2006-08-07 Andrew John Hughes <gnu_andrew@member.fsf.org>
[official-gcc.git] / gcc / dominance.c
blob92496b77ac11a66292885f32ba483d686c79ed7f
1 /* Calculate (post)dominators in slightly super-linear time.
2 Copyright (C) 2000, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Michael Matz (matz@ifh.de).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file implements the well known algorithm from Lengauer and Tarjan
23 to compute the dominators in a control flow graph. A basic block D is said
24 to dominate another block X, when all paths from the entry node of the CFG
25 to X go also over D. The dominance relation is a transitive reflexive
26 relation and its minimal transitive reduction is a tree, called the
27 dominator tree. So for each block X besides the entry block exists a
28 block I(X), called the immediate dominator of X, which is the parent of X
29 in the dominator tree.
31 The algorithm computes this dominator tree implicitly by computing for
32 each block its immediate dominator. We use tree balancing and path
33 compression, so it's the O(e*a(e,v)) variant, where a(e,v) is the very
34 slowly growing functional inverse of the Ackerman function. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "hard-reg-set.h"
42 #include "obstack.h"
43 #include "basic-block.h"
44 #include "toplev.h"
45 #include "et-forest.h"
46 #include "timevar.h"
48 /* Whether the dominators and the postdominators are available. */
49 enum dom_state dom_computed[2];
51 /* We name our nodes with integers, beginning with 1. Zero is reserved for
52 'undefined' or 'end of list'. The name of each node is given by the dfs
53 number of the corresponding basic block. Please note, that we include the
54 artificial ENTRY_BLOCK (or EXIT_BLOCK in the post-dom case) in our lists to
55 support multiple entry points. Its dfs number is of course 1. */
57 /* Type of Basic Block aka. TBB */
58 typedef unsigned int TBB;
60 /* We work in a poor-mans object oriented fashion, and carry an instance of
61 this structure through all our 'methods'. It holds various arrays
62 reflecting the (sub)structure of the flowgraph. Most of them are of type
63 TBB and are also indexed by TBB. */
65 struct dom_info
67 /* The parent of a node in the DFS tree. */
68 TBB *dfs_parent;
69 /* For a node x key[x] is roughly the node nearest to the root from which
70 exists a way to x only over nodes behind x. Such a node is also called
71 semidominator. */
72 TBB *key;
73 /* The value in path_min[x] is the node y on the path from x to the root of
74 the tree x is in with the smallest key[y]. */
75 TBB *path_min;
76 /* bucket[x] points to the first node of the set of nodes having x as key. */
77 TBB *bucket;
78 /* And next_bucket[x] points to the next node. */
79 TBB *next_bucket;
80 /* After the algorithm is done, dom[x] contains the immediate dominator
81 of x. */
82 TBB *dom;
84 /* The following few fields implement the structures needed for disjoint
85 sets. */
86 /* set_chain[x] is the next node on the path from x to the representant
87 of the set containing x. If set_chain[x]==0 then x is a root. */
88 TBB *set_chain;
89 /* set_size[x] is the number of elements in the set named by x. */
90 unsigned int *set_size;
91 /* set_child[x] is used for balancing the tree representing a set. It can
92 be understood as the next sibling of x. */
93 TBB *set_child;
95 /* If b is the number of a basic block (BB->index), dfs_order[b] is the
96 number of that node in DFS order counted from 1. This is an index
97 into most of the other arrays in this structure. */
98 TBB *dfs_order;
99 /* If x is the DFS-index of a node which corresponds with a basic block,
100 dfs_to_bb[x] is that basic block. Note, that in our structure there are
101 more nodes that basic blocks, so only dfs_to_bb[dfs_order[bb->index]]==bb
102 is true for every basic block bb, but not the opposite. */
103 basic_block *dfs_to_bb;
105 /* This is the next free DFS number when creating the DFS tree. */
106 unsigned int dfsnum;
107 /* The number of nodes in the DFS tree (==dfsnum-1). */
108 unsigned int nodes;
