2006-08-07 Andrew John Hughes <gnu_andrew@member.fsf.org>
[official-gcc.git] / gcc / reorg.c
blob7781d27606c22148bbf6c0cd531678d79756e0ec
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA. */
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
61 Three techniques for filling delay slots have been implemented so far:
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
105 Not yet implemented:
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
140 #ifdef DELAY_SLOTS
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
149 /* Insns which have delay slots that have not yet been filled. */
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
164 /* Points to the label before the end of the function. */
165 static rtx end_of_function_label;
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168 not always monotonically increase. */
169 static int *uid_to_ruid;
171 /* Highest valid index in `uid_to_ruid'. */
172 static int max_uid;
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, int);
177 static int insn_sets_resource_p (rtx, struct resources *, int);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 struct resources *,
197 struct resources *,
198 struct resources *,
199 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 struct resources *,
202 struct resources *,
203 struct resources *,
204 int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx, int, int, int, int,
215 int *, rtx);
216 static void fill_eager_delay_slots (void);
217 static void relax_delay_slots (rtx);
218 #ifdef HAVE_return
219 static void make_return_insns (rtx);
220 #endif
222 /* Return TRUE if this insn should stop the search for insn to fill delay
223 slots. LABELS_P indicates that labels should terminate the search.
224 In all cases, jumps terminate the search. */
226 static int
227 stop_search_p (rtx insn, int labels_p)
229 if (insn == 0)
230 return 1;
232 /* If the insn can throw an exception that is caught within the function,
233 it may effectively perform a jump from the viewpoint of the function.
234 Therefore act like for a jump. */
235 if (can_throw_internal (insn))
236 return 1;
238 switch (GET_CODE (insn))
240 case NOTE:
241 case CALL_INSN:
242 return 0;
244 case CODE_LABEL:
245 return labels_p;
247 case JUMP_INSN:
248 case BARRIER:
249 return 1;
251 case INSN:
252 /* OK unless it contains a delay slot or is an `asm' insn of some type.
253 We don't know anything about these. */
254 return (GET_CODE (PATTERN (insn)) == SEQUENCE
255 || GET_CODE (PATTERN (insn)) == ASM_INPUT
256 || asm_noperands (PATTERN (insn)) >= 0);
258 default:
259 gcc_unreachable ();
263 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
264 resource set contains a volatile memory reference. Otherwise, return FALSE. */
266 static int
267 resource_conflicts_p (struct resources *res1, struct resources *res2)
269 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
270 || (res1->unch_memory && res2->unch_memory)
271 || res1->volatil || res2->volatil)
272 return 1;
274 #ifdef HARD_REG_SET
275 return (res1->regs & res2->regs) != HARD_CONST (0);
276 #else
278 int i;
280 for (i = 0; i < HARD_REG_SET_LONGS; i++)
281 if ((res1->regs[i] & res2->regs[i]) != 0)
282 return 1;
283 return 0;
285 #endif
288 /* Return TRUE if any resource marked in RES, a `struct resources', is
289 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
290 routine is using those resources.
292 We compute this by computing all the resources referenced by INSN and
293 seeing if this conflicts with RES. It might be faster to directly check
294 ourselves, and this is the way it used to work, but it means duplicating
295 a large block of complex code. */
297 static int
298 insn_references_resource_p (rtx insn, struct resources *res,
299 int include_delayed_effects)
301 struct resources insn_res;
303 CLEAR_RESOURCE (&insn_res);
304 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
305 return resource_conflicts_p (&insn_res, res);
308 /* Return TRUE if INSN modifies resources that are marked in RES.
309 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
310 included. CC0 is only modified if it is explicitly set; see comments
311 in front of mark_set_resources for details. */
313 static int
314 insn_sets_resource_p (rtx insn, struct resources *res,
315 int include_delayed_effects)
317 struct resources insn_sets;
319 CLEAR_RESOURCE (&insn_sets);
320 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
321 return resource_conflicts_p (&insn_sets, res);
324 /* Find a label at the end of the function or before a RETURN. If there
325 is none, try to make one. If that fails, returns 0.
327 The property of such a label is that it is placed just before the
328 epilogue or a bare RETURN insn, so that another bare RETURN can be
329 turned into a jump to the label unconditionally. In particular, the
330 label cannot be placed before a RETURN insn with a filled delay slot.
332 ??? There may be a problem with the current implementation. Suppose
333 we start with a bare RETURN insn and call find_end_label. It may set
334 end_of_function_label just before the RETURN. Suppose the machinery
335 is able to fill the delay slot of the RETURN insn afterwards. Then
336 end_of_function_label is no longer valid according to the property
337 described above and find_end_label will still return it unmodified.
338 Note that this is probably mitigated by the following observation:
339 once end_of_function_label is made, it is very likely the target of
340 a jump, so filling the delay slot of the RETURN will be much more
341 difficult. */
343 static rtx
344 find_end_label (void)
346 rtx insn;
348 /* If we found one previously, return it. */
349 if (end_of_function_label)
350 return end_of_function_label;
352 /* Otherwise, see if there is a label at the end of the function. If there
353 is, it must be that RETURN insns aren't needed, so that is our return
354 label and we don't have to do anything else. */
356 insn = get_last_insn ();
357 while (NOTE_P (insn)
358 || (NONJUMP_INSN_P (insn)
359 && (GET_CODE (PATTERN (insn)) == USE
360 || GET_CODE (PATTERN (insn)) == CLOBBER)))
361 insn = PREV_INSN (insn);
363 /* When a target threads its epilogue we might already have a
364 suitable return insn. If so put a label before it for the
365 end_of_function_label. */
366 if (BARRIER_P (insn)
367 && JUMP_P (PREV_INSN (insn))
368 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
370 rtx temp = PREV_INSN (PREV_INSN (insn));
371 end_of_function_label = gen_label_rtx ();
372 LABEL_NUSES (end_of_function_label) = 0;
374 /* Put the label before an USE insns that may precede the RETURN insn. */
375 while (GET_CODE (temp) == USE)
376 temp = PREV_INSN (temp);
378 emit_label_after (end_of_function_label, temp);
381 else if (LABEL_P (insn))
382 end_of_function_label = insn;
383 else
385 end_of_function_label = gen_label_rtx ();
386 LABEL_NUSES (end_of_function_label) = 0;
387 /* If the basic block reorder pass moves the return insn to
388 some other place try to locate it again and put our
389 end_of_function_label there. */
390 while (insn && ! (JUMP_P (insn)
391 && (GET_CODE (PATTERN (insn)) == RETURN)))
392 insn = PREV_INSN (insn);
393 if (insn)
395 insn = PREV_INSN (insn);
397 /* Put the label before an USE insns that may proceed the
398 RETURN insn. */
399 while (GET_CODE (insn) == USE)
400 insn = PREV_INSN (insn);
402 emit_label_after (end_of_function_label, insn);
404 else
406 #ifdef HAVE_epilogue
407 if (HAVE_epilogue
408 #ifdef HAVE_return
409 && ! HAVE_return
410 #endif
413 /* The RETURN insn has its delay slot filled so we cannot
414 emit the label just before it. Since we already have
415 an epilogue and cannot emit a new RETURN, we cannot
416 emit the label at all. */
417 end_of_function_label = NULL_RTX;
418 return end_of_function_label;
420 #endif /* HAVE_epilogue */
422 /* Otherwise, make a new label and emit a RETURN and BARRIER,
423 if needed. */
424 emit_label (end_of_function_label);
425 #ifdef HAVE_return
426 /* We don't bother trying to create a return insn if the
427 epilogue has filled delay-slots; we would have to try and
428 move the delay-slot fillers to the delay-slots for the new
429 return insn or in front of the new return insn. */
430 if (current_function_epilogue_delay_list == NULL
431 && HAVE_return)
433 /* The return we make may have delay slots too. */
434 rtx insn = gen_return ();
435 insn = emit_jump_insn (insn);
436 emit_barrier ();
437 if (num_delay_slots (insn) > 0)
438 obstack_ptr_grow (&unfilled_slots_obstack, insn);
440 #endif
444 /* Show one additional use for this label so it won't go away until
445 we are done. */
446 ++LABEL_NUSES (end_of_function_label);
448 return end_of_function_label;
451 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
452 the pattern of INSN with the SEQUENCE.
454 Chain the insns so that NEXT_INSN of each insn in the sequence points to
455 the next and NEXT_INSN of the last insn in the sequence points to
456 the first insn after the sequence. Similarly for PREV_INSN. This makes
457 it easier to scan all insns.
459 Returns the SEQUENCE that replaces INSN. */
461 static rtx
462 emit_delay_sequence (rtx insn, rtx list, int length)
464 int i = 1;
465 rtx li;
466 int had_barrier = 0;
468 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
469 rtvec seqv = rtvec_alloc (length + 1);
470 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
471 rtx seq_insn = make_insn_raw (seq);
472 rtx first = get_insns ();
473 rtx last = get_last_insn ();
475 /* Make a copy of the insn having delay slots. */
476 rtx delay_insn = copy_rtx (insn);
478 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
479 confuse further processing. Update LAST in case it was the last insn.
480 We will put the BARRIER back in later. */
481 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
483 delete_related_insns (NEXT_INSN (insn));
484 last = get_last_insn ();
485 had_barrier = 1;
488 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
489 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
490 PREV_INSN (seq_insn) = PREV_INSN (insn);
492 if (insn != last)
493 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
495 if (insn != first)
496 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
498 /* Note the calls to set_new_first_and_last_insn must occur after
499 SEQ_INSN has been completely spliced into the insn stream.
501 Otherwise CUR_INSN_UID will get set to an incorrect value because
502 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
503 if (insn == last)
504 set_new_first_and_last_insn (first, seq_insn);
506 if (insn == first)
507 set_new_first_and_last_insn (seq_insn, last);
509 /* Build our SEQUENCE and rebuild the insn chain. */
510 XVECEXP (seq, 0, 0) = delay_insn;
511 INSN_DELETED_P (delay_insn) = 0;
512 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
514 for (li = list; li; li = XEXP (li, 1), i++)
516 rtx tem = XEXP (li, 0);
517 rtx note, next;
519 /* Show that this copy of the insn isn't deleted. */
520 INSN_DELETED_P (tem) = 0;
522 XVECEXP (seq, 0, i) = tem;
523 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
524 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
526 /* SPARC assembler, for instance, emit warning when debug info is output
527 into the delay slot. */
528 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
529 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
530 INSN_LOCATOR (tem) = 0;
532 for (note = REG_NOTES (tem); note; note = next)
534 next = XEXP (note, 1);
535 switch (REG_NOTE_KIND (note))
537 case REG_DEAD:
538 /* Remove any REG_DEAD notes because we can't rely on them now
539 that the insn has been moved. */
540 remove_note (tem, note);
541 break;
543 case REG_LABEL:
544 /* Keep the label reference count up to date. */
545 if (LABEL_P (XEXP (note, 0)))
546 LABEL_NUSES (XEXP (note, 0)) ++;
547 break;
549 default:
550 break;
555 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
557 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
558 last insn in that SEQUENCE to point to us. Similarly for the first
559 insn in the following insn if it is a SEQUENCE. */
561 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
562 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
563 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
564 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
565 = seq_insn;
567 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
568 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
569 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
571 /* If there used to be a BARRIER, put it back. */
572 if (had_barrier)
573 emit_barrier_after (seq_insn);
575 gcc_assert (i == length + 1);
577 return seq_insn;
580 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
581 be in the order in which the insns are to be executed. */
583 static rtx
584 add_to_delay_list (rtx insn, rtx delay_list)
586 /* If we have an empty list, just make a new list element. If
587 INSN has its block number recorded, clear it since we may
588 be moving the insn to a new block. */
590 if (delay_list == 0)
592 clear_hashed_info_for_insn (insn);
593 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
596 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
597 list. */
598 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
600 return delay_list;
603 /* Delete INSN from the delay slot of the insn that it is in, which may
604 produce an insn with no delay slots. Return the new insn. */
606 static rtx
607 delete_from_delay_slot (rtx insn)
609 rtx trial, seq_insn, seq, prev;
610 rtx delay_list = 0;
611 int i;
612 int had_barrier = 0;
614 /* We first must find the insn containing the SEQUENCE with INSN in its
615 delay slot. Do this by finding an insn, TRIAL, where
616 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
618 for (trial = insn;
619 PREV_INSN (NEXT_INSN (trial)) == trial;
620 trial = NEXT_INSN (trial))
623 seq_insn = PREV_INSN (NEXT_INSN (trial));
624 seq = PATTERN (seq_insn);
626 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
627 had_barrier = 1;
629 /* Create a delay list consisting of all the insns other than the one
630 we are deleting (unless we were the only one). */
631 if (XVECLEN (seq, 0) > 2)
632 for (i = 1; i < XVECLEN (seq, 0); i++)
633 if (XVECEXP (seq, 0, i) != insn)
634 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
636 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
637 list, and rebuild the delay list if non-empty. */
638 prev = PREV_INSN (seq_insn);
639 trial = XVECEXP (seq, 0, 0);
640 delete_related_insns (seq_insn);
641 add_insn_after (trial, prev);
643 /* If there was a barrier after the old SEQUENCE, remit it. */
644 if (had_barrier)
645 emit_barrier_after (trial);
647 /* If there are any delay insns, remit them. Otherwise clear the
648 annul flag. */
649 if (delay_list)
650 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
651 else if (INSN_P (trial))
652 INSN_ANNULLED_BRANCH_P (trial) = 0;
654 INSN_FROM_TARGET_P (insn) = 0;
656 /* Show we need to fill this insn again. */
657 obstack_ptr_grow (&unfilled_slots_obstack, trial);
659 return trial;
662 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
663 the insn that sets CC0 for it and delete it too. */
665 static void
666 delete_scheduled_jump (rtx insn)
668 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
669 delete the insn that sets the condition code, but it is hard to find it.
