2006-08-07 Andrew John Hughes <gnu_andrew@member.fsf.org>
[official-gcc.git] / gcc / bb-reorder.c
blobbf8c6afe05f247baf54f9c27b5a3378220c558fe
1 /* Basic block reordering routines for the GNU compiler.
2 Copyright (C) 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
21 /* This (greedy) algorithm constructs traces in several rounds.
22 The construction starts from "seeds". The seed for the first round
23 is the entry point of function. When there are more than one seed
24 that one is selected first that has the lowest key in the heap
25 (see function bb_to_key). Then the algorithm repeatedly adds the most
26 probable successor to the end of a trace. Finally it connects the traces.
28 There are two parameters: Branch Threshold and Exec Threshold.
29 If the edge to a successor of the actual basic block is lower than
30 Branch Threshold or the frequency of the successor is lower than
31 Exec Threshold the successor will be the seed in one of the next rounds.
32 Each round has these parameters lower than the previous one.
33 The last round has to have these parameters set to zero
34 so that the remaining blocks are picked up.
36 The algorithm selects the most probable successor from all unvisited
37 successors and successors that have been added to this trace.
38 The other successors (that has not been "sent" to the next round) will be
39 other seeds for this round and the secondary traces will start in them.
40 If the successor has not been visited in this trace it is added to the trace
41 (however, there is some heuristic for simple branches).
42 If the successor has been visited in this trace the loop has been found.
43 If the loop has many iterations the loop is rotated so that the
44 source block of the most probable edge going out from the loop
45 is the last block of the trace.
46 If the loop has few iterations and there is no edge from the last block of
47 the loop going out from loop the loop header is duplicated.
48 Finally, the construction of the trace is terminated.
50 When connecting traces it first checks whether there is an edge from the
51 last block of one trace to the first block of another trace.
52 When there are still some unconnected traces it checks whether there exists
53 a basic block BB such that BB is a successor of the last bb of one trace
54 and BB is a predecessor of the first block of another trace. In this case,
55 BB is duplicated and the traces are connected through this duplicate.
56 The rest of traces are simply connected so there will be a jump to the
57 beginning of the rest of trace.
60 References:
62 "Software Trace Cache"
63 A. Ramirez, J. Larriba-Pey, C. Navarro, J. Torrellas and M. Valero; 1999
64 http://citeseer.nj.nec.com/15361.html
68 #include "config.h"
69 #include "system.h"
70 #include "coretypes.h"
71 #include "tm.h"
72 #include "rtl.h"
73 #include "regs.h"
74 #include "flags.h"
75 #include "timevar.h"
76 #include "output.h"
77 #include "cfglayout.h"
78 #include "fibheap.h"
79 #include "target.h"
80 #include "function.h"
81 #include "tm_p.h"
82 #include "obstack.h"
83 #include "expr.h"
84 #include "params.h"
85 #include "toplev.h"
86 #include "tree-pass.h"
88 #ifndef HAVE_conditional_execution
89 #define HAVE_conditional_execution 0
90 #endif
92 /* The number of rounds. In most cases there will only be 4 rounds, but
93 when partitioning hot and cold basic blocks into separate sections of
94 the .o file there will be an extra round.*/
95 #define N_ROUNDS 5
97 /* Stubs in case we don't have a return insn.
98 We have to check at runtime too, not only compiletime. */
100 #ifndef HAVE_return
101 #define HAVE_return 0
102 #define gen_return() NULL_RTX
103 #endif
106 /* Branch thresholds in thousandths (per mille) of the REG_BR_PROB_BASE. */
107 static int branch_threshold[N_ROUNDS] = {400, 200, 100, 0, 0};
109 /* Exec thresholds in thousandths (per mille) of the frequency of bb 0. */
110 static int exec_threshold[N_ROUNDS] = {500, 200, 50, 0, 0};
112 /* If edge frequency is lower than DUPLICATION_THRESHOLD per mille of entry
113 block the edge destination is not duplicated while connecting traces. */
114 #define DUPLICATION_THRESHOLD 100
116 /* Length of unconditional jump instruction. */
117 static int uncond_jump_length;
119 /* Structure to hold needed information for each basic block. */
120 typedef struct bbro_basic_block_data_def
122 /* Which trace is the bb start of (-1 means it is not a start of a trace). */
123 int start_of_trace;
125 /* Which trace is the bb end of (-1 means it is not an end of a trace). */
126 int end_of_trace;
128 /* Which trace is the bb in? */
129 int in_trace;
131 /* Which heap is BB in (if any)? */
132 fibheap_t heap;
134 /* Which heap node is BB in (if any)? */
135 fibnode_t node;
136 } bbro_basic_block_data;
138 /* The current size of the following dynamic array. */
139 static int array_size;
141 /* The array which holds needed information for basic blocks. */
142 static bbro_basic_block_data *bbd;
144 /* To avoid frequent reallocation the size of arrays is greater than needed,
145 the number of elements is (not less than) 1.25 * size_wanted. */
146 #define GET_ARRAY_SIZE(X) ((((X) / 4) + 1) * 5)
148 /* Free the memory and set the pointer to NULL. */
149 #define FREE(P) (gcc_assert (P), free (P), P = 0)
151 /* Structure for holding information about a trace. */
152 struct trace
154 /* First and last basic block of the trace. */
155 basic_block first, last;
157 /* The round of the STC creation which this trace was found in. */
158 int round;
160 /* The length (i.e. the number of basic blocks) of the trace. */
161 int length;
164 /* Maximum frequency and count of one of the entry blocks. */
165 static int max_entry_frequency;
166 static gcov_type max_entry_count;
168 /* Local function prototypes. */
169 static void find_traces (int *, struct trace *);
170 static basic_block rotate_loop (edge, struct trace *, int);
171 static void mark_bb_visited (basic_block, int);
172 static void find_traces_1_round (int, int, gcov_type, struct trace *, int *,
173 int, fibheap_t *, int);
174 static basic_block copy_bb (basic_block, edge, basic_block, int);
175 static fibheapkey_t bb_to_key (basic_block);
176 static bool better_edge_p (basic_block, edge, int, int, int, int, edge);
177 static void connect_traces (int, struct trace *);
178 static bool copy_bb_p (basic_block, int);
179 static int get_uncond_jump_length (void);
180 static bool push_to_next_round_p (basic_block, int, int, int, gcov_type);
181 static void find_rarely_executed_basic_blocks_and_crossing_edges (edge *,
182 int *,
183 int *);
184 static void add_labels_and_missing_jumps (edge *, int);
185 static void add_reg_crossing_jump_notes (void);
186 static void fix_up_fall_thru_edges (void);
187 static void fix_edges_for_rarely_executed_code (edge *, int);
188 static void fix_crossing_conditional_branches (void);
189 static void fix_crossing_unconditional_branches (void);
191 /* Check to see if bb should be pushed into the next round of trace
192 collections or not. Reasons for pushing the block forward are 1).