110 /* Blocks with bits set here have a fake edge to EXIT. These are used
111 to turn a DFS forest into a proper tree. */
112 bitmap fake_exit_edge;
115 static void init_dom_info (struct dom_info *, enum cdi_direction);
116 static void free_dom_info (struct dom_info *);
117 static void calc_dfs_tree_nonrec (struct dom_info *, basic_block,
118 enum cdi_direction);
119 static void calc_dfs_tree (struct dom_info *, enum cdi_direction);
120 static void compress (struct dom_info *, TBB);
121 static TBB eval (struct dom_info *, TBB);
122 static void link_roots (struct dom_info *, TBB, TBB);
123 static void calc_idoms (struct dom_info *, enum cdi_direction);
124 void debug_dominance_info (enum cdi_direction);
126 /* Keeps track of the*/
127 static unsigned n_bbs_in_dom_tree[2];
129 /* Helper macro for allocating and initializing an array,
130 for aesthetic reasons. */
131 #define init_ar(var, type, num, content) \
132 do \
134 unsigned int i = 1; /* Catch content == i. */ \
135 if (! (content)) \
136 (var) = XCNEWVEC (type, num); \
137 else \
139 (var) = XNEWVEC (type, (num)); \
140 for (i = 0; i < num; i++) \
141 (var)[i] = (content); \
144 while (0)
146 /* Allocate all needed memory in a pessimistic fashion (so we round up).
147 This initializes the contents of DI, which already must be allocated. */
149 static void
150 init_dom_info (struct dom_info *di, enum cdi_direction dir)
152 unsigned int num = n_basic_blocks;
153 init_ar (di->dfs_parent, TBB, num, 0);
154 init_ar (di->path_min, TBB, num, i);
155 init_ar (di->key, TBB, num, i);
156 init_ar (di->dom, TBB, num, 0);
158 init_ar (di->bucket, TBB, num, 0);
159 init_ar (di->next_bucket, TBB, num, 0);
161 init_ar (di->set_chain, TBB, num, 0);
162 init_ar (di->set_size, unsigned int, num, 1);
163 init_ar (di->set_child, TBB, num, 0);
165 init_ar (di->dfs_order, TBB, (unsigned int) last_basic_block + 1, 0);
166 init_ar (di->dfs_to_bb, basic_block, num, 0);
168 di->dfsnum = 1;
169 di->nodes = 0;
171 di->fake_exit_edge = dir ? BITMAP_ALLOC (NULL) : NULL;
174 #undef init_ar
176 /* Free all allocated memory in DI, but not DI itself. */
178 static void
179 free_dom_info (struct dom_info *di)
181 free (di->dfs_parent);
182 free (di->path_min);
183 free (di->key);
184 free (di->dom);
185 free (di->bucket);
186 free (di->next_bucket);
187 free (di->set_chain);
188 free (di->set_size);
189 free (di->set_child);
190 free (di->dfs_order);
191 free (di->dfs_to_bb);
192 BITMAP_FREE (di->fake_exit_edge);
195 /* The nonrecursive variant of creating a DFS tree. DI is our working
196 structure, BB the starting basic block for this tree and REVERSE
197 is true, if predecessors should be visited instead of successors of a
198 node. After this is done all nodes reachable from BB were visited, have
199 assigned their dfs number and are linked together to form a tree. */
201 static void
202 calc_dfs_tree_nonrec (struct dom_info *di, basic_block bb,
203 enum cdi_direction reverse)
205 /* We call this _only_ if bb is not already visited. */
206 edge e;
207 TBB child_i, my_i = 0;
208 edge_iterator *stack;
209 edge_iterator ei, einext;
210 int sp;
211 /* Start block (ENTRY_BLOCK_PTR for forward problem, EXIT_BLOCK for backward
212 problem). */
213 basic_block en_block;
214 /* Ending block. */
215 basic_block ex_block;
217 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
218 sp = 0;
220 /* Initialize our border blocks, and the first edge. */
221 if (reverse)
223 ei = ei_start (bb->preds);
224 en_block = EXIT_BLOCK_PTR;
225 ex_block = ENTRY_BLOCK_PTR;
227 else
229 ei = ei_start (bb->succs);
230 en_block = ENTRY_BLOCK_PTR;
231 ex_block = EXIT_BLOCK_PTR;
234 /* When the stack is empty we break out of this loop. */
235 while (1)
237 basic_block bn;
239 /* This loop traverses edges e in depth first manner, and fills the
240 stack. */
241 while (!ei_end_p (ei))
243 e = ei_edge (ei);
245 /* Deduce from E the current and the next block (BB and BN), and the
246 next edge. */
247 if (reverse)
249 bn = e->src;
251 /* If the next node BN is either already visited or a border
252 block the current edge is useless, and simply overwritten