670 Since this case is rare anyway, don't bother trying; there would likely
671 be other insns that became dead anyway, which we wouldn't know to
672 delete. */
674 #ifdef HAVE_cc0
675 if (reg_mentioned_p (cc0_rtx, insn))
677 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
679 /* If a reg-note was found, it points to an insn to set CC0. This
680 insn is in the delay list of some other insn. So delete it from
681 the delay list it was in. */
682 if (note)
684 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
685 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
686 delete_from_delay_slot (XEXP (note, 0));
688 else
690 /* The insn setting CC0 is our previous insn, but it may be in
691 a delay slot. It will be the last insn in the delay slot, if
692 it is. */
693 rtx trial = previous_insn (insn);
694 if (NOTE_P (trial))
695 trial = prev_nonnote_insn (trial);
696 if (sets_cc0_p (PATTERN (trial)) != 1
697 || FIND_REG_INC_NOTE (trial, NULL_RTX))
698 return;
699 if (PREV_INSN (NEXT_INSN (trial)) == trial)
700 delete_related_insns (trial);
701 else
702 delete_from_delay_slot (trial);
705 #endif
707 delete_related_insns (insn);
710 /* Counters for delay-slot filling. */
712 #define NUM_REORG_FUNCTIONS 2
713 #define MAX_DELAY_HISTOGRAM 3
714 #define MAX_REORG_PASSES 2
716 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
718 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
720 static int reorg_pass_number;
722 static void
723 note_delay_statistics (int slots_filled, int index)
725 num_insns_needing_delays[index][reorg_pass_number]++;
726 if (slots_filled > MAX_DELAY_HISTOGRAM)
727 slots_filled = MAX_DELAY_HISTOGRAM;
728 num_filled_delays[index][slots_filled][reorg_pass_number]++;
731 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
733 /* Optimize the following cases:
735 1. When a conditional branch skips over only one instruction,
736 use an annulling branch and put that insn in the delay slot.
737 Use either a branch that annuls when the condition if true or
738 invert the test with a branch that annuls when the condition is
739 false. This saves insns, since otherwise we must copy an insn
740 from the L1 target.
742 (orig) (skip) (otherwise)
743 Bcc.n L1 Bcc',a L1 Bcc,a L1'
744 insn insn insn2
745 L1: L1: L1:
746 insn2 insn2 insn2
747 insn3 insn3 L1':
748 insn3
750 2. When a conditional branch skips over only one instruction,
751 and after that, it unconditionally branches somewhere else,
752 perform the similar optimization. This saves executing the
753 second branch in the case where the inverted condition is true.
755 Bcc.n L1 Bcc',a L2
756 insn insn
757 L1: L1:
758 Bra L2 Bra L2
760 INSN is a JUMP_INSN.
762 This should be expanded to skip over N insns, where N is the number
763 of delay slots required. */
765 static rtx
766 optimize_skip (rtx insn)
768 rtx trial = next_nonnote_insn (insn);
769 rtx next_trial = next_active_insn (trial);
770 rtx delay_list = 0;
771 int flags;
773 flags = get_jump_flags (insn, JUMP_LABEL (insn));
775 if (trial == 0
776 || !NONJUMP_INSN_P (trial)
777 || GET_CODE (PATTERN (trial)) == SEQUENCE
778 || recog_memoized (trial) < 0
779 || (! eligible_for_annul_false (insn, 0, trial, flags)
780 && ! eligible_for_annul_true (insn, 0, trial, flags))
781 || can_throw_internal (trial))
782 return 0;
784 /* There are two cases where we are just executing one insn (we assume
785 here that a branch requires only one insn; this should be generalized
786 at some point): Where the branch goes around a single insn or where
787 we have one insn followed by a branch to the same label we branch to.
788 In both of these cases, inverting the jump and annulling the delay
789 slot give the same effect in fewer insns. */
790 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
791 && ! (next_trial == 0 && current_function_epilogue_delay_list != 0))
792 || (next_trial != 0
793 && JUMP_P (next_trial)
794 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
795 && (simplejump_p (next_trial)
796 || GET_CODE (PATTERN (next_trial)) == RETURN)))
798 if (eligible_for_annul_false (insn, 0, trial, flags))
800 if (invert_jump (insn, JUMP_LABEL (insn), 1))
801 INSN_FROM_TARGET_P (trial) = 1;
802 else if (! eligible_for_annul_true (insn, 0, trial, flags))
803 return 0;
806 delay_list = add_to_delay_list (trial, NULL_RTX);
807 next_trial = next_active_insn (trial);
808 update_block (trial, trial);
809 delete_related_insns (trial);
811 /* Also, if we are targeting an unconditional
812 branch, thread our jump to the target of that branch. Don't
813 change this into a RETURN here, because it may not accept what
814 we have in the delay slot. We'll fix this up later. */
815 if (next_trial && JUMP_P (next_trial)
816 && (simplejump_p (next_trial)
817 || GET_CODE (PATTERN (next_trial)) == RETURN))
819 rtx target_label = JUMP_LABEL (next_trial);
820 if (target_label == 0)
821 target_label = find_end_label ();
823 if (target_label)
825 /* Recompute the flags based on TARGET_LABEL since threading
826 the jump to TARGET_LABEL may change the direction of the
827 jump (which may change the circumstances in which the
828 delay slot is nullified). */
829 flags = get_jump_flags (insn, target_label);
830 if (eligible_for_annul_true (insn, 0, trial, flags))
831 reorg_redirect_jump (insn, target_label);
835 INSN_ANNULLED_BRANCH_P (insn) = 1;
838 return delay_list;
840 #endif
842 /* Encode and return branch direction and prediction information for
843 INSN assuming it will jump to LABEL.
845 Non conditional branches return no direction information and
846 are predicted as very likely taken. */
848 static int
849 get_jump_flags (rtx insn, rtx label)
851 int flags;
853 /* get_jump_flags can be passed any insn with delay slots, these may
854 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
855 direction information, and only if they are conditional jumps.
857 If LABEL is zero, then there is no way to determine the branch
858 direction. */
859 if (JUMP_P (insn)
860 && (condjump_p (insn) || condjump_in_parallel_p (insn))
861 && INSN_UID (insn) <= max_uid
862 && label != 0
863 && INSN_UID (label) <= max_uid)
864 flags
865 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
866 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
867 /* No valid direction information. */
868 else
869 flags = 0;
871 /* If insn is a conditional branch call mostly_true_jump to get
872 determine the branch prediction.
874 Non conditional branches are predicted as very likely taken. */
875 if (JUMP_P (insn)
876 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
878 int prediction;
880 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
881 switch (prediction)
883 case 2:
884 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
885 break;
886 case 1:
887 flags |= ATTR_FLAG_likely;
888 break;
889 case 0:
890 flags |= ATTR_FLAG_unlikely;
891 break;
892 case -1:
893 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
894 break;
896 default:
897 gcc_unreachable ();
900 else
901 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
903 return flags;
906 /* Return 1 if INSN is a destination that will be branched to rarely (the
907 return point of a function); return 2 if DEST will be branched to very
908 rarely (a call to a function that doesn't return). Otherwise,
909 return 0. */
911 static int
912 rare_destination (rtx insn)
914 int jump_count = 0;
915 rtx next;
917 for (; insn; insn = next)
919 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
920 insn = XVECEXP (PATTERN (insn), 0, 0);
922 next = NEXT_INSN (insn);
924 switch (GET_CODE (insn))
926 case CODE_LABEL:
927 return 0;
928 case BARRIER:
929 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
930 don't scan past JUMP_INSNs, so any barrier we find here must
931 have been after a CALL_INSN and hence mean the call doesn't
932 return. */
933 return 2;
934 case JUMP_INSN:
935 if (GET_CODE (PATTERN (insn)) == RETURN)
936 return 1;
937 else if (simplejump_p (insn)
938 && jump_count++ < 10)
939 next = JUMP_LABEL (insn);
940 else
941 return 0;
943 default:
944 break;
948 /* If we got here it means we hit the end of the function. So this
949 is an unlikely destination. */
951 return 1;
954 /* Return truth value of the statement that this branch
955 is mostly taken. If we think that the branch is extremely likely
956 to be taken, we return 2. If the branch is slightly more likely to be
957 taken, return 1. If the branch is slightly less likely to be taken,
958 return 0 and if the branch is highly unlikely to be taken, return -1.
960 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
962 static int
963 mostly_true_jump (rtx jump_insn, rtx condition)
965 rtx target_label = JUMP_LABEL (jump_insn);
966 rtx note;
967 int rare_dest, rare_fallthrough;
969 /* If branch probabilities are available, then use that number since it
970 always gives a correct answer. */
971 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
972 if (note)
974 int prob = INTVAL (XEXP (note, 0));
976 if (prob >= REG_BR_PROB_BASE * 9 / 10)
977 return 2;
978 else if (prob >= REG_BR_PROB_BASE / 2)
979 return 1;
980 else if (prob >= REG_BR_PROB_BASE / 10)
981 return 0;
982 else
983 return -1;
986 /* Look at the relative rarities of the fallthrough and destination. If
987 they differ, we can predict the branch that way. */
988 rare_dest = rare_destination (target_label);
989 rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
991 switch (rare_fallthrough - rare_dest)
993 case -2:
994 return -1;
995 case -1:
996 return 0;
997 case 0:
998 break;
999 case 1:
1000 return 1;
1001 case 2:
1002 return 2;
1005 /* If we couldn't figure out what this jump was, assume it won't be
1006 taken. This should be rare. */
1007 if (condition == 0)
1008 return 0;
1010 /* Predict backward branches usually take, forward branches usually not. If
1011 we don't know whether this is forward or backward, assume the branch
1012 will be taken, since most are. */
1013 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1014 || INSN_UID (target_label) > max_uid
1015 || (uid_to_ruid[INSN_UID (jump_insn)]
1016 > uid_to_ruid[INSN_UID (target_label)]));
1019 /* Return the condition under which INSN will branch to TARGET. If TARGET
1020 is zero, return the condition under which INSN will return. If INSN is
1021 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1022 type of jump, or it doesn't go to TARGET, return 0. */
1024 static rtx
1025 get_branch_condition (rtx insn, rtx target)
1027 rtx pat = PATTERN (insn);
1028 rtx src;
1030 if (condjump_in_parallel_p (insn))
1031 pat = XVECEXP (pat, 0, 0);
1033 if (GET_CODE (pat) == RETURN)
1034 return target == 0 ? const_true_rtx : 0;
1036 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1037 return 0;
1039 src = SET_SRC (pat);
1040 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1041 return const_true_rtx;
1043 else if (GET_CODE (src) == IF_THEN_ELSE
1044 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1045 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1046 && XEXP (XEXP (src, 1), 0) == target))
1047 && XEXP (src, 2) == pc_rtx)
1048 return XEXP (src, 0);
1050 else if (GET_CODE (src) == IF_THEN_ELSE
1051 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1052 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1053 && XEXP (XEXP (src, 2), 0) == target))
1054 && XEXP (src, 1) == pc_rtx)
1056 enum rtx_code rev;
1057 rev = reversed_comparison_code (XEXP (src, 0), insn);
1058 if (rev != UNKNOWN)
1059 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1060 XEXP (XEXP (src, 0), 0),
1061 XEXP (XEXP (src, 0), 1));
1064 return 0;
1067 /* Return nonzero if CONDITION is more strict than the condition of
1068 INSN, i.e., if INSN will always branch if CONDITION is true. */
1070 static int
1071 condition_dominates_p (rtx condition, rtx insn)
1073 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1074 enum rtx_code code = GET_CODE (condition);
1075 enum rtx_code other_code;
1077 if (rtx_equal_p (condition, other_condition)
1078 || other_condition == const_true_rtx)
1079 return 1;
1081 else if (condition == const_true_rtx || other_condition == 0)
1082 return 0;
1084 other_code = GET_CODE (other_condition);
1085 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1086 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1087 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1088 return 0;
1090 return comparison_dominates_p (code, other_code);
1093 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1094 any insns already in the delay slot of JUMP. */
1096 static int
1097 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1099 int flags, i;
1100 rtx pat = PATTERN (seq);
1102 /* Make sure all the delay slots of this jump would still
1103 be valid after threading the jump. If they are still
1104 valid, then return nonzero. */
1106 flags = get_jump_flags (jump, newlabel);
1107 for (i = 1; i < XVECLEN (pat, 0); i++)
1108 if (! (
1109 #ifdef ANNUL_IFFALSE_SLOTS
1110 (INSN_ANNULLED_BRANCH_P (jump)
1111 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1112 ? eligible_for_annul_false (jump, i - 1,
1113 XVECEXP (pat, 0, i), flags) :
1114 #endif
1115 #ifdef ANNUL_IFTRUE_SLOTS
1116 (INSN_ANNULLED_BRANCH_P (jump)
1117 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1118 ? eligible_for_annul_true (jump, i - 1,
1119 XVECEXP (pat, 0, i), flags) :
1120 #endif
1121 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1122 break;
1124 return (i == XVECLEN (pat, 0));
1127 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1128 any insns we wish to place in the delay slot of JUMP. */
1130 static int
1131 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1133 int flags, i;
1134 rtx li;
1136 /* Make sure all the insns in DELAY_LIST would still be
1137 valid after threading the jump. If they are still
1138 valid, then return nonzero. */
1140 flags = get_jump_flags (jump, newlabel);
1141 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1142 if (! (
1143 #ifdef ANNUL_IFFALSE_SLOTS
1144 (INSN_ANNULLED_BRANCH_P (jump)
1145 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1146 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1147 #endif
1148 #ifdef ANNUL_IFTRUE_SLOTS
1149 (INSN_ANNULLED_BRANCH_P (jump)
1150 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1151 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1152 #endif
1153 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1154 break;
1156 return (li == NULL);
1159 /* DELAY_LIST is a list of insns that have already been placed into delay
1160 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1161 If not, return 0; otherwise return 1. */
1163 static int
1164 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1166 rtx temp;
1168 if (delay_list)
1170 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1172 rtx trial = XEXP (temp, 0);
1174 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1175 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1176 return 0;
1180 return 1;
1183 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1184 the condition tested by INSN is CONDITION and the resources shown in
1185 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1186 from SEQ's delay list, in addition to whatever insns it may execute
1187 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1188 needed while searching for delay slot insns. Return the concatenated
1189 delay list if possible, otherwise, return 0.
