1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
41 # include <valgrind.h>
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
51 # undef HAVE_MMAP_DEV_ZERO
53 # include <sys/mman.h>
55 # define MAP_FAILED -1
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
64 #ifdef HAVE_MMAP_DEV_ZERO
66 # include <sys/mman.h>
68 # define MAP_FAILED -1
75 #define USING_MALLOC_PAGE_GROUPS
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
126 msb +----------------+----+------+------+ lsb
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
172 /* The number of extra orders, not corresponding to power-of-two sized
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
187 static const size_t extra_order_size_table
[] = {
188 sizeof (struct stmt_ann_d
),
189 sizeof (struct tree_decl_non_common
),
190 sizeof (struct tree_field_decl
),
191 sizeof (struct tree_parm_decl
),
192 sizeof (struct tree_var_decl
),
193 sizeof (struct tree_list
),
195 RTL_SIZE (2), /* MEM, PLUS, etc. */
196 RTL_SIZE (9), /* INSN */
199 /* The total number of orders. */
201 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
203 /* We use this structure to determine the alignment required for
204 allocations. For power-of-two sized allocations, that's not a
205 problem, but it does matter for odd-sized allocations. */
207 struct max_alignment
{
215 /* The biggest alignment required. */
217 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
219 /* Compute the smallest nonnegative number which when added to X gives
222 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
224 /* Compute the smallest multiple of F that is >= X. */
226 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
228 /* The Ith entry is the number of objects on a page or order I. */
230 static unsigned objects_per_page_table
[NUM_ORDERS
];
232 /* The Ith entry is the size of an object on a page of order I. */
234 static size_t object_size_table
[NUM_ORDERS
];
236 /* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
245 inverse_table
[NUM_ORDERS
];
247 /* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
249 typedef struct page_entry
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry
*next
;
255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
257 keep the cost of ggc_free manageable. */
258 struct page_entry
*prev
;
260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
264 /* The address at which the memory is allocated. */
267 #ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group
*group
;
272 /* This is the index in the by_depth varray where this page table
274 unsigned long index_by_depth
;
276 /* Context depth of this page. */
277 unsigned short context_depth
;
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects
;
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint
;
286 /* The lg of size of objects allocated from this page. */
289 /* A bit vector indicating whether or not objects are in use. The
290 Nth bit is one if the Nth object on this page is allocated. This
291 array is dynamically sized. */
292 unsigned long in_use_p
[1];
295 #ifdef USING_MALLOC_PAGE_GROUPS
296 /* A page_group describes a large allocation from malloc, from which
297 we parcel out aligned pages. */
298 typedef struct page_group
300 /* A linked list of all extant page groups. */
301 struct page_group
*next
;
303 /* The address we received from malloc. */
306 /* The size of the block. */
309 /* A bitmask of pages in use. */
314 #if HOST_BITS_PER_PTR <= 32
316 /* On 32-bit hosts, we use a two level page table, as pictured above. */
317 typedef page_entry
**page_table
[PAGE_L1_SIZE
];
321 /* On 64-bit hosts, we use the same two level page tables plus a linked
322 list that disambiguates the top 32-bits. There will almost always be
323 exactly one entry in the list. */
324 typedef struct page_table_chain
326 struct page_table_chain
*next
;
328 page_entry
**table
[PAGE_L1_SIZE
];
333 /* The rest of the global variables. */
334 static struct globals
336 /* The Nth element in this array is a page with objects of size 2^N.
337 If there are any pages with free objects, they will be at the
338 head of the list. NULL if there are no page-entries for this
340 page_entry
*pages
[NUM_ORDERS
];
342 /* The Nth element in this array is the last page with objects of
343 size 2^N. NULL if there are no page-entries for this object
345 page_entry
*page_tails
[NUM_ORDERS
];
347 /* Lookup table for associating allocation pages with object addresses. */
350 /* The system's page size. */
354 /* Bytes currently allocated. */
357 /* Bytes currently allocated at the end of the last collection. */
358 size_t allocated_last_gc
;
360 /* Total amount of memory mapped. */
363 /* Bit N set if any allocations have been done at context depth N. */
364 unsigned long context_depth_allocations
;
366 /* Bit N set if any collections have been done at context depth N. */
367 unsigned long context_depth_collections
;
369 /* The current depth in the context stack. */
370 unsigned short context_depth
;
372 /* A file descriptor open to /dev/zero for reading. */
373 #if defined (HAVE_MMAP_DEV_ZERO)
377 /* A cache of free system pages. */
378 page_entry
*free_pages
;
380 #ifdef USING_MALLOC_PAGE_GROUPS
381 page_group
*page_groups
;
384 /* The file descriptor for debugging output. */
387 /* Current number of elements in use in depth below. */
388 unsigned int depth_in_use
;
390 /* Maximum number of elements that can be used before resizing. */
391 unsigned int depth_max
;
393 /* Each element of this arry is an index in by_depth where the given
394 depth starts. This structure is indexed by that given depth we
395 are interested in. */
398 /* Current number of elements in use in by_depth below. */
399 unsigned int by_depth_in_use
;
401 /* Maximum number of elements that can be used before resizing. */
402 unsigned int by_depth_max
;
404 /* Each element of this array is a pointer to a page_entry, all
405 page_entries can be found in here by increasing depth.
406 index_by_depth in the page_entry is the index into this data
407 structure where that page_entry can be found. This is used to
408 speed up finding all page_entries at a particular depth. */
409 page_entry
**by_depth
;
411 /* Each element is a pointer to the saved in_use_p bits, if any,
412 zero otherwise. We allocate them all together, to enable a
413 better runtime data access pattern. */
414 unsigned long **save_in_use
;
416 #ifdef ENABLE_GC_ALWAYS_COLLECT
417 /* List of free objects to be verified as actually free on the
422 struct free_object
*next
;
426 #ifdef GATHER_STATISTICS
429 /* Total memory allocated with ggc_alloc. */
430 unsigned long long total_allocated
;
431 /* Total overhead for memory to be allocated with ggc_alloc. */
432 unsigned long long total_overhead
;
434 /* Total allocations and overhead for sizes less than 32, 64 and 128.
