827 || REG_N_SETS (regno) != 1
11828 || REGNO_REG_SET_P
11829 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11830 return 0;
11832 /* If the value was set in a later insn than the ones we are processing,
11833 we can't use it even if the register was only set once. */
11834 if (rsp->last_set_label == label_tick
11835 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11836 return 0;
11838 /* If the value has all its registers valid, return it. */
11839 if (get_last_value_validate (&value, rsp->last_set,
11840 rsp->last_set_label, 0))
11841 return value;
11843 /* Otherwise, make a copy and replace any invalid register with
11844 (clobber (const_int 0)). If that fails for some reason, return 0. */
11846 value = copy_rtx (value);
11847 if (get_last_value_validate (&value, rsp->last_set,
11848 rsp->last_set_label, 1))
11849 return value;
11851 return 0;
11854 /* Return nonzero if expression X refers to a REG or to memory
11855 that is set in an instruction more recent than FROM_LUID. */
11857 static int
11858 use_crosses_set_p (const_rtx x, int from_luid)
11860 const char *fmt;
11861 int i;
11862 enum rtx_code code = GET_CODE (x);
11864 if (code == REG)
11866 unsigned int regno = REGNO (x);
11867 unsigned endreg = END_REGNO (x);
11869 #ifdef PUSH_ROUNDING
11870 /* Don't allow uses of the stack pointer to be moved,
11871 because we don't know whether the move crosses a push insn. */
11872 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11873 return 1;
11874 #endif
11875 for (; regno < endreg; regno++)
11877 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11878 if (rsp->last_set
11879 && rsp->last_set_label == label_tick
11880 && DF_INSN_LUID (rsp->last_set) > from_luid)
11881 return 1;
11883 return 0;
11886 if (code == MEM && mem_last_set > from_luid)
11887 return 1;
11889 fmt = GET_RTX_FORMAT (code);
11891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11893 if (fmt[i] == 'E')
11895 int j;
11896 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11897 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11898 return 1;
11900 else if (fmt[i] == 'e'
11901 && use_crosses_set_p (XEXP (x, i), from_luid))
11902 return 1;
11904 return 0;
11907 /* Define three variables used for communication between the following
11908 routines. */
11910 static unsigned int reg_dead_regno, reg_dead_endregno;
11911 static int reg_dead_flag;
11913 /* Function called via note_stores from reg_dead_at_p.
11915 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11916 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11918 static void
11919 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11921 unsigned int regno, endregno;
11923 if (!REG_P (dest))
11924 return;
11926 regno = REGNO (dest);
11927 endregno = END_REGNO (dest);
11928 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11929 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11932 /* Return nonzero if REG is known to be dead at INSN.
11934 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11935 referencing REG, it is dead. If we hit a SET referencing REG, it is
11936 live. Otherwise, see if it is live or dead at the start of the basic
11937 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11938 must be assumed to be always live. */
11940 static int
11941 reg_dead_at_p (rtx reg, rtx insn)
11943 basic_block block;
11944 unsigned int i;
11946 /* Set variables for reg_dead_at_p_1. */
11947 reg_dead_regno = REGNO (reg);
11948 reg_dead_endregno = END_REGNO (reg);
11950 reg_dead_flag = 0;
11952 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11953 we allow the machine description to decide whether use-and-clobber
11954 patterns are OK. */
11955 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11957 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11958 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11959 return 0;
11962 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11963 beginning of function. */
11964 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11965 insn = prev_nonnote_insn (insn))
11967 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11968 if (reg_dead_flag)
11969 return reg_dead_flag == 1 ? 1 : 0;
11971 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11972 return 1;
11975 /* Get the basic block that we were in. */
11976 if (insn == 0)
11977 block = ENTRY_BLOCK_PTR->next_bb;
11978 else
11980 FOR_EACH_BB (block)
11981 if (insn == BB_HEAD (block))
11982 break;
11984 if (block == EXIT_BLOCK_PTR)
11985 return 0;
11988 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11989 if (REGNO_REG_SET_P (df_get_live_in (block), i))
11990 return 0;
11992 return 1;
11995 /* Note hard registers in X that are used. */
11997 static void
11998 mark_used_regs_combine (rtx x)
12000 RTX_CODE code = GET_CODE (x);
12001 unsigned int regno;
12002 int i;
12004 switch (code)
12006 case LABEL_REF:
12007 case SYMBOL_REF:
12008 case CONST_INT:
12009 case CONST:
12010 case CONST_DOUBLE:
12011 case CONST_VECTOR:
12012 case PC:
12013 case ADDR_VEC:
12014 case ADDR_DIFF_VEC:
12015 case ASM_INPUT:
12016 #ifdef HAVE_cc0
12017 /* CC0 must die in the insn after it is set, so we don't need to take
12018 special note of it here. */
12019 case CC0:
12020 #endif
12021 return;
12023 case CLOBBER:
12024 /* If we are clobbering a MEM, mark any hard registers inside the
12025 address as used. */
12026 if (MEM_P (XEXP (x, 0)))
12027 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12028 return;
12030 case REG:
12031 regno = REGNO (x);
12032 /* A hard reg in a wide mode may really be multiple registers.