1191 SLOTS_TO_FILL is the total number of slots required by INSN, and
1192 PSLOTS_FILLED points to the number filled so far (also the number of
1193 insns in DELAY_LIST). It is updated with the number that have been
1194 filled from the SEQUENCE, if any.
1196 PANNUL_P points to a nonzero value if we already know that we need
1197 to annul INSN. If this routine determines that annulling is needed,
1198 it may set that value nonzero.
1200 PNEW_THREAD points to a location that is to receive the place at which
1201 execution should continue. */
1203 static rtx
1204 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1205 rtx delay_list, struct resources *sets,
1206 struct resources *needed,
1207 struct resources *other_needed,
1208 int slots_to_fill, int *pslots_filled,
1209 int *pannul_p, rtx *pnew_thread)
1211 rtx temp;
1212 int slots_remaining = slots_to_fill - *pslots_filled;
1213 int total_slots_filled = *pslots_filled;
1214 rtx new_delay_list = 0;
1215 int must_annul = *pannul_p;
1216 int used_annul = 0;
1217 int i;
1218 struct resources cc_set;
1220 /* We can't do anything if there are more delay slots in SEQ than we
1221 can handle, or if we don't know that it will be a taken branch.
1222 We know that it will be a taken branch if it is either an unconditional
1223 branch or a conditional branch with a stricter branch condition.
1225 Also, exit if the branch has more than one set, since then it is computing
1226 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1227 ??? It may be possible to move other sets into INSN in addition to
1228 moving the instructions in the delay slots.
1230 We can not steal the delay list if one of the instructions in the
1231 current delay_list modifies the condition codes and the jump in the
1232 sequence is a conditional jump. We can not do this because we can
1233 not change the direction of the jump because the condition codes
1234 will effect the direction of the jump in the sequence. */
1236 CLEAR_RESOURCE (&cc_set);
1237 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1239 rtx trial = XEXP (temp, 0);
1241 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1242 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1243 return delay_list;
1246 if (XVECLEN (seq, 0) - 1 > slots_remaining
1247 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1248 || ! single_set (XVECEXP (seq, 0, 0)))
1249 return delay_list;
1251 #ifdef MD_CAN_REDIRECT_BRANCH
1252 /* On some targets, branches with delay slots can have a limited
1253 displacement. Give the back end a chance to tell us we can't do
1254 this. */
1255 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1256 return delay_list;
1257 #endif
1259 for (i = 1; i < XVECLEN (seq, 0); i++)
1261 rtx trial = XVECEXP (seq, 0, i);
1262 int flags;
1264 if (insn_references_resource_p (trial, sets, 0)
1265 || insn_sets_resource_p (trial, needed, 0)
1266 || insn_sets_resource_p (trial, sets, 0)
1267 #ifdef HAVE_cc0
1268 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1269 delay list. */
1270 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1271 #endif
1272 /* If TRIAL is from the fallthrough code of an annulled branch insn
1273 in SEQ, we cannot use it. */
1274 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1275 && ! INSN_FROM_TARGET_P (trial)))
1276 return delay_list;
1278 /* If this insn was already done (usually in a previous delay slot),
1279 pretend we put it in our delay slot. */
1280 if (redundant_insn (trial, insn, new_delay_list))
1281 continue;
1283 /* We will end up re-vectoring this branch, so compute flags
1284 based on jumping to the new label. */
1285 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1287 if (! must_annul
1288 && ((condition == const_true_rtx
1289 || (! insn_sets_resource_p (trial, other_needed, 0)
1290 && ! may_trap_or_fault_p (PATTERN (trial)))))
1291 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1292 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1293 && (must_annul = 1,
1294 check_annul_list_true_false (0, delay_list)
1295 && check_annul_list_true_false (0, new_delay_list)
1296 && eligible_for_annul_false (insn, total_slots_filled,
1297 trial, flags)))
1299 if (must_annul)
1300 used_annul = 1;
1301 temp = copy_rtx (trial);
1302 INSN_FROM_TARGET_P (temp) = 1;
1303 new_delay_list = add_to_delay_list (temp, new_delay_list);
1304 total_slots_filled++;
1306 if (--slots_remaining == 0)
1307 break;
1309 else
1310 return delay_list;
1313 /* Show the place to which we will be branching. */
1314 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1316 /* Add any new insns to the delay list and update the count of the
1317 number of slots filled. */
1318 *pslots_filled = total_slots_filled;
1319 if (used_annul)
1320 *pannul_p = 1;
1322 if (delay_list == 0)
1323 return new_delay_list;
1325 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1326 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1328 return delay_list;
1331 /* Similar to steal_delay_list_from_target except that SEQ is on the
1332 fallthrough path of INSN. Here we only do something if the delay insn
1333 of SEQ is an unconditional branch. In that case we steal its delay slot
1334 for INSN since unconditional branches are much easier to fill. */
1336 static rtx
1337 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1338 rtx delay_list, struct resources *sets,
1339 struct resources *needed,
1340 struct resources *other_needed,
1341 int slots_to_fill, int *pslots_filled,
1342 int *pannul_p)
1344 int i;
1345 int flags;
1346 int must_annul = *pannul_p;
1347 int used_annul = 0;
1349 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1351 /* We can't do anything if SEQ's delay insn isn't an
1352 unconditional branch. */
1354 if (! simplejump_p (XVECEXP (seq, 0, 0))
1355 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1356 return delay_list;
1358 for (i = 1; i < XVECLEN (seq, 0); i++)
1360 rtx trial = XVECEXP (seq, 0, i);
1362 /* If TRIAL sets CC0, stealing it will move it too far from the use
1363 of CC0. */
1364 if (insn_references_resource_p (trial, sets, 0)
1365 || insn_sets_resource_p (trial, needed, 0)
1366 || insn_sets_resource_p (trial, sets, 0)
1367 #ifdef HAVE_cc0
1368 || sets_cc0_p (PATTERN (trial))
1369 #endif
1372 break;
1374 /* If this insn was already done, we don't need it. */
1375 if (redundant_insn (trial, insn, delay_list))
1377 delete_from_delay_slot (trial);
1378 continue;
1381 if (! must_annul
1382 && ((condition == const_true_rtx
1383 || (! insn_sets_resource_p (trial, other_needed, 0)
1384 && ! may_trap_or_fault_p (PATTERN (trial)))))
1385 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1386 : (must_annul || delay_list == NULL) && (must_annul = 1,
1387 check_annul_list_true_false (1, delay_list)
1388 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1390 if (must_annul)
1391 used_annul = 1;
1392 delete_from_delay_slot (trial);
1393 delay_list = add_to_delay_list (trial, delay_list);
1395 if (++(*pslots_filled) == slots_to_fill)
1396 break;
1398 else
1399 break;
1402 if (used_annul)
1403 *pannul_p = 1;
1404 return delay_list;
1407 /* Try merging insns starting at THREAD which match exactly the insns in
1408 INSN's delay list.
1410 If all insns were matched and the insn was previously annulling, the
1411 annul bit will be cleared.
1413 For each insn that is merged, if the branch is or will be non-annulling,
1414 we delete the merged insn. */
1416 static void
1417 try_merge_delay_insns (rtx insn, rtx thread)
1419 rtx trial, next_trial;
1420 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1421 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1422 int slot_number = 1;
1423 int num_slots = XVECLEN (PATTERN (insn), 0);
1424 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1425 struct resources set, needed;
1426 rtx merged_insns = 0;
1427 int i;
1428 int flags;
1430 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1432 CLEAR_RESOURCE (&needed);
1433 CLEAR_RESOURCE (&set);
1435 /* If this is not an annulling branch, take into account anything needed in
1436 INSN's delay slot. This prevents two increments from being incorrectly
1437 folded into one. If we are annulling, this would be the correct
1438 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1439 will essentially disable this optimization. This method is somewhat of
1440 a kludge, but I don't see a better way.) */
1441 if (! annul_p)
1442 for (i = 1 ; i < num_slots; i++)
1443 if (XVECEXP (PATTERN (insn), 0, i))
1444 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1446 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1448 rtx pat = PATTERN (trial);
1449 rtx oldtrial = trial;
1451 next_trial = next_nonnote_insn (trial);
1453 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1454 if (NONJUMP_INSN_P (trial)
1455 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1456 continue;
1458 if (GET_CODE (next_to_match) == GET_CODE (trial)
1459 #ifdef HAVE_cc0
1460 /* We can't share an insn that sets cc0. */
1461 && ! sets_cc0_p (pat)
1462 #endif
1463 && ! insn_references_resource_p (trial, &set, 1)
1464 && ! insn_sets_resource_p (trial, &set, 1)
1465 && ! insn_sets_resource_p (trial, &needed, 1)
1466 && (trial = try_split (pat, trial, 0)) != 0
1467 /* Update next_trial, in case try_split succeeded. */
1468 && (next_trial = next_nonnote_insn (trial))
1469 /* Likewise THREAD. */
1470 && (thread = oldtrial == thread ? trial : thread)
1471 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1472 /* Have to test this condition if annul condition is different
1473 from (and less restrictive than) non-annulling one. */
1474 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1477 if (! annul_p)
1479 update_block (trial, thread);
1480 if (trial == thread)
1481 thread = next_active_insn (thread);
1483 delete_related_insns (trial);
1484 INSN_FROM_TARGET_P (next_to_match) = 0;
1486 else
1487 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1489 if (++slot_number == num_slots)
1490 break;
1492 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1495 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1496 mark_referenced_resources (trial, &needed, 1);
1499 /* See if we stopped on a filled insn. If we did, try to see if its
1500 delay slots match. */
1501 if (slot_number != num_slots
1502 && trial && NONJUMP_INSN_P (trial)
1503 && GET_CODE (PATTERN (trial)) == SEQUENCE
1504 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1506 rtx pat = PATTERN (trial);
1507 rtx filled_insn = XVECEXP (pat, 0, 0);
1509 /* Account for resources set/needed by the filled insn. */
1510 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1511 mark_referenced_resources (filled_insn, &needed, 1);
1513 for (i = 1; i < XVECLEN (pat, 0); i++)
1515 rtx dtrial = XVECEXP (pat, 0, i);
1517 if (! insn_references_resource_p (dtrial, &set, 1)
1518 && ! insn_sets_resource_p (dtrial, &set, 1)
1519 && ! insn_sets_resource_p (dtrial, &needed, 1)
1520 #ifdef HAVE_cc0
1521 && ! sets_cc0_p (PATTERN (dtrial))
1522 #endif
1523 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1524 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1526 if (! annul_p)
1528 rtx new;
1530 update_block (dtrial, thread);
1531 new = delete_from_delay_slot (dtrial);
1532 if (INSN_DELETED_P (thread))
1533 thread = new;
1534 INSN_FROM_TARGET_P (next_to_match) = 0;
1536 else
1537 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1538 merged_insns);
1540 if (++slot_number == num_slots)
1541 break;
1543 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1545 else
1547 /* Keep track of the set/referenced resources for the delay
1548 slots of any trial insns we encounter. */
1549 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1550 mark_referenced_resources (dtrial, &needed, 1);
1555 /* If all insns in the delay slot have been matched and we were previously
1556 annulling the branch, we need not any more. In that case delete all the
1557 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1558 the delay list so that we know that it isn't only being used at the
1559 target. */
1560 if (slot_number == num_slots && annul_p)
1562 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1564 if (GET_MODE (merged_insns) == SImode)
1566 rtx new;
1568 update_block (XEXP (merged_insns, 0), thread);
1569 new = delete_from_delay_slot (XEXP (merged_insns, 0));
1570 if (INSN_DELETED_P (thread))
1571 thread = new;
1573 else
1575 update_block (XEXP (merged_insns, 0), thread);
1576 delete_related_insns (XEXP (merged_insns, 0));
1580 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1582 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1583 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1587 /* See if INSN is redundant with an insn in front of TARGET. Often this
1588 is called when INSN is a candidate for a delay slot of TARGET.