193 If the block is cold, we are doing partitioning, and there will be
194 another round (cold partition blocks are not supposed to be
195 collected into traces until the very last round); or 2). There will
196 be another round, and the basic block is not "hot enough" for the
197 current round of trace collection. */
199 static bool
200 push_to_next_round_p (basic_block bb, int round, int number_of_rounds,
201 int exec_th, gcov_type count_th)
203 bool there_exists_another_round;
204 bool block_not_hot_enough;
206 there_exists_another_round = round < number_of_rounds - 1;
208 block_not_hot_enough = (bb->frequency < exec_th
209 || bb->count < count_th
210 || probably_never_executed_bb_p (bb));
212 if (there_exists_another_round
213 && block_not_hot_enough)
214 return true;
215 else
216 return false;
219 /* Find the traces for Software Trace Cache. Chain each trace through
220 RBI()->next. Store the number of traces to N_TRACES and description of
221 traces to TRACES. */
223 static void
224 find_traces (int *n_traces, struct trace *traces)
226 int i;
227 int number_of_rounds;
228 edge e;
229 edge_iterator ei;
230 fibheap_t heap;
232 /* Add one extra round of trace collection when partitioning hot/cold
233 basic blocks into separate sections. The last round is for all the
234 cold blocks (and ONLY the cold blocks). */
236 number_of_rounds = N_ROUNDS - 1;
238 /* Insert entry points of function into heap. */
239 heap = fibheap_new ();
240 max_entry_frequency = 0;
241 max_entry_count = 0;
242 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
244 bbd[e->dest->index].heap = heap;
245 bbd[e->dest->index].node = fibheap_insert (heap, bb_to_key (e->dest),
246 e->dest);
247 if (e->dest->frequency > max_entry_frequency)
248 max_entry_frequency = e->dest->frequency;
249 if (e->dest->count > max_entry_count)
250 max_entry_count = e->dest->count;
253 /* Find the traces. */
254 for (i = 0; i < number_of_rounds; i++)
256 gcov_type count_threshold;
258 if (dump_file)
259 fprintf (dump_file, "STC - round %d\n", i + 1);
261 if (max_entry_count < INT_MAX / 1000)
262 count_threshold = max_entry_count * exec_threshold[i] / 1000;
263 else
264 count_threshold = max_entry_count / 1000 * exec_threshold[i];
266 find_traces_1_round (REG_BR_PROB_BASE * branch_threshold[i] / 1000,
267 max_entry_frequency * exec_threshold[i] / 1000,
268 count_threshold, traces, n_traces, i, &heap,
269 number_of_rounds);
271 fibheap_delete (heap);
273 if (dump_file)
275 for (i = 0; i < *n_traces; i++)
277 basic_block bb;
278 fprintf (dump_file, "Trace %d (round %d): ", i + 1,
279 traces[i].round + 1);
280 for (bb = traces[i].first; bb != traces[i].last; bb = bb->aux)
281 fprintf (dump_file, "%d [%d] ", bb->index, bb->frequency);
282 fprintf (dump_file, "%d [%d]\n", bb->index, bb->frequency);
284 fflush (dump_file);
288 /* Rotate loop whose back edge is BACK_EDGE in the tail of trace TRACE
289 (with sequential number TRACE_N). */
291 static basic_block
292 rotate_loop (edge back_edge, struct trace *trace, int trace_n)
294 basic_block bb;
296 /* Information about the best end (end after rotation) of the loop. */
297 basic_block best_bb = NULL;
298 edge best_edge = NULL;
299 int best_freq = -1;
300 gcov_type best_count = -1;
301 /* The best edge is preferred when its destination is not visited yet
302 or is a start block of some trace. */
303 bool is_preferred = false;
305 /* Find the most frequent edge that goes out from current trace. */
306 bb = back_edge->dest;
309 edge e;
310 edge_iterator ei;
312 FOR_EACH_EDGE (e, ei, bb->succs)
313 if (e->dest != EXIT_BLOCK_PTR
314 && e->dest->il.rtl->visited != trace_n
315 && (e->flags & EDGE_CAN_FALLTHRU)
316 && !(e->flags & EDGE_COMPLEX))
318 if (is_preferred)
320 /* The best edge is preferred. */
321 if (!e->dest->il.rtl->visited
322 || bbd[e->dest->index].start_of_trace >= 0)
324 /* The current edge E is also preferred. */
325 int freq = EDGE_FREQUENCY (e);
326 if (freq > best_freq || e->count > best_count)
328 best_freq = freq;
329 best_count = e->count;
330 best_edge = e;
331 best_bb = bb;
335 else
337 if (!e->dest->il.rtl->visited
338 || bbd[e->dest->index].start_of_trace >= 0)
340 /* The current edge E is preferred. */
341 is_preferred = true;
342 best_freq = EDGE_FREQUENCY (e);
343 best_count = e->count;
344 best_edge = e;
345 best_bb = bb;
347 else
349 int freq = EDGE_FREQUENCY (e);
350 if (!best_edge || freq > best_freq || e->count > best_count)
352 best_freq = freq;
353 best_count = e->count;
354 best_edge = e;
355 best_bb = bb;
360 bb = bb->aux;
362 while (bb != back_edge->dest);
364 if (best_bb)
366 /* Rotate the loop so that the BEST_EDGE goes out from the last block of
367 the trace. */
368 if (back_edge->dest == trace->first)
370 trace->first = best_bb->aux;
372 else
374 basic_block prev_bb;
376 for (prev_bb = trace->first;
377 prev_bb->aux != back_edge->dest;
378 prev_bb = prev_bb->aux)
380 prev_bb->aux = best_bb->aux;
382 /* Try to get rid of uncond jump to cond jump. */
383 if (single_succ_p (prev_bb))
385 basic_block header = single_succ (prev_bb);
387 /* Duplicate HEADER if it is a small block containing cond jump
388 in the end. */
389 if (any_condjump_p (BB_END (header)) && copy_bb_p (header, 0)
390 && !find_reg_note (BB_END (header), REG_CROSSING_JUMP,
391 NULL_RTX))
392 copy_bb (header, single_succ_edge (prev_bb), prev_bb, trace_n);
396 else
398 /* We have not found suitable loop tail so do no rotation. */
399 best_bb = back_edge->src;
401 best_bb->aux = NULL;
402 return best_bb;
405 /* This function marks BB that it was visited in trace number TRACE. */
407 static void
408 mark_bb_visited (basic_block bb, int trace)
410 bb->il.rtl->visited = trace;
411 if (bbd[bb->index].heap)
413 fibheap_delete_node (bbd[bb->index].heap, bbd[bb->index].node);
414 bbd[bb->index].heap = NULL;
415 bbd[bb->index].node = NULL;
419 /* One round of finding traces. Find traces for BRANCH_TH and EXEC_TH i.e. do
420 not include basic blocks their probability is lower than BRANCH_TH or their
421 frequency is lower than EXEC_TH into traces (or count is lower than
422 COUNT_TH). It stores the new traces into TRACES and modifies the number of
423 traces *N_TRACES. Sets the round (which the trace belongs to) to ROUND. It
424 expects that starting basic blocks are in *HEAP and at the end it deletes
425 *HEAP and stores starting points for the next round into new *HEAP. */
427 static void
428 find_traces_1_round (int branch_th, int exec_th, gcov_type count_th,
429 struct trace *traces, int *n_traces, int round,
430 fibheap_t *heap, int number_of_rounds)
432 /* Heap for discarded basic blocks which are possible starting points for
433 the next round. */
434 fibheap_t new_heap = fibheap_new ();
436 while (!fibheap_empty (*heap))
438 basic_block bb;
439 struct trace *trace;
440 edge best_edge, e;
441 fibheapkey_t key;
442 edge_iterator ei;
444 bb = fibheap_extract_min (*heap);
445 bbd[bb->index].heap = NULL;
446 bbd[bb->index].node = NULL;
448 if (dump_file)
449 fprintf (dump_file, "Getting bb %d\n", bb->index);
451 /* If the BB's frequency is too low send BB to the next round. When
452 partitioning hot/cold blocks into separate sections, make sure all
453 the cold blocks (and ONLY the cold blocks) go into the (extra) final
454 round. */
456 if (push_to_next_round_p (bb, round, number_of_rounds, exec_th,
457 count_th))
459 int key = bb_to_key (bb);
460 bbd[bb->index].heap = new_heap;
461 bbd[bb->index].node = fibheap_insert (new_heap, key, bb);
463 if (dump_file)
464 fprintf (dump_file,
465 " Possible start point of next round: %d (key: %d)\n",
466 bb->index, key);
467 continue;
470 trace = traces + *n_traces;
471 trace->first = bb;
472 trace->round = round;
473 trace->length = 0;
474 bbd[bb->index].in_trace = *n_traces;
475 (*n_traces)++;
479 int prob, freq;
480 bool ends_in_call;
482 /* The probability and frequency of the best edge. */
483 int best_prob = INT_MIN / 2;
484 int best_freq = INT_MIN / 2;
486 best_edge = NULL;
487 mark_bb_visited (bb, *n_traces);
488 trace->length++;
490 if (dump_file)
491 fprintf (dump_file, "Basic block %d was visited in trace %d\n",
492 bb->index, *n_traces - 1);
494 ends_in_call = block_ends_with_call_p (bb);
496 /* Select the successor that will be placed after BB. */
497 FOR_EACH_EDGE (e, ei, bb->succs)
499 gcc_assert (!(e->flags & EDGE_FAKE));
501 if (e->dest == EXIT_BLOCK_PTR)
502 continue;
504 if (e->dest->il.rtl->visited
505 && e->dest->il.rtl->visited != *n_traces)
506 continue;
508 if (BB_PARTITION (e->dest) != BB_PARTITION (bb))
509 continue;
511 prob = e->probability;
512 freq = e->dest->frequency;
514 /* The only sensible preference for a call instruction is the
515 fallthru edge. Don't bother selecting anything else. */
516 if (ends_in_call)
518 if (e->flags & EDGE_CAN_FALLTHRU)
520 best_edge = e;
521 best_prob = prob;
522 best_freq = freq;
524 continue;
527 /* Edge that cannot be fallthru or improbable or infrequent
528 successor (i.e. it is unsuitable successor). */
529 if (!(e->flags & EDGE_CAN_FALLTHRU) || (e->flags & EDGE_COMPLEX)
530 || prob < branch_th || EDGE_FREQUENCY (e) < exec_th
531 || e->count < count_th)
532 continue;
534 /* If partitioning hot/cold basic blocks, don't consider edges
535 that cross section boundaries. */
537 if (better_edge_p (bb, e, prob, freq, best_prob, best_freq,
538 best_edge))
540 best_edge = e;
541 best_prob = prob;
542 best_freq = freq;
546 /* If the best destination has multiple predecessors, and can be
547 duplicated cheaper than a jump, don't allow it to be added
548 to a trace. We'll duplicate it when connecting traces. */
549 if (best_edge && EDGE_COUNT (best_edge->dest->preds) >= 2
550 && copy_bb_p (best_edge->dest, 0))
551 best_edge = NULL;
553 /* Add all non-selected successors to the heaps. */
554 FOR_EACH_EDGE (e, ei, bb->succs)
556 if (e == best_edge
557 || e->dest == EXIT_BLOCK_PTR
558 || e->dest->il.rtl->visited)
559 continue;
561 key = bb_to_key (e->dest);
563 if (bbd[e->dest->index].heap)
565 /* E->DEST is already in some heap. */
566 if (key != bbd[e->dest->index].node->key)
568 if (dump_file)
570 fprintf (dump_file,
571 "Changing key for bb %d from %ld to %ld.\n",
572 e->dest->index,
573 (long) bbd[e->dest->index].node->key,
574 key);
576 fibheap_replace_key (bbd[e->dest->index].heap,
577 bbd[e->dest->index].node, key);
580 else
582 fibheap_t which_heap = *heap;
584 prob = e->probability;
585 freq = EDGE_FREQUENCY (e);
587 if (!(e->flags & EDGE_CAN_FALLTHRU)
588 || (e->flags & EDGE_COMPLEX)
589 || prob < branch_th || freq < exec_th
590 || e->count < count_th)
592 /* When partitioning hot/cold basic blocks, make sure
593 the cold blocks (and only the cold blocks) all get
594 pushed to the last round of trace collection. */
596 if (push_to_next_round_p (e->dest, round,
597 number_of_rounds,
598 exec_th, count_th))
599 which_heap = new_heap;
602 bbd[e->dest->index].heap = which_heap;
603 bbd[e->dest->index].node = fibheap_insert (which_heap,
604 key, e->dest);
606 if (dump_file)
608 fprintf (dump_file,
609 " Possible start of %s round: %d (key: %ld)\n",
610 (which_heap == new_heap) ? "next" : "this",
611 e->dest->index, (long) key);
617 if (best_edge) /* Suitable successor was found. */
619 if (best_edge->dest->il.rtl->visited == *n_traces)
621 /* We do nothing with one basic block loops. */
622 if (best_edge->dest != bb)
624 if (EDGE_FREQUENCY (best_edge)
625 > 4 * best_edge->dest->frequency / 5)
627 /* The loop has at least 4 iterations. If the loop
628 header is not the first block of the function
629 we can rotate the loop. */
631 if (best_edge->dest != ENTRY_BLOCK_PTR->next_bb)
633 if (dump_file)
635 fprintf (dump_file,
636 "Rotating loop %d - %d\n",
637 best_edge->dest->index, bb->index);
639 bb->aux = best_edge->dest;
640 bbd[best_edge->dest->index].in_trace =
641 (*n_traces) - 1;
642 bb = rotate_loop (best_edge, trace, *n_traces);
645 else
647 /* The loop has less than 4 iterations. */
649 if (single_succ_p (bb)
650 && copy_bb_p (best_edge->dest, !optimize_size))
652 bb = copy_bb (best_edge->dest, best_edge, bb,
653 *n_traces);
654 trace->length++;
659 /* Terminate the trace. */
660 break;
662 else
664 /* Check for a situation
672 where
673 EDGE_FREQUENCY (AB) + EDGE_FREQUENCY (BC)
674 >= EDGE_FREQUENCY (AC).