12033 If so, mark all of them just like the first. */
12034 if (regno < FIRST_PSEUDO_REGISTER)
12036 /* None of this applies to the stack, frame or arg pointers. */
12037 if (regno == STACK_POINTER_REGNUM
12038 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12039 || regno == HARD_FRAME_POINTER_REGNUM
12040 #endif
12041 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12042 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12043 #endif
12044 || regno == FRAME_POINTER_REGNUM)
12045 return;
12047 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12049 return;
12051 case SET:
12053 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12054 the address. */
12055 rtx testreg = SET_DEST (x);
12057 while (GET_CODE (testreg) == SUBREG
12058 || GET_CODE (testreg) == ZERO_EXTRACT
12059 || GET_CODE (testreg) == STRICT_LOW_PART)
12060 testreg = XEXP (testreg, 0);
12062 if (MEM_P (testreg))
12063 mark_used_regs_combine (XEXP (testreg, 0));
12065 mark_used_regs_combine (SET_SRC (x));
12067 return;
12069 default:
12070 break;
12073 /* Recursively scan the operands of this expression. */
12076 const char *fmt = GET_RTX_FORMAT (code);
12078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12080 if (fmt[i] == 'e')
12081 mark_used_regs_combine (XEXP (x, i));
12082 else if (fmt[i] == 'E')
12084 int j;
12086 for (j = 0; j < XVECLEN (x, i); j++)
12087 mark_used_regs_combine (XVECEXP (x, i, j));
12093 /* Remove register number REGNO from the dead registers list of INSN.
12095 Return the note used to record the death, if there was one. */
12098 remove_death (unsigned int regno, rtx insn)
12100 rtx note = find_regno_note (insn, REG_DEAD, regno);
12102 if (note)
12103 remove_note (insn, note);
12105 return note;
12108 /* For each register (hardware or pseudo) used within expression X, if its
12109 death is in an instruction with luid between FROM_LUID (inclusive) and
12110 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12111 list headed by PNOTES.
12113 That said, don't move registers killed by maybe_kill_insn.
12115 This is done when X is being merged by combination into TO_INSN. These
12116 notes will then be distributed as needed. */
12118 static void
12119 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12120 rtx *pnotes)
12122 const char *fmt;
12123 int len, i;
12124 enum rtx_code code = GET_CODE (x);
12126 if (code == REG)
12128 unsigned int regno = REGNO (x);
12129 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12131 /* Don't move the register if it gets killed in between from and to. */
12132 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12133 && ! reg_referenced_p (x, maybe_kill_insn))
12134 return;
12136 if (where_dead
12137 && DF_INSN_LUID (where_dead) >= from_luid
12138 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12140 rtx note = remove_death (regno, where_dead);
12142 /* It is possible for the call above to return 0. This can occur
12143 when last_death points to I2 or I1 that we combined with.