435 These sizes are interesting because they are typical cache line
438 unsigned long long total_allocated_under32
;
439 unsigned long long total_overhead_under32
;
441 unsigned long long total_allocated_under64
;
442 unsigned long long total_overhead_under64
;
444 unsigned long long total_allocated_under128
;
445 unsigned long long total_overhead_under128
;
447 /* The allocations for each of the allocation orders. */
448 unsigned long long total_allocated_per_order
[NUM_ORDERS
];
450 /* The overhead for each of the allocation orders. */
451 unsigned long long total_overhead_per_order
[NUM_ORDERS
];
456 /* The size in bytes required to maintain a bitmap for the objects
458 #define BITMAP_SIZE(Num_objects) \
459 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
461 /* Allocate pages in chunks of this size, to throttle calls to memory
462 allocation routines. The first page is used, the rest go onto the
463 free list. This cannot be larger than HOST_BITS_PER_INT for the
464 in_use bitmask for page_group. Hosts that need a different value
465 can override this by defining GGC_QUIRE_SIZE explicitly. */
466 #ifndef GGC_QUIRE_SIZE
468 # define GGC_QUIRE_SIZE 256
470 # define GGC_QUIRE_SIZE 16
474 /* Initial guess as to how many page table entries we might need. */
475 #define INITIAL_PTE_COUNT 128
477 static int ggc_allocated_p (const void *);
478 static page_entry
*lookup_page_table_entry (const void *);
479 static void set_page_table_entry (void *, page_entry
*);
481 static char *alloc_anon (char *, size_t);
483 #ifdef USING_MALLOC_PAGE_GROUPS
484 static size_t page_group_index (char *, char *);
485 static void set_page_group_in_use (page_group
*, char *);
486 static void clear_page_group_in_use (page_group
*, char *);
488 static struct page_entry
* alloc_page (unsigned);
489 static void free_page (struct page_entry
*);
490 static void release_pages (void);
491 static void clear_marks (void);
492 static void sweep_pages (void);
493 static void ggc_recalculate_in_use_p (page_entry
*);
494 static void compute_inverse (unsigned);
495 static inline void adjust_depth (void);
496 static void move_ptes_to_front (int, int);
498 void debug_print_page_list (int);
499 static void push_depth (unsigned int);
500 static void push_by_depth (page_entry
*, unsigned long *);
502 /* Push an entry onto G.depth. */
505 push_depth (unsigned int i
)
507 if (G
.depth_in_use
>= G
.depth_max
)
510 G
.depth
= xrealloc (G
.depth
, G
.depth_max
* sizeof (unsigned int));
512 G
.depth
[G
.depth_in_use
++] = i
;
515 /* Push an entry onto G.by_depth and G.save_in_use. */
518 push_by_depth (page_entry
*p
, unsigned long *s
)
520 if (G
.by_depth_in_use
>= G
.by_depth_max
)
523 G
.by_depth
= xrealloc (G
.by_depth
,
524 G
.by_depth_max
* sizeof (page_entry
*));
525 G
.save_in_use
= xrealloc (G
.save_in_use
,
526 G
.by_depth_max
* sizeof (unsigned long *));
528 G
.by_depth
[G
.by_depth_in_use
] = p
;
529 G
.save_in_use
[G
.by_depth_in_use
++] = s
;
532 #if (GCC_VERSION < 3001)
533 #define prefetch(X) ((void) X)
535 #define prefetch(X) __builtin_prefetch (X)
538 #define save_in_use_p_i(__i) \
540 #define save_in_use_p(__p) \
541 (save_in_use_p_i (__p->index_by_depth))
543 /* Returns nonzero if P was allocated in GC'able memory. */
546 ggc_allocated_p (const void *p
)
551 #if HOST_BITS_PER_PTR <= 32
554 page_table table
= G
.lookup
;
555 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
560 if (table
->high_bits
== high_bits
)
564 base
= &table
->table
[0];
567 /* Extract the level 1 and 2 indices. */
571 return base
[L1
] && base
[L1
][L2
];
574 /* Traverse the page table and find the entry for a page.
575 Die (probably) if the object wasn't allocated via GC. */
577 static inline page_entry
*
578 lookup_page_table_entry (const void *p
)
583 #if HOST_BITS_PER_PTR <= 32
586 page_table table
= G
.lookup
;
587 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
588 while (table
->high_bits
!= high_bits
)
590 base
= &table
->table
[0];
593 /* Extract the level 1 and 2 indices. */
600 /* Set the page table entry for a page. */
603 set_page_table_entry (void *p
, page_entry
*entry
)
608 #if HOST_BITS_PER_PTR <= 32
612 size_t high_bits
= (size_t) p
& ~ (size_t) 0xffffffff;
613 for (table
= G
.lookup
; table
; table
= table
->next
)
614 if (table
->high_bits
== high_bits
)
617 /* Not found -- allocate a new table. */
618 table
= xcalloc (1, sizeof(*table
));
619 table
->next
= G
.lookup
;
620 table
->high_bits
= high_bits
;
623 base
= &table
->table
[0];
626 /* Extract the level 1 and 2 indices. */
630 if (base
[L1
] == NULL
)
631 base
[L1
] = XCNEWVEC (page_entry
*, PAGE_L2_SIZE
);
633 base
[L1
][L2
] = entry
;
636 /* Prints the page-entry for object size ORDER, for debugging. */
639 debug_print_page_list (int order
)
642 printf ("Head=%p, Tail=%p:\n", (void *) G
.pages
[order
],
643 (void *) G
.page_tails
[order
]);
647 printf ("%p(%1d|%3d) -> ", (void *) p
, p
->context_depth
,
648 p
->num_free_objects
);
656 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
657 (if non-null). The ifdef structure here is intended to cause a
658 compile error unless exactly one of the HAVE_* is defined. */
661 alloc_anon (char *pref ATTRIBUTE_UNUSED
, size_t size
)
663 #ifdef HAVE_MMAP_ANON
664 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
665 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
667 #ifdef HAVE_MMAP_DEV_ZERO
668 char *page
= mmap (pref
, size
, PROT_READ
| PROT_WRITE
,
669 MAP_PRIVATE
, G
.dev_zero_fd
, 0);
672 if (page
== (char *) MAP_FAILED
)
674 perror ("virtual memory exhausted");
675 exit (FATAL_EXIT_CODE
);
678 /* Remember that we allocated this memory. */
679 G
.bytes_mapped
+= size
;
681 /* Pretend we don't have access to the allocated pages. We'll enable
682 access to smaller pieces of the area in ggc_alloc. Discard the
683 handle to avoid handle leak. */
684 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page
, size
));
689 #ifdef USING_MALLOC_PAGE_GROUPS
690 /* Compute the index for this page into the page group. */
693 page_group_index (char *allocation
, char *page
)
695 return (size_t) (page
- allocation
) >> G
.lg_pagesize
;
698 /* Set and clear the in_use bit for this page in the page group. */
701 set_page_group_in_use (page_group
*group
, char *page
)
703 group
->in_use
|= 1 << page_group_index (group
->allocation
, page
);
707 clear_page_group_in_use (page_group
*group
, char *page
)
709 group
->in_use
&= ~(1 << page_group_index (group
->allocation
, page
));
713 /* Allocate a new page for allocating objects of size 2^ORDER,
714 and return an entry for it. The entry is not added to the
715 appropriate page_table list. */
717 static inline struct page_entry
*
718 alloc_page (unsigned order
)
720 struct page_entry
*entry
, *p
, **pp
;
724 size_t page_entry_size