675 (i.e. 2 * B->frequency >= EDGE_FREQUENCY (AC) )
676 Best ordering is then A B C.
678 This situation is created for example by:
680 if (A) B;
685 FOR_EACH_EDGE (e, ei, bb->succs)
686 if (e != best_edge
687 && (e->flags & EDGE_CAN_FALLTHRU)
688 && !(e->flags & EDGE_COMPLEX)
689 && !e->dest->il.rtl->visited
690 && single_pred_p (e->dest)
691 && !(e->flags & EDGE_CROSSING)
692 && single_succ_p (e->dest)
693 && (single_succ_edge (e->dest)->flags
694 & EDGE_CAN_FALLTHRU)
695 && !(single_succ_edge (e->dest)->flags & EDGE_COMPLEX)
696 && single_succ (e->dest) == best_edge->dest
697 && 2 * e->dest->frequency >= EDGE_FREQUENCY (best_edge))
699 best_edge = e;
700 if (dump_file)
701 fprintf (dump_file, "Selecting BB %d\n",
702 best_edge->dest->index);
703 break;
706 bb->aux = best_edge->dest;
707 bbd[best_edge->dest->index].in_trace = (*n_traces) - 1;
708 bb = best_edge->dest;
712 while (best_edge);
713 trace->last = bb;
714 bbd[trace->first->index].start_of_trace = *n_traces - 1;
715 bbd[trace->last->index].end_of_trace = *n_traces - 1;
717 /* The trace is terminated so we have to recount the keys in heap
718 (some block can have a lower key because now one of its predecessors
719 is an end of the trace). */
720 FOR_EACH_EDGE (e, ei, bb->succs)
722 if (e->dest == EXIT_BLOCK_PTR
723 || e->dest->il.rtl->visited)
724 continue;
726 if (bbd[e->dest->index].heap)
728 key = bb_to_key (e->dest);
729 if (key != bbd[e->dest->index].node->key)
731 if (dump_file)
733 fprintf (dump_file,
734 "Changing key for bb %d from %ld to %ld.\n",
735 e->dest->index,
736 (long) bbd[e->dest->index].node->key, key);
738 fibheap_replace_key (bbd[e->dest->index].heap,
739 bbd[e->dest->index].node,
740 key);
746 fibheap_delete (*heap);
748 /* "Return" the new heap. */
749 *heap = new_heap;
752 /* Create a duplicate of the basic block OLD_BB and redirect edge E to it, add
753 it to trace after BB, mark OLD_BB visited and update pass' data structures
754 (TRACE is a number of trace which OLD_BB is duplicated to). */
756 static basic_block
757 copy_bb (basic_block old_bb, edge e, basic_block bb, int trace)
759 basic_block new_bb;
761 new_bb = duplicate_block (old_bb, e, bb);
762 BB_COPY_PARTITION (new_bb, old_bb);
764 gcc_assert (e->dest == new_bb);
765 gcc_assert (!e->dest->il.rtl->visited);
767 if (dump_file)
768 fprintf (dump_file,
769 "Duplicated bb %d (created bb %d)\n",
770 old_bb->index, new_bb->index);
771 new_bb->il.rtl->visited = trace;
772 new_bb->aux = bb->aux;
773 bb->aux = new_bb;
775 if (new_bb->index >= array_size || last_basic_block > array_size)
777 int i;
778 int new_size;
780 new_size = MAX (last_basic_block, new_bb->index + 1);
781 new_size = GET_ARRAY_SIZE (new_size);
782 bbd = xrealloc (bbd, new_size * sizeof (bbro_basic_block_data));
783 for (i = array_size; i < new_size; i++)
785 bbd[i].start_of_trace = -1;
786 bbd[i].in_trace = -1;
787 bbd[i].end_of_trace = -1;
788 bbd[i].heap = NULL;
789 bbd[i].node = NULL;
791 array_size = new_size;
793 if (dump_file)
795 fprintf (dump_file,
796 "Growing the dynamic array to %d elements.\n",
797 array_size);
801 bbd[new_bb->index].in_trace = trace;
803 return new_bb;
806 /* Compute and return the key (for the heap) of the basic block BB. */
808 static fibheapkey_t
809 bb_to_key (basic_block bb)
811 edge e;
812 edge_iterator ei;
813 int priority = 0;
815 /* Do not start in probably never executed blocks. */
817 if (BB_PARTITION (bb) == BB_COLD_PARTITION
818 || probably_never_executed_bb_p (bb))
819 return BB_FREQ_MAX;
821 /* Prefer blocks whose predecessor is an end of some trace
822 or whose predecessor edge is EDGE_DFS_BACK. */
823 FOR_EACH_EDGE (e, ei, bb->preds)
825 if ((e->src != ENTRY_BLOCK_PTR && bbd[e->src->index].end_of_trace >= 0)
826 || (e->flags & EDGE_DFS_BACK))
828 int edge_freq = EDGE_FREQUENCY (e);
830 if (edge_freq > priority)
831 priority = edge_freq;
835 if (priority)
836 /* The block with priority should have significantly lower key. */
837 return -(100 * BB_FREQ_MAX + 100 * priority + bb->frequency);
838 return -bb->frequency;
841 /* Return true when the edge E from basic block BB is better than the temporary
842 best edge (details are in function). The probability of edge E is PROB. The
843 frequency of the successor is FREQ. The current best probability is
844 BEST_PROB, the best frequency is BEST_FREQ.
845 The edge is considered to be equivalent when PROB does not differ much from
846 BEST_PROB; similarly for frequency. */
848 static bool
849 better_edge_p (basic_block bb, edge e, int prob, int freq, int best_prob,
850 int best_freq, edge cur_best_edge)
852 bool is_better_edge;
854 /* The BEST_* values do not have to be best, but can be a bit smaller than
855 maximum values. */
856 int diff_prob = best_prob / 10;
857 int diff_freq = best_freq / 10;
859 if (prob > best_prob + diff_prob)
860 /* The edge has higher probability than the temporary best edge. */
861 is_better_edge = true;
862 else if (prob < best_prob - diff_prob)
863 /* The edge has lower probability than the temporary best edge. */
864 is_better_edge = false;
865 else if (freq < best_freq - diff_freq)
866 /* The edge and the temporary best edge have almost equivalent
867 probabilities. The higher frequency of a successor now means
868 that there is another edge going into that successor.