253 with the next edge out of the current node. */
254 if (bn == ex_block || di->dfs_order[bn->index])
256 ei_next (&ei);
257 continue;
259 bb = e->dest;
260 einext = ei_start (bn->preds);
262 else
264 bn = e->dest;
265 if (bn == ex_block || di->dfs_order[bn->index])
267 ei_next (&ei);
268 continue;
270 bb = e->src;
271 einext = ei_start (bn->succs);
274 gcc_assert (bn != en_block);
276 /* Fill the DFS tree info calculatable _before_ recursing. */
277 if (bb != en_block)
278 my_i = di->dfs_order[bb->index];
279 else
280 my_i = di->dfs_order[last_basic_block];
281 child_i = di->dfs_order[bn->index] = di->dfsnum++;
282 di->dfs_to_bb[child_i] = bn;
283 di->dfs_parent[child_i] = my_i;
285 /* Save the current point in the CFG on the stack, and recurse. */
286 stack[sp++] = ei;
287 ei = einext;
290 if (!sp)
291 break;
292 ei = stack[--sp];
294 /* OK. The edge-list was exhausted, meaning normally we would
295 end the recursion. After returning from the recursive call,
296 there were (may be) other statements which were run after a
297 child node was completely considered by DFS. Here is the
298 point to do it in the non-recursive variant.
299 E.g. The block just completed is in e->dest for forward DFS,
300 the block not yet completed (the parent of the one above)
301 in e->src. This could be used e.g. for computing the number of
302 descendants or the tree depth. */
303 ei_next (&ei);
305 free (stack);
308 /* The main entry for calculating the DFS tree or forest. DI is our working
309 structure and REVERSE is true, if we are interested in the reverse flow
310 graph. In that case the result is not necessarily a tree but a forest,
311 because there may be nodes from which the EXIT_BLOCK is unreachable. */
313 static void
314 calc_dfs_tree (struct dom_info *di, enum cdi_direction reverse)
316 /* The first block is the ENTRY_BLOCK (or EXIT_BLOCK if REVERSE). */
317 basic_block begin = reverse ? EXIT_BLOCK_PTR : ENTRY_BLOCK_PTR;
318 di->dfs_order[last_basic_block] = di->dfsnum;
319 di->dfs_to_bb[di->dfsnum] = begin;
320 di->dfsnum++;
322 calc_dfs_tree_nonrec (di, begin, reverse);
324 if (reverse)
326 /* In the post-dom case we may have nodes without a path to EXIT_BLOCK.
327 They are reverse-unreachable. In the dom-case we disallow such
328 nodes, but in post-dom we have to deal with them.
330 There are two situations in which this occurs. First, noreturn
331 functions. Second, infinite loops. In the first case we need to
332 pretend that there is an edge to the exit block. In the second
333 case, we wind up with a forest. We need to process all noreturn
334 blocks before we know if we've got any infinite loops. */
336 basic_block b;
337 bool saw_unconnected = false;
339 FOR_EACH_BB_REVERSE (b)
341 if (EDGE_COUNT (b->succs) > 0)
343 if (di->dfs_order[b->index] == 0)
344 saw_unconnected = true;
345 continue;
347 bitmap_set_bit (di->fake_exit_edge, b->index);
348 di->dfs_order[b->index] = di->dfsnum;
349 di->dfs_to_bb[di->dfsnum] = b;
350 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
351 di->dfsnum++;
352 calc_dfs_tree_nonrec (di, b, reverse);
355 if (saw_unconnected)
357 FOR_EACH_BB_REVERSE (b)
359 if (di->dfs_order[b->index])
360 continue;
361 bitmap_set_bit (di->fake_exit_edge, b->index);
362 di->dfs_order[b->index] = di->dfsnum;
363 di->dfs_to_bb[di->dfsnum] = b;
364 di->dfs_parent[di->dfsnum] = di->dfs_order[last_basic_block];
365 di->dfsnum++;
366 calc_dfs_tree_nonrec (di, b, reverse);
371 di->nodes = di->dfsnum - 1;
373 /* This aborts e.g. when there is _no_ path from ENTRY to EXIT at all. */
374 gcc_assert (di->nodes == (unsigned int) n_basic_blocks - 1);
377 /* Compress the path from V to the root of its set and update path_min at the
378 same time. After compress(di, V) set_chain[V] is the root of the set V is
379 in and path_min[V] is the node with the smallest key[] value on the path
380 from V to that root. */
382 static void
383 compress (struct dom_info *di, TBB v)
385 /* Btw. It's not worth to unrecurse compress() as the depth is usually not
386 greater than 5 even for huge graphs (I've not seen call depth > 4).