;
726 #ifdef USING_MALLOC_PAGE_GROUPS
730 num_objects
= OBJECTS_PER_PAGE (order
);
731 bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
732 page_entry_size
= sizeof (page_entry
) - sizeof (long) + bitmap_size
;
733 entry_size
= num_objects
* OBJECT_SIZE (order
);
734 if (entry_size
< G
.pagesize
)
735 entry_size
= G
.pagesize
;
740 /* Check the list of free pages for one we can use. */
741 for (pp
= &G
.free_pages
, p
= *pp
; p
; pp
= &p
->next
, p
= *pp
)
742 if (p
->bytes
== entry_size
)
747 /* Recycle the allocated memory from this page ... */
751 #ifdef USING_MALLOC_PAGE_GROUPS
755 /* ... and, if possible, the page entry itself. */
756 if (p
->order
== order
)
759 memset (entry
, 0, page_entry_size
);
765 else if (entry_size
== G
.pagesize
)
767 /* We want just one page. Allocate a bunch of them and put the
768 extras on the freelist. (Can only do this optimization with
769 mmap for backing store.) */
770 struct page_entry
*e
, *f
= G
.free_pages
;
773 page
= alloc_anon (NULL
, G
.pagesize
* GGC_QUIRE_SIZE
);
775 /* This loop counts down so that the chain will be in ascending
777 for (i
= GGC_QUIRE_SIZE
- 1; i
>= 1; i
--)
779 e
= xcalloc (1, page_entry_size
);
781 e
->bytes
= G
.pagesize
;
782 e
->page
= page
+ (i
<< G
.lg_pagesize
);
790 page
= alloc_anon (NULL
, entry_size
);
792 #ifdef USING_MALLOC_PAGE_GROUPS
795 /* Allocate a large block of memory and serve out the aligned
796 pages therein. This results in much less memory wastage
797 than the traditional implementation of valloc. */
799 char *allocation
, *a
, *enda
;
800 size_t alloc_size
, head_slop
, tail_slop
;
801 int multiple_pages
= (entry_size
== G
.pagesize
);
804 alloc_size
= GGC_QUIRE_SIZE
* G
.pagesize
;
806 alloc_size
= entry_size
+ G
.pagesize
- 1;
807 allocation
= xmalloc (alloc_size
);
809 page
= (char *) (((size_t) allocation
+ G
.pagesize
- 1) & -G
.pagesize
);
810 head_slop
= page
- allocation
;
812 tail_slop
= ((size_t) allocation
+ alloc_size
) & (G
.pagesize
- 1);
814 tail_slop
= alloc_size
- entry_size
- head_slop
;
815 enda
= allocation
+ alloc_size
- tail_slop
;
817 /* We allocated N pages, which are likely not aligned, leaving
818 us with N-1 usable pages. We plan to place the page_group
819 structure somewhere in the slop. */
820 if (head_slop
>= sizeof (page_group
))
821 group
= (page_group
*)page
- 1;
824 /* We magically got an aligned allocation. Too bad, we have
825 to waste a page anyway. */
829 tail_slop
+= G
.pagesize
;
831 gcc_assert (tail_slop
>= sizeof (page_group
));
832 group
= (page_group
*)enda
;
833 tail_slop
-= sizeof (page_group
);
836 /* Remember that we allocated this memory. */
837 group
->next
= G
.page_groups
;
838 group
->allocation
= allocation
;
839 group
->alloc_size
= alloc_size
;
841 G
.page_groups
= group
;
842 G
.bytes_mapped
+= alloc_size
;
844 /* If we allocated multiple pages, put the rest on the free list. */
847 struct page_entry
*e
, *f
= G
.free_pages
;
848 for (a
= enda
- G
.pagesize
; a
!= page
; a
-= G
.pagesize
)
850 e
= xcalloc (1, page_entry_size
);
852 e
->bytes
= G
.pagesize
;
864 entry
= xcalloc (1, page_entry_size
);
866 entry
->bytes
= entry_size
;
868 entry
->context_depth
= G
.context_depth
;
869 entry
->order
= order
;
870 entry
->num_free_objects
= num_objects
;
871 entry
->next_bit_hint
= 1;
873 G
.context_depth_allocations
|= (unsigned long)1 << G
.context_depth
;
875 #ifdef USING_MALLOC_PAGE_GROUPS
876 entry
->group
= group
;
877 set_page_group_in_use (group
, page
);
880 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
881 increment the hint. */
882 entry
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
883 = (unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
);
885 set_page_table_entry (page
, entry
);
887 if (GGC_DEBUG_LEVEL
>= 2)
888 fprintf (G
.debug_file
,
889 "Allocating page at %p, object size=%lu, data %p-%p\n",
890 (void *) entry
, (unsigned long) OBJECT_SIZE (order
), page
,
891 page
+ entry_size
- 1);
896 /* Adjust the size of G.depth so that no index greater than the one
897 used by the top of the G.by_depth is used. */
904 if (G
.by_depth_in_use
)
906 top
= G
.by_depth
[G
.by_depth_in_use
-1];
908 /* Peel back indices in depth that index into by_depth, so that
909 as new elements are added to by_depth, we note the indices
910 of those elements, if they are for new context depths. */
911 while (G
.depth_in_use
> (size_t)top
->context_depth
+1)
916 /* For a page that is no longer needed, put it on the free page list. */
919 free_page (page_entry
*entry
)
921 if (GGC_DEBUG_LEVEL
>= 2)
922 fprintf (G
.debug_file
,
923 "Deallocating page at %p, data %p-%p\n", (void *) entry
,
924 entry
->page
, entry
->page
+ entry
->bytes
- 1);
926 /* Mark the page as inaccessible. Discard the handle to avoid handle
928 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry
->page
, entry
->bytes
));
930 set_page_table_entry (entry
->page
, NULL
);
932 #ifdef USING_MALLOC_PAGE_GROUPS
933 clear_page_group_in_use (entry
->group
, entry
->page
);
936 if (G
.by_depth_in_use
> 1)
938 page_entry
*top
= G
.by_depth
[G
.by_depth_in_use
-1];
939 int i
= entry
->index_by_depth
;
941 /* We cannot free a page from a context deeper than the current
943 gcc_assert (entry
->context_depth
== top
->context_depth
);
945 /* Put top element into freed slot. */
947 G
.save_in_use
[i
] = G
.save_in_use
[G
.by_depth_in_use
-1];
948 top
->index_by_depth
= i
;
954 entry
->next
= G
.free_pages
;
955 G
.free_pages
= entry
;
958 /* Release the free page cache to the system. */
964 page_entry
*p
, *next
;
968 /* Gather up adjacent pages so they are unmapped together. */
979 while (p
&& p
->page
== start
+ len
)
988 G
.bytes_mapped
-= len
;
993 #ifdef USING_MALLOC_PAGE_GROUPS
997 /* Remove all pages from free page groups from the list. */
999 while ((p
= *pp
) != NULL
)
1000 if (p
->group
->in_use
== 0)
1008 /* Remove all free page groups, and release the storage. */
1009 gp
= &G
.page_groups
;
1010 while ((g
= *gp
) != NULL
)
1014 G
.bytes_mapped
-= g
->alloc_size
;
1015 free (g
->allocation
);
1022 /* This table provides a fast way to determine ceil(log_2(size)) for
1023 allocation requests. The minimum allocation size is eight bytes. */
1025 static unsigned char size_lookup
[257] =
1027 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1028 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1029 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1030 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1031 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1033 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1034 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1035 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1042 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1046 /* Typed allocation function. Does nothing special in this collector. */