869 This successor has lower frequency so it is better. */
870 is_better_edge = true;
871 else if (freq > best_freq + diff_freq)
872 /* This successor has higher frequency so it is worse. */
873 is_better_edge = false;
874 else if (e->dest->prev_bb == bb)
875 /* The edges have equivalent probabilities and the successors
876 have equivalent frequencies. Select the previous successor. */
877 is_better_edge = true;
878 else
879 is_better_edge = false;
881 /* If we are doing hot/cold partitioning, make sure that we always favor
882 non-crossing edges over crossing edges. */
884 if (!is_better_edge
885 && flag_reorder_blocks_and_partition
886 && cur_best_edge
887 && (cur_best_edge->flags & EDGE_CROSSING)
888 && !(e->flags & EDGE_CROSSING))
889 is_better_edge = true;
891 return is_better_edge;
894 /* Connect traces in array TRACES, N_TRACES is the count of traces. */
896 static void
897 connect_traces (int n_traces, struct trace *traces)
899 int i;
900 bool *connected;
901 bool two_passes;
902 int last_trace;
903 int current_pass;
904 int current_partition;
905 int freq_threshold;
906 gcov_type count_threshold;
908 freq_threshold = max_entry_frequency * DUPLICATION_THRESHOLD / 1000;
909 if (max_entry_count < INT_MAX / 1000)
910 count_threshold = max_entry_count * DUPLICATION_THRESHOLD / 1000;
911 else
912 count_threshold = max_entry_count / 1000 * DUPLICATION_THRESHOLD;
914 connected = XCNEWVEC (bool, n_traces);
915 last_trace = -1;
916 current_pass = 1;
917 current_partition = BB_PARTITION (traces[0].first);
918 two_passes = false;
920 if (flag_reorder_blocks_and_partition)
921 for (i = 0; i < n_traces && !two_passes; i++)
922 if (BB_PARTITION (traces[0].first)
923 != BB_PARTITION (traces[i].first))
924 two_passes = true;
926 for (i = 0; i < n_traces || (two_passes && current_pass == 1) ; i++)
928 int t = i;
929 int t2;
930 edge e, best;
931 int best_len;
933 if (i >= n_traces)
935 gcc_assert (two_passes && current_pass == 1);
936 i = 0;
937 t = i;
938 current_pass = 2;
939 if (current_partition == BB_HOT_PARTITION)
940 current_partition = BB_COLD_PARTITION;
941 else
942 current_partition = BB_HOT_PARTITION;
945 if (connected[t])
946 continue;
948 if (two_passes
949 && BB_PARTITION (traces[t].first) != current_partition)
950 continue;
952 connected[t] = true;
954 /* Find the predecessor traces. */
955 for (t2 = t; t2 > 0;)
957 edge_iterator ei;
958 best = NULL;
959 best_len = 0;
960 FOR_EACH_EDGE (e, ei, traces[t2].first->preds)
962 int si = e->src->index;
964 if (e->src != ENTRY_BLOCK_PTR
965 && (e->flags & EDGE_CAN_FALLTHRU)
966 && !(e->flags & EDGE_COMPLEX)
967 && bbd[si].end_of_trace >= 0
968 && !connected[bbd[si].end_of_trace]
969 && (BB_PARTITION (e->src) == current_partition)
970 && (!best
971 || e->probability > best->probability
972 || (e->probability == best->probability
973 && traces[bbd[si].end_of_trace].length > best_len)))
975 best = e;
976 best_len = traces[bbd[si].end_of_trace].length;
979 if (best)
981 best->src->aux = best->dest;
982 t2 = bbd[best->src->index].end_of_trace;
983 connected[t2] = true;
985 if (dump_file)
987 fprintf (dump_file, "Connection: %d %d\n",
988 best->src->index, best->dest->index);
991 else
992 break;
995 if (last_trace >= 0)
996 traces[last_trace].last->aux = traces[t2].first;
997 last_trace = t;
999 /* Find the successor traces. */
1000 while (1)
1002 /* Find the continuation of the chain. */
1003 edge_iterator ei;
1004 best = NULL;
1005 best_len = 0;
1006 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1008 int di = e->dest->index;
1010 if (e->dest != EXIT_BLOCK_PTR
1011 && (e->flags & EDGE_CAN_FALLTHRU)
1012 && !(e->flags & EDGE_COMPLEX)
1013 && bbd[di].start_of_trace >= 0
1014 && !connected[bbd[di].start_of_trace]
1015 && (BB_PARTITION (e->dest) == current_partition)
1016 && (!best
1017 || e->probability > best->probability
1018 || (e->probability == best->probability
1019 && traces[bbd[di].start_of_trace].length > best_len)))
1021 best = e;
1022 best_len = traces[bbd[di].start_of_trace].length;
1026 if (best)
1028 if (dump_file)
1030 fprintf (dump_file, "Connection: %d %d\n",
1031 best->src->index, best->dest->index);
1033 t = bbd[best->dest->index].start_of_trace;
1034 traces[last_trace].last->aux = traces[t].first;
1035 connected[t] = true;
1036 last_trace = t;
1038 else
1040 /* Try to connect the traces by duplication of 1 block. */
1041 edge e2;
1042 basic_block next_bb = NULL;
1043 bool try_copy = false;
1045 FOR_EACH_EDGE (e, ei, traces[t].last->succs)
1046 if (e->dest != EXIT_BLOCK_PTR
1047 && (e->flags & EDGE_CAN_FALLTHRU)
1048 && !(e->flags & EDGE_COMPLEX)
1049 && (!best || e->probability > best->probability))
1051 edge_iterator ei;
1052 edge best2 = NULL;
1053 int best2_len = 0;
1055 /* If the destination is a start of a trace which is only
1056 one block long, then no need to search the successor
1057 blocks of the trace. Accept it. */
1058 if (bbd[e->dest->index].start_of_trace >= 0
1059 && traces[bbd[e->dest->index].start_of_trace].length
1060 == 1)
1062 best = e;
1063 try_copy = true;
1064 continue;
1067 FOR_EACH_EDGE (e2, ei, e->dest->succs)
1069 int di = e2->dest->index;
1071 if (e2->dest == EXIT_BLOCK_PTR
1072 || ((e2->flags & EDGE_CAN_FALLTHRU)
1073 && !(e2->flags & EDGE_COMPLEX)
1074 && bbd[di].start_of_trace >= 0
1075 && !connected[bbd[di].start_of_trace]
1076 && (BB_PARTITION (e2->dest) == current_partition)
1077 && (EDGE_FREQUENCY (e2) >= freq_threshold)
1078 && (e2->count >= count_threshold)
1079 && (!best2
1080 || e2->probability > best2->probability
1081 || (e2->probability == best2->probability
1082 && traces[bbd[di].start_of_trace].length
1083 > best2_len))))
1085 best = e;
1086 best2 = e2;
1087 if (e2->dest != EXIT_BLOCK_PTR)
1088 best2_len = traces[bbd[di].start_of_trace].length;
1089 else
1090 best2_len = INT_MAX;
1091 next_bb = e2->dest;
1092 try_copy = true;
1097 if (flag_reorder_blocks_and_partition)
1098 try_copy = false;
1100 /* Copy tiny blocks always; copy larger blocks only when the
1101 edge is traversed frequently enough. */
1102 if (try_copy
1103 && copy_bb_p (best->dest,
1104 !optimize_size
1105 && EDGE_FREQUENCY (best) >= freq_threshold
1106 && best->count >= count_threshold))
1108 basic_block new_bb;
1110 if (dump_file)
1112 fprintf (dump_file, "Connection: %d %d ",
1113 traces[t].last->index, best->dest->index);
1114 if (!next_bb)
1115 fputc ('\n', dump_file);
1116 else if (next_bb == EXIT_BLOCK_PTR)
1117 fprintf (dump_file, "exit\n");
1118 else
1119 fprintf (dump_file, "%d\n", next_bb->index);
1122 new_bb = copy_bb (best->dest, best, traces[t].last, t);
1123 traces[t].last = new_bb;
1124 if (next_bb && next_bb != EXIT_BLOCK_PTR)
1126 t = bbd[next_bb->index].start_of_trace;
1127 traces[last_trace].last->aux = traces[t].first;
1128 connected[t] = true;
1129 last_trace = t;
1131 else
1132 break; /* Stop finding the successor traces. */
1134 else
1135 break; /* Stop finding the successor traces. */
1140 if (dump_file)
1142 basic_block bb;
1144 fprintf (dump_file, "Final order:\n");
1145 for (bb = traces[0].first; bb; bb = bb->aux)
1146 fprintf (dump_file, "%d ", bb->index);
1147 fprintf (dump_file, "\n");
1148 fflush (dump_file);
1151 FREE (connected);
1154 /* Return true when BB can and should be copied. CODE_MAY_GROW is true
1155 when code size is allowed to grow by duplication. */
1157 static bool
1158 copy_bb_p (basic_block bb, int code_may_grow)
1160 int size = 0;
1161 int max_size = uncond_jump_length;
1162 rtx insn;
1164 if (!bb->frequency)
1165 return false;
1166 if (EDGE_COUNT (bb->preds) < 2)
1167 return false;
1168 if (!can_duplicate_block_p (bb))
1169 return false;
1171 /* Avoid duplicating blocks which have many successors (PR/13430). */
1172 if (EDGE_COUNT (bb->succs) > 8)
1173 return false;
1175 if (code_may_grow && maybe_hot_bb_p (bb))