1589 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1590 of INSN. Often INSN will be redundant with an insn in a delay slot of
1591 some previous insn. This happens when we have a series of branches to the
1592 same label; in that case the first insn at the target might want to go
1593 into each of the delay slots.
1595 If we are not careful, this routine can take up a significant fraction
1596 of the total compilation time (4%), but only wins rarely. Hence we
1597 speed this routine up by making two passes. The first pass goes back
1598 until it hits a label and sees if it finds an insn with an identical
1599 pattern. Only in this (relatively rare) event does it check for
1600 data conflicts.
1602 We do not split insns we encounter. This could cause us not to find a
1603 redundant insn, but the cost of splitting seems greater than the possible
1604 gain in rare cases. */
1606 static rtx
1607 redundant_insn (rtx insn, rtx target, rtx delay_list)
1609 rtx target_main = target;
1610 rtx ipat = PATTERN (insn);
1611 rtx trial, pat;
1612 struct resources needed, set;
1613 int i;
1614 unsigned insns_to_search;
1616 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1617 are allowed to not actually assign to such a register. */
1618 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1619 return 0;
1621 /* Scan backwards looking for a match. */
1622 for (trial = PREV_INSN (target),
1623 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1624 trial && insns_to_search > 0;
1625 trial = PREV_INSN (trial), --insns_to_search)
1627 if (LABEL_P (trial))
1628 return 0;
1630 if (! INSN_P (trial))
1631 continue;
1633 pat = PATTERN (trial);
1634 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1635 continue;
1637 if (GET_CODE (pat) == SEQUENCE)
1639 /* Stop for a CALL and its delay slots because it is difficult to
1640 track its resource needs correctly. */
1641 if (CALL_P (XVECEXP (pat, 0, 0)))
1642 return 0;
1644 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1645 slots because it is difficult to track its resource needs
1646 correctly. */
1648 #ifdef INSN_SETS_ARE_DELAYED
1649 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1650 return 0;
1651 #endif
1653 #ifdef INSN_REFERENCES_ARE_DELAYED
1654 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1655 return 0;
1656 #endif
1658 /* See if any of the insns in the delay slot match, updating
1659 resource requirements as we go. */
1660 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1661 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1662 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1663 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1664 break;
1666 /* If found a match, exit this loop early. */
1667 if (i > 0)
1668 break;
1671 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1672 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1673 break;
1676 /* If we didn't find an insn that matches, return 0. */
1677 if (trial == 0)
1678 return 0;
1680 /* See what resources this insn sets and needs. If they overlap, or
1681 if this insn references CC0, it can't be redundant. */
1683 CLEAR_RESOURCE (&needed);
1684 CLEAR_RESOURCE (&set);
1685 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1686 mark_referenced_resources (insn, &needed, 1);
1688 /* If TARGET is a SEQUENCE, get the main insn. */
1689 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1690 target_main = XVECEXP (PATTERN (target), 0, 0);
1692 if (resource_conflicts_p (&needed, &set)
1693 #ifdef HAVE_cc0
1694 || reg_mentioned_p (cc0_rtx, ipat)
1695 #endif
1696 /* The insn requiring the delay may not set anything needed or set by
1697 INSN. */
1698 || insn_sets_resource_p (target_main, &needed, 1)
1699 || insn_sets_resource_p (target_main, &set, 1))
1700 return 0;
1702 /* Insns we pass may not set either NEEDED or SET, so merge them for
1703 simpler tests. */
1704 needed.memory |= set.memory;
1705 needed.unch_memory |= set.unch_memory;
1706 IOR_HARD_REG_SET (needed.regs, set.regs);
1708 /* This insn isn't redundant if it conflicts with an insn that either is
1709 or will be in a delay slot of TARGET. */
1711 while (delay_list)
1713 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1714 return 0;
1715 delay_list = XEXP (delay_list, 1);
1718 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1719 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1720 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1721 return 0;
1723 /* Scan backwards until we reach a label or an insn that uses something
1724 INSN sets or sets something insn uses or sets. */
1726 for (trial = PREV_INSN (target),
1727 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1728 trial && !LABEL_P (trial) && insns_to_search > 0;
1729 trial = PREV_INSN (trial), --insns_to_search)
1731 if (!INSN_P (trial))
1732 continue;
1734 pat = PATTERN (trial);
1735 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1736 continue;
1738 if (GET_CODE (pat) == SEQUENCE)
1740 /* If this is a CALL_INSN and its delay slots, it is hard to track
1741 the resource needs properly, so give up. */
1742 if (CALL_P (XVECEXP (pat, 0, 0)))
1743 return 0;
1745 /* If this is an INSN or JUMP_INSN with delayed effects, it
1746 is hard to track the resource needs properly, so give up. */
1748 #ifdef INSN_SETS_ARE_DELAYED
1749 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1750 return 0;
1751 #endif
1753 #ifdef INSN_REFERENCES_ARE_DELAYED
1754 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1755 return 0;
1756 #endif
1758 /* See if any of the insns in the delay slot match, updating
1759 resource requirements as we go. */
1760 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1762 rtx candidate = XVECEXP (pat, 0, i);
1764 /* If an insn will be annulled if the branch is false, it isn't
1765 considered as a possible duplicate insn. */
1766 if (rtx_equal_p (PATTERN (candidate), ipat)
1767 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1768 && INSN_FROM_TARGET_P (candidate)))
1770 /* Show that this insn will be used in the sequel. */
1771 INSN_FROM_TARGET_P (candidate) = 0;
1772 return candidate;
1775 /* Unless this is an annulled insn from the target of a branch,
1776 we must stop if it sets anything needed or set by INSN. */
1777 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1778 || ! INSN_FROM_TARGET_P (candidate))
1779 && insn_sets_resource_p (candidate, &needed, 1))
1780 return 0;
1783 /* If the insn requiring the delay slot conflicts with INSN, we
1784 must stop. */
1785 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1786 return 0;
1788 else
1790 /* See if TRIAL is the same as INSN. */
1791 pat = PATTERN (trial);
1792 if (rtx_equal_p (pat, ipat))
1793 return trial;
1795 /* Can't go any further if TRIAL conflicts with INSN. */
1796 if (insn_sets_resource_p (trial, &needed, 1))
1797 return 0;
1801 return 0;
1804 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1805 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1806 is nonzero, we are allowed to fall into this thread; otherwise, we are
1807 not.
1809 If LABEL is used more than one or we pass a label other than LABEL before
1810 finding an active insn, we do not own this thread. */
1812 static int
1813 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1815 rtx active_insn;
1816 rtx insn;
1818 /* We don't own the function end. */
1819 if (thread == 0)
1820 return 0;
1822 /* Get the first active insn, or THREAD, if it is an active insn. */
1823 active_insn = next_active_insn (PREV_INSN (thread));
1825 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1826 if (LABEL_P (insn)
1827 && (insn != label || LABEL_NUSES (insn) != 1))
1828 return 0;
1830 if (allow_fallthrough)
1831 return 1;
1833 /* Ensure that we reach a BARRIER before any insn or label. */
1834 for (insn = prev_nonnote_insn (thread);
1835 insn == 0 || !BARRIER_P (insn);
1836 insn = prev_nonnote_insn (insn))
1837 if (insn == 0
1838 || LABEL_P (insn)
1839 || (NONJUMP_INSN_P (insn)
1840 && GET_CODE (PATTERN (insn)) != USE
1841 && GET_CODE (PATTERN (insn)) != CLOBBER))
1842 return 0;
1844 return 1;
1847 /* Called when INSN is being moved from a location near the target of a jump.
1848 We leave a marker of the form (use (INSN)) immediately in front
1849 of WHERE for mark_target_live_regs. These markers will be deleted when
1850 reorg finishes.
1852 We used to try to update the live status of registers if WHERE is at
1853 the start of a basic block, but that can't work since we may remove a
1854 BARRIER in relax_delay_slots. */
1856 static void
1857 update_block (rtx insn, rtx where)
1859 /* Ignore if this was in a delay slot and it came from the target of
1860 a branch. */
1861 if (INSN_FROM_TARGET_P (insn))
1862 return;
1864 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1866 /* INSN might be making a value live in a block where it didn't use to
1867 be. So recompute liveness information for this block. */
1869 incr_ticks_for_insn (insn);
1872 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1873 the basic block containing the jump. */
1875 static int
1876 reorg_redirect_jump (rtx jump, rtx nlabel)
1878 incr_ticks_for_insn (jump);
1879 return redirect_jump (jump, nlabel, 1);
1882 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1883 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1884 that reference values used in INSN. If we find one, then we move the
1885 REG_DEAD note to INSN.
1887 This is needed to handle the case where a later insn (after INSN) has a
1888 REG_DEAD note for a register used by INSN, and this later insn subsequently
1889 gets moved before a CODE_LABEL because it is a redundant insn. In this
1890 case, mark_target_live_regs may be confused into thinking the register
1891 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1893 static void
1894 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1896 rtx p, link, next;
1898 for (p = next_nonnote_insn (insn); p != delayed_insn;
1899 p = next_nonnote_insn (p))
1900 for (link = REG_NOTES (p); link; link = next)
1902 next = XEXP (link, 1);
1904 if (REG_NOTE_KIND (link) != REG_DEAD
1905 || !REG_P (XEXP (link, 0)))
1906 continue;
1908 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1910 /* Move the REG_DEAD note from P to INSN. */
1911 remove_note (p, link);
1912 XEXP (link, 1) = REG_NOTES (insn);
1913 REG_NOTES (insn) = link;
1918 /* Called when an insn redundant with start_insn is deleted. If there
1919 is a REG_DEAD note for the target of start_insn between start_insn
1920 and stop_insn, then the REG_DEAD note needs to be deleted since the
1921 value no longer dies there.
1923 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1924 confused into thinking the register is dead. */
1926 static void
1927 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1929 rtx p, link, next;
1931 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1932 p = next_nonnote_insn (p))
1933 for (link = REG_NOTES (p); link; link = next)
1935 next = XEXP (link, 1);
1937 if (REG_NOTE_KIND (link) != REG_DEAD
1938 || !REG_P (XEXP (link, 0)))
1939 continue;
1941 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1943 remove_note (p, link);
1944 return;
1949 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1951 This handles the case of udivmodXi4 instructions which optimize their
1952 output depending on whether any REG_UNUSED notes are present.
1953 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1954 does. */
1956 static void
1957 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1959 rtx link, next;
1961 for (link = REG_NOTES (insn); link; link = next)
1963 next = XEXP (link, 1);
1965 if (REG_NOTE_KIND (link) != REG_UNUSED
1966 || !REG_P (XEXP (link, 0)))
1967 continue;
1969 if (! find_regno_note (redundant_insn, REG_UNUSED,
1970 REGNO (XEXP (link, 0))))
1971 remove_note (insn, link);
1975 /* Scan a function looking for insns that need a delay slot and find insns to
1976 put into the delay slot.
1978 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
1979 as calls). We do these first since we don't want jump insns (that are
1980 easier to fill) to get the only insns that could be used for non-jump insns.
1981 When it is zero, only try to fill JUMP_INSNs.
1983 When slots are filled in this manner, the insns (including the
1984 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
1985 it is possible to tell whether a delay slot has really been filled
1986 or not. `final' knows how to deal with this, by communicating
1987 through FINAL_SEQUENCE. */
1989 static void
1990 fill_simple_delay_slots (int non_jumps_p)
1992 rtx insn, pat, trial, next_trial;
1993 int i;
1994 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
1995 struct resources needed, set;
1996 int slots_to_fill, slots_filled;
1997 rtx delay_list;
1999 for (i = 0; i < num_unfilled_slots; i++)
2001 int flags;
2002 /* Get the next insn to fill. If it has already had any slots assigned,
2003 we can't do anything with it. Maybe we'll improve this later. */
2005 insn = unfilled_slots_base[i];
2006 if (insn == 0
2007 || INSN_DELETED_P (insn)
2008 || (NONJUMP_INSN_P (insn)
2009 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2010 || (JUMP_P (insn) && non_jumps_p)
2011 || (!JUMP_P (insn) && ! non_jumps_p))
2012 continue;
2014 /* It may have been that this insn used to need delay slots, but
2015 now doesn't; ignore in that case. This can happen, for example,
2016 on the HP PA RISC, where the number of delay slots depends on
2017 what insns are nearby. */
2018 slots_to_fill = num_delay_slots (insn);
2020 /* Some machine description have defined instructions to have
2021 delay slots only in certain circumstances which may depend on
2022 nearby insns (which change due to reorg's actions).
2024 For example, the PA port normally has delay slots for unconditional
2025 jumps.
2027 However, the PA port claims such jumps do not have a delay slot
2028 if they are immediate successors of certain CALL_INSNs. This
2029 allows the port to favor filling the delay slot of the call with
2030 the unconditional jump. */
2031 if (slots_to_fill == 0)
2032 continue;
2034 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2035 says how many. After initialization, first try optimizing
2037 call _foo call _foo
2038 nop add %o7,.-L1,%o7
2039 b,a L1
2042 If this case applies, the delay slot of the call is filled with
2043 the unconditional jump. This is done first to avoid having the
2044 delay slot of the call filled in the backward scan. Also, since
2045 the unconditional jump is likely to also have a delay slot, that
2046 insn must exist when it is subsequently scanned.