1049 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED
, size_t size
1052 return ggc_alloc_stat (size PASS_MEM_STAT
);
1055 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1058 ggc_alloc_stat (size_t size MEM_STAT_DECL
)
1060 size_t order
, word
, bit
, object_offset
, object_size
;
1061 struct page_entry
*entry
;
1066 order
= size_lookup
[size
];
1067 object_size
= OBJECT_SIZE (order
);
1072 while (size
> (object_size
= OBJECT_SIZE (order
)))
1076 /* If there are non-full pages for this size allocation, they are at
1077 the head of the list. */
1078 entry
= G
.pages
[order
];
1080 /* If there is no page for this object size, or all pages in this
1081 context are full, allocate a new page. */
1082 if (entry
== NULL
|| entry
->num_free_objects
== 0)
1084 struct page_entry
*new_entry
;
1085 new_entry
= alloc_page (order
);
1087 new_entry
->index_by_depth
= G
.by_depth_in_use
;
1088 push_by_depth (new_entry
, 0);
1090 /* We can skip context depths, if we do, make sure we go all the
1091 way to the new depth. */
1092 while (new_entry
->context_depth
>= G
.depth_in_use
)
1093 push_depth (G
.by_depth_in_use
-1);
1095 /* If this is the only entry, it's also the tail. If it is not
1096 the only entry, then we must update the PREV pointer of the
1097 ENTRY (G.pages[order]) to point to our new page entry. */
1099 G
.page_tails
[order
] = new_entry
;
1101 entry
->prev
= new_entry
;
1103 /* Put new pages at the head of the page list. By definition the
1104 entry at the head of the list always has a NULL pointer. */
1105 new_entry
->next
= entry
;
1106 new_entry
->prev
= NULL
;
1108 G
.pages
[order
] = new_entry
;
1110 /* For a new page, we know the word and bit positions (in the
1111 in_use bitmap) of the first available object -- they're zero. */
1112 new_entry
->next_bit_hint
= 1;
1119 /* First try to use the hint left from the previous allocation
1120 to locate a clear bit in the in-use bitmap. We've made sure
1121 that the one-past-the-end bit is always set, so if the hint
1122 has run over, this test will fail. */
1123 unsigned hint
= entry
->next_bit_hint
;
1124 word
= hint
/ HOST_BITS_PER_LONG
;
1125 bit
= hint
% HOST_BITS_PER_LONG
;
1127 /* If the hint didn't work, scan the bitmap from the beginning. */
1128 if ((entry
->in_use_p
[word
] >> bit
) & 1)
1131 while (~entry
->in_use_p
[word
] == 0)
1134 #if GCC_VERSION >= 3004
1135 bit
= __builtin_ctzl (~entry
->in_use_p
[word
]);
1137 while ((entry
->in_use_p
[word
] >> bit
) & 1)
1141 hint
= word
* HOST_BITS_PER_LONG
+ bit
;
1144 /* Next time, try the next bit. */
1145 entry
->next_bit_hint
= hint
+ 1;
1147 object_offset
= hint
* object_size
;
1150 /* Set the in-use bit. */
1151 entry
->in_use_p
[word
] |= ((unsigned long) 1 << bit
);
1153 /* Keep a running total of the number of free objects. If this page
1154 fills up, we may have to move it to the end of the list if the
1155 next page isn't full. If the next page is full, all subsequent
1156 pages are full, so there's no need to move it. */
1157 if (--entry
->num_free_objects
== 0
1158 && entry
->next
!= NULL
1159 && entry
->next
->num_free_objects
> 0)
1161 /* We have a new head for the list. */
1162 G
.pages
[order
] = entry
->next
;
1164 /* We are moving ENTRY to the end of the page table list.
1165 The new page at the head of the list will have NULL in
1166 its PREV field and ENTRY will have NULL in its NEXT field. */
1167 entry
->next
->prev
= NULL
;
1170 /* Append ENTRY to the tail of the list. */
1171 entry
->prev
= G
.page_tails
[order
];
1172 G
.page_tails
[order
]->next
= entry
;
1173 G
.page_tails
[order
] = entry
;
1176 /* Calculate the object's address. */
1177 result
= entry
->page
+ object_offset
;
1178 #ifdef GATHER_STATISTICS
1179 ggc_record_overhead (OBJECT_SIZE (order
), OBJECT_SIZE (order
) - size
,
1180 result PASS_MEM_STAT
);
1183 #ifdef ENABLE_GC_CHECKING
1184 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1185 exact same semantics in presence of memory bugs, regardless of
1186 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1187 handle to avoid handle leak. */
1188 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, object_size
));
1190 /* `Poison' the entire allocated object, including any padding at
1192 memset (result
, 0xaf, object_size
);
1194 /* Make the bytes after the end of the object unaccessible. Discard the
1195 handle to avoid handle leak. */
1196 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result
+ size
,
1197 object_size
- size
));
1200 /* Tell Valgrind that the memory is there, but its content isn't
1201 defined. The bytes at the end of the object are still marked
1203 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result
, size
));
1205 /* Keep track of how many bytes are being allocated. This
1206 information is used in deciding when to collect. */
1207 G
.allocated
+= object_size
;
1209 /* For timevar statistics. */
1210 timevar_ggc_mem_total
+= object_size
;
1212 #ifdef GATHER_STATISTICS
1214 size_t overhead
= object_size
- size
;
1216 G
.stats
.total_overhead
+= overhead
;
1217 G
.stats
.total_allocated
+= object_size
;
1218 G
.stats
.total_overhead_per_order
[order
] += overhead
;
1219 G
.stats
.total_allocated_per_order
[order
] += object_size
;
1223 G
.stats
.total_overhead_under32
+= overhead
;
1224 G
.stats
.total_allocated_under32
+= object_size
;
1228 G
.stats
.total_overhead_under64
+= overhead
;
1229 G
.stats
.total_allocated_under64
+= object_size
;
1233 G
.stats
.total_overhead_under128
+= overhead
;
1234 G
.stats
.total_allocated_under128
+= object_size
;
1239 if (GGC_DEBUG_LEVEL
>= 3)
1240 fprintf (G
.debug_file
,
1241 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1242 (unsigned long) size
, (unsigned long) object_size
, result
,
1248 /* If P is not marked, marks it and return false. Otherwise return true.
1249 P must have been allocated by the GC allocator; it mustn't point to
1250 static objects, stack variables, or memory allocated with malloc. */
1253 ggc_set_mark (const void *p
)
1259 /* Look up the page on which the object is alloced. If the object
1260 wasn't allocated by the collector, we'll probably die. */
1261 entry
= lookup_page_table_entry (p
);
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
1266 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1267 word
= bit
/ HOST_BITS_PER_LONG
;
1268 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1270 /* If the bit was previously set, skip it. */
1271 if (entry
->in_use_p
[word
] & mask
)
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry
->in_use_p
[word
] |= mask
;
1276 entry
->num_free_objects
-= 1;
1278 if (GGC_DEBUG_LEVEL
>= 4)
1279 fprintf (G
.debug_file
, "Marking %p\n", p
);
1284 /* Return 1 if P has been marked, zero otherwise.