1176 max_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
1178 FOR_BB_INSNS (bb, insn)
1180 if (INSN_P (insn))
1181 size += get_attr_min_length (insn);
1184 if (size <= max_size)
1185 return true;
1187 if (dump_file)
1189 fprintf (dump_file,
1190 "Block %d can't be copied because its size = %d.\n",
1191 bb->index, size);
1194 return false;
1197 /* Return the length of unconditional jump instruction. */
1199 static int
1200 get_uncond_jump_length (void)
1202 rtx label, jump;
1203 int length;
1205 label = emit_label_before (gen_label_rtx (), get_insns ());
1206 jump = emit_jump_insn (gen_jump (label));
1208 length = get_attr_min_length (jump);
1210 delete_insn (jump);
1211 delete_insn (label);
1212 return length;
1215 /* Find the basic blocks that are rarely executed and need to be moved to
1216 a separate section of the .o file (to cut down on paging and improve
1217 cache locality). */
1219 static void
1220 find_rarely_executed_basic_blocks_and_crossing_edges (edge *crossing_edges,
1221 int *n_crossing_edges,
1222 int *max_idx)
1224 basic_block bb;
1225 bool has_hot_blocks = false;
1226 edge e;
1227 int i;
1228 edge_iterator ei;
1230 /* Mark which partition (hot/cold) each basic block belongs in. */
1232 FOR_EACH_BB (bb)
1234 if (probably_never_executed_bb_p (bb))
1235 BB_SET_PARTITION (bb, BB_COLD_PARTITION);
1236 else
1238 BB_SET_PARTITION (bb, BB_HOT_PARTITION);
1239 has_hot_blocks = true;
1243 /* Mark every edge that crosses between sections. */
1245 i = 0;
1246 FOR_EACH_BB (bb)
1247 FOR_EACH_EDGE (e, ei, bb->succs)
1249 if (e->src != ENTRY_BLOCK_PTR
1250 && e->dest != EXIT_BLOCK_PTR
1251 && BB_PARTITION (e->src) != BB_PARTITION (e->dest))
1253 e->flags |= EDGE_CROSSING;
1254 if (i == *max_idx)
1256 *max_idx *= 2;
1257 crossing_edges = xrealloc (crossing_edges,
1258 (*max_idx) * sizeof (edge));
1260 crossing_edges[i++] = e;
1262 else
1263 e->flags &= ~EDGE_CROSSING;
1265 *n_crossing_edges = i;
1268 /* If any destination of a crossing edge does not have a label, add label;
1269 Convert any fall-through crossing edges (for blocks that do not contain
1270 a jump) to unconditional jumps. */
1272 static void
1273 add_labels_and_missing_jumps (edge *crossing_edges, int n_crossing_edges)
1275 int i;
1276 basic_block src;
1277 basic_block dest;
1278 rtx label;
1279 rtx barrier;
1280 rtx new_jump;
1282 for (i=0; i < n_crossing_edges; i++)
1284 if (crossing_edges[i])
1286 src = crossing_edges[i]->src;
1287 dest = crossing_edges[i]->dest;
1289 /* Make sure dest has a label. */
1291 if (dest && (dest != EXIT_BLOCK_PTR))
1293 label = block_label (dest);
1295 /* Make sure source block ends with a jump. */
1297 if (src && (src != ENTRY_BLOCK_PTR))
1299 if (!JUMP_P (BB_END (src)))
1300 /* bb just falls through. */
1302 /* make sure there's only one successor */
1303 gcc_assert (single_succ_p (src));
1305 /* Find label in dest block. */
1306 label = block_label (dest);
1308 new_jump = emit_jump_insn_after (gen_jump (label),
1309 BB_END (src));
1310 barrier = emit_barrier_after (new_jump);
1311 JUMP_LABEL (new_jump) = label;
1312 LABEL_NUSES (label) += 1;
1313 src->il.rtl->footer = unlink_insn_chain (barrier, barrier);
1314 /* Mark edge as non-fallthru. */
1315 crossing_edges[i]->flags &= ~EDGE_FALLTHRU;
1316 } /* end: 'if (GET_CODE ... ' */
1317 } /* end: 'if (src && src->index...' */
1318 } /* end: 'if (dest && dest->index...' */
1319 } /* end: 'if (crossing_edges[i]...' */
1320 } /* end for loop */
1323 /* Find any bb's where the fall-through edge is a crossing edge (note that
1324 these bb's must also contain a conditional jump; we've already
1325 dealt with fall-through edges for blocks that didn't have a
1326 conditional jump in the call to add_labels_and_missing_jumps).
1327 Convert the fall-through edge to non-crossing edge by inserting a
1328 new bb to fall-through into. The new bb will contain an
1329 unconditional jump (crossing edge) to the original fall through
1330 destination. */
1332 static void
1333 fix_up_fall_thru_edges (void)
1335 basic_block cur_bb;
1336 basic_block new_bb;
1337 edge succ1;
1338 edge succ2;
1339 edge fall_thru;
1340 edge cond_jump = NULL;
1341 edge e;
1342 bool cond_jump_crosses;
1343 int invert_worked;
1344 rtx old_jump;
1345 rtx fall_thru_label;
1346 rtx barrier;
1348 FOR_EACH_BB (cur_bb)
1350 fall_thru = NULL;
1351 if (EDGE_COUNT (cur_bb->succs) > 0)
1352 succ1 = EDGE_SUCC (cur_bb, 0);
1353 else
1354 succ1 = NULL;
1356 if (EDGE_COUNT (cur_bb->succs) > 1)
1357 succ2 = EDGE_SUCC (cur_bb, 1);
1358 else
1359 succ2 = NULL;
1361 /* Find the fall-through edge. */
1363 if (succ1
1364 && (succ1->flags & EDGE_FALLTHRU))
1366 fall_thru = succ1;
1367 cond_jump = succ2;
1369 else if (succ2
1370 && (succ2->flags & EDGE_FALLTHRU))
1372 fall_thru = succ2;
1373 cond_jump = succ1;
1376 if (fall_thru && (fall_thru->dest != EXIT_BLOCK_PTR))
1378 /* Check to see if the fall-thru edge is a crossing edge. */
1380 if (fall_thru->flags & EDGE_CROSSING)
1382 /* The fall_thru edge crosses; now check the cond jump edge, if
1383 it exists. */
1385 cond_jump_crosses = true;
1386 invert_worked = 0;
1387 old_jump = BB_END (cur_bb);
1389 /* Find the jump instruction, if there is one. */
1391 if (cond_jump)
1393 if (!(cond_jump->flags & EDGE_CROSSING))
1394 cond_jump_crosses = false;
1396 /* We know the fall-thru edge crosses; if the cond
1397 jump edge does NOT cross, and its destination is the
1398 next block in the bb order, invert the jump
1399 (i.e. fix it so the fall thru does not cross and
1400 the cond jump does). */
1402 if (!cond_jump_crosses
1403 && cur_bb->aux == cond_jump->dest)
1405 /* Find label in fall_thru block. We've already added
1406 any missing labels, so there must be one. */
1408 fall_thru_label = block_label (fall_thru->dest);
1410 if (old_jump && fall_thru_label)
1411 invert_worked = invert_jump (old_jump,
1412 fall_thru_label,0);
1413 if (invert_worked)
1415 fall_thru->flags &= ~EDGE_FALLTHRU;
1416 cond_jump->flags |= EDGE_FALLTHRU;
1417 update_br_prob_note (cur_bb);
1418 e = fall_thru;
1419 fall_thru = cond_jump;
1420 cond_jump = e;
1421 cond_jump->flags |= EDGE_CROSSING;
1422 fall_thru->flags &= ~EDGE_CROSSING;
1427 if (cond_jump_crosses || !invert_worked)
1429 /* This is the case where both edges out of the basic
1430 block are crossing edges. Here we will fix up the
1431 fall through edge. The jump edge will be taken care
1432 of later. */
1434 new_bb = force_nonfallthru (fall_thru);
1436 if (new_bb)
1438 new_bb->aux = cur_bb->aux;
1439 cur_bb->aux = new_bb;
1441 /* Make sure new fall-through bb is in same
1442 partition as bb it's falling through from. */
1444 BB_COPY_PARTITION (new_bb, cur_bb);
1445 single_succ_edge (new_bb)->flags |= EDGE_CROSSING;
1448 /* Add barrier after new jump */
1450 if (new_bb)
1452 barrier = emit_barrier_after (BB_END (new_bb));
1453 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1454 barrier);
1456 else
1458 barrier = emit_barrier_after (BB_END (cur_bb));
1459 cur_bb->il.rtl->footer = unlink_insn_chain (barrier,
1460 barrier);
1468 /* This function checks the destination blockof a "crossing jump" to
1469 see if it has any crossing predecessors that begin with a code label
1470 and end with an unconditional jump. If so, it returns that predecessor
1471 block. (This is to avoid creating lots of new basic blocks that all
1472 contain unconditional jumps to the same destination). */
1474 static basic_block
1475 find_jump_block (basic_block jump_dest)
1477 basic_block source_bb = NULL;
1478 edge e;
1479 rtx insn;
1480 edge_iterator ei;
1482 FOR_EACH_EDGE (e, ei, jump_dest->preds)
1483 if (e->flags & EDGE_CROSSING)
1485 basic_block src = e->src;
1487 /* Check each predecessor to see if it has a label, and contains
1488 only one executable instruction, which is an unconditional jump.