387 Also performance wise compress() ranges _far_ behind eval(). */
388 TBB parent = di->set_chain[v];
389 if (di->set_chain[parent])
391 compress (di, parent);
392 if (di->key[di->path_min[parent]] < di->key[di->path_min[v]])
393 di->path_min[v] = di->path_min[parent];
394 di->set_chain[v] = di->set_chain[parent];
398 /* Compress the path from V to the set root of V if needed (when the root has
399 changed since the last call). Returns the node with the smallest key[]
400 value on the path from V to the root. */
402 static inline TBB
403 eval (struct dom_info *di, TBB v)
405 /* The representant of the set V is in, also called root (as the set
406 representation is a tree). */
407 TBB rep = di->set_chain[v];
409 /* V itself is the root. */
410 if (!rep)
411 return di->path_min[v];
413 /* Compress only if necessary. */
414 if (di->set_chain[rep])
416 compress (di, v);
417 rep = di->set_chain[v];
420 if (di->key[di->path_min[rep]] >= di->key[di->path_min[v]])
421 return di->path_min[v];
422 else
423 return di->path_min[rep];
426 /* This essentially merges the two sets of V and W, giving a single set with
427 the new root V. The internal representation of these disjoint sets is a
428 balanced tree. Currently link(V,W) is only used with V being the parent
429 of W. */
431 static void
432 link_roots (struct dom_info *di, TBB v, TBB w)
434 TBB s = w;
436 /* Rebalance the tree. */
437 while (di->key[di->path_min[w]] < di->key[di->path_min[di->set_child[s]]])
439 if (di->set_size[s] + di->set_size[di->set_child[di->set_child[s]]]
440 >= 2 * di->set_size[di->set_child[s]])
442 di->set_chain[di->set_child[s]] = s;
443 di->set_child[s] = di->set_child[di->set_child[s]];
445 else
447 di->set_size[di->set_child[s]] = di->set_size[s];
448 s = di->set_chain[s] = di->set_child[s];
452 di->path_min[s] = di->path_min[w];
453 di->set_size[v] += di->set_size[w];
454 if (di->set_size[v] < 2 * di->set_size[w])
456 TBB tmp = s;
457 s = di->set_child[v];
458 di->set_child[v] = tmp;
461 /* Merge all subtrees. */
462 while (s)
464 di->set_chain[s] = v;
465 s = di->set_child[s];
469 /* This calculates the immediate dominators (or post-dominators if REVERSE is
470 true). DI is our working structure and should hold the DFS forest.