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1289 ggc_marked_p (const void *p
)
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry
= lookup_page_table_entry (p
);
1300 /* Calculate the index of the object on the page; this is its bit
1301 position in the in_use_p bitmap. */
1302 bit
= OFFSET_TO_BIT (((const char *) p
) - entry
->page
, entry
->order
);
1303 word
= bit
/ HOST_BITS_PER_LONG
;
1304 mask
= (unsigned long) 1 << (bit
% HOST_BITS_PER_LONG
);
1306 return (entry
->in_use_p
[word
] & mask
) != 0;
1309 /* Return the size of the gc-able object P. */
1312 ggc_get_size (const void *p
)
1314 page_entry
*pe
= lookup_page_table_entry (p
);
1315 return OBJECT_SIZE (pe
->order
);
1318 /* Release the memory for object P. */
1323 page_entry
*pe
= lookup_page_table_entry (p
);
1324 size_t order
= pe
->order
;
1325 size_t size
= OBJECT_SIZE (order
);
1327 #ifdef GATHER_STATISTICS
1328 ggc_free_overhead (p
);
1331 if (GGC_DEBUG_LEVEL
>= 3)
1332 fprintf (G
.debug_file
,
1333 "Freeing object, actual size=%lu, at %p on %p\n",
1334 (unsigned long) size
, p
, (void *) pe
);
1336 #ifdef ENABLE_GC_CHECKING
1337 /* Poison the data, to indicate the data is garbage. */
1338 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p
, size
));
1339 memset (p
, 0xa5, size
);
1341 /* Let valgrind know the object is free. */
1342 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p
, size
));
1344 #ifdef ENABLE_GC_ALWAYS_COLLECT
1345 /* In the completely-anal-checking mode, we do *not* immediately free
1346 the data, but instead verify that the data is *actually* not
1347 reachable the next time we collect. */
1349 struct free_object
*fo
= XNEW (struct free_object
);
1351 fo
->next
= G
.free_object_list
;
1352 G
.free_object_list
= fo
;
1356 unsigned int bit_offset
, word
, bit
;
1358 G
.allocated
-= size
;
1360 /* Mark the object not-in-use. */
1361 bit_offset
= OFFSET_TO_BIT (((const char *) p
) - pe
->page
, order
);
1362 word
= bit_offset
/ HOST_BITS_PER_LONG
;
1363 bit
= bit_offset
% HOST_BITS_PER_LONG
;
1364 pe
->in_use_p
[word
] &= ~(1UL << bit
);
1366 if (pe
->num_free_objects
++ == 0)
1370 /* If the page is completely full, then it's supposed to
1371 be after all pages that aren't. Since we've freed one
1372 object from a page that was full, we need to move the
1373 page to the head of the list.
1375 PE is the node we want to move. Q is the previous node
1376 and P is the next node in the list. */
1378 if (q
&& q
->num_free_objects
== 0)
1384 /* If PE was at the end of the list, then Q becomes the
1385 new end of the list. If PE was not the end of the
1386 list, then we need to update the PREV field for P. */
1388 G
.page_tails
[order
] = q
;
1392 /* Move PE to the head of the list. */
1393 pe
->next
= G
.pages
[order
];
1395 G
.pages
[order
]->prev
= pe
;
1396 G
.pages
[order
] = pe
;
1399 /* Reset the hint bit to point to the only free object. */
1400 pe
->next_bit_hint
= bit_offset
;
1406 /* Subroutine of init_ggc which computes the pair of numbers used to
1407 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1409 This algorithm is taken from Granlund and Montgomery's paper
1410 "Division by Invariant Integers using Multiplication"
1411 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1415 compute_inverse (unsigned order
)
1420 size
= OBJECT_SIZE (order
);
1422 while (size
% 2 == 0)
1429 while (inv
* size
!= 1)
1430 inv
= inv
* (2 - inv
*size
);
1432 DIV_MULT (order
) = inv
;
1433 DIV_SHIFT (order
) = e
;
1436 /* Initialize the ggc-mmap allocator. */
1442 G
.pagesize
= getpagesize();
1443 G
.lg_pagesize
= exact_log2 (G
.pagesize
);
1445 #ifdef HAVE_MMAP_DEV_ZERO
1446 G
.dev_zero_fd
= open ("/dev/zero", O_RDONLY
);
1447 if (G
.dev_zero_fd
== -1)
1448 internal_error ("open /dev/zero: %m");
1452 G
.debug_file
= fopen ("ggc-mmap.debug", "w");
1454 G
.debug_file
= stdout
;
1458 /* StunOS has an amazing off-by-one error for the first mmap allocation
1459 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1460 believe, is an unaligned page allocation, which would cause us to
1461 hork badly if we tried to use it. */
1463 char *p
= alloc_anon (NULL
, G
.pagesize
);
1464 struct page_entry
*e
;
1465 if ((size_t)p
& (G
.pagesize
- 1))
1467 /* How losing. Discard this one and try another. If we still
1468 can't get something useful, give up. */
1470 p
= alloc_anon (NULL
, G
.pagesize
);
1471 gcc_assert (!((size_t)p
& (G
.pagesize
- 1)));
1474 /* We have a good page, might as well hold onto it... */
1475 e
= XCNEW (struct page_entry
);
1476 e
->bytes
= G
.pagesize
;
1478 e
->next
= G
.free_pages
;
1483 /* Initialize the object size table. */
1484 for (order
= 0; order
< HOST_BITS_PER_PTR
; ++order
)
1485 object_size_table
[order
] = (size_t) 1 << order
;
1486 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1488 size_t s
= extra_order_size_table
[order
- HOST_BITS_PER_PTR
];
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
1492 s
= ROUND_UP (s
, MAX_ALIGNMENT
);
1493 object_size_table
[order
] = s
;
1496 /* Initialize the objects-per-page and inverse tables. */
1497 for (order
= 0; order
< NUM_ORDERS
; ++order
)
1499 objects_per_page_table
[order
] = G
.pagesize
/ OBJECT_SIZE (order
);
1500 if (objects_per_page_table
[order
] == 0)
1501 objects_per_page_table
[order
] = 1;
1502 compute_inverse (order
);
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1509 for (order
= HOST_BITS_PER_PTR
; order
< NUM_ORDERS
; ++order
)
1514 o
= size_lookup
[OBJECT_SIZE (order
)];
1515 for (i
= OBJECT_SIZE (order
); size_lookup
[i
] == o
; --i
)
1516 size_lookup
[i
] = order
;
1521 G
.depth
= XNEWVEC (unsigned int, G
.depth_max
);
1523 G
.by_depth_in_use
= 0;
1524 G
.by_depth_max
= INITIAL_PTE_COUNT
;
1525 G
.by_depth
= XNEWVEC (page_entry
*, G
.by_depth_max
);
1526 G
.save_in_use
= XNEWVEC (unsigned long *, G
.by_depth_max
);
1529 /* Start a new GGC zone. */
1532 new_ggc_zone (const char *name ATTRIBUTE_UNUSED
)
1537 /* Destroy a GGC zone. */
1539 destroy_ggc_zone (struct alloc_zone
*zone ATTRIBUTE_UNUSED
)