2048 This is tried on each insn with delay slots as some machines
2049 have insns which perform calls, but are not represented as
2050 CALL_INSNs. */
2052 slots_filled = 0;
2053 delay_list = 0;
2055 if (JUMP_P (insn))
2056 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2057 else
2058 flags = get_jump_flags (insn, NULL_RTX);
2060 if ((trial = next_active_insn (insn))
2061 && JUMP_P (trial)
2062 && simplejump_p (trial)
2063 && eligible_for_delay (insn, slots_filled, trial, flags)
2064 && no_labels_between_p (insn, trial)
2065 && ! can_throw_internal (trial))
2067 rtx *tmp;
2068 slots_filled++;
2069 delay_list = add_to_delay_list (trial, delay_list);
2071 /* TRIAL may have had its delay slot filled, then unfilled. When
2072 the delay slot is unfilled, TRIAL is placed back on the unfilled
2073 slots obstack. Unfortunately, it is placed on the end of the
2074 obstack, not in its original location. Therefore, we must search
2075 from entry i + 1 to the end of the unfilled slots obstack to
2076 try and find TRIAL. */
2077 tmp = &unfilled_slots_base[i + 1];
2078 while (*tmp != trial && tmp != unfilled_slots_next)
2079 tmp++;
2081 /* Remove the unconditional jump from consideration for delay slot
2082 filling and unthread it. */
2083 if (*tmp == trial)
2084 *tmp = 0;
2086 rtx next = NEXT_INSN (trial);
2087 rtx prev = PREV_INSN (trial);
2088 if (prev)
2089 NEXT_INSN (prev) = next;
2090 if (next)
2091 PREV_INSN (next) = prev;
2095 /* Now, scan backwards from the insn to search for a potential
2096 delay-slot candidate. Stop searching when a label or jump is hit.
2098 For each candidate, if it is to go into the delay slot (moved
2099 forward in execution sequence), it must not need or set any resources
2100 that were set by later insns and must not set any resources that
2101 are needed for those insns.
2103 The delay slot insn itself sets resources unless it is a call
2104 (in which case the called routine, not the insn itself, is doing
2105 the setting). */
2107 if (slots_filled < slots_to_fill)
2109 CLEAR_RESOURCE (&needed);
2110 CLEAR_RESOURCE (&set);
2111 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2112 mark_referenced_resources (insn, &needed, 0);
2114 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2115 trial = next_trial)
2117 next_trial = prev_nonnote_insn (trial);
2119 /* This must be an INSN or CALL_INSN. */
2120 pat = PATTERN (trial);
2122 /* USE and CLOBBER at this level was just for flow; ignore it. */
2123 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2124 continue;
2126 /* Check for resource conflict first, to avoid unnecessary
2127 splitting. */
2128 if (! insn_references_resource_p (trial, &set, 1)
2129 && ! insn_sets_resource_p (trial, &set, 1)
2130 && ! insn_sets_resource_p (trial, &needed, 1)
2131 #ifdef HAVE_cc0
2132 /* Can't separate set of cc0 from its use. */
2133 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2134 #endif
2135 && ! can_throw_internal (trial))
2137 trial = try_split (pat, trial, 1);
2138 next_trial = prev_nonnote_insn (trial);
2139 if (eligible_for_delay (insn, slots_filled, trial, flags))
2141 /* In this case, we are searching backward, so if we
2142 find insns to put on the delay list, we want
2143 to put them at the head, rather than the
2144 tail, of the list. */
2146 update_reg_dead_notes (trial, insn);
2147 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2148 trial, delay_list);
2149 update_block (trial, trial);
2150 delete_related_insns (trial);
2151 if (slots_to_fill == ++slots_filled)
2152 break;
2153 continue;
2157 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2158 mark_referenced_resources (trial, &needed, 1);
2162 /* If all needed slots haven't been filled, we come here. */
2164 /* Try to optimize case of jumping around a single insn. */
2165 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2166 if (slots_filled != slots_to_fill
2167 && delay_list == 0
2168 && JUMP_P (insn)
2169 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2171 delay_list = optimize_skip (insn);
2172 if (delay_list)
2173 slots_filled += 1;
2175 #endif
2177 /* Try to get insns from beyond the insn needing the delay slot.
2178 These insns can neither set or reference resources set in insns being
2179 skipped, cannot set resources in the insn being skipped, and, if this
2180 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2181 call might not return).
2183 There used to be code which continued past the target label if
2184 we saw all uses of the target label. This code did not work,
2185 because it failed to account for some instructions which were
2186 both annulled and marked as from the target. This can happen as a
2187 result of optimize_skip. Since this code was redundant with
2188 fill_eager_delay_slots anyways, it was just deleted. */
2190 if (slots_filled != slots_to_fill
2191 /* If this instruction could throw an exception which is
2192 caught in the same function, then it's not safe to fill
2193 the delay slot with an instruction from beyond this
2194 point. For example, consider:
2196 int i = 2;
2198 try {
2199 f();
2200 i = 3;
2201 } catch (...) {}
2203 return i;
2205 Even though `i' is a local variable, we must be sure not
2206 to put `i = 3' in the delay slot if `f' might throw an
2207 exception.
2209 Presumably, we should also check to see if we could get
2210 back to this function via `setjmp'. */
2211 && ! can_throw_internal (insn)
2212 && (!JUMP_P (insn)
2213 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2214 && ! simplejump_p (insn)
2215 && JUMP_LABEL (insn) != 0)))
2217 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2218 label. Otherwise, zero. */
2219 rtx target = 0;
2220 int maybe_never = 0;
2221 rtx pat, trial_delay;
2223 CLEAR_RESOURCE (&needed);
2224 CLEAR_RESOURCE (&set);
2226 if (CALL_P (insn))
2228 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2229 mark_referenced_resources (insn, &needed, 1);
2230 maybe_never = 1;
2232 else
2234 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2235 mark_referenced_resources (insn, &needed, 1);
2236 if (JUMP_P (insn))
2237 target = JUMP_LABEL (insn);
2240 if (target == 0)
2241 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2243 next_trial = next_nonnote_insn (trial);
2245 if (LABEL_P (trial)
2246 || BARRIER_P (trial))
2247 break;
2249 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2250 pat = PATTERN (trial);
2252 /* Stand-alone USE and CLOBBER are just for flow. */
2253 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2254 continue;
2256 /* If this already has filled delay slots, get the insn needing
2257 the delay slots. */
2258 if (GET_CODE (pat) == SEQUENCE)
2259 trial_delay = XVECEXP (pat, 0, 0);
2260 else
2261 trial_delay = trial;
2263 /* Stop our search when seeing an unconditional jump. */
2264 if (JUMP_P (trial_delay))
2265 break;
2267 /* See if we have a resource problem before we try to
2268 split. */
2269 if (GET_CODE (pat) != SEQUENCE
2270 && ! insn_references_resource_p (trial, &set, 1)
2271 && ! insn_sets_resource_p (trial, &set, 1)
2272 && ! insn_sets_resource_p (trial, &needed, 1)
2273 #ifdef HAVE_cc0
2274 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2275 #endif
2276 && ! (maybe_never && may_trap_or_fault_p (pat))
2277 && (trial = try_split (pat, trial, 0))
2278 && eligible_for_delay (insn, slots_filled, trial, flags)
2279 && ! can_throw_internal(trial))
2281 next_trial = next_nonnote_insn (trial);
2282 delay_list = add_to_delay_list (trial, delay_list);
2284 #ifdef HAVE_cc0
2285 if (reg_mentioned_p (cc0_rtx, pat))
2286 link_cc0_insns (trial);
2287 #endif
2289 delete_related_insns (trial);
2290 if (slots_to_fill == ++slots_filled)
2291 break;
2292 continue;
2295 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2296 mark_referenced_resources (trial, &needed, 1);
2298 /* Ensure we don't put insns between the setting of cc and the
2299 comparison by moving a setting of cc into an earlier delay
2300 slot since these insns could clobber the condition code. */
2301 set.cc = 1;
2303 /* If this is a call or jump, we might not get here. */
2304 if (CALL_P (trial_delay)
2305 || JUMP_P (trial_delay))
2306 maybe_never = 1;
2309 /* If there are slots left to fill and our search was stopped by an
2310 unconditional branch, try the insn at the branch target. We can
2311 redirect the branch if it works.
2313 Don't do this if the insn at the branch target is a branch. */
2314 if (slots_to_fill != slots_filled
2315 && trial
2316 && JUMP_P (trial)
2317 && simplejump_p (trial)
2318 && (target == 0 || JUMP_LABEL (trial) == target)
2319 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2320 && ! (NONJUMP_INSN_P (next_trial)
2321 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2322 && !JUMP_P (next_trial)
2323 && ! insn_references_resource_p (next_trial, &set, 1)
2324 && ! insn_sets_resource_p (next_trial, &set, 1)
2325 && ! insn_sets_resource_p (next_trial, &needed, 1)
2326 #ifdef HAVE_cc0
2327 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2328 #endif
2329 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2330 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2331 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2332 && ! can_throw_internal (trial))
2334 /* See comment in relax_delay_slots about necessity of using
2335 next_real_insn here. */
2336 rtx new_label = next_real_insn (next_trial);
2338 if (new_label != 0)
2339 new_label = get_label_before (new_label);
2340 else
2341 new_label = find_end_label ();
2343 if (new_label)
2345 delay_list
2346 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2347 slots_filled++;
2348 reorg_redirect_jump (trial, new_label);
2350 /* If we merged because we both jumped to the same place,
2351 redirect the original insn also. */
2352 if (target)
2353 reorg_redirect_jump (insn, new_label);
2358 /* If this is an unconditional jump, then try to get insns from the
2359 target of the jump. */
2360 if (JUMP_P (insn)
2361 && simplejump_p (insn)
2362 && slots_filled != slots_to_fill)
2363 delay_list
2364 = fill_slots_from_thread (insn, const_true_rtx,
2365 next_active_insn (JUMP_LABEL (insn)),
2366 NULL, 1, 1,
2367 own_thread_p (JUMP_LABEL (insn),
2368 JUMP_LABEL (insn), 0),
2369 slots_to_fill, &slots_filled,
2370 delay_list);
2372 if (delay_list)
2373 unfilled_slots_base[i]
2374 = emit_delay_sequence (insn, delay_list, slots_filled);
2376 if (slots_to_fill == slots_filled)
2377 unfilled_slots_base[i] = 0;
2379 note_delay_statistics (slots_filled, 0);
2382 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2383 /* See if the epilogue needs any delay slots. Try to fill them if so.
2384 The only thing we can do is scan backwards from the end of the
2385 function. If we did this in a previous pass, it is incorrect to do it
2386 again. */
2387 if (current_function_epilogue_delay_list)
2388 return;
2390 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2391 if (slots_to_fill == 0)
2392 return;
2394 slots_filled = 0;
2395 CLEAR_RESOURCE (&set);
2397 /* The frame pointer and stack pointer are needed at the beginning of
2398 the epilogue, so instructions setting them can not be put in the
2399 epilogue delay slot. However, everything else needed at function
2400 end is safe, so we don't want to use end_of_function_needs here. */
2401 CLEAR_RESOURCE (&needed);
2402 if (frame_pointer_needed)
2404 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2405 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2406 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2407 #endif
2408 if (! EXIT_IGNORE_STACK
2409 || current_function_sp_is_unchanging)
2410 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2412 else
2413 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2415 #ifdef EPILOGUE_USES
2416 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2418 if (EPILOGUE_USES (i))
2419 SET_HARD_REG_BIT (needed.regs, i);
2421 #endif
2423 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2424 trial = PREV_INSN (trial))
2426 if (NOTE_P (trial))
2427 continue;
2428 pat = PATTERN (trial);
2429 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2430 continue;
2432 if (! insn_references_resource_p (trial, &set, 1)
2433 && ! insn_sets_resource_p (trial, &needed, 1)
2434 && ! insn_sets_resource_p (trial, &set, 1)
2435 #ifdef HAVE_cc0
2436 /* Don't want to mess with cc0 here. */
2437 && ! reg_mentioned_p (cc0_rtx, pat)
2438 #endif
2439 && ! can_throw_internal (trial))
2441 trial = try_split (pat, trial, 1);
2442 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2444 /* Here as well we are searching backward, so put the
2445 insns we find on the head of the list. */
2447 current_function_epilogue_delay_list
2448 = gen_rtx_INSN_LIST (VOIDmode, trial,
2449 current_function_epilogue_delay_list);
2450 mark_end_of_function_resources (trial, 1);
2451 update_block (trial, trial);
2452 delete_related_insns (trial);
2454 /* Clear deleted bit so final.c will output the insn. */
2455 INSN_DELETED_P (trial) = 0;
2457 if (slots_to_fill == ++slots_filled)
2458 break;
2459 continue;
2463 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2464 mark_referenced_resources (trial, &needed, 1);
2467 note_delay_statistics (slots_filled, 0);
2468 #endif
2471 /* Try to find insns to place in delay slots.
2473 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2474 or is an unconditional branch if CONDITION is const_true_rtx.
2475 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2477 THREAD is a flow-of-control, either the insns to be executed if the
2478 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2480 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2481 to see if any potential delay slot insns set things needed there.
2483 LIKELY is nonzero if it is extremely likely that the branch will be
2484 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2485 end of a loop back up to the top.
2487 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2488 thread. I.e., it is the fallthrough code of our jump or the target of the
2489 jump when we are the only jump going there.