12144 In that case make a new note.
12146 We must also check for the case where X is a hard register
12147 and NOTE is a death note for a range of hard registers
12148 including X. In that case, we must put REG_DEAD notes for
12149 the remaining registers in place of NOTE. */
12151 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12152 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12153 > GET_MODE_SIZE (GET_MODE (x))))
12155 unsigned int deadregno = REGNO (XEXP (note, 0));
12156 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12157 unsigned int ourend = END_HARD_REGNO (x);
12158 unsigned int i;
12160 for (i = deadregno; i < deadend; i++)
12161 if (i < regno || i >= ourend)
12162 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12165 /* If we didn't find any note, or if we found a REG_DEAD note that
12166 covers only part of the given reg, and we have a multi-reg hard
12167 register, then to be safe we must check for REG_DEAD notes
12168 for each register other than the first. They could have
12169 their own REG_DEAD notes lying around. */
12170 else if ((note == 0
12171 || (note != 0
12172 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12173 < GET_MODE_SIZE (GET_MODE (x)))))
12174 && regno < FIRST_PSEUDO_REGISTER
12175 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12177 unsigned int ourend = END_HARD_REGNO (x);
12178 unsigned int i, offset;
12179 rtx oldnotes = 0;
12181 if (note)
12182 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12183 else
12184 offset = 1;
12186 for (i = regno + offset; i < ourend; i++)
12187 move_deaths (regno_reg_rtx[i],
12188 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12191 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12193 XEXP (note, 1) = *pnotes;
12194 *pnotes = note;
12196 else
12197 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12200 return;
12203 else if (GET_CODE (x) == SET)
12205 rtx dest = SET_DEST (x);
12207 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12209 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12210 that accesses one word of a multi-word item, some
12211 piece of everything register in the expression is used by
12212 this insn, so remove any old death. */
12213 /* ??? So why do we test for equality of the sizes? */
12215 if (GET_CODE (dest) == ZERO_EXTRACT
12216 || GET_CODE (dest) == STRICT_LOW_PART
12217 || (GET_CODE (dest) == SUBREG
12218 && (((GET_MODE_SIZE (GET_MODE (dest))
12219 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12220 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12221 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12223 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12224 return;
12227 /* If this is some other SUBREG, we know it replaces the entire
12228 value, so use that as the destination. */
12229 if (GET_CODE (dest) == SUBREG)
12230 dest = SUBREG_REG (dest);
12232 /* If this is a MEM, adjust deaths of anything used in the address.
12233 For a REG (the only other possibility), the entire value is
12234 being replaced so the old value is not used in this insn. */
12236 if (MEM_P (dest))
12237 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12238 to_insn, pnotes);
12239 return;
12242 else if (GET_CODE (x) == CLOBBER)
12243 return;
12245 len = GET_RTX_LENGTH (code);
12246 fmt = GET_RTX_FORMAT (code);
12248 for (i = 0; i < len; i++)
12250 if (fmt[i] == 'E')
12252 int j;
12253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12254 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12255 to_insn, pnotes);
12257 else if (fmt[i] == 'e')
12258 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12262 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12263 pattern of an insn. X must be a REG. */
12265 static int
12266 reg_bitfield_target_p (rtx x, rtx body)
12268 int i;
12270 if (GET_CODE (body) == SET)
12272 rtx dest = SET_DEST (body);
12273 rtx target;
12274 unsigned int regno, tregno, endregno, endtregno;
12276 if (GET_CODE (dest) == ZERO_EXTRACT)
12277 target = XEXP (dest, 0);
12278 else if (GET_CODE (dest) == STRICT_LOW_PART)
12279 target = SUBREG_REG (XEXP (dest, 0));
12280 else
12281 return 0;
12283 if (GET_CODE (target) == SUBREG)
12284 target = SUBREG_REG (target);
12286 if (!REG_P (target))
12287 return 0;
12289 tregno = REGNO (target), regno = REGNO (x);
12290 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12291 return target == x;
12293 endtregno = end_hard_regno (GET_MODE (target), tregno);
12294 endregno = end_hard_regno (GET_MODE (x), regno);
12296 return endregno > tregno && regno < endtregno;
12299 else if (GET_CODE (body) == PARALLEL)
12300 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12301 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12302 return 1;
12304 return 0;
12307 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12308 as appropriate. I3 and I2 are the insns resulting from the combination
12309 insns including FROM (I2 may be zero).