471 On return the immediate dominator to node V is in di->dom[V]. */
473 static void
474 calc_idoms (struct dom_info *di, enum cdi_direction reverse)
476 TBB v, w, k, par;
477 basic_block en_block;
478 edge_iterator ei, einext;
480 if (reverse)
481 en_block = EXIT_BLOCK_PTR;
482 else
483 en_block = ENTRY_BLOCK_PTR;
485 /* Go backwards in DFS order, to first look at the leafs. */
486 v = di->nodes;
487 while (v > 1)
489 basic_block bb = di->dfs_to_bb[v];
490 edge e;
492 par = di->dfs_parent[v];
493 k = v;
495 ei = (reverse) ? ei_start (bb->succs) : ei_start (bb->preds);
497 if (reverse)
499 /* If this block has a fake edge to exit, process that first. */
500 if (bitmap_bit_p (di->fake_exit_edge, bb->index))
502 einext = ei;
503 einext.index = 0;
504 goto do_fake_exit_edge;
508 /* Search all direct predecessors for the smallest node with a path
509 to them. That way we have the smallest node with also a path to
510 us only over nodes behind us. In effect we search for our
511 semidominator. */
512 while (!ei_end_p (ei))
514 TBB k1;
515 basic_block b;
517 e = ei_edge (ei);
518 b = (reverse) ? e->dest : e->src;
519 einext = ei;
520 ei_next (&einext);
522 if (b == en_block)
524 do_fake_exit_edge:
525 k1 = di->dfs_order[last_basic_block];
527 else
528 k1 = di->dfs_order[b->index];
530 /* Call eval() only if really needed. If k1 is above V in DFS tree,
531 then we know, that eval(k1) == k1 and key[k1] == k1. */
532 if (k1 > v)
533 k1 = di->key[eval (di, k1)];
534 if (k1 < k)
535 k = k1;
537 ei = einext;
540 di->key[v] = k;
541 link_roots (di, par, v);
542 di->next_bucket[v] = di->bucket[k];
543 di->bucket[k] = v;
545 /* Transform semidominators into dominators. */
546 for (w = di->bucket[par]; w; w = di->next_bucket[w])
548 k = eval (di, w);
549 if (di->key[k] < di->key[w])
550 di->dom[w] = k;
551 else
552 di->dom[w] = par;
554 /* We don't need to cleanup next_bucket[]. */
555 di->bucket[par] = 0;
556 v--;
559 /* Explicitly define the dominators. */
560 di->dom[1] = 0;
561 for (v = 2; v <= di->nodes; v++)
562 if (di->dom[v] != di->key[v])
563 di->dom[v] = di->dom[di->dom[v]];
566 /* Assign dfs numbers starting from NUM to NODE and its sons. */
568 static void
569 assign_dfs_numbers (struct et_node *node, int *num)
571 struct et_node *son;
573 node->dfs_num_in = (*num)++;
575 if (node->son)
577 assign_dfs_numbers (node->son, num);
578 for (son = node->son->right; son != node->son; son = son->right)
579 assign_dfs_numbers (son, num);
582 node->dfs_num_out = (*num)++;
585 /* Compute the data necessary for fast resolving of dominator queries in a
586 static dominator tree. */
588 static void
589 compute_dom_fast_query (enum cdi_direction dir)
591 int num = 0;
592 basic_block bb;
594 gcc_assert (dom_info_available_p (dir));
596 if (dom_computed[dir] == DOM_OK)
597 return;
599 FOR_ALL_BB (bb)
601 if (!bb->dom[dir]->father)
602 assign_dfs_numbers (bb->dom[dir], &num);
605 dom_computed[dir] = DOM_OK;
608 /* The main entry point into this module. DIR is set depending on whether
609 we want to compute dominators or postdominators. */
611 void
612 calculate_dominance_info (enum cdi_direction dir)
614 struct dom_info di;
615 basic_block b;
617 if (dom_computed[dir] == DOM_OK)
618 return;
620 timevar_push (TV_DOMINANCE);
621 if (!dom_info_available_p (dir))
623 gcc_assert (!n_bbs_in_dom_tree[dir]);
625 FOR_ALL_BB (b)
627 b->dom[dir] = et_new_tree (b);
629 n_bbs_in_dom_tree[dir] = n_basic_blocks;
631 init_dom_info (&di, dir);
632 calc_dfs_tree (&di, dir);
633 calc_idoms (&di, dir);
635 FOR_EACH_BB (b)
637 TBB d = di.dom[di.dfs_order[b->index]];
639 if (di.dfs_to_bb[d])
640 et_set_father (b->dom[dir], di.dfs_to_bb[d]->dom[dir]);
643 free_dom_info (&di);
644 dom_computed[dir] = DOM_NO_FAST_QUERY;
647 compute_dom_fast_query (dir);
649 timevar_pop (TV_DOMINANCE);
652 /* Free dominance information for direction DIR. */
653 void
654 free_dominance_info (enum cdi_direction dir)
656 basic_block bb;
658 if (!dom_info_available_p (dir))
659 return;
661 FOR_ALL_BB (bb)
663 et_free_tree_force (bb->dom[dir]);
664 bb->dom[dir] = NULL;