2491 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2492 case, we can only take insns from the head of the thread for our delay
2493 slot. We then adjust the jump to point after the insns we have taken. */
2495 static rtx
2496 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2497 rtx opposite_thread, int likely, int thread_if_true,
2498 int own_thread, int slots_to_fill,
2499 int *pslots_filled, rtx delay_list)
2501 rtx new_thread;
2502 struct resources opposite_needed, set, needed;
2503 rtx trial;
2504 int lose = 0;
2505 int must_annul = 0;
2506 int flags;
2508 /* Validate our arguments. */
2509 gcc_assert(condition != const_true_rtx || thread_if_true);
2510 gcc_assert(own_thread || thread_if_true);
2512 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2514 /* If our thread is the end of subroutine, we can't get any delay
2515 insns from that. */
2516 if (thread == 0)
2517 return delay_list;
2519 /* If this is an unconditional branch, nothing is needed at the
2520 opposite thread. Otherwise, compute what is needed there. */
2521 if (condition == const_true_rtx)
2522 CLEAR_RESOURCE (&opposite_needed);
2523 else
2524 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2526 /* If the insn at THREAD can be split, do it here to avoid having to
2527 update THREAD and NEW_THREAD if it is done in the loop below. Also
2528 initialize NEW_THREAD. */
2530 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2532 /* Scan insns at THREAD. We are looking for an insn that can be removed
2533 from THREAD (it neither sets nor references resources that were set
2534 ahead of it and it doesn't set anything needs by the insns ahead of
2535 it) and that either can be placed in an annulling insn or aren't
2536 needed at OPPOSITE_THREAD. */
2538 CLEAR_RESOURCE (&needed);
2539 CLEAR_RESOURCE (&set);
2541 /* If we do not own this thread, we must stop as soon as we find
2542 something that we can't put in a delay slot, since all we can do
2543 is branch into THREAD at a later point. Therefore, labels stop
2544 the search if this is not the `true' thread. */
2546 for (trial = thread;
2547 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2548 trial = next_nonnote_insn (trial))
2550 rtx pat, old_trial;
2552 /* If we have passed a label, we no longer own this thread. */
2553 if (LABEL_P (trial))
2555 own_thread = 0;
2556 continue;
2559 pat = PATTERN (trial);
2560 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2561 continue;
2563 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2564 don't separate or copy insns that set and use CC0. */
2565 if (! insn_references_resource_p (trial, &set, 1)
2566 && ! insn_sets_resource_p (trial, &set, 1)
2567 && ! insn_sets_resource_p (trial, &needed, 1)
2568 #ifdef HAVE_cc0
2569 && ! (reg_mentioned_p (cc0_rtx, pat)
2570 && (! own_thread || ! sets_cc0_p (pat)))
2571 #endif
2572 && ! can_throw_internal (trial))
2574 rtx prior_insn;
2576 /* If TRIAL is redundant with some insn before INSN, we don't
2577 actually need to add it to the delay list; we can merely pretend
2578 we did. */
2579 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2581 fix_reg_dead_note (prior_insn, insn);
2582 if (own_thread)
2584 update_block (trial, thread);
2585 if (trial == thread)
2587 thread = next_active_insn (thread);
2588 if (new_thread == trial)
2589 new_thread = thread;
2592 delete_related_insns (trial);
2594 else
2596 update_reg_unused_notes (prior_insn, trial);
2597 new_thread = next_active_insn (trial);
2600 continue;
2603 /* There are two ways we can win: If TRIAL doesn't set anything
2604 needed at the opposite thread and can't trap, or if it can
2605 go into an annulled delay slot. */
2606 if (!must_annul
2607 && (condition == const_true_rtx
2608 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2609 && ! may_trap_or_fault_p (pat))))
2611 old_trial = trial;
2612 trial = try_split (pat, trial, 0);
2613 if (new_thread == old_trial)
2614 new_thread = trial;
2615 if (thread == old_trial)
2616 thread = trial;
2617 pat = PATTERN (trial);
2618 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2619 goto winner;
2621 else if (0
2622 #ifdef ANNUL_IFTRUE_SLOTS
2623 || ! thread_if_true
2624 #endif
2625 #ifdef ANNUL_IFFALSE_SLOTS
2626 || thread_if_true
2627 #endif
2630 old_trial = trial;
2631 trial = try_split (pat, trial, 0);
2632 if (new_thread == old_trial)
2633 new_thread = trial;
2634 if (thread == old_trial)
2635 thread = trial;
2636 pat = PATTERN (trial);
2637 if ((must_annul || delay_list == NULL) && (thread_if_true
2638 ? check_annul_list_true_false (0, delay_list)
2639 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2640 : check_annul_list_true_false (1, delay_list)
2641 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2643 rtx temp;
2645 must_annul = 1;
2646 winner:
2648 #ifdef HAVE_cc0
2649 if (reg_mentioned_p (cc0_rtx, pat))
2650 link_cc0_insns (trial);
2651 #endif
2653 /* If we own this thread, delete the insn. If this is the
2654 destination of a branch, show that a basic block status
2655 may have been updated. In any case, mark the new
2656 starting point of this thread. */
2657 if (own_thread)
2659 rtx note;
2661 update_block (trial, thread);
2662 if (trial == thread)
2664 thread = next_active_insn (thread);
2665 if (new_thread == trial)
2666 new_thread = thread;
2669 /* We are moving this insn, not deleting it. We must
2670 temporarily increment the use count on any referenced
2671 label lest it be deleted by delete_related_insns. */
2672 note = find_reg_note (trial, REG_LABEL, 0);
2673 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2674 if (note && LABEL_P (XEXP (note, 0)))
2675 LABEL_NUSES (XEXP (note, 0))++;
2677 delete_related_insns (trial);
2679 if (note && LABEL_P (XEXP (note, 0)))
2680 LABEL_NUSES (XEXP (note, 0))--;
2682 else
2683 new_thread = next_active_insn (trial);
2685 temp = own_thread ? trial : copy_rtx (trial);
2686 if (thread_if_true)
2687 INSN_FROM_TARGET_P (temp) = 1;
2689 delay_list = add_to_delay_list (temp, delay_list);
2691 if (slots_to_fill == ++(*pslots_filled))
2693 /* Even though we have filled all the slots, we
2694 may be branching to a location that has a
2695 redundant insn. Skip any if so. */
2696 while (new_thread && ! own_thread
2697 && ! insn_sets_resource_p (new_thread, &set, 1)
2698 && ! insn_sets_resource_p (new_thread, &needed, 1)
2699 && ! insn_references_resource_p (new_thread,
2700 &set, 1)
2701 && (prior_insn
2702 = redundant_insn (new_thread, insn,
2703 delay_list)))
2705 /* We know we do not own the thread, so no need
2706 to call update_block and delete_insn. */
2707 fix_reg_dead_note (prior_insn, insn);
2708 update_reg_unused_notes (prior_insn, new_thread);
2709 new_thread = next_active_insn (new_thread);
2711 break;
2714 continue;
2719 /* This insn can't go into a delay slot. */
2720 lose = 1;
2721 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2722 mark_referenced_resources (trial, &needed, 1);
2724 /* Ensure we don't put insns between the setting of cc and the comparison
2725 by moving a setting of cc into an earlier delay slot since these insns
2726 could clobber the condition code. */
2727 set.cc = 1;
2729 /* If this insn is a register-register copy and the next insn has
2730 a use of our destination, change it to use our source. That way,
2731 it will become a candidate for our delay slot the next time
2732 through this loop. This case occurs commonly in loops that
2733 scan a list.
2735 We could check for more complex cases than those tested below,
2736 but it doesn't seem worth it. It might also be a good idea to try
2737 to swap the two insns. That might do better.
2739 We can't do this if the next insn modifies our destination, because
2740 that would make the replacement into the insn invalid. We also can't
2741 do this if it modifies our source, because it might be an earlyclobber
2742 operand. This latter test also prevents updating the contents of
2743 a PRE_INC. We also can't do this if there's overlap of source and
2744 destination. Overlap may happen for larger-than-register-size modes. */
2746 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2747 && REG_P (SET_SRC (pat))
2748 && REG_P (SET_DEST (pat))
2749 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2751 rtx next = next_nonnote_insn (trial);
2753 if (next && NONJUMP_INSN_P (next)
2754 && GET_CODE (PATTERN (next)) != USE
2755 && ! reg_set_p (SET_DEST (pat), next)
2756 && ! reg_set_p (SET_SRC (pat), next)
2757 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2758 && ! modified_in_p (SET_DEST (pat), next))
2759 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2763 /* If we stopped on a branch insn that has delay slots, see if we can
2764 steal some of the insns in those slots. */
2765 if (trial && NONJUMP_INSN_P (trial)
2766 && GET_CODE (PATTERN (trial)) == SEQUENCE
2767 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2769 /* If this is the `true' thread, we will want to follow the jump,
2770 so we can only do this if we have taken everything up to here. */
2771 if (thread_if_true && trial == new_thread)
2773 delay_list
2774 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2775 delay_list, &set, &needed,
2776 &opposite_needed, slots_to_fill,
2777 pslots_filled, &must_annul,
2778 &new_thread);
2779 /* If we owned the thread and are told that it branched
2780 elsewhere, make sure we own the thread at the new location. */
2781 if (own_thread && trial != new_thread)
2782 own_thread = own_thread_p (new_thread, new_thread, 0);
2784 else if (! thread_if_true)
2785 delay_list
2786 = steal_delay_list_from_fallthrough (insn, condition,
2787 PATTERN (trial),
2788 delay_list, &set, &needed,
2789 &opposite_needed, slots_to_fill,
2790 pslots_filled, &must_annul);
2793 /* If we haven't found anything for this delay slot and it is very
2794 likely that the branch will be taken, see if the insn at our target
2795 increments or decrements a register with an increment that does not
2796 depend on the destination register. If so, try to place the opposite
2797 arithmetic insn after the jump insn and put the arithmetic insn in the
2798 delay slot. If we can't do this, return. */
2799 if (delay_list == 0 && likely && new_thread
2800 && NONJUMP_INSN_P (new_thread)
2801 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2802 && asm_noperands (PATTERN (new_thread)) < 0)
2804 rtx pat = PATTERN (new_thread);
2805 rtx dest;
2806 rtx src;
2808 trial = new_thread;
2809 pat = PATTERN (trial);
2811 if (!NONJUMP_INSN_P (trial)
2812 || GET_CODE (pat) != SET
2813 || ! eligible_for_delay (insn, 0, trial, flags)
2814 || can_throw_internal (trial))
2815 return 0;
2817 dest = SET_DEST (pat), src = SET_SRC (pat);
2818 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2819 && rtx_equal_p (XEXP (src, 0), dest)
2820 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2821 && ! side_effects_p (pat))
2823 rtx other = XEXP (src, 1);
2824 rtx new_arith;
2825 rtx ninsn;
2827 /* If this is a constant adjustment, use the same code with
2828 the negated constant. Otherwise, reverse the sense of the
2829 arithmetic. */
2830 if (GET_CODE (other) == CONST_INT)
2831 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2832 negate_rtx (GET_MODE (src), other));
2833 else
2834 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2835 GET_MODE (src), dest, other);
2837 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2838 insn);
2840 if (recog_memoized (ninsn) < 0
2841 || (extract_insn (ninsn), ! constrain_operands (1)))
2843 delete_related_insns (ninsn);
2844 return 0;
2847 if (own_thread)
2849 update_block (trial, thread);
2850 if (trial == thread)
2852 thread = next_active_insn (thread);
2853 if (new_thread == trial)
2854 new_thread = thread;
2856 delete_related_insns (trial);
2858 else
2859 new_thread = next_active_insn (trial);
2861 ninsn = own_thread ? trial : copy_rtx (trial);
2862 if (thread_if_true)
2863 INSN_FROM_TARGET_P (ninsn) = 1;
2865 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2866 (*pslots_filled)++;
2870 if (delay_list && must_annul)
2871 INSN_ANNULLED_BRANCH_P (insn) = 1;
2873 /* If we are to branch into the middle of this thread, find an appropriate
2874 label or make a new one if none, and redirect INSN to it. If we hit the
2875 end of the function, use the end-of-function label. */
2876 if (new_thread != thread)
2878 rtx label;
2880 gcc_assert (thread_if_true);
2882 if (new_thread && JUMP_P (new_thread)
2883 && (simplejump_p (new_thread)
2884 || GET_CODE (PATTERN (new_thread)) == RETURN)
2885 && redirect_with_delay_list_safe_p (insn,
2886 JUMP_LABEL (new_thread),
2887 delay_list))
2888 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2890 if (new_thread == 0)
2891 label = find_end_label ();
2892 else if (LABEL_P (new_thread))
2893 label = new_thread;
2894 else
2895 label = get_label_before (new_thread);
2897 if (label)
2898 reorg_redirect_jump (insn, label);
2901 return delay_list;
2904 /* Make another attempt to find insns to place in delay slots.
2906 We previously looked for insns located in front of the delay insn
2907 and, for non-jump delay insns, located behind the delay insn.