1543 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1544 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1547 ggc_recalculate_in_use_p (page_entry
*p
)
1552 /* Because the past-the-end bit in in_use_p is always set, we
1553 pretend there is one additional object. */
1554 num_objects
= OBJECTS_IN_PAGE (p
) + 1;
1556 /* Reset the free object count. */
1557 p
->num_free_objects
= num_objects
;
1559 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1561 i
< CEIL (BITMAP_SIZE (num_objects
),
1562 sizeof (*p
->in_use_p
));
1567 /* Something is in use if it is marked, or if it was in use in a
1568 context further down the context stack. */
1569 p
->in_use_p
[i
] |= save_in_use_p (p
)[i
];
1571 /* Decrement the free object count for every object allocated. */
1572 for (j
= p
->in_use_p
[i
]; j
; j
>>= 1)
1573 p
->num_free_objects
-= (j
& 1);
1576 gcc_assert (p
->num_free_objects
< num_objects
);
1579 /* Unmark all objects. */
1586 for (order
= 2; order
< NUM_ORDERS
; order
++)
1590 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1592 size_t num_objects
= OBJECTS_IN_PAGE (p
);
1593 size_t bitmap_size
= BITMAP_SIZE (num_objects
+ 1);
1595 /* The data should be page-aligned. */
1596 gcc_assert (!((size_t) p
->page
& (G
.pagesize
- 1)));
1598 /* Pages that aren't in the topmost context are not collected;
1599 nevertheless, we need their in-use bit vectors to store GC
1600 marks. So, back them up first. */
1601 if (p
->context_depth
< G
.context_depth
)
1603 if (! save_in_use_p (p
))
1604 save_in_use_p (p
) = xmalloc (bitmap_size
);
1605 memcpy (save_in_use_p (p
), p
->in_use_p
, bitmap_size
);
1608 /* Reset reset the number of free objects and clear the
1609 in-use bits. These will be adjusted by mark_obj. */
1610 p
->num_free_objects
= num_objects
;
1611 memset (p
->in_use_p
, 0, bitmap_size
);
1613 /* Make sure the one-past-the-end bit is always set. */
1614 p
->in_use_p
[num_objects
/ HOST_BITS_PER_LONG
]
1615 = ((unsigned long) 1 << (num_objects
% HOST_BITS_PER_LONG
));
1620 /* Free all empty pages. Partially empty pages need no attention
1621 because the `mark' bit doubles as an `unused' bit. */
1628 for (order
= 2; order
< NUM_ORDERS
; order
++)
1630 /* The last page-entry to consider, regardless of entries
1631 placed at the end of the list. */
1632 page_entry
* const last
= G
.page_tails
[order
];
1635 size_t live_objects
;
1636 page_entry
*p
, *previous
;
1646 page_entry
*next
= p
->next
;
1648 /* Loop until all entries have been examined. */
1651 num_objects
= OBJECTS_IN_PAGE (p
);
1653 /* Add all live objects on this page to the count of
1654 allocated memory. */
1655 live_objects
= num_objects
- p
->num_free_objects
;
1657 G
.allocated
+= OBJECT_SIZE (order
) * live_objects
;
1659 /* Only objects on pages in the topmost context should get
1661 if (p
->context_depth
< G
.context_depth
)
1664 /* Remove the page if it's empty. */
1665 else if (live_objects
== 0)
1667 /* If P was the first page in the list, then NEXT
1668 becomes the new first page in the list, otherwise
1669 splice P out of the forward pointers. */
1671 G
.pages
[order
] = next
;
1673 previous
->next
= next
;
1675 /* Splice P out of the back pointers too. */
1677 next
->prev
= previous
;
1679 /* Are we removing the last element? */
1680 if (p
== G
.page_tails
[order
])
1681 G
.page_tails
[order
] = previous
;
1686 /* If the page is full, move it to the end. */
1687 else if (p
->num_free_objects
== 0)
1689 /* Don't move it if it's already at the end. */
1690 if (p
!= G
.page_tails
[order
])
1692 /* Move p to the end of the list. */
1694 p
->prev
= G
.page_tails
[order
];
1695 G
.page_tails
[order
]->next
= p
;
1697 /* Update the tail pointer... */
1698 G
.page_tails
[order
] = p
;
1700 /* ... and the head pointer, if necessary. */
1702 G
.pages
[order
] = next
;
1704 previous
->next
= next
;
1706 /* And update the backpointer in NEXT if necessary. */
1708 next
->prev
= previous
;
1714 /* If we've fallen through to here, it's a page in the
1715 topmost context that is neither full nor empty. Such a
1716 page must precede pages at lesser context depth in the
1717 list, so move it to the head. */
1718 else if (p
!= G
.pages
[order
])
1720 previous
->next
= p
->next
;
1722 /* Update the backchain in the next node if it exists. */
1724 p
->next
->prev
= previous
;
1726 /* Move P to the head of the list. */
1727 p
->next
= G
.pages
[order
];
1729 G
.pages
[order
]->prev
= p
;
1731 /* Update the head pointer. */
1734 /* Are we moving the last element? */
1735 if (G
.page_tails
[order
] == p
)
1736 G
.page_tails
[order
] = previous
;
1745 /* Now, restore the in_use_p vectors for any pages from contexts
1746 other than the current one. */
1747 for (p
= G
.pages
[order
]; p
; p
= p
->next
)
1748 if (p
->context_depth
!= G
.context_depth
)
1749 ggc_recalculate_in_use_p (p
);
1753 #ifdef ENABLE_GC_CHECKING
1754 /* Clobber all free objects. */
1761 for (order
= 2; order
< NUM_ORDERS
; order
++)
1763 size_t size
= OBJECT_SIZE (order
);
1766 for (p
= G
.pages
[order
]; p
!= NULL
; p
= p
->next
)
1771 if (p
->context_depth
!= G
.context_depth
)
1772 /* Since we don't do any collection for pages in pushed
1773 contexts, there's no need to do any poisoning. And
1774 besides, the IN_USE_P array isn't valid until we pop
1778 num_objects
= OBJECTS_IN_PAGE (p
);
1779 for (i
= 0; i
< num_objects
; i
++)
1782 word
= i
/ HOST_BITS_PER_LONG
;
1783 bit
= i
% HOST_BITS_PER_LONG
;
1784 if (((p
->in_use_p
[word
] >> bit
) & 1) == 0)
1786 char *object
= p
->page
+ i
* size
;
1788 /* Keep poison-by-write when we expect to use Valgrind,
1789 so the exact same memory semantics is kept, in case
1790 there are memory errors. We override this request
1792 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object
, size
));
1793 memset (object
, 0xa5, size
);
1795 /* Drop the handle to avoid handle leak. */
1796 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object
, size
));
1803 #define poison_pages()
1806 #ifdef ENABLE_GC_ALWAYS_COLLECT
1807 /* Validate that the reportedly free objects actually are. */
1810 validate_free_objects (void)
1812 struct free_object
*f
, *next
, *still_free
= NULL
;