12311 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12312 not need REG_DEAD notes because they are being substituted for. This
12313 saves searching in the most common cases.
12315 Each note in the list is either ignored or placed on some insns, depending
12316 on the type of note. */
12318 static void
12319 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12320 rtx elim_i1)
12322 rtx note, next_note;
12323 rtx tem;
12325 for (note = notes; note; note = next_note)
12327 rtx place = 0, place2 = 0;
12329 next_note = XEXP (note, 1);
12330 switch (REG_NOTE_KIND (note))
12332 case REG_BR_PROB:
12333 case REG_BR_PRED:
12334 /* Doesn't matter much where we put this, as long as it's somewhere.
12335 It is preferable to keep these notes on branches, which is most
12336 likely to be i3. */
12337 place = i3;
12338 break;
12340 case REG_VALUE_PROFILE:
12341 /* Just get rid of this note, as it is unused later anyway. */
12342 break;
12344 case REG_NON_LOCAL_GOTO:
12345 if (JUMP_P (i3))
12346 place = i3;
12347 else
12349 gcc_assert (i2 && JUMP_P (i2));
12350 place = i2;
12352 break;
12354 case REG_EH_REGION:
12355 /* These notes must remain with the call or trapping instruction. */
12356 if (CALL_P (i3))
12357 place = i3;
12358 else if (i2 && CALL_P (i2))
12359 place = i2;
12360 else
12362 gcc_assert (flag_non_call_exceptions);
12363 if (may_trap_p (i3))
12364 place = i3;
12365 else if (i2 && may_trap_p (i2))
12366 place = i2;
12367 /* ??? Otherwise assume we've combined things such that we
12368 can now prove that the instructions can't trap. Drop the
12369 note in this case. */
12371 break;
12373 case REG_NORETURN:
12374 case REG_SETJMP:
12375 /* These notes must remain with the call. It should not be
12376 possible for both I2 and I3 to be a call. */
12377 if (CALL_P (i3))
12378 place = i3;
12379 else
12381 gcc_assert (i2 && CALL_P (i2));
12382 place = i2;
12384 break;
12386 case REG_UNUSED:
12387 /* Any clobbers for i3 may still exist, and so we must process
12388 REG_UNUSED notes from that insn.
12390 Any clobbers from i2 or i1 can only exist if they were added by
12391 recog_for_combine. In that case, recog_for_combine created the
12392 necessary REG_UNUSED notes. Trying to keep any original
12393 REG_UNUSED notes from these insns can cause incorrect output
12394 if it is for the same register as the original i3 dest.
12395 In that case, we will notice that the register is set in i3,
12396 and then add a REG_UNUSED note for the destination of i3, which
12397 is wrong. However, it is possible to have REG_UNUSED notes from
12398 i2 or i1 for register which were both used and clobbered, so
12399 we keep notes from i2 or i1 if they will turn into REG_DEAD
12400 notes. */
12402 /* If this register is set or clobbered in I3, put the note there
12403 unless there is one already. */
12404 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12406 if (from_insn != i3)
12407 break;
12409 if (! (REG_P (XEXP (note, 0))
12410 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12411 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12412 place = i3;
12414 /* Otherwise, if this register is used by I3, then this register
12415 now dies here, so we must put a REG_DEAD note here unless there
12416 is one already. */
12417 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12418 && ! (REG_P (XEXP (note, 0))
12419 ? find_regno_note (i3, REG_DEAD,
12420 REGNO (XEXP (note, 0)))
12421 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12423 PUT_REG_NOTE_KIND (note, REG_DEAD);
12424 place = i3;
12426 break;
12428 case REG_EQUAL:
12429 case REG_EQUIV:
12430 case REG_NOALIAS:
12431 /* These notes say something about results of an insn. We can
12432 only support them if they used to be on I3 in which case they
12433 remain on I3. Otherwise they are ignored.