2909 Here only try to schedule jump insns and try to move insns from either
2910 the target or the following insns into the delay slot. If annulling is
2911 supported, we will be likely to do this. Otherwise, we can do this only
2912 if safe. */
2914 static void
2915 fill_eager_delay_slots (void)
2917 rtx insn;
2918 int i;
2919 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2921 for (i = 0; i < num_unfilled_slots; i++)
2923 rtx condition;
2924 rtx target_label, insn_at_target, fallthrough_insn;
2925 rtx delay_list = 0;
2926 int own_target;
2927 int own_fallthrough;
2928 int prediction, slots_to_fill, slots_filled;
2930 insn = unfilled_slots_base[i];
2931 if (insn == 0
2932 || INSN_DELETED_P (insn)
2933 || !JUMP_P (insn)
2934 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
2935 continue;
2937 slots_to_fill = num_delay_slots (insn);
2938 /* Some machine description have defined instructions to have
2939 delay slots only in certain circumstances which may depend on
2940 nearby insns (which change due to reorg's actions).
2942 For example, the PA port normally has delay slots for unconditional
2943 jumps.
2945 However, the PA port claims such jumps do not have a delay slot
2946 if they are immediate successors of certain CALL_INSNs. This
2947 allows the port to favor filling the delay slot of the call with
2948 the unconditional jump. */
2949 if (slots_to_fill == 0)
2950 continue;
2952 slots_filled = 0;
2953 target_label = JUMP_LABEL (insn);
2954 condition = get_branch_condition (insn, target_label);
2956 if (condition == 0)
2957 continue;
2959 /* Get the next active fallthrough and target insns and see if we own
2960 them. Then see whether the branch is likely true. We don't need
2961 to do a lot of this for unconditional branches. */
2963 insn_at_target = next_active_insn (target_label);
2964 own_target = own_thread_p (target_label, target_label, 0);
2966 if (condition == const_true_rtx)
2968 own_fallthrough = 0;
2969 fallthrough_insn = 0;
2970 prediction = 2;
2972 else
2974 fallthrough_insn = next_active_insn (insn);
2975 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
2976 prediction = mostly_true_jump (insn, condition);
2979 /* If this insn is expected to branch, first try to get insns from our
2980 target, then our fallthrough insns. If it is not expected to branch,
2981 try the other order. */
2983 if (prediction > 0)
2985 delay_list
2986 = fill_slots_from_thread (insn, condition, insn_at_target,
2987 fallthrough_insn, prediction == 2, 1,
2988 own_target,
2989 slots_to_fill, &slots_filled, delay_list);
2991 if (delay_list == 0 && own_fallthrough)
2993 /* Even though we didn't find anything for delay slots,
2994 we might have found a redundant insn which we deleted
2995 from the thread that was filled. So we have to recompute
2996 the next insn at the target. */
2997 target_label = JUMP_LABEL (insn);
2998 insn_at_target = next_active_insn (target_label);
3000 delay_list
3001 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3002 insn_at_target, 0, 0,
3003 own_fallthrough,
3004 slots_to_fill, &slots_filled,
3005 delay_list);
3008 else
3010 if (own_fallthrough)
3011 delay_list
3012 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3013 insn_at_target, 0, 0,
3014 own_fallthrough,
3015 slots_to_fill, &slots_filled,
3016 delay_list);
3018 if (delay_list == 0)
3019 delay_list
3020 = fill_slots_from_thread (insn, condition, insn_at_target,
3021 next_active_insn (insn), 0, 1,
3022 own_target,
3023 slots_to_fill, &slots_filled,
3024 delay_list);
3027 if (delay_list)
3028 unfilled_slots_base[i]
3029 = emit_delay_sequence (insn, delay_list, slots_filled);
3031 if (slots_to_fill == slots_filled)
3032 unfilled_slots_base[i] = 0;
3034 note_delay_statistics (slots_filled, 1);
3038 /* Once we have tried two ways to fill a delay slot, make a pass over the
3039 code to try to improve the results and to do such things as more jump
3040 threading. */
3042 static void
3043 relax_delay_slots (rtx first)
3045 rtx insn, next, pat;
3046 rtx trial, delay_insn, target_label;
3048 /* Look at every JUMP_INSN and see if we can improve it. */
3049 for (insn = first; insn; insn = next)
3051 rtx other;
3053 next = next_active_insn (insn);
3055 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3056 the next insn, or jumps to a label that is not the last of a
3057 group of consecutive labels. */
3058 if (JUMP_P (insn)
3059 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3060 && (target_label = JUMP_LABEL (insn)) != 0)
3062 target_label = skip_consecutive_labels (follow_jumps (target_label));
3063 if (target_label == 0)
3064 target_label = find_end_label ();
3066 if (target_label && next_active_insn (target_label) == next
3067 && ! condjump_in_parallel_p (insn))
3069 delete_jump (insn);
3070 continue;
3073 if (target_label && target_label != JUMP_LABEL (insn))
3074 reorg_redirect_jump (insn, target_label);
3076 /* See if this jump conditionally branches around an unconditional
3077 jump. If so, invert this jump and point it to the target of the
3078 second jump. */
3079 if (next && JUMP_P (next)
3080 && any_condjump_p (insn)
3081 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3082 && target_label
3083 && next_active_insn (target_label) == next_active_insn (next)
3084 && no_labels_between_p (insn, next))
3086 rtx label = JUMP_LABEL (next);
3088 /* Be careful how we do this to avoid deleting code or
3089 labels that are momentarily dead. See similar optimization
3090 in jump.c.
3092 We also need to ensure we properly handle the case when
3093 invert_jump fails. */
3095 ++LABEL_NUSES (target_label);
3096 if (label)
3097 ++LABEL_NUSES (label);
3099 if (invert_jump (insn, label, 1))
3101 delete_related_insns (next);
3102 next = insn;
3105 if (label)
3106 --LABEL_NUSES (label);
3108 if (--LABEL_NUSES (target_label) == 0)
3109 delete_related_insns (target_label);
3111 continue;
3115 /* If this is an unconditional jump and the previous insn is a
3116 conditional jump, try reversing the condition of the previous
3117 insn and swapping our targets. The next pass might be able to
3118 fill the slots.
3120 Don't do this if we expect the conditional branch to be true, because
3121 we would then be making the more common case longer. */
3123 if (JUMP_P (insn)
3124 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3125 && (other = prev_active_insn (insn)) != 0
3126 && any_condjump_p (other)
3127 && no_labels_between_p (other, insn)
3128 && 0 > mostly_true_jump (other,
3129 get_branch_condition (other,
3130 JUMP_LABEL (other))))
3132 rtx other_target = JUMP_LABEL (other);
3133 target_label = JUMP_LABEL (insn);
3135 if (invert_jump (other, target_label, 0))
3136 reorg_redirect_jump (insn, other_target);
3139 /* Now look only at cases where we have filled a delay slot. */
3140 if (!NONJUMP_INSN_P (insn)
3141 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3142 continue;
3144 pat = PATTERN (insn);
3145 delay_insn = XVECEXP (pat, 0, 0);
3147 /* See if the first insn in the delay slot is redundant with some
3148 previous insn. Remove it from the delay slot if so; then set up
3149 to reprocess this insn. */
3150 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3152 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3153 next = prev_active_insn (next);
3154 continue;
3157 /* See if we have a RETURN insn with a filled delay slot followed
3158 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3159 the first RETURN (but not its delay insn). This gives the same
3160 effect in fewer instructions.
3162 Only do so if optimizing for size since this results in slower, but
3163 smaller code. */
3164 if (optimize_size
3165 && GET_CODE (PATTERN (delay_insn)) == RETURN
3166 && next
3167 && JUMP_P (next)
3168 && GET_CODE (PATTERN (next)) == RETURN)
3170 rtx after;
3171 int i;
3173 /* Delete the RETURN and just execute the delay list insns.
3175 We do this by deleting the INSN containing the SEQUENCE, then
3176 re-emitting the insns separately, and then deleting the RETURN.
3177 This allows the count of the jump target to be properly
3178 decremented. */
3180 /* Clear the from target bit, since these insns are no longer
3181 in delay slots. */
3182 for (i = 0; i < XVECLEN (pat, 0); i++)
3183 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3185 trial = PREV_INSN (insn);
3186 delete_related_insns (insn);
3187 gcc_assert (GET_CODE (pat) == SEQUENCE);
3188 after = trial;
3189 for (i = 0; i < XVECLEN (pat, 0); i++)
3191 rtx this_insn = XVECEXP (pat, 0, i);
3192 add_insn_after (this_insn, after);
3193 after = this_insn;
3195 delete_scheduled_jump (delay_insn);
3196 continue;
3199 /* Now look only at the cases where we have a filled JUMP_INSN. */
3200 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3201 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3202 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3203 continue;
3205 target_label = JUMP_LABEL (delay_insn);
3207 if (target_label)
3209 /* If this jump goes to another unconditional jump, thread it, but
3210 don't convert a jump into a RETURN here. */
3211 trial = skip_consecutive_labels (follow_jumps (target_label));
3212 if (trial == 0)
3213 trial = find_end_label ();
3215 if (trial && trial != target_label
3216 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3218 reorg_redirect_jump (delay_insn, trial);
3219 target_label = trial;
3222 /* If the first insn at TARGET_LABEL is redundant with a previous
3223 insn, redirect the jump to the following insn process again. */
3224 trial = next_active_insn (target_label);
3225 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3226 && redundant_insn (trial, insn, 0)
3227 && ! can_throw_internal (trial))
3229 /* Figure out where to emit the special USE insn so we don't
3230 later incorrectly compute register live/death info. */
3231 rtx tmp = next_active_insn (trial);
3232 if (tmp == 0)
3233 tmp = find_end_label ();
3235 if (tmp)
3237 /* Insert the special USE insn and update dataflow info. */
3238 update_block (trial, tmp);
3240 /* Now emit a label before the special USE insn, and
3241 redirect our jump to the new label. */
3242 target_label = get_label_before (PREV_INSN (tmp));
3243 reorg_redirect_jump (delay_insn, target_label);
3244 next = insn;
3245 continue;
3249 /* Similarly, if it is an unconditional jump with one insn in its
3250 delay list and that insn is redundant, thread the jump. */
3251 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3252 && XVECLEN (PATTERN (trial), 0) == 2
3253 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3254 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3255 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3256 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3258 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3259 if (target_label == 0)
3260 target_label = find_end_label ();
3262 if (target_label
3263 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3264 insn))
3266 reorg_redirect_jump (delay_insn, target_label);
3267 next = insn;
3268 continue;
3273 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3274 && prev_active_insn (target_label) == insn
3275 && ! condjump_in_parallel_p (delay_insn)
3276 #ifdef HAVE_cc0
3277 /* If the last insn in the delay slot sets CC0 for some insn,
3278 various code assumes that it is in a delay slot. We could
3279 put it back where it belonged and delete the register notes,
3280 but it doesn't seem worthwhile in this uncommon case. */
3281 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3282 REG_CC_USER, NULL_RTX)
3283 #endif
3286 rtx after;
3287 int i;
3289 /* All this insn does is execute its delay list and jump to the
3290 following insn. So delete the jump and just execute the delay
3291 list insns.
3293 We do this by deleting the INSN containing the SEQUENCE, then
3294 re-emitting the insns separately, and then deleting the jump.