1489 If so, we can use it. */
1491 if (LABEL_P (BB_HEAD (src)))
1492 for (insn = BB_HEAD (src);
1493 !INSN_P (insn) && insn != NEXT_INSN (BB_END (src));
1494 insn = NEXT_INSN (insn))
1496 if (INSN_P (insn)
1497 && insn == BB_END (src)
1498 && JUMP_P (insn)
1499 && !any_condjump_p (insn))
1501 source_bb = src;
1502 break;
1506 if (source_bb)
1507 break;
1510 return source_bb;
1513 /* Find all BB's with conditional jumps that are crossing edges;
1514 insert a new bb and make the conditional jump branch to the new
1515 bb instead (make the new bb same color so conditional branch won't
1516 be a 'crossing' edge). Insert an unconditional jump from the
1517 new bb to the original destination of the conditional jump. */
1519 static void
1520 fix_crossing_conditional_branches (void)
1522 basic_block cur_bb;
1523 basic_block new_bb;
1524 basic_block last_bb;
1525 basic_block dest;
1526 basic_block prev_bb;
1527 edge succ1;
1528 edge succ2;
1529 edge crossing_edge;
1530 edge new_edge;
1531 rtx old_jump;
1532 rtx set_src;
1533 rtx old_label = NULL_RTX;
1534 rtx new_label;
1535 rtx new_jump;
1536 rtx barrier;
1538 last_bb = EXIT_BLOCK_PTR->prev_bb;
1540 FOR_EACH_BB (cur_bb)
1542 crossing_edge = NULL;
1543 if (EDGE_COUNT (cur_bb->succs) > 0)
1544 succ1 = EDGE_SUCC (cur_bb, 0);
1545 else
1546 succ1 = NULL;
1548 if (EDGE_COUNT (cur_bb->succs) > 1)
1549 succ2 = EDGE_SUCC (cur_bb, 1);
1550 else
1551 succ2 = NULL;
1553 /* We already took care of fall-through edges, so only one successor
1554 can be a crossing edge. */
1556 if (succ1 && (succ1->flags & EDGE_CROSSING))
1557 crossing_edge = succ1;
1558 else if (succ2 && (succ2->flags & EDGE_CROSSING))
1559 crossing_edge = succ2;
1561 if (crossing_edge)
1563 old_jump = BB_END (cur_bb);
1565 /* Check to make sure the jump instruction is a
1566 conditional jump. */
1568 set_src = NULL_RTX;
1570 if (any_condjump_p (old_jump))
1572 if (GET_CODE (PATTERN (old_jump)) == SET)
1573 set_src = SET_SRC (PATTERN (old_jump));
1574 else if (GET_CODE (PATTERN (old_jump)) == PARALLEL)
1576 set_src = XVECEXP (PATTERN (old_jump), 0,0);
1577 if (GET_CODE (set_src) == SET)
1578 set_src = SET_SRC (set_src);
1579 else
1580 set_src = NULL_RTX;
1584 if (set_src && (GET_CODE (set_src) == IF_THEN_ELSE))
1586 if (GET_CODE (XEXP (set_src, 1)) == PC)
1587 old_label = XEXP (set_src, 2);
1588 else if (GET_CODE (XEXP (set_src, 2)) == PC)
1589 old_label = XEXP (set_src, 1);
1591 /* Check to see if new bb for jumping to that dest has
1592 already been created; if so, use it; if not, create
1593 a new one. */
1595 new_bb = find_jump_block (crossing_edge->dest);
1597 if (new_bb)
1598 new_label = block_label (new_bb);
1599 else
1601 /* Create new basic block to be dest for
1602 conditional jump. */
1604 new_bb = create_basic_block (NULL, NULL, last_bb);
1605 new_bb->aux = last_bb->aux;
1606 last_bb->aux = new_bb;
1607 prev_bb = last_bb;
1608 last_bb = new_bb;
1610 /* Update register liveness information. */
1612 new_bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1613 new_bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1614 COPY_REG_SET (new_bb->il.rtl->global_live_at_end,
1615 prev_bb->il.rtl->global_live_at_end);
1616 COPY_REG_SET (new_bb->il.rtl->global_live_at_start,
1617 prev_bb->il.rtl->global_live_at_end);
1619 /* Put appropriate instructions in new bb. */
1621 new_label = gen_label_rtx ();
1622 emit_label_before (new_label, BB_HEAD (new_bb));
1623 BB_HEAD (new_bb) = new_label;
1625 if (GET_CODE (old_label) == LABEL_REF)
1627 old_label = JUMP_LABEL (old_jump);
1628 new_jump = emit_jump_insn_after (gen_jump
1629 (old_label),
1630 BB_END (new_bb));
1632 else
1634 gcc_assert (HAVE_return
1635 && GET_CODE (old_label) == RETURN);
1636 new_jump = emit_jump_insn_after (gen_return (),
1637 BB_END (new_bb));
1640 barrier = emit_barrier_after (new_jump);
1641 JUMP_LABEL (new_jump) = old_label;
1642 new_bb->il.rtl->footer = unlink_insn_chain (barrier,
1643 barrier);
1645 /* Make sure new bb is in same partition as source
1646 of conditional branch. */
1647 BB_COPY_PARTITION (new_bb, cur_bb);
1650 /* Make old jump branch to new bb. */
1652 redirect_jump (old_jump, new_label, 0);
1654 /* Remove crossing_edge as predecessor of 'dest'. */
1656 dest = crossing_edge->dest;
1658 redirect_edge_succ (crossing_edge, new_bb);
1660 /* Make a new edge from new_bb to old dest; new edge
1661 will be a successor for new_bb and a predecessor
1662 for 'dest'. */
1664 if (EDGE_COUNT (new_bb->succs) == 0)
1665 new_edge = make_edge (new_bb, dest, 0);
1666 else
1667 new_edge = EDGE_SUCC (new_bb, 0);
1669 crossing_edge->flags &= ~EDGE_CROSSING;
1670 new_edge->flags |= EDGE_CROSSING;
1676 /* Find any unconditional branches that cross between hot and cold
1677 sections. Convert them into indirect jumps instead. */
1679 static void
1680 fix_crossing_unconditional_branches (void)
1682 basic_block cur_bb;
1683 rtx last_insn;
1684 rtx label;
1685 rtx label_addr;
1686 rtx indirect_jump_sequence;
1687 rtx jump_insn = NULL_RTX;
1688 rtx new_reg;
1689 rtx cur_insn;
1690 edge succ;
1692 FOR_EACH_BB (cur_bb)
1694 last_insn = BB_END (cur_bb);
1696 if (EDGE_COUNT (cur_bb->succs) < 1)
1697 continue;
1699 succ = EDGE_SUCC (cur_bb, 0);
1701 /* Check to see if bb ends in a crossing (unconditional) jump. At
1702 this point, no crossing jumps should be conditional. */
1704 if (JUMP_P (last_insn)
1705 && (succ->flags & EDGE_CROSSING))
1707 rtx label2, table;
1709 gcc_assert (!any_condjump_p (last_insn));
1711 /* Make sure the jump is not already an indirect or table jump. */
1713 if (!computed_jump_p (last_insn)
1714 && !tablejump_p (last_insn, &label2, &table))
1716 /* We have found a "crossing" unconditional branch. Now
1717 we must convert it to an indirect jump. First create
1718 reference of label, as target for jump. */
1720 label = JUMP_LABEL (last_insn);
1721 label_addr = gen_rtx_LABEL_REF (Pmode, label);
1722 LABEL_NUSES (label) += 1;
1724 /* Get a register to use for the indirect jump. */
1726 new_reg = gen_reg_rtx (Pmode);
1728 /* Generate indirect the jump sequence. */
1730 start_sequence ();
1731 emit_move_insn (new_reg, label_addr);
1732 emit_indirect_jump (new_reg);
1733 indirect_jump_sequence = get_insns ();
1734 end_sequence ();
1736 /* Make sure every instruction in the new jump sequence has
1737 its basic block set to be cur_bb. */
1739 for (cur_insn = indirect_jump_sequence; cur_insn;
1740 cur_insn = NEXT_INSN (cur_insn))
1742 if (!BARRIER_P (cur_insn))
1743 BLOCK_FOR_INSN (cur_insn) = cur_bb;
1744 if (JUMP_P (cur_insn))
1745 jump_insn = cur_insn;
1748 /* Insert the new (indirect) jump sequence immediately before
1749 the unconditional jump, then delete the unconditional jump. */
1751 emit_insn_before (indirect_jump_sequence, last_insn);
1752 delete_insn (last_insn);
1754 /* Make BB_END for cur_bb be the jump instruction (NOT the
1755 barrier instruction at the end of the sequence...). */
1757 BB_END (cur_bb) = jump_insn;
1763 /* Add REG_CROSSING_JUMP note to all crossing jump insns. */
1765 static void
1766 add_reg_crossing_jump_notes (void)
1768 basic_block bb;
1769 edge e;
1770 edge_iterator ei;
1772 FOR_EACH_BB (bb)
1773 FOR_EACH_EDGE (e, ei, bb->succs)
1774 if ((e->flags & EDGE_CROSSING)
1775 && JUMP_P (BB_END (e->src)))
1776 REG_NOTES (BB_END (e->src)) = gen_rtx_EXPR_LIST (REG_CROSSING_JUMP,
1777 NULL_RTX,
1778 REG_NOTES (BB_END
1779 (e->src)));
1782 /* Hot and cold basic blocks are partitioned and put in separate
1783 sections of the .o file, to reduce paging and improve cache
1784 performance (hopefully). This can result in bits of code from the
1785 same function being widely separated in the .o file. However this
1786 is not obvious to the current bb structure. Therefore we must take
1787 care to ensure that: 1). There are no fall_thru edges that cross
1788 between sections; 2). For those architectures which have "short"
1789 conditional branches, all conditional branches that attempt to
1790 cross between sections are converted to unconditional branches;
1791 and, 3). For those architectures which have "short" unconditional
1792 branches, all unconditional branches that attempt to cross between
1793 sections are converted to indirect jumps.