12435 If the note refers to an expression that is not a constant, we
12436 must also ignore the note since we cannot tell whether the
12437 equivalence is still true. It might be possible to do
12438 slightly better than this (we only have a problem if I2DEST
12439 or I1DEST is present in the expression), but it doesn't
12440 seem worth the trouble. */
12442 if (from_insn == i3
12443 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12444 place = i3;
12445 break;
12447 case REG_INC:
12448 /* These notes say something about how a register is used. They must
12449 be present on any use of the register in I2 or I3. */
12450 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12451 place = i3;
12453 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12455 if (place)
12456 place2 = i2;
12457 else
12458 place = i2;
12460 break;
12462 case REG_LABEL_TARGET:
12463 case REG_LABEL_OPERAND:
12464 /* This can show up in several ways -- either directly in the
12465 pattern, or hidden off in the constant pool with (or without?)
12466 a REG_EQUAL note. */
12467 /* ??? Ignore the without-reg_equal-note problem for now. */
12468 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12469 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12470 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12471 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12472 place = i3;
12474 if (i2
12475 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12476 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12477 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12478 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12480 if (place)
12481 place2 = i2;
12482 else
12483 place = i2;
12486 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12487 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12488 there. */
12489 if (place && JUMP_P (place)
12490 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12491 && (JUMP_LABEL (place) == NULL
12492 || JUMP_LABEL (place) == XEXP (note, 0)))
12494 rtx label = JUMP_LABEL (place);
12496 if (!label)
12497 JUMP_LABEL (place) = XEXP (note, 0);
12498 else if (LABEL_P (label))
12499 LABEL_NUSES (label)--;
12502 if (place2 && JUMP_P (place2)
12503 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12504 && (JUMP_LABEL (place2) == NULL
12505 || JUMP_LABEL (place2) == XEXP (note, 0)))
12507 rtx label = JUMP_LABEL (place2);
12509 if (!label)
12510 JUMP_LABEL (place2) = XEXP (note, 0);
12511 else if (LABEL_P (label))
12512 LABEL_NUSES (label)--;
12513 place2 = 0;
12515 break;
12517 case REG_NONNEG:
12518 /* This note says something about the value of a register prior
12519 to the execution of an insn. It is too much trouble to see
12520 if the note is still correct in all situations. It is better
12521 to simply delete it. */
12522 break;
12524 case REG_DEAD:
12525 /* If we replaced the right hand side of FROM_INSN with a
12526 REG_EQUAL note, the original use of the dying register
12527 will not have been combined into I3 and I2. In such cases,
12528 FROM_INSN is guaranteed to be the first of the combined
12529 instructions, so we simply need to search back before
12530 FROM_INSN for the previous use or set of this register,
12531 then alter the notes there appropriately.
12533 If the register is used as an input in I3, it dies there.
12534 Similarly for I2, if it is nonzero and adjacent to I3.
12536 If the register is not used as an input in either I3 or I2
12537 and it is not one of the registers we were supposed to eliminate,
12538 there are two possibilities. We might have a non-adjacent I2
12539 or we might have somehow eliminated an additional register
12540 from a computation. For example, we might have had A & B where
12541 we discover that B will always be zero. In this case we will
12542 eliminate the reference to A.