3295 This allows the count of the jump target to be properly
3296 decremented. */
3298 /* Clear the from target bit, since these insns are no longer
3299 in delay slots. */
3300 for (i = 0; i < XVECLEN (pat, 0); i++)
3301 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3303 trial = PREV_INSN (insn);
3304 delete_related_insns (insn);
3305 gcc_assert (GET_CODE (pat) == SEQUENCE);
3306 after = trial;
3307 for (i = 0; i < XVECLEN (pat, 0); i++)
3309 rtx this_insn = XVECEXP (pat, 0, i);
3310 add_insn_after (this_insn, after);
3311 after = this_insn;
3313 delete_scheduled_jump (delay_insn);
3314 continue;
3317 /* See if this is an unconditional jump around a single insn which is
3318 identical to the one in its delay slot. In this case, we can just
3319 delete the branch and the insn in its delay slot. */
3320 if (next && NONJUMP_INSN_P (next)
3321 && prev_label (next_active_insn (next)) == target_label
3322 && simplejump_p (insn)
3323 && XVECLEN (pat, 0) == 2
3324 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3326 delete_related_insns (insn);
3327 continue;
3330 /* See if this jump (with its delay slots) branches around another
3331 jump (without delay slots). If so, invert this jump and point
3332 it to the target of the second jump. We cannot do this for
3333 annulled jumps, though. Again, don't convert a jump to a RETURN
3334 here. */
3335 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3336 && any_condjump_p (delay_insn)
3337 && next && JUMP_P (next)
3338 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3339 && next_active_insn (target_label) == next_active_insn (next)
3340 && no_labels_between_p (insn, next))
3342 rtx label = JUMP_LABEL (next);
3343 rtx old_label = JUMP_LABEL (delay_insn);
3345 if (label == 0)
3346 label = find_end_label ();
3348 /* find_end_label can generate a new label. Check this first. */
3349 if (label
3350 && no_labels_between_p (insn, next)
3351 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3353 /* Be careful how we do this to avoid deleting code or labels
3354 that are momentarily dead. See similar optimization in
3355 jump.c */
3356 if (old_label)
3357 ++LABEL_NUSES (old_label);
3359 if (invert_jump (delay_insn, label, 1))
3361 int i;
3363 /* Must update the INSN_FROM_TARGET_P bits now that
3364 the branch is reversed, so that mark_target_live_regs
3365 will handle the delay slot insn correctly. */
3366 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3368 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3369 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3372 delete_related_insns (next);
3373 next = insn;
3376 if (old_label && --LABEL_NUSES (old_label) == 0)
3377 delete_related_insns (old_label);
3378 continue;
3382 /* If we own the thread opposite the way this insn branches, see if we
3383 can merge its delay slots with following insns. */
3384 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3385 && own_thread_p (NEXT_INSN (insn), 0, 1))
3386 try_merge_delay_insns (insn, next);
3387 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3388 && own_thread_p (target_label, target_label, 0))
3389 try_merge_delay_insns (insn, next_active_insn (target_label));
3391 /* If we get here, we haven't deleted INSN. But we may have deleted
3392 NEXT, so recompute it. */
3393 next = next_active_insn (insn);
3397 #ifdef HAVE_return
3399 /* Look for filled jumps to the end of function label. We can try to convert
3400 them into RETURN insns if the insns in the delay slot are valid for the
3401 RETURN as well. */
3403 static void
3404 make_return_insns (rtx first)
3406 rtx insn, jump_insn, pat;
3407 rtx real_return_label = end_of_function_label;
3408 int slots, i;
3410 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3411 /* If a previous pass filled delay slots in the epilogue, things get a
3412 bit more complicated, as those filler insns would generally (without
3413 data flow analysis) have to be executed after any existing branch
3414 delay slot filler insns. It is also unknown whether such a
3415 transformation would actually be profitable. Note that the existing
3416 code only cares for branches with (some) filled delay slots. */
3417 if (current_function_epilogue_delay_list != NULL)
3418 return;
3419 #endif
3421 /* See if there is a RETURN insn in the function other than the one we
3422 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3423 into a RETURN to jump to it. */
3424 for (insn = first; insn; insn = NEXT_INSN (insn))
3425 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3427 real_return_label = get_label_before (insn);
3428 break;
3431 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3432 was equal to END_OF_FUNCTION_LABEL. */
3433 LABEL_NUSES (real_return_label)++;
3435 /* Clear the list of insns to fill so we can use it. */
3436 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3438 for (insn = first; insn; insn = NEXT_INSN (insn))
3440 int flags;
3442 /* Only look at filled JUMP_INSNs that go to the end of function
3443 label. */
3444 if (!NONJUMP_INSN_P (insn)
3445 || GET_CODE (PATTERN (insn)) != SEQUENCE
3446 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3447 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3448 continue;
3450 pat = PATTERN (insn);
3451 jump_insn = XVECEXP (pat, 0, 0);
3453 /* If we can't make the jump into a RETURN, try to redirect it to the best
3454 RETURN and go on to the next insn. */
3455 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3457 /* Make sure redirecting the jump will not invalidate the delay
3458 slot insns. */
3459 if (redirect_with_delay_slots_safe_p (jump_insn,
3460 real_return_label,
3461 insn))
3462 reorg_redirect_jump (jump_insn, real_return_label);
3463 continue;
3466 /* See if this RETURN can accept the insns current in its delay slot.
3467 It can if it has more or an equal number of slots and the contents
3468 of each is valid. */
3470 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3471 slots = num_delay_slots (jump_insn);
3472 if (slots >= XVECLEN (pat, 0) - 1)
3474 for (i = 1; i < XVECLEN (pat, 0); i++)
3475 if (! (
3476 #ifdef ANNUL_IFFALSE_SLOTS
3477 (INSN_ANNULLED_BRANCH_P (jump_insn)
3478 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3479 ? eligible_for_annul_false (jump_insn, i - 1,
3480 XVECEXP (pat, 0, i), flags) :
3481 #endif
3482 #ifdef ANNUL_IFTRUE_SLOTS
3483 (INSN_ANNULLED_BRANCH_P (jump_insn)
3484 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3485 ? eligible_for_annul_true (jump_insn, i - 1,
3486 XVECEXP (pat, 0, i), flags) :
3487 #endif
3488 eligible_for_delay (jump_insn, i - 1,
3489 XVECEXP (pat, 0, i), flags)))
3490 break;
3492 else
3493 i = 0;
3495 if (i == XVECLEN (pat, 0))
3496 continue;
3498 /* We have to do something with this insn. If it is an unconditional
3499 RETURN, delete the SEQUENCE and output the individual insns,
3500 followed by the RETURN. Then set things up so we try to find
3501 insns for its delay slots, if it needs some. */
3502 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3504 rtx prev = PREV_INSN (insn);
3506 delete_related_insns (insn);
3507 for (i = 1; i < XVECLEN (pat, 0); i++)
3508 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3510 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3511 emit_barrier_after (insn);
3513 if (slots)
3514 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3516 else
3517 /* It is probably more efficient to keep this with its current
3518 delay slot as a branch to a RETURN. */
3519 reorg_redirect_jump (jump_insn, real_return_label);
3522 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3523 new delay slots we have created. */
3524 if (--LABEL_NUSES (real_return_label) == 0)
3525 delete_related_insns (real_return_label);
3527 fill_simple_delay_slots (1);
3528 fill_simple_delay_slots (0);
3530 #endif
3532 /* Try to find insns to place in delay slots. */
3534 void
3535 dbr_schedule (rtx first)
3537 rtx insn, next, epilogue_insn = 0;
3538 int i;
3540 /* If the current function has no insns other than the prologue and
3541 epilogue, then do not try to fill any delay slots. */
3542 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3543 return;
3545 /* Find the highest INSN_UID and allocate and initialize our map from
3546 INSN_UID's to position in code. */
3547 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3549 if (INSN_UID (insn) > max_uid)
3550 max_uid = INSN_UID (insn);
3551 if (NOTE_P (insn)
3552 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
3553 epilogue_insn = insn;
3556 uid_to_ruid = xmalloc ((max_uid + 1) * sizeof (int));
3557 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3558 uid_to_ruid[INSN_UID (insn)] = i;
3560 /* Initialize the list of insns that need filling. */
3561 if (unfilled_firstobj == 0)
3563 gcc_obstack_init (&unfilled_slots_obstack);
3564 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3567 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3569 rtx target;
3571 INSN_ANNULLED_BRANCH_P (insn) = 0;
3572 INSN_FROM_TARGET_P (insn) = 0;
3574 /* Skip vector tables. We can't get attributes for them. */
3575 if (JUMP_P (insn)
3576 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3577 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3578 continue;
3580 if (num_delay_slots (insn) > 0)
3581 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3583 /* Ensure all jumps go to the last of a set of consecutive labels. */
3584 if (JUMP_P (insn)
3585 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3586 && JUMP_LABEL (insn) != 0
3587 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3588 != JUMP_LABEL (insn)))
3589 redirect_jump (insn, target, 1);
3592 init_resource_info (epilogue_insn);
3594 /* Show we haven't computed an end-of-function label yet. */
3595 end_of_function_label = 0;
3597 /* Initialize the statistics for this function. */
3598 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3599 memset (num_filled_delays, 0, sizeof num_filled_delays);
3601 /* Now do the delay slot filling. Try everything twice in case earlier
3602 changes make more slots fillable. */
3604 for (reorg_pass_number = 0;
3605 reorg_pass_number < MAX_REORG_PASSES;
3606 reorg_pass_number++)
3608 fill_simple_delay_slots (1);
3609 fill_simple_delay_slots (0);
3610 fill_eager_delay_slots ();
3611 relax_delay_slots (first);
3614 /* Delete any USE insns made by update_block; subsequent passes don't need
3615 them or know how to deal with them. */
3616 for (insn = first; insn; insn = next)
3618 next = NEXT_INSN (insn);
3620 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3621 && INSN_P (XEXP (PATTERN (insn), 0)))
3622 next = delete_related_insns (insn);
3625 /* If we made an end of function label, indicate that it is now
3626 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3627 If it is now unused, delete it. */
3628 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3629 delete_related_insns (end_of_function_label);
3631 #ifdef HAVE_return
3632 if (HAVE_return && end_of_function_label != 0)
3633 make_return_insns (first);
3634 #endif
3636 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3638 /* It is not clear why the line below is needed, but it does seem to be. */
3639 unfilled_firstobj = obstack_alloc (&unfilled_slots_obstack, 0);
3641 if (dump_file)
3643 int i, j, need_comma;
3644 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3645 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3647 for (reorg_pass_number = 0;
3648 reorg_pass_number < MAX_REORG_PASSES;
3649 reorg_pass_number++)
3651 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3652 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3654 need_comma = 0;
3655 fprintf (dump_file, ";; Reorg function #%d\n", i);
3657 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3658 num_insns_needing_delays[i][reorg_pass_number]);
3660 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3661 if (num_filled_delays[i][j][reorg_pass_number])
3663 if (need_comma)
3664 fprintf (dump_file, ", ");
3665 need_comma = 1;
3666 fprintf (dump_file, "%d got %d delays",
3667 num_filled_delays[i][j][reorg_pass_number], j);
3669 fprintf (dump_file, "\n");
3672 memset (total_delay_slots, 0, sizeof total_delay_slots);
3673 memset (total_annul_slots, 0, sizeof total_annul_slots);
3674 for (insn = first; insn; insn = NEXT_INSN (insn))
3676 if (! INSN_DELETED_P (insn)
3677 && NONJUMP_INSN_P (insn)
3678 && GET_CODE (PATTERN (insn)) != USE
3679 && GET_CODE (PATTERN (insn)) != CLOBBER)
3681 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3683 j = XVECLEN (PATTERN (insn), 0) - 1;
3684 if (j > MAX_DELAY_HISTOGRAM)
3685 j = MAX_DELAY_HISTOGRAM;
3686 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3687 total_annul_slots[j]++;
3688 else
3689 total_delay_slots[j]++;
3691 else if (num_delay_slots (insn) > 0)
3692 total_delay_slots[0]++;
3695 fprintf (dump_file, ";; Reorg totals: ");
3696 need_comma = 0;
3697 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3699 if (total_delay_slots[j])
3701 if (need_comma)
3702 fprintf (dump_file, ", ");
3703 need_comma = 1;
3704 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3707 fprintf (dump_file, "\n");
3708 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3709 fprintf (dump_file, ";; Reorg annuls: ");
3710 need_comma = 0;
3711 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3713 if (total_annul_slots[j])
3715 if (need_comma)
3716 fprintf (dump_file, ", ");
3717 need_comma = 1;
3718 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3721 fprintf (dump_file, "\n");
3722 #endif
3723 fprintf (dump_file, "\n");
3726 /* For all JUMP insns, fill in branch prediction notes, so that during
3727 assembler output a target can set branch prediction bits in the code.
3728 We have to do this now, as up until this point the destinations of
3729 JUMPS can be moved around and changed, but past right here that cannot
3730 happen. */
3731 for (insn = first; insn; insn = NEXT_INSN (insn))
3733 int pred_flags;
3735 if (NONJUMP_INSN_P (insn))
3737 rtx pat = PATTERN (insn);
3739 if (GET_CODE (pat) == SEQUENCE)
3740 insn = XVECEXP (pat, 0, 0);
3742 if (!JUMP_P (insn))
3743 continue;
3745 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
3746 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_BR_PRED,
3747 GEN_INT (pred_flags),
3748 REG_NOTES (insn));
3750 free_resource_info ();
3751 free (uid_to_ruid);
3752 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3753 /* SPARC assembler, for instance, emit warning when debug info is output
3754 into the delay slot. */
3756 rtx link;
3758 for (link = current_function_epilogue_delay_list;
3759 link;
3760 link = XEXP (link, 1))
3761 INSN_LOCATOR (XEXP (link, 0)) = 0;
3763 #endif
3765 #endif /* DELAY_SLOTS */
3767 static bool
3768 gate_handle_delay_slots (void)
3770 #ifdef DELAY_SLOTS
3771 return flag_delayed_branch;
3772 #else
3773 return 0;
3774 #endif
3777 /* Run delay slot optimization. */
3778 static unsigned int
3779 rest_of_handle_delay_slots (void)
3781 #ifdef DELAY_SLOTS
3782 dbr_schedule (get_insns ());
3783 #endif
3784 return 0;
3787 struct tree_opt_pass pass_delay_slots =
3789 "dbr", /* name */
3790 gate_handle_delay_slots, /* gate */
3791 rest_of_handle_delay_slots, /* execute */
3792 NULL, /* sub */
3793 NULL, /* next */
3794 0, /* static_pass_number */
3795 TV_DBR_SCHED, /* tv_id */
3796 0, /* properties_required */
3797 0, /* properties_provided */
3798 0, /* properties_destroyed */
3799 0, /* todo_flags_start */
3800 TODO_dump_func |
3801 TODO_ggc_collect, /* todo_flags_finish */
3802 'd' /* letter */
3805 /* Machine dependent reorg pass. */
3806 static bool
3807 gate_handle_machine_reorg (void)
3809 return targetm.machine_dependent_reorg != 0;
3813 static unsigned int
3814 rest_of_handle_machine_reorg (void)
3816 targetm.machine_dependent_reorg ();
3817 return 0;
3820 struct tree_opt_pass pass_machine_reorg =
3822 "mach", /* name */
3823 gate_handle_machine_reorg, /* gate */
3824 rest_of_handle_machine_reorg, /* execute */
3825 NULL, /* sub */
3826 NULL, /* next */
3827 0, /* static_pass_number */
3828 TV_MACH_DEP, /* tv_id */
3829 0, /* properties_required */
3830 0, /* properties_provided */
3831 0, /* properties_destroyed */
3832 0, /* todo_flags_start */
3833 TODO_dump_func |
3834 TODO_ggc_collect, /* todo_flags_finish */
3835 'M' /* letter */