667 n_bbs_in_dom_tree[dir] = 0;
669 dom_computed[dir] = DOM_NONE;
672 /* Return the immediate dominator of basic block BB. */
673 basic_block
674 get_immediate_dominator (enum cdi_direction dir, basic_block bb)
676 struct et_node *node = bb->dom[dir];
678 gcc_assert (dom_computed[dir]);
680 if (!node->father)
681 return NULL;
683 return node->father->data;
686 /* Set the immediate dominator of the block possibly removing
687 existing edge. NULL can be used to remove any edge. */
688 inline void
689 set_immediate_dominator (enum cdi_direction dir, basic_block bb,
690 basic_block dominated_by)
692 struct et_node *node = bb->dom[dir];
694 gcc_assert (dom_computed[dir]);
696 if (node->father)
698 if (node->father->data == dominated_by)
699 return;
700 et_split (node);
703 if (dominated_by)
704 et_set_father (node, dominated_by->dom[dir]);
706 if (dom_computed[dir] == DOM_OK)
707 dom_computed[dir] = DOM_NO_FAST_QUERY;
710 /* Store all basic blocks immediately dominated by BB into BBS and return
711 their number. */
713 get_dominated_by (enum cdi_direction dir, basic_block bb, basic_block **bbs)
715 int n;
716 struct et_node *node = bb->dom[dir], *son = node->son, *ason;
718 gcc_assert (dom_computed[dir]);
720 if (!son)
722 *bbs = NULL;
723 return 0;
726 for (ason = son->right, n = 1; ason != son; ason = ason->right)
727 n++;
729 *bbs = XNEWVEC (basic_block, n);
730 (*bbs)[0] = son->data;
731 for (ason = son->right, n = 1; ason != son; ason = ason->right)
732 (*bbs)[n++] = ason->data;
734 return n;
737 /* Find all basic blocks that are immediately dominated (in direction DIR)
738 by some block between N_REGION ones stored in REGION, except for blocks
739 in the REGION itself. The found blocks are stored to DOMS and their number
740 is returned. */
742 unsigned
743 get_dominated_by_region (enum cdi_direction dir, basic_block *region,
744 unsigned n_region, basic_block *doms)
746 unsigned n_doms = 0, i;
747 basic_block dom;
749 for (i = 0; i < n_region; i++)
750 region[i]->flags |= BB_DUPLICATED;
751 for (i = 0; i < n_region; i++)
752 for (dom = first_dom_son (dir, region[i]);
753 dom;
754 dom = next_dom_son (dir, dom))
755 if (!(dom->flags & BB_DUPLICATED))
756 doms[n_doms++] = dom;
757 for (i = 0; i < n_region; i++)
758 region[i]->flags &= ~BB_DUPLICATED;
760 return n_doms;
763 /* Redirect all edges pointing to BB to TO. */
764 void
765 redirect_immediate_dominators (enum cdi_direction dir, basic_block bb,
766 basic_block to)
768 struct et_node *bb_node = bb->dom[dir], *to_node = to->dom[dir], *son;
770 gcc_assert (dom_computed[dir]);
772 if (!bb_node->son)
773 return;
775 while (bb_node->son)
777 son = bb_node->son;
779 et_split (son);
780 et_set_father (son, to_node);
783 if (dom_computed[dir] == DOM_OK)
784 dom_computed[dir] = DOM_NO_FAST_QUERY;
787 /* Find first basic block in the tree dominating both BB1 and BB2. */
788 basic_block
789 nearest_common_dominator (enum cdi_direction dir, basic_block bb1, basic_block bb2)
791 gcc_assert (dom_computed[dir]);
793 if (!bb1)
794 return bb2;
795 if (!bb2)
796 return bb1;
798 return et_nca (bb1->dom[dir], bb2->dom[dir])->data;
802 /* Find the nearest common dominator for the basic blocks in BLOCKS,
803 using dominance direction DIR. */
805 basic_block
806 nearest_common_dominator_for_set (enum cdi_direction dir, bitmap blocks)
808 unsigned i, first;
809 bitmap_iterator bi;
810 basic_block dom;
812 first = bitmap_first_set_bit (blocks);
813 dom = BASIC_BLOCK (first);
814 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
815 if (dom != BASIC_BLOCK (i))
816 dom = nearest_common_dominator (dir, dom, BASIC_BLOCK (i));
818 return dom;
821 /* Given a dominator tree, we can determine whether one thing
822 dominates another in constant time by using two DFS numbers:
824 1. The number for when we visit a node on the way down the tree
825 2. The number for when we visit a node on the way back up the tree
827 You can view these as bounds for the range of dfs numbers the
828 nodes in the subtree of the dominator tree rooted at that node
829 will contain.