12544 In both cases, we must search to see if we can find a previous
12545 use of A and put the death note there. */
12547 if (from_insn
12548 && from_insn == i2mod
12549 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12550 tem = from_insn;
12551 else
12553 if (from_insn
12554 && CALL_P (from_insn)
12555 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12556 place = from_insn;
12557 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12558 place = i3;
12559 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12560 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12561 place = i2;
12562 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12563 && !(i2mod
12564 && reg_overlap_mentioned_p (XEXP (note, 0),
12565 i2mod_old_rhs)))
12566 || rtx_equal_p (XEXP (note, 0), elim_i1))
12567 break;
12568 tem = i3;
12571 if (place == 0)
12573 basic_block bb = this_basic_block;
12575 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12577 if (! INSN_P (tem))
12579 if (tem == BB_HEAD (bb))
12580 break;
12581 continue;
12584 /* If the register is being set at TEM, see if that is all
12585 TEM is doing. If so, delete TEM. Otherwise, make this
12586 into a REG_UNUSED note instead. Don't delete sets to
12587 global register vars. */
12588 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12589 || !global_regs[REGNO (XEXP (note, 0))])
12590 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12592 rtx set = single_set (tem);
12593 rtx inner_dest = 0;
12594 #ifdef HAVE_cc0
12595 rtx cc0_setter = NULL_RTX;
12596 #endif
12598 if (set != 0)
12599 for (inner_dest = SET_DEST (set);
12600 (GET_CODE (inner_dest) == STRICT_LOW_PART
12601 || GET_CODE (inner_dest) == SUBREG
12602 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12603 inner_dest = XEXP (inner_dest, 0))
12606 /* Verify that it was the set, and not a clobber that
12607 modified the register.
12609 CC0 targets must be careful to maintain setter/user
12610 pairs. If we cannot delete the setter due to side
12611 effects, mark the user with an UNUSED note instead
12612 of deleting it. */
12614 if (set != 0 && ! side_effects_p (SET_SRC (set))
12615 && rtx_equal_p (XEXP (note, 0), inner_dest)
12616 #ifdef HAVE_cc0
12617 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12618 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12619 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12620 #endif
12623 /* Move the notes and links of TEM elsewhere.
12624 This might delete other dead insns recursively.
12625 First set the pattern to something that won't use
12626 any register. */
12627 rtx old_notes = REG_NOTES (tem);
12629 PATTERN (tem) = pc_rtx;
12630 REG_NOTES (tem) = NULL;
12632 distribute_notes (old_notes, tem, tem, NULL_RTX,
12633 NULL_RTX, NULL_RTX);
12634 distribute_links (LOG_LINKS (tem));
12636 SET_INSN_DELETED (tem);
12638 #ifdef HAVE_cc0
12639 /* Delete the setter too. */
12640 if (cc0_setter)
12642 PATTERN (cc0_setter) = pc_rtx;
12643 old_notes = REG_NOTES (cc0_setter);
12644 REG_NOTES (cc0_setter) = NULL;
12646 distribute_notes (old_notes, cc0_setter,
12647 cc0_setter, NULL_RTX,
12648 NULL_RTX, NULL_RTX);
12649 distribute_links (LOG_LINKS (cc0_setter));
12651 SET_INSN_DELETED (cc0_setter);
12653 #endif
12655 else
12657 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12659 /* If there isn't already a REG_UNUSED note, put one
12660 here. Do not place a REG_DEAD note, even if
12661 the register is also used here; that would not
12662 match the algorithm used in lifetime analysis
12663 and can cause the consistency check in the
12664 scheduler to fail. */
12665 if (! find_regno_note (tem, REG_UNUSED,
12666 REGNO (XEXP (note, 0))))
12667 place = tem;
12668 break;
12671 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12672 || (CALL_P (tem)
12673 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12675 place = tem;
12677 /* If we are doing a 3->2 combination, and we have a
12678 register which formerly died in i3 and was not used
12679 by i2, which now no longer dies in i3 and is used in
12680 i2 but does not die in i2, and place is between i2
12681 and i3, then we may need to move a link from place to
12682 i2. */
12683 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12684 && from_insn
12685 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12686 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12688 rtx links = LOG_LINKS (place);
12689 LOG_LINKS (place) = 0;
12690 distribute_links (links);
12692 break;
12695 if (tem == BB_HEAD (bb))
12696 break;
12701 /* If the register is set or already dead at PLACE, we needn't do
12702 anything with this note if it is still a REG_DEAD note.