1814 for (f
= G
.free_object_list
; f
; f
= next
)
1816 page_entry
*pe
= lookup_page_table_entry (f
->object
);
1819 bit
= OFFSET_TO_BIT ((char *)f
->object
- pe
->page
, pe
->order
);
1820 word
= bit
/ HOST_BITS_PER_LONG
;
1821 bit
= bit
% HOST_BITS_PER_LONG
;
1824 /* Make certain it isn't visible from any root. Notice that we
1825 do this check before sweep_pages merges save_in_use_p. */
1826 gcc_assert (!(pe
->in_use_p
[word
] & (1UL << bit
)));
1828 /* If the object comes from an outer context, then retain the
1829 free_object entry, so that we can verify that the address
1830 isn't live on the stack in some outer context. */
1831 if (pe
->context_depth
!= G
.context_depth
)
1833 f
->next
= still_free
;
1840 G
.free_object_list
= still_free
;
1843 #define validate_free_objects()
1846 /* Top level mark-and-sweep routine. */
1851 /* Avoid frequent unnecessary work by skipping collection if the
1852 total allocations haven't expanded much since the last
1854 float allocated_last_gc
=
1855 MAX (G
.allocated_last_gc
, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE
) * 1024);
1857 float min_expand
= allocated_last_gc
* PARAM_VALUE (GGC_MIN_EXPAND
) / 100;
1859 if (G
.allocated
< allocated_last_gc
+ min_expand
&& !ggc_force_collect
)
1862 timevar_push (TV_GC
);
1864 fprintf (stderr
, " {GC %luk -> ", (unsigned long) G
.allocated
/ 1024);
1865 if (GGC_DEBUG_LEVEL
>= 2)
1866 fprintf (G
.debug_file
, "BEGIN COLLECTING\n");
1868 /* Zero the total allocated bytes. This will be recalculated in the
1872 /* Release the pages we freed the last time we collected, but didn't
1873 reuse in the interim. */
1876 /* Indicate that we've seen collections at this context depth. */
1877 G
.context_depth_collections
= ((unsigned long)1 << (G
.context_depth
+ 1)) - 1;
1881 #ifdef GATHER_STATISTICS
1882 ggc_prune_overhead_list ();
1885 validate_free_objects ();
1888 G
.allocated_last_gc
= G
.allocated
;
1890 timevar_pop (TV_GC
);
1893 fprintf (stderr
, "%luk}", (unsigned long) G
.allocated
/ 1024);
1894 if (GGC_DEBUG_LEVEL
>= 2)
1895 fprintf (G
.debug_file
, "END COLLECTING\n");
1898 /* Print allocation statistics. */
1899 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1901 : ((x) < 1024*1024*10 \
1903 : (x) / (1024*1024))))
1904 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1907 ggc_print_statistics (void)
1909 struct ggc_statistics stats
;
1911 size_t total_overhead
= 0;
1913 /* Clear the statistics. */
1914 memset (&stats
, 0, sizeof (stats
));
1916 /* Make sure collection will really occur. */
1917 G
.allocated_last_gc
= 0;
1919 /* Collect and print the statistics common across collectors. */
1920 ggc_print_common_statistics (stderr
, &stats
);
1922 /* Release free pages so that we will not count the bytes allocated
1923 there as part of the total allocated memory. */
1926 /* Collect some information about the various sizes of
1929 "Memory still allocated at the end of the compilation process\n");
1930 fprintf (stderr
, "%-5s %10s %10s %10s\n",
1931 "Size", "Allocated", "Used", "Overhead");
1932 for (i
= 0; i
< NUM_ORDERS
; ++i
)
1939 /* Skip empty entries. */
1943 overhead
= allocated
= in_use
= 0;
1945 /* Figure out the total number of bytes allocated for objects of
1946 this size, and how many of them are actually in use. Also figure
1947 out how much memory the page table is using. */
1948 for (p
= G
.pages
[i
]; p
; p
= p
->next
)
1950 allocated
+= p
->bytes
;
1952 (OBJECTS_IN_PAGE (p
) - p
->num_free_objects
) * OBJECT_SIZE (i
);
1954 overhead
+= (sizeof (page_entry
) - sizeof (long)
1955 + BITMAP_SIZE (OBJECTS_IN_PAGE (p
) + 1));
1957 fprintf (stderr
, "%-5lu %10lu%c %10lu%c %10lu%c\n",
1958 (unsigned long) OBJECT_SIZE (i
),
1959 SCALE (allocated
), STAT_LABEL (allocated
),
1960 SCALE (in_use
), STAT_LABEL (in_use
),
1961 SCALE (overhead
), STAT_LABEL (overhead
));
1962 total_overhead
+= overhead
;
1964 fprintf (stderr
, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
1965 SCALE (G
.bytes_mapped
), STAT_LABEL (G
.bytes_mapped
),
1966 SCALE (G
.allocated
), STAT_LABEL(G
.allocated
),
1967 SCALE (total_overhead
), STAT_LABEL (total_overhead
));
1969 #ifdef GATHER_STATISTICS
1971 fprintf (stderr
, "\nTotal allocations and overheads during the compilation process\n");
1973 fprintf (stderr
, "Total Overhead: %10lld\n",
1974 G
.stats
.total_overhead
);
1975 fprintf (stderr
, "Total Allocated: %10lld\n",
1976 G
.stats
.total_allocated
);
1978 fprintf (stderr
, "Total Overhead under 32B: %10lld\n",
1979 G
.stats
.total_overhead_under32
);
1980 fprintf (stderr
, "Total Allocated under 32B: %10lld\n",
1981 G
.stats
.total_allocated_under32
);
1982 fprintf (stderr
, "Total Overhead under 64B: %10lld\n",
1983 G
.stats
.total_overhead_under64
);
1984 fprintf (stderr
, "Total Allocated under 64B: %10lld\n",
1985 G
.stats
.total_allocated_under64
);
1986 fprintf (stderr
, "Total Overhead under 128B: %10lld\n",
1987 G
.stats
.total_overhead_under128
);
1988 fprintf (stderr
, "Total Allocated under 128B: %10lld\n",
1989 G
.stats
.total_allocated_under128
);
1991 for (i
= 0; i
< NUM_ORDERS
; i
++)
1992 if (G
.stats
.total_allocated_per_order
[i
])
1994 fprintf (stderr
, "Total Overhead page size %7d: %10lld\n",
1995 OBJECT_SIZE (i
), G
.stats
.total_overhead_per_order
[i
]);
1996 fprintf (stderr
, "Total Allocated page size %7d: %10lld\n",
1997 OBJECT_SIZE (i
), G
.stats
.total_allocated_per_order
[i
]);
2005 struct ggc_pch_ondisk
2007 unsigned totals
[NUM_ORDERS
];
2009 size_t base
[NUM_ORDERS
];
2010 size_t written
[NUM_ORDERS
];
2013 struct ggc_pch_data
*
2016 return XCNEW (struct ggc_pch_data
);
2020 ggc_pch_count_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2021 size_t size
, bool is_string ATTRIBUTE_UNUSED
,
2022 enum gt_types_enum type ATTRIBUTE_UNUSED
)
2027 order
= size_lookup
[size
];
2031 while (size
> OBJECT_SIZE (order
))
2035 d
->d
.totals
[order
]++;
2039 ggc_pch_total_size (struct ggc_pch_data
*d
)
2044 for (i
= 0; i
< NUM_ORDERS
; i
++)
2045 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2050 ggc_pch_this_base (struct ggc_pch_data
*d
, void *base
)
2052 size_t a