831 The dominator tree is always a simple acyclic tree, so there are
832 only three possible relations two nodes in the dominator tree have
833 to each other:
835 1. Node A is above Node B (and thus, Node A dominates node B)
844 In the above case, DFS_Number_In of A will be <= DFS_Number_In of
845 B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
846 because we must hit A in the dominator tree *before* B on the walk
847 down, and we will hit A *after* B on the walk back up
849 2. Node A is below node B (and thus, node B dominates node A)
858 In the above case, DFS_Number_In of A will be >= DFS_Number_In of
859 B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
861 This is because we must hit A in the dominator tree *after* B on
862 the walk down, and we will hit A *before* B on the walk back up
864 3. Node A and B are siblings (and thus, neither dominates the other)
872 In the above case, DFS_Number_In of A will *always* be <=
873 DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
874 DFS_Number_Out of B. This is because we will always finish the dfs
875 walk of one of the subtrees before the other, and thus, the dfs
876 numbers for one subtree can't intersect with the range of dfs
877 numbers for the other subtree. If you swap A and B's position in
878 the dominator tree, the comparison changes direction, but the point
879 is that both comparisons will always go the same way if there is no
880 dominance relationship.
882 Thus, it is sufficient to write
884 A_Dominates_B (node A, node B)
886 return DFS_Number_In(A) <= DFS_Number_In(B)
887 && DFS_Number_Out (A) >= DFS_Number_Out(B);
890 A_Dominated_by_B (node A, node B)
892 return DFS_Number_In(A) >= DFS_Number_In(A)
893 && DFS_Number_Out (A) <= DFS_Number_Out(B);
894 } */
896 /* Return TRUE in case BB1 is dominated by BB2. */
897 bool
898 dominated_by_p (enum cdi_direction dir, basic_block bb1, basic_block bb2)
900 struct et_node *n1 = bb1->dom[dir], *n2 = bb2->dom[dir];
902 gcc_assert (dom_computed[dir]);
904 if (dom_computed[dir] == DOM_OK)
905 return (n1->dfs_num_in >= n2->dfs_num_in
906 && n1->dfs_num_out <= n2->dfs_num_out);
908 return et_below (n1, n2);
911 /* Verify invariants of dominator structure. */
912 void
913 verify_dominators (enum cdi_direction dir)
915 int err = 0;
916 basic_block bb;
918 gcc_assert (dom_info_available_p (dir));
920 FOR_EACH_BB (bb)
922 basic_block dom_bb;
923 basic_block imm_bb;
925 dom_bb = recount_dominator (dir, bb);
926 imm_bb = get_immediate_dominator (dir, bb);
927 if (dom_bb != imm_bb)
929 if ((dom_bb == NULL) || (imm_bb == NULL))
930 error ("dominator of %d status unknown", bb->index);
931 else
932 error ("dominator of %d should be %d, not %d",
933 bb->index, dom_bb->index, imm_bb->index);
934 err = 1;
938 if (dir == CDI_DOMINATORS)
940 FOR_EACH_BB (bb)
942 if (!dominated_by_p (dir, bb, ENTRY_BLOCK_PTR))
944 error ("ENTRY does not dominate bb %d", bb->index);
945 err = 1;
950 gcc_assert (!err);
953 /* Determine immediate dominator (or postdominator, according to DIR) of BB,
954 assuming that dominators of other blocks are correct. We also use it to