1795 The code for fixing up fall_thru edges that cross between hot and
1796 cold basic blocks does so by creating new basic blocks containing
1797 unconditional branches to the appropriate label in the "other"
1798 section. The new basic block is then put in the same (hot or cold)
1799 section as the original conditional branch, and the fall_thru edge
1800 is modified to fall into the new basic block instead. By adding
1801 this level of indirection we end up with only unconditional branches
1802 crossing between hot and cold sections.
1804 Conditional branches are dealt with by adding a level of indirection.
1805 A new basic block is added in the same (hot/cold) section as the
1806 conditional branch, and the conditional branch is retargeted to the
1807 new basic block. The new basic block contains an unconditional branch
1808 to the original target of the conditional branch (in the other section).
1810 Unconditional branches are dealt with by converting them into
1811 indirect jumps. */
1813 static void
1814 fix_edges_for_rarely_executed_code (edge *crossing_edges,
1815 int n_crossing_edges)
1817 /* Make sure the source of any crossing edge ends in a jump and the
1818 destination of any crossing edge has a label. */
1820 add_labels_and_missing_jumps (crossing_edges, n_crossing_edges);
1822 /* Convert all crossing fall_thru edges to non-crossing fall
1823 thrus to unconditional jumps (that jump to the original fall
1824 thru dest). */
1826 fix_up_fall_thru_edges ();
1828 /* If the architecture does not have conditional branches that can
1829 span all of memory, convert crossing conditional branches into
1830 crossing unconditional branches. */
1832 if (!HAS_LONG_COND_BRANCH)
1833 fix_crossing_conditional_branches ();
1835 /* If the architecture does not have unconditional branches that
1836 can span all of memory, convert crossing unconditional branches
1837 into indirect jumps. Since adding an indirect jump also adds
1838 a new register usage, update the register usage information as
1839 well. */
1841 if (!HAS_LONG_UNCOND_BRANCH)
1843 fix_crossing_unconditional_branches ();
1844 reg_scan (get_insns(), max_reg_num ());
1847 add_reg_crossing_jump_notes ();
1850 /* Verify, in the basic block chain, that there is at most one switch
1851 between hot/cold partitions. This is modelled on
1852 rtl_verify_flow_info_1, but it cannot go inside that function
1853 because this condition will not be true until after
1854 reorder_basic_blocks is called. */
1856 static void
1857 verify_hot_cold_block_grouping (void)
1859 basic_block bb;
1860 int err = 0;
1861 bool switched_sections = false;
1862 int current_partition = 0;
1864 FOR_EACH_BB (bb)
1866 if (!current_partition)
1867 current_partition = BB_PARTITION (bb);
1868 if (BB_PARTITION (bb) != current_partition)
1870 if (switched_sections)
1872 error ("multiple hot/cold transitions found (bb %i)",
1873 bb->index);
1874 err = 1;
1876 else
1878 switched_sections = true;
1879 current_partition = BB_PARTITION (bb);
1884 gcc_assert(!err);
1887 /* Reorder basic blocks. The main entry point to this file. FLAGS is
1888 the set of flags to pass to cfg_layout_initialize(). */
1890 void
1891 reorder_basic_blocks (unsigned int flags)
1893 int n_traces;
1894 int i;
1895 struct trace *traces;
1897 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1898 return;
1900 if (targetm.cannot_modify_jumps_p ())
1901 return;
1903 cfg_layout_initialize (flags);
1905 set_edge_can_fallthru_flag ();
1906 mark_dfs_back_edges ();
1908 /* We are estimating the length of uncond jump insn only once since the code
1909 for getting the insn length always returns the minimal length now. */
1910 if (uncond_jump_length == 0)
1911 uncond_jump_length = get_uncond_jump_length ();
1913 /* We need to know some information for each basic block. */
1914 array_size = GET_ARRAY_SIZE (last_basic_block);
1915 bbd = XNEWVEC (bbro_basic_block_data, array_size);
1916 for (i = 0; i < array_size; i++)
1918 bbd[i].start_of_trace = -1;
1919 bbd[i].in_trace = -1;
1920 bbd[i].end_of_trace = -1;
1921 bbd[i].heap = NULL;
1922 bbd[i].node = NULL;
1925 traces = XNEWVEC (struct trace, n_basic_blocks);
1926 n_traces = 0;
1927 find_traces (&n_traces, traces);
1928 connect_traces (n_traces, traces);
1929 FREE (traces);
1930 FREE (bbd);
1932 if (dump_file)
1933 dump_flow_info (dump_file, dump_flags);
1935 cfg_layout_finalize ();
1936 if (flag_reorder_blocks_and_partition)
1937 verify_hot_cold_block_grouping ();
1940 /* Determine which partition the first basic block in the function
1941 belongs to, then find the first basic block in the current function
1942 that belongs to a different section, and insert a
1943 NOTE_INSN_SWITCH_TEXT_SECTIONS note immediately before it in the
1944 instruction stream. When writing out the assembly code,
1945 encountering this note will make the compiler switch between the
1946 hot and cold text sections. */
1948 static void
1949 insert_section_boundary_note (void)
1951 basic_block bb;
1952 rtx new_note;
1953 int first_partition = 0;
1955 if (flag_reorder_blocks_and_partition)
1956 FOR_EACH_BB (bb)
1958 if (!first_partition)
1959 first_partition = BB_PARTITION (bb);
1960 if (BB_PARTITION (bb) != first_partition)
1962 new_note = emit_note_before (NOTE_INSN_SWITCH_TEXT_SECTIONS,
1963 BB_HEAD (bb));
1964 break;
1969 /* Duplicate the blocks containing computed gotos. This basically unfactors
1970 computed gotos that were factored early on in the compilation process to
1971 speed up edge based data flow. We used to not unfactoring them again,
1972 which can seriously pessimize code with many computed jumps in the source
1973 code, such as interpreters. See e.g. PR15242. */
1975 static bool
1976 gate_duplicate_computed_gotos (void)
1978 return (optimize > 0 && flag_expensive_optimizations && !optimize_size);
1982 static unsigned int
1983 duplicate_computed_gotos (void)
1985 basic_block bb, new_bb;
1986 bitmap candidates;
1987 int max_size;
1989 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
1990 return 0;
1992 if (targetm.cannot_modify_jumps_p ())
1993 return 0;
1995 cfg_layout_initialize (0);
1997 /* We are estimating the length of uncond jump insn only once
1998 since the code for getting the insn length always returns
1999 the minimal length now. */
2000 if (uncond_jump_length == 0)
2001 uncond_jump_length = get_uncond_jump_length ();
2003 max_size = uncond_jump_length * PARAM_VALUE (PARAM_MAX_GOTO_DUPLICATION_INSNS);
2004 candidates = BITMAP_ALLOC (NULL);
2006 /* Look for blocks that end in a computed jump, and see if such blocks
2007 are suitable for unfactoring. If a block is a candidate for unfactoring,
2008 mark it in the candidates. */
2009 FOR_EACH_BB (bb)
2011 rtx insn;
2012 edge e;
2013 edge_iterator ei;
2014 int size, all_flags;
2016 /* Build the reorder chain for the original order of blocks. */
2017 if (bb->next_bb != EXIT_BLOCK_PTR)
2018 bb->aux = bb->next_bb;
2020 /* Obviously the block has to end in a computed jump. */
2021 if (!computed_jump_p (BB_END (bb)))
2022 continue;
2024 /* Only consider blocks that can be duplicated. */
2025 if (find_reg_note (BB_END (bb), REG_CROSSING_JUMP, NULL_RTX)
2026 || !can_duplicate_block_p (bb))
2027 continue;
2029 /* Make sure that the block is small enough. */
2030 size = 0;
2031 FOR_BB_INSNS (bb, insn)
2032 if (INSN_P (insn))
2034 size += get_attr_min_length (insn);
2035 if (size > max_size)
2036 break;
2038 if (size > max_size)
2039 continue;
2041 /* Final check: there must not be any incoming abnormal edges. */
2042 all_flags = 0;
2043 FOR_EACH_EDGE (e, ei, bb->preds)
2044 all_flags |= e->flags;
2045 if (all_flags & EDGE_COMPLEX)
2046 continue;
2048 bitmap_set_bit (candidates, bb->index);
2051 /* Nothing to do if there is no computed jump here. */
2052 if (bitmap_empty_p (candidates))
2053 goto done;
2055 /* Duplicate computed gotos. */
2056 FOR_EACH_BB (bb)
2058 if (bb->il.rtl->visited)
2059 continue;
2061 bb->il.rtl->visited = 1;
2063 /* BB must have one outgoing edge. That edge must not lead to
2064 the exit block or the next block.