= (size_t) base
;
2055 for (i
= 0; i
< NUM_ORDERS
; i
++)
2058 a
+= ROUND_UP (d
->d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2064 ggc_pch_alloc_object (struct ggc_pch_data
*d
, void *x ATTRIBUTE_UNUSED
,
2065 size_t size
, bool is_string ATTRIBUTE_UNUSED
,
2066 enum gt_types_enum type ATTRIBUTE_UNUSED
)
2072 order
= size_lookup
[size
];
2076 while (size
> OBJECT_SIZE (order
))
2080 result
= (char *) d
->base
[order
];
2081 d
->base
[order
] += OBJECT_SIZE (order
);
2086 ggc_pch_prepare_write (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2087 FILE *f ATTRIBUTE_UNUSED
)
2089 /* Nothing to do. */
2093 ggc_pch_write_object (struct ggc_pch_data
*d ATTRIBUTE_UNUSED
,
2094 FILE *f
, void *x
, void *newx ATTRIBUTE_UNUSED
,
2095 size_t size
, bool is_string ATTRIBUTE_UNUSED
)
2098 static const char emptyBytes
[256];
2101 order
= size_lookup
[size
];
2105 while (size
> OBJECT_SIZE (order
))
2109 if (fwrite (x
, size
, 1, f
) != 1)
2110 fatal_error ("can't write PCH file: %m");
2112 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2113 object out to OBJECT_SIZE(order). This happens for strings. */
2115 if (size
!= OBJECT_SIZE (order
))
2117 unsigned padding
= OBJECT_SIZE(order
) - size
;
2119 /* To speed small writes, we use a nulled-out array that's larger
2120 than most padding requests as the source for our null bytes. This
2121 permits us to do the padding with fwrite() rather than fseek(), and
2122 limits the chance the OS may try to flush any outstanding writes. */
2123 if (padding
<= sizeof(emptyBytes
))
2125 if (fwrite (emptyBytes
, 1, padding
, f
) != padding
)
2126 fatal_error ("can't write PCH file");
2130 /* Larger than our buffer? Just default to fseek. */
2131 if (fseek (f
, padding
, SEEK_CUR
) != 0)
2132 fatal_error ("can't write PCH file");
2136 d
->written
[order
]++;
2137 if (d
->written
[order
] == d
->d
.totals
[order
]
2138 && fseek (f
, ROUND_UP_VALUE (d
->d
.totals
[order
] * OBJECT_SIZE (order
),
2141 fatal_error ("can't write PCH file: %m");
2145 ggc_pch_finish (struct ggc_pch_data
*d
, FILE *f
)
2147 if (fwrite (&d
->d
, sizeof (d
->d
), 1, f
) != 1)
2148 fatal_error ("can't write PCH file: %m");
2152 /* Move the PCH PTE entries just added to the end of by_depth, to the
2156 move_ptes_to_front (int count_old_page_tables
, int count_new_page_tables
)
2160 /* First, we swap the new entries to the front of the varrays. */
2161 page_entry
**new_by_depth
;
2162 unsigned long **new_save_in_use
;
2164 new_by_depth
= XNEWVEC (page_entry
*, G
.by_depth_max
);
2165 new_save_in_use
= XNEWVEC (unsigned long *, G
.by_depth_max
);
2167 memcpy (&new_by_depth
[0],
2168 &G
.by_depth
[count_old_page_tables
],
2169 count_new_page_tables
* sizeof (void *));
2170 memcpy (&new_by_depth
[count_new_page_tables
],
2172 count_old_page_tables
* sizeof (void *));
2173 memcpy (&new_save_in_use
[0],
2174 &G
.save_in_use
[count_old_page_tables
],
2175 count_new_page_tables
* sizeof (void *));
2176 memcpy (&new_save_in_use
[count_new_page_tables
],
2178 count_old_page_tables
* sizeof (void *));
2181 free (G
.save_in_use
);
2183 G
.by_depth
= new_by_depth
;
2184 G
.save_in_use
= new_save_in_use
;
2186 /* Now update all the index_by_depth fields. */
2187 for (i
= G
.by_depth_in_use
; i
> 0; --i
)
2189 page_entry
*p
= G
.by_depth
[i
-1];
2190 p
->index_by_depth
= i
-1;
2193 /* And last, we update the depth pointers in G.depth. The first
2194 entry is already 0, and context 0 entries always start at index
2195 0, so there is nothing to update in the first slot. We need a
2196 second slot, only if we have old ptes, and if we do, they start
2197 at index count_new_page_tables. */
2198 if (count_old_page_tables
)
2199 push_depth (count_new_page_tables
);
2203 ggc_pch_read (FILE *f
, void *addr
)
2205 struct ggc_pch_ondisk d
;
2208 unsigned long count_old_page_tables
;
2209 unsigned long count_new_page_tables
;
2211 count_old_page_tables
= G
.by_depth_in_use
;
2213 /* We've just read in a PCH file. So, every object that used to be
2214 allocated is now free. */
2216 #ifdef ENABLE_GC_CHECKING
2220 /* No object read from a PCH file should ever be freed. So, set the
2221 context depth to 1, and set the depth of all the currently-allocated
2222 pages to be 1 too. PCH pages will have depth 0. */
2223 gcc_assert (!G
.context_depth
);
2224 G
.context_depth
= 1;
2225 for (i
= 0; i
< NUM_ORDERS
; i
++)
2228 for (p
= G
.pages
[i
]; p
!= NULL
; p
= p
->next
)
2229 p
->context_depth
= G
.context_depth
;
2232 /* Allocate the appropriate page-table entries for the pages read from
2234 if (fread (&d
, sizeof (d
), 1, f
) != 1)
2235 fatal_error ("can't read PCH file: %m");
2237 for (i
= 0; i
< NUM_ORDERS
; i
++)
2239 struct page_entry
*entry
;
2245 if (d
.totals
[i
] == 0)
2248 bytes
= ROUND_UP (d
.totals
[i
] * OBJECT_SIZE (i
), G
.pagesize
);
2249 num_objs
= bytes
/ OBJECT_SIZE (i
);
2250 entry
= xcalloc (1, (sizeof (struct page_entry
)
2252 + BITMAP_SIZE (num_objs
+ 1)));
2253 entry
->bytes
= bytes
;
2255 entry
->context_depth
= 0;
2257 entry
->num_free_objects
= 0;
2261 j
+ HOST_BITS_PER_LONG
<= num_objs
+ 1;
2262 j
+= HOST_BITS_PER_LONG
)
2263 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
] = -1;
2264 for (; j
< num_objs
+ 1; j
++)
2265 entry
->in_use_p
[j
/ HOST_BITS_PER_LONG
]
2266 |= 1L << (j
% HOST_BITS_PER_LONG
);
2268 for (pte
= entry
->page
;
2269 pte
< entry
->page
+ entry
->bytes
;
2271 set_page_table_entry (pte
, entry
);
2273 if (G
.page_tails
[i
] != NULL
)
2274 G
.page_tails
[i
]->next
= entry
;
2277 G
.page_tails
[i
] = entry
;
2279 /* We start off by just adding all the new information to the
2280 end of the varrays, later, we will move the new information
2281 to the front of the varrays, as the PCH page tables are at
2283 push_by_depth (entry
, 0);
2286 /* Now, we update the various data structures that speed page table
2288 count_new_page_tables
= G
.by_depth_in_use
- count_old_page_tables
;
2290 move_ptes_to_front (count_old_page_tables
, count_new_page_tables
);
2292 /* Update the statistics. */
2293 G
.allocated
= G
.allocated_last_gc
= offs
- (char *)addr
;