* sr.po: New.
[official-gcc.git] / libquadmath / math / expm1q.c
blob510c98fe4930331f6539db8ae87cc0d3527269db
1 /* expm1l.c
3 * Exponential function, minus 1
4 * 128-bit __float128 precision
8 * SYNOPSIS:
10 * __float128 x, y, expm1l();
12 * y = expm1l( x );
16 * DESCRIPTION:
18 * Returns e (2.71828...) raised to the x power, minus one.
20 * Range reduction is accomplished by separating the argument
21 * into an integer k and fraction f such that
23 * x k f
24 * e = 2 e.
26 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
27 * in the basic range [-0.5 ln 2, 0.5 ln 2].
30 * ACCURACY:
32 * Relative error:
33 * arithmetic domain # trials peak rms
34 * IEEE -79,+MAXLOG 100,000 1.7e-34 4.5e-35
38 /* Copyright 2001 by Stephen L. Moshier
40 This library is free software; you can redistribute it and/or
41 modify it under the terms of the GNU Lesser General Public
42 License as published by the Free Software Foundation; either
43 version 2.1 of the License, or (at your option) any later version.
45 This library is distributed in the hope that it will be useful,
46 but WITHOUT ANY WARRANTY; without even the implied warranty of
47 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
48 Lesser General Public License for more details.
50 You should have received a copy of the GNU Lesser General Public
51 License along with this library; if not, write to the Free Software
52 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
56 #include "quadmath-imp.h"
58 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
59 -.5 ln 2 < x < .5 ln 2
60 Theoretical peak relative error = 8.1e-36 */
62 static const __float128
63 P0 = 2.943520915569954073888921213330863757240E8Q,
64 P1 = -5.722847283900608941516165725053359168840E7Q,
65 P2 = 8.944630806357575461578107295909719817253E6Q,
66 P3 = -7.212432713558031519943281748462837065308E5Q,
67 P4 = 4.578962475841642634225390068461943438441E4Q,
68 P5 = -1.716772506388927649032068540558788106762E3Q,
69 P6 = 4.401308817383362136048032038528753151144E1Q,
70 P7 = -4.888737542888633647784737721812546636240E-1Q,
71 Q0 = 1.766112549341972444333352727998584753865E9Q,
72 Q1 = -7.848989743695296475743081255027098295771E8Q,
73 Q2 = 1.615869009634292424463780387327037251069E8Q,
74 Q3 = -2.019684072836541751428967854947019415698E7Q,
75 Q4 = 1.682912729190313538934190635536631941751E6Q,
76 Q5 = -9.615511549171441430850103489315371768998E4Q,
77 Q6 = 3.697714952261803935521187272204485251835E3Q,
78 Q7 = -8.802340681794263968892934703309274564037E1Q,
79 /* Q8 = 1.000000000000000000000000000000000000000E0 */
80 /* C1 + C2 = ln 2 */
82 C1 = 6.93145751953125E-1Q,
83 C2 = 1.428606820309417232121458176568075500134E-6Q,
84 /* ln (2^16384 * (1 - 2^-113)) */
85 maxlog = 1.1356523406294143949491931077970764891253E4Q,
86 /* ln 2^-114 */
87 minarg = -7.9018778583833765273564461846232128760607E1Q;
90 __float128
91 expm1q (__float128 x)
93 __float128 px, qx, xx;
94 int32_t ix, sign;
95 ieee854_float128 u;
96 int k;
98 /* Detect infinity and NaN. */
99 u.value = x;
100 ix = u.words32.w0;
101 sign = ix & 0x80000000;
102 ix &= 0x7fffffff;
103 if (ix >= 0x7fff0000)
105 /* Infinity. */
106 if (((ix & 0xffff) | u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
108 if (sign)
109 return -1.0Q;
110 else
111 return x;
113 /* NaN. No invalid exception. */
114 return x;
117 /* expm1(+- 0) = +- 0. */
118 if ((ix == 0) && (u.words32.w1 | u.words32.w2 | u.words32.w3) == 0)
119 return x;
121 /* Overflow. */
122 if (x > maxlog)
123 return (HUGE_VALQ * HUGE_VALQ);
125 /* Minimum value. */
126 if (x < minarg)
127 return (4.0/HUGE_VALQ - 1.0Q);
129 /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
130 xx = C1 + C2; /* ln 2. */
131 px = floorq (0.5 + x / xx);
132 k = px;
133 /* remainder times ln 2 */
134 x -= px * C1;
135 x -= px * C2;
137 /* Approximate exp(remainder ln 2). */
138 px = (((((((P7 * x
139 + P6) * x
140 + P5) * x + P4) * x + P3) * x + P2) * x + P1) * x + P0) * x;
142 qx = (((((((x
143 + Q7) * x
144 + Q6) * x + Q5) * x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
146 xx = x * x;
147 qx = x + (0.5 * xx + xx * px / qx);
149 /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
151 We have qx = exp(remainder ln 2) - 1, so
152 exp(x) - 1 = 2^k (qx + 1) - 1
153 = 2^k qx + 2^k - 1. */
155 px = ldexpq (1.0Q, k);
156 x = px * qx + (px - 1.0);
157 return x;