12703 We check here if it is set at all, not if is it totally replaced,
12704 which is what `dead_or_set_p' checks, so also check for it being
12705 set partially. */
12707 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12709 unsigned int regno = REGNO (XEXP (note, 0));
12710 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12712 if (dead_or_set_p (place, XEXP (note, 0))
12713 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12715 /* Unless the register previously died in PLACE, clear
12716 last_death. [I no longer understand why this is
12717 being done.] */
12718 if (rsp->last_death != place)
12719 rsp->last_death = 0;
12720 place = 0;
12722 else
12723 rsp->last_death = place;
12725 /* If this is a death note for a hard reg that is occupying
12726 multiple registers, ensure that we are still using all
12727 parts of the object. If we find a piece of the object
12728 that is unused, we must arrange for an appropriate REG_DEAD
12729 note to be added for it. However, we can't just emit a USE
12730 and tag the note to it, since the register might actually
12731 be dead; so we recourse, and the recursive call then finds
12732 the previous insn that used this register. */
12734 if (place && regno < FIRST_PSEUDO_REGISTER
12735 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12737 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12738 int all_used = 1;
12739 unsigned int i;
12741 for (i = regno; i < endregno; i++)
12742 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12743 && ! find_regno_fusage (place, USE, i))
12744 || dead_or_set_regno_p (place, i))
12745 all_used = 0;
12747 if (! all_used)
12749 /* Put only REG_DEAD notes for pieces that are
12750 not already dead or set. */
12752 for (i = regno; i < endregno;
12753 i += hard_regno_nregs[i][reg_raw_mode[i]])
12755 rtx piece = regno_reg_rtx[i];
12756 basic_block bb = this_basic_block;
12758 if (! dead_or_set_p (place, piece)
12759 && ! reg_bitfield_target_p (piece,
12760 PATTERN (place)))
12762 rtx new_note
12763 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12765 distribute_notes (new_note, place, place,
12766 NULL_RTX, NULL_RTX, NULL_RTX);
12768 else if (! refers_to_regno_p (i, i + 1,
12769 PATTERN (place), 0)
12770 && ! find_regno_fusage (place, USE, i))
12771 for (tem = PREV_INSN (place); ;
12772 tem = PREV_INSN (tem))
12774 if (! INSN_P (tem))
12776 if (tem == BB_HEAD (bb))
12777 break;
12778 continue;
12780 if (dead_or_set_p (tem, piece)
12781 || reg_bitfield_target_p (piece,
12782 PATTERN (tem)))
12784 add_reg_note (tem, REG_UNUSED, piece);
12785 break;
12791 place = 0;
12795 break;
12797 default:
12798 /* Any other notes should not be present at this point in the
12799 compilation. */
12800 gcc_unreachable ();
12803 if (place)
12805 XEXP (note, 1) = REG_NOTES (place);
12806 REG_NOTES (place) = note;
12809 if (place2)
12810 REG_NOTES (place2)
12811 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12812 XEXP (note, 0), REG_NOTES (place2));
12816 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12817 I3, I2, and I1 to new locations. This is also called to add a link
12818 pointing at I3 when I3's destination is changed. */
12820 static void
12821 distribute_links (rtx links)
12823 rtx link, next_link;
12825 for (link = links; link; link = next_link)
12827 rtx place = 0;
12828 rtx insn;
12829 rtx set, reg;
12831 next_link = XEXP (link, 1);
12833 /* If the insn that this link points to is a NOTE or isn't a single
12834 set, ignore it. In the latter case, it isn't clear what we
12835 can do other than ignore the link, since we can't tell which
12836 register it was for. Such links wouldn't be used by combine
12837 anyway.
12839 It is not possible for the destination of the target of the link to
12840 have been changed by combine. The only potential of this is if we
12841 replace I3, I2, and I1 by I3 and I2. But in that case the
12842 destination of I2 also remains unchanged. */
12844 if (NOTE_P (XEXP (link, 0))
12845 || (set = single_set (XEXP (link, 0))) == 0)
12846 continue;
12848 reg = SET_DEST (set);
12849 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12850 || GET_CODE (reg) == STRICT_LOW_PART)
12851 reg = XEXP (reg, 0);
12853 /* A LOG_LINK is defined as being placed on the first insn that uses
12854 a register and points to the insn that sets the register. Start
12855 searching at the next insn after the target of the link and stop
12856 when we reach a set of the register or the end of the basic block.