2065 The destination must have more than one predecessor. */
2066 if (!single_succ_p (bb)
2067 || single_succ (bb) == EXIT_BLOCK_PTR
2068 || single_succ (bb) == bb->next_bb
2069 || single_pred_p (single_succ (bb)))
2070 continue;
2072 /* The successor block has to be a duplication candidate. */
2073 if (!bitmap_bit_p (candidates, single_succ (bb)->index))
2074 continue;
2076 new_bb = duplicate_block (single_succ (bb), single_succ_edge (bb), bb);
2077 new_bb->aux = bb->aux;
2078 bb->aux = new_bb;
2079 new_bb->il.rtl->visited = 1;
2082 done:
2083 cfg_layout_finalize ();
2085 BITMAP_FREE (candidates);
2086 return 0;
2089 struct tree_opt_pass pass_duplicate_computed_gotos =
2091 "compgotos", /* name */
2092 gate_duplicate_computed_gotos, /* gate */
2093 duplicate_computed_gotos, /* execute */
2094 NULL, /* sub */
2095 NULL, /* next */
2096 0, /* static_pass_number */
2097 TV_REORDER_BLOCKS, /* tv_id */
2098 0, /* properties_required */
2099 0, /* properties_provided */
2100 0, /* properties_destroyed */
2101 0, /* todo_flags_start */
2102 TODO_dump_func, /* todo_flags_finish */
2103 0 /* letter */
2107 /* This function is the main 'entrance' for the optimization that
2108 partitions hot and cold basic blocks into separate sections of the
2109 .o file (to improve performance and cache locality). Ideally it
2110 would be called after all optimizations that rearrange the CFG have
2111 been called. However part of this optimization may introduce new
2112 register usage, so it must be called before register allocation has
2113 occurred. This means that this optimization is actually called
2114 well before the optimization that reorders basic blocks (see
2115 function above).
2117 This optimization checks the feedback information to determine
2118 which basic blocks are hot/cold, updates flags on the basic blocks
2119 to indicate which section they belong in. This information is
2120 later used for writing out sections in the .o file. Because hot
2121 and cold sections can be arbitrarily large (within the bounds of
2122 memory), far beyond the size of a single function, it is necessary
2123 to fix up all edges that cross section boundaries, to make sure the
2124 instructions used can actually span the required distance. The
2125 fixes are described below.
2127 Fall-through edges must be changed into jumps; it is not safe or
2128 legal to fall through across a section boundary. Whenever a
2129 fall-through edge crossing a section boundary is encountered, a new
2130 basic block is inserted (in the same section as the fall-through
2131 source), and the fall through edge is redirected to the new basic
2132 block. The new basic block contains an unconditional jump to the
2133 original fall-through target. (If the unconditional jump is
2134 insufficient to cross section boundaries, that is dealt with a
2135 little later, see below).
2137 In order to deal with architectures that have short conditional
2138 branches (which cannot span all of memory) we take any conditional
2139 jump that attempts to cross a section boundary and add a level of
2140 indirection: it becomes a conditional jump to a new basic block, in
2141 the same section. The new basic block contains an unconditional
2142 jump to the original target, in the other section.
2144 For those architectures whose unconditional branch is also
2145 incapable of reaching all of memory, those unconditional jumps are
2146 converted into indirect jumps, through a register.
2148 IMPORTANT NOTE: This optimization causes some messy interactions
2149 with the cfg cleanup optimizations; those optimizations want to
2150 merge blocks wherever possible, and to collapse indirect jump
2151 sequences (change "A jumps to B jumps to C" directly into "A jumps
2152 to C"). Those optimizations can undo the jump fixes that
2153 partitioning is required to make (see above), in order to ensure
2154 that jumps attempting to cross section boundaries are really able
2155 to cover whatever distance the jump requires (on many architectures
2156 conditional or unconditional jumps are not able to reach all of
2157 memory). Therefore tests have to be inserted into each such
2158 optimization to make sure that it does not undo stuff necessary to
2159 cross partition boundaries. This would be much less of a problem
2160 if we could perform this optimization later in the compilation, but
2161 unfortunately the fact that we may need to create indirect jumps
2162 (through registers) requires that this optimization be performed
2163 before register allocation. */
2165 static void
2166 partition_hot_cold_basic_blocks (void)
2168 basic_block cur_bb;
2169 edge *crossing_edges;
2170 int n_crossing_edges;
2171 int max_edges = 2 * last_basic_block;
2173 if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1)
2174 return;
2176 crossing_edges = XCNEWVEC (edge, max_edges);
2178 cfg_layout_initialize (0);
2180 FOR_EACH_BB (cur_bb)
2181 if (cur_bb->index >= NUM_FIXED_BLOCKS
2182 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
2183 cur_bb->aux = cur_bb->next_bb;
2185 find_rarely_executed_basic_blocks_and_crossing_edges (crossing_edges,
2186 &n_crossing_edges,
2187 &max_edges);
2189 if (n_crossing_edges > 0)
2190 fix_edges_for_rarely_executed_code (crossing_edges, n_crossing_edges);
2192 free (crossing_edges);
2194 cfg_layout_finalize();
2197 static bool
2198 gate_handle_reorder_blocks (void)
2200 return (optimize > 0);
2204 /* Reorder basic blocks. */
2205 static unsigned int
2206 rest_of_handle_reorder_blocks (void)
2208 bool changed;
2209 unsigned int liveness_flags;
2211 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
2212 splitting possibly introduced more crossjumping opportunities. */
2213 liveness_flags = (!HAVE_conditional_execution ? CLEANUP_UPDATE_LIFE : 0);
2214 changed = cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2216 if (flag_sched2_use_traces && flag_schedule_insns_after_reload)
2218 timevar_push (TV_TRACER);
2219 tracer (liveness_flags);
2220 timevar_pop (TV_TRACER);
2223 if (flag_reorder_blocks || flag_reorder_blocks_and_partition)
2224 reorder_basic_blocks (liveness_flags);
2225 if (flag_reorder_blocks || flag_reorder_blocks_and_partition
2226 || (flag_sched2_use_traces && flag_schedule_insns_after_reload))
2227 changed |= cleanup_cfg (CLEANUP_EXPENSIVE | liveness_flags);
2229 /* On conditional execution targets we can not update the life cheaply, so
2230 we deffer the updating to after both cleanups. This may lose some cases
2231 but should not be terribly bad. */
2232 if (changed && HAVE_conditional_execution)
2233 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2234 PROP_DEATH_NOTES);
2236 /* Add NOTE_INSN_SWITCH_TEXT_SECTIONS notes. */
2237 insert_section_boundary_note ();
2238 return 0;
2241 struct tree_opt_pass pass_reorder_blocks =
2243 "bbro", /* name */
2244 gate_handle_reorder_blocks, /* gate */
2245 rest_of_handle_reorder_blocks, /* execute */
2246 NULL, /* sub */
2247 NULL, /* next */
2248 0, /* static_pass_number */
2249 TV_REORDER_BLOCKS, /* tv_id */
2250 0, /* properties_required */
2251 0, /* properties_provided */
2252 0, /* properties_destroyed */
2253 0, /* todo_flags_start */
2254 TODO_dump_func, /* todo_flags_finish */
2255 'B' /* letter */
2258 static bool
2259 gate_handle_partition_blocks (void)
2261 /* The optimization to partition hot/cold basic blocks into separate
2262 sections of the .o file does not work well with linkonce or with
2263 user defined section attributes. Don't call it if either case
2264 arises. */
2266 return (flag_reorder_blocks_and_partition
2267 && !DECL_ONE_ONLY (current_function_decl)
2268 && !user_defined_section_attribute);
2271 /* Partition hot and cold basic blocks. */
2272 static unsigned int
2273 rest_of_handle_partition_blocks (void)
2275 no_new_pseudos = 0;
2276 partition_hot_cold_basic_blocks ();
2277 allocate_reg_life_data ();
2278 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
2279 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
2280 no_new_pseudos = 1;
2281 return 0;
2284 struct tree_opt_pass pass_partition_blocks =
2286 "bbpart", /* name */
2287 gate_handle_partition_blocks, /* gate */
2288 rest_of_handle_partition_blocks, /* execute */
2289 NULL, /* sub */
2290 NULL, /* next */
2291 0, /* static_pass_number */
2292 TV_REORDER_BLOCKS, /* tv_id */
2293 0, /* properties_required */
2294 0, /* properties_provided */
2295 0, /* properties_destroyed */
2296 0, /* todo_flags_start */
2297 TODO_dump_func, /* todo_flags_finish */
2298 0 /* letter */