955 recompute the dominators in a restricted area, by iterating it until it
956 reaches a fixed point. */
958 basic_block
959 recount_dominator (enum cdi_direction dir, basic_block bb)
961 basic_block dom_bb = NULL;
962 edge e;
963 edge_iterator ei;
965 gcc_assert (dom_computed[dir]);
967 if (dir == CDI_DOMINATORS)
969 FOR_EACH_EDGE (e, ei, bb->preds)
971 /* Ignore the predecessors that either are not reachable from
972 the entry block, or whose dominator was not determined yet. */
973 if (!dominated_by_p (dir, e->src, ENTRY_BLOCK_PTR))
974 continue;
976 if (!dominated_by_p (dir, e->src, bb))
977 dom_bb = nearest_common_dominator (dir, dom_bb, e->src);
980 else
982 FOR_EACH_EDGE (e, ei, bb->succs)
984 if (!dominated_by_p (dir, e->dest, bb))
985 dom_bb = nearest_common_dominator (dir, dom_bb, e->dest);
989 return dom_bb;
992 /* Iteratively recount dominators of BBS. The change is supposed to be local
993 and not to grow further. */
994 void
995 iterate_fix_dominators (enum cdi_direction dir, basic_block *bbs, int n)
997 int i, changed = 1;
998 basic_block old_dom, new_dom;
1000 gcc_assert (dom_computed[dir]);
1002 for (i = 0; i < n; i++)
1003 set_immediate_dominator (dir, bbs[i], NULL);
1005 while (changed)
1007 changed = 0;
1008 for (i = 0; i < n; i++)
1010 old_dom = get_immediate_dominator (dir, bbs[i]);
1011 new_dom = recount_dominator (dir, bbs[i]);
1012 if (old_dom != new_dom)
1014 changed = 1;
1015 set_immediate_dominator (dir, bbs[i], new_dom);
1020 for (i = 0; i < n; i++)
1021 gcc_assert (get_immediate_dominator (dir, bbs[i]));
1024 void
1025 add_to_dominance_info (enum cdi_direction dir, basic_block bb)
1027 gcc_assert (dom_computed[dir]);
1028 gcc_assert (!bb->dom[dir]);
1030 n_bbs_in_dom_tree[dir]++;
1032 bb->dom[dir] = et_new_tree (bb);
1034 if (dom_computed[dir] == DOM_OK)
1035 dom_computed[dir] = DOM_NO_FAST_QUERY;
1038 void
1039 delete_from_dominance_info (enum cdi_direction dir, basic_block bb)
1041 gcc_assert (dom_computed[dir]);
1043 et_free_tree (bb->dom[dir]);
1044 bb->dom[dir] = NULL;
1045 n_bbs_in_dom_tree[dir]--;
1047 if (dom_computed[dir] == DOM_OK)
1048 dom_computed[dir] = DOM_NO_FAST_QUERY;
1051 /* Returns the first son of BB in the dominator or postdominator tree
1052 as determined by DIR. */
1054 basic_block
1055 first_dom_son (enum cdi_direction dir, basic_block bb)
1057 struct et_node *son = bb->dom[dir]->son;
1059 return son ? son->data : NULL;
1062 /* Returns the next dominance son after BB in the dominator or postdominator
1063 tree as determined by DIR, or NULL if it was the last one. */
1065 basic_block
1066 next_dom_son (enum cdi_direction dir, basic_block bb)
1068 struct et_node *next = bb->dom[dir]->right;
1070 return next->father->son == next ? NULL : next->data;
1073 /* Returns true if dominance information for direction DIR is available. */
1075 bool
1076 dom_info_available_p (enum cdi_direction dir)
1078 return dom_computed[dir] != DOM_NONE;
1081 void
1082 debug_dominance_info (enum cdi_direction dir)
1084 basic_block bb, bb2;
1085 FOR_EACH_BB (bb)
1086 if ((bb2 = get_immediate_dominator (dir, bb)))
1087 fprintf (stderr, "%i %i\n", bb->index, bb2->index);