12858 Note that this correctly handles the link that used to point from
12859 I3 to I2. Also note that not much searching is typically done here
12860 since most links don't point very far away. */
12862 for (insn = NEXT_INSN (XEXP (link, 0));
12863 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12864 || BB_HEAD (this_basic_block->next_bb) != insn));
12865 insn = NEXT_INSN (insn))
12866 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12868 if (reg_referenced_p (reg, PATTERN (insn)))
12869 place = insn;
12870 break;
12872 else if (CALL_P (insn)
12873 && find_reg_fusage (insn, USE, reg))
12875 place = insn;
12876 break;
12878 else if (INSN_P (insn) && reg_set_p (reg, insn))
12879 break;
12881 /* If we found a place to put the link, place it there unless there
12882 is already a link to the same insn as LINK at that point. */
12884 if (place)
12886 rtx link2;
12888 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12889 if (XEXP (link2, 0) == XEXP (link, 0))
12890 break;
12892 if (link2 == 0)
12894 XEXP (link, 1) = LOG_LINKS (place);
12895 LOG_LINKS (place) = link;
12897 /* Set added_links_insn to the earliest insn we added a
12898 link to. */
12899 if (added_links_insn == 0
12900 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12901 added_links_insn = place;
12907 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12908 Check whether the expression pointer to by LOC is a register or
12909 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12910 Otherwise return zero. */
12912 static int
12913 unmentioned_reg_p_1 (rtx *loc, void *expr)
12915 rtx x = *loc;
12917 if (x != NULL_RTX
12918 && (REG_P (x) || MEM_P (x))
12919 && ! reg_mentioned_p (x, (rtx) expr))
12920 return 1;
12921 return 0;
12924 /* Check for any register or memory mentioned in EQUIV that is not
12925 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12926 of EXPR where some registers may have been replaced by constants. */
12928 static bool
12929 unmentioned_reg_p (rtx equiv, rtx expr)
12931 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12934 void
12935 dump_combine_stats (FILE *file)
12937 fprintf
12938 (file,
12939 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12940 combine_attempts, combine_merges, combine_extras, combine_successes);
12943 void
12944 dump_combine_total_stats (FILE *file)
12946 fprintf
12947 (file,
12948 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12949 total_attempts, total_merges, total_extras, total_successes);
12952 static bool
12953 gate_handle_combine (void)
12955 return (optimize > 0);
12958 /* Try combining insns through substitution. */
12959 static unsigned int
12960 rest_of_handle_combine (void)
12962 int rebuild_jump_labels_after_combine;
12964 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12965 df_note_add_problem ();
12966 df_analyze ();
12968 regstat_init_n_sets_and_refs ();
12970 rebuild_jump_labels_after_combine
12971 = combine_instructions (get_insns (), max_reg_num ());
12973 /* Combining insns may have turned an indirect jump into a
12974 direct jump. Rebuild the JUMP_LABEL fields of jumping
12975 instructions. */
12976 if (rebuild_jump_labels_after_combine)
12978 timevar_push (TV_JUMP);
12979 rebuild_jump_labels (get_insns ());
12980 cleanup_cfg (0);
12981 timevar_pop (TV_JUMP);
12984 regstat_free_n_sets_and_refs ();
12985 return 0;
12988 struct rtl_opt_pass pass_combine =
12991 RTL_PASS,
12992 "combine", /* name */
12993 gate_handle_combine, /* gate */
12994 rest_of_handle_combine, /* execute */
12995 NULL, /* sub */
12996 NULL, /* next */
12997 0, /* static_pass_number */
12998 TV_COMBINE, /* tv_id */
12999 0, /* properties_required */
13000 0, /* properties_provided */
13001 0, /* properties_destroyed */
13002 0, /* todo_flags_start */
13003 TODO_dump_func |
13004 TODO_df_finish | TODO_verify_rtl_sharing |
13005 TODO_ggc_collect, /* todo_flags_finish */